This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Relative Calabi-Yau structures II: Shifted Lagrangians in the moduli of objects

Christopher Brav111Laboratory for Mirror Symmetry, Higher School of Economics, Moscow, email:c.brav@hse.ru  and Tobias Dyckerhoff222Fachbereich Mathematik, University of Hamburg, email:tobias.dyckerhoff@uni-hamburg.de
Abstract

We show that a Calabi-Yau structure of dimension dd on a smooth dg category C{C} induces a symplectic form of degree 2d2-d on `the moduli space of objects' C{\mathcal{M}}_{{C}}. We show moreover that a relative Calabi-Yau structure on a dg functor CD{C}\rightarrow{D} compatible with the absolute Calabi-Yau structure on CC induces a Lagrangian structure on the corresponding map of moduli DC{\mathcal{M}}_{{D}}\rightarrow{\mathcal{M}}_{{C}}.

1 Introduction

Given a smooth, proper variety XX over a field kk, there is a reasonable derived moduli space of perfect complexes X{\mathcal{M}}_{X} on XX, with the property that at a point in X{\mathcal{M}}_{X} corresponding to a perfect complex EE on XX, the tangent complex at EE identifies with the shifted (derived) endomorphisms of EE:

TE(X)End(E)[1].{{T}_{E}}({\mathcal{M}}_{X})\simeq{\operatorname{End}(E)}[1].

For XX of dimension dd, a trivialisation θ:𝒪XdT(X)\theta:{\mathcal{O}}_{X}\simeq\mbox{\Large$\wedge$}^{d}{T}^{*}(X) of its canonical bundle gives a trace map tr:End(E)θHom(E,EdT(X))k[d]{\operatorname{tr}}:{\operatorname{End}(E)}\stackrel{{\scriptstyle\theta}}{{\simeq}}{\operatorname{Hom}}(E,E\otimes\mbox{\Large$\wedge$}^{d}{T}^{*}(X))\rightarrow k[-d] such that the Serre pairing

TE(X)[1]2End(E)2End(E)trk[d]{{T}_{E}}({\mathcal{M}}_{X})[-1]^{\otimes 2}\simeq{\operatorname{End}(E)}^{\otimes 2}\stackrel{{\scriptstyle\circ}}{{\rightarrow}}{\operatorname{End}(E)}\stackrel{{\scriptstyle{\operatorname{tr}}}}{{\rightarrow}}k[-d] (1.1)

is anti-symmetric and non-degenerate.

When d=2d=2, so that XX is a K3 or abelian surface, and the moduli space X{\mathcal{M}}_{X} is replaced with that of simple sheaves, Mukai [18] showed that the above pointwise pairings come from a global algebraic symplectic form. Similarly, when XX is taken to be a compact oriented topological surface, Goldman [10] showed that using Poincaré pairings in place of Serre pairings as above gives a global symplectic form on the moduli space of local systems on XX.

Such examples motivated Pantev-Toën-Vaquié-Vezzosi [19] to introduce shifted symplectic structures on derived Artin stacks and to show that, in particular, the above pairings are induced by a global symplectic form of degree 2d2-d on X{\mathcal{M}}_{X}. The main goal of this paper is to establish an analogue of this global symplectic form when a Calabi-Yau variety (X,θ)(X,\theta) is replaced by a `non-commutative Calabi-Yau' in the form of a nice dg category C{C} equipped with some extra structure and the moduli space X{\mathcal{M}}_{X} is replaced with a `moduli space of objects' C{\mathcal{M}}_{{C}}. More precisely, a non-commutative Calabi-Yau of dimension dd is a (very) smooth dg category C{C} equipped with a negative cyclic chain θ:k[d]HC(C)\theta:k[d]\rightarrow{HC^{-}}({C}) satisfying a certain non-degeneracy condition, and the moduli space C{\mathcal{M}}_{{C}} parametrises `pseudo-perfect C{C}-modules', introduced by Töen-Vaquié in [22]. More generally, we shall be interested in `relative left Calabi-Yau structures' on dg functors CD{C}\rightarrow{D}, in the sense of Brav-Dyckerhoff [4].

The main result of this paper is Theorem 5.5, which we paraphrase here.

Main theorem.

Given a non-commutative Calabi-Yau (C,θ)({C},\theta) of dimension dd, the moduli space of objects C{\mathcal{M}}_{{C}} has an induced symplectic form of degree 2d2-d. If in addition f:CDf:{C}\rightarrow{D} is a dg functor equipped with a relative left Calabi-Yau structure, then the induced map of moduli spaces DC{\mathcal{M}}_{{D}}\rightarrow{\mathcal{M}}_{{C}} has an induced Lagrangian structure.

In Corollary 6.2, we shall show that the above theorem about non-commutative Calabi-Yaus allows us to say something new even for non-compact commutative Calabi-Yaus with Gorenstein singularities. Namely, we have the following corollary.

Corollary of main theorem.

Let XX be a finite type Gorenstein scheme of dimension dd with a trivialisation θ:𝒪XKX\theta:{\mathcal{O}}_{X}\simeq K_{X} of its canonical bundle. Then the moduli space X{\mathcal{M}}_{X} of perfect complexes with proper support has an induced symplectic form of degree 2d2-d. When XX arises as the zero-scheme of an anticanonical section sKY1s\in K_{Y}^{-1} on a Gorenstein scheme YY of dimension d+1d+1, then the restriction map

YX{\mathcal{M}}_{Y}\rightarrow{\mathcal{M}}_{X}

carries a Lagrangian structure.

In Corollary 6.5, we shall show that the notion of relative Calabi-Yau structure and its relation to Lagrangian structures allows us to construct Lagrangian correspondences between moduli spaces of quiver representations, generalising examples known to experts. We record here a special case.

Corollary of main theorem.

For a noncommutative Calabi-Yau (C,θ)({C},\theta) of dimension dd, there is a Lagrangian correspondence

C×CCexC,{\mathcal{M}}_{{C}}\times{\mathcal{M}}_{{C}}\leftarrow{\mathcal{M}}^{\rm ex}_{{C}}\rightarrow{\mathcal{M}}_{{C}},

where Cex{\mathcal{M}}^{\rm ex}_{{C}} is the moduli space of exact triangles in C{C}.

Remark 1.2.

Before proceeding, let us mention some related work. The notion of relative Calabi-Yau structure was introduced in our previous paper, [4], where we announced the theorem above. In [21], 5.3, Toën sketches an argument for the particular case of the main theorem when C{C} is both smooth and proper, and describes a version of the second corollary. In [24], Theorem 4.67, Yeung proves a version of the main theorem for a certain substack of C{\mathcal{M}}_{{C}}. In [20], Shende and Takeda develop a local-to-global principle for constructing absolute and relative Calabi-Yau structures on dg categories of interest in symplectic topology and representation theory. Combined with our main theorem, this gives many examples of shifted symplectic moduli spaces and Lagrangians in them coming from non-commutative Calabi-Yaus.

We now sketch the main constructions involved in establishing the main theorem.

First, by definition of the moduli space C{\mathcal{M}}_{{C}}, there is a universal functor

C:CcPerf(C){\mathcal{F}}_{{C}}:{C}^{c}\rightarrow\operatorname{Perf}({\mathcal{M}}_{{C}})

from the subcategory of compact objects of C{C} to perfect complexes on the moduli space C{{\mathcal{M}}_{{C}}}. Applying the functor of Hochschild chains and taking S1S^{1}-invariants, we obtain a map of negative cyclic chains HC(Cc)HC(Perf(C)){HC^{-}}({C}^{c})\rightarrow{HC^{-}}(\operatorname{Perf}({\mathcal{M}}_{{C}})). An appropriate version of the Hochschild-Kostant-Rosenberg theorem (Proposition 5.2) provides a projection map HC(Perf(C))𝒜2,cl(C,2){HC^{-}}(\operatorname{Perf}({\mathcal{M}}_{{C}}))\rightarrow\mathcal{A}^{2,cl}({\mathcal{M}}_{{C}},2) from negative cyclic chains of Perf(C)\operatorname{Perf}({\mathcal{M}}_{{C}}) to closed 22-forms of degree 22. In particular, from a Calabi-Yau structure of dimension dd, θ:k[d]HC(C)\theta:k[d]\rightarrow{HC^{-}}({C}), we obtain a closed 22-form of degree 2d2-d as the composition

k[d]θHC(C)HC(Perf(C))𝒜2,cl(C,2).k[d]\stackrel{{\scriptstyle\theta}}{{\rightarrow}}{HC^{-}}({C})\rightarrow{HC^{-}}(\operatorname{Perf}({\mathcal{M}}_{{C}}))\rightarrow\mathcal{A}^{2,cl}({\mathcal{M}}_{{C}},2).

While the construction of the above closed 22-form is fairly easy, it requires some work to show that it is non-degenerate. Indeed, much of the paper consists in setting up the theory necessary for computing this 22-form in such a way that its non-degeneracy becomes manifest. The computation is broken into a number of steps.

First, we note that since C{C} is smooth, the functor {\mathcal{F}} is corepresentable relative to Perf(C)\operatorname{Perf}({\mathcal{M}}_{{C}}) in the sense that there is a universal object CCcPerf(C){\mathcal{E}}_{{C}}\in{C}^{c}\otimes\operatorname{Perf}({\mathcal{M}}_{{C}}) so that C=Hom¯C(C,){\mathcal{F}}_{{C}}=\underline{\operatorname{Hom}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}},-). Moreover, there is a form of Serre duality relative to Perf(C)\operatorname{Perf}({\mathcal{M}}_{{C}}), formulated in terms of the `relative inverse dualising functor' (see Corollary 2.5), which in the case that (C,θ)({C},\theta) is a noncommutative Calabi-Yau of dimension dd induces a global version of the Serre pairing 1.1:

End¯C(C)2End¯C(C)tr𝒪C[d].\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}})^{\otimes 2}\stackrel{{\scriptstyle\circ}}{{\rightarrow}}\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}})\stackrel{{\scriptstyle{\operatorname{tr}}}}{{\rightarrow}}{\mathcal{O}}_{{\mathcal{M}}_{{C}}}[-d]. (1.3)

Next, we show (see Proposition 3.3) that there is a natural isomorphism of Lie algebras of the shifted tangent complex of C{\mathcal{M}}_{{C}} with endomorphisms of C{\mathcal{E}}_{{C}}:

T(C)[1]End¯C(C).{T}({\mathcal{M}}_{{C}})[-1]\simeq\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}}).

In particular, the shifted tangent complex T(C)[1]{T}({\mathcal{M}}_{{C}})[-1] carries not only a Lie algebra structure, but even an associative algebra structure.

Finally, after a general study of maps of Hochschild chains induced by dg functors, we check that under the identification T(C)[1]End¯C(C){T}({\mathcal{M}}_{{C}})[-1]\simeq\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}}), the pairing 1.3 agrees with that given by the 22-form induced by θ\theta. (See Proposition 5.3 in the body of the text.)

We end this introduction with an outline of the structure of the paper, highlighting those points important to the proof of the main theorem.

In Section 2, we introduce notation for dg categories. The two most important points are Corollary 2.6, which shows that certain dg functors are corepresentable, and Lemma 2.5, which shows that the `inverse dualising functor' for a smooth dg category behaves like an `inverse Serre functor'.

In Section 3, we introduce some basic objects of derived algebraic geometry, as well as the protagonist of our story, the `moduli space of objects' C{\mathcal{M}}_{{C}} in a dg category C{C}. The main result of this section is Theorem 3.3, which for nice C{C} establishes an isomorphism of Lie algebras T(C)[1]End¯(C){T}({\mathcal{M}}_{{C}})[-1]\simeq\underline{\operatorname{End}}({\mathcal{E}}_{{C}}), where C{\mathcal{E}}_{{C}} is the `universal left proper object'. In particular, this endows the shifted tangent complex T(C)[1]{T}({\mathcal{M}}_{{C}})[-1] with the structure of associative algebra.

In Section 4, we review the formalism of traces of endofunctors, which we use to describe the functoriality and S1S^{1}-action for Hochschild chains. The most import points are Lemma 4.5, which describes how to compute the Hochschild map for a dg functor with smooth source and rigid target, and Proposition 4.6, which establishes an S1S^{1}-equivariant isomorphism between functions on the loop space LULU of an affine scheme UU and Hochschild chains HH(QCoh(U)){HH}(\operatorname{QCoh}(U)) of the category of quasi-coherent sheaves.

In Section 5, we review the theory of closed differential forms in derived algebraic geometry. In Proposition 5.2, we show how to construct closed differential forms on the moduli space C{\mathcal{M}}_{{C}} from negative cyclic chains on C{C}, and then prove our main result, Theorem 5.5. We conclude by discussing some corollaries and examples.

Conventions

For ease of reading, we have adopted some linguistic and notational hacks. For example, (,1)(\infty,1)-categories are simply called categories, (,1)(\infty,1)-functors are called functors, and homotopy limits and colimits are called limits and colimits. Similarly for (,2)(\infty,2)-categories. Certain objects or morphisms, such as adjoints and compositions, are only defined up to a contractible space of choices and we leave this ambiguity implicit. However, given an (,1)(\infty,1)-category C{C} and two objects x,yCx,y\in C, we do write Map(x,y)\operatorname{Map}(x,y) for the mapping space between them, which should serve as a reminder of what is not explicitly mentioned. Certain properties, like a morphism being an equivalence or an object in a monoidal category being dualisable, can be checked in the homotopy category and we do not usually mention explicitly the passage to the homotopy category. In particular, we simply call equivalences isomorphisms. Since there are no new \infty-categorical notions introduced in this paper, and almost all notions that we use appear in standard references such as [17] and [16], we hope the reader will not have difficulty in applying these conventions.

Acknowledgements We are grateful to Sasha Efimov, Nick Rozenblyum, Artem Prihodko, Pavel Safronov, and Bertrand Toën for helpful conversations.

2 Dualisability and smoothness for dg categories

In this section we review some basic definitions and results about dg categories. The main results that we use in later sections are Proposition 2.4 and Corollary 2.6.

2.1 Dualisability in symmetric monoidal categories

In order to aid later calculations, we give a few definitions and make a few observations about dualisable objects and morphisms between them.

We introduce some notation and recall common notions. Let 𝒞{\mathcal{C}} be a symmetric monoidal category. An object C𝒞C\in{\mathcal{C}} is dualisable if there is another object C{C}^{\vee}, together with an evaluation evC:CC1𝒞\operatorname{ev}_{{C}}:{C}^{\vee}\otimes{C}\rightarrow 1_{{\mathcal{C}}} and coevaluation coC:1𝒞CC\operatorname{co}_{{C}}:1_{{\mathcal{C}}}\rightarrow{C}\otimes{C}^{\vee} satisfying the usual axioms. Given a morphism f:CDf:{C}\rightarrow{D} with dualisable source, the adjoint morphism φ:1CD\varphi:1\rightarrow{C}^{\vee}\otimes{D} is given as the composition

1coCCCCCIdCfCD.1\stackrel{{\scriptstyle\operatorname{co}_{{C}}}}{{\longrightarrow}}{C}\otimes{C}^{\vee}\simeq{C}^{\vee}\otimes{C}\stackrel{{\scriptstyle\operatorname{Id}_{{C}^{\vee}}\otimes f}}{{\longrightarrow}}{C}^{\vee}\otimes{D}. (2.1)

Conversely, given a morphism φ:1CD\varphi:1\rightarrow{C}^{\vee}\otimes{D}, we obtain the adjoint morphism f:CDf:{C}\rightarrow{D} as the composition

CIdCφCCDCCDevCIdDD.{C}\stackrel{{\scriptstyle\operatorname{Id}_{{C}}\otimes\varphi}}{{\longrightarrow}}{C}\otimes{C}^{\vee}\otimes{D}\simeq{C}^{\vee}\otimes{C}\otimes{D}\stackrel{{\scriptstyle\operatorname{ev}_{{C}}\otimes\operatorname{Id}_{{D}}}}{{\longrightarrow}}{D}. (2.2)

Note that these two constructions are inverse to each other. Given a morphism f:CDf:{C}\rightarrow{D} with dualisable source and target, the dual morphism f:DCf^{\vee}:{D}^{\vee}\rightarrow{C}^{\vee} is given as the composition

DevCIdDCCDIdCfIdDCDDIdCcoDC.{D}^{\vee}\stackrel{{\scriptstyle\operatorname{ev}_{{C}}^{\vee}\otimes\operatorname{Id}_{{D}^{\vee}}}}{{\longrightarrow}}{C}^{\vee}\otimes{C}\otimes{D}^{\vee}\stackrel{{\scriptstyle\operatorname{Id}_{{C}^{\vee}}\otimes f\otimes\operatorname{Id}_{{D}^{\vee}}}}{{\longrightarrow}}{C}^{\vee}\otimes{D}\otimes{D}^{\vee}\stackrel{{\scriptstyle\operatorname{Id}_{{C}^{\vee}}\otimes\operatorname{co}_{{D}}^{\vee}}}{{\longrightarrow}}{C}^{\vee}. (2.3)
Remark 2.4.

Note that for a dualisable object C{C}, the evaluation evC\operatorname{ev}_{{C}} and coevaluation coC\operatorname{co}_{{C}} are dual to each other after composing with the symmetry CCCC{C}^{\vee}\otimes{C}\simeq{C}\otimes{C}^{\vee}. Moreover, the endomorphism of C{C} adjoint to evC:1CCC\operatorname{ev}_{{C}}^{\vee}:1_{{C}}\rightarrow{C}^{\vee}\otimes{C} is nothing but the identity endomorphism IdC\operatorname{Id}_{{C}}.

Lemma 2.1.

Consider a symmetric monoidal 22-category 𝒞{\mathcal{C}}.

  1. (1)

    Let CfD{C}\stackrel{{\scriptstyle f}}{{\rightarrow}}{D} and DgC{D}\stackrel{{\scriptstyle g}}{{\rightarrow}}{C} be morphisms between 11-dualisable objects in 𝒞{\mathcal{C}}. Then we have a natural identification of compositions

    IdDfgevDgfevC\operatorname{Id}_{{D}^{\vee}}\otimes fg\circ\operatorname{ev}_{{D}}^{\vee}\simeq g^{\vee}\otimes f\circ\operatorname{ev}_{{C}}^{\vee} (2.5)

    In other words, the adjoint of the composition DgCfD{D}\stackrel{{\scriptstyle g}}{{\rightarrow}}{C}\stackrel{{\scriptstyle f}}{{\rightarrow}}{D} can be computed as gfevCg^{\vee}\otimes f\circ\operatorname{ev}_{{C}}^{\vee}.

  2. (2)

    More generally, given an endomorphism F:CCF:{C}\rightarrow{C} with adjoint morphism Φ:1𝒞CC\Phi:1_{{\mathcal{C}}}\rightarrow{C}^{\vee}\otimes{C}, the adjoint of the composition fFgfFg can be computed as gfΦg^{\vee}\otimes f\circ\Phi.

  3. (3)

    Similarly, we have a natural identification

    evDgf=evCIdCgf,\operatorname{ev}_{{D}}\circ g^{\vee}\otimes f=\operatorname{ev}_{{C}}\circ\operatorname{Id}_{{C}^{\vee}}\otimes gf, (2.6)

    both sides being adjoint to gfgf.

  4. (4)

    An adjoint pair f:CD:frf:{C}\leftrightarrow{D}:f^{r} dualises to an adjoint pair (fr):CD:f(f^{r})^{\vee}:{C}^{\vee}\leftrightarrow{D}^{\vee}:f^{\vee}.

Proof.

As these are standard facts, we make only brief remarks on the proofs.

For 1), using the definition of (co)evaluation,we obtain a factorisation IdCcoCIdCIdCevC\operatorname{Id}_{{C}}\simeq\operatorname{co}_{{C}}^{\vee}\otimes\operatorname{Id}_{{C}}\circ\operatorname{Id}_{{C}}\otimes\operatorname{ev}_{{C}}^{\vee}. Now insert IdC\operatorname{Id}_{{C}} between ff and gg, and rearrange, using gIdDcoCIdDgIdCevDIdCg^{\vee}\simeq\operatorname{Id}_{{D}^{\vee}}\otimes\operatorname{co}_{{C}}^{\vee}\circ\operatorname{Id}_{{D}^{\vee}}\otimes g\otimes\operatorname{Id}_{{C}^{\vee}}\circ\operatorname{ev}_{{D}}^{\vee}\otimes\operatorname{Id}_{{C}^{\vee}}.

For 2), use essentially the same argument as in 1), but replacing ff with FfFf.

For 3), again use the same argument as in 1), but inserting a factorisation of IdD\operatorname{Id}_{{D}} between gg and ff.

For 4), note that for a 22-morphism α:f1f2\alpha:f_{1}\rightarrow f_{2}, there is a naturally induced 22-morphism α:f2f1\alpha^{\vee}:f_{2}^{\vee}\rightarrow f_{1}^{\vee}. Applying this to the unit and co-unit ffrIdDff^{r}\rightarrow\operatorname{Id}_{{D}} and frfIdCf^{r}f\rightarrow\operatorname{Id}_{{C}} gives the dualised adjunction.

2.2 Presentable dg categories

In this subsection we discuss the formalism in which we deal with dg categories. Mostly we follow Gaitsgory-Rozenblyum [8].

DGCatcont2\operatorname{DGCat}^{2}_{\rm cont} denotes the symmetric monoidal 22-category of presentable dg categories, continuous dg functors, and dg natural transformations. Here continuous means colimit preserving. The underlying 11-category, with presentable dg categories as objects and continuous dg functors as 11-morphisms, is denoted DGCatcont\operatorname{DGCat_{cont}}. We denote by Fun{\operatorname{Fun}} the internal Hom adjoint to tensor product. 333In some sources, Fun{\operatorname{Fun}} is denoted FunL{\operatorname{Fun}}^{L}, to emphasise that morphisms preserve colimits. The unit with respect to the tensor product is the dg category Vectk\operatorname{Vect}_{k} of dg vector spaces.

Given a dg category CDGCatcontC\in\operatorname{DGCat_{cont}}, we denote its subcategory of compact objects by CcC^{c}. A dg category CC is compactly generated if C=Ind(Cc)C=\operatorname{Ind}(C^{c}). Note that for any presentable dg category CC, CcC^{c} is a small, idempotent complete dg category. The category of such small dg categories is denoted dgcat\operatorname{dgcat}.

As a matter of convention, objects of DGCatcont\operatorname{DGCat_{cont}} shall be called simply `dg categories', while objects of dgcat\operatorname{dgcat} shall be called `small dg categories'. Let us emphasise here that in the prequel to this paper [4], we worked with a model for small dg categories dgcat\operatorname{dgcat} in terms of small categories enriched over cochain complexes and Morita equivalences between them. In the present paper, it is both more convenient and also necessary to work with DGCatcont\operatorname{DGCat_{cont}}, since we to handle not-necessarily compactly generated dg categories when dealing with quasi-coherent sheaves on prestacks.

The dualisable objects in DGCatcont\operatorname{DGCat_{cont}} (11-dualisable objects in DGCatcont2\operatorname{DGCat}^{2}_{\rm cont}) are simply called dualisable dg categories. Concretely, a dg category C{C} is dualisable if there is another dg category C{C}^{\vee} and a pairing evC:CCVectk\operatorname{ev}_{{C}}:{C}^{\vee}\otimes{C}\rightarrow\operatorname{Vect}_{k} and copairing coC:VectkCC\operatorname{co}_{{C}}:\operatorname{Vect}_{k}\rightarrow{C}\otimes{C}^{\vee} satisfying the usual properties. Note that if C{C} is compactly generated, then it is dualisable with dual C=Ind((Cc)op){C}^{\vee}=\operatorname{Ind}(({C}^{c})^{op}). One shows that evC\operatorname{ev}_{{C}} and coC\operatorname{co}_{{C}} are dual up to a switch of tensor factors. Furthermore one shows that for a dualisable dg category, we have a natural equivalence CDFun(C,D){C}^{\vee}\otimes{D}\simeq{\operatorname{Fun}({C},{D})}, and that under this equivalence, the composition VectkcoCCCCCFun(C,C)\operatorname{Vect}_{k}\stackrel{{\scriptstyle\operatorname{co}_{{C}}}}{{\rightarrow}}{C}\otimes{C}^{\vee}\simeq{C}^{\vee}\otimes{C}\simeq{\operatorname{Fun}({C},{C})} sends kVectkk\in\operatorname{Vect}_{k} to IdC\operatorname{Id}_{{C}}.

