This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Relativistic spin hydrodynamics revisited with general rotation by entropy-current analysis

Lixin Yang yanglixin@fudan.edu.cn Institute of Modern Physics, Fudan University, Shanghai 200433, China    Li Yan cliyan@fudan.edu.cn Institute of Modern Physics, Fudan University, Shanghai 200433, China
Abstract

We revisit the canonical formulation of spin hydrodynamics for Dirac fermions with a general thermal vorticity. The orders of the general thermal vorticity and the corresponding spin variables are considered independently from those of the conventional hydrodynamic variables and their perturbative gradients. Assuming a totally antisymmetric spin current of Dirac fermions, the entropy-current analysis with a general spin potential indicates that the constitutive relations of the stress-energy tensor have to involve spin variables, particularly those linked to boost symmetry, to adhere to the entropy principle. In the presence of the degree of freedom associated with boost symmetry, we choose the constitutive relations of the canonical formulation to be connected to those of the phenomenological formulation through pseudogauge transformation. Subsequently, a linear-mode analysis is conducted using the resulting spin hydrodynamic equations. It is observed that the spin and hydrodynamic modes in this canonical formulation display different characteristics compared to those in the phenomenological formulation up to the second order of gradient.

I Introduction

Relativistic hydrodynamics, as an effective theory in terms of the IR variables, has proven highly successful in describing the macroscopic behavior of various many-body systems, spanning from astrophysics to relativistic heavy-ion collisions. Spin-orbit coupling plays a significant role in relativistic fluids with spinful constituents, leading to spin polarization, particularly in the presence of substantial angular momentum and/or strong vorticity. The polarization phenomena have been intensively studied in heavy-ion collisions since long Liang:2004ph ; Liang:2004xn ; Voloshin:2004ha ; Betz:2007kg ; Becattini:2007sr ; Huang:2011ru , and its occurrence has been confirmed through experimental measurements of hyperon polarization STAR:2017ckg ; STAR:2018gyt ; STAR:2020xbm and vector-meson spin alignment ALICE:2019aid ; STAR:2022fan ; ALICE:2022dyy . The global polarization of Λ{\Lambda} hyperons has been effectively captured by relativistic hydrodynamic models incorporating thermalized spin degrees of freedom Becattini:2007sr ; Becattini:2007nd ; Becattini:2013vja ; Becattini:2013fla ; Becattini:2015ska ; Becattini:2016gvu ; Karpenko:2016jyx ; Pang:2016igs ; Xie:2017upb . However, theoretical calculations Becattini:2017gcx ; Becattini:2020ngo concerning the azimuthal-angle dependence of hyperon polarization have yielded results with opposite signs compared to the experimental data Niida:2018hfw ; STAR:2019erd . This discrepancy, known as the“sign problem” in explaining local spin polarization, has also been addressed in related reviews Liu:2020ymh ; Gao:2020vbh ; Huang:2020xyr ; Becattini:2022zvf .

