This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Relative Reshetikhin-Turaev invariants, hyperbolic cone metrics and discrete Fourier transforms II

Ka Ho Wong and Tian Yang
Abstract

We prove the Volume Conjecture for the relative Reshetikhin-Turaev invariants proposed in [29] for all pairs (M,K)(M,K) such that MKM{\smallsetminus}K is homeomorphic to the complement of the figure-88 knot in S3S^{3} with almost all possible cone angles.

1 Introduction

In the first paper [29] of this series, we proposed the Volume Conjecture for the relative Reshetikhin-Turaev invariants of a closed oriented 33-manifold with a colored framed link inside it whose asymptotic behavior is related to the volume and the Chern-Simons invariant of the hyperbolic cone metric on the manifold with singular locus the link and cone angles determined by the coloring.

Conjecture 1.1 ([29]).

Let MM be a closed oriented 33-manifold and let LL be a framed hyperbolic link in MM with nn components. For an odd integer r3,r\geqslant 3, let 𝐦=(m1,,mn)\mathbf{m}=(m_{1},\dots,m_{n}) and let RTr(M,L,𝐦)\mathrm{RT}_{r}(M,L,\mathbf{m}) be the rr-th relative Reshetikhin-Turaev invariant of MM with LL colored by 𝐦\mathbf{m} and evaluated at the root of unity q=e2π1r.q=e^{\frac{2\pi\sqrt{-1}}{r}}. For a sequence 𝐦(r)=(m1(r),,mn(r)),\mathbf{m}^{(r)}=(m^{(r)}_{1},\dots,m^{(r)}_{n}), let

θk=|2πlimr4πmk(r)r|\theta_{k}=\bigg{|}2\pi-\lim_{r\to\infty}\frac{4\pi m^{(r)}_{k}}{r}\bigg{|}

and let θ=(θ1,,θn).\theta=(\theta_{1},\dots,\theta_{n}). If MLθM_{L_{\theta}} is a hyperbolic cone manifold consisting of MM and a hyperbolic cone metric on MM with singular locus LL and cone angles θ,\theta, then

limr4πrlogRTr(M,L,𝐦(r))=Vol(MLθ)+1CS(MLθ)mod 1π2,\lim_{r\to\infty}\frac{4\pi}{r}\log\mathrm{RT}_{r}(M,L,\mathbf{m}^{(r)})=\mathrm{Vol}(M_{L_{\theta}})+\sqrt{-1}\mathrm{CS}(M_{L_{\theta}})\quad\quad\text{mod }\sqrt{-1}\pi^{2}\mathbb{Z},

where rr varies over all positive odd integers.

In the same paper [29], we also proved Conjecture 1.1 in the case that the ambient 33-manifold is obtained by doing an integral surgery along some components of a fundamental shadow link and the complement of the link in the ambient manifold is homeomorphic to the fundamental shadow link complement, for sufficiently small cone angles. A result of Costantino and Thurston shows that all the closed oriented 33-manifolds can be obtained by doing an integral Dehn filling along a suitable fundamental shadow link complement. On the other hand, it is expected that hyperbolic cone metrics interpolate the complete cusped hyperbolic metric on the 33-manifold with toroidal boundary and the smooth hyperbolic metric on the Dehn-filled 33-manifold, corresponding to the colors running from r12\frac{r-1}{2} to 0 or r2.r-2. Therefore, if one can push the cone angles in Theorem 1.2 from sufficiently small all the way up to 2π,2\pi, then one proves the Volume Conjecture for the Reshetikhin-Turaev invariants of closed oriented hyperbolic 33-manifolds proposed by Chen and the second author [4]. This thus suggests a possible approach of solving Chen-Yang’s Volume Conjecture.

The main result of this paper proves Conjecture 1.1 for all pairs (M,K)(M,K) such that MKM{\smallsetminus}K is homeomorphic to the figure-88 knot complement in S3S^{3} with almost all possible cone angles, showing the plausibility of this new approach.

Theorem 1.2.

Conjecture 1.1 is true for all pairs (M,L)(M,L) such that MKM{\smallsetminus}K is homeomorphic to the figure-88 knot complement S3K41S^{3}{\smallsetminus}K_{4_{1}} and for all cone angles θ\theta such that

Vol(MKθ)>Vol(S3K41)2.\mathrm{Vol}(M_{K_{\theta}})>\frac{\mathrm{Vol}(S^{3}{\smallsetminus}K_{4_{1}})}{2}.

We note that if MKM{\smallsetminus}K is homeomorphic to S3K41,S^{3}{\smallsetminus}K_{4_{1}}, then MM is obtained from S3S^{3} by doing a pq\frac{p}{q}-surgery along K41.K_{4_{1}}. In Proposition 7.9, we show that if (p,q)(±1,0),(p,q)\neq(\pm 1,0), (0,±1),(0,\pm 1), (±1,±1),(\pm 1,\pm 1), (±2,±1),(\pm 2,\pm 1), (±3,±1),(\pm 3,\pm 1), (±4,±1)(\pm 4,\pm 1) and (±5,±1),(\pm 5,\pm 1), then any θ\theta less than or equal to 2π2\pi satisfies the condition of Theorem 1.2; and if (p,q)(p,q) is one of those sporadic cases except (±1,0),(\pm 1,0), then any θ\theta less than or equal to π\pi satisfies the condition of Theorem 1.2.

Outline of the proof. The proof follows the guideline of Ohtsuki’s method. In Proposition 3.1, we compute the relative Reshetikhin-Turaev invariants of (M,K)(M,K) and write them as a sum of values of holomorphic functions fr±f^{\pm}_{r} at integral points. The functions fr±f^{\pm}_{r} comes from Faddeev’s quantum dilogarithm function. Using Poisson summation formula, we in Proposition 4.1 write the invariants as a sum of the Fourier coefficients of fr,f_{r}, and in Propositions 5.4, 5.5 and 5.7 we simplify those Fourier coefficients by doing some preliminary estimate. In Proposition 6.3 we show that the critical value of the functions in the two leading Fourier coefficients f^r±(0,,0)\hat{f}^{\pm}_{r}(0,\dots,0) have real part the volume and imaginary part the Chern-Simons invariant of MKθ.M_{K_{\theta}}. The key observation is Lemma 6.1 that the system of critical point equations is equivalent to the system of hyperbolic gluing equations (consisting of an edge equation and a pq\frac{p}{q} Dehn-filling equation with cone angle θ\theta) for a particular ideal triangulation of the figure-88 knot complement. In Section 7.1 we verify the conditions for the saddle point approximation showing that the growth rate of the leading Fourier coefficients are the critical values; and in Section 7.2, we estimate the other Fourier coefficients showing that they are neglectable.

Acknowledgments. The authors would like to thank Feng Luo and Hongbin Sun for helpful discussions. The second author is partially supported by NSF Grant DMS-1812008.

2 Preliminaries

For the readers’ convenience, we recall the relative Reshetikhin-Turaev invariants, hyperbolic cone metrics and the classical and quantum dilogarithm functions respectively in Sections 2.1, 2.2, 2.3 and 2.4.

2.1 Relative Reshetikhin-Turaev invariants

In this article we will follow the skein theoretical approach of the relative Reshetikhin-Turaev invariants [2, 18] and focus on the root of unity q=e2π1rq=e^{\frac{2\pi\sqrt{-1}}{r}} for odd integers r3.r\geqslant 3.

A framed link in an oriented 33-manifold MM is a smooth embedding LL of a disjoint union of finitely many thickened circles S1×[0,ϵ],\mathrm{S}^{1}\times[0,\epsilon], for some ϵ>0,\epsilon>0, into M.M. The Kauffman bracket skein module Kr(M)\mathrm{K}_{r}(M) of MM is the \mathbb{C}-module generated by the isotopic classes of framed links in MM modulo the follow two relations:

  1. (1)

    Kauffman Bracket Skein Relation:  [Uncaptioned image]=eπ1r[Uncaptioned image]+eπ1r[Uncaptioned image].\vbox{\hbox{\includegraphics[width=28.45274pt]{crossing}}}\ =\ e^{\frac{\pi\sqrt{-1}}{r}}\ \vbox{\hbox{\includegraphics[width=28.45274pt]{+crossing}}}\ +\ e^{-\frac{\pi\sqrt{-1}}{r}}\ \vbox{\hbox{\includegraphics[width=28.45274pt]{ncrossing}}}.

  2. (2)

    Framing Relation:  L[Uncaptioned image]=(e2π1re2π1r)L.L\cup\vbox{\hbox{\includegraphics[width=22.76228pt]{trivial}}}=(-e^{\frac{2\pi\sqrt{-1}}{r}}-e^{-\frac{2\pi\sqrt{-1}}{r}})\ L.

There is a canonical isomorphism

:Kr(S3)\langle\ \rangle:\mathrm{K}_{r}(\mathrm{S}^{3})\to\mathbb{C}

defined by sending the empty link to 1.1. The image L\langle L\rangle of the framed link LL is called the Kauffman bracket of L.L.

Let Kr(A×[0,1])\mathrm{K}_{r}(A\times[0,1]) be the Kauffman bracket skein module of the product of an annulus AA with a closed interval. For any link diagram DD in 2\mathbb{R}^{2} with kk ordered components and b1,,bkKr(A×[0,1]),b_{1},\dots,b_{k}\in\mathrm{K}_{r}(A\times[0,1]), let

b1,,bkD\langle b_{1},\dots,b_{k}\rangle_{D}

be the complex number obtained by cabling b1,,bkb_{1},\dots,b_{k} along the components of DD considered as a element of Kr(S3)K_{r}(\mathrm{S}^{3}) then taking the Kauffman bracket .\langle\ \rangle.

On Kr(A×[0,1])\mathrm{K}_{r}(A\times[0,1]) there is a commutative multiplication induced by the juxtaposition of annuli, making it a \mathbb{C}-algebra; and as a \mathbb{C}-algebra Kr(A×[0,1])[z],\mathrm{K}_{r}(A\times[0,1])\cong\mathbb{C}[z], where zz is the core curve of A.A. For an integer n0,n\geqslant 0, let en(z)e_{n}(z) be the nn-th Chebyshev polynomial defined recursively by e0(z)=1,e_{0}(z)=1, e1(z)=ze_{1}(z)=z and en(z)=zen1(z)en2(z).e_{n}(z)=ze_{n-1}(z)-e_{n-2}(z). Let Ir={0,,r2}\mathrm{I}_{r}=\{0,\dots,r-2\} be the set of integers in between 0 and r2.r-2. Then the Kirby coloring ΩrKr(A×[0,1])\Omega_{r}\in\mathrm{K}_{r}(A\times[0,1]) is defined by

Ωr=μrnIr(1)n[n+1]en,\Omega_{r}=\mu_{r}\sum_{n\in\mathrm{I}_{r}}(-1)^{n}[n+1]e_{n},

where

μr=2sin2πrr\mu_{r}=\frac{\sqrt{2}\sin\frac{2\pi}{r}}{\sqrt{r}}

and [n][n] is the quantum integer defined by

[n]=e2nπ1re2nπ1re2π1re2π1r.[n]=\frac{e^{\frac{2n\pi\sqrt{-1}}{r}}-e^{-\frac{2n\pi\sqrt{-1}}{r}}}{e^{\frac{2\pi\sqrt{-1}}{r}}-e^{-\frac{2\pi\sqrt{-1}}{r}}}.

Let MM be a closed oriented 33-manifold and let LL be a framed link in MM with nn components. Suppose MM is obtained from S3S^{3} by doing a surgery along a framed link L,L^{\prime}, D(L)D(L^{\prime}) is a standard diagram of LL^{\prime} (ie, the blackboard framing of D(L)D(L^{\prime}) coincides with the framing of LL^{\prime}). Then LL adds extra components to D(L)D(L^{\prime}) forming a linking diagram D(LL)D(L\cup L^{\prime}) with D(L)D(L) and D(L)D(L^{\prime}) linking in possibly a complicated way. Let U+U_{+} be the diagram of the unknot with framing 1,1, σ(L)\sigma(L^{\prime}) be the signature of the linking matrix of LL^{\prime} and 𝐦=(m1,,mn)\mathbf{m}=(m_{1},\dots,m_{n}) be a multi-elements of Ir.I_{r}. Then the rr-th relative Reshetikhin-Turaev invariant of MM with LL colored by 𝐦\mathbf{m} is defined as

RTr(M,L,𝐦)=μrem1,,emn,Ωr,,ΩrD(LL)ΩrU+σ(L).\mathrm{RT}_{r}(M,L,\mathbf{m})=\mu_{r}\langle e_{m_{1}},\dots,e_{m_{n}},\Omega_{r},\dots,\Omega_{r}\rangle_{D(L\cup L^{\prime})}\langle\Omega_{r}\rangle_{U_{+}}^{-\sigma(L^{\prime})}. (2.1)

Note that if L=L=\emptyset or m1==mn=0,m_{1}=\dots=m_{n}=0, then RTr(M,L,𝐦)=RTr(M),\mathrm{RT}_{r}(M,L,\mathbf{m})=\mathrm{RT}_{r}(M), the rr-th Reshetikhin-Turaev invariant of M;M; and if M=S3,M=S^{3}, then RTr(M,L,𝐦)=μrJ𝐦,L(q2),\mathrm{RT}_{r}(M,L,\mathbf{m})=\mu_{r}\mathrm{J}_{\mathbf{m},L}(q^{2}), the value of the 𝐦\mathbf{m}-th unnormalized colored Jones polynomial of LL at t=q2.t=q^{2}.

2.2 Hyperbolic cone manifolds

According to [5], a 33-dimensional hyperbolic cone-manifold is a 33-manifold M,M, which can be triangulated so that the link of each simplex is piecewise linear homeomorphic to a standard sphere and MM is equipped with a complete path metric such that the restriction of the metric to each simplex is isometric to a hyperbolic geodesic simplex. The singular locus LL of a cone-manifold MM consists of the points with no neighborhood isometric to a ball in a Riemannian manifold. It follows that

  1. (1)

    LL is a link in MM such that each component is a closed geodesic.

  2. (2)

    At each point of LL there is a cone angle θ\theta which is the sum of dihedral angles of 33-simplices containing the point.

  3. (3)

    The restriction of the metric on MLM{\smallsetminus}L is a smooth hyperbolic metric, but is incomplete if L.L\neq\emptyset.

Hodgson-Kerckhoff [13] proved that hyperbolic cone metrics on MM with singular locus LL are locally parametrized by the cone angles provided all the cone angles are less than or equal to 2π,2\pi, and Kojima [16] proved that hyperbolic cone manifolds (M,L)(M,L) are globally rigid provided all the cone angles are less than or equal to π.\pi. It is expected to be globally rigid if all the cone angles are less than or equal to 2π.2\pi.

Given a 33-manifold NN with boundary a union of tori T1,,Tn,T_{1},\dots,T_{n}, a choice of generators (ui,vi)(u_{i},v_{i}) for each π1(Ti)\pi_{1}(T_{i}) and pairs of relatively prime integers (pi,qi),(p_{i},q_{i}), one can do the (p1q1,,pkqk)(\frac{p_{1}}{q_{1}},\dots,\frac{p_{k}}{q_{k}})-Dehn filling on NN by attaching a solid torus to each TiT_{i} so that piui+qivip_{i}u_{i}+q_{i}v_{i} bounds a disk. If H(ui)\mathrm{H}(u_{i}) and H(vi)\mathrm{H}(v_{i}) are respectively the logarithmic holonomy for uiu_{i} and vi,v_{i}, then a solution to

piH(ui)+qiH(vi)=1θip_{i}\mathrm{H}(u_{i})+q_{i}\mathrm{H}(v_{i})=\sqrt{-1}\theta_{i} (2.2)

near the complete structure gives a cone-manifold structure on the resulting manifold MM with the cone angle θi\theta_{i} along the core curve LiL_{i} of the solid torus attached to Ti;T_{i}; it is a smooth structure if θ1==θn=2π.\theta_{1}=\dots=\theta_{n}=2\pi.

In this setting, the Chern-Simons invariant for a hyperbolic cone manifold (M,L)(M,L) can be defined by using the Neumann-Zagier potential function [20]. To do this, we need a framing on each component, namely, a choice of a curve γi\gamma_{i} on TiT_{i} that is isotopic to the core curve LiL_{i} of the solid torus attached to Ti.T_{i}. We choose the orientation of γi\gamma_{i} so that (piui+qivi)γi=1.(p_{i}u_{i}+q_{i}v_{i})\cdot\gamma_{i}=1. Then we consider the following function

Φ(H(u1),,H(un))1i=1nH(ui)H(vi)41+i=1nθiH(γi)4,\frac{\Phi(\mathrm{H}(u_{1}),\dots,\mathrm{H}(u_{n}))}{\sqrt{-1}}-\sum_{i=1}^{n}\frac{\mathrm{H}(u_{i})\mathrm{H}(v_{i})}{4\sqrt{-1}}+\sum_{i=1}^{n}\frac{\theta_{i}\mathrm{H}(\gamma_{i})}{4},

where Φ\Phi is the Neumann-Zagier potential function (see [20]) defined on the deformation space of hyperbolic structures on MLM{\smallsetminus}L parametrized by the holonomy of the meridians {H(ui)},\{\mathrm{H}(u_{i})\}, characterized by

{Φ(H(u1),,H(un))H(ui)=H(vi)2,Φ(0,,0)=1(Vol(ML)+1CS(ML))modπ2,\left\{\begin{array}[]{l}\frac{\partial\Phi(\mathrm{H}(u_{1}),\dots,\mathrm{H}(u_{n}))}{\partial\mathrm{H}(u_{i})}=\frac{\mathrm{H}(v_{i})}{2},\\ \\ \Phi(0,\dots,0)=\sqrt{-1}\bigg{(}\mathrm{Vol}(M{\smallsetminus}L)+\sqrt{-1}\mathrm{CS}(M{\smallsetminus}L)\bigg{)}\quad\quad\mathrm{mod}\ \pi^{2}\mathbb{Z},\end{array}\right. (2.3)

where MLM{\smallsetminus}L is with the complete hyperbolic metric. Another important feature of Φ\Phi is that it is even in each of its variables H(ui).\mathrm{H}(u_{i}).

Following the argument in [20, Sections 4 & 5], one can prove that if the cone angles of components of LL are θ1,,θn,\theta_{1},\dots,\theta_{n}, then

Vol(MLθ)=Re(Φ(H(u1),,H(un))1i=1nH(ui)H(vi)41+i=1nθiH(γi)4).\mathrm{Vol}(M_{L_{\theta}})=\mathrm{Re}\bigg{(}\frac{\Phi(\mathrm{H}(u_{1}),\dots,\mathrm{H}(u_{n}))}{\sqrt{-1}}-\sum_{i=1}^{n}\frac{\mathrm{H}(u_{i})\mathrm{H}(v_{i})}{4\sqrt{-1}}+\sum_{i=1}^{n}\frac{\theta_{i}\mathrm{H}(\gamma_{i})}{4}\bigg{)}. (2.4)

Indeed, in this case, one can replace the 2π2\pi in Equations (33) (34) and (35) of [20] by θi,\theta_{i}, and as a consequence can replace the π2\frac{\pi}{2} in Equations (45), (46) and (48) by θi4,\frac{\theta_{i}}{4}, proving the result.

In [31], Yoshida proved that when θ1==θn=2π,\theta_{1}=\dots=\theta_{n}=2\pi,

Vol(M)+1CS(M)=Φ(H(u1),,H(un))1i=1nH(ui)H(vi)41+i=1nθiH(γi)4mod 1π2.\mathrm{Vol}(M)+\sqrt{-1}\mathrm{CS}(M)=\frac{\Phi(\mathrm{H}(u_{1}),\dots,\mathrm{H}(u_{n}))}{\sqrt{-1}}-\sum_{i=1}^{n}\frac{\mathrm{H}(u_{i})\mathrm{H}(v_{i})}{4\sqrt{-1}}+\sum_{i=1}^{n}\frac{\theta_{i}\mathrm{H}(\gamma_{i})}{4}\quad\quad\text{mod }\sqrt{-1}\pi^{2}\mathbb{Z}.

Therefore, we can make the following

Definition 2.1.

The Chern-Simons invariant of a hyperbolic cone manifold MLθM_{L_{\theta}} with a choice of the framing (γ1,,γn)(\gamma_{1},\dots,\gamma_{n}) is defined as

CS(MLθ)=Im(Φ(H(u1),,H(un))1i=1nH(ui)H(vi)41+i=1nθiH(γi)4)mod π2.\mathrm{CS}(M_{L_{\theta}})=\mathrm{Im}\bigg{(}\frac{\Phi(\mathrm{H}(u_{1}),\dots,\mathrm{H}(u_{n}))}{\sqrt{-1}}-\sum_{i=1}^{n}\frac{\mathrm{H}(u_{i})\mathrm{H}(v_{i})}{4\sqrt{-1}}+\sum_{i=1}^{n}\frac{\theta_{i}\mathrm{H}(\gamma_{i})}{4}\bigg{)}\quad\quad\text{mod }\pi^{2}\mathbb{Z}.

Then together with (2.4), we have

Vol(MLθ)+1CS(MLθ)=Φ(H(u1),,H(un))1i=1nH(ui)H(vi)41+i=1nθiH(γi)4mod 1π2.\mathrm{Vol}(M_{L_{\theta}})+\sqrt{-1}\mathrm{CS}(M_{L_{\theta}})=\frac{\Phi(\mathrm{H}(u_{1}),\dots,\mathrm{H}(u_{n}))}{\sqrt{-1}}-\sum_{i=1}^{n}\frac{\mathrm{H}(u_{i})\mathrm{H}(v_{i})}{4\sqrt{-1}}+\sum_{i=1}^{n}\frac{\theta_{i}\mathrm{H}(\gamma_{i})}{4}\quad\quad\text{mod }\sqrt{-1}\pi^{2}\mathbb{Z}. (2.5)
Remark 2.2.