Given a continuous dg functor f:CDf:{C}\rightarrow{D} between presentable dg categories (that is, a map in DGCatcont\operatorname{DGCat_{cont}}), the adjoint functor theorem ensures the existence of a formal right adjoint fr:DCf^{r}:{D}\rightarrow{C}. When the right adjoint frf^{r} is itself continuous, we call f:CD:frf:{C}\leftrightarrow{D}:f^{r} a continuous adjunction. When C{C} and D{D} are dualisable, passing to duals gives a continuous adjunction (fr):CD:f(f^{r})^{\vee}:{C}^{\vee}\longleftrightarrow{D}^{\vee}:f^{\vee}, by Lemma 2.1. One shows that if C{C} is compactly generated, then a continuous functor f:CDf:{C}\rightarrow{D} has continuous right adjoint if and only ff sends compact objects to compact objects.

A dualisable dg category C{C} is called proper if the evaluation functor CCevCVectk{C}^{\vee}\otimes{C}\stackrel{{\scriptstyle\operatorname{ev}_{{C}}}}{{\rightarrow}}\operatorname{Vect}_{k} has a continuous right adjoint and is called smooth if the evaluation functor has a left adjoint. Equivalently, C{C} is smooth if the coevaluation functor VectkcoCCC\operatorname{Vect}_{k}\stackrel{{\scriptstyle\operatorname{co}_{{C}}}}{{\rightarrow}}{C}\otimes{C}^{\vee} has a continuous right adjoint. Since Vectk\operatorname{Vect}_{k} is generated by the compact object kk, coC\operatorname{co}_{{C}} has a continuous right adjoint if and only coC(k)CC\operatorname{co}_{{C}}(k)\in{C}\otimes{C}^{\vee} is compact if and only if IdCFun(C,C)\operatorname{Id}_{{C}}\in{\operatorname{Fun}({C},{C})} is compact. (We note in passing that the 22-dualisable objects in DGCatcont2\operatorname{DGCat}^{2}_{\rm cont} are precisely the dualisable dg categories C{C} that are both smooth and proper.)

2.3 Rigid dg categories and continuous adjunctions

In this subsection, we review the notion of rigid dg category, following [8], and prove a corepresentability result (Corollary 2.6) for continuous adjunctions between smooth and rigid dg categories. This corepresentability lemma will be important for understanding the tangent complex of the moduli space of objects.

By monoidal/symmetric monoidal dg category, we mean an algebra/commutative algebra object in DGCatcont\operatorname{DGCat_{cont}}.

Given a monoidal dg category A{A}, we denote the tensor product functor by mA:AAA\operatorname{m}_{{A}}:{A}\otimes{A}\rightarrow{A}, and the unit functor by 1A:VectkA-\otimes 1_{{A}}:\operatorname{Vect}_{k}\rightarrow{A}. Since A{A} is an algebra object in DGCatcont\operatorname{DGCat_{cont}}, mA\operatorname{m}_{{A}} and 1A1_{{A}} are continuous, hence for every object aAa\in{A}, the functors a,a:AAa\otimes-,-\otimes a:{A}\rightarrow{A} are continuous.

By A{A}-module category we mean a (left) module C{C} for A{A} internal to DGCatcont\operatorname{DGCat_{cont}}. By definition, the action functor mC:ACC\operatorname{m}_{{C}}:{A}\otimes{C}\rightarrow{C} is continuous. In particular, given any object cCc\in{C}, the functor c:AC-\otimes c:{A}\rightarrow{C} is continuous. By the adjoint functor theorem, c-\otimes c has a (not necessarily continuous) right adjoint Hom¯A(c,):CA\underline{\operatorname{Hom}}_{{A}}(c,-):{C}\rightarrow{A}, called `relative Hom'.

We use the notation

End¯A(c):=Hom¯A(c,c).\underline{\operatorname{End}}_{{A}}(c):=\underline{\operatorname{Hom}}_{{A}}(c,c).

End¯A(c)\underline{\operatorname{End}}_{{A}}(c) admits a natural structure of algebra in A{A}. See [16], 4.7.2.

Given an associative algebra 𝒜{\mathcal{A}} in a monoidal dg category A{A} and an A{A}-module category C{C}, there is a dg category of 𝒜{\mathcal{A}}-modules in C{C}, denoted

𝒜mod(C){{\mathcal{A}}}\operatorname{-mod}({C})

The datum of an object c𝒜mod(C)c\in{{\mathcal{A}}}\operatorname{-mod}({C}) is equivalent to giving an algebra morphism 𝒜End¯A(c){\mathcal{A}}\rightarrow\underline{\operatorname{End}}_{{A}}(c).

We shall need the following fact, proved in [8], I.1.8.5.7:

Proposition 2.2.

There is an equivalence of categories

𝒜modAC𝒜mod(C).{{\mathcal{A}}}\operatorname{-mod}\otimes_{A}{C}\simeq{{\mathcal{A}}}\operatorname{-mod}({C}).

A monoidal dg category A{A} is called rigid if the unit 1A1_{{A}} is compact, the monoidal product mA:AAA\operatorname{m}_{{A}}:{A}\otimes{A}\rightarrow{A} has a continuous right adjoint mAr\operatorname{m}_{{A}}^{r}, and mAr\operatorname{m}_{{A}}^{r} is a map of A{A}-bimodules. It is easy to see that evA:=HomA(1A,mA()):AAAVectk\operatorname{ev}_{{A}}:={\operatorname{Hom}_{{A}}}(1_{{A}},\operatorname{m}_{{A}}(-)):{A}\otimes{A}\rightarrow{A}\rightarrow\operatorname{Vect}_{k} induces a self-duality equivalence AA{A}\simeq{A}^{\vee}. When A{A} is compactly generated, the condition that mAr\operatorname{m}_{{A}}^{r} be a bimodule functor can replaced with the requirement that an object is compact if and only if it admits a left and right dual. See [8], I.1.9.

If C{C} is dualisable, then one can show that there is an equivalence of dg categories CFunACA{C}^{\vee}\simeq\operatorname{Fun}_{{A}}{{C}}{{A}} and that there is an A{A}-linear relative evaluation functor evC/A:CACA\operatorname{ev}_{{C}/{A}}:{C}^{\vee}\otimes_{{A}}{C}\rightarrow{A} exhibiting C{C}^{\vee} as the A{A}-module dual of C{C} ([8], I.1.9.5.4). We say that C{C} is smooth over A{A} if the relative evaluation evC/A\operatorname{ev}_{{C}/{A}} has a left adjoint evC/Al\operatorname{ev}^{l}_{{C}/{A}} and proper over A{A} if there is a continuous right adjoint evC/Ar\operatorname{ev}_{{C}/{A}}^{r}.

For a rigid dg category A{A}, the induction-restriction adjunction

1A:VectkA:HomA(1A,)-\otimes 1_{{A}}:\operatorname{Vect}_{k}\longleftrightarrow{A}:{\operatorname{Hom}_{{A}}}(1_{{A}},-) (2.7)

is continuous. Tensoring 2.7 with a dg category C{C}, we obtain a continuous induction-restriction functor for C{C} and CA:=AC{C}_{{A}}:={A}\otimes{C}, which for brevity we denote

i:CCA:ir.i:{C}\longleftrightarrow{C}_{{A}}:i^{r}.

Concretely, we have i(c)=1Aci(c)=1_{{A}}\otimes c and ir(ac)=HomA(1A,a)ci^{r}(a\otimes c)={\operatorname{Hom}_{{A}}}(1_{{A}},a)\otimes c.

Lemma 2.3.

Let C{C} be a dg category, A{A} a rigid dg category, f:CA:frf:{C}\leftrightarrow{A}:f^{r} a continuous adjunction.

  1. (1)

    There is an induced, continuous A{A}-linear adjunction

    F:CA\textstyle{F:{C}_{{A}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}IdAf\scriptstyle{\operatorname{Id}_{{A}}\otimes f}AA\textstyle{{A}\otimes{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}IdAfr\scriptstyle{\operatorname{Id}_{{A}}\otimes f^{r}}mA\scriptstyle{\operatorname{m}_{{A}}}A:Fr.\textstyle{{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces:F^{r}.}mAr\scriptstyle{\operatorname{m}_{{A}}^{r}}
  2. (2)

    We have fFif\simeq F\circ i and frirFrf^{r}\simeq i^{r}\circ F^{r}. Applying ii to the latter and using the unit of the adjunction i,iri,i^{r}, we obtain a natural transformation

    ifriirFrFr.i\circ f^{r}\simeq i\circ i^{r}\circ F^{r}\Rightarrow F^{r}.
  3. (3)

    Using the above natural transformation and the natural isomorphism iΦIdAΦii\circ\Phi\simeq\operatorname{Id}_{{A}}\otimes\Phi\circ i for a continuous endomorphism Φ\Phi of C{C}, we obtain a natural transformation

    fΦfrFiΦfrFIdAΦifrFIdAΦFrf\circ\Phi\circ f^{r}\simeq F\circ i\circ\Phi\circ f^{r}\simeq F\circ\operatorname{Id}_{{A}}\otimes\Phi\circ i\circ f^{r}\Rightarrow F\circ\operatorname{Id}_{{A}}\otimes\Phi\circ F^{r}

    natural in Φ\Phi.

Proof.

The proofs are straightforward. Let us merely note that FF is A{A}-linear by construction. The fact that its right adjoint FrF^{r} is also A{A}-linear uses rigidity of A{A} and is verified in [8], I.9.3.6. ∎

Next, we specialise to the case of dualisable and smooth sources and rigid target, where standard diagram chases establish the following.

Proposition 2.4.

Let A{A} be a rigid symmetric monoidal dg category, C{C} a dualisable A{A}-module, F:CA:FrF:{C}\leftrightarrow{A}:F^{r} a continuous A{A}-linear adjunction.

  1. (1)

    Under the self-duality AA{A}\simeq{A}^{\vee}, the dual functor FF^{\vee} identifies with the composition

    AevC/ACACIdCAFCAAC{A}\stackrel{{\scriptstyle\operatorname{ev}_{{C}/{A}}^{\vee}}}{{\longrightarrow}}{C}^{\vee}\otimes_{{A}}{C}\stackrel{{\scriptstyle\operatorname{Id}_{{C}^{\vee}}\otimes_{{A}}F}}{{\longrightarrow}}{C}^{\vee}\otimes_{{A}}{A}\simeq{C}^{\vee}

    and the dual functor Fr{F^{r}}^{\vee} identifies with the composition

    CAACFrAIdCCACcoC/AA{C}^{\vee}\simeq{A}\otimes_{{A}}{C}^{\vee}\stackrel{{\scriptstyle F^{r}\otimes_{{A}}\operatorname{Id}_{{C}^{\vee}}}}{{\longrightarrow}}{C}\otimes_{{A}}{C}^{\vee}\stackrel{{\scriptstyle\operatorname{co}_{{C}/{A}}^{\vee}}}{{\longrightarrow}}{A}
  2. (2)

    By definition of dual functor, FevC/AFAIdCF\simeq\operatorname{ev}_{{C}/{A}}\circ F^{\vee}\otimes_{{A}}\operatorname{Id}_{{C}}. Then using the above computation of FF^{\vee}, FF identifies with the composition

    CAACevC/AAIdCCACACIdCAFAIdCCAAACCACevC/AA.{C}\simeq{A}\otimes_{{A}}{C}\stackrel{{\scriptstyle\operatorname{ev}_{{C}/{A}}^{\vee}\otimes_{{A}}\operatorname{Id}_{{C}}}}{{\longrightarrow}}{C}^{\vee}\otimes_{{A}}{C}\otimes_{{A}}{C}\stackrel{{\scriptstyle\operatorname{Id}_{{C}^{\vee}}\otimes_{A}F\otimes_{{A}}\operatorname{Id}_{{C}}}}{{\longrightarrow}}{C}^{\vee}\otimes_{{A}}{A}\otimes_{{A}}{C}\simeq{C}^{\vee}\otimes_{{A}}{C}\stackrel{{\scriptstyle\operatorname{ev}_{{C}/{A}}}}{{\longrightarrow}}{A}.
  3. (3)

    If C{C} is smooth over A{A}, so that evC/A:CACA\operatorname{ev}_{{C}/{A}}:{C}^{\vee}\otimes_{{A}}{C}\rightarrow{A} has a left adjoint evC/Al\operatorname{ev}^{l}_{{C}/{A}}, then we can pass to left adjoints in FevC/AFAIdCF\simeq\operatorname{ev}_{{C}/{A}}\circ F^{\vee}\otimes_{{A}}\operatorname{Id}_{{C}} to obtain a left adjoint FlFrAIdCevC/AlF^{l}\simeq{F^{r}}^{\vee}\otimes_{{A}}\operatorname{Id}_{{C}}\circ\operatorname{ev}^{l}_{{C}/{A}}. Using the above computation of Fr{F^{r}}^{\vee}, we find that FlF^{l} identifies with the composition

    AevC/AlCACAACACFrAIdCAIdCCACACcoC/AAIdCC.{A}\stackrel{{\scriptstyle\operatorname{ev}^{l}_{{C}/{A}}}}{{\longrightarrow}}{C}^{\vee}\otimes_{{A}}{C}\simeq{A}\otimes_{{A}}{C}^{\vee}\otimes_{{A}}{C}\stackrel{{\scriptstyle F^{r}\otimes_{{A}}\operatorname{Id}_{{C}^{\vee}}\otimes_{{A}}\operatorname{Id}_{{C}}}}{{\rightarrow}}{C}\otimes_{{A}}{C}^{\vee}\otimes_{{A}}{C}\stackrel{{\scriptstyle\operatorname{co}_{{C}/{A}}^{\vee}\otimes_{A}\operatorname{Id}_{{C}}}}{{\rightarrow}}{C}.

    Inspecting the above composition, we find that

    FlIdC/A!Fr,F^{l}\simeq\operatorname{Id}_{{C}/{A}}^{!}\circ F^{r},

    where IdC/A!\operatorname{Id}_{{C}/{A}}^{!} is adjoint to evC/Al(k)CAC\operatorname{ev}^{l}_{{C}/{A}}(k)\in{C}^{\vee}\otimes_{A}{C}.

  4. (4)

    When C{C} is smooth over A{A}, we set E:=Fl(1A)CE:=F^{l}(1_{{A}})\in{C} and obtain that FF is corepresentable relative to A{A}:

    FHom¯A(E,).F\simeq\underline{\operatorname{Hom}}_{{A}}(E,-).

Let A{A} be a rigid, compactly generated dg category, C{C} a compactly generated A{A}-module category. An object cCc\in{C} is called left proper over A{A} if Hom¯A(c,):CA\underline{\operatorname{Hom}}_{{A}}(c,-):{C}\rightarrow{A} is continuous with continuous right adjoint, and right proper over A{A} if Hom¯A(,c):CA\underline{\operatorname{Hom}}_{{A}}(-,c)^{\vee}:{C}\rightarrow{A} is continuous with continuous right adjoint. 444Here, Hom¯A(,c)\underline{\operatorname{Hom}}_{{A}}(-,c)^{\vee} is a slight abuse of notation. Strictly speaking, the formula is correct on compact objects, and is then defined everywhere by left Kan extension.

The functor IdC/A!\operatorname{Id}_{{C}/{A}}^{!} adjoint to evC/Al(k)CAC\operatorname{ev}^{l}_{{C}/{A}}(k)\in{C}^{\vee}\otimes_{A}{C} is called the (relative) inverse dualising functor, since by the following corollary it behaves like an `inverse Serre functor' relative to A{A}.

Corollary 2.5.

Let C{C} be a compactly generated dg category, smooth over a rigid dg category A{A}. Suppose cCc\in{C} is right proper over A{A}, so that the functor Hom¯A(,c):CA\underline{\operatorname{Hom}}_{{A}}(-,c)^{\vee}:{C}\rightarrow{A} is continuous with continuous right adjoint. Then there is a natural isomorphism of functors

Hom¯A(,c)Hom¯A(IdC/A!(c),).\underline{\operatorname{Hom}}_{{A}}(-,c)^{\vee}\simeq\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}/{A}}(c),-).

In particular, IdC/A!(c)\operatorname{Id}^{!}_{{C}/{A}}(c) is left proper.

Moreover, applying the above isomorphism to cc, we have Hom¯A(IdC/A!(c),c)Hom¯A(c,c)\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}/{A}}(c),c)\simeq\underline{\operatorname{Hom}}_{{A}}(c,c)^{\vee}. Composing with the dual of the unit 1AHom¯A(c,c)1_{{A}}\rightarrow\underline{\operatorname{Hom}}_{{A}}(c,c), we obtain a trace map trc:Hom¯A(IdC/A!(c),c)Hom¯A(c,c)1A{\operatorname{tr}}_{c}:\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}/{A}}(c),c)\simeq\underline{\operatorname{Hom}}_{{A}}(c,c)^{\vee}\rightarrow 1_{{A}}. For a compact object dd, the isomorphism Hom¯A(d,c)Hom¯A(IdC/A!(c),d)\underline{\operatorname{Hom}}_{{A}}(d,c)^{\vee}\simeq\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}/{A}}(c),d) is induced by the pairing

Hom¯A(d,c)AHom¯A(IdC/A!(c),d)Hom¯A(IdC/A!(c),c)trc1A.\underline{\operatorname{Hom}}_{{A}}(d,c)\otimes_{{A}}\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}/{A}}(c),d)\stackrel{{\scriptstyle\circ}}{{\rightarrow}}\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}/{A}}(c),c)\stackrel{{\scriptstyle{\operatorname{tr}}_{c}}}{{\rightarrow}}1_{{A}}.
Proof.

Let F=Hom¯A(,c):CAF=\underline{\operatorname{Hom}}_{{A}}(-,c)^{\vee}:{C}\rightarrow{A}. By assumption, FF has a continuous right adjoint FrF^{r}. For each compact object dCd\in{C}, we have a natural equivalence

HomA(d,c)HomA(1A,Hom¯A(d,c))HomA(Hom¯A(d,c),1A)HomA(F(d),1A)HomA(d,Fr(1A)),{\operatorname{Hom}_{{A}}}(d,c)\simeq{\operatorname{Hom}_{{A}}}(1_{{A}},\underline{\operatorname{Hom}}_{{A}}(d,c))\simeq{\operatorname{Hom}_{{A}}}(\underline{\operatorname{Hom}}_{{A}}(d,c)^{\vee},1_{{A}})\simeq{\operatorname{Hom}_{{A}}}(F(d),1_{{A}})\simeq{\operatorname{Hom}_{{A}}}(d,F^{r}(1_{{A}})),

hence by the Yoneda lemma Fr(1A)cF^{r}(1_{{A}})\simeq c. By Proposition 2.4, FF also has a left adjoint given as Fl=IdC/A!FrF^{l}=\operatorname{Id}^{!}_{{C}/{A}}\circ F^{r} and FF is corepresented by Fl(1A)F^{l}(1_{{A}}), hence FHom¯A(IdC/A!(c),)F\simeq\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}/{A}}(c),-), as claimed.

The statement about the isomorphism being induced by the pairing follows from naturality of the isomorphism, just as in the case of Serre functors. ∎

Combining Lemma 2.3 and Proposition 2.4, we have the following corepresentability result, which will be essential in understanding the tangent complex of the moduli space of objects C{\mathcal{M}}_{{C}} in a smooth dg category C{C}.

Corollary 2.6.

Let f:CA:frf:{C}\longleftrightarrow{A}:f^{r} be a continuous adjunction with smooth source and rigid target. Then the induced functor

F=fA:CAAF=f_{{A}}:{C}_{{A}}\rightarrow{A}

has a left adjoint FlF^{l} and FF is corepresented by the compact object E=Fl(1A)CAE=F^{l}(1_{{A}})\in{C}_{{A}}:

FHom¯A(E,).F\simeq\underline{\operatorname{Hom}}_{{A}}(E,-).

We have isomorphisms

FFl(1A)FIdC/A!Fr(1A)End¯A(E)\displaystyle FF^{l}(1_{{A}})\simeq F\operatorname{Id}^{!}_{{C}/{A}}F^{r}(1_{{A}})\simeq\underline{\operatorname{End}}_{{A}}(E) (2.8)
FFr(1A)Hom¯A(E,Fr(1A))End¯A(E)\displaystyle FF^{r}(1_{{A}})\simeq\underline{\operatorname{Hom}}_{{A}}(E,F^{r}(1_{{A}}))\simeq\underline{\operatorname{End}}_{{A}}(E)^{\vee} (2.9)

We end this section with a computation that will be useful later for computing fibres of certain canonical perfect complexes on the moduli space of objects in a dg category.

Lemma 2.7.

Let C{C} be a dg category, A{A} a rigid dg category, and φ:AVectk:φr\varphi:{A}\longleftrightarrow\operatorname{Vect}_{k}:\varphi^{r} an adjunction with φ\varphi a symmetric monoidal dg functor. Then for objects E1,E2CA=ACE_{1},E_{2}\in{C}_{{A}}={A}\otimes{C}, we have a natural isomorphism

φHom¯A(E1,E2)HomC((φIdC)(E1),(φIdC)(E2)).\varphi\underline{\operatorname{Hom}}_{{A}}(E_{1},E_{2})\simeq{\operatorname{Hom}_{{C}}}((\varphi\otimes\operatorname{Id}_{{C}})(E_{1}),(\varphi\otimes\operatorname{Id}_{{C}})(E_{2})).
Proof.

First, let us note that Vectk\operatorname{Vect}_{k} becomes an A{A}-module via φ\varphi and that with respect to this AA-module structure φr\varphi^{r} is A{A}-linear. Hence the endofunctor φrφ\varphi^{r}\varphi of A{A} is A{A}-linear and so determined by its action on 1A1_{{A}}, giving an isomorphism of functors

φrφφr(k).\varphi^{r}\varphi\simeq\varphi^{r}(k)\otimes-.

Using this isomorphism, adjunction, and AA-linearity of internal Hom, we obtain the following sequence of isomorphisms:

φHom¯A(E1,E2)Homk(φ(1A),φHom¯A(E1,E2))HomA(1A,φrφHom¯A(E1,E2))\displaystyle\varphi\underline{\operatorname{Hom}}_{{A}}(E_{1},E_{2})\simeq{\operatorname{Hom}_{k}}(\varphi(1_{A}),\varphi\underline{\operatorname{Hom}}_{{A}}(E_{1},E_{2}))\simeq{\operatorname{Hom}_{{A}}}(1_{{A}},\varphi^{r}\varphi\underline{\operatorname{Hom}}_{{A}}(E_{1},E_{2}))\simeq
HomA(1A,φr(k)Hom¯A(E1,E2))HomA(1A,Hom¯A(E1,φr(k)E2))\displaystyle{\operatorname{Hom}_{{A}}}(1_{{A}},\varphi^{r}(k)\otimes\underline{\operatorname{Hom}}_{{A}}(E_{1},E_{2}))\simeq{\operatorname{Hom}_{{A}}}(1_{{A}},\underline{\operatorname{Hom}}_{{A}}(E_{1},\varphi^{r}(k)\otimes E_{2}))\simeq
HomCA(E1,φr(k)E2)HomC((φIdC)(E1),(φIdC)(E2)).\displaystyle{\operatorname{Hom}_{{C}_{{A}}}}(E_{1},\varphi^{r}(k)\otimes E_{2})\simeq{\operatorname{Hom}_{{C}}}((\varphi\otimes\operatorname{Id}_{{C}})(E_{1}),(\varphi\otimes\operatorname{Id}_{{C}})(E_{2})).

3 The moduli space of objects

3.1 Quasi-coherent and ind-coherent sheaves on affine schemes

We review some basic notions in derived algebraic geometry that we shall need later, mostly following [8], Chapters 2-6. For more subtle points, we give precise references.

For now on, we take kk be a field of characteristic 0.

By definition, the category of (derived) affine schemes Aff\operatorname{Aff} is opposite to the category CAlgk0CAlgk\operatorname{CAlg}_{k}^{\leq 0}\subset\operatorname{CAlg}_{k} of connective commutative algebras in Vectk\operatorname{Vect}_{k}. 555Since we are working in characteristic 0, it is possible to model CAlgk0\operatorname{CAlg}_{k}^{\leq 0} in terms of cohomologically non-positive commutative differential graded algebras. See [16], Proposition 7.1.4.11.

An affine scheme U=Spec(R)U={{\operatorname{Spec}(R)}} is said to be of finite type over the ground field kk if H0(R)H^{0}(R) is finitely generated as a commutative algebra over kk, Hi(R)H^{i}(R) is finitely generated as a module over H0(R)H^{0}(R), and Hi(R)=0H^{-i}(R)=0 for i>>0i>>0. The category of affine schemes of finite type is denoted Affft\operatorname{{Aff}_{ft}}.