Relativistic spin hydrodynamics is a promising framework for understanding the sign problem, which has been advancing rapidly through various approaches in a significant body of research Montenegro:2017rbu ; Montenegro:2017lvf ; Florkowski:2017ruc ; Florkowski:2018fap ; Montenegro:2018bcf ; Hattori:2019lfp ; Li:2019qkf ; Montenegro:2020paq ; Garbiso:2020puw ; Gallegos:2020otk ; Fukushima:2020ucl ; Bhadury:2020puc ; Li:2020eon ; Shi:2020htn ; Hu:2021lnx ; Gallegos:2021bzp ; Peng:2021ago ; Hongo:2021ona ; Wang:2021ngp ; Wang:2021wqq ; She:2021lhe ; Hu:2021pwh ; Cartwright:2021qpp ; Hongo:2022izs ; Weickgenannt:2022zxs ; Bhadury:2022ulr ; Cao:2022aku ; Daher:2022xon ; Singh:2022ltu ; Gallegos:2022jow ; Biswas:2023qsw ; Xie:2023gbo ; Becattini:2023ouz . Essentially, relativistic spin hydrodynamics is constructed by introducing the spin modes linked to Lorentz symmetry as additional IR variables, alongside the conventional hydrodynamic variables related to relativistic translation invariance. The spin variables can typically be categorized into rotation and boost components based on the subgroups of the Lorentz transformation. The former characterizes the spin polarization in the fluid, while the role of the latter remains unclear. An entropy-current analysis approach to spin hydrodynamics was introduced in Hattori:2019lfp with the canonical spin current being antisymmetric only in its last two indices, referred to as the phenomenological formulation. The same approach is also implemented in the canonical formulations Hongo:2021ona ; Cao:2022aku where the canonical spin current of Dirac fermions is totally anti-symmetric. It is noteworthy that the canonical formulations in Hongo:2021ona ; Cao:2022aku are developed without considering the degree of freedom associated with boost symmetry. In contrast, another canonical formulation incorporating boost variables is presented in Daher:2022xon , which is connected to the phenomenological formulation through a pseudogauge transformation. It is meaningful to explore the inclusion of boost variables in a general relativistic framework, since boost symmetry, along with rotation, is a fundamental aspect of Lorentz covariant hydrodynamics. Furthermore, hydrodynamics with varying approaches to the treatment of boost modes may exhibit distinct behavior when subjected to spin-orbit coupling.

In this paper, we investigate the canonical formulation of spin hydrodynamics by considering its applicability to spinful fluids across a broad range of thermal vorticity intensities. In this scenario, the spin potential is presumed to be a general antisymmetric tensor in order to coincide with the thermal vorticity in equilibrium. Moreover, the magnitudes of both the thermal vorticity and the spin potential are assessed without regard to perturbative gradients. In the case of general spinful fluids, the entropy-current analysis suggests that the entropy principle cannot be fulfilled unless spin variables are included in the constitutive relations of the stress-energy tensor, with these spin variables needing to account for the degree of freedom linked to boost symmetry. The constitutive relations in the presence of boost variables have not yet been definitively determined. For simplilcity, we opt to connect the canonical formulation of spin hydrodynamics to the phenomenological approach through pseudogauge transformation. The linear-mode analysis using the resulting spin hydrodynamic equations reveals that the spin and hydrodynamic modes in this canonical formulation exhibit distinct dispersion relations compared to the phenomenological formulation up to the second order of gradients.

Throughout this paper, we adopt the mostly plus Minkowski metric ημν{\eta}^{{\mu}{\nu}}\equivdiag(1,1,1,1)\left(-1,1,1,1\right). For the Levi-Civita symbol, we use the convention ϵ0123=ϵ0123=1{\epsilon}^{0123}=-{\epsilon}_{0123}=1 and ϵ123=ϵ123=1{\epsilon}^{123}={\epsilon}_{123}=1. We also define the notations X(μν)12(Xμν+Xνμ)X^{({\mu}{\nu})}\equiv\frac{1}{2}\left(X^{{\mu}{\nu}}+X^{{\nu}{\mu}}\right) and X[μν]12(XμνXνμ)X^{[{\mu}{\nu}]}\equiv\frac{1}{2}\left(X^{{\mu}{\nu}}-X^{{\nu}{\mu}}\right).

II Spin hydrodynamics for Dirac fermions

The conservation equations of the Noether’s currents from the relativistic translation and Lorentz symmetry are

μΘμν=0,\displaystyle\partial_{\mu}{\Theta}^{{\mu}{\nu}}=0, (1)
αJαμν=αΣαμν+ΘμνΘνμ=0,\displaystyle\partial_{\alpha}J^{{\alpha}{\mu}{\nu}}=\partial_{\alpha}{\Sigma}^{{\alpha}{\mu}{\nu}}+{\Theta}^{{\mu}{\nu}}-{\Theta}^{{\nu}{\mu}}=0, (2)

where the total angular momentum is JαμνΣαμν+xμΘανxνΘαμJ^{{\alpha}{\mu}{\nu}}\equiv{\Sigma}^{{\alpha}{\mu}{\nu}}+x^{\mu}{\Theta}^{{\alpha}{\nu}}-x^{\nu}{\Theta}^{{\alpha}{\mu}} with Σαμν{\Sigma}^{{\alpha}{\mu}{\nu}} being the spin tensor. The canonical stress-energy tensor Θμν{\Theta}^{{\mu}{\nu}} is asymmetric in its two indices, comprising both symmetric and antisymmetric components, while the total angular momentum density JαμνJ^{{\alpha}{\mu}{\nu}} is antisymmetric in its last two indices.