It is an interesting question to find a direct geometric definition of the Chern-Simons invariants for hyperbolic cone manifolds.

2.3 Dilogarithm and Lobachevsky functions

Let log:(,0]\log:\mathbb{C}{\smallsetminus}(-\infty,0]\to\mathbb{C} be the standard logarithm function defined by

logz=log|z|+iargz\log z=\log|z|+i\arg z

with π<argz<π.-\pi<\arg z<\pi.

The dilogarithm function Li2:(1,)\mathrm{Li}_{2}:\mathbb{C}{\smallsetminus}(1,\infty)\to\mathbb{C} is defined by

Li2(z)=0zlog(1u)u𝑑u,\mathrm{Li}_{2}(z)=-\int_{0}^{z}\frac{\log(1-u)}{u}du,

which is holomorphic in [1,)\mathbb{C}{\smallsetminus}[1,\infty) and continuous in (1,).\mathbb{C}{\smallsetminus}(1,\infty).

The dilogarithm function satisfies the follow properties (see eg. Zagier [32])

Li2(1z)=Li2(z)π2612(log(z))2.\mathrm{Li}_{2}\Big{(}\frac{1}{z}\Big{)}=-\mathrm{Li}_{2}(z)-\frac{\pi^{2}}{6}-\frac{1}{2}\big{(}\log(-z)\big{)}^{2}. (2.6)

In the unit disk {z||z|<1},\big{\{}z\in\mathbb{C}\,\big{|}\,|z|<1\big{\}},

Li2(z)=n=1znn2,\mathrm{Li}_{2}(z)=\sum_{n=1}^{\infty}\frac{z^{n}}{n^{2}}, (2.7)

and on the unit circle {z=e2iθ| 0θπ},\big{\{}z=e^{2i\theta}\,\big{|}\,0\leqslant\theta\leqslant\pi\big{\}},

Li2(e2iθ)=π26+θ(θπ)+2iΛ(θ),\mathrm{Li}_{2}(e^{2i\theta})=\frac{\pi^{2}}{6}+\theta(\theta-\pi)+2i\Lambda(\theta), (2.8)

where Λ:\Lambda:\mathbb{R}\to\mathbb{R} is the Lobachevsky function (see eg. Thurston’s notes [27, Chapter 7]) defined by

Λ(θ)=0θlog|2sint|dt.\Lambda(\theta)=-\int_{0}^{\theta}\log|2\sin t|dt.

The Lobachevsky function is an odd function of period π.\pi.

2.4 Quantum dilogarithm functions

We will consider the following variant of Faddeev’s quantum dilogarithm functions [8, 9]. Let r3r\geqslant 3 be an odd integer. Then the following contour integral

φr(z)=4πirΩe(2zπ)x4xsinh(πx)sinh(2πxr)𝑑x\varphi_{r}(z)=\frac{4\pi i}{r}\int_{\Omega}\frac{e^{(2z-\pi)x}}{4x\sinh(\pi x)\sinh(\frac{2\pi x}{r})}\ dx (2.9)

defines a holomorphic function on the domain

{z|πr<Rez<π+πr},\Big{\{}z\in\mathbb{C}\ \Big{|}\ -\frac{\pi}{r}<\mathrm{Re}z<\pi+\frac{\pi}{r}\Big{\}},

where the contour is

Ω=(,ϵ]{z||z|=ϵ,Imz>0}[ϵ,),\Omega=\big{(}-\infty,-\epsilon\big{]}\cup\big{\{}z\in\mathbb{C}\ \big{|}|z|=\epsilon,\mathrm{Im}z>0\big{\}}\cup\big{[}\epsilon,\infty\big{)},

for some ϵ(0,1).\epsilon\in(0,1). Note that the integrand has poles at ni,ni, n,n\in\mathbb{Z}, and the choice of Ω\Omega is to avoid the pole at 0.0.

The function φr(z)\varphi_{r}(z) satisfies the following fundamental property.

Lemma 2.3.
  1. (1)

    For zz\in\mathbb{C} with 0<Rez<π,0<\mathrm{Re}z<\pi,

    1e2iz=er4πi(φr(zπr)φr(z+πr))1-e^{2iz}=e^{\frac{r}{4\pi i}\Big{(}\varphi_{r}\big{(}z-\frac{\pi}{r}\big{)}-\varphi_{r}\big{(}z+\frac{\pi}{r}\big{)}\Big{)}} (2.10)
  2. (2)

    For zz\in\mathbb{C} with πr<Rez<πr,-\frac{\pi}{r}<\mathrm{Re}z<\frac{\pi}{r},

    1+eriz=er4πi(φr(z)φr(z+π)).1+e^{riz}=e^{\frac{r}{4\pi i}\Big{(}\varphi_{r}(z)-\varphi_{r}\big{(}z+\pi\big{)}\Big{)}}. (2.11)

Using (2.10) and (2.11), for zz\in\mathbb{C} with π+2(n1)πr<Rez<π+2nπr,\pi+\frac{2(n-1)\pi}{r}<\mathrm{Re}z<\pi+\frac{2n\pi}{r}, we can define φr(z)\varphi_{r}(z) inductively by the relation

k=1n(1e2i(z(2k1)πr))=er4πi(φr(z2nπr)φr(z)),\prod_{k=1}^{n}\Big{(}1-e^{2i\big{(}z-\frac{(2k-1)\pi}{r}\big{)}}\Big{)}=e^{\frac{r}{4\pi i}\Big{(}\varphi_{r}\big{(}z-\frac{2n\pi}{r}\big{)}-\varphi_{r}(z)\Big{)}}, (2.12)

extending φr(z)\varphi_{r}(z) to a meromorphic function on .\mathbb{C}. The poles of φr(z)\varphi_{r}(z) have the form (a+1)π+bπr(a+1)\pi+\frac{b\pi}{r} or aπbπr-a\pi-\frac{b\pi}{r} for all nonnegative integer aa and positive odd integer b.b.

Let q=e2πir,q=e^{\frac{2\pi i}{r}}, and let

(q)n=k=1n(1q2k).(q)_{n}=\prod_{k=1}^{n}(1-q^{2k}).
Lemma 2.4.
  1. (1)

    For 0nr2,0\leqslant n\leqslant r-2,

    (q)n=er4πi(φr(πr)φr(2πnr+πr)).(q)_{n}=e^{\frac{r}{4\pi i}\Big{(}\varphi_{r}\big{(}\frac{\pi}{r}\big{)}-\varphi_{r}\big{(}\frac{2\pi n}{r}+\frac{\pi}{r}\big{)}\Big{)}}. (2.13)
  2. (2)

    For r12nr2,\frac{r-1}{2}\leqslant n\leqslant r-2,

    (q)n=2er4πi(φr(πr)φr(2πnr+πrπ)).(q)_{n}=2e^{\frac{r}{4\pi i}\Big{(}\varphi_{r}\big{(}\frac{\pi}{r}\big{)}-\varphi_{r}\big{(}\frac{2\pi n}{r}+\frac{\pi}{r}-\pi\big{)}\Big{)}}. (2.14)

Since

{n}!=(1)nqn(n+1)2(q)n,\{n\}!=(-1)^{n}q^{-\frac{n(n+1)}{2}}(q)_{n},

as a consequence of Lemma 2.4, we have

Lemma 2.5.
  1. (1)

    For 0nr2,0\leqslant n\leqslant r-2,

    {n}!=er4πi(2π(2πnr)+(2πr)2(n2+n)+φr(πr)φr(2πnr+πr)).\{n\}!=e^{\frac{r}{4\pi i}\Big{(}-2\pi\big{(}\frac{2\pi n}{r}\big{)}+\big{(}\frac{2\pi}{r}\big{)}^{2}(n^{2}+n)+\varphi_{r}\big{(}\frac{\pi}{r}\big{)}-\varphi_{r}\big{(}\frac{2\pi n}{r}+\frac{\pi}{r}\big{)}\Big{)}}. (2.15)
  2. (2)

    For r12nr2,\frac{r-1}{2}\leqslant n\leqslant r-2,

    {n}!=2er4πi(2π(2πnr)+(2πr)2(n2+n)+φr(πr)φr(2πnr+πrπ)).\{n\}!=2e^{\frac{r}{4\pi i}\Big{(}-2\pi\big{(}\frac{2\pi n}{r}\big{)}+\big{(}\frac{2\pi}{r}\big{)}^{2}(n^{2}+n)+\varphi_{r}\big{(}\frac{\pi}{r}\big{)}-\varphi_{r}\big{(}\frac{2\pi n}{r}+\frac{\pi}{r}-\pi\big{)}\Big{)}}. (2.16)

We consider (2.16) because there are poles in (π,2π),(\pi,2\pi), so we move everything to (0,π)(0,\pi) to avoid the poles.

The function φr(z)\varphi_{r}(z) and the dilogarithm function are closely related as follows.

Lemma 2.6.
  1. (1)

    For every zz with 0<Rez<π,0<\mathrm{Re}z<\pi,

    φr(z)=Li2(e2iz)+2π2e2iz3(1e2iz)1r2+O(1r4).\varphi_{r}(z)=\mathrm{Li}_{2}(e^{2iz})+\frac{2\pi^{2}e^{2iz}}{3(1-e^{2iz})}\frac{1}{r^{2}}+O\Big{(}\frac{1}{r^{4}}\Big{)}. (2.17)
  2. (2)

    For every zz with 0<Rez<π,0<\mathrm{Re}z<\pi,

    φr(z)=2ilog(1e2iz)+O(1r2).\varphi_{r}^{\prime}(z)=-2i\log(1-e^{2iz})+O\Big{(}\frac{1}{r^{2}}\Big{)}. (2.18)

3 Computation of the relative Reshetikhin-Turaev invariants

Let (M,K)(M,K) be a pair such that MKM{\smallsetminus}K is homeomorphic to S3K41.S^{3}{\smallsetminus}K_{4_{1}}. Then MM is obtained from S3S^{3} by doing a pq\frac{p}{q} Dehn-filling along K41K_{4_{1}} and KK is isotopic to a curve on the boundary of the tubular neighborhood of K41K_{4_{1}} that intersects the (p,q)(p,q)-curve of the boundary at exactly one point. By eg. [25, p.273], MM can also be obtained by doing a surgery along a framed link LL of kk components with framings a1,,aka_{1},\dots,a_{k} coming from the continued fraction expansion

pq=ak1ak111a1\frac{p}{q}=a_{k}-\frac{1}{a_{k-1}-\frac{1}{\cdots-\frac{1}{a_{1}}}}

of pq,\frac{p}{q}, and KK is a framed trivial loop isotopic to the meridian of the last loop (see Figure 1).

Refer to caption
Figure 1: The Kirby diagram of (M,K)(M,K)
Proposition 3.1.

For an odd integer r3,r\geqslant 3, the rr-th relative Reshetikin-Turaev invariant RTr(M,K,m0)\mathrm{RT}_{r}(M,K,m_{0}) of the triple (M,K,m0)(M,K,m_{0}) at the root q=e2πirq=e^{\frac{2\pi i}{r}} can be computed as

RTr(M,K,m0)=κrm1,,mk=r22r22m=max{mk,mk}r22(gr+(m1,,mk,m)+gr(m1,,mk,m)),\begin{split}\mathrm{RT}_{r}(M,K,m_{0})=\kappa_{r}\sum_{m_{1},\dots,m_{k}=-\frac{r-2}{2}}^{\frac{r-2}{2}}\sum_{m=\max\{-m_{k},m_{k}\}}^{\frac{r-2}{2}}\Big{(}g^{+}_{r}(m_{1},\dots,m_{k},m)+g^{-}_{r}(m_{1},\dots,m_{k},m)\Big{)},\end{split}

where

κr=2k3rk+1(sin2πr)k1e(3i=0kai+σ(L)+2k2)rπi4+(i=0kai(1+1r)+3σ(L)r+σ(L)4)πi\kappa_{r}=\frac{2^{k-3}}{{\sqrt{r^{k+1}}}}\Big{(}\sin\frac{2\pi}{r}\Big{)}^{k-1}e^{\big{(}3\sum_{i=0}^{k}a_{i}+\sigma(L)+2k-2\big{)}\frac{r\pi i}{4}+\big{(}-\sum_{i=0}^{k}a_{i}(1+\frac{1}{r})+\frac{3\sigma(L)}{r}+\frac{\sigma(L)}{4}\big{)}\pi i}

and

gr±(m1,,mk,m)=ϵ(2πmkr,2πmr)e2πmkir+r4πiVr±(2πm1r,,2πmkr,2πmr)g^{\pm}_{r}(m_{1},\dots,m_{k},m)=\epsilon\Big{(}\frac{2\pi m_{k}}{r},\frac{2\pi m}{r}\Big{)}e^{-\frac{2\pi m_{k}i}{r}+\frac{r}{4\pi i}V^{\pm}_{r}\Big{(}\frac{2\pi m_{1}}{r},\dots,\frac{2\pi m_{k}}{r},\frac{2\pi m}{r}\Big{)}}

with ϵ\epsilon and VrV_{r} defined as follows. Let

x0=2πr(r22m0)=π2πr2πm0r.x_{0}=\frac{2\pi}{r}\Big{(}\frac{r-2}{2}-m_{0}\Big{)}=\pi-\frac{2\pi}{r}-\frac{2\pi m_{0}}{r}.
  1. (1)

    If both 0<y±xk<π,0<y\pm x_{k}<\pi, then ϵ(xk,y)=2\epsilon(x_{k},y)=2 and

    Vr±(x1,,xk,y)=±2x0x1i=0kaixi2i=1k12xixi+12πxk+4xkyφr(πyxkπr)+φr(yxk+πr).V^{\pm}_{r}(x_{1},\dots,x_{k},y)=\pm 2x_{0}x_{1}-\sum_{i=0}^{k}a_{i}x_{i}^{2}-\sum_{i=1}^{k-1}2x_{i}x_{i+1}-2\pi x_{k}+4x_{k}y-\varphi_{r}\Big{(}\pi-y-x_{k}-\frac{\pi}{r}\Big{)}+\varphi_{r}\Big{(}y-x_{k}+\frac{\pi}{r}\Big{)}.
  2. (2)

    If 0<y+xk<π0<y+x_{k}<\pi and π<yxk<2π,\pi<y-x_{k}<2\pi, then ϵ(xk,y)=1\epsilon(x_{k},y)=1 and

    Vr±(x1,,xk,y)=±2x0x1i=0kaixi2i=1k12xixi+12πxk+4xkyφr(πyxkπr)+φr(yxkπ+πr).V^{\pm}_{r}(x_{1},\dots,x_{k},y)=\pm 2x_{0}x_{1}-\sum_{i=0}^{k}a_{i}x_{i}^{2}-\sum_{i=1}^{k-1}2x_{i}x_{i+1}-2\pi x_{k}+4x_{k}y-\varphi_{r}\Big{(}\pi-y-x_{k}-\frac{\pi}{r}\Big{)}+\varphi_{r}\Big{(}y-x_{k}-\pi+\frac{\pi}{r}\Big{)}.
  3. (3)

    If π<y+xk<2π\pi<y+x_{k}<2\pi and 0<yxk<π,0<y-x_{k}<\pi, then ϵ(xk,y)=1\epsilon(x_{k},y)=1 and

    Vr±(x1,,xk,y)=±2x0x1i=0kaixi2i=1k12xixi+12πxk+4xkyφr(2πyxkπr)+φr(yxk+πr).V^{\pm}_{r}(x_{1},\dots,x_{k},y)=\pm 2x_{0}x_{1}-\sum_{i=0}^{k}a_{i}x_{i}^{2}-\sum_{i=1}^{k-1}2x_{i}x_{i+1}-2\pi x_{k}+4x_{k}y-\varphi_{r}\Big{(}2\pi-y-x_{k}-\frac{\pi}{r}\Big{)}+\varphi_{r}\Big{(}y-x_{k}+\frac{\pi}{r}\Big{)}.
Proof.

A direct computation shows that

μrωrU+=e(3rr+14)πi.\langle\mu_{r}\omega_{r}\rangle_{U_{+}}=e^{\big{(}-\frac{3}{r}-\frac{r+1}{4}\big{)}\pi i}.

Let

κr=μrk+1μrωrU+σ(L)=(2sin2πrr)k+1eσ(L)(3rr+14)πi.\kappa_{r}^{\prime}=\mu_{r}^{k+1}\langle\mu_{r}\omega_{r}\rangle_{U_{+}}^{-\sigma(L)}=\bigg{(}\frac{\sqrt{2}\sin\frac{2\pi}{r}}{\sqrt{r}}\bigg{)}^{k+1}e^{-\sigma(L)\big{(}-\frac{3}{r}-\frac{r+1}{4}\big{)}\pi i}.

Then by (2.1), we have

RTr(M)=κrem0,ωr,,ωrD(KL)=κrm1,,mk=0r2(1)m0+mk+i=0kaimiqi=0naimi(mi+2)2i=0k1[(mi+1)(mi+1+1)]emkD(K41),\begin{split}\mathrm{RT}_{r}(M)&=\kappa_{r}^{\prime}\langle e_{m_{0}},\omega_{r},\dots,\omega_{r}\rangle_{D(K\cup L)}\\ &=\kappa_{r}^{\prime}\sum_{m_{1},\dots,m_{k}=0}^{r-2}(-1)^{m_{0}+m_{k}+\sum_{i=0}^{k}a_{i}m_{i}}q^{\sum_{i=0}^{n}\frac{a_{i}m_{i}(m_{i}+2)}{2}}\prod_{i=0}^{k-1}[(m_{i}+1)(m_{i+1}+1)]\langle e_{m_{k}}\rangle_{D(K_{4_{1}})},\end{split}

where the second equality comes from the fact that ene_{n} is an eigenvector of the positive and the negative twist operator of eigenvalue (1)nq±n(n+2)2(-1)^{n}q^{\pm\frac{n(n+2)}{2}}, and is also an eigenvector of the circle operator c(em)c(e_{m}) (defined by enclosing ene_{n} by eme_{m}) of eigenvalue (1)m[(m+1)(n+1)][n+1].(-1)^{m}\frac{[(m+1)(n+1)]}{[n+1]}. By Habiro’s formula [11] (see also [19] for a skein theoretical computation)

enD(K41)=(1)n+1{1}m=0min{n,r2n}q2(n+1)(m+12)(q)n+1+m(q)nm,\begin{split}\langle e_{n}\rangle_{D(K_{4_{1}})}=\frac{(-1)^{n+1}}{\{1\}}\sum_{m=0}^{\min\{n,r-2-n\}}q^{-2(n+1)(m+\frac{1}{2})}\frac{(q)_{n+1+m}}{(q)_{n-m}},\end{split}

where {n}=qnqn\{n\}=q^{n}-q^{-n} and (q)n=k=1n(1q2k).(q)_{n}=\prod_{k=1}^{n}(1-q^{2k}).

Then

RTr(M)=(1)m0+1{1}κrm1,,mk=0r2m=0min{mk,r2mk}(1)i=0kaimiqi=1naimi(mi+2)22(mk+1)(m+12)i=0k1[(mi+1)(mi+1+1)](q)mk+1+m(q)mkm.=(1)m0+12k1{1}2κrm1,,mk=0r2m=0min{mk,r2mk}(q(m0+1)(m1+1)q(m0+1)(m1+1))(1)i=0kaimiqi=0kaimi(mi+2)2+i=1k1(mi+1)(mi+1+1)2(mk+1)(m+12)(q)mk+1+m(q)mkm,\begin{split}\mathrm{RT}_{r}(M)=&\frac{(-1)^{m_{0}+1}}{\{1\}}\kappa_{r}^{\prime}\sum_{m_{1},\dots,m_{k}=0}^{r-2}\sum_{m=0}^{\min\{m_{k},r-2-m_{k}\}}(-1)^{\sum_{i=0}^{k}a_{i}m_{i}}q^{\sum_{i=1}^{n}\frac{a_{i}m_{i}(m_{i}+2)}{2}-2(m_{k}+1)(m+\frac{1}{2})}\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\prod_{i=0}^{k-1}[(m_{i}+1)(m_{i+1}+1)]\frac{(q)_{m_{k}+1+m}}{(q)_{m_{k}-m}}.\\ =&\frac{(-1)^{m_{0}+1}2^{k-1}}{\{1\}^{2}}\kappa_{r}^{\prime}\sum_{m_{1},\dots,m_{k}=0}^{r-2}\sum_{m=0}^{\min\{m_{k},r-2-m_{k}\}}\Big{(}q^{(m_{0}+1)(m_{1}+1)}-q^{-(m_{0}+1)(m_{1}+1)}\Big{)}\\ &\quad\quad(-1)^{\sum_{i=0}^{k}a_{i}m_{i}}q^{\sum_{i=0}^{k}\frac{a_{i}m_{i}(m_{i}+2)}{2}+\sum_{i=1}^{k-1}(m_{i}+1)(m_{i+1}+1)-2(m_{k}+1)(m+\frac{1}{2})}\frac{(q)_{m_{k}+1+m}}{(q)_{m_{k}-m}},\\ \end{split} (3.1)

where the last equality comes from the following computation. For each i{1,,k1}i\in\{1,\dots,k-1\} let ϵi{0,1},\epsilon_{i}\in\{0,1\}, and let

S(ϵ1,,ϵk1)(m1,,mk1)=(1)m0+1{1}2κrmk=0r2m=0min{mk,r2mk}(q(m0+1)(m1+1)q(m0+1)(m1+1))(1)i=0kaimi+i=1k1ϵiqi=0kaimi(mi+2)2+i=1k1(1)ϵi(mi+1)(mi+1+1)2(mk+1)(m+12)(q)mk+1+m(q)mkm.\begin{split}&S^{(\epsilon_{1},\dots,\epsilon_{k-1})}(m_{1},\dots,m_{k-1})\\ =&\frac{(-1)^{m_{0}+1}}{\{1\}^{2}}\kappa_{r}^{\prime}\sum_{m_{k}=0}^{r-2}\sum_{m=0}^{\min\{m_{k},r-2-m_{k}\}}\Big{(}q^{(m_{0}+1)(m_{1}+1)}-q^{-(m_{0}+1)(m_{1}+1)}\Big{)}\\ &(-1)^{\sum_{i=0}^{k}a_{i}m_{i}+\sum_{i=1}^{k-1}\epsilon_{i}}q^{\sum_{i=0}^{k}\frac{a_{i}m_{i}(m_{i}+2)}{2}+\sum_{i=1}^{k-1}(-1)^{\epsilon_{i}}(m_{i}+1)(m_{i+1}+1)-2(m_{k}+1)(m+\frac{1}{2})}\frac{(q)_{m_{k}+1+m}}{(q)_{m_{k}-m}}.\end{split}

Then

RTr(M)=m1,,mk1=0r2ϵ1,,ϵk1{0,1}S(ϵ1,,ϵk1)(m1,,mk1).\mathrm{RT}_{r}(M)=\sum_{m_{1},\dots,m_{k-1}=0}^{r-2}\sum_{\epsilon_{1},\dots,\epsilon_{k-1}\in\{0,1\}}S^{(\epsilon_{1},\dots,\epsilon_{k-1})}(m_{1},\dots,m_{k-1}).