By definition, the dg-category of quasi-coherent sheaves QCoh(U)\operatorname{QCoh}(U) on an affine scheme U=Spec(R)U={{\operatorname{Spec}(R)}} is the dg category of dg modules over the commutative algebra RR. Given a map f:UVf:U\rightarrow V, the pullback functor f:QCoh(V)QCoh(U)f^{*}:\operatorname{QCoh}(V)\rightarrow\operatorname{QCoh}(U) is given by induction of modules along the corresponding map of rings. As such, ff^{*} is symmetric monoidal. The naturality of pullback is expressed via a functor

QCoh():AffopDGCatcont\operatorname{QCoh}(-)^{*}:\operatorname{Aff}^{\rm op}\rightarrow\operatorname{DGCat_{cont}}

Since we are so far considering only affine schemes, ff^{*} always has a continuous right adjoint ff_{*}.

One can show that QCoh(U)\operatorname{QCoh}(U) is a rigid symmetric monoidal dg category, and in particular that \otimes-dualisable objects coincide with compact objects. In this case, the structure sheaf 𝒪U{\mathcal{O}}_{U}, corresponding to the ring RR, is a compact generator. The compact objects in QCoh(U)\operatorname{QCoh}(U) are called perfect complexes, which form a small idempotent complete dg category denoted Perf(U)\operatorname{Perf}(U). They are preserved by pullback. In the present affine case, we therefore have Ind(Perf(U))=QCoh(U)\operatorname{Ind}(\operatorname{Perf}(U))=\operatorname{QCoh}(U).

Given a pullback square of affine schemes

U×WV\textstyle{U\times_{W}V\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q}p\scriptstyle{p}V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}W\textstyle{W} (3.1)

naturality of pullback gives an isomorphism qfpgq^{*}f^{*}\simeq p^{*}g^{*}, so by adjunction we obtain a base-change map

fgqp,f^{*}g_{*}\rightarrow q_{*}p^{*}, (3.2)

which is easily checked to be an isomorphism by considering its action on the generator 𝒪VQCoh(V){\mathcal{O}}_{V}\in\operatorname{QCoh}(V).

For affine schemes U=Spec(R)U={{\operatorname{Spec}(R)}} of finite type, define the small subcategory Coh(U)QCoh(U)\operatorname{Coh}(U)\subseteq\operatorname{QCoh}(U) of coherent sheaves to consist of quasi-coherent sheaves with bounded, finitely generated cohomology: FCoh(U)F\in\operatorname{Coh}(U) if Hi(F)H^{i}(F) is finitely generated over H0(R)H^{0}(R) and Hi(F)=0H^{i}(F)=0 for |i|>>0|i|>>0. The dg category of ind-coherent sheaves is defined to be the ind-completion of the category of coherent sheaves:

IndCoh(U):=Ind(Coh(U)).\operatorname{IndCoh}(U):=\operatorname{Ind}(\operatorname{Coh}(U)).

The category of ind-coherent sheaves IndCoh(U)\operatorname{IndCoh}(U) is a module category for quasi-coherent sheaves QCoh(U)\operatorname{QCoh}(U), with the action given by ind-completion of the action of Perf(U)\operatorname{Perf}(U) on Coh(U)\operatorname{Coh}(U). For a map of affine schemes of finite type f:UVf:U\rightarrow V, there is a functor 666For an ‘elementary’ definition of f!f^{!}, see [8], II.5.4.3.

f!:IndCoh(V)IndCoh(U).f^{!}:\operatorname{IndCoh}(V)\rightarrow\operatorname{IndCoh}(U).

More precisely, we have a functor

IndCoh()!:AffftopDGCatcont,\operatorname{IndCoh}()^{!}:\operatorname{{Aff}_{ft}}^{\rm op}\rightarrow\operatorname{DGCat_{cont}},

IndCoh(U)\operatorname{IndCoh}(U) has a natural symmetric monoidal structure, the product of which is denoted !\otimes^{!}, and the unit of which is ωU:=p!(k)\omega_{U}:=p^{!}(k) for p:Up:U\rightarrow*. Using the action of QCoh(U)\operatorname{QCoh}(U) on IndCoh(U)\operatorname{IndCoh}(U), tensoring with ωU\omega_{U} gives a symmetric monoidal functor

ΥU=ωU:QCoh(U)IndCoh(U).\Upsilon_{U}={-}\otimes\omega_{U}:\operatorname{QCoh}(U)\rightarrow\operatorname{IndCoh}(U).

The functor Υ\Upsilon intertwines *-pullback and !!-pullback: ΥUff!ΥV\Upsilon_{U}f^{*}\simeq f^{!}\Upsilon_{V}.

More precisely, Υ\Upsilon is a natural transformation

Υ:QCoh()IndCoh()!\Upsilon:\operatorname{QCoh}(-)^{*}\rightarrow\operatorname{IndCoh}(-)^{!}

of functors from Affftop\operatorname{{Aff}_{ft}}^{\rm op} to DGCatcont\operatorname{DGCat_{cont}}.

There is a self-duality equivalence IndCoh(U)IndCoh(U)\operatorname{IndCoh}(U)\simeq\operatorname{IndCoh}(U)^{\vee}. The corresponding equivalence between compact objects is denoted

𝐃U()=Coh(U)opCoh(U)\operatorname{\mathbf{D}}_{U}(-)=\operatorname{Coh}(U)^{\rm op}\simeq\operatorname{Coh}(U)

One can show that there is an isomorphism of functors 𝐃U()Hom¯QCoh(U)(,ωU)\operatorname{\mathbf{D}}_{U}(-)\simeq\underline{\operatorname{Hom}}_{\operatorname{QCoh}(U)}(-,\omega_{U}). The functor 𝐃U()\operatorname{\mathbf{D}}_{U}(-) can be used to define a contravariant Grothendieck-Serre duality functor

QCoh(U)opFunex(Coh(U)op,Vectk)IndCoh(U){\operatorname{QCoh}(U)^{-}}^{op}\rightarrow{\operatorname{Fun^{ex}}(\operatorname{Coh}(U)^{op},\operatorname{Vect}_{k})}\simeq\operatorname{IndCoh}(U) (3.3)

given explicitly by EHomQCoh(U)(E,𝐃U())E\mapsto{\operatorname{Hom}_{\operatorname{QCoh}(U)}}(E,\operatorname{\mathbf{D}}_{U}(-)) 777Here, QCoh(U)\operatorname{QCoh}(U)^{-} denotes quasi-coherent sheaves that are cohomologically bounded above. For more on Grothendieck-Serre duality, see [9], I.1.3.4.. If EE is a perfect complex, then for any FCoh(U)IndCoh(U)F\in\operatorname{Coh}(U)\subset\operatorname{IndCoh}(U), we have isomorphisms

HomQCoh(U)(E,𝐃U(F))HomIndCoh(U)(EF,ωU)HomIndCoh(U)(F,EωU){\operatorname{Hom}_{\operatorname{QCoh}(U)^{-}}}(E,\operatorname{\mathbf{D}}_{U}(F))\simeq{\operatorname{Hom}_{\operatorname{IndCoh}(U)}}(E\otimes F,\omega_{U})\simeq{\operatorname{Hom}_{\operatorname{IndCoh}(U)}}(F,E^{\vee}\otimes\omega_{U})

hence the functor 3.3 is given on perfect complexes by

EΥ(E).E\mapsto\Upsilon(E^{\vee}). (3.4)

In particular, it is symmetric monoidal and fully faithful when restricted to perfect complexes. More generally, one can show that 𝐃U()\operatorname{\mathbf{D}}_{U}(-) is fully faithful on bounded above quasi-coherent sheaves having coherent cohomology sheaves.

3.2 Prestacks and the moduli of objects

In this subsection, we fix notation by reviewing some basic constructions concerning prestacks and dg categories of sheaves on prestacks. Our basic reference is [8],[9].

We denote by PrStk:=Fun(CAlgk0,Spc)\operatorname{PrStk}:={\operatorname{Fun}(\operatorname{CAlg}_{k}^{\leq 0},\operatorname{Spc})} the category of prestacks on Aff\operatorname{Aff}. Being a topos, PrStk\operatorname{PrStk} is cocomplete, Cartesian closed, and colimits commute with pullbacks. We denote the internal/local mapping space adjoint to X×X\times- by Map¯(X,)\underline{\operatorname{Map}}(X,-), and the global mapping space by Map(X,)\operatorname{Map}(X,-). Moreover, there is a continuous faithful embedding SpcPrStk\operatorname{Spc}\hookrightarrow\operatorname{PrStk} sending a space KK to the constant prestack with value KK.

The embedding SpcPrStk\operatorname{Spc}\hookrightarrow\operatorname{PrStk} is symmetric monoidal for the Cartesian monoidal structures, so (abelian) groups in Spc\operatorname{Spc} map to (abelian) groups in PrStk\operatorname{PrStk}. We shall be especially interested in the circle group B𝐙=S1B\mathbf{Z}=S^{1}.

Definition 3.5.

Given a prestack XX, its free loop space LXLX is by definition the mapping prestack Map¯(S1,X)\underline{\operatorname{Map}}(S^{1},X).

The free loop space LXLX carries a natural action of the circle group S1S^{1}, which we call `loop rotation'. Decomposing a circle into two intervals and using the fact that mapping out of a colimit gives a limit, we obtain an isomorphism of the free loop space with the self-intersection of the diagonal:

LXX×X×XXLX\simeq X\times_{X\times X}X

In particular, if XX is affine, then the free loop space is again affine.

Mostly we shall be interested in prestacks that are laft (locally almost of finite type) and def (`have deformation theory'). Roughly, a prestack XX is laft if it is determined by maps UXU\rightarrow X with UU an affine of finite type, and is def if it has a (pro-)cotangent complex T(X){T}^{*}(X) that behaves as expected. See the next section for what we expect of a (pro-)cotangent complex.

Recall from Section 3.1 the functor of quasi-coherent sheaves on affine schemes:

QCoh():AffopDGCatcont\operatorname{QCoh}(-)^{*}:\operatorname{Aff}^{\rm op}\rightarrow\operatorname{DGCat_{cont}}

Taking the right Kan extension of QCoh()\operatorname{QCoh}(-)^{*}, we obtain a functorial notion of quasi-coherent sheaves on general prestacks:

QCoh():PrStkopDGCatcont.\operatorname{QCoh}(-)^{*}:\operatorname{PrStk}^{\rm op}\rightarrow\operatorname{DGCat_{cont}}.

Since every prestack XX is tautologically a colimit over all affines mapping into it, X=colimAff/XUX=\operatorname*{colim}_{\operatorname{Aff}/X}U, we have by definition an identification

QCoh(X)=lim(Aff/X)opQCoh(U).\operatorname{QCoh}(X)=\lim_{(\operatorname{Aff}/X)^{op}}\operatorname{QCoh}(U).

For each map of prestacks f:XYf:X\rightarrow Y, we have by definition a pullback functor f:QCoh(Y)QCoh(X)f^{*}:\operatorname{QCoh}(Y)\rightarrow\operatorname{QCoh}(X). The adjoint functor theorem provides a right adjoint, denoted ff_{*}, but in general it can be poorly behaved. However, for `qca' morphisms ff, ff_{*} is continuous and satisfies base change and the projection formula for pullbacks along maps of affines UYU\rightarrow Y (see Corollary 1.4.5 [7]). A morphism f:XYf:X\rightarrow Y is qca if the pullback of XX along a map from any affine UYU\rightarrow Y is a nice Artin 11-stack with affine stabilisers. This will be obvious in the situations where we need it.

One can similarly define perfect complexes on a prestack by right Kan extension from affines, so that in particular we have an identification

Perf(X)=lim(Aff/X)opPerf(U).\operatorname{Perf}(X)=\lim_{(\operatorname{Aff}/X)^{op}}\operatorname{Perf}(U).

For a general prestack XX, perfect complexes need not be compact as objects in QCoh(X)\operatorname{QCoh}(X), but they always identify with the subcategory of \otimes-dualisable objects in QCoh(X)\operatorname{QCoh}(X). In particular, QCoh(X)\operatorname{QCoh}(X) is not always rigid, nor even dualisable in DGCatcont\operatorname{DGCat_{cont}}. It shall therefore be convenient for us to formally introduce the category of ind-perfect sheaves Ind(Perf(X))\operatorname{Ind}(\operatorname{Perf}(X)). Note that by construction Ind(Perf(X))\operatorname{Ind}(\operatorname{Perf}(X)) is compactly generated and that pullback preserves compact objects, hence for a map of prestacks f:XYf:X\rightarrow Y, we have a continuous adjunction

f:Ind(Perf(Y))Ind(Perf(X)):ff^{*}:\operatorname{Ind}(\operatorname{Perf}(Y))\longleftrightarrow\operatorname{Ind}(\operatorname{Perf}(X)):f_{*}

Similarly, for a general laft prestack XX, the category of ind-coherent sheaves is defined as the limit along !!-pullback over all finite type affine schemes mapping to XX:

IndCoh(X):=lim(Affft/X)opIndCoh(U)!.\operatorname{IndCoh}(X):=\lim_{(\operatorname{{Aff}_{ft}}/X)^{\rm op}}\operatorname{IndCoh}(U)^{!}.

For a map of laft prestacks f:XYf:X\rightarrow Y, we have an evident pullback functor f!:IndCoh(Y)IndCoh(X)f^{!}:\operatorname{IndCoh}(Y)\rightarrow\operatorname{IndCoh}(X) and a natural transformation Υ:QCoh()IndCoh()!\Upsilon:\operatorname{QCoh}(-)^{*}\rightarrow\operatorname{IndCoh}(-)^{!} of functors from PrStklaftop\operatorname{{PrStk}_{laft}}^{\rm op} to DGCatcont\operatorname{DGCat_{cont}} given at a laft-prestack XX by tensoring with ωX\omega_{X}.

Remark 3.6.

For maps of laft prestacks f:XYf:X\rightarrow Y that are sufficiently algebraic, one can define a pushforward functor f:IndCoh(X)IndCoh(Y)f_{*}:\operatorname{IndCoh}(X)\rightarrow\operatorname{IndCoh}(Y). Beware, however, that unless ff is proper, f!f^{!} is not right adjoint to ff_{*}. Nonetheless, one of the main results of [8],[9] is that *-pushforward satisfies base-change with respect to !!-pullback.

We can now define the main object of interest for this paper.

Example 3.7.

The moduli space of objects C{\mathcal{M}}_{{C}} in a compactly generated dg category C{C} is the prestack given on an affine UU by

C(U)=Mapdgcat(Cc,Perf(U)).{\mathcal{M}}_{{C}}(U)={\operatorname{Map}}_{\operatorname{dgcat}}({C}^{c},\operatorname{Perf}(U)).

Note that Mapdgcat(Cc,Perf(U)){\operatorname{Map}}_{\operatorname{dgcat}}({C}^{c},\operatorname{Perf}(U)) is the space of exact functors CcPerf(U){C}^{c}\rightarrow\operatorname{Perf}(U) from compact objects in C{C} to perfect complexes on UU. Equivalently, we could consider the space of continuous adjunctions CQCoh(U){C}\leftrightarrow\operatorname{QCoh}(U).

When C{C} is smooth, Corollary 2.6 ensures that functors F:CcPerf(U)F:{C}^{c}\rightarrow\operatorname{Perf}(U) are precisely those co-represented by left proper objects ECcPerf(U)E\in{C}^{c}\otimes\operatorname{Perf}(U), hence the (somewhat inaccurate) name `moduli space of objects'. In particular, a kk-point x:Spec(k)Cx:{{\operatorname{Spec}(k)}}\rightarrow{\mathcal{M}}_{{C}} classifies a functor

φx:CcPerf(k),\varphi_{x}:{C}^{c}\rightarrow\operatorname{Perf}(k),

and when C{C} is smooth, this functor is corepresented by IdC!φxr(k)\operatorname{Id}^{!}_{{C}}\varphi^{r}_{x}(k). By Serre duality, we have HomC(IdC!φxr(k),y)HomC(y,φxr(k)){\operatorname{Hom}_{{C}}}(\operatorname{Id}^{!}_{{C}}\varphi^{r}_{x}(k),y)\simeq{\operatorname{Hom}_{{C}}}(y,\varphi^{r}_{x}(k))^{*} naturally in compact objects yCcy\in{C}^{c}, hence we have an isomorphism of functors φxHomC(,φxrk)\varphi_{x}\simeq{\operatorname{Hom}_{{C}}}(-,\varphi^{r}_{x}{k})^{*}. Our convention is to identify the point xx with the right proper object φr(k)\varphi^{r}(k), so that we have an isomorphism of functors

φxHomC(,x).\varphi_{x}\simeq{\operatorname{Hom}_{{C}}}(-,x)^{*}. (3.8)

By definition of the moduli space, there is a universal exact functor CcPerf(C){C}^{c}\rightarrow\operatorname{Perf}({\mathcal{M}}_{{C}}), or equivalently, a universal continuous adjunction

C:CInd(Perf(C)):Cr,{\mathcal{F}}_{{C}}:{C}\longleftrightarrow\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}})):{\mathcal{F}}^{r}_{{C}},

so that given a continuous adjunction F:CQCoh(U):FrF:{C}\longleftrightarrow\operatorname{QCoh}(U):F^{r} corresponding to a morphism f:UCf:U\rightarrow{\mathcal{M}}_{{C}}, we have an isomorphism

fCF.f^{*}{\mathcal{F}}_{{C}}\simeq F.

By Corollary 2.6, the universal functor C{\mathcal{F}}_{{C}} is corepresented by a left proper object

CInd(Perf(U))C.{\mathcal{E}}_{{C}}\in\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{U}))\otimes{C}.
Remark 3.9.

The moduli space C{\mathcal{M}}_{{C}} was introduced by Toën-Vaquié [22], where it is shown that for C{C} a finite type dg category, C{\mathcal{M}}_{{C}} is locally an Artin stack of finite presentation and in particular has a perfect cotangent complex. A compactly generated dg category C{C} is of finite type if its category of compact objects Cc{C}^{c} is compact in the category dgcat\operatorname{dgcat} of small idempotent complete dg categories and exact functors. One can show that finite type dg categories are always smooth. See [22], Proposition 2.14.

3.3 (Co)tangent complexes and differential forms

In this subsection, we review the notions of cotangent complex and tangent complex, following I.1 of [9]. (In fact, [9] work with the somewhat more general notion of pro-cotangent complex, but we shall not explicitly need that.)

Given an affine scheme U=Spec(R)U={{\operatorname{Spec}(R)}} and a connective quasi-coherent sheaf FQCoh(U)0F\in\operatorname{QCoh}(U)^{\leq 0}, we form the trivial square-zero extension UF=Spec(RF)U_{F}={{\operatorname{Spec}(R\oplus F)}}. Given a prestack XX and a point UxXU\stackrel{{\scriptstyle x}}{{\rightarrow}}X, the space of derivations at xx valued in FF is by definition

MapU/(UF,X).{\operatorname{Map}}_{U/}(U_{F},X).

For a fixed point xx, the space of derivations valued in FF is natural in FF and we obtain a functor

QCoh(U)0Spc,FMapU/(UF,X).\operatorname{QCoh}(U)^{\leq 0}\rightarrow\operatorname{Spc},F\mapsto{\operatorname{Map}}_{U/}(U_{F},X).

When this functor respects fibres of maps F1F2F_{1}\rightarrow F_{2} inducing surjections on H0H^{0}, it can be extended to an exact functor

QCoh(U)Spc,FMapU/(UF,X).\operatorname{QCoh}(U)^{-}\rightarrow\operatorname{Spc},F\mapsto{\operatorname{Map}}_{U/}(U_{F},X). (3.10)

We say that XX has a cotangent space Tx(X)QCoh(U){{T}^{*}_{x}}(X)\in\operatorname{QCoh}(U)^{-} at UxXU\stackrel{{\scriptstyle x}}{{\rightarrow}}X if the functor 3.10 is corepresented by Tx(X){{T}^{*}_{x}}(X):

MapQCoh(U)(Tx(X),F)MapU/(UF,X).{\operatorname{Map}}_{\operatorname{QCoh}(U)^{-}}({{T}^{*}_{x}}(X),F)\simeq{\operatorname{Map}}_{U/}(U_{F},X).

Suppose XX has all cotangent spaces and

U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}x\scriptstyle{x}V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}y\scriptstyle{y}X\textstyle{X}
(3.11)

is a commutative diagram of affines over XX. Then there is a natural pullback map

fTy(X)Tx(X).f^{*}{{T}^{*}_{y}}(X)\rightarrow{{T}^{*}_{x}}(X). (3.12)

If 3.12 is an isomorphism for all diagrams 3.11, we obtain a cotangent complex

T(X)QCoh(X)=lim(Aff/X)opQCoh(U){T}^{*}(X)\in\operatorname{QCoh}(X)=\lim_{(\operatorname{Aff}/X)^{\rm op}}\operatorname{QCoh}(U)

whose fibres are the cotangent spaces:

xT(X)Tx(X)QCoh(U).x^{*}{T}^{*}(X)\simeq{{T}^{*}_{x}}(X)\in\operatorname{QCoh}(U)^{-}.

Similarly, given a map of prestacks XYX\rightarrow Y and a point x:UXx:U\rightarrow X, the functor of relative derivations at xx is

FMapU/(UF,X)×MapU/(UF,Y).F\mapsto{\operatorname{Map}}_{U/}(U_{F},X)\times_{{\operatorname{Map}}_{U/}(U_{F},Y)}*. (3.13)

If the functor 3.13 is co-represented by an object Tx(X/Y)QCoh(U){{T}^{*}_{x}}(X/Y)\in\operatorname{QCoh}(U)^{-}, the co-representing object Tx(X/Y){{T}^{*}_{x}}(X/Y) is called the relative cotangent space at xx, and if relative cotangent spaces at different points are compatible under pullback, then we obtain a relative cotangent complex T(X/Y)QCoh(X){T}^{*}(X/Y)\in\operatorname{QCoh}(X).

Remark 3.14.

One can show in particular that filtered colimits of Artin stacks have cotangent complexes, and that Artin stacks locally of finite presentation have perfect cotangent complexes. In particular, the moduli space C{\mathcal{M}}_{{C}} for a finite type dg category C{C} has a perfect cotangent complex. See [22], Theorem 3.6.

Given a laft prestack XX with cotangent complex T(X){T}^{*}(X), its tangent complex

T(X)IndCoh(X){T}(X)\in\operatorname{IndCoh}(X)

is defined to be the image of its cotangent complex under the contravariant duality 3.3. In particular, when the cotangent complex of XX is perfect, we have by 3.4 an identification

Υ(T(X))T(X)\Upsilon({T}^{*}(X)^{\vee})\simeq{T}(X)

We define the complex of differential pp-forms on XX to be

pT(X)QCoh(X).\mbox{\Large$\wedge$}^{p}{T}^{*}(X)\in\operatorname{QCoh}(X).

and the space of differential pp-forms of degree nn to be

𝒜p(X,n)=|Γ(X,pT(X)[n])|.\mathcal{A}^{p}(X,n)=|\Gamma(X,\mbox{\Large$\wedge$}^{p}{T}^{*}(X)[n])|.

When T(X){T}^{*}(X) is perfect, we have by 3.4 isomorphisms

Γ(X,pT(X)[n])HomQCoh(X)(𝒪X,pT(X)[n])HomIndCoh(X)(pT(X)[n],ωX).\Gamma(X,\mbox{\Large$\wedge$}^{p}{T}^{*}(X)[n])\simeq{\operatorname{Hom}_{\operatorname{QCoh}(X)}}({\mathcal{O}}_{X},\mbox{\Large$\wedge$}^{p}{T}^{*}(X)[n])\simeq{\operatorname{Hom}_{\operatorname{IndCoh}(X)}}(\mbox{\Large$\wedge$}^{p}{T}(X)[-n],\omega_{X}). (3.15)

3.4 The tangent complex of the moduli of objects

In this subsection, we compute the shifted tangent complex of the moduli of objects T(C)[1]{T}({\mathcal{M}}_{{C}})[-1] in a finite type dg category C{C}. Our argument is an adaptation of that of [9], II.8.3.3, which treats the case C=Vectk{C}=\operatorname{Vect}_{k}.

To begin with, we review the construction of the natural Lie algebra structure on T(X)[1]IndCoh(X){T}(X)[-1]\in\operatorname{IndCoh}(X) for XPrStklaftdefX\in\operatorname{{PrStk}_{laft-def}}.