In classical physics, the hydrodynamics of the Quark-Gluon Plasma (QGP) is formulated with IR variables while the details at a microscopic level are averaged out. For simplicity, we consider spin hydrodynamics without conserved charges. We follow Hongo:2021ona to assume that the coarse-grained spin tensor in hydrodynamics retains the entire antisymmetry of its corresponding quantum operator. Employing the fluid four-velocity uμu^{\mu} with uμuμ=1u^{\mu}u_{\mu}=-1, the spin density is introduced as μνuαΣαμν{\cal R}^{{\mu}{\nu}}\equiv-u_{\alpha}{\Sigma}^{{\alpha}{\mu}{\nu}} with μν=νμ{\cal R}^{{\mu}{\nu}}=-{\cal R}^{{\nu}{\mu}}. The resulting spin density satisfies μνuν=0{\cal R}^{{\mu}{\nu}}u_{\nu}=0 due to the total antisymmetry of Σμνα{\Sigma}^{{\mu}{\nu}{\alpha}}. As a result, μν{\cal R}^{{\mu}{\nu}} is fully saturated with only three independent components associated with the spatial rotation symmetry, while the remaining three attached to the boost symmetry are absent in the spin tensor Σμνα{\Sigma}^{{\mu}{\nu}{\alpha}}111In general, a totally antisymmetric rank-3 tensor Σαμν{\Sigma}^{{\alpha}{\mu}{\nu}} can contain, at most, four independent components, of which only three can be present in μν{\cal R}^{{\mu}{\nu}} by the definition μνuαΣαμν{\cal R}^{{\mu}{\nu}}\equiv-u_{\alpha}{\Sigma}^{{\alpha}{\mu}{\nu}}. In any case, the totally antisymmetric spin tensor cannot encompass all six independent components associated with Lorentz symmetry.. In such condition, it is yet to be determined whether the spin variables, especially the boost ones, can be generally absent in the coarse-grained stress-energy tensor. To this end, we perform an entropy-current analysis to constrain the presence of spin variables in hydrodynamics with the entropy principle.

The totally antisymmetric spin tensor can be decomposed into longitudinal and transverse parts as

Σμνα=uμ𝒮να+uν𝒮αμ+uα𝒮μν+ϵμνασuσΣ̊,\displaystyle{\Sigma}^{{\mu}{\nu}{\alpha}}=u^{{\mu}}{\cal S}^{{\nu}{\alpha}}+u^{{\nu}}{\cal S}^{{\alpha}{\mu}}+u^{{\alpha}}{\cal S}^{{\mu}{\nu}}+{\epsilon}^{{\mu}{\nu}{\alpha}{\sigma}}u_{\sigma}{\mathring{{\Sigma}}},

where the antisymmetric component 𝒮μν{\cal S}^{{\mu}{\nu}} can be further decomposed as

𝒮μν=ϵμνρσρuσ+2u[μν],\displaystyle{\cal S}^{{\mu}{\nu}}={\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\cal R}_{\rho}u_{\sigma}+2u^{[{\mu}}{\cal B}^{{\nu}]},

with α=12ϵαμνσ𝒮μνuσ{\cal R}_{\alpha}=\frac{1}{2}{\epsilon}_{{\alpha}{\mu}{\nu}{\sigma}}{\cal S}^{{\mu}{\nu}}u^{\sigma} and μ=𝒮μνuν{\cal B}^{\mu}={\cal S}^{{\mu}{\nu}}u_{\nu}. Noting the identities