For each i{1,,,k1},i\in\{1,\dots,,k-1\}, a direct computation shows that

S(0,,0,ϵi+1,,ϵk1)(m1,,mi+1,,mk1)=S(0,,0,1,ϵi+1,,ϵk1)(r2m1,,r2mi,mi+1,,mk1).\begin{split}S^{(0,\dots,0,\epsilon_{i+1},\dots,\epsilon_{k-1})}&(m_{1},\dots,m_{i+1},\dots,m_{k-1})\\ &=S^{(0,\dots,0,1,\epsilon_{i+1},\dots,\epsilon_{k-1})}(r-2-m_{1},\dots,r-2-m_{i},m_{i+1},\dots,m_{k-1}).\end{split}

Then we have

m1,,mk1=0r2S(0,,0,ϵi+1,,ϵk1)(m1,,mk1)=m1,,mk1=0r2S(0,,0,1,ϵi+1,,ϵk1)(m1,,mk1),\sum_{m_{1},\dots,m_{k-1}=0}^{r-2}S^{(0,\dots,0,\epsilon_{i+1},\dots,\epsilon_{k-1})}(m_{1},\dots,m_{k-1})=\sum_{m_{1},\dots,m_{k-1}=0}^{r-2}S^{(0,\dots,0,1,\epsilon_{i+1},\dots,\epsilon_{k-1})}(m_{1},\dots,m_{k-1}),

and hence

RTr(M)=2k1m1,,mk1=0r2S(0,,0)(m1,,mk1),\mathrm{RT}_{r}(M)=2^{k-1}\sum_{m_{1},\dots,m_{k-1}=0}^{r-2}S^{(0,\dots,0)}(m_{1},\dots,m_{k-1}),

which proves (3.1).

Now let m=r22m,m^{\prime}=\frac{r-2}{2}-m, and for each i{0,1,,k}i\in\{0,1,\dots,k\} let mi=r22mi.m_{i}^{\prime}=\frac{r-2}{2}-m_{i}. Then

RTr(M)=κrm1,,mk=r22r22m=max{mk,mk}r22(qm0m1+qm0m1)(1)mkqi=0kaimi22+i=1k1mimi+12mkmmk(q)r1mmk(q)mmk,\begin{split}\mathrm{RT}_{r}(M)={\kappa_{r}}\sum_{m_{1}^{\prime},\dots,m_{k}^{\prime}=-\frac{r-2}{2}}^{\frac{r-2}{2}}&\sum_{m^{\prime}=\max\{-m_{k}^{\prime},m_{k}^{\prime}\}}^{\frac{r-2}{2}}\Big{(}q^{m_{0}^{\prime}m_{1}^{\prime}}+q^{-m_{0}^{\prime}m_{1}^{\prime}}\Big{)}\\ &(-1)^{m_{k}^{\prime}}q^{\sum_{i=0}^{k}\frac{a_{i}m_{i}^{\prime 2}}{2}+\sum_{i=1}^{k-1}{m_{i}^{\prime}m_{i+1}^{\prime}}-2m_{k}^{\prime}m^{\prime}-{m_{k}^{\prime}}}\frac{(q)_{r-1-m^{\prime}-m_{k}^{\prime}}}{(q)_{m^{\prime}-m_{k}^{\prime}}},\\ \end{split}

and by Lemma 2.4,

RTr(M)=κrm1,,mk=r22r22m=max{mk,mk}r22(gr+(m1,,mk,m)+gr(m1,,mk,m)).\mathrm{RT}_{r}(M)=\kappa_{r}\sum_{m_{1}^{\prime},\dots,m_{k}^{\prime}=-\frac{r-2}{2}}^{\frac{r-2}{2}}\sum_{m^{\prime}=\max\{-m_{k}^{\prime},m_{k}^{\prime}\}}^{\frac{r-2}{2}}\Big{(}g^{+}_{r}(m_{1}^{\prime},\dots,m_{k}^{\prime},m^{\prime})+g^{-}_{r}(m_{1}^{\prime},\dots,m_{k}^{\prime},m^{\prime})\Big{)}.

4 Poisson summation formula

We notice that the summation in Proposition 3.1 is finite, and to use the Poisson summation formula, we need an infinite sum over integral points. To this end, we consider the following regions and a bump function over them.

Let xi=2πmirx_{i}=\frac{2\pi m_{i}}{r} for each i{1,,k},i\in\{1,\dots,k\}, and let y=2πmr.y=\frac{2\pi m}{r}. For δ0,\delta\geqslant 0, we let

Dδ={(x,y)2|δ<y+x<π2δ,δ<yx<π2δ},D_{\delta}=\Big{\{}(x,y)\in\mathbb{R}^{2}\ \Big{|}\ \delta<y+x<\frac{\pi}{2}-\delta,\delta<y-x<\frac{\pi}{2}-\delta\Big{\}},
Dδ={(x,y)2|δ<y+x<π2δ,π+δ<yx<3π2δ}D^{\prime}_{\delta}=\Big{\{}(x,y)\in\mathbb{R}^{2}\ \Big{|}\ \delta<y+x<\frac{\pi}{2}-\delta,\pi+\delta<y-x<\frac{3\pi}{2}-\delta\Big{\}}

and

Dδ′′={(x,y)2|π+δ<y+x<3π2δ,δ<yx<π2δ},D^{\prime\prime}_{\delta}=\Big{\{}(x,y)\in\mathbb{R}^{2}\ \Big{|}\ \pi+\delta<y+x<\frac{3\pi}{2}-\delta,\delta<y-x<\frac{\pi}{2}-\delta\Big{\}},

and let 𝒟δ=DδDδDδ′′.\mathcal{D}_{\delta}=D_{\delta}\cup D^{\prime}_{\delta}\cup D^{\prime\prime}_{\delta}. If δ=0,\delta=0, we omit the subscript and write D=D0,D=D_{0}, D=D0,D^{\prime}=D^{\prime}_{0}, D′′=D0′′D^{\prime\prime}=D^{\prime\prime}_{0} and 𝒟=DDD′′.\mathcal{D}=D\cup D^{\prime}\cup D^{\prime\prime}.

Refer to caption
Figure 2: Regions Dδ,D_{\delta}, DδD_{\delta}^{\prime} and Dδ′′D_{\delta}^{\prime\prime}

For a sufficiently small δ>0,\delta>0, we consider a CC^{\infty}-smooth bump function ψ\psi on k+1\mathbb{R}^{k+1} such that

{ψ(x1,,xk,y)=1,(x1,,xk,y)[π+2πr,π2πr]k1×𝒟δ2¯0<ψ(x1,,xk,y)<1,(x1,,xk,y)(π,π)k1×𝒟[π+2πr,π2πr]k1×𝒟δ2¯ψ(x1,,xk,y)=0,(x1,,xk,y)(π,π)k1×𝒟,\left\{\begin{array}[]{rl}\psi(x_{1},\dots,x_{k},y)=1,&(x_{1},\dots,x_{k},y)\in[-\pi+\frac{2\pi}{r},\pi-\frac{2\pi}{r}]^{k-1}\times\overline{\mathcal{D}_{\frac{\delta}{2}}}\\ 0<\psi(x_{1},\dots,x_{k},y)<1,&(x_{1},\dots,x_{k},y)\in(-\pi,\pi)^{k-1}\times\mathcal{D}{\smallsetminus}[-\pi+\frac{2\pi}{r},\pi-\frac{2\pi}{r}]^{k-1}\times\overline{\mathcal{D}_{\frac{\delta}{2}}}\\ \psi(x_{1},\dots,x_{k},y)=0,&(x_{1},\dots,x_{k},y)\notin(-\pi,\pi)^{k-1}\times\mathcal{D},\\ \end{array}\right.

and let

fr±(m1,,mk,m)=ψ(2πm1r,,2πmkr,2πmr)gr±(m1,,mk,m).f^{\pm}_{r}(m_{1},\dots,m_{k},m)=\psi\Big{(}\frac{2\pi m_{1}}{r},\dots,\frac{2\pi m_{k}}{r},\frac{2\pi m}{r}\Big{)}g^{\pm}_{r}(m_{1},\dots,m_{k},m).

Then by Proposition 4.2, we have

RTr(M)=κr(m1,,mk,m)(+12)k+1(fr+(m1,,mk,m)+fr(m1,,mk,m))+error term.\mathrm{RT}_{r}(M)=\kappa_{r}\sum_{(m_{1},\dots,m_{k},m)\in(\mathbb{Z}+\frac{1}{2})^{k+1}}\Big{(}f^{+}_{r}(m_{1},\dots,m_{k},m)+f^{-}_{r}(m_{1},\dots,m_{k},m)\Big{)}+\text{error term}. (4.1)

Since fr±f^{\pm}_{r} is CC^{\infty}-smooth and equals zero out of D,D, it is in the Schwartz space on k+1.\mathbb{R}^{k+1}. Recall that by the Poisson Summation Formula (see e.g. [26, Theorem 3.1]), for any function ff in the Schwartz space on k,\mathbb{R}^{k},

(m1,,mk)kf(m1,,mk)=(n1,,nk)kf^(n1,,nk),\sum_{(m_{1},\dots,m_{k})\in\mathbb{Z}^{k}}f(m_{1},\dots,m_{k})=\sum_{(n_{1},\dots,n_{k})\in\mathbb{Z}^{k}}\hat{f}(n_{1},\dots,n_{k}),

where f^(n1,,nk)\hat{f}(n_{1},\dots,n_{k}) is the (n1,,nk)(n_{1},\dots,n_{k})-th Fourier coefficient of ff defined by

f±^(n1,,nk)=kf±(m1,,mk)ej=1k2πinjmj𝑑m1𝑑mk.\widehat{f^{\pm}}(n_{1},\dots,n_{k})=\int_{\mathbb{R}^{k}}f^{\pm}(m_{1},\dots,m_{k})e^{\sum_{j=1}^{k}2\pi in_{j}m_{j}}dm_{1}\dots dm_{k}.

As a consequence, we have

Proposition 4.1.
RTr(M)=κr(n1,,nk,n)k+1(f+^(n1,,nk)+f^(n1,,nk))+error term,\mathrm{RT}_{r}(M)=\kappa_{r}\sum_{(n_{1},\dots,n_{k},n)\in\mathbb{Z}^{k+1}}\Big{(}\widehat{f^{+}}(n_{1},\dots,n_{k})+\widehat{f^{-}}(n_{1},\dots,n_{k})\Big{)}+\text{error term},

where

fr±^(n1,,nk,n)=(1)i=1kni+n(r2π)k+1(π,π)k1×𝒟ψ(x1,,xk,y)ϵ(xk,y)exki+r4πi(Vr±(x1,,xk,y)4πi=1knixk4πny)dx1dxkdy.\begin{split}\widehat{f^{\pm}_{r}}(n_{1},\dots,n_{k},n)=(-1)^{\sum_{i=1}^{k}n_{i}+n}\Big{(}\frac{r}{2\pi}\Big{)}^{k+1}&\int_{(-\pi,\pi)^{k-1}\times\mathcal{D}}\psi(x_{1},\dots,x_{k},y)\epsilon(x_{k},y)\\ &e^{-x_{k}i+\frac{r}{4\pi i}\Big{(}V^{\pm}_{r}(x_{1},\dots,x_{k},y)-4\pi\sum_{i=1}^{k}n_{i}x_{k}-4\pi ny\Big{)}}dx_{1}\dots dx_{k}dy.\end{split}
Proof.

To apply the Poisson Summation Formula, we need to make the sum in (4.1) over integers instead of half-integers. To do this, we let mi=mi+12m_{i}^{\prime}=m_{i}+\frac{1}{2} for i=1,,ki=1,\dots,k and let m=m+12.m^{\prime}=m+\frac{1}{2}. Then

(m1,,mk,m)(+12)k+1fr±(m1,,mk,m)=(m1,,mk,m)k+1fr±(m112,,mk12,m12).\sum_{(m_{1},\dots,m_{k},m)\in(\mathbb{Z}+\frac{1}{2})^{k+1}}f^{\pm}_{r}(m_{1},\dots,m_{k},m)=\sum_{(m^{\prime}_{1},\dots,m^{\prime}_{k},m^{\prime})\in\mathbb{Z}^{k+1}}f^{\pm}_{r}\Big{(}m^{\prime}_{1}-\frac{1}{2},\dots,m^{\prime}_{k}-\frac{1}{2},m^{\prime}-\frac{1}{2}\Big{)}.

Now by the Poisson Summation Formula, the right hand side equals

(n1,,nk,n)k+1k+1fr±(m112,,mk12,m12)ej=1k2πinjmj+2πinm𝑑m1𝑑mk𝑑m.\sum_{(n_{1},\dots,n_{k},n)\in\mathbb{Z}^{k+1}}\int_{\mathbb{R}^{k+1}}f^{\pm}_{r}\Big{(}m^{\prime}_{1}-\frac{1}{2},\dots,m^{\prime}_{k}-\frac{1}{2},m^{\prime}-\frac{1}{2}\Big{)}e^{\sum_{j=1}^{k}2\pi in_{j}m^{\prime}_{j}+2\pi inm^{\prime}}dm^{\prime}_{1}\dots dm^{\prime}_{k}dm^{\prime}.

Finally, using the change of variable xi=2πmir=2πmirπrx_{i}=\frac{2\pi m_{i}}{r}=\frac{2\pi m^{\prime}_{i}}{r}-\frac{\pi}{r} for i=1,,ki=1,\dots,k and y=2πmr=2πmrπr,y=\frac{2\pi m}{r}=\frac{2\pi m^{\prime}}{r}-\frac{\pi}{r}, we get the result. ∎

We will give a preliminary estimate of the Fourier coefficients in Section 5 simplifying them to a 22-dimensional integral which will be further estimated in Sections 7.3 and 7.2, and estimate the error term in Proposition 4.1 as follows.

Proposition 4.2.

For ϵ>0,\epsilon>0, we can choose a sufficiently small δ>0\delta>0 so that if one of m+mkm+m_{k} and mmkm-m_{k} is not in (δr2π,r4δr2π)(r2+δr2π,3r4δr2π),\big{(}\frac{\delta r}{2\pi},\frac{r}{4}-\frac{\delta r}{2\pi}\big{)}\cup\big{(}\frac{r}{2}+\frac{\delta r}{2\pi},\frac{3r}{4}-\frac{\delta r}{2\pi}\big{)}, then

|gr(m1,,mk,m)|<O(er4π(12Vol(S3K41)+ϵ)).|g_{r}(m_{1},\dots,m_{k},m)|<O\Big{(}e^{\frac{r}{4\pi}\big{(}\frac{1}{2}\mathrm{Vol}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})+\epsilon\big{)}}\Big{)}.

As a consequence, the error term in Proposition 4.1 is of order at most O(er4π(12Vol(S3K41)+ϵ)).O\Big{(}e^{\frac{r}{4\pi}\big{(}\frac{1}{2}\mathrm{Vol}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})+\epsilon\big{)}}\Big{)}.

To prove Proposition 4.2, we need the following estimate, which first appeared in [10, Proposition 8.2] for t=e2πir,t=e^{\frac{2\pi i}{r}}, and for the root t=e4πirt=e^{\frac{4\pi i}{r}} in [6, Proposition 4.1].

Lemma 4.3.

For any integer 0<n<r0<n<r and at t=e4πir,t=e^{\frac{4\pi i}{r}},

log|{n}!|=r2πΛ(2nπr)+O(log(r)).\log\left|\{n\}!\right|=-\frac{r}{2\pi}\Lambda\left(\frac{2n\pi}{r}\right)+O\left(\log(r)\right).
Proof of Proposition 4.2.

We have

|gr±(m1,,mk,m)|=|sin(2πm1r)ϵ(2πmkr,2πmr)||{r1mmk}!{mmk}!|,|g^{\pm}_{r}(m_{1},\dots,m_{k},m)|=\Big{|}\sin\Big{(}\frac{2\pi m_{1}}{r}\Big{)}\epsilon\Big{(}\frac{2\pi m_{k}}{r},\frac{2\pi m}{r}\Big{)}\Big{|}\Big{|}\frac{\{r-1-m-m_{k}\}!}{\{m-m_{k}\}!}\Big{|},

and by Lemma 4.3, we have

log|gr±(m1,,mk,m)|=r2πΛ(2π(r1mmk)r)+r2πΛ(2π(mmk)r)+O(log(r)).\log|g^{\pm}_{r}(m_{1},\dots,m_{k},m)|=-\frac{r}{2\pi}\Lambda\Big{(}\frac{2\pi(r-1-m-m_{k})}{r}\Big{)}+\frac{r}{2\pi}\Lambda\Big{(}\frac{2\pi(m-m_{k})}{r}\Big{)}+O(\log(r)).

Choose δ>0\delta>0 so that

Λ(δ)<ϵ4.\Lambda(\delta)<\frac{\epsilon}{4}.

Now if one of m+mkm+m_{k} and mmkm-m_{k} is not in (δr2π,r4δr2π)(r2+δr2π,3r4δr2π),\big{(}\frac{\delta r}{2\pi},\frac{r}{4}-\frac{\delta r}{2\pi}\big{)}\cup\big{(}\frac{r}{2}+\frac{\delta r}{2\pi},\frac{3r}{4}-\frac{\delta r}{2\pi}\big{)}, then

log|gr±(m1,,mk,m)|<r2π(Λ(π6)+ϵ2)=r4π(12Vol(S3K41)+ϵ).\log|g^{\pm}_{r}(m_{1},\dots,m_{k},m)|<\frac{r}{2\pi}\Big{(}\Lambda\Big{(}\frac{\pi}{6}\Big{)}+\frac{\epsilon}{2}\Big{)}=\frac{r}{4\pi}\Big{(}\frac{1}{2}\mathrm{Vol}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})+\epsilon\Big{)}.

The last equality is true because by properties of the Lobachevsky function Λ(π6)=32Λ(π3),\Lambda\big{(}\frac{\pi}{6}\big{)}=\frac{3}{2}\Lambda\big{(}\frac{\pi}{3}\big{)}, and the volume of S3K41\mathrm{S}^{3}{\smallsetminus}K_{4_{1}} equals 6Λ(π3).6\Lambda(\frac{\pi}{3}).

5 A simplification of the Fourier coefficients

The main results of this Section are Propositions 5.4 and 5.7 below, which simplify the Fourier coefficients f^r(n1,,nk,n).\hat{f}_{r}(n_{1},\dots,n_{k},n).

We consider the continued fraction expansion

pq=ak1ak111a1\frac{p}{q}=a_{k}-\frac{1}{a_{k-1}-\frac{1}{\cdots-\frac{1}{a_{1}}}}

of pq\frac{p}{q} with the requirement that ai2a_{i}\geqslant 2 for i=1,ak1.i=1,\dots a_{k-1}. For each ik1,i\leqslant k-1, we let

bi=ai1ai111a1,b_{i}=a_{i}-\frac{1}{a_{i-1}-\frac{1}{\cdots-\frac{1}{a_{1}}}},

and let

ci=j=1ibi.c_{i}=\prod_{j=1}^{i}b_{i}.

Then c1=b1=a12,c_{1}=b_{1}=a_{1}\geqslant 2, bk=pq,b_{k}=\frac{p}{q}, ck1=q,c_{k-1}=q, and bi>1b_{i}>1 and ci>ci12c_{i}>c_{i-1}\geqslant 2 for any ik1.i\leqslant k-1. We need the following Lemmas.

Lemma 5.1.

[28, Lemma 5.1] Let (p,q)(p^{\prime},q^{\prime}) be the a unique pair such that pp+qq=1pp^{\prime}+qq^{\prime}=1 and q<p0.-q<p^{\prime}\leqslant 0. Then

j=1k11cj1cj=pq.\sum_{j=1}^{k-1}\frac{1}{c_{j-1}c_{j}}=-\frac{p^{\prime}}{q}.
Lemma 5.2.

[28, Lemma 5.2] Let β{0}.\beta\in\mathbb{R}{\smallsetminus}\{0\}.

  1. (1)

    If α(a,b),\alpha\in(a,b), then

    aber4πiβ(xα)2𝑑x=2πiβ1r(1+O(1r)).\int_{a}^{b}e^{\frac{r}{4\pi i}\beta(x-\alpha)^{2}}dx=\frac{2\pi\sqrt{i}}{\sqrt{\beta}}\frac{1}{\sqrt{r}}\Big{(}1+O\Big{(}\frac{1}{\sqrt{r}}\Big{)}\Big{)}.
  2. (2)

    If α(a,b),\alpha\in\mathbb{R}{\smallsetminus}(a,b), then

    |aber4πiβ(xα)2𝑑x|O(1r).\Big{|}\int_{a}^{b}e^{\frac{r}{4\pi i}\beta(x-\alpha)^{2}}dx\Big{|}\leqslant O\Big{(}\frac{1}{r}\Big{)}.