Given XPrStklaftdefX\in\operatorname{{PrStk}_{laft-def}}, consider the completion (X×X)(X\times X)^{\wedge} of the diagonal Δ:XX×X\Delta:X\rightarrow X\times X as a pointed formal moduli problem over XX:

(X×X)\textstyle{(X\times X)^{\wedge}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ps\scriptstyle{p_{s}}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Δ\scriptstyle{\Delta}

Looping, we obtain a formal group ΩX(X×X)\Omega_{X}(X\times X)^{\wedge} over XX sitting in a pullback diagram

ΩX(X×X)\textstyle{\Omega_{X}(X\times X)^{\wedge}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}π\scriptstyle{\pi}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Δ\scriptstyle{\Delta}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Δ\scriptstyle{\Delta}(X×X)\textstyle{(X\times X)^{\wedge}}

It is easy to check that the formal group ΩX(X×X)\Omega_{X}(X\times X)^{\wedge} identifies with the completion LXLX^{\wedge} of the loop space along the constant loops.

From the theory of formal groups developed in [9], II.7.3, LXLX^{\wedge} has a cocommutative Hopf algebra of distributions in IndCoh(X)\operatorname{IndCoh}(X) given as

Dist(LX)=πωLXΔ!ΔωX,\operatorname{Dist}(LX^{\wedge})=\pi_{*}\omega_{LX^{\wedge}}\simeq\Delta^{!}\Delta_{*}\omega_{X},

whose Lie algebra of `primitive elements' identifies with the shifted tangent complex:

Prim(πωLX)T(X)[1].\operatorname{Prim}(\pi_{*}\omega_{LX^{\wedge}})\simeq{T}(X)[-1].

By [9], II.6.1.7, there is an isomorphism of cocommutative conilpotent coalgebras

SymX(T(X)[1])Δ!ΔωX.{\operatorname{Sym}}_{X}({T}(X)[-1])\simeq\Delta^{!}\Delta_{*}\omega_{X}. (3.16)

By [9], II.7.5.2 and II.8.6.1, there is a natural identification

Δ!ΔωXmod(IndCoh(X))IndCoh((X×X))\Delta^{!}\Delta_{*}\omega_{X}-{\rm mod}(\operatorname{IndCoh}(X))\simeq\operatorname{IndCoh}((X\times X)^{\wedge}) (3.17)

where the functor Δ!:IndCoh((X×X))IndCoh(X)\Delta^{!}:\operatorname{IndCoh}((X\times X)^{\wedge})\rightarrow\operatorname{IndCoh}(X) corresponds to the forgetful functor and p1!:IndCoh(X)IndCoh((X×X))p_{1}^{!}:\operatorname{IndCoh}(X)\rightarrow\operatorname{IndCoh}((X\times X)^{\wedge}) to the trivial module functor. Taking !!-pullback along the other factor gives another symmetric monoidal functor can(X):p2!:IndCoh(X)IndCoh((X×X))\operatorname{can}(X):p_{2}^{!}:\operatorname{IndCoh}(X)\rightarrow\operatorname{IndCoh}((X\times X)^{\wedge}). In particular, there is an action map Δ!ΔωX!FF\Delta^{!}\Delta_{*}\omega_{X}\otimes^{!}F\rightarrow F natural in FIndCoh(X)F\in\operatorname{IndCoh}(X), and hence by adjunction an algebra map Δ!ΔωXEnd¯X(F)\Delta^{!}\Delta_{*}\omega_{X}\rightarrow\underline{\operatorname{End}}_{X}(F). In particular, for a perfect complex Υ(E)IndCoh(X)\Upsilon(E)\in\operatorname{IndCoh}(X), we have an algebra map

Δ!ΔωXEnd¯X(Υ(E))ΥEnd¯X(E).\Delta^{!}\Delta_{*}\omega_{X}\rightarrow\underline{\operatorname{End}}_{X}(\Upsilon(E))\simeq\Upsilon\underline{\operatorname{End}}_{X}(E). (3.18)
Remark 3.19.

One can show that for a perfect complex Υ(E)IndCoh(X)\Upsilon(E)\in\operatorname{IndCoh}(X), the corresponding action map T(X)[1]!Υ(E)Δ!ΔωX!Υ(E)Υ(E){T}(X)[-1]\otimes^{!}\Upsilon(E)\rightarrow\Delta^{!}\Delta_{*}\omega_{X}\otimes^{!}\Upsilon(E)\rightarrow\Upsilon(E) identifies with the Atiyah class of EE. Compare [11].

We shall need the following, which combines the equivalences of 3.17 and Proposition 2.2.

Proposition 3.1.

Let MM be a module category for IndCoh(X)\operatorname{IndCoh}(X). Then there is an equivalence

IndCoh((X×X))IndCoh(X)MΔ!ΔωXmod(M)\operatorname{IndCoh}((X\times X)^{\wedge})\otimes_{\operatorname{IndCoh}(X)}M\simeq{\Delta^{!}\Delta_{*}\omega_{X}}\operatorname{-mod}(M)

Tensoring over IndCoh(X)\operatorname{IndCoh}(X) with the functor can(X)p2!:IndCoh(X)IndCoh((X×X))Δ!ΔωXmod(IndCoh(X))\operatorname{can}(X)\simeq p_{2}^{!}:\operatorname{IndCoh}(X)\rightarrow\operatorname{IndCoh}((X\times X)^{\wedge})\simeq{\Delta^{!}\Delta_{*}\omega_{X}}\operatorname{-mod}(\operatorname{IndCoh}(X)), we obtain a functor can(M):MΔ!ΔωXmod(M)\operatorname{can}(M):M\rightarrow{\Delta^{!}\Delta_{*}\omega_{X}}\operatorname{-mod}(M), endowing every object mMm\in M with a canonical structure of Δ!ΔωX\Delta^{!}\Delta_{*}\omega_{X}-module. In particular, we obtain a canonical action map Δ!ΔωXmm\Delta^{!}\Delta_{*}\omega_{X}\otimes m\rightarrow m. Adjoint to this, we obtain a natural algebra map

Δ!ΔωXEnd¯X(m)\Delta^{!}\Delta_{*}\omega_{X}\rightarrow\underline{\operatorname{End}}_{X}(m) (3.20)

in IndCoh(X)\operatorname{IndCoh}(X).

For later use, we elaborate on a particular case of the above proposition.

Lemma 3.2.

Let C{C} be a smooth dg category, f:CQCoh(U)f:{C}\rightarrow\operatorname{QCoh}(U) a continuous functor with continuous right adjoint frf^{r}, where UU is an affine scheme of finite type, and ECU=QCoh(U)CE\in{C}_{U}=\operatorname{QCoh}(U)\otimes{C} the object corepresenting F=fIdUF=f\otimes\operatorname{Id}_{U}, so that FHom¯U(E,)F\simeq\underline{\operatorname{Hom}}_{U}(E,-). Then the map Δ!ΔωUΥEnd¯U(E)\Delta^{!}\Delta_{*}\omega_{U}\rightarrow\Upsilon\underline{\operatorname{End}}_{U}(E) in IndCoh(U)\operatorname{IndCoh}(U) from 3.20 is Grothendieck-Serre dual to the natural map End¯U(E)ΔΔ𝒪U\underline{\operatorname{End}}_{U}(E)^{\vee}\rightarrow\Delta^{*}\Delta_{*}{\mathcal{O}}_{U} in QCoh(U)\operatorname{QCoh}(U).

Proof.

The assertion is clear at the level of objects. Indeed, since End¯U(E)\underline{\operatorname{End}}_{U}(E) is perfect, 𝐃U(End¯U(E))End¯U(E)ωUΥEnd¯U(E)\operatorname{\mathbf{D}}_{U}(\underline{\operatorname{End}}_{U}(E)^{\vee})\simeq\underline{\operatorname{End}}_{U}(E)\otimes\omega_{U}\simeq\Upsilon\underline{\operatorname{End}}_{U}(E). Moreover, by definition of the duality functor 𝐃U()\operatorname{\mathbf{D}}_{U}(-) 3.3, we have

HomIndCoh(U)(F,𝐃U(ΔΔ𝒪U))HomQCoh(U)(ΔΔ𝒪U,𝐃U(F))HomQCoh(U×U)(Δ𝒪U,𝐃U×U(ΔF))\displaystyle{\operatorname{Hom}_{\operatorname{IndCoh}(U)}}(F,\operatorname{\mathbf{D}}_{U}(\Delta^{*}\Delta_{*}{\mathcal{O}}_{U}))\simeq{\operatorname{Hom}_{\operatorname{QCoh}(U)}}(\Delta^{*}\Delta_{*}{\mathcal{O}}_{U},\operatorname{\mathbf{D}}_{U}(F))\simeq{\operatorname{Hom}_{\operatorname{QCoh}(U\times U)}}(\Delta_{*}{\mathcal{O}}_{U},\operatorname{\mathbf{D}}_{U\times U}(\Delta_{*}F))\simeq
HomIndCoh(U×U)(ΔF,ΔωU)HomIndCoh(U)(F,Δ!ΔωU)\displaystyle{\operatorname{Hom}_{\operatorname{IndCoh}(U\times U)}}({\Delta_{*}F},\Delta_{*}\omega_{U})\simeq{\operatorname{Hom}_{\operatorname{IndCoh}(U)}}(F,\Delta^{!}\Delta_{*}\omega_{U})

for FCoh(U)F\in\operatorname{Coh}(U), hence by the Yoneda lemma 𝐃U(ΔΔ𝒪U)\operatorname{\mathbf{D}}_{U}(\Delta^{*}\Delta_{*}{\mathcal{O}}_{U}) and Δ!ΔωU\Delta^{!}\Delta_{*}\omega_{U} are naturally isomorphic.

At the level of morphisms, writing ΥEnd¯U(E)Δ!p2!ΥEnd¯U(E)\Upsilon\underline{\operatorname{End}}_{U}(E)\simeq\Delta^{!}p^{!}_{2}\Upsilon\underline{\operatorname{End}}_{U}(E), we have that the map Δ!ΔωUΥEnd¯U(E)\Delta^{!}\Delta_{*}\omega_{U}\rightarrow\Upsilon\underline{\operatorname{End}}_{U}(E) is obtained by applying Δ!\Delta^{!} to the natural map ΔωUp2!ΥEnd¯U(E)\Delta_{*}\omega_{U}\rightarrow p^{!}_{2}\Upsilon\underline{\operatorname{End}}_{U}(E) adjoint to the unit ωUΔ!p2!ΥEnd¯U(E)ΥEnd¯U(E)\omega_{U}\rightarrow\Delta^{!}p^{!}_{2}\Upsilon\underline{\operatorname{End}}_{U}(E)\simeq\Upsilon\underline{\operatorname{End}}_{U}(E). Similarly, writing End¯U(E)Δp2End¯U(E)\underline{\operatorname{End}}_{U}(E)^{\vee}\simeq\Delta^{*}p^{*}_{2}\underline{\operatorname{End}}_{U}(E)^{\vee}, the natural map End¯U(E)ΔΔ𝒪U\underline{\operatorname{End}}_{U}(E)^{\vee}\rightarrow\Delta^{*}\Delta_{*}{\mathcal{O}}_{U} is obtained by applying Δ\Delta^{*} to the natural map p2End¯U(E)Δ𝒪Up^{*}_{2}\underline{\operatorname{End}}_{U}(E)^{\vee}\rightarrow\Delta_{*}{\mathcal{O}}_{U} adjoint to the map End¯U(E)𝒪U\underline{\operatorname{End}}_{U}(E)^{\vee}\rightarrow{\mathcal{O}}_{U} dual to the unit 𝒪UEnd¯U(E){\mathcal{O}}_{U}\rightarrow\underline{\operatorname{End}}_{U}(E). Since the duality functor 𝐃\mathbf{D} exchanges *-pullback and !!-pullback, the assertion follows. ∎

We now proceed to compute the shifted tangent complex of the moduli of objects C{\mathcal{M}}_{{C}} in a dg category C{C} of finite type.

Recall that by definition we have a universal continuous adjunction

C:CInd(Perf(C)):Cr{\mathcal{F}}_{{C}}:{C}\longleftrightarrow\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}})):{\mathcal{F}}^{r}_{{C}}

and hence by Corollary 2.6, there is a left proper object

CInd(Perf(C))C{\mathcal{E}}_{{C}}\in\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}}))\otimes{C}

corepresenting C{\mathcal{F}}_{{C}}. In particular, we obtain an associative algebra End¯C(C)\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}}) in Perf(C)\operatorname{Perf}({\mathcal{M}}_{{C}}) and hence an associative algebra ΥEnd¯C(C)End¯C(ΥC)\Upsilon\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}})\simeq\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}}) in IndCoh(C)\operatorname{IndCoh}({\mathcal{M}}_{{C}}).

Using Proposition 3.1 with M=IndCoh(C)CM=\operatorname{IndCoh}({\mathcal{M}}_{{C}})\otimes{C} and m=ΥCm=\Upsilon{\mathcal{E}}_{{C}}, we obtain a natural map of algebras

Δ!ΔωCEnd¯C(ΥC)\Delta^{!}\Delta_{*}\omega_{{\mathcal{M}}_{{C}}}\rightarrow\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}})

and hence a map of Lie algebras

T(C)[1]End¯C(ΥC).{T}({\mathcal{M}}_{{C}})[-1]\rightarrow\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}}). (3.21)
Proposition 3.3.

The map of Lie algebras (3.21) is an isomorphism.

Proof.

Given a point x:UCx:U\rightarrow{\mathcal{M}}_{{C}} classifying a functor f:CQCoh(U)f:{C}\rightarrow\operatorname{QCoh}(U), let EQCoh(U)CE\in\operatorname{QCoh}(U)\otimes{C} be the left proper object corepresenting the functor fIdU:CU=QCoh(U)CQCoh(U)f\otimes\operatorname{Id}_{U}:{C}_{U}=\operatorname{QCoh}(U)\otimes{C}\rightarrow\operatorname{QCoh}(U). Applying !!-pullback to (3.21), we obtain for every Coh(U){\mathcal{F}}\in\operatorname{Coh}(U) a map

HomU(𝐃U(F),x!T(C)[1])HomU(𝐃U(F),End¯U(ΥE)).{\operatorname{Hom}_{U}}(\operatorname{\mathbf{D}}_{U}(F),x^{!}{T}({\mathcal{M}}_{{C}})[-1])\rightarrow{\operatorname{Hom}_{U}}(\operatorname{\mathbf{D}}_{U}(F),\underline{\operatorname{End}}_{U}(\Upsilon E)). (3.22)

Since C{\mathcal{M}}_{{C}} and LCL{\mathcal{M}}_{{C}} are laft-def, to show that (3.21) is an isomorphism it suffices to check that (3.22) is an isomorphism for all Coh(U){\mathcal{F}}\in\operatorname{Coh}(U), and since IndCoh(U)\operatorname{IndCoh}(U) is stable, it is in fact enough to check that (3.22) induces an isomorphism on homotopy classes of maps. We shall do this by showing that x!T(C)[1]x^{!}{T}({\mathcal{M}}_{{C}})[-1] and End¯U(ΥE)\underline{\operatorname{End}}_{U}(\Upsilon E) represent the same functor at the level of homotopy categories.

By definition of the Lie algebra of a formal group, we have T(C)[1]s!T(LC/C){T}({\mathcal{M}}_{{C}})[-1]\simeq s^{!}{T}(L{\mathcal{M}}_{{C}}/{\mathcal{M}}_{{C}}), hence represents relative derivations for LCCL{\mathcal{M}}_{{C}}\rightarrow{\mathcal{M}}_{{C}} at each point UCsLCU\rightarrow{\mathcal{M}}_{{C}}\stackrel{{\scriptstyle s}}{{\rightarrow}}L{\mathcal{M}}_{{C}}. By definition of C{\mathcal{M}}_{{C}} and of the loop space, a point UCsLCU\rightarrow{\mathcal{M}}_{{C}}\stackrel{{\scriptstyle s}}{{\rightarrow}}L{\mathcal{M}}_{{C}} is given by a pair (f,Idf)(f,\operatorname{Id}_{f}), where ff is a functor f:CQCoh(U)f:{C}\rightarrow\operatorname{QCoh}(U) and Idf\operatorname{Id}_{f} is the identity automorphism of the functor ff. Therefore to give a relative derivation into FCoh(U)F\in\operatorname{Coh}(U) is to give an automorphism α\alpha of the trivial extension f~:CfQCoh(U)πQCoh(UF)\tilde{f}:{C}\stackrel{{\scriptstyle f}}{{\rightarrow}}\operatorname{QCoh}(U)\stackrel{{\scriptstyle\pi^{*}}}{{\rightarrow}}\operatorname{QCoh}(U_{F}) of the functor ff together with an identification iαIdfi^{*}\alpha\simeq\operatorname{Id}_{f}.

By adjunction, the automorphism α:πfπf\alpha:\pi^{*}f\rightarrow\pi^{*}f is equivalent to a map EππEEFEE\rightarrow\pi_{*}\pi^{*}E\simeq E\oplus F\otimes E in CU{C}_{U} whose first component is just IdE\operatorname{Id}_{E}. Such a map is therefore determined by its second component EFEE\rightarrow F\otimes E. In short, homotopy classes of derivations with values in FCoh(U)F\in\operatorname{Coh}(U) at (f,Idf):ULC(f,\operatorname{Id}_{f}):U\rightarrow L{\mathcal{M}}_{{C}} relative to C{\mathcal{M}}_{{C}} naturally identify with homotopy classes of maps EFEE\rightarrow F\otimes E in CU{C}_{U}.

We claim that such maps are naturally identified with maps 𝐃U(F)ΥEnd¯U(E)\operatorname{\mathbf{D}}_{U}(F)\rightarrow\Upsilon\underline{\operatorname{End}}_{U}(E), and thus ΥEnd¯U(E)\Upsilon\underline{\operatorname{End}}_{U}(E) identifies with the relative tangent space for every point. Indeed, we have

HomCU(E,FE)HomQCoh(U)(𝒪U,Hom¯QCoh(U)(E,FE))\displaystyle{\operatorname{Hom}_{{C}_{U}}}(E,F\otimes E)\simeq{\operatorname{Hom}_{\operatorname{QCoh}(U)}}({\mathcal{O}}_{U},\underline{\operatorname{Hom}}_{\operatorname{QCoh}(U)}(E,F\otimes E))\simeq
HomQCoh(U)(𝒪U,FEnd¯QCoh(U)(E))HomQCoh(U)(End¯QCoh(U)(E),F)\displaystyle{\operatorname{Hom}_{\operatorname{QCoh}(U)}}({\mathcal{O}}_{U},F\otimes\underline{\operatorname{End}}_{\operatorname{QCoh}(U)}(E))\simeq{\operatorname{Hom}_{\operatorname{QCoh}(U)}}(\underline{\operatorname{End}}_{\operatorname{QCoh}(U)}({E})^{\vee},F)\simeq
HomIndCoh(U)(𝐃U(F),𝐃U(End¯QCoh(U)(E)))HomIndCoh(U)(𝐃U(F),ΥEnd¯QCoh(U)(E)).\displaystyle{\operatorname{Hom}_{\operatorname{IndCoh}(U)}}(\operatorname{\mathbf{D}}_{U}(F),\operatorname{\mathbf{D}}_{U}({\underline{\operatorname{End}}_{\operatorname{QCoh}(U)}({E})^{\vee}}))\simeq{\operatorname{Hom}_{\operatorname{IndCoh}(U)}}(\operatorname{\mathbf{D}}_{U}(F),\Upsilon\underline{\operatorname{End}}_{\operatorname{QCoh}(U)}(E)).

We conclude this section with a computation of the (co)tangent map induced by a dg functor.

Lemma 3.4.

Let f:CD:frf:{C}\longleftrightarrow{D}:f^{r} be a continuous adjunction between smooth dg categories and φ:DC\varphi:{\mathcal{M}}_{{D}}\rightarrow{\mathcal{M}}_{{C}} the induced map of moduli spaces. Then there is a natural map of functors DDlφφCCl{\mathcal{F}}_{{D}}{\mathcal{F}}^{l}_{{D}}\varphi^{*}\rightarrow\varphi^{*}{\mathcal{F}}_{{C}}{\mathcal{F}}^{l}_{{C}} which when evaluated on 𝒪C{\mathcal{O}}_{{\mathcal{M}}_{{C}}} gives a map End¯D(D)φEnd¯C(C)\underline{\operatorname{End}}_{{\mathcal{M}}_{{D}}}({\mathcal{E}}_{{D}})\rightarrow\varphi^{*}\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}}). After applying Υ\Upsilon, the latter map gives the shifted tangent map

T(D)[1]φ!T(C)[1].{T}({\mathcal{M}}_{{D}})[-1]\rightarrow\varphi^{!}{T}({\mathcal{M}}_{{C}})[-1].

The fibre of the above shifted tangent map at a point xDx\in{\mathcal{M}}_{{D}} corresponding to a functor φx=HomD(,x):DVectk\varphi_{x}={\operatorname{Hom}_{{D}}}(-,x)^{*}:{D}\rightarrow\operatorname{Vect}_{k} identifies with the map EndD(x)EndC(fr(x)){\operatorname{End}}_{{D}}(x)\rightarrow{\operatorname{End}}_{{C}}(f^{r}(x)) induced by the functor fr:DCf^{r}:{D}\rightarrow{C}.

Dually, there is a natural map of functors φCCrDDrφ\varphi^{*}{\mathcal{F}}_{C}{\mathcal{F}}^{r}_{{C}}\rightarrow{\mathcal{F}}_{{D}}{\mathcal{F}}^{r}_{{D}}\varphi^{*} which when evaluated on 𝒪C{\mathcal{O}}_{{\mathcal{M}}_{{C}}} gives a map φEnd¯C(C)End¯D(D)\varphi^{*}\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}})^{\vee}\rightarrow\underline{\operatorname{End}}_{{\mathcal{M}}_{{D}}}({\mathcal{E}}_{{D}}). The latter map identifies with the shifted cotangent map

φT(C)[1]T(D)[1].\varphi^{*}{T}^{*}({\mathcal{M}}_{{C}})[1]\rightarrow{T}^{*}({\mathcal{M}}_{{D}})[1].
Proof.

The universal property of the moduli spaces gives a commutative diagram of functors

CfCDDInd(Perf(C))φInd(Perf(D)).\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 35.0575pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-6.93124pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 41.8474pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 87.10042pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-19.20833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.88889pt\hbox{$\scriptstyle{{\mathcal{F}}_{{C}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 87.10042pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 94.37889pt\raise-19.20833pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.88889pt\hbox{$\scriptstyle{{\mathcal{F}}_{{D}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 94.37889pt\raise-30.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-35.0575pt\raise-38.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 39.46927pt\raise-32.06401pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.99155pt\hbox{$\scriptstyle{\varphi^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 59.0575pt\raise-38.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 59.0575pt\raise-38.41666pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{D}}))}$}}}}}}}\ignorespaces}}}}\ignorespaces.

We then have a composition of natural maps of functors DlφDlφCClDlDfClfCl{\mathcal{F}}^{l}_{{D}}\varphi^{*}\rightarrow{\mathcal{F}}^{l}_{{D}}\varphi^{*}{\mathcal{F}}_{{C}}{\mathcal{F}}^{l}_{{C}}\simeq{\mathcal{F}}^{l}_{{D}}{\mathcal{F}}_{{D}}f{\mathcal{F}}^{l}_{{C}}\rightarrow f{\mathcal{F}}^{l}_{{C}} where the first arrow is induced by the unit IdCCCl\operatorname{Id}_{{C}}\rightarrow{\mathcal{F}}_{{C}}{\mathcal{F}}^{l}_{{C}} and the second by the counit DlDIdD{\mathcal{F}}^{l}_{{D}}{\mathcal{F}}_{{D}}\rightarrow\operatorname{Id}_{{D}}. Applying D{\mathcal{F}}_{{D}} to this composition gives the desired map DDlφDfClφCCl{\mathcal{F}}_{{D}}{\mathcal{F}}^{l}_{{D}}\varphi^{*}\rightarrow{\mathcal{F}}_{{D}}f{\mathcal{F}}^{l}_{{C}}\simeq\varphi^{*}{\mathcal{F}}_{{C}}{\mathcal{F}}^{l}_{{C}}. Evaluating on 𝒪C{\mathcal{O}}_{{\mathcal{M}}_{{C}}} indeed gives a map End¯D(D)φEnd¯C(C)\underline{\operatorname{End}}_{{\mathcal{M}}_{{D}}}({\mathcal{E}}_{{D}})\rightarrow\varphi^{*}\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}({\mathcal{E}}_{{C}}) by Corollary 2.6. Using Proposition 3.3 and applying Υ\Upsilon, we obtain a map T(D)[1]φ!T(C)[1]{T}({\mathcal{M}}_{{D}})[-1]\rightarrow\varphi^{!}{T}({\mathcal{M}}_{{C}})[-1]. That this map agrees with the natural tangent map follows easily from the same kind of argument as in the proof of Proposition 3.3. Finally, the claim about the fibres follows from Lemma 2.7.