ϵμνασσ\displaystyle{\epsilon}^{{\mu}{\nu}{\alpha}{\sigma}}{\cal R}_{\sigma} =(uμϵναρσ+uνϵαμρσ+uαϵμνρσ)ρuσ,\displaystyle=\left(u^{{\mu}}{\epsilon}^{{\nu}{\alpha}{\rho}{\sigma}}+u^{\nu}{\epsilon}^{{\alpha}{\mu}{\rho}{\sigma}}+u^{\alpha}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}\right){\cal R}_{\rho}u_{\sigma},
0\displaystyle 0 =uμu[να]+uνu[αμ]+uαu[μν],\displaystyle=u^{{\mu}}u^{[{\nu}}{\cal B}^{{\alpha}]}+u^{\nu}u^{[{\alpha}}{\cal B}^{{\mu}]}+u^{\alpha}u^{[{\mu}}{\cal B}^{{\nu}]}, (3)

one readily writes the spin tensor into

Σμνα=ϵμνασ(σ+uσΣ̊),\displaystyle{\Sigma}^{{\mu}{\nu}{\alpha}}={\epsilon}^{{\mu}{\nu}{\alpha}{\sigma}}\left({\cal R}_{\sigma}+u_{\sigma}{\mathring{{\Sigma}}}\right), (4)

which immediately gives μν=ϵμνρσρuσ{\cal R}^{{\mu}{\nu}}={\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\cal R}_{\rho}u_{\sigma}. Since ρ{\cal R}_{\rho} captures all the three independent components of μν{\cal R}^{{\mu}{\nu}} in a covariant form, Σ̊{\mathring{{\Sigma}}} is automatically left as corrections out of equilibrium to be constrained by the entropy principle. Given μν{\cal R}^{{\mu}{\nu}} representing the rotation components of the spin modes 𝒮μν{\cal S}^{{\mu}{\nu}}, μν=2u[μν]{\cal B}^{{\mu}{\nu}}=2u^{[{\mu}}{\cal B}^{{\nu}]} as the rest part naturally denotes the boost modes where μ{\cal B}^{\mu} contains all the three independent components related to the boost symmetry.

The local thermodynamic relations generalized with spin variables are

Ts=ε+p12ωμν𝒮μν,\displaystyle Ts={\varepsilon}+p-\frac{1}{2}{\omega}_{{\mu}{\nu}}{\cal S}^{{\mu}{\nu}}, (5)
Tds=dε12ωμνd𝒮μν,\displaystyle Tds=d{\varepsilon}-\frac{1}{2}{\omega}_{{\mu}{\nu}}d{\cal S}^{{\mu}{\nu}}, (6)
sdT=dp12𝒮μνdωμν,\displaystyle sdT=dp-\frac{1}{2}{\cal S}^{{\mu}{\nu}}d{\omega}_{{\mu}{\nu}}, (7)

where TT, ss, ε{\varepsilon}, pp and ωμν=ωνμ{\omega}_{{\mu}{\nu}}=-{\omega}_{{\nu}{\mu}} denoting the local temperature, entropy density, energy density, pressure and spin potential respectively. An important point to note is that the local thermodynamic relations do not generally hold in the quantum-statistical description of a relativistic fluid Becattini:2023ouz , where the thermodynamic quantities, such as temperature, thermal velocity and spin potential can be unambiguously defined at the local thermodynamic equilibrium (LTE) Becattini:2014yxa . In this work, we adhere to the traditional hydrodynamics viewpoint Bhattacharya:2011tra ; Kovtun:2012rj and assume that it is always possible to establish the local thermodynamic relations with a proper redefinition of the thermodynamic quantities in a state near equilibrium. Although the thermodynamic quantities defined in the two frameworks may share different values, they should approach the same values as the fluid evolves to the global thermodynamic equilibrium (GTE).