By completing the squares, we have on DD

Vr+(x1,,xk,y)=i=1k1bi(xi+xi+1bi+(1)ix0ci)2+i=1k1x02ci1cia0x02pxk2q(1)k2x0xkq2πxk+4xkyφr(πxkyπr)+φr(yxk+πr),\begin{split}V^{+}_{r}(x_{1},\dots,x_{k},y)=&-\sum_{i=1}^{k-1}b_{i}\Big{(}x_{i}+\frac{x_{i+1}}{b_{i}}+(-1)^{i}\frac{x_{0}}{c_{i}}\Big{)}^{2}+\sum_{i=1}^{k-1}\frac{x_{0}^{2}}{c_{i-1}c_{i}}-a_{0}x_{0}^{2}\\ &-\frac{px_{k}^{2}}{q}-\frac{(-1)^{k}2x_{0}x_{k}}{q}-2\pi x_{k}+4x_{k}y-\varphi_{r}\Big{(}\pi-x_{k}-y-\frac{\pi}{r}\Big{)}+\varphi_{r}\Big{(}y-x_{k}+\frac{\pi}{r}\Big{)},\\ \end{split}

and

Vr(x1,,xk,y)=i=1k1bi(xi+xi+1bi(1)ix0ci)2+i=1k1x02ci1cia0x02pxk2q+(1)k2x0xkq2πxk+4xkyφr(πxkyπr)+φr(yxk+πr),\begin{split}V^{-}_{r}(x_{1},\dots,x_{k},y)=&-\sum_{i=1}^{k-1}b_{i}\Big{(}x_{i}+\frac{x_{i+1}}{b_{i}}-(-1)^{i}\frac{x_{0}}{c_{i}}\Big{)}^{2}+\sum_{i=1}^{k-1}\frac{x_{0}^{2}}{c_{i-1}c_{i}}-a_{0}x_{0}^{2}\\ &-\frac{px_{k}^{2}}{q}+\frac{(-1)^{k}2x_{0}x_{k}}{q}-2\pi x_{k}+4x_{k}y-\varphi_{r}\Big{(}\pi-x_{k}-y-\frac{\pi}{r}\Big{)}+\varphi_{r}\Big{(}y-x_{k}+\frac{\pi}{r}\Big{)},\\ \end{split}

and with the corresponding change of the variables in φr\varphi_{r} on DD^{\prime} and D′′.D^{\prime\prime}.

From now on, we will let x=xk.x=x_{k}. Then solving the system of the critical equations

xi+xi+1bi±(1)ix0ci=0x_{i}+\frac{x_{i+1}}{b_{i}}\pm(-1)^{i}\frac{x_{0}}{c_{i}}=0

for xix_{i}’s in terms of x,x, we have for every ii in {1,,k}\{1,\dots,k\}

xi±(x)=(1)kici1(xq±(1)kj=ik1x0cj1cj),x^{\pm}_{i}(x)=(-1)^{k-i}c_{i-1}\Big{(}\frac{x}{q}\pm(-1)^{k}\sum_{j=i}^{k-1}\frac{x_{0}}{c_{j-1}c_{j}}\Big{)},

and in particular, by Lemma 5.1,

x1±(x)=(1)k1x±px0q.x^{\pm}_{1}(x)=\frac{(-1)^{k-1}x\pm p^{\prime}x_{0}}{q}.

Now we start to simplify the Fourier coefficients. We need the following

Lemma 5.3.

If π+qπr<x<πqπr,-\pi+\frac{q\pi}{r}<x<\pi-\frac{q\pi}{r}, then π+2πr<xi±(x)<π2πr-\pi+\frac{2\pi}{r}<x^{\pm}_{i}(x)<\pi-\frac{2\pi}{r} for each i{1,,k1}.i\in\{1,\dots,k-1\}.

Proof.

We use a backward induction to prove a stronger statement that

π+ci1πr<xi±(x)<πci1πr-\pi+\frac{c_{i-1}\pi}{r}<x^{\pm}_{i}(x)<\pi-\frac{c_{i-1}\pi}{r}

for each i.i. We first note that |x0|π.|x_{0}|\leqslant\pi.

For xk1±(x),x^{\pm}_{k-1}(x), we have

|xk1±(x)|=|xbk1±x0ck1|=|ck2xck1±x0ck1|ck2π+|x0|ck2qπrck1(ck2+1)πck2qπrck1πck2πr,\begin{split}|x^{\pm}_{k-1}(x)|&=\Big{|}\frac{x}{b_{k-1}}\pm\frac{x_{0}}{c_{k-1}}\Big{|}=\Big{|}\frac{c_{k-2}x}{c_{k-1}}\pm\frac{x_{0}}{c_{k-1}}\Big{|}\\ &\leqslant\frac{c_{k-2}\pi+|x_{0}|-\frac{c_{k-2}q\pi}{r}}{c_{k-1}}\leqslant\frac{(c_{k-2}+1)\pi-\frac{c_{k-2}q\pi}{r}}{c_{k-1}}\leqslant\pi-\frac{c_{k-2}\pi}{r},\end{split}

where the last inequality comes from that q=ck1>ck2,q=c_{k-1}>c_{k-2}, hence qck2+1.q\geqslant c_{k-2}+1.

Now assume the result holds for xi+1±(x)x^{\pm}_{i+1}(x) that π+ciπr<xi+1±(x)<πciπr,-\pi+\frac{c_{i}\pi}{r}<x^{\pm}_{i+1}(x)<\pi-\frac{c_{i}\pi}{r}, then

|xi±(x)|=|xi+1±bi±x0ci|=|ci1xi+1±ci±x0ci|ci1π+|x0|ci1ciπrci(ci1+1)πci1ciπrciπci1πr,\begin{split}|x^{\pm}_{i}(x)|&=\Big{|}\frac{x^{\pm}_{i+1}}{b_{i}}\pm\frac{x_{0}}{c_{i}}\Big{|}=\Big{|}\frac{c_{i-1}x^{\pm}_{i+1}}{c_{i}}\pm\frac{x_{0}}{c_{i}}\Big{|}\\ &\leqslant\frac{c_{i-1}\pi+|x_{0}|-\frac{c_{i-1}c_{i}\pi}{r}}{c_{i}}\leqslant\frac{(c_{i-1}+1)\pi-\frac{c_{i-1}c_{i}\pi}{r}}{c_{i}}\leqslant\pi-\frac{c_{i-1}\pi}{r},\end{split}

where the last inequality comes from that ci>ci1,c_{i}>c_{i-1}, hence cici1+1.c_{i}\geqslant c_{i-1}+1.

Proposition 5.4.
f^r±(0,0,,0)=ik12rk+324π2q(𝒟δ2ϵ(x,y)exi+r4πiVr±(x,y)𝑑x𝑑y)(1+O(1r)),\hat{f}^{\pm}_{r}(0,0,\dots,0)=\frac{i^{-\frac{k-1}{2}}r^{\frac{k+3}{2}}}{4\pi^{2}\sqrt{q}}\Big{(}\int_{\mathcal{D}_{\frac{\delta}{2}}}\epsilon(x,y)e^{-xi+\frac{r}{4\pi i}V^{\pm}_{r}(x,y)}dxdy\Big{)}\Big{(}1+O\Big{(}\frac{1}{\sqrt{r}}\Big{)}\Big{)},

where

Vr±(x,y)=px2±(1)k2x0xq2πx+4xyφr(πyxkπr)+φr(yxk+πr)(pq+a0)x02,V_{r}^{\pm}(x,y)=\frac{-px^{2}\pm(-1)^{k}2x_{0}x}{q}-2\pi x+4xy-\varphi_{r}\Big{(}\pi-y-x_{k}-\frac{\pi}{r}\Big{)}+\varphi_{r}\Big{(}y-x_{k}+\frac{\pi}{r}\Big{)}-\Big{(}\frac{p^{\prime}}{q}+a_{0}\Big{)}x_{0}^{2},

on D,D, and with the corresponding change of the variables in φr\varphi_{r} on DD^{\prime} and D′′.D^{\prime\prime}.

Proof.

For (x,y)𝒟δ2,(x,y)\in\mathcal{D}_{\frac{\delta}{2}}, since π+qπr<x<πqπr,-\pi+\frac{q\pi}{r}<x<\pi-\frac{q\pi}{r}, iteratively using Lemma 5.2 (1) and Lemma 5.3 to the variables x1,,xk1,x_{1},\dots,x_{k-1}, we get the estimate. On the region ((π,π)k1[π+2πr,π2πr]k1)×𝒟δ2\big{(}(-\pi,\pi)^{k-1}{\smallsetminus}[-\pi+\frac{2\pi}{r},\pi-\frac{2\pi}{r}]^{k-1}\big{)}\times\mathcal{D}_{\frac{\delta}{2}} where the bump function makes a difference, by Lemma 5.3, for at least one variable xix_{i} Lemma 5.2 (2) applies. Hence the contribution there is of order at most O(1r)O\big{(}\frac{1}{\sqrt{r}}) times the whole integral. ∎

In Section 7, we will show that f±^(0,0,,0)\widehat{f^{\pm}}(0,0,\dots,0) are the only leading Fourier coefficients, ie., have the largest growth rate.

The other Fourier coefficients can be simplified similarly. By a completion of the squares, we have

Vr±(x1,,xk1,x,y)4πi=1k1nixi4πk1x4πk2y=i=1k1bi(xi+xi+1bi+j=1i(1)ij2njcj1πci±(1)ix0ci)2+Cpx2q(1)k2x0xq2πx+4xyφr(πxyπr)+φr(yx+πr)4πk0xq4πk1x4πk2y,\begin{split}&V^{\pm}_{r}(x_{1},\dots,x_{k-1},x,y)-4\pi\sum_{i=1}^{k-1}n_{i}x_{i}-4\pi k_{1}x-4\pi k_{2}y\\ =&-\sum_{i=1}^{k-1}b_{i}\Big{(}x_{i}+\frac{x_{i+1}}{b_{i}}+\sum_{j=1}^{i}(-1)^{i-j}\frac{2n_{j}c_{j-1}\pi}{c_{i}}\pm(-1)^{i}\frac{x_{0}}{c_{i}}\Big{)}^{2}+C\\ &-\frac{px^{2}}{q}\mp\frac{(-1)^{k}2x_{0}x}{q}-2\pi x+4xy-\varphi_{r}\Big{(}\pi-x-y-\frac{\pi}{r}\Big{)}+\varphi_{r}\Big{(}y-x+\frac{\pi}{r}\Big{)}\\ &-\frac{4\pi k_{0}x}{q}-4\pi k_{1}x-4\pi k_{2}y,\\ \end{split}

on D,D, where CC is a real constant depending on (n1,,nk1),(n_{1},\dots,n_{k-1}), and

k0=j=1k1(1)kjnjcj1.k_{0}=\sum_{j=1}^{k-1}(-1)^{k-j}n_{j}c_{j-1}.

On DD^{\prime} and D′′D^{\prime\prime} there is a corresponding change of the variables in φr.\varphi_{r}.

Solving the system of the critical equations

xi+xi+1bi+j=1i(1)ij2njcj1πci±(1)ix0ci=0,x_{i}+\frac{x_{i+1}}{b_{i}}+\sum_{j=1}^{i}(-1)^{i-j}\frac{2n_{j}c_{j-1}\pi}{c_{i}}\pm(-1)^{i}\frac{x_{0}}{c_{i}}=0,

we can write each xix_{i} as a function xi±(x)x^{\pm}_{i}(x) of x.x.

Iteratively using Lemma 5.2, we have

Proposition 5.5.

Let

Vr±,(k0,k1,k2)(x,y)=Vr±(x,y)4k0πxq4k1πx4k2πy+C,V_{r}^{\pm,(k_{0},k_{1},k_{2})}(x,y)=V_{r}^{\pm}(x,y)-\frac{4k_{0}\pi x}{q}-4k_{1}\pi x-4k_{2}\pi y+C,

where CC is a real constant depending on (n1,,nk1).(n_{1},\dots,n_{k-1}). Then

|fr±^(n1,,nk1,k1,k2)|O(rk+32)|𝒟δ2er4πiVr±,(k0,k1,k2)(x,y)𝑑x𝑑y|.\begin{split}|\widehat{f^{\pm}_{r}}(n_{1},\dots,n_{k-1},k_{1},k_{2})|\leqslant O\Big{(}r^{\frac{k+3}{2}}\Big{)}\Big{|}\int_{\mathcal{D}_{\frac{\delta}{2}}}e^{\frac{r}{4\pi i}V_{r}^{\pm,(k_{0},k_{1},k_{2})}(x,y)}dxdy\Big{|}.\end{split}

Moreover, if for each x(π,π),x\in(-\pi,\pi), there is some i{1,,k1}i\in\{1,\dots,k-1\} such that xi±(x)(π,π),x^{\pm}_{i}(x)\notin(-\pi,\pi), then

|fr±^(n1,,,nk1,k1,k2)|O(rk+22)|𝒟δ2er4πiVr±,(k0,k1,k2)(x,y)dxdy|.\begin{split}|\widehat{f^{\pm}_{r}}(n_{1},,\dots,n_{k-1},k_{1},k_{2})|\leqslant O\Big{(}r^{\frac{k+2}{2}}\Big{)}\Big{|}\int_{\mathcal{D}_{\frac{\delta}{2}}}e^{\frac{r}{4\pi i}V_{r}^{\pm,(k_{0},k_{1},k_{2})}(x,y)}dxdy\Big{|}.\end{split}

The following lemma will be need later in estimating the growth rate of the invariants.

Lemma 5.6.
  1. (1)

    If (n1,,nk1)(0,,0)(n_{1},\dots,n_{k-1})\neq(0,\dots,0) and k0=0,k_{0}=0, then for each x(π,π)x\in(-\pi,\pi) there is some i{1,,k1}i\in\{1,\dots,k-1\} so that xi+(x)(π,π),x^{+}_{i}(x)\notin(-\pi,\pi), and some j{1,,k1}j\in\{1,\dots,k-1\} so that xj(x)(π,π).x^{-}_{j}(x)\notin(-\pi,\pi).

  2. (2)

    If (n1,,nk1)(0,,0)(n_{1},\dots,n_{k-1})\neq(0,\dots,0) and |k0|q,|k_{0}|\geqslant q, then xk1±(x)(π,π)x^{\pm}_{k-1}(x)\notin(-\pi,\pi) for all x(π,π).x\in(-\pi,\pi).

Proof.

We prove (1) and (2) for xi+(x),x^{+}_{i}(x), and that for xj(x)x^{-}_{j}(x) is similar.

For (1), let x(π,π)x\in(-\pi,\pi) and let ni0n_{i_{0}} be the last non-zero number in nin_{i}’s, ie. ni00n_{i_{0}}\neq 0 and nj=0n_{j}=0 for all j>i0.j>i_{0}. Then i02i_{0}\geqslant 2 since otherwise ni0=n1=(1)k1k0=0,n_{i_{0}}=n_{1}=(-1)^{k-1}k_{0}=0, which is a contradiction.

If xi0+(x)(π,π),x^{+}_{i_{0}}(x)\notin(-\pi,\pi), then we are done.

If xi0+(x)(π,π),x^{+}_{i_{0}}(x)\in(-\pi,\pi), then we have

|xi0+(x)bi01±x0ci01|<πbi01+πci01=ci02+1ci01ππ,\Big{|}\frac{x^{+}_{i_{0}}(x)}{b_{i_{0}-1}}\pm\frac{x_{0}}{c_{i_{0}-1}}\Big{|}<\frac{\pi}{b_{i_{0}-1}}+\frac{\pi}{c_{i_{0}-1}}=\frac{c_{i_{0}-2}+1}{c_{i_{0}-1}}\pi\leqslant\pi,

where the equality and the last inequality come from that ci=bici1c_{i}=b_{i}c_{i-1} and ci1+1ci.c_{i-1}+1\leqslant c_{i}.

Since

|k0|=|j=1i0(1)jnjcj1|=|ni0ci01||j=1i01(1)jnjcj1|=0,|k_{0}|=\Big{|}\sum_{j=1}^{i_{0}}(-1)^{j}n_{j}c_{j-1}\Big{|}=|n_{i_{0}}c_{i_{0}-1}|-\Big{|}\sum_{j=1}^{i_{0}-1}(-1)^{j}n_{j}c_{j-1}\Big{|}=0,

we have

|j=1i01(1)jnjcj1ci01|=|ni0|.\Big{|}\sum_{j=1}^{i_{0}-1}(-1)^{j}\frac{n_{j}c_{j-1}}{c_{i_{0}-1}}\Big{|}=|n_{i_{0}}|.

Then

|xi01+|=|xi0+(x)bi01+j=1i01(1)i01j2njcj1πci01(1)i01x0ci01|||j=1i01(1)j2njcj1πci01||xi0+(x)bi01(1)i01x0ci01||2|ni0|πππ.\begin{split}|x^{+}_{i_{0}-1}|&=\Big{|}\frac{x^{+}_{i_{0}}(x)}{b_{i_{0}-1}}+\sum_{j=1}^{i_{0}-1}(-1)^{i_{0}-1-j}\frac{2n_{j}c_{j-1}\pi}{c_{i_{0}-1}}-(-1)^{i_{0}-1}\frac{x_{0}}{c_{i_{0}-1}}\Big{|}\\ &\geqslant\bigg{|}\Big{|}\sum_{j=1}^{i_{0}-1}(-1)^{j}\frac{2n_{j}c_{j-1}\pi}{c_{i_{0}-1}}\Big{|}-\Big{|}\frac{x^{+}_{i_{0}}(x)}{b_{i_{0}-1}}-(-1)^{i_{0}-1}\frac{x_{0}}{c_{i_{0}-1}}\Big{|}\bigg{|}\\ &\geqslant 2|n_{i_{0}}|\pi-\pi\geqslant\pi.\end{split}

The proof for (2) is similar. Since π<x<π,-\pi<x<\pi, we have

|xbk1±x0q|<πbk1+πq=ck2+1qππ.\Big{|}\frac{x}{b_{k-1}}\pm\frac{x_{0}}{q}\Big{|}<\frac{\pi}{b_{k-1}}+\frac{\pi}{q}=\frac{c_{k-2}+1}{q}\pi\leqslant\pi.

If |k0|q,|k_{0}|\geqslant q, then

|xk1±|=|xbk1+2k0πq±(1)k1x0q|||2k0πq||xbk1±(1)k1x0q||2ππ=π.\begin{split}|x^{\pm}_{k-1}|&=\Big{|}\frac{x}{b_{k-1}}+\frac{2k_{0}\pi}{q}\pm(-1)^{k-1}\frac{x_{0}}{q}\Big{|}\\ &\geqslant\bigg{|}\Big{|}\frac{2k_{0}\pi}{q}\Big{|}-\Big{|}\frac{x}{b_{k-1}}\pm(-1)^{k-1}\frac{x_{0}}{q}\Big{|}\bigg{|}\geqslant 2\pi-\pi=\pi.\end{split}

Let

Fr±^(k0,k1,k2)=𝒟δ2er4πiVr±,(k0,k1,k2)(x,y)𝑑x𝑑y.\widehat{F^{\pm}_{r}}(k_{0},k_{1},k_{2})=\int_{\mathcal{D}_{\frac{\delta}{2}}}e^{\frac{r}{4\pi i}V_{r}^{\pm,(k_{0},k_{1},k_{2})}(x,y)}dxdy.

Then by Propositions 5.5 and Lemma 5.6, we have the following

Proposition 5.7.
  1. (1)

    For (n1,,nk,n)(0,,0),(n_{1},\dots,n_{k},n)\neq(0,\dots,0),

    |fr±^(n1,,nk,n)|O(rk+32)|Fr±^(k0,k1,k2)|.\begin{split}\Big{|}\widehat{f^{\pm}_{r}}(n_{1},\dots,n_{k},n)\Big{|}\leqslant O\Big{(}r^{\frac{k+3}{2}}\Big{)}\Big{|}\widehat{F^{\pm}_{r}}(k_{0},k_{1},k_{2})\Big{|}.\end{split}
  2. (2)

    If (n1,,nk,n)(0,,0)(n_{1},\dots,n_{k},n)\neq(0,\dots,0) with k0=0k_{0}=0 or with |k0|q,|k_{0}|\geqslant q, then

    |fr±^(n1,,nk,n)|O(rk+22)|Fr±^(k0,k1,k2)|.\begin{split}\Big{|}\widehat{f^{\pm}_{r}}(n_{1},\dots,n_{k},n)\Big{|}\leqslant O\Big{(}r^{\frac{k+2}{2}}\Big{)}\Big{|}\widehat{F^{\pm}_{r}}(k_{0},k_{1},k_{2})\Big{|}.\end{split}

The integrals F^r(k0,k1,k2)\hat{F}_{r}(k_{0},k_{1},k_{2}) will be further estimated in Section 7.