The dual statement for the cotangent map is proved dually.

4 Traces and Hochschild chains

4.1 Traces and circle actions

We begin by reviewing the theory of traces in (higher) symmetric monoidal categories. Our main reference is Hoyois-Scherotzke-Sibilla [12], which among other things provides enhanced functoriality for a construction of Toën-Vezzosi [23]. Other references making use of this circle of ideas include [2] and [14]. We follow [12], but slightly modify the notation and language to be consistent with other parts of the paper. In particular, we call a symmetric monoidal category `very rigid' rather than `rigid' if all its objects are dualisable.

Following [12], given a symmetric monoidal 22-category 𝒞{\mathcal{C}}, we consider the symmetric monoidal 11-category 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})}, defined as the symmetric monoidal category of `oplax natural transfors', in the sense of Scheimbauer-Johnson-Freyd [13], from the free very rigid category generated B𝐍B{\mathbf{N}} to 𝒞{\mathcal{C}}:

𝐄𝐧𝐝(𝒞):=Funoplax((B𝐍)vrig,𝒞).{\operatorname{\bf End}({\mathcal{C}})}:=\operatorname{Fun}^{\rm oplax}_{\otimes}((B{\mathbf{N}})^{\rm vrig},{{\mathcal{C}}}). (4.1)

Accordingly, we shall informally say that that 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})} is `oplax corepresentable'. At the level of homotopy categories, 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})} admits the following description: an object of 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})} is a pair (C,Φ)({C},\Phi), where C𝒞{C}\in{\mathcal{C}} is a 11-dualisable object and Φ\Phi is an endomorphism of xx. Given two objects (C,Φ)({C},\Phi) and (D,Ψ)({D},\Psi), a morphism between them is a pair (f,α)(f,\alpha), where f:CDf:{C}\rightarrow{D} is a 11-morphism admitting a right adjoint frf^{r} in 𝒞{\mathcal{C}} and α:fΦΨf\alpha:f\Phi\Rightarrow\Psi f is a 22-morphism. Such a morphism is usually displayed as a lax commutative square

C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Φ\scriptstyle{\Phi}C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}α\scriptstyle{\alpha}D\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψ\scriptstyle{\Psi}D\textstyle{D} (4.2)

The symmetric monoidal structure on 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})} is given `pointwise'. We also consider the symmetric monoidal category Ω𝒞\Omega{\mathcal{C}}, whose objects are endomorphisms of the unit 1𝒞1_{{\mathcal{C}}} and whose morphisms are natural transformations between such endomorphisms.

Definitions 2.9 and 2.11 of [12] give a symmetric monoidal trace functor

Tr:𝐄𝐧𝐝(𝒞)Ω𝒞.{\rm Tr}:{\operatorname{\bf End}({\mathcal{C}})}\rightarrow\Omega{\mathcal{C}}. (4.3)

The value of Tr{\rm Tr} on an object (C,Φ)(C,\Phi) is computed simply as the trace of the endomorphism adjoint to Φ\Phi, namely, as the composition 1𝒞evCCCIdCΦCCevC1𝒞1_{{\mathcal{C}}}\stackrel{{\scriptstyle\operatorname{ev}_{{C}}^{\vee}}}{{\longrightarrow}}{C}^{\vee}\otimes{C}\stackrel{{\scriptstyle\operatorname{Id}_{{C}^{\vee}}\otimes\Phi}}{{\longrightarrow}}{C}^{\vee}\otimes{C}\stackrel{{\scriptstyle\operatorname{ev}_{{C}}}}{{\longrightarrow}}1_{{\mathcal{C}}}. In other words, the trace of Φ\Phi is the composition of the morphism 1𝒞ΦadCC1_{{\mathcal{C}}}\stackrel{{\scriptstyle\Phi^{\rm ad}}}{{\rightarrow}}{C}^{\vee}\otimes{C} adjoint to CΦC{C}\stackrel{{\scriptstyle\Phi}}{{\rightarrow}}{C} with the evaluation morphism evC:CC1𝒞\operatorname{ev}_{{C}}:{C}^{\vee}\otimes{C}\rightarrow 1_{{\mathcal{C}}}:

Tr(Φ)=evC(Φad).\operatorname{Tr}(\Phi)=\operatorname{ev}_{{C}}(\Phi^{\rm ad}). (4.4)

Given a morphism (f,α):(C,Φ)(D,Ψ)(f,\alpha):({C},\Phi)\rightarrow({D},\Psi) in 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})}, the induced map of traces Tr(Φ)Tr(Ψ)\operatorname{Tr}(\Phi)\Rightarrow\operatorname{Tr}(\Psi) is computed as the left-to-right composition of lax-commutative squares

1evCCC(fr)fIdCΦCC(fr)fevC11evDDDIdDΨDDevD1.\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 5.5pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&&\\&&&\crcr}}}\ignorespaces{\hbox{\kern-5.5pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 11.05864pt\raise 6.40059pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39502pt\hbox{$\scriptstyle{\operatorname{ev}_{{C}}^{\vee}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 36.19446pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 36.19446pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{C}^{\vee}\otimes{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 39.44106pt\raise-27.33331pt\hbox{\hbox{\kern 0.0pt\raise-2.0228pt\hbox{$\scriptstyle{(f^{r})^{\vee}\otimes f}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 55.00137pt\raise-48.33331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 73.96066pt\raise 5.93333pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.92776pt\hbox{$\scriptstyle{\operatorname{Id}_{{C}}\otimes\Phi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 105.1972pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.71579pt\raise-0.69832pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.71579pt\raise 0.69832pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\kern 5.50002pt\raise-50.71684pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1.5}\lx@xy@tip{-1.5}}}}}}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.71579pt\raise-0.69832pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.71579pt\raise 0.69832pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.71579pt\raise-0.69832pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.71579pt\raise 0.69832pt\hbox{\lx@xy@drawline@}}}}{\hbox{\kern 105.1972pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{C}^{\vee}\otimes{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 108.4438pt\raise-27.33331pt\hbox{\hbox{\kern 0.0pt\raise-2.0228pt\hbox{$\scriptstyle{(f^{r})^{\vee}\otimes f}$}}}}}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 124.00412pt\raise-48.33331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 148.36967pt\raise 5.00974pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\operatorname{ev}_{{C}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 173.5055pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.63242pt\raise-0.77463pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.63242pt\raise 0.77463pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\kern 64.82007pt\raise-48.33331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1.5}\lx@xy@tip{-1.5}}}}}}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.63242pt\raise-0.77463pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.63242pt\raise 0.77463pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.63242pt\raise-0.77463pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.63242pt\raise 0.77463pt\hbox{\lx@xy@drawline@}}}}{\hbox{\kern 173.5055pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces{}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}{\hbox{\hbox{\kern 1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}\hbox{\kern-1.0pt\raise 0.0pt\hbox{\lx@xy@droprule}}}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.71579pt\raise-0.69832pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.71579pt\raise 0.69832pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\kern 131.82619pt\raise-48.33331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1.5}\lx@xy@tip{-1.5}}}}}}\ignorespaces\ignorespaces{\hbox{\hbox{\kern 0.71579pt\raise-0.69832pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.71579pt\raise 0.69832pt\hbox{\lx@xy@drawline@}}}}\ignorespaces{\hbox{\hbox{\kern 0.71579pt\raise-0.69832pt\hbox{\lx@xy@drawline@}}\hbox{\kern-0.71579pt\raise 0.69832pt\hbox{\lx@xy@drawline@}}}}{\hbox{\kern-5.5pt\raise-56.35114pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 10.51001pt\raise-49.95055pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39502pt\hbox{$\scriptstyle{\operatorname{ev}_{{D}}^{\vee}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 35.5pt\raise-56.35114pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 35.5pt\raise-56.35114pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{D}^{\vee}\otimes{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 73.54399pt\raise-50.4178pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.92776pt\hbox{$\scriptstyle{\operatorname{Id}_{{D}}\otimes\Psi}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 104.50275pt\raise-56.35114pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 104.50275pt\raise-56.35114pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{D}^{\vee}\otimes{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 148.5155pt\raise-51.3414pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00417pt\hbox{$\scriptstyle{\operatorname{ev}_{{D}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 173.5055pt\raise-56.35114pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 173.5055pt\raise-56.35114pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{1}$}}}}}}}\ignorespaces}}}}\ignorespaces. (4.5)

Here, we have used Lemma 2.1 to define the 22-morphisms in the left-most and right-most squares as (fr)fevC(IdDffr)evD(1ε)evDevD(f^{r})^{\vee}\otimes f\circ\operatorname{ev}_{{C}}^{\vee}\simeq(\operatorname{Id}_{{D}^{\vee}}\otimes ff^{r})\circ\operatorname{ev}_{{D}}^{\vee}\stackrel{{\scriptstyle(1\otimes\varepsilon)\circ\operatorname{ev}_{{D}}^{\vee}}}{{\longrightarrow}}\operatorname{ev}_{{D}}^{\vee} and evCevC(1η)evC(IdCfrf)evD(fr)f\operatorname{ev}_{{C}}\stackrel{{\scriptstyle\operatorname{ev}_{{C}}\circ(1\otimes\eta)}}{{\longrightarrow}}\operatorname{ev}_{{C}}\circ(\operatorname{Id}_{{C}^{\vee}}\otimes f^{r}f)\simeq\operatorname{ev}_{{D}}\circ(f^{r})^{\vee}\otimes f, while the 22-morphism in the central square is 1α1\otimes\alpha.

Lemma 4.1.

Given a morphism (f,α):(C,Φ)(D,Ψ)(f,\alpha):({C},\Phi)\rightarrow({D},\Psi) corresponding to a lax commutative square 4.2, the induced map of traces Tr(f,α):Tr(Φ)Tr(Ψ)\operatorname{Tr}(f,\alpha):\operatorname{Tr}(\Phi)\rightarrow\operatorname{Tr}(\Psi) factors as

Tr(Φ)Tr(Φη)Tr(Φfrf)Tr(fΦfr)Tr(αfr)Tr(Ψffr)Tr(Ψε)Tr(Ψ)\operatorname{Tr}(\Phi)\stackrel{{\scriptstyle\operatorname{Tr}(\Phi\eta)}}{{\longrightarrow}}\operatorname{Tr}(\Phi f^{r}f)\simeq\operatorname{Tr}(f\Phi f^{r})\stackrel{{\scriptstyle\operatorname{Tr}(\alpha f^{r})}}{{\longrightarrow}}\operatorname{Tr}(\Psi ff^{r})\stackrel{{\scriptstyle\operatorname{Tr}(\Psi\varepsilon)}}{{\longrightarrow}}\operatorname{Tr}(\Psi)
Proof.

Observe that the diagram

C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Φ\scriptstyle{\Phi}C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}α\scriptstyle{\alpha}D\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψ\scriptstyle{\Psi}D\textstyle{D}

factors as

C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ\scriptstyle{\Phi}C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φη\scriptstyle{\Phi\eta}C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Φffr\scriptstyle{\Phi ff^{r}}C\textstyle{{C}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}D\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fΦfr\scriptstyle{f\Phi f^{r}}D\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αfr\scriptstyle{\alpha f^{r}}D\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψffr\scriptstyle{\Psi ff^{r}}D\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψε\scriptstyle{\Psi\varepsilon}D\textstyle{{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψ\scriptstyle{\Psi}D\textstyle{D}

An important feature of the theory of traces developed in [12] is the naturality in 𝒞{\mathcal{C}} of the trace functor Tr𝒞:𝐄𝐧𝐝(𝒞)Ω𝒞\operatorname{Tr}_{{\mathcal{C}}}:{\operatorname{\bf End}({\mathcal{C}})}\rightarrow\Omega{\mathcal{C}}. While not explicitly stated in [12], the following lemma follows immediately from `oplax corepresentability' of 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})}.

Lemma 4.2.

Given a symmetric monoidal 2-functor F:𝒞𝒟F:{\mathcal{C}}\rightarrow{\mathcal{D}}, we have a commutative diagram of symmetric monoidal 22-functors

𝐄𝐧𝐝(𝒞)\textstyle{{\operatorname{\bf End}({\mathcal{C}})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr𝒞\scriptstyle{\operatorname{Tr}_{{\mathcal{C}}}}F\scriptstyle{F}Ω𝒞\textstyle{\Omega{\mathcal{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F\scriptstyle{F}𝐄𝐧𝐝(𝒟)\textstyle{{\operatorname{\bf End}({\mathcal{D}})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr𝒟\scriptstyle{\operatorname{Tr}_{{\mathcal{D}}}}Ω𝒟\textstyle{\Omega{\mathcal{D}}}

Explicitly, given an object (C,Φ)𝒞({C},\Phi)\in{\mathcal{C}}, we have an equivalence

F(Tr𝒞(Φ))Tr𝒟(F(Φ)).F({\operatorname{Tr}}_{{\mathcal{C}}}(\Phi))\simeq{\operatorname{Tr}}_{{\mathcal{D}}}(F(\Phi)).

Furthermore, if GG is right adjoint to FF, then for any object (D,Ψ)({D},\Psi) in D{D}, the counit FGIdDF\circ G\Rightarrow\operatorname{Id}_{{D}} induces a natural map F(Tr𝒞(GΨ))Tr𝒟(FGΨ)Tr𝒟(Ψ)F({\operatorname{Tr}}_{{\mathcal{C}}}(G\Psi))\simeq{\operatorname{Tr}}_{{\mathcal{D}}}(FG\Psi)\rightarrow{\operatorname{Tr}}_{{\mathcal{D}}}(\Psi) and hence, by adjunction, a natural map

Tr𝒞(GΨ)GTr𝒟(Ψ).{\operatorname{Tr}}_{{\mathcal{C}}}(G\Psi)\rightarrow G{\operatorname{Tr}}_{{\mathcal{D}}}(\Psi).

Similarly to the category of endomorphisms 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})}, we define the category of automorphisms as

𝐀𝐮𝐭𝒞:=Funoplax((S1)vrig,𝒞).\operatorname{\bf Aut}{{\mathcal{C}}}:=\operatorname{Fun}^{\rm oplax}_{\otimes}((S^{1})^{\rm vrig},{\mathcal{C}}).

At the level of homotopy categories, 𝐀𝐮𝐭𝒞\operatorname{\bf Aut}{{\mathcal{C}}} admits the following description. The objects of 𝐀𝐮𝐭𝒞\operatorname{\bf Aut}{{\mathcal{C}}} are pairs (C,Φ)({C},\Phi) of a dualisable object in 𝒞{\mathcal{C}} together with an automorphism Φ\Phi. The 11-morphisms in 𝐀𝐮𝐭𝒞\operatorname{\bf Aut}{{\mathcal{C}}} are the same as those in 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})}. Restricting along B𝐍B𝐙=S1B{\mathbf{N}}\rightarrow B\mathbf{Z}=S^{1}, we obtain a symmetric monoidal trace functor

Tr𝒞():𝐀𝐮𝐭𝒞Ω𝒞.{\operatorname{Tr}}_{{\mathcal{C}}}(-):\operatorname{\bf Aut}{{\mathcal{C}}}\rightarrow\Omega{\mathcal{C}}. (4.6)

The main result that we need from [12] is Theorem 2.14 (refining Corollaire 2.19 of [23]), which states that the trace functor Tr𝒞():𝐀𝐮𝐭𝒞Ω𝒞{\operatorname{Tr}}_{{\mathcal{C}}}(-):\operatorname{\bf Aut}{{\mathcal{C}}}\rightarrow\Omega{\mathcal{C}} admits a unique S1S^{1}-equivariant lift natural in symmetric monoidal functors 𝒞𝒟{\mathcal{C}}\rightarrow{\mathcal{D}}. Here 𝐀𝐮𝐭𝒞=Funoplax((S1)vrig,𝒞)\operatorname{\bf Aut}{{\mathcal{C}}}=\operatorname{Fun}^{\rm oplax}_{\otimes}((S^{1})^{\rm vrig},{\mathcal{C}}) carries the S1S^{1}-action induced by that on (S1)vrig(S^{1})^{\rm vrig}, while Ω𝒞\Omega{\mathcal{C}} carries the trivial S1S^{1}-action. Here we explicitly formulate the result from [12] that we shall need later.

Proposition 4.3.

Given an S1S^{1}-fixed point (C,Φ)𝐀𝐮𝐭𝒞({C},\Phi)\in\operatorname{\bf Aut}{{\mathcal{C}}}, there is an induced S1S^{1}-fixed point structure on Tr𝒞(Φ)Ω𝒞{\operatorname{Tr}}_{{\mathcal{C}}}(\Phi)\in\Omega{\mathcal{C}}, that is, an S1S^{1} action on Tr𝒞(Φ){\operatorname{Tr}}_{{\mathcal{C}}}(\Phi). Given a second S1S^{1}-fixed point (D,Ψ)𝐀𝐮𝐭𝒞({D},\Psi)\in\operatorname{\bf Aut}{{\mathcal{C}}}, and an S1S^{1}-fixed map (f,α):(C,Φ)(D,Ψ)(f,\alpha):({C},\Phi)\rightarrow({D},\Psi), we get an induced S1S^{1}-equivariant map Tr𝒞(Φ)Tr𝒟(Ψ){\operatorname{Tr}}_{{\mathcal{C}}}(\Phi)\rightarrow{\operatorname{Tr}}_{{\mathcal{D}}}(\Psi).

Moreover, given a symmetric monoidal functor F:𝒞𝒟F:{\mathcal{C}}\rightarrow{\mathcal{D}} between symmetric monoidal 22-categories, we obtain an S1S^{1}-equivariant equivalence

F(Tr𝒞(Φ))Tr𝒟(F(Φ))F({\operatorname{Tr}}_{{\mathcal{C}}}(\Phi))\simeq{\operatorname{Tr}}_{{\mathcal{D}}}(F(\Phi)) (4.7)

The case of most interest to us will be the trace of the identity functor IdC\operatorname{Id}_{{C}} on a dualisable object C𝒞{C}\in{\mathcal{C}}, which is naturally S1S^{1}-fixed. In the next subsection, we consider the special case of the symmetric monoidal 22-category of presentable dg categories, in which case Tr(IdC)\operatorname{Tr}(\operatorname{Id}_{{C}}) gives a natural realisation of Hochschild chains of C{C} with its functorial S1S^{1}-action. In the following subsection, we consider the special case of the symmetric monoidal 22-category of correspondences of affine (derived) schemes, and use Proposition 4.3 to identify Hochschild chains and functions on the loop space as S1S^{1}-complexes.

Remark 4.8.

While the constructions above were described mostly at the level of homotopy categories, which is sufficient for later computations, the existence of a homotopy coherent trace functor and its S1S^{1}-equivariant lift are important for us and provided by [12] and [23]. As we have briefly indicated, homotopy coherence and functoriality are handled by defining the symmetric monoidal categories 𝐄𝐧𝐝(𝒞){\operatorname{\bf End}({\mathcal{C}})} and 𝐀𝐮𝐭𝒞\operatorname{\bf Aut}{{\mathcal{C}}} to be `oplax corepresentable' by (B𝐍)vrig(B{\mathbf{N}})^{\rm vrig} and (B𝐙)vrig(B\mathbf{Z})^{\rm vrig} respectively.

4.2 Hochschild chains of dg categories

We now specialise to the case of the symmetric monoidal 22-category DGCatcont2\operatorname{DGCat}^{2}_{\rm cont} of presentable dg categories. Given a dualisable dg category CDGCatcont2{C}\in\operatorname{DGCat}^{2}_{\rm cont}, we define Hochschild chains of C{C} to be trace of the identity functor on C{C} endowed with the S1S^{1}-action described in the last section:

HH(C):=Tr(IdC){HH}({C}):=\operatorname{Tr}(\operatorname{Id}_{{C}})
Remark 4.9.

There are various approaches in the literature to the S1S^{1}-action on Hochschild chains. Most classically, the S1S^{1}-action is described in terms of the cyclic bar complex, as in the book of Loday [15]. Comparable to this is the construction of Hochschild chains in terms of factorisation homology, as in [16] and [1]. In this paper we use the S1S^{1}-action coming from the cobordism hypothesis, as in [23]. While the comparison between the first two S1S^{1}-actions and the third seem to be known to experts, we so far have not found a reference. Nonetheless, we have chosen not to reflect this ambiguity in the notation.

Given a continuous adjunction f:CD:frf:{C}\longleftrightarrow{D}:f^{r} between dualisable dg categories, we obtain from the formalism of traces an induced S1S^{1}-equivariant map

HH(C)HH(D).{HH}({C})\rightarrow{HH}({D}).

Recall from Section 2 that when C{C} is smooth, then by definition the evaluation functor evC:CCVectk\operatorname{ev}_{{C}}:{C}^{\vee}\otimes{C}\rightarrow\operatorname{Vect}_{k} has a left adjoint evCl:VectkCC\operatorname{ev}^{l}_{{C}}:\operatorname{Vect}_{k}\rightarrow{C}^{\vee}\otimes{C}. Under the identification CCEnd(C){C}^{\vee}\otimes{C}\simeq{\operatorname{End}({C})}, evCl(k)\operatorname{ev}^{l}_{{C}}(k) corresponds to a continuous endofunctor of C{C}, denoted IdC!\operatorname{Id}_{{C}}^{!} and called the inverse dualising functor of C{C}. By definition of the identification CCEnd(C){C}^{\vee}\otimes{C}\simeq{\operatorname{End}({C})}, the action of IdC!\operatorname{Id}_{{C}}^{!} is given by the composition

IdC!:CIdCevClCCCτIdCCCCevCIdCC\operatorname{Id}_{{C}}^{!}:{C}\stackrel{{\scriptstyle\operatorname{Id}_{{C}}\otimes\operatorname{ev}^{l}_{{C}}}}{{\longrightarrow}}{C}\otimes{C}^{\vee}\otimes{C}\stackrel{{\scriptstyle\tau\otimes\operatorname{Id}_{{C}}}}{{\simeq}}{C}^{\vee}\otimes{C}\otimes{C}\stackrel{{\scriptstyle\operatorname{ev}_{{C}}\otimes\operatorname{Id}_{{C}}}}{{\longrightarrow}}{C} (4.10)

Forgetting the S1S^{1}-action, we obtain the following expression for Hochschild chains of a smooth dg category C{C} in terms of Hom{\rm Hom}-complexes:

HH(C)=Tr(IdC)=Homk(k,evCevC(k))HomCC(evCl(k),evC(k))HomEnd(C)(IdC!,IdC).{HH}({C})=\operatorname{Tr}(\operatorname{Id}_{{C}})={\operatorname{Hom}_{k}}(k,\operatorname{ev}_{{C}}\circ\operatorname{ev}_{{C}}^{\vee}(k))\simeq{\operatorname{Hom}_{{C}^{\vee}\otimes{C}}}(\operatorname{ev}^{l}_{{C}}(k),\operatorname{ev}_{{C}}^{\vee}(k))\simeq{\operatorname{Hom}_{{\operatorname{End}({C})}}}(\operatorname{Id}_{{C}}^{!},\operatorname{Id}_{{C}}). (4.11)

Using the above identification, we can compute the map on Hochschild chains for a dualisable functor with smooth source and dualisable target and in particular for smooth source and smooth target.

Proposition 4.4.