Additionally, we take a general antisymmetric spin potential ωμν{\omega}_{{\mu}{\nu}} without the requirement ωμνuν=0{\omega}_{{\mu}{\nu}}u^{\nu}=0 even when it is conjugate to μν{\cal R}^{{\mu}{\nu}} in the local thermodynamic relations, as is case in the phenomenological formulation of spin hydrodynamicsHattori:2019lfp ; Fukushima:2020ucl ; Wang:2021ngp ; Wang:2021wqq ; Xie:2023gbo ; Daher:2022xon . One can also separate ωμν{\omega}_{{\mu}{\nu}} into rotation and boost parts as ωμν=rμν+bμν{\omega}_{{\mu}{\nu}}=r_{{\mu}{\nu}}+b_{{\mu}{\nu}} where

rμν=ϵμνρσrρuσ,bμν=2b[μuν]\displaystyle r_{{\mu}{\nu}}={\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}r^{\rho}u^{\sigma},\quad b_{{\mu}{\nu}}=2b_{[{\mu}}u_{{\nu}]}
rσ=12ϵσρμνuρrμν,bν=uμbμν.\displaystyle r^{\sigma}=\frac{1}{2}{\epsilon}^{{\sigma}{\rho}{\mu}{\nu}}u_{\rho}r_{{\mu}{\nu}},\quad b_{\nu}=u^{\mu}b_{{\mu}{\nu}}.

The conjugations in (5)-(7) differ from the canonical formulations in Hongo:2021ona ; Cao:2022aku where the boost variables are absence and the spin potential is chosen as rμνr_{{\mu}{\nu}} with rμνuν=0r_{{\mu}{\nu}}u^{\nu}=0. This difference is nontrivial. Although the Gibbs energy density gg from (5), i.e.,

g=ε+pTs=12ωμν𝒮μν=12(rμνμν+bμνμν)=rμμ+bμμ,\displaystyle g={\varepsilon}+p-Ts=\frac{1}{2}{\omega}_{{\mu}{\nu}}{\cal S}^{{\mu}{\nu}}=\frac{1}{2}\left(r_{{\mu}{\nu}}{\cal R}^{{\mu}{\nu}}+b_{{\mu}{\nu}}{\cal B}^{{\mu}{\nu}}\right)=r_{{\mu}}{\cal R}^{{\mu}}+b_{{\mu}}{\cal B}^{{\mu}}, (8)

gets no contributions from bμνμν=rμνμν=0b_{{\mu}{\nu}}{\cal R}^{{\mu}{\nu}}=r_{{\mu}{\nu}}{\cal B}^{{\mu}{\nu}}=0, the conjugations in (6) and (7),

12ωμνd𝒮μν=rμdμ+bμuνϵμνρσρduσ+bμdμ+ϵμνρσrρuννduμ,\displaystyle\frac{1}{2}{\omega}_{{\mu}{\nu}}d{\cal S}^{{\mu}{\nu}}=r_{{\mu}}d{\cal R}^{{\mu}}+b_{{\mu}}u_{{\nu}}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\cal R}_{\rho}du_{{\sigma}}+b_{{\mu}}d{\cal B}^{{\mu}}+{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}r^{{\rho}}u^{{\nu}}{\cal B}^{\nu}du^{{\mu}},
12𝒮μνdωμν=μdrμbμuνϵμνρσρduσ+μdbμϵμνρσrρuννduμ,\displaystyle\frac{1}{2}{\cal S}^{{\mu}{\nu}}d{\omega}_{{\mu}{\nu}}={\cal R}^{{\mu}}dr_{{\mu}}-b_{{\mu}}u_{{\nu}}{\epsilon}^{{\mu}{\nu}{\rho}{\sigma}}{\cal R}_{\rho}du_{{\sigma}}+{\cal B}^{{\mu}}db_{{\mu}}-{\epsilon}_{{\mu}{\nu}{\rho}{\sigma}}r^{{\rho}}u^{{\nu}}{\cal B}^{\nu}du^{{\mu}}, (9)