We notice that Vr±(x,y)V_{r}^{\pm}(x,y) and Vr±,(k0,k1,k2)(x,y)V_{r}^{\pm,(k_{0},k_{1},k_{2})}(x,y) define holomorphic functions on the following regions D,δ,D_{\mathbb{C},\delta}, D,δD^{\prime}_{\mathbb{C},\delta} and D,δ′′D^{\prime\prime}_{\mathbb{C},\delta} of 2,\mathbb{C}^{2}, where for δ0,\delta\geqslant 0,

D,δ={(x,y)2|δ<Re(y)+Re(x)<π2δ,δ<Re(y)Re(x)<π2δ},D_{\mathbb{C},\delta}=\Big{\{}(x,y)\in\mathbb{C}^{2}\ \Big{|}\ \delta<\mathrm{Re}(y)+\mathrm{Re}(x)<\frac{\pi}{2}-\delta,\delta<\mathrm{Re}(y)-\mathrm{Re}(x)<\frac{\pi}{2}-\delta\Big{\}},
D,δ={(x,y)2|δ<Re(y)+Re(x)<π2δ,π+δ<Re(y)Re(x)<3π2δ}D^{\prime}_{\mathbb{C},\delta}=\Big{\{}(x,y)\in\mathbb{C}^{2}\ \Big{|}\ \delta<\mathrm{Re}(y)+\mathrm{Re}(x)<\frac{\pi}{2}-\delta,\pi+\delta<\mathrm{Re}(y)-\mathrm{Re}(x)<\frac{3\pi}{2}-\delta\Big{\}}

and

D,δ′′={(x,y)2|π+δ<Re(y)+Re(x)<3π2δ,δ<Re(y)Re(x)<π2δ}.D^{\prime\prime}_{\mathbb{C},\delta}=\Big{\{}(x,y)\in\mathbb{C}^{2}\ \Big{|}\ \pi+\delta<\mathrm{Re}(y)+\mathrm{Re}(x)<\frac{3\pi}{2}-\delta,\delta<\mathrm{Re}(y)-\mathrm{Re}(x)<\frac{\pi}{2}-\delta\Big{\}}.

When δ=0,\delta=0, we denote the corresponding regions by D,D_{\mathbb{C}}, DD^{\prime}_{\mathbb{C}} and D′′.D^{\prime\prime}_{\mathbb{C}}.

We consider the following holomorphic functions

V±(x,y)=px2±2x0xq2πx+4xyLi2(e2i(y+x))+Li2(e2i(yx))(pq+a0)x02V^{\pm}(x,y)=\frac{-px^{2}\pm 2x_{0}x}{q}-2\pi x+4xy-\mathrm{Li}_{2}(e^{-2i(y+x)})+\mathrm{Li}_{2}(e^{2i(y-x)})-\Big{(}\frac{p^{\prime}}{q}+a_{0}\Big{)}x_{0}^{2}

on D,D_{\mathbb{C}}, DD^{\prime}_{\mathbb{C}} and D′′,D^{\prime\prime}_{\mathbb{C}}, which will play a crucial role in Section 7 in the estimate of the Fourier coefficients.

6 Geometry of the critical points

The main result of this Section is Proposition 6.3 which shows that the critical value of the functions V±V^{\pm} defined in the previous section has real part the volume of MKθM_{K_{\theta}} and imaginary part the Chern-Simons invariant of MKθM_{K_{\theta}} as defined in Section 2.2. The key observation is Lemma 6.1 that the system of critical point equations of V±V^{\pm} is equivalent to the system of hyperbolic gluing equations (consisting of an edge equation and an equation of the pq\frac{p}{q} Dehn-filling with prescribed cone angle) for a particular ideal triangulation of the figure-88 knot complement.

According to Thurston’s notes [27], the complement of the figure-88 knot has an ideal triangulation as drawn in Figure 3. We let AA and BB be the shape parameters of the two ideal tetrahedra and let A=11A,A^{\prime}=\frac{1}{1-A}, A′′=11A,A^{\prime\prime}=1-\frac{1}{A}, B=11BB^{\prime}=\frac{1}{1-B} and B′′=11B.B^{\prime\prime}=1-\frac{1}{B}.

Refer to caption
Figure 3: An ideal triangulation of the figure-88 knot complement

In Figure 4 is a fundamental domain of the boundary of a tubular neighborhood of K41.K_{4_{1}}.

Refer to caption
Figure 4: Combinatorics around the boundary

Recall that for z(,0],z\in\mathbb{C}{\smallsetminus}(-\infty,0], the logarithmic function is defined by

logz=ln|z|+iargz\log z=\ln|z|+i\arg z

with π<argz<π.-\pi<\arg z<\pi.

Then the holonomy around the edge ee is

H(e)=logA+2logA′′+logB+2logB′′,\mathrm{H}(e)=\log A+2\log A^{\prime\prime}+\log B+2\log B^{\prime\prime},

and the holonomies of the curves xx and yy are respectively

H(x)=2logB+2logB′′2logA2logA′′\mathrm{H}(x)=2\log B+2\log B^{\prime\prime}-2\log A-2\log A^{\prime\prime}

and

H(y)=logBlogA′′.\mathrm{H}(y)=\log B^{\prime}-\log A^{\prime\prime}.

By [27], we can choose the meridian m=ym=y and the longitude l=x+2y.l=x+2y. Hence

H(m)=logBlogA′′,\mathrm{H}(m)=\log B^{\prime}-\log A^{\prime\prime},

and

H(l)=2πi2logA4logA′′.\begin{split}\mathrm{H}(l)=2\pi i-2\log A-4\log A^{\prime\prime}.\end{split}

Then for the incomplete hyperbolic metric that gives the hyperbolic cone metric with cone angle θ,\theta, the system of hyperbolic gluing equations

{H(e)=2πipH(m)+qH(l)=θi\left\{\begin{array}[]{l}\mathrm{H}(e)=2\pi i\\ \\ p\mathrm{H}(m)+q\mathrm{H}(l)=\theta i\end{array}\right.

can be written as

{logA+2logA′′+logB+2logB′′=2πip(logBlogA′′)+q(2πi2logA4logA′′)=θi.\left\{\begin{array}[]{l}\log A+2\log A^{\prime\prime}+\log B+2\log B^{\prime\prime}=2\pi i\\ \\ p(\log B^{\prime}-\log A^{\prime\prime})+q(2\pi i-2\log A-4\log A^{\prime\prime})=\theta i.\end{array}\right. (6.1)

From now on, we let θ=|2x0|\theta=|2x_{0}| and, by switching the ++ and - if necessary, let

V±(x,y)=px2±θxq2πx+4xyLi2(e2i(y+x))+Li2(e2i(yx))(pq+a0)θ24.V^{\pm}(x,y)=\frac{-px^{2}\pm\theta x}{q}-2\pi x+4xy-\mathrm{Li}_{2}(e^{-2i(y+x)})+\mathrm{Li}_{2}(e^{2i(y-x)})-\Big{(}\frac{p^{\prime}}{q}+a_{0}\Big{)}\frac{\theta^{2}}{4}.

Taking partial derivatives of V±,V^{\pm}, we have

V±x=2px±θq+4y2π2ilog(1e2i(y+x))+2ilog(1e2i(yx))\frac{\partial V^{\pm}}{\partial x}=\frac{-2px\pm\theta}{q}+4y-2\pi-2i\log(1-e^{-2i(y+x)})+2i\log(1-e^{2i(y-x)})

and

V±y=4x2ilog(1e2i(y+x))2ilog(1e2i(yx)).\frac{\partial V^{\pm}}{\partial y}=4x-2i\log(1-e^{-2i(y+x)})-2i\log(1-e^{2i(y-x)}).

Hence the system of critical point equations of V±(x,y)V^{\pm}(x,y) is

{4x2ilog(1e2i(y+x))2ilog(1e2i(yx))=02px±uq+4y2π2ilog(1e2i(y+x))+2ilog(1e2i(yx))=0.\left\{\begin{array}[]{l}4x-2i\log(1-e^{-2i(y+x)})-2i\log(1-e^{2i(y-x)})=0\\ \\ \frac{-2px\pm u}{q}+4y-2\pi-2i\log(1-e^{-2i(y+x)})+2i\log(1-e^{2i(y-x)})=0.\end{array}\right. (6.2)
Lemma 6.1.
  1. (1)

    In D,D_{\mathbb{C}}, if we let A=e2i(y+x)A=e^{2i(y+x)} and B=e2i(yx),B=e^{2i(y-x)}, then the system of critical point equations (6.2) of V+V^{+} is equivalent to the system of hyperbolic glueing equations (6.1).

  2. (2)

    In D,D_{\mathbb{C}}, if we let A=e2i(yx)A=e^{2i(y-x)} and B=e2i(y+x),B=e^{2i(y+x)}, then the system of critical point equations (6.2) of VV^{-} is equivalent to the system of hyperbolic glueing equations (6.1).

Proof.

For (1), in DD_{\mathbb{C}} we have

{logA=2i(y+x),logA=πi2i(y+x)log(1e2i(y+x)),logA′′=log(1e2i(y+x)),logB=2i(yx),logB=log(1e2i(yx)),logB′′=πi2i(yx)+log(1e2i(yx)).\left\{\begin{array}[]{l}\log A=2i(y+x),\\ \log A^{\prime}=\pi i-2i(y+x)-\log(1-e^{-2i(y+x)}),\\ \log A^{\prime\prime}=\log(1-e^{-2i(y+x)}),\\ \log B=2i(y-x),\\ \log B^{\prime}=-\log(1-e^{2i(y-x)}),\\ \log B^{\prime\prime}=\pi i-2i(y-x)+\log(1-e^{2i(y-x)}).\end{array}\right.

For one direction, we assume that (x,y)D(x,y)\in D_{\mathbb{C}} is a solution of the system of critical equations (6.2) with the “++” chosen. Then from the first equation of (6.2)

H(e)=logA+2logA′′+logB+2logB′′=2πi,\begin{split}\mathrm{H}(e)=\log A+2\log A^{\prime\prime}+\log B+2\log B^{\prime\prime}=2\pi i,\end{split}

hence the edge equation is satisfied. Next, we compute H(m)\mathrm{H}(m) and H(l).\mathrm{H}(l). From the first equation of (6.2), we have

H(m)=logBlogA′′=2xi;\begin{split}\mathrm{H}(m)=\log B^{\prime}-\log A^{\prime\prime}=2xi;\end{split} (6.3)

and from (6.3) we have

H(l)=2πi2logA4logA′′=2πi2logA+(4xi2logB)2logA′′=4yi+2πi2log(1e2i(y+x))+2log(1e2i(yx)).\begin{split}\mathrm{H}(l)&=2\pi i-2\log A-4\log A^{\prime\prime}\\ &=2\pi i-2\log A+(4xi-2\log B^{\prime})-2\log A^{\prime\prime}\\ &=-4yi+2\pi i-2\log(1-e^{-2i(y+x)})+2\log(1-e^{2i(y-x)}).\end{split} (6.4)

Equations (6.3), (6.4) and the second equation of (6.2) then imply that

pH(m)i+θq+H(l)i=0,\frac{p\mathrm{H}(m)i+\theta}{q}+\mathrm{H}(l)i=0,

which is equivalent to the pq\frac{p}{q} Dehn-filling equation with cone angle θ\theta

pH(m)+qH(l)=θi.p\mathrm{H}(m)+q\mathrm{H}(l)=\theta i.

For the other direction, assume that (A,B)(A,B) is a solution of (6.1). Then the edge equation implies the first equation of (6.2); and (6.3), (6.4) and the Dehn-filling equation with cone angle θ\theta imply that the second equation of (6.2).

For (2), we have

{logA=2i(yx),logA=log(1e2i(yx)),logA′′=πi2i(yx)+log(1e2i(yx)),logB=2i(y+x),logB=πi2i(y+x)log(1e2i(y+x)),logB′′=log(1e2i(y+x)),\left\{\begin{array}[]{l}\log A=2i(y-x),\\ \log A^{\prime}=-\log(1-e^{2i(y-x)}),\\ \log A^{\prime\prime}=\pi i-2i(y-x)+\log(1-e^{2i(y-x)}),\\ \log B=2i(y+x),\\ \log B^{\prime}=\pi i-2i(y+x)-\log(1-e^{-2i(y+x)}),\\ \log B^{\prime\prime}=\log(1-e^{-2i(y+x)}),\\ \end{array}\right.

in D,D_{\mathbb{C}}, and the rest of the proof is very similar to that of (1). Namely, by a computation, we have

H(e)=2πi\mathrm{H}(e)=2\pi i

which gives the edge equation. We also have

H(m)=2xi,\mathrm{H}(m)=-2xi, (6.5)

and

H(l)=4yi2πi+2log(1e2i(y+x))2log(1e2i(yx)),\mathrm{H}(l)=4yi-2\pi i+2\log(1-e^{-2i(y+x)})-2\log(1-e^{2i(y-x)}), (6.6)

which, together with the second equation of (6.2) imply that

pH(m)iθqH(l)i=0,\frac{-p\mathrm{H}(m)i-\theta}{q}-\mathrm{H}(l)i=0,

which is equivalent to the pq\frac{p}{q} Dehn-filling equation with cone angle θ\theta

pH(m)+qH(l)=θi.p\mathrm{H}(m)+q\mathrm{H}(l)=\theta i.

For the other direction, assume that (A,B)(A,B) is a solution of (6.1). Then the edge equation implies the first equation of (6.2); and (6.5), (6.6) and the Dehn-filling equation with cone angle θ\theta imply that the second equation of (6.2). ∎

By Thurston’s notes [27] and Hodgson [12] (see also [5, Section 5.7]), for each relatively primed (p,q)(±1,0)(p,q)\neq(\pm 1,0) and every u(0,2π),u\in(0,2\pi), there is a unique solution A0A_{0} and B0B_{0} of (6.1) with ImA0>0\mathrm{Im}A_{0}>0 and ImB0>0.\mathrm{Im}B_{0}>0. Then by Lemma 6.1, we have

Corollary 6.2.

For (p,q)(±1,0),(p,q)\neq(\pm 1,0), the point

(x0,y0)=(logA0logB04i,logA0+logB04i)(x_{0},y_{0})=\Big{(}\frac{\log A_{0}-\log B_{0}}{4i},\frac{\log A_{0}+\log B_{0}}{4i}\Big{)}

is the unique critical point of V+V^{+} in D,D_{\mathbb{C}}, and (x0,y0)(-x_{0},y_{0}) is the unique critical point of VV^{-} in D.D_{\mathbb{C}}.

Proposition 6.3.

We have

  1. (1)
    V+(x0,y0)=V(x0,y0)=i(Vol(MKθ)+iCS(MKθ))modπ2.V^{+}(x_{0},y_{0})=V^{-}(-x_{0},y_{0})=i\Big{(}\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})\Big{)}\quad\mathrm{mod}\ \pi^{2}\mathbb{Z}.
  2. (2)
    det(HessV+)(x0,y0)=det(HessV)(x0,y0)0.\det(\mathrm{Hess}V^{+})(x_{0},y_{0})=\det(\mathrm{Hess}V^{-})(-x_{0},y_{0})\neq 0.
Proof.

For (1), we have for (x,y)D(x,y)\in D_{\mathbb{C}} that

Li2(e2i(y±x))=Li2(e2i(y±x))+π26+12(log(e2i(y±x)))2=Li2(e2i(y±x))+π262y22x2π24xy+2πy±2πx,\begin{split}-\mathrm{Li}_{2}(e^{-2i(y\pm x)})&=\mathrm{Li}_{2}(e^{2i(y\pm x)})+\frac{\pi^{2}}{6}+\frac{1}{2}\big{(}\log(-e^{2i(y\pm x)})\big{)}^{2}\\ &=\mathrm{Li}_{2}(e^{2i(y\pm x)})+\frac{\pi^{2}}{6}-2y^{2}-2x^{2}-\pi^{2}\mp 4xy+2\pi y\pm 2\pi x,\\ \end{split}

where the first equality comes from (2.6), and the second equality comes from that 0<Re(y)±Re(x)<π2,0<Re(y)\pm Re(x)<\frac{\pi}{2}, and hence

log(e2i(y±x))=2i(y±x)πi.\log(-e^{2i(y\pm x)})=2i(y\pm x)-\pi i.

From this, we have

V+(x,y)=V(x,y)=(pq2)x2+θxq2y2+2πy5π26+Li2(e2i(y+x))+Li2(e2i(yx)).\begin{split}V^{+}(x,y)&=V^{-}(-x,y)\\ &=\Big{(}-\frac{p}{q}-2\Big{)}x^{2}+\frac{\theta x}{q}-2y^{2}+2\pi y-\frac{5\pi^{2}}{6}+\mathrm{Li}_{2}(e^{2i(y+x)})+\mathrm{Li}_{2}(e^{2i(y-x)}).\end{split} (6.7)

In particular,

V+(x0,y0)=V(x0,y0).V^{+}(x_{0},y_{0})=V^{-}(-x_{0},y_{0}).

Now since V±(±x0,y0)V^{\pm}(\pm x_{0},y_{0}) are the same, it suffices to show that V+(x0,y0)=i(Vol(MKθ)+iCS(MKθ))V^{+}(x_{0},y_{0})=i(\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})) mod\mathrm{mod} π2.\pi^{2}\mathbb{Z}. To this end, we follow the discussion in Section 2.2. Suppose MKθM_{K_{\theta}} is obtained from the complement of a hyperbolic knot KK in MM by attaching a solid torus TT with cone angle θ\theta along the core to the boundary TT of M.M. Let mm and ll be two generators of π1(T),\pi_{1}(T), let pm+qlpm+ql be the curve that bounds a disk in the attached solid torus and let γ=qm+pl\gamma^{\prime}=-q^{\prime}m+p^{\prime}l where (p,q)(p^{\prime},q^{\prime}) is the unique pair such that pp+qq=1pp^{\prime}+qq^{\prime}=1 and q<p0.-q<p^{\prime}\leqslant 0. Then the chosen framing γ=γ+a0(pm+ql).\gamma=\gamma^{\prime}+a_{0}(pm+ql). If H(m),\mathrm{H}(m), H(l)\mathrm{H}(l) and H(γ)\mathrm{H}(\gamma) are respectively the holonomy of m,m, ll and γ,\gamma, then by Definition 2.1,

Vol(MKθ)+iCS(MKθ)=Φ(H(m))iH(m)H(l)4i+θH(γ)4modiπ2,\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})=\frac{\Phi(\mathrm{H}(m))}{i}-\frac{\mathrm{H}(m)\mathrm{H}(l)}{4i}+\frac{\theta\mathrm{H}(\gamma)}{4}\quad\mathrm{mod}\ i\pi^{2}\mathbb{Z},

where Φ\Phi is the function (see Neumann-Zagier [20]) defined on the deformation space of hyperbolic structures on MKM{\smallsetminus}K parametrized by H(m),\mathrm{H}(m), characterized by

{Φ(H(m))H(m)=H(l)2,Φ(0)=i(Vol(MK)+iCS(MK)).\left\{\begin{array}[]{l}\frac{\partial\Phi(\mathrm{H}(m))}{\partial\mathrm{H}(m)}=\frac{\mathrm{H}(l)}{2},\\ \\ \Phi(0)=i\Big{(}\mathrm{Vol}(\mathrm{M}{\smallsetminus}K)+i\mathrm{CS}(\mathrm{M}{\smallsetminus}K)\Big{)}.\end{array}\right. (6.8)

We will show that

Φ(H(m))=4x0y02πx0Li2(e2(y0+x0))+Li2(e2i(y0x0)),\Phi(\mathrm{H}(m))=4x_{0}y_{0}-2\pi x_{0}-\mathrm{Li}_{2}(e^{-2(y_{0}+x_{0})})+\mathrm{Li}_{2}(e^{2i(y_{0}-x_{0})}), (6.9)
H(m)H(l)4=px02q+θx02q,-\frac{\mathrm{H}(m)\mathrm{H}(l)}{4}=-\frac{px_{0}^{2}}{q}+\frac{\theta x_{0}}{2q}, (6.10)

and

θi4H(γ)=θx02q(pq+a0)θ24,\frac{\theta i}{4}\mathrm{H}(\gamma)=\frac{\theta x_{0}}{2q}-\Big{(}\frac{p^{\prime}}{q}+a_{0}\Big{)}\frac{\theta^{2}}{4}, (6.11)

from which the result follows.

For (6.9), we let

U(x,y)=4xy2πxLi2(e2(y+x))+Li2(e2i(yx)),U(x,y)=4xy-2\pi x-\mathrm{Li}_{2}(e^{-2(y+x)})+\mathrm{Li}_{2}(e^{2i(y-x)}),

and define

Ψ(u)=U(x,y(x)),\Psi(u)=U(x,y(x)),

where u=2xiu=2xi and y(x)y(x) is such that

V+y|(x,y(x))=0.\frac{\partial V^{+}}{\partial y}\Big{|}_{(x,y(x))}=0.

Since

Uy=V+yandV+y|(x,y(x))=0,\frac{\partial U}{\partial y}=\frac{\partial V^{+}}{\partial y}\quad\text{and}\quad\frac{\partial V^{+}}{\partial y}\Big{|}_{(x,y(x))}=0,

we have

Ψ(u)u=(Ux+Uy|(x,y(x))yx)xu=Uxxu=H(l)2,\begin{split}\frac{\partial\Psi(u)}{\partial u}=\Big{(}\frac{\partial U}{\partial x}+\frac{\partial U}{\partial y}\Big{|}_{(x,y(x))}\frac{\partial y}{\partial x}\Big{)}\frac{\partial x}{\partial u}=\frac{\partial U}{\partial x}\frac{\partial x}{\partial u}=\frac{\mathrm{H}(l)}{2},\end{split}

where the last equality comes from (6.4). Also, a direct computation shows y(0)=π6,y(0)=\frac{\pi}{6}, and hence

Ψ(0)=U(0,π6)=4iΛ(π6)=i(Vol(S3K41)+iCS(S3K41))=i(Vol(MK)+iCS(MK)).\Psi(0)=U\Big{(}0,\frac{\pi}{6}\Big{)}=4i\Lambda\Big{(}\frac{\pi}{6}\Big{)}=i\Big{(}\mathrm{Vol}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})+i\mathrm{CS}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})\Big{)}=i\Big{(}\mathrm{Vol}(\mathrm{M}{\smallsetminus}K)+i\mathrm{CS}(\mathrm{M}{\smallsetminus}K)\Big{)}.

Therefore, Ψ\Psi satisfies (6.8), and hence Ψ(u)=Φ(u).\Psi(u)=\Phi(u).