Let f:CD:frf:{C}\leftrightarrow{D}:f^{r} be a continuous adjunction with smooth source and dualisable target. Given a Hochschild chain k[i]Tr(IdC)k[i]\rightarrow\operatorname{Tr}(\operatorname{Id}_{{C}}) adjoint to a natural transformation α:IdC![i]IdC\alpha:\operatorname{Id}^{!}_{{C}}[i]\rightarrow\operatorname{Id}_{{C}}, the composition k[i]Tr(IdC)Tr(IdD)k[i]\rightarrow\operatorname{Tr}(\operatorname{Id}_{{C}})\rightarrow\operatorname{Tr}(\operatorname{Id}_{{D}}) giving the image of the Hochschild chain under the functor ff identifies with the composition

k[i]Tr(IdC!)[i][Tr(IdC!)ηi]Tr(IdC!frf)[i]Tr(fIdC!fr)[i]Tr(fαfr)Tr(ffr)Tr(ε)Tr(IdD).k[i]\rightarrow\operatorname{Tr}(\operatorname{Id}^{!}_{{C}})[i]\stackrel{{\scriptstyle\operatorname{Tr}(\operatorname{Id}^{!}_{{C}})\eta}}{{[}}i]\longrightarrow\operatorname{Tr}(\operatorname{Id}^{!}_{{C}}f^{r}f)[i]\simeq\operatorname{Tr}(f\operatorname{Id}^{!}_{{C}}f^{r})[i]\stackrel{{\scriptstyle\operatorname{Tr}(f\alpha f^{r})}}{{\longrightarrow}}\operatorname{Tr}(ff^{r})\stackrel{{\scriptstyle\operatorname{Tr}(\varepsilon)}}{{\longrightarrow}}\operatorname{Tr}(\operatorname{Id}_{{D}}).

When D{D} is also smooth, there is a natural unit map η~:IdD!fIdC!fr\tilde{\eta}:\operatorname{Id}^{!}_{{D}}\rightarrow f\operatorname{Id}^{!}_{{C}}f^{r} so that the image of α\alpha identifies with the composition

IdD![i]η~[i]fIdC![i]frfαfrffrεIdD\operatorname{Id}^{!}_{{D}}[i]\stackrel{{\scriptstyle\tilde{\eta}[i]}}{{\longrightarrow}}f\operatorname{Id}^{!}_{{C}}[i]f^{r}\stackrel{{\scriptstyle f\alpha f^{r}}}{{\longrightarrow}}ff^{r}\stackrel{{\scriptstyle\varepsilon}}{{\longrightarrow}}\operatorname{Id}_{{D}} (4.12)

under the isomorphism Tr(IdD)HomEnd(D)(IdD!,IdD)\operatorname{Tr}(\operatorname{Id}_{{D}})\simeq{\operatorname{Hom}_{{\operatorname{End}({D})}}}(\operatorname{Id}^{!}_{{D}},\operatorname{Id}_{{D}}).

Proof.

First note that Tr(IdC!)=evCevCl(k)\operatorname{Tr}(\operatorname{Id}^{!}_{{C}})=\operatorname{ev}_{{C}}\circ\operatorname{ev}^{l}_{{C}}(k), so there is a natural unit kTr(IdC!)k\rightarrow\operatorname{Tr}(\operatorname{Id}^{!}_{{C}}). After suspension, that gives the first arrow. Then by adjunction, the composition k[i]Tr(IdC!)[i]Tr(α)Tr(IdC)k[i]\rightarrow\operatorname{Tr}(\operatorname{Id}^{!}_{{C}})[i]\stackrel{{\scriptstyle\operatorname{Tr}(\alpha)}}{{\rightarrow}}\operatorname{Tr}(\operatorname{Id}_{{C}}) identifies with the original Hochschild chain k[i]Tr(IdC)k[i]\rightarrow\operatorname{Tr}(\operatorname{Id}_{{C}}). Now using Lemma 4.1, and the naturality of η:IdCfrf\eta:\operatorname{Id}_{{C}}\rightarrow f^{r}f, we obtain the commutative diagram

k[i]\textstyle{k[i]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr(IdC![i])\textstyle{\operatorname{Tr}(\operatorname{Id}^{!}_{{C}}[i])\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr(IdC)\textstyle{\operatorname{Tr}(\operatorname{Id}_{{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr(IdC!frf)[i]\textstyle{\operatorname{Tr}(\operatorname{Id}^{!}_{{C}}f^{r}f)[i]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}Tr(frf)\textstyle{\operatorname{Tr}(f^{r}f)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}Tr(fIdC!fr)[i]\textstyle{\operatorname{Tr}(f\operatorname{Id}^{!}_{{C}}f^{r})[i]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr(ffr)\textstyle{\operatorname{Tr}(ff^{r})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Tr(IdD)\textstyle{\operatorname{Tr}(\operatorname{Id}_{{D}})}

Now suppose both C{C} and D{D} are smooth. Since they are in particular dualisable, we have a natural transformation evCevD(fr)f\operatorname{ev}_{{C}}\rightarrow\operatorname{ev}_{{D}}\circ(f^{r})^{\vee}\otimes f. Applying evDl\operatorname{ev}^{l}_{{D}} on the left and evCl\operatorname{ev}^{l}_{{C}} on the right of this natural transformation, we obtain a map evDlevCevClevDlevD(fr)fevCl\operatorname{ev}^{l}_{{D}}\circ\operatorname{ev}_{{C}}\circ\operatorname{ev}^{l}_{{C}}\rightarrow\operatorname{ev}^{l}_{{D}}\circ\operatorname{ev}_{{D}}\circ(f^{r})\otimes f\circ\operatorname{ev}^{l}_{{C}}. Post-composing with the counit evDlevDIdD\operatorname{ev}^{l}_{{D}}\circ\operatorname{ev}_{{D}}\rightarrow\operatorname{Id}_{{D}}, we obtain a map

evDlevCevCl(fr)fevCl\operatorname{ev}^{l}_{{D}}\circ\operatorname{ev}_{{C}}\circ\operatorname{ev}^{l}_{{C}}\rightarrow(f^{r})\otimes f\circ\operatorname{ev}^{l}_{{C}} (4.13)

Since C{C} is smooth, we have a unit kevCevCl(k)=End(IdC!)k\rightarrow\operatorname{ev}_{{C}}\circ\operatorname{ev}^{l}_{{C}}(k)={\operatorname{End}(\operatorname{Id}^{!}_{{C}})}. Applying evDl\operatorname{ev}^{l}_{{D}} on the left of this unit, we obtain a map

evDl(k)evDlevCevCl(k).\operatorname{ev}^{l}_{{D}}(k)\rightarrow\operatorname{ev}^{l}_{{D}}\circ\operatorname{ev}_{{C}}\circ\operatorname{ev}^{l}_{{C}}(k). (4.14)

Composing 4.13 and 4.14 and using the usual identifications, we obtain the desired unit

IdD!η~fIdC!fr.\operatorname{Id}^{!}_{{D}}\stackrel{{\scriptstyle\tilde{\eta}}}{{\longrightarrow}}f\operatorname{Id}^{!}_{{C}}f^{r}. (4.15)

The claim about the image of α\alpha then follows as in the case of CC smooth and DD dualisable.

Our main interest is in computing the Hochschild map HH(C)HH(A){HH}({C})\rightarrow{HH}({A}) induced by a continuous adjunction f:CA:frf:{C}\leftrightarrow{A}:f^{r} with smooth source and rigid target. By Corollary 2.6, the induced AA-linear functor F=fA:CAAF=f_{{A}}:C_{{A}}\rightarrow{A} has a left adjoint Fl:ACAF^{l}:{A}\rightarrow{C}_{{A}} and FF is corepresentable by Fl(1A)=ECAF^{l}(1_{{A}})=E\in{C}_{{A}}: FHom¯A(E,)F\simeq\underline{\operatorname{Hom}}_{{A}}(E,-). Thus given a Hochschild class k[i]HH(C)k[i]\rightarrow{HH}({C}) adjoint to a natural transformation IdC![i]αIdC\operatorname{Id}^{!}_{{C}}[i]\stackrel{{\scriptstyle{\alpha}}}{{\rightarrow}}\operatorname{Id}_{{C}}, we get an induced natural transformation IdCA/A![i]αAIdCA\operatorname{Id}^{!}_{{C}_{{A}}/{A}}[i]\stackrel{{\scriptstyle{\alpha}_{{A}}}}{{\rightarrow}}\operatorname{Id}_{{C}_{{A}}} and hence an induced natural transformation FIdCA!Fr[i]FαAFrFFrF\operatorname{Id}^{!}_{{C}_{{A}}}F^{r}[i]\stackrel{{\scriptstyle F{\alpha}_{{A}}F^{r}}}{{\rightarrow}}FF^{r}. Post-composing with the counit FFrIdAFF^{r}\rightarrow\operatorname{Id}_{{A}} and applying the tensor product mA:AAA\operatorname{m}_{A}:{A}\otimes{A}\rightarrow{A}, we obtain a composition

FIdCA!Fr(1A)[i]αAFFr(1A)mAmAr(1A).F\operatorname{Id}^{!}_{{C}_{{A}}}F^{r}(1_{{A}})[i]\stackrel{{\scriptstyle{\alpha}_{{A}}}}{{\rightarrow}}FF^{r}(1_{{A}})\rightarrow\operatorname{m}_{{A}}\operatorname{m}_{A}^{r}(1_{{A}}).

Using the isomorphisms TrA(FIdCA!Fr)FFl(1A)End¯A(E){\operatorname{Tr}}_{{A}}(F\operatorname{Id}^{!}_{C_{{A}}}F^{r})\simeq FF^{l}(1_{{A}})\simeq\underline{\operatorname{End}}_{{A}}(E) and TrA(FFr)FFr(1A)End¯A(E){\operatorname{Tr}}_{{A}}(FF^{r})\simeq FF^{r}(1_{{A}})\simeq\underline{\operatorname{End}}_{{A}}(E)^{\vee} from Corollary 2.6, we obtain the composition

1A[i]End¯A(E)[i]End¯A(E)mAmAr(1A).1_{{A}}[i]\rightarrow\underline{\operatorname{End}}_{{A}}(E)[i]\rightarrow\underline{\operatorname{End}}_{{A}}(E)^{\vee}\rightarrow\operatorname{m}_{{A}}\operatorname{m}_{{A}}^{r}({1_{{A}}}). (4.16)

where 1A[i]End¯A(E)[i]1_{{A}}[i]\rightarrow\underline{\operatorname{End}}_{{A}}(E)[i] is the shifted unit map. Note that under the isomorphism End¯A(E)HomA(IdCA/A!(E),E)\underline{\operatorname{End}}_{{A}}(E)^{\vee}\simeq{\operatorname{Hom}_{{A}}}(\operatorname{Id}^{!}_{{C}_{{A}}/{A}}(E),E), the map End¯A(E)[i]End¯A(E)Hom¯A(IdCA/A!(E),E)\underline{\operatorname{End}}_{{A}}(E)[i]\rightarrow\underline{\operatorname{End}}_{{A}}(E)^{\vee}\simeq\underline{\operatorname{Hom}}_{{A}}(\operatorname{Id}^{!}_{{C}_{{A}}/{A}}(E),E) identifies with HomA(,E){\operatorname{Hom}_{{A}}}(-,E) applied to αA:IdCA/A![i]IdCA\alpha_{{A}}:\operatorname{Id}^{!}_{{C}_{{A}}/{A}}[i]\rightarrow\operatorname{Id}_{{C}_{{A}}} evaluated on EE.

Proposition 4.5.

Given a continuous adjunction F:CA:FrF:{C}\leftrightarrow{A}:F^{r} with smooth source and rigid target, the image of a Hochschild chain adjoint to α:IdC![i]IdC\alpha:\operatorname{Id}^{!}_{{C}}[i]\rightarrow\operatorname{Id}_{{C}} under the induced map HH(C)HH(A){HH}({C})\rightarrow{HH}({A}) is obtained by applying the functor HomA(1A,):AVectk{\operatorname{Hom}_{{A}}}(1_{{A}},-):{A}\rightarrow\operatorname{Vect}_{k} to the composition (4.16) and precomposing with the unit kEndA(1A)k\rightarrow{\operatorname{End}}_{{A}}(1_{{A}}).

Proof.

Using the above isomorphisms and naturality of trace with respect to induction and restriction between kk-linear and AA-linear dg categories, we obtain a commutative diagram

Trk(IdC!)[i]\textstyle{{\operatorname{Tr}}_{k}(\operatorname{Id}^{!}_{{C}})[i]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Trk(IdC)\textstyle{{\operatorname{Tr}}_{k}(\operatorname{Id}_{{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}reskATrA(IdCA!)[i]\textstyle{\operatorname{res}^{{A}}_{k}{\operatorname{Tr}}_{{A}}(\operatorname{Id}^{!}_{{C}_{{A}}})[i]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}reskATrA(IdCA)\textstyle{\operatorname{res}^{{A}}_{k}{\operatorname{Tr}}_{{A}}(\operatorname{Id}_{{C}_{{A}}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}reskATrA(FIdCA!Fr)[i]\textstyle{\operatorname{res}^{{A}}_{k}{\operatorname{Tr}}_{{A}}(F\operatorname{Id}^{!}_{{C}_{{A}}}F^{r})[i]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}reskATrA(FFr)\textstyle{\operatorname{res}^{{A}}_{k}{\operatorname{Tr}}_{{A}}(FF^{r})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}reskAEnd¯A(E)[i]\textstyle{\operatorname{res}^{{A}}_{k}\underline{\operatorname{End}}_{{A}}(E)[i]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}reskAEnd¯A(E)\textstyle{\operatorname{res}^{{A}}_{k}\underline{\operatorname{End}}_{{A}}(E)^{\vee}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}reskAmAmAr(1A)Trk(IdA)\textstyle{\operatorname{res}^{{A}}_{k}\operatorname{m}_{{A}}\operatorname{m}_{{A}}^{r}({1_{{A}}})\simeq{\operatorname{Tr}}_{k}(\operatorname{Id}_{{A}})}

Finally, note that the restriction functor reskA:AVectk\operatorname{res}^{{A}}_{k}:{A}\rightarrow\operatorname{Vect}_{k} is just Homk(1A,){\operatorname{Hom}_{k}}(1_{{A}},-)

4.3 Functions on the loop space and Hochschild chains

In order to encode the functoriality of base change maps (3.2), it is best to use the 22-category Corr(Aff){\operatorname{Corr}(\operatorname{Aff})} of correspondences with the symmetric monoidal structure induced by the Cartesian monoidal structure on affine schemes Aff\operatorname{Aff}. At the level of homotopy categories, the objects of Corr(Aff){\operatorname{Corr}(\operatorname{Aff})} are just affine schemes, a 11-morphism in Corr(Aff){\operatorname{Corr}(\operatorname{Aff})} from UU to VV is a correspondence

ZfgUV
,
\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 7.02777pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\\crcr}}}\ignorespaces{\hbox{\kern-6.77083pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 13.65135pt\raise 6.1111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{f}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 31.02777pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 0.0pt\raise-18.41666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{g}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-29.5pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 31.02777pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{U}$}}}}}}}{\hbox{\kern-7.02777pt\raise-36.83331pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{V}$}}}}}}}\ignorespaces}}}}\ignorespaces,

and a 22-morphism is a commutative diagram

Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}f\scriptstyle{f}g\scriptstyle{g}Z\textstyle{Z^{{}^{\prime}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{{}^{\prime}}}g\scriptstyle{g^{{}^{\prime}}}U\textstyle{U}V\textstyle{V}

with hh proper.

Composition of 11-morphisms is given by pullback:

Z×VZZUZVW
,
\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 19.50525pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&\\\crcr}}}\ignorespaces{\hbox{\kern-19.50525pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{Z^{{}^{\prime}}\times_{V}Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-30.24998pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 43.76219pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 43.76219pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 81.56079pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 50.53302pt\raise-34.0456pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 81.56079pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{U}$}}}}}}}{\hbox{\kern-8.37328pt\raise-41.3789pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{Z^{{}^{\prime}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-72.7767pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 43.50525pt\raise-41.3789pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 43.50525pt\raise-41.3789pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{V}$}}}}}}}{\hbox{\kern-8.41667pt\raise-80.11002pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{W}$}}}}}}}\ignorespaces}}}}\ignorespaces,

It is easy to check that all objects UCorr(Aff)U\in{\operatorname{Corr}(\operatorname{Aff})} are dualisable, with evaluation and coevaluation

U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Δ\scriptstyle{\Delta}U×U\textstyle{U\times U}\textstyle{{*}}
U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Δ\scriptstyle{\Delta}\textstyle{{*}}U×U\textstyle{U\times U}

Applying the formalism of traces from subsection 4.1, we obtain that the trace of IdU\operatorname{Id}_{U} in Corr(Aff){\operatorname{Corr}(\operatorname{Aff})} is the correspondence

U×U×UU\textstyle{U\times_{U\times U}U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Δ\scriptstyle{\Delta}\textstyle{{*}}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Δ\scriptstyle{\Delta}U×U\textstyle{U\times U}\textstyle{*}

and is endowed with a natural S1S^{1}-action. Decomposing the circle S1S^{1} into two intervals glued along their endpoints, one obtains an identification Map¯(S1,U)U×U×UUTrCorr(Aff)(IdU)\underline{\operatorname{Map}}(S^{1},U)\simeq U\times_{U\times U}U\simeq{\operatorname{Tr}}_{{\operatorname{Corr}(\operatorname{Aff})}}(\operatorname{Id}_{U}), and one can identify the natural S1S^{1}-action on TrCorr(Aff)(IdU){\operatorname{Tr}}_{{\operatorname{Corr}(\operatorname{Aff})}}(\operatorname{Id}_{U}) with `loop rotation' on Map¯(S1,U)\underline{\operatorname{Map}}(S^{1},U).

Remark 4.17.

The formalism of correspondences makes sense for more general prestacks, usually with some restrictions on the arrows, but we shall only need to use it for affine schemes.

As noted in [8] 5.5.3, base change isomorphisms for QCoh{\rm QCoh} give rise to a symmetric monoidal functor between 22-categories

QCoh:Corr(Aff)(DGCatcont2)2op{\rm QCoh}:{\operatorname{Corr}(\operatorname{Aff})}\rightarrow(\operatorname{DGCat}^{2}_{\rm cont})^{\rm 2-op} (4.18)

Concretely, QCoh:Corr(Aff)(DGCatcont2)2op{\rm QCoh}:{\operatorname{Corr}(\operatorname{Aff})}\rightarrow(\operatorname{DGCat}^{2}_{\rm cont})^{\rm 2-op} takes an object UU to QCoh(U)\operatorname{QCoh}(U), a morphism VgZfUV\stackrel{{\scriptstyle g}}{{\leftarrow}}Z\stackrel{{\scriptstyle f}}{{\rightarrow}}U to the functor gf:QCoh(U)QCoh(V)g_{*}f^{*}:\operatorname{QCoh}(U)\rightarrow\operatorname{QCoh}(V), and a 22-morphism h:ZZh:Z\rightarrow Z^{{}^{\prime}} to a natural transformation gfghhfgfg^{{}^{\prime}}_{*}{f^{{}^{\prime}}}^{*}\Rightarrow{g^{{}^{\prime}}}_{*}h_{*}h^{*}{f^{{}^{\prime}}}^{*}\simeq g_{*}f^{*} induced by the unit IdZhh\operatorname{Id}_{Z^{{}^{\prime}}}\Rightarrow h_{*}h^{*}.

Remark 4.19.

Note the contravariance between hh and the induced natural transformation. This is the reason for the `2-op' in (DGCatcont2)2op(\operatorname{DGCat}^{2}_{\rm cont})^{\rm 2-op}. Note that the `2-op' affects only the direction of functoriality of trace, not the trace itself.

We end this section with a comparison of geometrically and algebraically defined S1S^{1}-actions.

Theorem 4.6.

For an affine scheme UU, there is a natural isomorphism of S1S^{1}-complexes

Γ(LU,𝒪LU)HH(QCoh(U))\Gamma(LU,{\mathcal{O}}_{LU})\simeq{HH}(\operatorname{QCoh}(U))

where the left-hand side has the S1S^{1}-action coming from the identification LU=TrCorr(Aff)(IdU)LU={\operatorname{Tr}}_{{\operatorname{Corr}(\operatorname{Aff})}}(\operatorname{Id}_{U}) and the right-hand side has the S1S^{1}-action coming from the identification HH(QCoh(U))=TrDGCatcont2(IdQCoh(U)){HH}(\operatorname{QCoh}(U))={\operatorname{Tr}}_{\operatorname{DGCat}^{2}_{\rm cont}}(\operatorname{Id}_{\operatorname{QCoh}(U)}).

Proof.

Apply the naturality of S1S^{1}-actions from Proposition 4.3 to the symmetric monoidal functor QCoh:Corr(Aff)(DGCatcont2)2op{\rm QCoh}:{\operatorname{Corr}(\operatorname{Aff})}\rightarrow(\operatorname{DGCat}^{2}_{\rm cont})^{\rm 2-op}. ∎

5 Shifted symplectic and Lagrangian structures on the moduli of objects

5.1 Graded S1S^{1}-complexes

Given a group prestack GG, recall that its classifying prestack is the geometric realisation of the corresponding simplicial prestack: BG:=|G×GG|BG:=|\cdots G\times G\mathrel{\vbox{\halign{#\cr\nointerlineskip\cr$\rightarrow$\crcr\nointerlineskip\cr$\rightarrow$\crcr\nointerlineskip\cr$\rightarrow$\crcr}}}G\mathrel{\vbox{\halign{#\cr\nointerlineskip\cr$\rightarrow$\crcr\nointerlineskip\cr$\rightarrow$\crcr}}}*|. The dg-category of representations of GG is by definition the category of quasi-coherent sheaves on the classifying prestack BGBG: Rep(G):=QCoh(BG)\operatorname{Rep}(G):=\operatorname{QCoh}(BG).

Consider the quotient map qBG*\stackrel{{\scriptstyle q}}{{\rightarrow}}BG and the map to a point BGπBG\stackrel{{\scriptstyle\pi}}{{\rightarrow}}*. We have adjoint pairs of functors

q:Rep(G)=QCoh(BG)Vectk:q\displaystyle q^{*}:\operatorname{Rep}(G)=\operatorname{QCoh}(BG)\leftrightarrow\operatorname{Vect}_{k}:q_{*}
π:VectkQCoh(BG)=Rep(G):π.\displaystyle\pi^{*}:\operatorname{Vect}_{k}\leftrightarrow\operatorname{QCoh}(BG)=\operatorname{Rep}(G):\pi_{*}.

In terms of representations, qq^{*} forgets the GG-action, qq_{*} coinduces from the trivial group, π\pi^{*} gives the trivial representation, and π\pi_{*} takes GG-invariants. For GG sufficiently nice, the right adjoints are continuous.

More generally, given a map between group prestacks φ:G1G2\varphi:G_{1}\rightarrow G_{2}, we have an induced map f:BG1BG2f:BG_{1}\rightarrow BG_{2} of classifying prestacks. In good circumstances, we have a continuous adjunction f:Rep(G2)=QCoh(BG2)QCoh(BG1):ff^{*}:\operatorname{Rep}(G_{2})=\operatorname{QCoh}(BG_{2})\longleftrightarrow\operatorname{QCoh}(BG_{1}):f_{*}, which we refer to as restriction and coinduction of representations. 999For classical group schemes, these functors correspond to the usual (derived) restriction and coinduction functors.

In particular, consider the abelian group S1S^{1} in PrStk\operatorname{PrStk}. We define an S1S^{1}-complex to be a quasi-coherent sheaf on the classifying prestack BS1BS^{1}. 101010It is easy to show that this category of S1S^{1}-complexes is equivalent to others in the literature, for example, with the category of functors Fun(BS1,Vectk){\operatorname{Fun}(BS^{1},\operatorname{Vect}_{k})}. By [3] Corollary 3.11, applying BB to the affinisation map111111Given a prestack XX, the affinisation of XX is by definition the prestack MapCAlgk(Γ(X,𝒪X),):CAlgk0Spc{\operatorname{Map}}_{\operatorname{CAlg}_{k}}(\Gamma(X,{\mathcal{O}}_{X}),-):\operatorname{CAlg}_{k}^{\leq 0}\rightarrow\operatorname{Spc}. It is not hard to show that the affinisation of S1S^{1} is B𝐆aB\mathbf{G}_{a}. See [3], Lemma 3.13. S1B𝐆aS^{1}\rightarrow B\mathbf{G}_{a} induces an equivalence under pullback

QCoh(B2𝐆a)QCoh(BS1).\operatorname{QCoh}(B^{2}\mathbf{G}_{a})\simeq\operatorname{QCoh}(BS^{1}).

We may therefore identify S1S^{1}-complexes with B𝐆aB\mathbf{G}_{a}-complexes, and we freely do so. We shall also be interested in graded S1S^{1}-complexes, which by definition are objects of QCoh(B(B𝐆a𝐆m))\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})). 121212One can show that restriction of representations along 𝐆mB𝐆a𝐆m\mathbf{G}_{m}\rightarrow B\mathbf{G}_{a}\rtimes\mathbf{G}_{m} is conservative and preserves limits, so restriction/coinduction is comonadic in this case. Thus we may identify QCoh(B(B𝐆a𝐆m))\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})) with certain comodules in QCoh(B𝐆m)\operatorname{QCoh}(B\mathbf{G}_{m}). One can use this to identify objects of QCoh(B(B𝐆a𝐆m))\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})) with S1S^{1}-complexes in QCoh(B𝐆m)\operatorname{QCoh}(B\mathbf{G}_{m}), hence the name ‘graded S1S^{1}-complex’.