give bb-{\cal R} and rr-{\cal B} conjugations which are generally nonvanishing in the presence of vorticity where the non-inertial motion of fluid evolves along with the spin variables. It may seem that the non-inertial bb-{\cal R} and rr-{\cal B} terms are not well defined contributions to thermodynamic potentials. Actually, the velocity dependence is just an artifact from the introducing of rotation μ{\cal R}^{\mu} and boost μ{\cal B}^{\mu} vectors orthogonal to four-velocity as thermodynamic quantities into the generalized local thermodynamic relations. The general antisymmetric ωμν{\omega}_{{\mu}{\nu}} is more physically appropriate than rμνr_{{\mu}{\nu}} with rμνuμ=0r_{{\mu}{\nu}}u^{{\mu}}=0, in the sense that ωμν{\omega}_{{\mu}{\nu}} can smoothly transition into the GTE to coincide with the general thermal vorticity ϖμν[μβν]{\varpi}_{{\mu}{\nu}}\equiv\partial_{[{\mu}}{\beta}_{{\nu}]} which may not necessarily be orthogonal to uμu_{{\mu}}. Especially, when the acceleration part uμϖμνu^{\mu}{\varpi}_{{\mu}{\nu}} is as strong as the spatial part 12ϵσρμνuρϖμν\frac{1}{2}{\epsilon}^{{\sigma}{\rho}{\mu}{\nu}}u_{\rho}{\varpi}_{{\mu}{\nu}}, we will see in the entropy-current analysis that the entropy principle with a general antisymmetric ωμν{\omega}_{{\mu}{\nu}} necessarily requires the presence of {\cal B} in the constitutive relations.

We start with a general tensor decomposition in spin hydrodynamics as follows,

Θμν=εuμuν+pΔμν+Θ̊μν,\displaystyle{\Theta}^{{\mu}{\nu}}={\varepsilon}u^{{\mu}}u^{\nu}+p{\Delta}^{{\mu}{\nu}}+{\mathring{{\Theta}}}^{{\mu}{\nu}}, (10)
Σμνα=ϵμνασ(σ+Σ̊uσ),\displaystyle{\Sigma}^{{\mu}{\nu}{\alpha}}={\epsilon}^{{\mu}{\nu}{\alpha}{\sigma}}\left({\cal R}_{\sigma}+{\mathring{{\Sigma}}}\,u_{{\sigma}}\right), (11)
sμ=suμ+s̊μ,\displaystyle s^{{\mu}}=s\,u^{{\mu}}+{\mathring{s}}^{{\mu}}, (12)

where Δμνημν+uμuν{\Delta}^{{\mu}{\nu}}\equiv{\eta}^{{\mu}{\nu}}+u^{\mu}u^{\nu} is the transverse projection operator and the constitutive relations of the components with a circle are to be constrained by the entropy principle. To perform the entropy-current analysis, we derive the entropy production rate as follows. Taking the notations β1/T{\beta}\equiv 1/T, βμβuμ{\beta}_{\mu}\equiv{\beta}u_{\mu}, DuννD\equiv u^{{\nu}}\partial_{{\nu}} and θνuν{\theta}\equiv\partial_{{\nu}}u^{{\nu}}, we have

μsμ=μ(suμ+s̊μ)=Ds+sθ+μs̊μ.\displaystyle\partial_{\mu}s^{{\mu}}=\partial_{\mu}\left(s\,u^{{\mu}}+{\mathring{s}}^{{\mu}}\right)=D\,s+s\,{\theta}+\partial_{\mu}{\mathring{s}}^{{\mu}}. (13)

We replace the first term in the above expression using (6) to get

μsμ=β[Dε12ωμνD(μν+μν)]+sθ+μs̊μ.\displaystyle\partial_{\mu}s^{{\mu}}={\beta}\left[D{\varepsilon}-\frac{1}{2}{\omega}_{{\mu}{\nu}}D\left({\cal R}^{{\mu}{\nu}}+{\cal B}^{{\mu}{\nu}}\right)\right]+s\,{\theta}+\partial_{\mu}{\mathring{s}}^{{\mu}}. (14)

The two terms DεD{\varepsilon} and 12ωμνDμν-\frac{1}{2}{\omega}_{{\mu}{\nu}}D{\cal R}^{{\mu}{\nu}} in the square brackets can be substituted by the components Θ̊μν{\mathring{{\Theta}}}^{{\mu}{\nu}} and Σ̊{\mathring{{\Sigma}}} that are to be determined by the entropy principle. To proceed, we contract (1) and (2) with uνu_{\nu} and ωμν{\omega}_{{\mu}{\nu}} respectively to get