Since y(x0)=y0,y(x_{0})=y_{0}, and by (6.3) H(m)=2x0i,\mathrm{H}(m)=2x_{0}i, we have

Φ(H(m))=Ψ(2x0i)=U(x0,y0),\Phi(\mathrm{H}(m))=\Psi(2x_{0}i)=U(x_{0},y_{0}),

which verifies (6.9).

For (6.10), we have by (6.3) that H(m)=2x0i\mathrm{H}(m)=2x_{0}i and

H(l)=θipH(m)q=θi2px0iq.\mathrm{H}(l)=\frac{\theta i-p\mathrm{H}(m)}{q}=\frac{\theta i-2px_{0}i}{q}.

Then

H(m)H(l)=2x0iθi2px0iq=4(px02q+θx02q)\mathrm{H}(m)\mathrm{H}(l)=2x_{0}i\cdot\frac{\theta i-2px_{0}i}{q}=-4\Big{(}-\frac{px_{0}^{2}}{q}+\frac{\theta x_{0}}{2q}\Big{)}

from which (6.10) follows, and

H(γ)=qH(m)+pH(l)+a0(pH(m)+qH(l))=q2x0i+pθi2px0iq+a0θi=4θi(θx02q(pq+a0)θ24)\begin{split}\mathrm{H}(\gamma)=&-q^{\prime}\mathrm{H}(m)+p^{\prime}\mathrm{H}(l)+a_{0}\big{(}p\mathrm{H}(m)+q\mathrm{H}(l)\big{)}\\ =&-q^{\prime}\cdot 2x_{0}i+p^{\prime}\cdot\frac{\theta i-2px_{0}i}{q}+a_{0}\theta i\\ =&\frac{4}{\theta i}\Big{(}\frac{\theta x_{0}}{2q}-\Big{(}\frac{p^{\prime}}{q}+a_{0}\Big{)}\frac{\theta^{2}}{4}\Big{)}\end{split}

from which (6.11) follows.

For (2), we have by (6.7)

HessV+(x0,y0)=[2pq44e2i(y0+x0)1e2i(y0+x0)4e2i(y0x0)1e2i(y0x0)4e2i(y0+x0)1e2i(y0+x0)+4e2i(y0x0)1e2i(y0x0)4e2i(y0+x0)1e2i(y0+x0)+4e2i(y0x0)1e2i(y0x0)44e2i(y0+x0)1e2i(y0+x0)4e2i(y0x0)1e2i(y0x0)]\mathrm{Hess}V^{+}(x_{0},y_{0})=\begin{bmatrix}-\frac{2p}{q}-4-\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}-\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}&-\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}+\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}\\ -\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}+\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}&4-\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}-\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}\end{bmatrix}

and

HessV(x0,y0)=[2pq44e2i(y0x0)1e2i(y0x0)4e2i(y0+x0)1e2i(y0+x0)4e2i(y0x0)1e2i(y0x0)+4e2i(y0+x0)1e2i(y0+x0)4e2i(y0x0)1e2i(y0x0)+4e2i(y0+x0)1e2i(y0+x0)44e2i(y0x0)1e2i(y0x0)4e2i(y0+x0)1e2i(y0+x0)].\mathrm{Hess}V^{-}(-x_{0},y_{0})=\begin{bmatrix}-\frac{2p}{q}-4-\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}-\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}&-\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}+\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}\\ -\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}+\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}&4-\frac{4e^{2i(y_{0}-x_{0})}}{1-e^{2i(y_{0}-x_{0})}}-\frac{4e^{2i(y_{0}+x_{0})}}{1-e^{2i(y_{0}+x_{0})}}\end{bmatrix}.

Hence

det(HessV+)(x0,y0)=det(HessV)(x0,y0).\det(\mathrm{Hess}V^{+})(x_{0},y_{0})=\det(\mathrm{Hess}V^{-})(-x_{0},y_{0}).

By Lemma 6.4 below, the real part of the HessV±\mathrm{Hess}V^{\pm} is positive definite. Then by [17, Lemma], it is nonsingular. ∎

Lemma 6.4.

In D,D_{\mathbb{C}}, ImV±(x,y)\mathrm{Im}V^{\pm}(x,y) is strictly concave down in Re(x)\mathrm{Re}(x) and Re(y),\mathrm{Re}(y), and is strictly concave up in Im(x)\mathrm{Im}(x) and Im(y).\mathrm{Im}(y).

Proof.

Using (6.7), taking second derivatives ImV±\mathrm{Im}V^{\pm} with respect to Re(x)\mathrm{Re}(x) and Re(y),\mathrm{Re}(y), we

Hess(ImV±)=[4Ime2i(y+x)|1e2i(y+x)|24Ime2i(yx)|1e2i(yx)|24Ime2i(y+x)|1e2i(y+x)|2+4Ime2i(yx)|1e2i(yx)|24Ime2i(y+x)|1e2i(y+x)|2+4Ime2i(yx)|1e2i(yx)|24Ime2i(y+x)|1e2i(y+x)|24Ime2i(yx)|1e2i(yx)|2]=[2222][Ime2i(y+x)|1e2i(y+x)|200Ime2i(yx)|1e2i(yx)|2][2222].\begin{split}\mathrm{Hess}(\mathrm{Im}V^{\pm})&=\begin{bmatrix}-\frac{4\mathrm{Im}e^{2i(y+x)}}{|1-e^{2i(y+x)}|^{2}}-\frac{4\mathrm{Im}e^{2i(y-x)}}{|1-e^{2i(y-x)}|^{2}}&-\frac{4\mathrm{Im}e^{2i(y+x)}}{|1-e^{2i(y+x)}|^{2}}+\frac{4\mathrm{Im}e^{2i(y-x)}}{|1-e^{2i(y-x)}|^{2}}\\ &\\ -\frac{4\mathrm{Im}e^{2i(y+x)}}{|1-e^{2i(y+x)}|^{2}}+\frac{4\mathrm{Im}e^{2i(y-x)}}{|1-e^{2i(y-x)}|^{2}}&-\frac{4\mathrm{Im}e^{2i(y+x)}}{|1-e^{2i(y+x)}|^{2}}-\frac{4\mathrm{Im}e^{2i(y-x)}}{|1-e^{2i(y-x)}|^{2}}\end{bmatrix}\\ &=-\begin{bmatrix}2&-2\\ 2&2\end{bmatrix}\begin{bmatrix}\frac{\mathrm{Im}e^{2i(y+x)}}{|1-e^{2i(y+x)}|^{2}}&0\\ 0&\frac{\mathrm{Im}e^{2i(y-x)}}{|1-e^{2i(y-x)}|^{2}}\end{bmatrix}\begin{bmatrix}2&2\\ -2&2\end{bmatrix}.\end{split}

Since in D,D_{\mathbb{C}}, Ime2i(y+x)>0\mathrm{Im}e^{2i(y+x)}>0 and Ime2i(yx)>0,\mathrm{Im}e^{2i(y-x)}>0, the diagonal matrix in the middle is positive definite, and hence Hess(ImV±)\mathrm{Hess}(\mathrm{Im}V^{\pm}) is negative definite. Therefore, ImV\mathrm{Im}V is concave down in Re(x)\mathrm{Re}(x) and Re(y).\mathrm{Re}(y). Since ImV±\mathrm{Im}V^{\pm} is harmonic, it is concave up in Im(x)\mathrm{Im}(x) and Im(y).\mathrm{Im}(y).

The following Lemma will be needed later in the estimate of the Fourier coefficients.

Lemma 6.5.

Im(x0)0.\mathrm{Im}(x_{0})\neq 0.

Proof.

By (6.3), the holonomy of the meridian H(m)=2x0i.\mathrm{H}(m)=2x_{0}i. We prove by contradiction. Suppose Im(x0)=0,\mathrm{Im}(x_{0})=0, then H(m)\mathrm{H}(m) is purely imaginary. As a consequence, H(l)=θipH(m)q\mathrm{H}(l)=\frac{\theta i-p\mathrm{H}(m)}{q} is also purely imaginary. This implies that the holonomy of the core curve of the filled solid torus H(γ)=qH(m)pH(l)H(\gamma)=q^{\prime}\mathrm{H}(m)-p^{\prime}\mathrm{H}(l) is purely imaginary, ie. γ\gamma has length zero. This is a contradiction. ∎

7 Asymptotics

7.1 Asymptotics of the leading Fourier coefficients

The main tool we use is Proposition 7.1, which is a generalization of the standard Saddle Point Approximation [21]. A proof of Proposition 7.1 could be found in [29, Appendix A].

Proposition 7.1.

Let D𝐳D_{\mathbf{z}} be a region in n\mathbb{C}^{n} and let D𝐚D_{\mathbf{a}} be a region in k.\mathbb{R}^{k}. Let f(𝐳,𝐚)f(\mathbf{z},\mathbf{a}) and g(𝐳,𝐚)g(\mathbf{z},\mathbf{a}) be complex valued functions on D𝐳×D𝐚D_{\mathbf{z}}\times D_{\mathbf{a}} which are holomorphic in 𝐳\mathbf{z} and smooth in 𝐚.\mathbf{a}. For each positive integer r,r, let fr(𝐳,𝐚)f_{r}(\mathbf{z},\mathbf{a}) be a complex valued function on D𝐳×D𝐚D_{\mathbf{z}}\times D_{\mathbf{a}} holomorphic in 𝐳\mathbf{z} and smooth in 𝐚.\mathbf{a}. For a fixed 𝐚D𝐚,\mathbf{a}\in D_{\mathbf{a}}, let f𝐚,f^{\mathbf{a}}, g𝐚g^{\mathbf{a}} and fr𝐚f_{r}^{\mathbf{a}} be the holomorphic functions on D𝐳D_{\mathbf{z}} defined by f𝐚(𝐳)=f(𝐳,𝐚),f^{\mathbf{a}}(\mathbf{z})=f(\mathbf{z},\mathbf{a}), g𝐚(𝐳)=g(𝐳,𝐚)g^{\mathbf{a}}(\mathbf{z})=g(\mathbf{z},\mathbf{a}) and fr𝐚(𝐳)=fr(𝐳,𝐚).f_{r}^{\mathbf{a}}(\mathbf{z})=f_{r}(\mathbf{z},\mathbf{a}). Suppose {𝐚r}\{\mathbf{a}_{r}\} is a convergent sequence in D𝐚D_{\mathbf{a}} with limr𝐚r=𝐚0,\lim_{r}\mathbf{a}_{r}=\mathbf{a}_{0}, fr𝐚rf_{r}^{\mathbf{a}_{r}} is of the form

fr𝐚r(𝐳)=f𝐚r(𝐳)+υr(𝐳,𝐚r)r2,f_{r}^{\mathbf{a}_{r}}(\mathbf{z})=f^{\mathbf{a}_{r}}(\mathbf{z})+\frac{\upsilon_{r}(\mathbf{z},\mathbf{a}_{r})}{r^{2}},

{Sr}\{S_{r}\} is a sequence of embedded real nn-dimensional closed disks in D𝐳D_{\mathbf{z}} sharing the same boundary, and 𝐜r\mathbf{c}_{r} is a point on SrS_{r} such that {𝐜r}\{\mathbf{c}_{r}\} is convergent in D𝐳D_{\mathbf{z}} with limr𝐜r=𝐜0.\lim_{r}\mathbf{c}_{r}=\mathbf{c}_{0}. If for each rr

  1. (1)

    𝐜r\mathbf{c}_{r} is a critical point of f𝐚rf^{\mathbf{a}_{r}} in D𝐳,D_{\mathbf{z}},

  2. (2)

    Ref𝐚r(𝐜r)>Ref𝐚r(𝐳)\mathrm{Re}f^{\mathbf{a}_{r}}(\mathbf{c}_{r})>\mathrm{Re}f^{\mathbf{a}_{r}}(\mathbf{z}) for all 𝐳S{𝐜r},\mathbf{z}\in S{\smallsetminus}\{\mathbf{c}_{r}\},

  3. (3)

    the Hessian matrix Hess(f𝐚r)\mathrm{Hess}(f^{\mathbf{a}_{r}}) of f𝐚rf^{\mathbf{a}_{r}} at 𝐜r\mathbf{c}_{r} is non-singular,

  4. (4)

    |g𝐚r(𝐜r)||g^{\mathbf{a}_{r}}(\mathbf{c}_{r})| is bounded from below by a positive constant independent of r,r,

  5. (5)

    |υr(𝐳,𝐚r)||\upsilon_{r}(\mathbf{z},\mathbf{a}_{r})| is bounded from above by a constant independent of rr on D𝐳,D_{\mathbf{z}}, and

  6. (6)

    the Hessian matrix Hess(f𝐚0)\mathrm{Hess}(f^{\mathbf{a}_{0}}) of f𝐚0f^{\mathbf{a}_{0}} at 𝐜0\mathbf{c}_{0} is non-singular,

then

Srg𝐚r(𝐳)erfr𝐚r(𝐳)𝑑𝐳=(2πr)n2g𝐚r(𝐜r)detHess(f𝐚r)(𝐜r)erf𝐚r(𝐜r)(1+O(1r)).\begin{split}\int_{S_{r}}g^{\mathbf{a}_{r}}(\mathbf{z})e^{rf_{r}^{\mathbf{a}_{r}}(\mathbf{z})}d\mathbf{z}=\Big{(}\frac{2\pi}{r}\Big{)}^{\frac{n}{2}}\frac{g^{\mathbf{a}_{r}}(\mathbf{c}_{r})}{\sqrt{-\det\mathrm{Hess}(f^{\mathbf{a}_{r}})(\mathbf{c}_{r})}}e^{rf^{\mathbf{a}_{r}}(\mathbf{c}_{r})}\Big{(}1+O\Big{(}\frac{1}{r}\Big{)}\Big{)}.\end{split}

Let (x0,y0)(x_{0},y_{0}) be the unique critical point of V+V^{+} in D,D_{\mathbb{C}}, and by Corollary 6.2 (x0,y0)(-x_{0},y_{0}) is the unique critical point of VV^{-} in D.D_{\mathbb{C}}. Let δ\delta be as in Proposition 4.2, and as drawn in Figure 5 let S+=Stop+Sside+(Dδ2Dδ)S^{+}=S^{+}_{\text{top}}\cup S^{+}_{\text{side}}\cup(D_{\frac{\delta}{2}}{\smallsetminus}D_{\delta}) be the union of Dδ2DδD_{\frac{\delta}{2}}{\smallsetminus}D_{\delta} with the two surfaces

Stop+={(x,y)D,δ|(Im(x),Im(y))=(Im(x0),Im(y0))}S^{+}_{\text{top}}=\Big{\{}(x,y)\in D_{\mathbb{C},\delta}\ |\ (\mathrm{Im}(x),\mathrm{Im}(y))=(\mathrm{Im}(x_{0}),\mathrm{Im}(y_{0}))\Big{\}}

and

Sside+={(θ1+itIm(x0),θ2+itIm(y0))|(θ1,θ2)Dδ,t[0,1]};S^{+}_{\text{side}}=\Big{\{}(\theta_{1}+it\mathrm{Im}(x_{0}),\theta_{2}+it\mathrm{Im}(y_{0}))\ |\ (\theta_{1},\theta_{2})\in\partial D_{\delta},t\in[0,1]\Big{\}};

and let S=StopSside(Dδ2Dδ)S^{-}=S^{-}_{\text{top}}\cup S^{-}_{\text{side}}\cup(D_{\frac{\delta}{2}}{\smallsetminus}D_{\delta}) be the union of Dδ2DδD_{\frac{\delta}{2}}{\smallsetminus}D_{\delta} with the two surfaces

Stop={(x,y)D,δ|(Im(x),Im(y))=(Im(x0),Im(y0))}S^{-}_{\text{top}}=\Big{\{}(x,y)\in D_{\mathbb{C},\delta}\ |\ (\mathrm{Im}(x),\mathrm{Im}(y))=(-\mathrm{Im}(x_{0}),\mathrm{Im}(y_{0}))\Big{\}}

and

Sside={(θ1itIm(x0),θ2+itIm(y0))|(θ1,θ2)Dδ,t[0,1]}.S^{-}_{\text{side}}=\Big{\{}(\theta_{1}-it\mathrm{Im}(x_{0}),\theta_{2}+it\mathrm{Im}(y_{0}))\ |\ (\theta_{1},\theta_{2})\in\partial D_{\delta},t\in[0,1]\Big{\}}.
Refer to caption
Figure 5: The deformed surface S+S^{+}
Proposition 7.2.

On S+,S^{+}, ImV+\mathrm{Im}V^{+} achieves the only absolute maximum at (x0,y0);(x_{0},y_{0}); and on S,S^{-}, ImV\mathrm{Im}V^{-} achieves the only absolute maximum at (x0,y0).(-x_{0},y_{0}).

Proof.

By Lemma 6.4, ImV±\mathrm{Im}V^{\pm} is concave down on Stop±.S^{\pm}_{\text{top}}. Since (±x0,y0)(\pm x_{0},y_{0}) are respectively the critical points of ImV±,\mathrm{Im}V^{\pm}, they are respectively the only absolute maximum on Stop±.S^{\pm}_{\text{top}}.

On the side Sside±,S^{\pm}_{\text{side}}, for each (θ1,θ2)Dδ(\theta_{1},\theta_{2})\in\partial D_{\delta} respectively consider the functions

g(θ1,θ2)±(t)ImV±(θ1±itIm(x0),θ2+itIm(y0))g^{\pm}_{(\theta_{1},\theta_{2})}(t)\doteq\mathrm{Im}V^{\pm}(\theta_{1}\pm it\mathrm{Im}(x_{0}),\theta_{2}+it\mathrm{Im}(y_{0}))

on [0,1].[0,1]. We show that g(θ1,θ2)±(t)<ImV±(±x0,y0)g^{\pm}_{(\theta_{1},\theta_{2})}(t)<\mathrm{Im}V^{\pm}(\pm x_{0},y_{0}) for each (θ1,θ2)Dδ(\theta_{1},\theta_{2})\in\partial D_{\delta} and t[0,1].t\in[0,1].

Indeed, since (θ1,θ2)Dδ,(\theta_{1},\theta_{2})\in\partial D_{\delta}, g(θ1,θ2)±(0)=ImV±(θ1,θ2)<12Vol(S3K41)+ϵ<Vol(MKθ)=ImV±(±x0,y0);g^{\pm}_{(\theta_{1},\theta_{2})}(0)=\mathrm{Im}V^{\pm}(\theta_{1},\theta_{2})<\frac{1}{2}\mathrm{Vol}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})+\epsilon<Vol(M_{K_{\theta}})=\mathrm{Im}V^{\pm}(\pm x_{0},y_{0}); and since (θ1±iIm(x0),θ2+iIm(y0))Stop±,(\theta_{1}\pm i\mathrm{Im}(x_{0}),\theta_{2}+i\mathrm{Im}(y_{0}))\in S^{\pm}_{\text{top}}, by the previous step g(θ1,θ2)±(1)=ImV±(θ1±iIm(x0),θ2+iIm(y0))<ImV±(±x0,y0).g^{\pm}_{(\theta_{1},\theta_{2})}(1)=\mathrm{Im}V^{\pm}(\theta_{1}\pm i\mathrm{Im}(x_{0}),\theta_{2}+i\mathrm{Im}(y_{0}))<\mathrm{Im}V^{\pm}(\pm x_{0},y_{0}). Now by Lemma 6.4, g(θ1,θ2)±g^{\pm}_{(\theta_{1},\theta_{2})} is concave up, and hence

g(θ1,θ2)±(t)max{g(θ1,θ2)±(0),g(θ1,θ2)±(1)}<ImV±(±x0,y0).g^{\pm}_{(\theta_{1},\theta_{2})}(t)\leqslant\max\Big{\{}g^{\pm}_{(\theta_{1},\theta_{2})}(0),g^{\pm}_{(\theta_{1},\theta_{2})}(1)\Big{\}}<\mathrm{Im}V^{\pm}(\pm x_{0},y_{0}).

By Proposition 4.2 and assumption of θ,\theta, on Dδ2Dδ,D_{\frac{\delta}{2}}{\smallsetminus}D_{\delta}, ImV(x,y)12Vol(S3K41)+ϵ<Vol(MKθ)=ImV±(±x0,y0).\mathrm{Im}V(x,y)\leqslant\frac{1}{2}\mathrm{Vol}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})+\epsilon<\mathrm{Vol(M_{K_{\theta}})}=\mathrm{Im}V^{\pm}(\pm x_{0},y_{0}).

Proposition 7.3.
Dδ2ϵ(x,y)exi+r4πiVr±(x,y)𝑑x𝑑y=4πrer4π(Vol(MKθ)+iCS(MKθ))HessV+(x0,y0)(1+O(1r)).\begin{split}\int_{D_{\frac{\delta}{2}}}\epsilon(x,y)e^{-xi+\frac{r}{4\pi i}V_{r}^{\pm}(x,y)}dxdy=\frac{4\pi}{r}\frac{e^{\frac{r}{4\pi}\Big{(}\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})\Big{)}}}{\sqrt{-\mathrm{Hess}V^{+}(x_{0},y_{0})}}\Big{(}1+O\Big{(}\frac{1}{r}\Big{)}\Big{)}.\end{split}
Proof.

By analyticity, the integrals remain the same if we deform the domains from Dδ2D_{\frac{\delta}{2}} to S±.S^{\pm}. Then by Corollary 6.2, (±x0,y0)(\pm x_{0},y_{0}) are respectively the critical points of V±.V^{\pm}. By Proposition 7.2, ImV±\mathrm{Im}V^{\pm} achieves the only absolute maximum on S±S^{\pm} at (±x0,y0).(\pm x_{0},y_{0}). By Proposition 6.3, (2), HessV±(±x0,y)0.\mathrm{Hess}V^{\pm}(\pm x_{0},y)\neq 0. Finally, to estimate the difference between Vr±V^{\pm}_{r} and V±,V^{\pm}, we have

φr(πxyπr)=φr(πxy)φr(πxy)πr+O(1r2)\varphi_{r}\Big{(}\pi-x-y-\frac{\pi}{r}\Big{)}=\varphi_{r}(\pi-x-y)-\varphi^{\prime}_{r}(\pi-x-y)\cdot\frac{\pi}{r}+O\Big{(}\frac{1}{r^{2}}\Big{)}

and

φr(yx+πr)=φr(yx)+φr(yx)πr+O(1r2).\varphi_{r}\Big{(}y-x+\frac{\pi}{r}\Big{)}=\varphi_{r}(y-x)+\varphi^{\prime}_{r}(y-x)\cdot\frac{\pi}{r}+O\Big{(}\frac{1}{r^{2}}\Big{)}.