Using the pullback square

B2𝐆a\textstyle{B^{2}\mathbf{G}_{a}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i}π\scriptstyle{\pi}B(B𝐆a𝐆m)\textstyle{B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}\textstyle{{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q}B𝐆m\textstyle{B\mathbf{G}_{m}} (5.1)

and the section j:B𝐆mB(B𝐆a𝐆m)j:B\mathbf{G}_{m}\rightarrow B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m}) of p:B(B𝐆a𝐆m)B𝐆mp:B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})\rightarrow B\mathbf{G}_{m}, we can define various complexes and maps of complexes functorially associated to (graded) S1S^{1}-complexes.131313Achtung: Quasi-coherent base change does not hold for the pullback square 5.1. By definition, the negative cyclic complex HC(E){HC^{-}}(E) of an S1S^{1}-complex EQCoh(B2𝐆a)E\in\operatorname{QCoh}(B^{2}\mathbf{G}_{a}) is the complex of B𝐆aB\mathbf{G}_{a}-invariants:

HC(E):=πEVectk.{HC^{-}}(E):=\pi_{*}E\in\operatorname{Vect}_{k}.

Similarly, given a graded S1S^{1}-complex FQCoh(B(B𝐆a𝐆m))F\in\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})), we define its weight-graded negative cyclic complex as the pushforward to B𝐆mB\mathbf{G}_{m}:

HCw(F):=pFVectkgrQCoh(B𝐆m).{HC_{w}^{-}}(F):=p_{*}F\in\operatorname{Vect}_{k}^{gr}\simeq\operatorname{QCoh}(B\mathbf{G}_{m}).

While the functors q:QCoh(B𝐆m)Vectkq^{*}:\operatorname{QCoh}(B\mathbf{G}_{m})\rightarrow\operatorname{Vect}_{k} and i:QCoh(B(B𝐆a𝐆m))QCoh(B2𝐆a)i^{*}:\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m}))\rightarrow\operatorname{QCoh}(B^{2}\mathbf{G}_{a}) are given concretely by summing over the weight-graded components of a graded (mixed) complex, for our purposes it will be more relevant to take the product over the weight-graded components. More formally, we note that the right adjoint functors q:VectkQCoh(B𝐆m)q_{*}:\operatorname{Vect}_{k}\rightarrow\operatorname{QCoh}(B\mathbf{G}_{m}) and i:QCoh(B2𝐆a)QCoh(B(B𝐆a𝐆m))i_{*}:\operatorname{QCoh}(B^{2}\mathbf{G}_{a})\rightarrow\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})) can be shown to be continuous and satisfy the projection formula (using [7], Corollary 1.4.5, and the fact that the morphisms are qca), and hence themselves admit (non-continuous) right adjoints (q)r(q_{*})^{r} and (i)r(i_{*})^{r}, which concretely are given by taking the product over weight-graded components. There are natural transformations

q(q)ri(i)r\displaystyle\begin{split}&q^{*}\Rightarrow(q_{*})^{r}\\ &i^{*}\Rightarrow(i_{*})^{r}\end{split} (5.2)

concretely given by mapping the direct sum to the direct product. More precisely, the natural transformation q(q)rq^{*}\Rightarrow(q_{*})^{r} is adjoint to a natural transformation qqIdQCoh(B𝐆m)q_{*}q^{*}\Rightarrow\operatorname{Id}_{\operatorname{QCoh}(B\mathbf{G}_{m})} induced via the projection formula from the natural map qq𝒪B𝐆m𝒪B𝐆mq_{*}q^{*}{\mathcal{O}}_{B\mathbf{G}_{m}}\rightarrow{\mathcal{O}}_{B\mathbf{G}_{m}} corresponding to the projection k[t,t1]kk[t,t^{-1}]\rightarrow k of the regular representation onto the trivial representation. An analogous construction gives the natural transformation i(i)ri^{*}\Rightarrow(i_{*})^{r}.

The above long song and dance leads to the following simple and important observations.

Lemma 5.1.

Given a graded mixed complex EQCoh(B(B𝐆a𝐆m))E\in\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})), there is a natural map

HC(iE)pHCw(E)(p){HC^{-}}(i^{*}E)\rightarrow\prod_{p}{HC_{w}^{-}}(E)(p)

and so in particular a natural `pth component' map

HC(iE)HCw(E)(p){HC^{-}}(i^{*}E)\rightarrow{HC_{w}^{-}}(E)(p) (5.3)

for each pp.

Moreover, applying pp_{*} to the unit IdQCoh(B(B𝐆a𝐆m))jj\operatorname{Id}_{\operatorname{QCoh}(B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m}))}\Rightarrow j_{*}j^{*}, we obtain a natural transformation pjp_{*}\Rightarrow j^{*}. Passing to weight-graded components, we obtain for each pp a natural map

HCw(E)(p)E(p).{HC_{w}^{-}}(E)(p)\rightarrow E(p).

5.2 Closed differential forms

Given an affine scheme UU, the map S1B𝐆aS^{1}\rightarrow B\mathbf{G}_{a} induces an equivalence Map(B𝐆a,U)Map(S1,U)=LU\operatorname{Map}(B\mathbf{G}_{a},U)\simeq\operatorname{Map}(S^{1},U)=LU, by definition of affinisation. The action of B𝐆a𝐆mB\mathbf{G}_{a}\rtimes\mathbf{G}_{m} on B𝐆aB\mathbf{G}_{a} then induces an action of B𝐆a𝐆mB\mathbf{G}_{a}\rtimes\mathbf{G}_{m} on LULU and hence the functions on LULU carry a natural structure of graded S1S^{1}-module.141414For a more detailed discussion in the not necessarily affine case, see Section 4 of [3]. More formally, LULU is a B𝐆a𝐆mB\mathbf{G}_{a}\rtimes\mathbf{G}_{m}-space, and we have a fibre square

LU\textstyle{LU\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}r\scriptstyle{r}p\scriptstyle{p}\textstyle{{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q}LU~\textstyle{\widetilde{LU}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}B(B𝐆a𝐆m)\textstyle{B(B\mathbf{G}_{a}\rtimes\mathbf{G}_{m})}

where LU~LU/B𝐆a𝐆m\widetilde{LU}\simeq LU/B\mathbf{G}_{a}\rtimes\mathbf{G}_{m}. One can check that qq is a `good' morphism 151515More precisely, qq is a ‘qca’ morphism in the sense of [7], since its fibre is B𝐆a𝐆mB\mathbf{G}_{a}\rtimes\mathbf{G}_{m}, which is qca., so that base change in this fibre square gives an isomorphism

Γ(LU,𝒪LU)p𝒪LUpr𝒪LU~qπ𝒪LU~.\Gamma(LU,{\mathcal{O}}_{LU})\simeq p_{*}{\mathcal{O}}_{LU}\simeq p_{*}r^{*}{\mathcal{O}}_{\widetilde{LU}}\simeq q^{*}\pi_{*}{\mathcal{O}}_{\widetilde{LU}}.

We thus obtain a direct sum decomposition

Γ(LU,𝒪LU)=pΓ(LU,𝒪LU)(p)\Gamma(LU,{\mathcal{O}}_{LU})=\bigoplus_{p}\Gamma(LU,{\mathcal{O}}_{LU})(p)

into weight-graded components. On the other hand, we have isomorphisms

Γ(LU,𝒪LU)HomQCoh(LU)(𝒪LU,𝒪LU)HomIndCoh(LU)(ωLU,ωLU)\displaystyle\Gamma(LU,{\mathcal{O}}_{LU})\simeq{\operatorname{Hom}_{\operatorname{QCoh}(LU)}}({\mathcal{O}}_{LU},{\mathcal{O}}_{LU})\simeq{\operatorname{Hom}_{\operatorname{IndCoh}(LU)}}(\omega_{LU},\omega_{LU})\simeq
HomU(πωLU,ωU)pΓ(U,pT(U)[p]),\displaystyle{\operatorname{Hom}_{U}}(\pi_{*}\omega_{LU},\omega_{U})\simeq\prod_{p}\Gamma(U,\mbox{\Large$\wedge$}^{p}{T}^{*}(U)[p]),

where the last isomorphism uses 3.16 and base change along the diagonal Δ:UU×U\Delta:U\rightarrow U\times U. Altogether, we obtain an identification

Γ(LU,𝒪LU)(p)Γ(U,pT(U)[p])\Gamma(LU,{\mathcal{O}}_{LU})(p)\simeq\Gamma(U,\mbox{\Large$\wedge$}^{p}{T}^{*}(U)[p])

of the weight-graded components of the functions on LULU.161616The fact that the direct sum and direct product agree depends on the fact that T(U){T}^{*}(U) is connective.

We introduce the following terminology, following [19]:

The space of pp-forms of degree nn on an affine scheme UU is

𝒜p(U,n):=|Γ(LU,𝒪LU)(p)[np]||pT(U)[n]|\mathcal{A}^{p}(U,n):=|\Gamma(LU,{\mathcal{O}}_{LU})(p)[n-p]|\simeq|\mbox{\Large$\wedge$}^{p}{T}^{*}(U)[n]|

The space of closed pp-forms of degree nn on UU is

𝒜p,cl(U,n):=|HCw(Γ(LU,𝒪LU))(p)[np]|\mathcal{A}^{p,cl}(U,n):=|{HC_{w}^{-}}(\Gamma(LU,{\mathcal{O}}_{LU}))(p)[n-p]|

The natural map HCw(Γ(LU,𝒪LU)(p)Γ(LU,𝒪LU)(p){HC_{w}^{-}}(\Gamma(LU,{\mathcal{O}}_{LU})(p)\rightarrow\Gamma(LU,{\mathcal{O}}_{LU})(p) from the second part of Lemma 5.3 induces a map

𝒜p,cl(U,n)𝒜p(U,n)\mathcal{A}^{p,cl}(U,n)\rightarrow\mathcal{A}^{p}(U,n)

giving the `underlying pp-form' of a closed pp-form. The constructions being functorial in UU, we obtain a map of prestacks

𝒜p,cl(,n)𝒜p(,n)\mathcal{A}^{p,cl}(-,n)\rightarrow\mathcal{A}^{p}(-,n) (5.4)

on Aff\operatorname{Aff}.

Following [19], for a general laft-def prestack XX, we define the space of closed pp-forms and the space of pp-forms, as well as the map between them, by applying Map(X,)\operatorname{Map}(X,-) to 5.4:

𝒜p,cl(X,n)=Map(X,𝒜p,cl(,n))Map(X,𝒜p(,n))=𝒜p(X,n).\mathcal{A}^{p,cl}(X,n)=\operatorname{Map}(X,\mathcal{A}^{p,cl}(-,n))\rightarrow\operatorname{Map}(X,\mathcal{A}^{p}(-,n))=\mathcal{A}^{p}(X,n).

We now give the central construction of this paper.

For a prestack XX, we tautologically write X=colim(Aff/X)UX=\operatorname*{colim}_{(\operatorname{Aff}/X)}U. Then

𝒜p,cl(X,np):=Map(X,𝒜p,cl(,pn))lim(Aff/X)op𝒜p,cl(U,pn)lim(Aff/X)op|HCw(U)(p)[n]|.\mathcal{A}^{p,cl}(X,n-p):=\operatorname{Map}(X,\mathcal{A}^{p,cl}(-,p-n))\simeq\lim_{(\operatorname{Aff}/X)^{\rm op}}\mathcal{A}^{p,cl}(U,p-n)\simeq\lim_{(\operatorname{Aff}/X)^{\rm op}}|{HC_{w}^{-}}(U)(p)[-n]|.

The universal continuous adjunction C:CInd(Perf(C)):Cr{\mathcal{F}}_{{C}}:{C}\longleftrightarrow\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}})):{\mathcal{F}}^{r}_{{C}} gives an S1S^{1}-equivariant map HH(C)HH(Ind(Perf(C))){HH}({C})\rightarrow{HH}(\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}}))). Composing with the natural S1S^{1}-equivariant map HH(Ind(Perf(C)))lim(Aff/X)opHH(QCoh(U))lim(Aff/X)opΓ(LU,𝒪LU){HH}(\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}})))\rightarrow\lim_{(\operatorname{Aff}/X)^{\rm op}}{HH}(\operatorname{QCoh}(U))\simeq\lim_{(\operatorname{Aff}/X)^{\rm op}}\Gamma(LU,{\mathcal{O}}_{LU}), taking invariants, and using Lemma 5.3, we obtain for each pp a natural map

HC(C)lim(Aff/X)opHCw(Γ(LU,𝒪LU))(p).{HC^{-}}({C})\rightarrow\lim_{(\operatorname{Aff}/X)^{\rm op}}{HC_{w}^{-}}(\Gamma(LU,{\mathcal{O}}_{LU}))(p).

Truncating and shifting gives a map κ~p:|HC(C)[n]|𝒜p,cl(C,pn)\tilde{\kappa}_{p}:|{HC^{-}}({C})[-n]|\rightarrow\mathcal{A}^{p,cl}({\mathcal{M}}_{{C}},p-n). Similarly, define a map κp:|HH(C)[n]|𝒜p(C,pn)\kappa_{p}:|{HH}({C})[-n]|\rightarrow\mathcal{A}^{p}({\mathcal{M}}_{{C}},p-n). Functoriality of invariants and of the ppth component map 5.3 gives the following.

Proposition 5.2.

For each n𝐙,p𝐍n\in\mathbf{Z},p\in{\mathbf{N}}, there is a commutative square of spaces

|HC(C)[n]|\textstyle{|{HC^{-}}({C})[-n]|\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}κ~p\scriptstyle{\tilde{\kappa}_{p}}𝒜p,cl(C,pn)\textstyle{\mathcal{A}^{p,cl}({\mathcal{M}}_{{C}},p-n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|HH(C)[n]|\textstyle{|{HH}({C})[-n]|\ignorespaces\ignorespaces\ignorespaces\ignorespaces}κp\scriptstyle{\kappa_{p}}𝒜p(C,pn)\textstyle{\mathcal{A}^{p}({\mathcal{M}}_{{C}},p-n)}

In words: from a negative cyclic class α:k[n]HC(C)\alpha:k[n]\rightarrow{HC^{-}}({C}) of degree nn, we obtain for each pp a closed pp-form κ~(α)p\tilde{\kappa}(\alpha)_{p} of degree pnp-n on the moduli space C{\mathcal{M}}_{{C}}, and the underlying pp-form is associated to the underlying Hochschild class.

We now describe how to compute the pp-forms on C{\mathcal{M}}_{{C}} corresponding to Hochschild classes k[n]HH(C)k[n]\rightarrow{HH}(C), in the case of a smooth dg category C{C}. Using the isomorphism 4.11, we represent a Hochschild class by a map of endofunctors α:IdC![n]IdC\alpha:\operatorname{Id}^{!}_{{C}}[n]\rightarrow\operatorname{Id}_{{C}}. Inducing the universal continuous adjunction C:CInd(Perf(C)):Cr{\mathcal{F}}_{{C}}:{C}\longleftrightarrow\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}})):{\mathcal{F}}^{r}_{{C}} along the symmetric monoidal functor Υ:Ind(Perf(C))IndCoh(C)\Upsilon:\operatorname{Ind}(\operatorname{Perf}({\mathcal{M}}_{{C}}))\rightarrow\operatorname{IndCoh}({\mathcal{M}}_{{C}}), we obtain a continuous adjunction

~C:IndCoh(C)CIndCoh(C):~Cr{\tilde{\mathcal{F}}}_{{C}}:\operatorname{IndCoh}({\mathcal{M}}_{{C}})\otimes{C}\longleftrightarrow\operatorname{IndCoh}({\mathcal{M}}_{{C}}):{\tilde{\mathcal{F}}}^{r}_{{C}}

in which the left adjoint ~C\tilde{\mathcal{F}}_{{C}} is corepresentable by Υ(C)IndCoh(C)C\Upsilon({\mathcal{E}}_{{C}})\in\operatorname{IndCoh}({\mathcal{M}}_{{C}})\otimes{C}. Applying the induced map of endofunctors α~:IdCC![n]IdCC\tilde{\alpha}:\operatorname{Id}^{!}_{{C}_{{\mathcal{M}}_{{C}}}}[n]\rightarrow\operatorname{Id}_{{C}_{{\mathcal{M}}_{{C}}}} to the object ~Cr(ωC){\tilde{\mathcal{F}}}^{r}_{{C}}(\omega_{{\mathcal{M}}_{{C}}}) followed by applying the functor C~=Hom¯C(ΥC,)\widetilde{{\mathcal{F}}_{{C}}}=\underline{\operatorname{Hom}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}},-), we obtain a map

End¯C(ΥC)[n]α~End¯C(ΥC).\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}})[n]\stackrel{{\scriptstyle\tilde{\alpha}}}{{\rightarrow}}\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}})^{\vee}.

Here we have used the isomorphisms End¯C(ΥC)~CIdCC!~Cr(ωC)\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}})\simeq\tilde{\mathcal{F}}_{{C}}\operatorname{Id}^{!}_{{C}_{{\mathcal{M}}_{{C}}}}\tilde{\mathcal{F}}^{r}_{{C}}(\omega_{{\mathcal{M}}_{{C}}}) and End¯C(ΥC)~C~Cr(ωC)\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}})^{\vee}\simeq\tilde{\mathcal{F}}_{{C}}\tilde{\mathcal{F}}^{r}_{{C}}(\omega_{{\mathcal{M}}_{{C}}}) induced by (2.8). Pre-composing with the isomorphism (3.21) and the trace map of Corollary 2.5, we obtain a map

α1:T(C)[1+n]End¯C(ΥC)[n]α~End¯C(ΥC)trωC.\alpha_{1}:{T}({\mathcal{M}}_{{C}})[-1+n]\simeq\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}})[n]\stackrel{{\scriptstyle\tilde{\alpha}}}{{\rightarrow}}{\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}}_{{C}})}^{\vee}\stackrel{{\scriptstyle{\operatorname{tr}}}}{{\rightarrow}}\omega_{{\mathcal{M}}_{{C}}}. (5.5)
Proposition 5.3.

Let C{C} be a smooth dg category. Given a Hochschild chain k[n]HH(C)k[n]\rightarrow{HH}({C}) corresponding to a map of endofunctors α:IdC![n]IdC\alpha:\operatorname{Id}^{!}_{{C}}[n]\rightarrow\operatorname{Id}_{{C}}, the corresponding 11-form of degree 1n1-n on C{\mathcal{M}}_{{C}} is (dual to) the map α1\alpha_{1} from (5.5), while the corresponding pp-form κp(α)\kappa_{p}(\alpha) of degree pnp-n is (dual to) the composition

Symp(T(C)[1])[n]T(C)[1]p[n]T(C)[1][n]trωC,{\operatorname{Sym}}^{p}({T}({\mathcal{M}}_{{C}})[-1])[n]\rightarrow{{T}({\mathcal{M}}_{{C}})[-1]}^{\otimes p}[n]\stackrel{{\scriptstyle\circ}}{{\rightarrow}}{T}({\mathcal{M}}_{{C}})[-1][n]\stackrel{{\scriptstyle{\operatorname{tr}}}}{{\rightarrow}}\omega_{{\mathcal{M}}_{{C}}},

where the map Symp(T(C)[1])T(C)[1]p{\operatorname{Sym}}^{p}({T}({\mathcal{M}}_{{C}})[-1])\rightarrow{{T}({\mathcal{M}}_{{C}})[-1]}^{\otimes p} is symmetrisation, the map T(C)[1]pT(C)[1]{{T}({\mathcal{M}}_{{C}})[-1]}^{\otimes p}\stackrel{{\scriptstyle\circ}}{{\rightarrow}}{T}({\mathcal{M}}_{{C}})[-1] is the pp-fold multiplication in the associative algebra structure on T(C)[1]{T}({\mathcal{M}}_{{C}})[-1], and the map T(C)[1][n]trωC{T}({\mathcal{M}}_{{C}})[-1][n]\stackrel{{\scriptstyle{\operatorname{tr}}}}{{\rightarrow}}\omega_{{\mathcal{M}}_{{C}}} is induced by the trace map of Corollary 2.5.

Proof.

The maps are defined globally, so to check that the composition is dual to that giving the pp-form κp(α)\kappa_{p}(\alpha), it is enough to check this by restricting along each map UCU\rightarrow{\mathcal{M}}_{{C}} from an affine UU of finite type. For such a map, we use Lemma 4.5 on Hochschild maps with smooth source and rigid target. Taking the Grothendieck-Serre dual of this map as in Lemma 3.2 and using the isomorphism 3.16 completes the identification of the pp-form κp(α)\kappa_{p}(\alpha). ∎

Remark 5.6.

In [19], it is shown that if XX is locally an Artin stack, then 𝒜p(X,n)|Γ(X,pT(X)[n])|\mathcal{A}^{p}(X,n)\simeq|\Gamma(X,\mbox{\Large$\wedge$}^{p}{T}^{*}(X)[n])|, so the above notion of the space of forms is at least reasonable in this case. Since the moduli space C{\mathcal{M}}_{C} is locally Artin when CC is of finite type, this will suffice for our purposes. For a general laft-def prestack, it is perhaps more natural to work directly with the Hodge filtration on de Rham cohomology.

5.3 Symplectic and Lagrangian structures on the moduli of objects

Recall from [4] that a Calabi-Yau structure of dimension dd on a smooth dg category C{C} is an S1S^{1}-equivariant map θ:k[d]HH(C)\theta:k[d]\rightarrow{HH}({C}) (equivalently, a map k[d]HC(C)=HH(C)S1k[d]\rightarrow{HC^{-}}({C})={HH}({C})^{S^{1}}) such that the corresponding map of endofunctors IdC![d]IdC\operatorname{Id}^{!}_{{C}}[d]\rightarrow\operatorname{Id}_{{C}} is an isomorphism. More generally, given a continuous adjunction f:CD:frf:{C}\leftrightarrow{D}:f^{r} between smooth dg categories, a relative Calabi-Yau structure of dimension dd on the functor ff is a map η:k[d]fib(HC(C)HC(D))\eta:k[d]\rightarrow{\rm fib}({HC^{-}}({C})\rightarrow{HC^{-}}({D})) such that in the induced diagram

IdD![d]\textstyle{\operatorname{Id}^{!}_{{D}}[d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fIdC![d]fr\textstyle{f\operatorname{Id}^{!}_{{C}}[d]f^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cof\textstyle{{\rm cof}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fib\textstyle{{\rm fib}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ffr\textstyle{ff^{r}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}IdD\textstyle{\operatorname{Id}_{{D}}} (5.7)

all vertical arrows are isomorphisms.171717In [4], this was called a ‘left relative Calabi-Yau structure’. Since ‘right Calabi-Yau structures’ do not appear explicitly in this paper, we drop ‘left’. Here let us note that the map IdD![d]fIdC![d]fr\operatorname{Id}^{!}_{{D}}[d]\rightarrow f\operatorname{Id}^{!}_{{C}}[d]f^{r} is that given by 4.15.

In particular, a relative Calabi-Yau structure on 0D0\rightarrow{D} of dimension dd is just a Calabi-Yau structure of dimension d+1d+1 on D{D}. We are especially interested in relative Calabi-Yau structures giving an absolute Calabi-Yau structure on C{C}.

We have the following easy lemma, which will be used in the proof of the main theorem below.

Lemma 5.4.