Then by Lemma 2.6, in {(x,y)D,δ¯||Imx|<L,|Imx|<L}\big{\{}(x,y)\in\overline{D_{\mathbb{C},\delta}}\ \big{|}\ |\mathrm{Im}x|<L,|\mathrm{Im}x|<L\} for some sufficiently large L,L,

Vr±(x,y)=V±(x,y)2πi(log(1e2i(y+x))+log(1e2i(yx)))r+υr(x,y)r2V^{\pm}_{r}(x,y)=V^{\pm}(x,y)-\frac{2\pi i\big{(}\log\big{(}1-e^{-2i(y+x)}\big{)}+\log\big{(}1-e^{2i(y-x)}\big{)}\big{)}}{r}+\frac{\upsilon_{r}(x,y)}{r^{2}}

with |υr(x,y)||\upsilon_{r}(x,y)| bounded from above by a constant independent of r,r, and

exi+r4πiVr±(x,y)=exilog(1e2i(y+x))2log(1e2i(yx))2+r4πi(V±(x,y)+υr(x,y)r2).e^{-xi+\frac{r}{4\pi i}V_{r}^{\pm}(x,y)}=e^{-xi-\frac{\log\big{(}1-e^{-2i(y+x)}\big{)}}{2}-\frac{\log\big{(}1-e^{2i(y-x)}\big{)}}{2}+\frac{r}{4\pi i}\Big{(}V^{\pm}(x,y)+\frac{\upsilon_{r}(x,y)}{r^{2}}\Big{)}}.

Now let D𝐳={(x,y)D,δ¯||Imx|<L,|Imx|<L}D_{\mathbf{z}}=\big{\{}(x,y)\in\overline{D_{\mathbb{C},\delta}}\ \big{|}\ |\mathrm{Im}x|<L,|\mathrm{Im}x|<L\} for some sufficiently large L,L, 𝐚r=θ=|2π4πr4πm0r|,\mathbf{a}_{r}=\theta=\Big{|}2\pi-\frac{4\pi}{r}-\frac{4\pi m_{0}}{r}\Big{|}, fr𝐚r(x,y)=Vr±(x,y),f_{r}^{\mathbf{a}_{r}}(x,y)=V_{r}^{\pm}(x,y), gr𝐚r(x,y)=exilog(1e2i(y+x))2log(1e2i(yx))2,g_{r}^{\mathbf{a}_{r}}(x,y)=e^{-xi-\frac{\log\big{(}1-e^{-2i(y+x)}\big{)}}{2}-\frac{\log\big{(}1-e^{2i(y-x)}\big{)}}{2}}, f𝐚r(x,y)=V±(x,y).f^{\mathbf{a}_{r}}(x,y)=V^{\pm}(x,y). Then all the conditions of Proposition 7.1 are satisfied. By the first equation of (6.2), at the critical points (±x0,y0),(\pm x_{0},y_{0}),

xilog(1e2i(y+x))2log(1e2i(yx))2=0,-xi-\frac{\log\big{(}1-e^{-2i(y+x)}\big{)}}{2}-\frac{\log\big{(}1-e^{2i(y-x)}\big{)}}{2}=0,

and hence gr𝐚r(±x0,y0)=1.g_{r}^{\mathbf{a}_{r}}(\pm x_{0},y_{0})=1. By Proposition 6.3, (1), the critical values

V±(±x0,y0)=i(Vol(MKθ)+iCS(MKθ))V^{\pm}(\pm x_{0},y_{0})=i\big{(}\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})\big{)}

and the result follows. ∎

7.2 Estimates of other Fourier coefficients

Let

V(k0,k1,k2),±(x,y)=V±(x,y)4k0πxq4k1πx4k2πy,V^{(k_{0},k_{1},k_{2}),\pm}(x,y)=V^{\pm}(x,y)-\frac{4k_{0}\pi x}{q}-4k_{1}\pi x-4k_{2}\pi y,

and

F^±(k0,k1,k2)=𝒟δ2er4πiV(k0,k1,k2),±(x,y)𝑑x𝑑y.\hat{F}^{\pm}(k_{0},k_{1},k_{2})=\int_{\mathcal{D}_{\frac{\delta}{2}}}e^{\frac{r}{4\pi i}V^{(k_{0},k_{1},k_{2}),\pm}(x,y)}dxdy.

By Lemma 2.6, the asymptotics of F^r±(k0,k1,k2)\hat{F}^{\pm}_{r}(k_{0},k_{1},k_{2}) is approximated by that of F^±(k0,k1,k2).\hat{F}^{\pm}(k_{0},k_{1},k_{2}). We will then estimate the contribution to F^±(k0,k1,k2)\hat{F}^{\pm}(k_{0},k_{1},k_{2}) of each individual square Dδ2,D_{\frac{\delta}{2}}, Dδ2D^{\prime}_{\frac{\delta}{2}} and Dδ2′′.D_{\frac{\delta}{2}}^{\prime\prime}.

7.2.1 Estimate on Dδ2D_{\frac{\delta}{2}}

Let

F^D±(k0,k1,k2)=Dδ2er4πiV(k0,k1,k2),±(x,y)𝑑x𝑑y.\hat{F}^{\pm}_{D}(k_{0},k_{1},k_{2})=\int_{D_{\frac{\delta}{2}}}e^{\frac{r}{4\pi i}V^{(k_{0},k_{1},k_{2}),\pm}(x,y)}dxdy.
Lemma 7.4.

For k20,k_{2}\neq 0,

F^D±(k0,k1,k2)=O(er4π(Vol(MKθ)ϵ)).\hat{F}^{\pm}_{D}(k_{0},k_{1},k_{2})=O\Big{(}e^{\frac{r}{4\pi}\big{(}\mathrm{Vol}(M_{K_{\theta}})-\epsilon\big{)}}\Big{)}.
Proof.

In D,D_{\mathbb{C}}, we have

0<arg(1e2i(y+x))<π2(Re(y)+Re(x))0<\arg(1-e^{-2i(y+x)})<\pi-2(\mathrm{Re}(y)+\mathrm{Re}(x))

and

2(Re(y)Re(x))π<arg(1e2i(yx))<0.2(\mathrm{Re}(y)-\mathrm{Re}(x))-\pi<\arg(1-e^{2i(y-x)})<0.

For k2>0,k_{2}>0, let y=Re(y)+il.y=\mathrm{Re}(y)+il. Then

ImV(k0,k1,k2)l=4Re(x)+2arg(1e2i(y+x))+2arg(1e2i(yx))4k2π<4x+2(π2(Re(y)+Re(x)))+04k2π=2π4Re(y)4k2π<2π,\begin{split}\frac{\partial\mathrm{Im}V^{(k_{0},k_{1},k_{2})}}{\partial l}&=4\mathrm{Re}(x)+2\arg(1-e^{-2i(y+x)})+2\arg(1-e^{2i(y-x)})-4k_{2}\pi\\ &<4x+2(\pi-2(\mathrm{Re}(y)+\mathrm{Re}(x)))+0-4k_{2}\pi\\ &=2\pi-4\mathrm{Re}(y)-4k_{2}\pi<-2\pi,\end{split}

where the last inequality comes from that 0<Re(y)<π20<\mathrm{Re}(y)<\frac{\pi}{2} and k2>0.k_{2}>0. Therefore, pushing the integral domain along the ilil direction far enough (without changing Im(x)\mathrm{Im}(x)), the imaginary part of ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} becomes smaller than the volume. Since ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} is already smaller than the volume of MKθM_{K_{\theta}} on Dδ,\partial D_{\delta}, it becomes even smaller on the side.

For k2<0,k_{2}<0, let y=Re(y)il.y=\mathrm{Re}(y)-il. Then

ImV(k0,k1,k2),±l=4Re(x)2arg(1e2i(y+x))2arg(1e2i(yx))+4k2π<4x02(2(Re(y)Re(x))π)+4k2π=2π4Re(y)+4k2π<2π,\begin{split}\frac{\partial\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm}}{\partial l}&=-4\mathrm{Re}(x)-2\arg(1-e^{-2i(y+x)})-2\arg(1-e^{2i(y-x)})+4k_{2}\pi\\ &<-4x-0-2(2(\mathrm{Re}(y)-\mathrm{Re}(x))-\pi)+4k_{2}\pi\\ &=2\pi-4\mathrm{Re}(y)+4k_{2}\pi<-2\pi,\end{split}

where the last inequality comes from that 0<Re(y)<π20<\mathrm{Re}(y)<\frac{\pi}{2} again and k2<0.k_{2}<0. Therefore, pushing the integral domain along the il-il direction far enough (without changing Im(x)\mathrm{Im}(x)), the imaginary part of ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} becomes smaller than the volume of MKθ.M_{K_{\theta}}. Since ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} is already smaller than the volume of MKθM_{K_{\theta}} on Dδ,\partial D_{\delta}, it becomes even smaller on the side. ∎

Lemma 7.5.

For (k0,k1)(k_{0},k_{1}) so that k0q+k10,\frac{k_{0}}{q}+k_{1}\neq 0,

F^D±(k0,k1,0)=O(er4π(Vol(MKθ)ϵ)).\hat{F}^{\pm}_{D}(k_{0},k_{1},0)=O\Big{(}e^{\frac{r}{4\pi}\big{(}\mathrm{Vol}(M_{K_{\theta}})-\epsilon\big{)}}\Big{)}.
Proof.

Here we recall that S±=Stop±Sside±(Dδ2Dδ),S^{\pm}=S^{\pm}_{\text{top}}\cup S^{\pm}_{\text{side}}\cup(D_{\frac{\delta}{2}}{\smallsetminus}D_{\delta}), where

Stop±={(x,y)D,δ|(Im(x),Im(y))=(±Im(x0),Im(y0))}S^{\pm}_{\text{top}}=\Big{\{}(x,y)\in D_{\mathbb{C},\delta}\ |\ (\mathrm{Im}(x),\mathrm{Im}(y))=(\pm\mathrm{Im}(x_{0}),\mathrm{Im}(y_{0}))\Big{\}}

and

Sside±={(θ1±itIm(x0),θ2+itIm(y0))|(θ1,θ2)Dδ,t[0,1]}.S^{\pm}_{\text{side}}=\Big{\{}(\theta_{1}\pm it\mathrm{Im}(x_{0}),\theta_{2}+it\mathrm{Im}(y_{0}))\ |\ (\theta_{1},\theta_{2})\in\partial D_{\delta},t\in[0,1]\Big{\}}.

By Proposition 7.2, for any (x,y)Stop±(x,y)\in S^{\pm}_{\text{top}} we respectively have

ImV±(x,y)ImV±(±x0,y0)=Vol(MKθ).\mathrm{Im}V^{\pm}(x,y)\leqslant\mathrm{Im}V^{\pm}(\pm x_{0},y_{0})=\mathrm{Vol}(M_{K_{\theta}}).

By Lemma 6.5, Im(x0)0.\mathrm{Im}(x_{0})\neq 0. We first consider the case that Im(x0)>0.\mathrm{Im}(x_{0})>0. If k0q+k1>0,\frac{k_{0}}{q}+k_{1}>0, then on Stop+S^{+}_{\text{top}} we have

ImV(k0,k1,0),+(x,y)=ImV+(x,y)4k0πqIm(x0)4k1πIm(x0)<ImV+(x,y)Vol(MKθ),\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),+}(x,y)=&\mathrm{Im}V^{+}(x,y)-\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})-4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{+}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}}),\end{split}

and

ImV(k0,k1,0),(x,y)=ImV(k0,k1,0),+(x,y)2θqIm(x0)=ImV+(x,y)2θqIm(x0)4k0πqIm(x0)4k1πIm(x0)<ImV+(x,y)Vol(MKθ).\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),-}(x,y)=&\mathrm{Im}V^{(k_{0},k_{1},0),+}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})\\ =&\mathrm{Im}V^{+}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})-\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})-4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{+}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}}).\end{split}

If k0q+k1<0,\frac{k_{0}}{q}+k_{1}<0, then on StopS^{-}_{\text{top}} we have

ImV(k0,k1,0),+(x,y)=ImV(k0,k1,0),(x,y)2θqIm(x0)=ImV(x,y)2θqIm(x0)+4k0πqIm(x0)+4k1πIm(x0)<ImV(x,y)Vol(MKθ),\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),+}(x,y)=&\mathrm{Im}V^{(k_{0},k_{1},0),-}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})\\ =&\mathrm{Im}V^{-}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})+\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})+4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{-}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}}),\end{split}

and

ImV(k0,k1,0),(x,y)=ImV(x,y)+4k0πqIm(x0)+4k1πIm(x0)<ImV(x,y)Vol(MKθ).\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),-}(x,y)=&\mathrm{Im}V^{-}(x,y)+\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})+4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{-}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}}).\end{split}

Next we consider the case that Im(x0)<0.\mathrm{Im}(x_{0})<0. Due to the fact that k0k_{0} and k1k_{1} are integers and θ(0,2π),\theta\in(0,2\pi), if k0q+k1>0,\frac{k_{0}}{q}+k_{1}>0, then we have k0q+k11q\frac{k_{0}}{q}+k_{1}\geqslant\frac{1}{q} and

4πk0q+4πk12θq>0;\frac{4\pi k_{0}}{q}+4\pi k_{1}-\frac{2\theta}{q}>0; (7.1)

and if k0q+k1<0,\frac{k_{0}}{q}+k_{1}<0, then we have k0q+k11q\frac{k_{0}}{q}+k_{1}\leqslant-\frac{1}{q} and

4πk0q+4πk1+2θq<0.\frac{4\pi k_{0}}{q}+4\pi k_{1}+\frac{2\theta}{q}<0. (7.2)

Now for (k0,k1)(k_{0},k_{1}) such that k0q+k1>0,\frac{k_{0}}{q}+k_{1}>0, we have on StopS^{-}_{\text{top}} that

ImV(k0,k1,0),+(x,y)=ImV(k0,k1,0),(x,y)2θqIm(x0)=ImV(x,y)2θqIm(x0)+4k0πqIm(x0)+4k1πIm(x0)<ImV(x,y)Vol(MKθ),\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),+}(x,y)=&\mathrm{Im}V^{(k_{0},k_{1},0),-}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})\\ =&\mathrm{Im}V^{-}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})+\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})+4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{-}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}}),\end{split}

where the penultimate inequality comes from (7.1), and

ImV(k0,k1,0),(x,y)=ImV(x,y)+4k0πqIm(x0)+4k1πIm(x0)<ImV(x,y)Vol(MKθ).\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),-}(x,y)=&\mathrm{Im}V^{-}(x,y)+\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})+4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{-}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}}).\end{split}

For (k0,k1)(k_{0},k_{1}) such that k0q+k1<0,\frac{k_{0}}{q}+k_{1}<0, we have on Stop+S^{+}_{\text{top}} that

ImV(k0,k1,0),+(x,y)=ImV+(x,y)4k0πqIm(x0)4k1πIm(x0)<ImV+(x,y)Vol(MKθ),\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),+}(x,y)=&\mathrm{Im}V^{+}(x,y)-\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})-4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{+}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}}),\end{split}

and

ImV(k0,k1,0),(x,y)=ImV(k0,k1,0),+(x,y)2θqIm(x0)=ImV+(x,y)2θqIm(x0)4k0πqIm(x0)4k1πIm(x0)<ImV+(x,y)Vol(MKθ)\begin{split}\mathrm{Im}V^{(k_{0},k_{1},0),-}(x,y)=&\mathrm{Im}V^{(k_{0},k_{1},0),+}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})\\ =&\mathrm{Im}V^{+}(x,y)-\frac{2\theta}{q}\mathrm{Im}(x_{0})-\frac{4k_{0}\pi}{q}\mathrm{Im}(x_{0})-4k_{1}\pi\mathrm{Im}(x_{0})\\ <&\mathrm{Im}V^{+}(x,y)\leqslant\mathrm{Vol}(M_{K_{\theta}})\end{split}

where the penultimate inequality comes from (7.2).

We note that V(k0,k1,k2),±V^{(k_{0},k_{1},k_{2}),\pm} differs from V±V^{\pm} by a linear function. Therefore, for each (θ1,θ2)Dδ,(\theta_{1},\theta_{2})\in\partial D_{\delta}, the function

g(θ1,θ2)±(t)ImV(k0,k1,0)(θ1±itIm(x0),θ2+itIm(y0))g^{\pm}_{(\theta_{1},\theta_{2})}(t)\doteq\mathrm{Im}V^{(k_{0},k_{1},0)}(\theta_{1}\pm it\mathrm{Im}(x_{0}),\theta_{2}+it\mathrm{Im}(y_{0}))

is concave up on [0,1],[0,1], and hence

g(θ1,θ2)±(t)max{g(θ1,θ2)±(0),g(θ1,θ2)±(1)}<Vol(MKθ).g^{\pm}_{(\theta_{1},\theta_{2})}(t)\leqslant\max\Big{\{}g^{\pm}_{(\theta_{1},\theta_{2})}(0),g^{\pm}_{(\theta_{1},\theta_{2})}(1)\Big{\}}<\mathrm{Vol}(M_{K_{\theta}}).

Putting all together, we have: In the Im(x0)>0\mathrm{Im}(x_{0})>0 case, if k0q+k1>0,\frac{k_{0}}{q}+k_{1}>0, then ImV(k0,k1,0),±(x,y)<Vol(MKθ)\mathrm{Im}V^{(k_{0},k_{1},0),\pm}(x,y)<\mathrm{Vol}(M_{K_{\theta}}) on S+,S^{+}, and if k0q+k1<0,\frac{k_{0}}{q}+k_{1}<0, then ImV(k0,k1,0),±(x,y)<Vol(MKθ)\mathrm{Im}V^{(k_{0},k_{1},0),\pm}(x,y)<\mathrm{Vol}(M_{K_{\theta}}) on S.S^{-}. In the Im(x0)<0\mathrm{Im}(x_{0})<0 case, if k0q+k1>0,\frac{k_{0}}{q}+k_{1}>0, then ImV(k0,k1,0),±(x,y)<Vol(MKθ)\mathrm{Im}V^{(k_{0},k_{1},0),\pm}(x,y)<\mathrm{Vol}(M_{K_{\theta}}) on S,S^{-}, and if k0q+k1<0,\frac{k_{0}}{q}+k_{1}<0, then ImV(k0,k1,0),±(x,y)<Vol(MKθ)\mathrm{Im}V^{(k_{0},k_{1},0),\pm}(x,y)<\mathrm{Vol}(M_{K_{\theta}}) on S+.S^{+}.

7.2.2 Estimate on Dδ2D_{\frac{\delta}{2}}^{\prime}

Let

F^D±(k0,k1,k2)=Dδer4πiV(k0,k1,k2),±(x,y)𝑑x𝑑y.\hat{F}^{\pm}_{D^{\prime}}(k_{0},k_{1},k_{2})=\int_{D^{\prime}_{\delta}}e^{\frac{r}{4\pi i}V^{(k_{0},k_{1},k_{2}),\pm}(x,y)}dxdy.
Lemma 7.6.

For any triple (k0,k1,k2),(k_{0},k_{1},k_{2}),

F^D±(k0,k1,k2)=O(er4π(Vol(MKθ)ϵ)).\hat{F}^{\pm}_{D^{\prime}}(k_{0},k_{1},k_{2})=O\Big{(}e^{\frac{r}{4\pi}\big{(}\mathrm{Vol}(M_{K_{\theta}})-\epsilon\big{)}}\Big{)}.
Proof.

In D,δ,D^{\prime}_{\mathbb{C},\delta}, we have

0<arg(1e2i(y+x))<π2(Re(y)+Re(x))0<\arg(1-e^{-2i(y+x)})<\pi-2(\mathrm{Re}(y)+\mathrm{Re}(x))

and

2(Re(y)Re(x))3π<arg(1e2i(yx))<0.2(\mathrm{Re}(y)-\mathrm{Re}(x))-3\pi<\arg(1-e^{2i(y-x)})<0.

For k20,k_{2}\geqslant 0, let y=Re(y)+il.y=\mathrm{Re}(y)+il. Then

ImV(k0,k1,k2),±l=4Re(x)+2arg(1e2i(y+x))+2arg(1e2i(yx))4k2π<4x+2(π2(Re(y)+Re(x)))+04k2π=2π4Re(y)4k2π<2δ,\begin{split}\frac{\partial\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm}}{\partial l}&=4\mathrm{Re}(x)+2\arg(1-e^{-2i(y+x)})+2\arg(1-e^{2i(y-x)})-4k_{2}\pi\\ &<4x+2(\pi-2(\mathrm{Re}(y)+\mathrm{Re}(x)))+0-4k_{2}\pi\\ &=2\pi-4\mathrm{Re}(y)-4k_{2}\pi<-2\delta,\end{split}

where the last inequality comes from that π2+δ2<Re(y)<πδ2\frac{\pi}{2}+\frac{\delta}{2}<\mathrm{Re}(y)<\pi-\frac{\delta}{2} and k20.k_{2}\geqslant 0. Therefore, pushing the integral domain along the ilil direction far enough (without changing Im(x)\mathrm{Im}(x)), the imaginary part of ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} becomes smaller than the volume of MKθ.M_{K_{\theta}}. Since ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} is already smaller than the volume of MKθM_{K_{\theta}} on Dδ,\partial D^{\prime}_{\delta}, it becomes even smaller on the side.