Let C{C} and D{D} be compactly generated smooth dg categories, f:CD:frf:{C}\rightarrow{D}:f^{r} a continuous adjunction equipped with a relative Calabi-Yau structure of dimension dd, and xDx\in{D} a right proper object so that FD=HomD(,x):DVectkF_{{D}}={\operatorname{Hom}_{{D}}}(-,x)^{*}:{D}\rightarrow\operatorname{Vect}_{k} has continuous right adjoint FDrF^{r}_{{D}}. Then we have a commutative diagram

FDIdD!FDr[d]\textstyle{F_{{D}}\operatorname{Id}^{!}_{{D}}F^{r}_{D}[d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}FDfIdC!frFDr[d]\textstyle{F_{{D}}f\operatorname{Id}^{!}_{{C}}f^{r}F^{r}_{{D}}[d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}FDcofFDr\textstyle{F_{D}{\rm cof}F^{r}_{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}FDfibFDr\textstyle{F_{{D}}{\rm fib}F^{r}_{{D}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FDffrFDr\textstyle{F_{{D}}ff^{r}F^{r}_{{D}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}FDFDr\textstyle{F_{{D}}F^{r}_{{D}}}

of endofunctors of Vectk\operatorname{Vect}_{k} induced by applying FDrF^{r}_{{D}} on the right and FDF_{{D}} the left of the diagram 5.7. When evaluated on kk, we obtain a commutative diagram

EndD(x)[d]\textstyle{{\operatorname{End}}_{{D}}(x)[d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}EndC(fr(x))[d]\textstyle{{\operatorname{End}}_{{C}}(f^{r}(x))[d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}cof~\textstyle{\widetilde{\rm cof}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}fib~\textstyle{\widetilde{\rm fib}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}EndC(fr(x))\textstyle{{\operatorname{End}}_{{C}}(f^{r}(x))^{*}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}EndD(x)\textstyle{{\operatorname{End}}_{{D}}(x)^{*}} (5.8)

in which the upper left horizontal arrow is induced by applying the functor fr:DCf^{r}:{D}\rightarrow{C} and the lower right horizontal arrow is dual to that induced by frf^{r}.

Proof.

If we define FC:=FDfF_{{C}}:=F_{{D}}f, then for any compact object yCy\in{C}, FC(y)=HomD(f(y),x)HomC(y,fr(x))F_{{C}}(y)={\operatorname{Hom}_{{D}}}(f(y),x)^{*}\simeq{\operatorname{Hom}_{{C}}}(y,f^{r}(x))^{*}, naturally in yy, hence FCHomC(,fr(x))F_{{C}}\simeq{\operatorname{Hom}_{{C}}}(-,f^{r}(x))^{*}. The other assertions then follow easily from Corollary 2.6. ∎

We are now ready to prove the main theorem of this paper.

Theorem 5.5.
  1. (1)

    Given a smooth dg category C{C} with Calabi-Yau structure θ:k[d]HC(C)\theta:k[d]\rightarrow{HC^{-}}({C}) of dimension dd, the corresponding closed 22-form κ~2(θ)𝒜2,cl(C,2d)\tilde{\kappa}_{2}(\theta)\in\mathcal{A}^{2,cl}({\mathcal{M}}_{{C}},2-d) is non-degenerate. In words, a Calabi-Yau structure of dimension dd on a smooth dg category C{C} induces on the moduli space of objects C{\mathcal{M}}_{{C}} a symplectic form of degree 2d2-d.

  2. (2)

    Given a continuous adjunction f:CD:frf:{C}\longleftrightarrow{D}:f^{r} between smooth dg categories equipped with a relative Calabi-Yau structure η:k[d]fib(HC(C)HC(D))\eta:k[d]\rightarrow{\rm fib}({HC^{-}}({C})\rightarrow{HC^{-}}({D})) of dimension dd that agrees with the absolute Calabi-Yau structure θ\theta, there is an induced Lagrangian structure on the map of moduli spaces

    DC.{\mathcal{M}}_{{D}}\rightarrow{\mathcal{M}}_{{C}}.
Proof.

The proof of 1) is immediate from Lemma 5.3: the pairing T(C)[1]T(C)[1]ωC[d]{T}({\mathcal{M}}_{{C}})[-1]\otimes{T}({\mathcal{M}}_{{C}})[-1]\rightarrow\omega_{{\mathcal{M}}_{{C}}}[-d] given by the underlying 22-form is exactly the Serre pairing of Corollary 2.5, after using the isomorphism End¯C(Υ)T(C)[1]\underline{\operatorname{End}}_{{\mathcal{M}}_{{C}}}(\Upsilon{\mathcal{E}})\simeq{T}({\mathcal{M}}_{{C}})[-1].

For the proof of 2), we have to describe the induced isotropic structure. For this, we use naturality of the map |HC()[d]|𝒜2,cl(,2d)|{HC^{-}}(-)[d]|\rightarrow\mathcal{A}^{2,cl}({\mathcal{M}}_{-},2-d) to obtain a diagram of fibre sequences

fib(|HC(f)|)\textstyle{{\rm fib}(|{HC^{-}}(f)|)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|HC(C)[d]|\textstyle{|{HC^{-}}({C})[-d]|\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}|HC(f)|\scriptstyle{|{HC^{-}}(f)|}|HC(D)[d]|\textstyle{|{HC^{-}}({D})[-d]|\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fib(φcl)\textstyle{{\rm fib}({\varphi^{*}}_{\rm cl})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒜2,cl(C,2d)\textstyle{\mathcal{A}^{2,cl}({\mathcal{M}}_{{C}},2-d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φcl\scriptstyle{\varphi^{*}_{\rm cl}}𝒜2,cl(D,2d)\textstyle{\mathcal{A}^{2,cl}({\mathcal{M}}_{{D}},2-d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}fib(φ)\textstyle{{\rm fib}(\varphi^{*})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒜2(C,2d)\textstyle{\mathcal{A}^{2}({\mathcal{M}}_{{C}},2-d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ\scriptstyle{\varphi^{*}}𝒜2(D,2d)\textstyle{\mathcal{A}^{2}({\mathcal{M}}_{{D}},2-d)}

The relative Calabi-Yau structure kfib(|HC(C)[d]||HC(D)[d]|)k\rightarrow{\rm fib}(|{HC^{-}}({C})[-d]|\rightarrow|{HC^{-}}({D})[-d]|) determines a point in fib(|HC(f)|){\rm fib}(|{HC^{-}}(f)|), which maps under the upper left vertical arrow to a point in fib(φcl){\rm fib}({\varphi^{*}}_{\rm cl}), determining an isotropic structure.

To prove non-degeneracy of the isotropic structure, note that the maps of functors from Lemma 3.4, together with the relative Calabi-Yau structure, induce a commutative diagram of functors

DIdD!Dr[d]φCIdC!Cr[d]fibcofφCCrDDr.\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 26.71432pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-26.71432pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\mathcal{F}}_{{D}}\operatorname{Id}^{!}_{{D}}{\mathcal{F}}^{r}_{{D}}[d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 50.71432pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 0.0pt\raise-32.49501pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 50.71432pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\varphi^{*}{\mathcal{F}}_{{C}}\operatorname{Id}^{!}_{{C}}{\mathcal{F}}^{r}_{{C}}[d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 145.42844pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 82.7342pt\raise-19.96973pt\hbox{{}{}\hbox{\kern-3.8889pt\raise-2.31874pt\hbox{\xyRotate@@{1024}\kern 0.0pt\kern 0.0pt}}}}}\ignorespaces{}{\hbox{\kern 145.42844pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\rm fib}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 154.1229pt\raise-32.60614pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-9.25002pt\raise-39.93945pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\rm cof}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 62.05984pt\raise-39.93945pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 62.05984pt\raise-39.93945pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\varphi^{*}{\mathcal{F}}_{{C}}{\mathcal{F}}^{r}_{{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 138.75409pt\raise-39.93945pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 138.75409pt\raise-39.93945pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\mathcal{F}}_{{D}}{\mathcal{F}}^{r}_{{D}}}$}}}}}}}\ignorespaces}}}}\ignorespaces.

Evaluating this diagram on 𝒪D{\mathcal{O}}_{{\mathcal{M}}_{{D}}} and applying Υ\Upsilon gives a commutative diagram

T(D)[1+d]\textstyle{{T}({\mathcal{M}}_{{D}})[-1+d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ϕ!T(C)[1+d]\textstyle{\phi^{!}{T}({\mathcal{M}}_{{C}})[-1+d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\textstyle{\simeq}T(D/C)[1+d]\textstyle{{T}({\mathcal{M}}_{{D}}/{\mathcal{M}}_{{C}})[-1+d]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΥT(D/C)[1]\textstyle{\Upsilon{T}^{*}({\mathcal{M}}_{{D}}/{\mathcal{M}}_{{C}})[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}φ!ΥT(C)[1]\textstyle{\varphi^{!}\Upsilon{T}^{*}({\mathcal{M}}_{{C}})[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΥT(D)[1]\textstyle{\Upsilon{T}^{*}({\mathcal{M}}_{{D}})[1]}

in which the upper left horizontal arrow is the shifted tangent map and the lower right horizontal arrow is the shifted cotangent map.

It remains to see that the outer two vertical arrows in the above diagram are isomorphisms. Since D{\mathcal{M}}_{{D}} is laft, it is enough to check isomorphisms on fibres over kk-points xDx\in{\mathcal{M}}_{{D}}, which by definition of the moduli space correspond to right proper objects xDx\in{D} giving dg functors FD=HomD(,x):DVectkF_{{D}}={\operatorname{Hom}_{{D}}}(-,x)^{*}:{D}\rightarrow\operatorname{Vect}_{k} with continuous right adjoint. By Lemma 3.4, the fibre of the upper left horizontal arrow is the map EndD(x)[d]EndC(fr(x))[d]{\operatorname{End}}_{{D}}(x)[d]\rightarrow{\operatorname{End}}_{{C}}(f^{r}(x))[d] induced by the functor fr:DCf^{r}:{D}\rightarrow{C} and the fibre of the lower right horizontal map is dual to that, up to a shift. That the fibres of the outer two vertical maps are isomorphisms now follows from Lemma 5.4. ∎

6 Applications and examples

In this section, we apply Theorem 5.5 to a number of examples of relative Calabi-Yau structures on functors CD{C}\rightarrow{D} to produce Lagrangian structures on the corresponding maps of moduli spaces DC{\mathcal{M}}_{{D}}\rightarrow{\mathcal{M}}_{{C}}. The example of local systems on manifolds with boundary and some version of the example of ind-coherent sheaves on Gorenstein schemes with anti-canonical divisors are also treated by Calaque [5], using different methods. The example coming from AnA_{n}-quivers was known in some form to experts. See for example [21], 5.3.

6.1 Oriented manifolds and Calabi-Yau schemes

Given a closed oriented manifold MM of dimension dd, Cohen-Gantra [6] constructed an absolute Calabi-Yau structure on the dg category Loc(M)\operatorname{Loc}(M) of local systems on MM. More generally, given an oriented manifold NN of dimension d+1d+1 with boundary N=M\partial N=M, Theorem 5.7 of [4] gives a relative Calabi-Yau structure of dimension d+1d+1 on the induction functor

i!:Loc(N)Loc(N).i_{!}:\operatorname{Loc}(\partial N)\rightarrow\operatorname{Loc}(N). (6.1)

Applying Theorem 5.5 to this relative Calabi-Yau structure, we obtain the following.

Corollary 6.1.

The relative Calabi-Yau structure on the functor 6.1 induces a Lagrangian structure on the corresponding map of moduli spaces

Loc(N)Loc(N).{\mathcal{M}}_{\operatorname{Loc}(N)}\rightarrow{\mathcal{M}}_{\operatorname{Loc}(\partial N)}.

Similarly, given a finite type Gorenstein scheme XX of dimension dd together with a trivialisation θ:𝒪XKX\theta:{\mathcal{O}}_{X}\simeq K_{X} of its canonical bundle, Proposition 5.12 of [4] gives an absolute Calabi-Yau structure of dimension dd on IndCoh(X)\operatorname{IndCoh}(X). Given a Gorenstein scheme YY of dimension d+1d+1 with an anticanonical section sKY1s\in K_{Y}^{-1} having a zero-scheme XX of dimension dd, there is an induced trivialisation θ:𝒪XKX\theta:{\mathcal{O}}_{X}\simeq K_{X}, and Theorem 5.13 of [4] gives a relative Calabi-Yau structure of dimension d+1d+1 on the pushforward functor

i:IndCoh(X)IndCoh(Y).i_{*}:\operatorname{IndCoh}(X)\rightarrow\operatorname{IndCoh}(Y).

Applying Theorem 5.5 to this relative Calabi-Yau structure, we obtain the following.

Corollary 6.2.

The relative Calabi-Yau structure on the functor 6.1 induces a Lagrangian structure on the corresponding map of moduli spaces

YX{\mathcal{M}}_{Y}\rightarrow{\mathcal{M}}_{X}

6.2 Lagrangian correspondences and exact sequences

One of the basic examples of a relative Calabi-Yau structure, treated in [4], Theorem 5.14, comes from the representation theory of quivers of type AnA_{n}. Specifically, there is a natural functor

i=1n+1VectkMod(An)\amalg_{i=1}^{n+1}\operatorname{Vect}_{k}\rightarrow{{\rm Mod}}(A_{n})

with a relative Calabi-Yau structure of dimension 11. Denoting the moduli space of objects in Vectk\operatorname{Vect}_{k} by 1{\mathcal{M}}_{1} and the moduli space of objects in Mod(An){{\rm Mod}}(A_{n}) by n{\mathcal{M}}_{n}, Theorem 5.5 endows the induced map

nΠi=1n+11{\mathcal{M}}_{n}\rightarrow\Pi_{i=1}^{n+1}{\mathcal{M}}_{1}

with a Lagrangian structure.

Let us explain the case n=2n=2 in more detail. For the quiver A2A_{2}, we have two simple modules S1S_{1} and S2S_{2}, which we denote schematically by k0k\rightarrow 0 and 0k0\rightarrow k respectively, and the extension PP of S1S_{1} by S2S_{2}, denoted schematically as kkk\rightarrow k.

The functor

i=13VectkMod(A2).\amalg_{i=1}^{3}\operatorname{Vect}_{k}\rightarrow{{\rm Mod}}(A_{2}).

taking the first copy of kk to the simple module S1S_{1}, the second copy of kk to PP, and the third copy of kk to the simple module S2S_{2} carries an essentially unique relative Calabi-Yau structure. Indeed, there is an isomorphism of S1S^{1}-complexes HH(i=13Vectk)kkk{HH}(\amalg_{i=1}^{3}\operatorname{Vect}_{k})\simeq k\oplus k\oplus k given by the classes of the three copies of kk, and similarly an isomorphism HH(Mod(A2))kk{HH}({{\rm Mod}}(A_{2}))\simeq k\oplus k given by the classes of S1S_{1} and S2S_{2}. With respect to these isomorphisms, the exact sequence HH(Mod(A2),i=13Vectk)[1]HH(i=13Vectk)HH(Mod(A2)){HH}({{\rm Mod}}(A_{2}),\amalg_{i=1}^{3}\operatorname{Vect}_{k})[-1]\rightarrow{HH}(\amalg_{i=1}^{3}\operatorname{Vect}_{k})\rightarrow{HH}({{\rm Mod}}(A_{2})) identifies with the exact sequence

k(111)kkk(110011)kk.\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 5.76042pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-5.76042pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{k\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 29.76042pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.16661pt\raise 9.76666pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15277pt\hbox{$\scriptstyle{\left(\begin{smallmatrix}1\\ -1\\ 1\end{smallmatrix}\right)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 29.76042pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 29.76042pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{k\oplus k\oplus k\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 72.22728pt\raise 7.51111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.15277pt\hbox{$\scriptstyle{\left(\begin{smallmatrix}1&1&0\\ 0&1&1\end{smallmatrix}\right)}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 100.76723pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 100.76723pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{k\oplus k}$}}}}}}}\ignorespaces}}}}\ignorespaces.

By examining the action of the relevant functors on the simple modules of A2A_{2}, it is not hard to check that the identification kHH(Mod(A2),i=13Vectk)[1]k\simeq{HH}({{\rm Mod}}(A_{2}),\amalg_{i=1}^{3}\operatorname{Vect}_{k})[-1] satisfies the non-degeneracy necessary for a relative Calabi-Yau structure.

Now consider the induced map 21×1×1{\mathcal{M}}_{2}\rightarrow{\mathcal{M}}_{1}\times{\mathcal{M}}_{1}\times{\mathcal{M}}_{1}. A kk-point in 2{\mathcal{M}}_{2} is a continuous functor Mod(A2)Vectk{{\rm Mod}}(A_{2})\rightarrow\operatorname{Vect}_{k} with continuous right adjoint. The image of the exact sequence S2PS1S_{2}\rightarrow P\rightarrow S_{1} under this functor essentially determines the functor, and so we can consider 2{\mathcal{M}}_{2} as the moduli space of exact sequence, with the first and last factor of 21×1×1{\mathcal{M}}_{2}\rightarrow{\mathcal{M}}_{1}\times{\mathcal{M}}_{1}\times{\mathcal{M}}_{1} picking out the beginning and end of the sequence and the middle factor giving the middle term of the sequence.

Note that the Lagrangian structure on the map 21×1×1{\mathcal{M}}_{2}\rightarrow{\mathcal{M}}_{1}\times{\mathcal{M}}_{1}\times{\mathcal{M}}_{1} is with respect to the degree 22 symplectic form (ω,ω,ω)(\omega,-\omega,\omega) on the target, where ω\omega is the standard degree 22 symplectic form on 1{\mathcal{M}}_{1}.

We consider now a generalisation of the above construction to the moduli space of AnA_{n}-representations in a Calabi-Yau category C{C} of dimension dd.

Lemma 6.3.

Given dualisable dg categories C{C} and D{D}, there is a Künneth isomorphism HH(CD)HH(C)HH(D){HH}({C}\otimes{D})\simeq{HH}({C})\otimes{HH}({D}) of S1S^{1}-complexes. When C{C} and D{D} are smooth, the underlying kk-linear Künneth isomorphism factors as HH(CD)HomEnd(CD)(IdCD!,IdCD)HomEnd(C)(IdC!,IdC)HomEnd(D)(IdD!,IdD)HH(C)HH(D){HH}({C}\otimes{D})\simeq{\operatorname{Hom}_{{\operatorname{End}({C}\otimes{D})}}}(\operatorname{Id}^{!}_{{C}\otimes{D}},\operatorname{Id}_{{C}\otimes{D}})\simeq{\operatorname{Hom}_{{\operatorname{End}({C})}}}(\operatorname{Id}^{!}_{{C}},\operatorname{Id}_{{C}})\otimes{\operatorname{Hom}_{{\operatorname{End}({D})}}}(\operatorname{Id}^{!}_{{D}},\operatorname{Id}_{{D}})\simeq{HH}({C})\otimes{HH}({D}).

Proof.

The general Künneth theorem for traces follows from the trace formalism that we reviewed in Section 4.1. The underlying kk-linear isomorphism comes from the identification (CD)(CD)(DD)(CC)({C}\otimes{D})^{\vee}\otimes({C}\otimes{D})\simeq({D}^{\vee}\otimes{D})\otimes({C}^{\vee}\otimes{C}) and the corresponding identification evCDevCevD\operatorname{ev}_{{C}\otimes{D}}\simeq\operatorname{ev}_{{C}}\otimes\operatorname{ev}_{{D}}. In the case of smooth categories, passing to left adjoints gives a corresponding identification IdCD!IdC!IdD!\operatorname{Id}^{!}_{{C}\otimes{D}}\simeq\operatorname{Id}^{!}_{{C}}\otimes\operatorname{Id}^{!}_{{D}}, whence the second claim follows. ∎

Proposition 6.4.

Given smooth dg categories AA, BB, and CC with a relative Calabi-Yau structure θ1HomS1(k[d1],HH(B,A))\theta_{1}\in{\operatorname{Hom}_{S^{1}}}(k[d_{1}],{HH}(B,A)) of dimension d1d_{1} on a functor f:ABf:A\rightarrow B, and an absolute Calabi-Yau structure θ2HomS1(k[d2],HH(C))\theta_{2}\in{\operatorname{Hom}_{S^{1}}}(k[d_{2}],{HH}({C})) of dimension d2d_{2}, the tensor product fIdC:ACBCf\otimes\operatorname{Id}_{{C}}:A\otimes C\rightarrow B\otimes{C} has an induced relative Calabi-Yau structure θ1θ2\theta_{1}\otimes\theta_{2} of dimension d1+d2d_{1}+d_{2}.

In particular, setting A=0A=0, we see that the tensor product of two dg categories with Calabi-Yau structures has an induced Calabi-Yau structure.

Proof.

This follows easily from the Künneth formula of Lemma 6.3. ∎

We state explicitly an important special case of Proposition 6.4.

Corollary 6.5.

Let (C,θ)({C},\theta) be a non-commutative Calabi-Yau of dimension dd and set Cn=Mod(An)C{C}_{n}={{\rm Mod}}(A_{n})\otimes{C}. Then the functor

i=1n+1CCn\amalg_{i=1}^{n+1}{C}\rightarrow{C}_{n}

induced by tensoring 6.2 with (C,θ)({C},\theta) carries a relative Calabi-Yau structure of dimension d+1d+1, and the induced map of moduli

Cni=1n+1C{\mathcal{M}}_{{C}_{n}}\rightarrow\prod_{i=1}^{n+1}{\mathcal{M}}_{{C}}

carries a Lagrangian structure with respect to the degree 2d2-d symplectic structure on C{\mathcal{M}}_{{C}}.181818Note: The exact form of the relative Calabi-Yau structure on 6.2 introduces a sign into one of the factors of the symplectic structure on i=1n+1C\prod_{i=1}^{n+1}{\mathcal{M}}_{{C}}.

References

  • [1] David Ayala, Aaron Mazel-Gee, and Nick Rozenblyum. Factorization homology of enriched?-categories. arXiv:1710.06414.
  • [2] David Ben-Zvi and David Nadler. Nonlinear traces. arXiv:1305.7175.
  • [3] David Ben-Zvi and David Nadler. Loop spaces and connections. Journal of Topology, 5(2):377–430, 2012.
  • [4] C. Brav and T. Dyckerhoff. Relative Calabi-Yau structures. arXiv:1606.00619.
  • [5] Damien Calaque. Lagrangian structures on mapping stacks and semi-classical TFTs. Stacks and categories in geometry, topology, and algebra, 643:1–23, 2015.
  • [6] Ralph Cohen and Sheel Ganatra. Calabi-Yau categories, the Floer theory of a cotangent bundle, and the string topology of the base. http://math.stanford.edu/~ralph/scy-floer-string_draft.pdf.
  • [7] Vladimir Drinfeld and Dennis Gaitsgory. On some finiteness questions for algebraic stacks. Geometric and Functional Analysis, 23(1):149–294, 2013.
  • [8] Dennis Gaitsgory and Nick Rozenblyum. A Study in Derived Algebraic Geometry: Volume I: Correspondences and Duality, volume 221 of Mathematical Surveys and Monographs. 2017.
  • [9] Dennis Gaitsgory and Nick Rozenblyum. A Study in Derived Algebraic Geometry. Volume II: Deformations, Lie Theory and Formal Geometry, volume 221 of Mathematical Surveys and Monographs. 2017.
  • [10] William M Goldman. The symplectic nature of fundamental groups of surfaces. Advances in Mathematics, 54(2):200–225, 1984.
  • [11] Benjamin Hennion. Tangent Lie algebra of derived Artin stacks. Journal für die reine und angewandte Mathematik (Crelles Journal), 2018(741):1–45, 2018.
  • [12] Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla. Higher traces, noncommutative motives, and the categorified Chern character. Advances in Mathematics, 309:97–154, 2017.
  • [13] Theo Johnson-Freyd and Claudia Scheimbauer. (op)lax natural transformations, twisted quantum field theories, and ``even higher'' Morita categories. Advances in Mathematics, 307:147–223, 2017.
  • [14] Grigory Kondyrev and Artem Prihodko. Categorical proof of holomorphic Atiyah-Bott formula. arXiv:1607.06345.
  • [15] Jean-Louis Loday. Cyclic homology, volume 301. Springer Science & Business Media, 2013.
  • [16] Jacob Lurie. Higher algebra. http://www.math.harvard.edu/~lurie/papers/HA.pdf.
  • [17] Jacob Lurie. Higher Topos Theory (AM-170). Princeton University Press, 2009.
  • [18] Shigeru Mukai. Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Inventiones mathematicae, 77(1):101–116, 1984.
  • [19] Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi. Shifted symplectic structures. Publications mathématiques de l'IHÉS, 117(1):271–328, 2013.
  • [20] Vivek Shende and Alex Takeda. Symplectic structures from topological Fukaya categories. arXiv:1605.02721.
  • [21] Bertrand Toën. Derived algebraic geometry. EMS Surveys in Mathematical Sciences, 1(2):153–240, 2014.
  • [22] Bertrand Toën and Michel Vaquié. Moduli of objects in dg-categories. Annales scientifiques de l' École normale supérieure, 40(3):387–444, 2007.
  • [23] Bertrand Toën and Gabriele Vezzosi. Caractères de Chern, traces équivariantes et géométrie algébrique dérivée. Selecta Mathematica, 21(2):449–554, 2015.
  • [24] Wai-kit Yeung. Weak Calabi-Yau structures and moduli of representations. arXiv:1802.05398.