For k2<0,k_{2}<0, let y=Re(y)il.y=\mathrm{Re}(y)-il. Then

ImV(k0,k1,k2),±l=4Re(x)2arg(1e2i(y+x))2arg(1e2i(yx))+4k2π<4x02(2(Re(y)Re(x))3π)+4k2π=6π4Re(y)+4k2π<2δ,\begin{split}\frac{\partial\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm}}{\partial l}&=-4\mathrm{Re}(x)-2\arg(1-e^{-2i(y+x)})-2\arg(1-e^{2i(y-x)})+4k_{2}\pi\\ &<-4x-0-2(2(\mathrm{Re}(y)-\mathrm{Re}(x))-3\pi)+4k_{2}\pi\\ &=6\pi-4\mathrm{Re}(y)+4k_{2}\pi<-2\delta,\end{split}

where the last inequality comes from that π2+δ2<Re(y)<πδ2\frac{\pi}{2}+\frac{\delta}{2}<\mathrm{Re}(y)<\pi-\frac{\delta}{2} again and k2<0.k_{2}<0. Therefore, pushing the integral domain along the il-il direction far enough (without changing Im(x)\mathrm{Im}(x)), the imaginary part of ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} becomes smaller than the volume of MKθ.M_{K_{\theta}}. Since ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} is already smaller than the volume of MKθM_{K_{\theta}} on Dδ,\partial D^{\prime}_{\delta}, it becomes even smaller on the side. ∎

7.2.3 Estimate on Dδ2′′D_{\frac{\delta}{2}}^{\prime\prime}

Let

F^D′′±(k0,k1,k2)=Dδ′′er4πiV(k0,k1,k2),±(x,y)𝑑x𝑑y.\hat{F}^{\pm}_{D^{\prime\prime}}(k_{0},k_{1},k_{2})=\int_{D^{\prime\prime}_{\delta}}e^{\frac{r}{4\pi i}V^{(k_{0},k_{1},k_{2}),\pm}(x,y)}dxdy.
Lemma 7.7.

For any triple (k0,k1,k2),(k_{0},k_{1},k_{2}),

F^D′′±(k0,k1,k2)=O(er4π(Vol(MKθ)ϵ)).\hat{F}^{\pm}_{D^{\prime\prime}}(k_{0},k_{1},k_{2})=O\Big{(}e^{\frac{r}{4\pi}\big{(}\mathrm{Vol}(M_{K_{\theta}})-\epsilon\big{)}}\Big{)}.
Proof.

In D,δ′′,D^{\prime\prime}_{\mathbb{C},\delta}, we have

0<arg(1e2i(y+x))<3π2(Re(y)+Re(x))0<\arg(1-e^{-2i(y+x)})<3\pi-2(\mathrm{Re}(y)+\mathrm{Re}(x))

and

2(Re(y)Re(x))π<arg(1e2i(yx))<0.2(\mathrm{Re}(y)-\mathrm{Re}(x))-\pi<\arg(1-e^{2i(y-x)})<0.

For k2>0,k_{2}>0, let y=Re(y)+il.y=\mathrm{Re}(y)+il. Then

ImV(k0,k1,k2),±l=4Re(x)+2arg(1e2i(y+x))+2arg(1e2i(yx))4k2π<4x+2(3π2(Re(y)+Re(x)))+04k2π=6π4Re(y)4k2π<2δ,\begin{split}\frac{\partial\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm}}{\partial l}&=4\mathrm{Re}(x)+2\arg(1-e^{-2i(y+x)})+2\arg(1-e^{2i(y-x)})-4k_{2}\pi\\ &<4x+2(3\pi-2(\mathrm{Re}(y)+\mathrm{Re}(x)))+0-4k_{2}\pi\\ &=6\pi-4\mathrm{Re}(y)-4k_{2}\pi<-2\delta,\end{split}

where the last inequality comes from that π2+δ2<Re(y)<πδ2\frac{\pi}{2}+\frac{\delta}{2}<\mathrm{Re}(y)<\pi-\frac{\delta}{2} and k2>0.k_{2}>0. Therefore, pushing the integral domain along the ilil direction far enough (without changing Im(x)\mathrm{Im}(x)), the imaginary part of ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} becomes smaller than the volume of MKθ.M_{K_{\theta}}. Since ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} is already smaller than the volume of MKθM_{K_{\theta}} on Dδ′′,\partial D^{\prime\prime}_{\delta}, it becomes even smaller on the side.

For k20,k_{2}\leqslant 0, let y=Re(y)il.y=\mathrm{Re}(y)-il. Then

ImV(k0,k1,k2),±l=4Re(x)2arg(1e2i(y+x))2arg(1e2i(yx))+4k2π<4x02(2(Re(y)Re(x))π)+4k2π=2π4Re(y)+4k2π<2δ,\begin{split}\frac{\partial\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm}}{\partial l}&=-4\mathrm{Re}(x)-2\arg(1-e^{-2i(y+x)})-2\arg(1-e^{2i(y-x)})+4k_{2}\pi\\ &<-4x-0-2(2(\mathrm{Re}(y)-\mathrm{Re}(x))-\pi)+4k_{2}\pi\\ &=2\pi-4\mathrm{Re}(y)+4k_{2}\pi<-2\delta,\end{split}

where the last inequality comes from that π2+δ2<Re(y)<πδ2\frac{\pi}{2}+\frac{\delta}{2}<\mathrm{Re}(y)<\pi-\frac{\delta}{2} again and k20.k_{2}\leqslant 0. Therefore, pushing the integral domain along the il-il direction far enough (without changing Im(x)\mathrm{Im}(x)), the imaginary part of ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} becomes smaller than the volume of MKθ.M_{K_{\theta}}. Since ImV(k0,k1,k2),±\mathrm{Im}V^{(k_{0},k_{1},k_{2}),\pm} is already smaller than the volume of MKθM_{K_{\theta}} on Dδ′′,\partial D^{\prime\prime}_{\delta}, it becomes even smaller on the side.∎

7.3 Proof of Theorem 1.2

Theorem 1.2 follows from the following proposition.

Proposition 7.8.
  1. (1)
    f^r+(0,,0)+f^r(,0,,0)=2ik32rk+12πqHessV+(x0,y0)er4π(Vol(MKθ)+iCS(MKθ))(1+O(1r)).\begin{split}\hat{f}^{+}_{r}(0,\dots,0)+&\hat{f}^{-}_{r}(,0,\dots,0)=\frac{-2i^{-\frac{k-3}{2}}r^{\frac{k+1}{2}}}{\pi\sqrt{q}\sqrt{-\mathrm{Hess}V^{+}(x_{0},y_{0})}}e^{\frac{r}{4\pi}\big{(}\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})\big{)}}\Big{(}1+O\Big{(}\frac{1}{\sqrt{r}}\Big{)}\Big{)}.\end{split}
  2. (2)

    For (n1,,nk1,k1,k2)(0,,0),(n_{1},\dots,n_{k-1},k_{1},k_{2})\neq(0,\dots,0),

    |f^r±(n1,,nk1,k1,k2)|O(rk2)er4πVol(MKθ).\begin{split}|\hat{f}^{\pm}_{r}(n_{1},\dots,n_{k-1},k_{1},k_{2})|\leqslant O\Big{(}r^{\frac{k}{2}}\Big{)}e^{\frac{r}{4\pi}\mathrm{Vol}(M_{K_{\theta}})}.\end{split}
Proof.

By Lemmas 7.6 and 7.7, the contribution of Dδ2D^{\prime}_{\frac{\delta}{2}} and Dδ2′′D^{\prime\prime}_{\frac{\delta}{2}} to f^r(n1,,nk1,k1,k2)\hat{f}_{r}(n_{1},\dots,n_{k-1},k_{1},k_{2}) is of order O(er4π(Vol(MKθ)ϵ)),O\big{(}e^{\frac{r}{4\pi}\big{(}\mathrm{Vol}(M_{K_{\theta}})-\epsilon\big{)}}\big{)}, hence is neglectable.

Then (1) follows from Propositions 5.4 and 7.3.

To see (2), for (n1,,nk1,k1,k2)(0,,0)(n_{1},\dots,n_{k-1},k_{1},k_{2})\neq(0,\dots,0) with (k0q+k1,k2)(0,0),\big{(}\frac{k_{0}}{q}+k_{1},k_{2}\big{)}\neq(0,0), by Proposition 5.7 (1), Lemmas 7.4 and 7.5, and Lemma 2.6, we have that

f^r±(n1,n2,,nk1,k1,k2)=O(er4π(Vol(MKθ)ϵ)).\hat{f}^{\pm}_{r}(n_{1},n_{2},\dots,n_{k-1},k_{1},k_{2})=O\Big{(}e^{\frac{r}{4\pi}\big{(}\mathrm{Vol}(M_{K_{\theta}})-\epsilon\big{)}}\Big{)}.

If (k0q+k1,k2)=(0,0),\big{(}\frac{k_{0}}{q}+k_{1},k_{2}\big{)}=(0,0), in particular, if k0q+k1=0,\frac{k_{0}}{q}+k_{1}=0, then |k0|=|qk1||k_{0}|=|qk_{1}| is either 0 or greater than or equal to q.q. Then by Propositions 5.7 (2) and 7.3, and Lemma 2.6,

|f^r±(n1,n2,,nk1,k1,k2)|O(rk2)er4πVol(MKθ).|\hat{f}^{\pm}_{r}(n_{1},n_{2},\dots,n_{k-1},k_{1},k_{2})|\leqslant O\Big{(}r^{\frac{k}{2}}\Big{)}e^{\frac{r}{4\pi}\mathrm{Vol}(M_{K_{\theta}})}.

Proof of Theorem 1.2.

By Propositions 4.1 and 7.8, we have

limr4πrlogRTr(MKθ)=limr4πr(logκr+log(f^r±(n1,,nk1,k1,k2)+O(er4π(12Vol(S3K41)+ϵ))))=i(3i=1kai+σ(L)+2k2)π2+Vol(MKθ)+iCS(MKθ)=Vol(MKθ)+iCS(MKθ)mod iπ2.\begin{split}&\lim_{r\to\infty}\frac{4\pi}{r}\log\mathrm{RT}_{r}(M_{K_{\theta}})\\ =&\lim_{r\to\infty}\frac{4\pi}{r}\bigg{(}\log\kappa_{r}+\log\bigg{(}\sum\hat{f}^{\pm}_{r}(n_{1},\dots,n_{k-1},k_{1},k_{2})+O\Big{(}e^{\frac{r}{4\pi}\big{(}\frac{1}{2}\mathrm{Vol}(\mathrm{S}^{3}{\smallsetminus}K_{4_{1}})+\epsilon\big{)}}\Big{)}\bigg{)}\bigg{)}\\ =&i\Big{(}3\sum_{i=1}^{k}a_{i}+\sigma(L)+2k-2\Big{)}\pi^{2}+\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})\\ =&\mathrm{Vol}(M_{K_{\theta}})+i\mathrm{CS}(M_{K_{\theta}})\quad\text{mod }i\pi^{2}\mathbb{Z}.\end{split}

7.4 Cone angles satisfying the assumption of Theorem 1.2

Proposition 7.9.
  1. (1)

    If (p,q)(±1,0),(p,q)\neq(\pm 1,0), (0,±1),(0,\pm 1), (±1,±1),(\pm 1,\pm 1), (±2,±1),(\pm 2,\pm 1), (±3,±1),(\pm 3,\pm 1), (±4,±1)(\pm 4,\pm 1) and (±5,±1),(\pm 5,\pm 1), then for any cone angle θ\theta less than or equal to 2π,2\pi,

    Vol(MKθ)>Vol(S3K41)2.\mathrm{Vol}(M_{K_{\theta}})>\frac{\mathrm{Vol}(S^{3}{\smallsetminus}K_{4_{1}})}{2}.
  2. (2)

    If (p,q)=(0,±1),(p,q)=(0,\pm 1), (±1,±1),(\pm 1,\pm 1), (±2,±1),(\pm 2,\pm 1), (±3,±1),(\pm 3,\pm 1), (±4,±1)(\pm 4,\pm 1) or (±5,±1),(\pm 5,\pm 1), then for any cone angle θ\theta less than or equal to π,\pi,

    Vol(MKθ)>Vol(S3K41)2.\mathrm{Vol}(M_{K_{\theta}})>\frac{\mathrm{Vol}(S^{3}{\smallsetminus}K_{4_{1}})}{2}.
Proof.

By [28, Proposition 7.2], (1) holds for θ=2π.\theta=2\pi. Then by [12, Corollary 5.4] that Vol(MKθ)\mathrm{Vol}(M_{K_{\theta}}) is decreasing in θ,\theta, (1) holds for all θ\theta less than 2π.2\pi.

For (2), by [12, Chapter 6] have that for (p,q)=(0,±1),(p,q)=(0,\pm 1), (±1,±1),(\pm 1,\pm 1), (±2,±1),(\pm 2,\pm 1), (±3,±1),(\pm 3,\pm 1), (±4,±1)(\pm 4,\pm 1) or (±5,±1)(\pm 5,\pm 1) and for any θ\theta less than 2π2\pi there exists a unique hyperbolic cone metric on MM with singular locus KK with cone angle θ,\theta, with Vol(MK0)=Vol(S3K41)\mathrm{Vol}(M_{K_{0}})=\mathrm{Vol}(S^{3}{\smallsetminus}K_{4_{1}}) and Vol(MK2π)=Vol(M)0.\mathrm{Vol}(M_{K_{2\pi}})=\mathrm{Vol}(M)\geqslant 0. Let LθL_{\theta} be the length of KK in MKθ.M_{K_{\theta}}. Then by the Schläfli formula [12, Theorem 5.2],

d2Vol(MKθ)dθ2=dLθdθ.\frac{d^{2}\mathrm{Vol}(M_{K_{\theta}})}{d\theta^{2}}=-\frac{dL_{\theta}}{d\theta}.

Let mm and ll respectively be the meridian and longitude of the boundary of the figure-8 complement as in Section 6, then mm is isotopic to KK in M,M, and

{pH(m)+H(l)=θiH(m)=Lθ.\left\{\begin{array}[]{c}p\mathrm{H}(m)+\mathrm{H}(l)=\theta i\\ \\ \mathrm{H}(m)=L_{\theta}.\end{array}\right.

As a consequence, we have

p+dH(l)dLθ=idθdLθ,p+\frac{d\mathrm{H}(l)}{dL_{\theta}}=i\frac{d\theta}{dL_{\theta}},

and hence

dLθdθ=(ImdH(l)dH(m))1.\frac{dL_{\theta}}{d\theta}=\bigg{(}\mathrm{Im}\frac{d\mathrm{H}(l)}{d\mathrm{H}(m)}\bigg{)}^{-1}.

By [20, Formula (68)], we have

dH(l)dH(m)=212eLθ2eLθe2Lθ+e2Lθ2eLθ2eLθ+1,\frac{d\mathrm{H}(l)}{d\mathrm{H}(m)}=2\frac{1-2e^{L_{\theta}}-2e^{-L_{\theta}}}{\sqrt{e^{2L_{\theta}}+e^{-2L_{\theta}}-2e^{L_{\theta}}-2e^{-L_{\theta}}+1}},

which implies that ImdH(l)dH(m)>0,\mathrm{Im}\frac{d\mathrm{H}(l)}{d\mathrm{H}(m)}>0, and hence dLθdθ>0\frac{dL_{\theta}}{d\theta}>0 and d2Vol(MKθ)dθ2=dLθdθ<0.\frac{d^{2}\mathrm{Vol}(M_{K_{\theta}})}{d\theta^{2}}=-\frac{dL_{\theta}}{d\theta}<0. As a consequence, Vol(MKθ)\mathrm{Vol}(M_{K_{\theta}}) is strictly concave down in θ,\theta, and

Vol(MKπ)>Vol(MK0)+Vol(MK2π)2Vol(S3K41)2.\mathrm{Vol}(M_{K_{\pi}})>\frac{\mathrm{Vol}(M_{K_{0}})+\mathrm{Vol}(M_{K_{2\pi}})}{2}\geqslant\frac{\mathrm{Vol}(S^{3}{\smallsetminus}K_{4_{1}})}{2}.

Then by the monotonicity,

Vol(MKθ)>Vol(S3K41)2\mathrm{Vol}(M_{K_{\theta}})>\frac{\mathrm{Vol}(S^{3}{\smallsetminus}K_{4_{1}})}{2}

for all cone angle θ\theta less than or equal to π.\pi.

Remark 7.10.

We note that the upper bound π\pi in (2) of Proposition 7.9 is not sharp.

References

  • [1] G. Belletti, R. Detcherry, E. Kalfagianni, and T. Yang, Growth of quantum 6j-symbols and applications to the Volume Conjecture, to appear in J. Differential Geom.
  • [2] C. Blanchet, N. Habegger, G. Masbaum and P. Vogel, Three-manifold invariants derived from the Kauffman bracket, Topology 31 (1992), no. 4, 685–699.
  • [3] Q. Chen and J. Murakami, Asymptotics of quantum 6j6j symbols, preprint, arXiv:1706.04887.
  • [4] Q. Chen and T. Yang, Volume Conjectures for the Reshetikhin-Turaev and the Turaev-Viro Invariants, Quantum Topol. 9 (2018), no. 3, 419–460.
  • [5] D. Cooper, C. Hodgson and S. Kerckhoff, Three-dimensional orbifolds and cone-manifolds. With a postface by Sadayoshi Kojima, MSJ Memoirs, 5. Mathematical Society of Japan, Tokyo, 2000. x+170 pp. ISBN: 4-931469-05-1.
  • [6] R. Detcherry and E. Kalfagianni, Gromov norm and Turaev-Viro invariants of 3-manifolds, to appear in Ann. Sci. de l’Ecole Normale Sup..
  • [7] R. Detcherry, E. Kalfagianni and T. Yang, Turaev-Viro invariants, colored Jones polynomials and volume, Quantum Topol. 9 (2018), no. 4, 775–813.
  • [8] L. Faddeev, Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), no. 3, 249–254.
  • [9] L. Faddeev, R. Kashaev and A. Volkov, Strongly coupled quantum discrete Liouville theory, I. Algebraic approach and duality. Comm. Math. Phys. 219 (2001), no. 1, 199–219.
  • [10] S. Garoufalidis and T. Le, Asymptotics of the colored Jones function of a knot, Geom. Topol. 15 (2011), no. 4, 2135–2180.
  • [11] K. Habiro. On the colored Jones polynomial of some simple links, In: Recent Progress Towards the Volume Conjecture, Research Institute for Mathematical Sciences (RIMS) Kokyuroku 1172, September 2000.
  • [12] C. Hodgson, Degeneration and regeneration of geometric structures on three-manifolds (foliations, Dehn surgery), Thesis (Ph.D.) Princeton University. 1986. 175 pp.
  • [13] C. Hodgson and S. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1–59.
  • [14] R. Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995), no. 19, 1409–1418.
  • [15] R. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm, Lett. Math. Phys. 39 (1997), no. 3, 269–275.
  • [16] S. Kojima, Deformations of hyperbolic 3-cone-manifolds, J. Differential Geom. 49 (1998), no. 3, 469–516.
  • [17] D. London, A note on matrices with positive definite real part, Proc. Amer. Math. Soc. 82 (1981), no. 3, 322–324.
  • [18] W. Lickorish, The skein method for three-manifold invariants, J. Knot Theory Ramifications 2 (1993), no. 2, 171–194.
  • [19] G. Masbaum Skein-theoretical derivation of some formulas of Habiro, Algebr. Geom. Topol., 3, no. 1 (2003), 537–556.
  • [20] W. Neumann and D. Zagier, Volumes of hyperbolic three-manifolds, Topology 24 (1985), no. 3, 307– 332.
  • [21] T. Ohtsuki, On the asymptotic expansion of the Kashaev invariant of the 525_{2} knot, Quantum Topol. 7 (2016), no. 4, 669 –735.
  • [22] T. Ohtsuki, On the asymptotic expansion of the quantum SU(2)SU(2) invariant at q=exp(4π1/N)q=\exp(4\pi\sqrt{-1}/N) for closed hyperbolic 3-manifolds obtained by integral surgery along the figure-eight knot, Algebr. Geom. Topol. 18 (2018), no. 7, 4187–4274.
  • [23] N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26.
  • [24] N. Reshetikhin and V. Turaev, Invariants of 33-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547–597.
  • [25] D. Rolfsen, Knots and links, 2nd printing with corrections, Mathematics Lecture Series 7, Publish or Perish, Inc. (1990).
  • [26] E. Stein and R. Shakarchi, Fourier analysis, An introduction. Princeton Lectures in Analysis, 1. Princeton University Press, Princeton, NJ, 2003. xvi+311 pp. ISBN: 0-691-11384-X.
  • [27] W. Thurston, The geometry and topology of 33-manifolds, Princeton Univ. Math. Dept. (1978). Available from http://msri.org/publications/books/gt3m/.
  • [28] K. H. Wong and T. Yang, On the Volume Conjecture for hyperbolic Dehn-filled 33-manifolds along the figure-eight knot, arXiv:2003.10053.
  • [29] K. H. Wong and T. Yang, Relative Reshetikhin-Turaev invariants, hyperbolic cone metrics and discrete Fourier transforms I, arXiv: 2008.05045.
  • [30] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (3): 351–399.
  • [31] T. Yoshida, The η\eta-invariant of hyperbolic 33-manifolds, Invent. Math. 81 (1985), no. 3, 473–514.
  • [32] D. Zagier, The dilogarithm function, Frontiers in number theory, physics, and geometry. II, 3–65, Springer, Berlin, 2007.

Ka Ho Wong
Department of Mathematics
Texas A&M University
College Station, TX 77843, USA
(daydreamkaho@math.tamu.edu)

Tian Yang
Department of Mathematics
Texas A&M University
College Station, TX 77843, USA
(tianyang@math.tamu.edu)