Dε\displaystyle D{\varepsilon} =(ε+p)θ+uνμΘ̊μν,\displaystyle=-\left({\varepsilon}+p\right){\theta}+u_{\nu}\partial_{\mu}{\mathring{{\Theta}}}^{{\mu}{\nu}},
12ωμνDμν\displaystyle-\frac{1}{2}{\omega}_{{\mu}{\nu}}D{\cal R}^{{\mu}{\nu}} =ωμν[12θμν+α(uναμ)]+12ϵαμνσωμνα(Σ̊uσ)+ωμνΘ̊[μν].\displaystyle={\omega}_{{\mu}{\nu}}\left[\frac{1}{2}{\theta}{\cal R}^{{\mu}{\nu}}+\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}\right)\right]+\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}{\omega}_{{\mu}{\nu}}\partial_{\alpha}\left({\mathring{{\Sigma}}}u_{\sigma}\right)+{\omega}_{{\mu}{\nu}}{\mathring{{\Theta}}}^{[{\mu}{\nu}]}. (15)

We then obtain the entropy production rate as

μsμ=\displaystyle\partial_{\mu}s^{{\mu}}= [sβ(ε+p12ωμν(μν+μν))]θ+μ(s̊μ+Θ̊μνβν+12Σ̊ϵμανσβωανuσ)\displaystyle\left[s-{\beta}\left({\varepsilon}+p-\frac{1}{2}{\omega}_{{\mu}{\nu}}\left({\cal R}^{{\mu}{\nu}}+{\cal B}^{{\mu}{\nu}}\right)\right)\right]{\theta}+\partial_{{\mu}}\left({\mathring{s}}^{{\mu}}+{\mathring{{\Theta}}}^{{\mu}{\nu}}{\beta}_{\nu}+\frac{1}{2}{\mathring{{\Sigma}}}\,{\epsilon}^{{\mu}{\alpha}{\nu}{\sigma}}{\beta}{\omega}_{{\alpha}{\nu}}u_{\sigma}\right)
Θ̊(μν)μβνΘ̊[μν](μβνβωμν)12Σ̊ϵαμνσα(βωμν)uσ\displaystyle-{\mathring{{\Theta}}}^{({\mu}{\nu})}\partial_{{\mu}}{\beta}_{{\nu}}-{\mathring{{\Theta}}}^{[{\mu}{\nu}]}\left(\partial_{{\mu}}{\beta}_{{\nu}}-{\beta}{\omega}_{{\mu}{\nu}}\right)-\frac{1}{2}{\mathring{{\Sigma}}}\,{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}\partial_{\alpha}\left({\beta}{\omega}_{{\mu}{\nu}}\right)u_{\sigma}
+[α(uναμ)12α(uαμν)]βωμν.\displaystyle+\left[\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}\right)-\frac{1}{2}\partial_{\alpha}\left(u^{{\alpha}}{\cal B}^{{\mu}{\nu}}\right)\right]{\beta}{\omega}_{{\mu}{\nu}}. (16)

In the absence of {\cal B} and bb, (16) agrees with Hongo:2021ona ; Cao:2022aku , irrespective of the specific power counting scheme. The entropy principle requires that (16) is not only semipositive in general, but also zero in the GTE where thermal vorticity ϖμν{\varpi}_{{\mu}{\nu}} becomes a constant anti-symmetric tensor and

βμ=cμ+ϖμνxν,βωμν=ϖμν,\displaystyle{\beta}_{\mu}=c_{\mu}+{\varpi}_{{\mu}{\nu}}x^{\nu},\quad{\beta}{\omega}_{{\mu}{\nu}}={\varpi}_{{\mu}{\nu}}, (17)

with cμc_{\mu} being a constant four-vector.

To explicitly seek the semipositivity of (16) to the second order of gradient, we adopt a general power counting scheme where perturbation expansion of spin variables are independent of the conventional hydrodynamic variables and their gradients,

εpβuμO(0),𝒮μνO(δ),\displaystyle{\varepsilon}\sim p\sim{\beta}\sim u^{\mu}\sim O\left(\partial^{0}\right),\quad{\cal S}^{{\mu}{\nu}}\sim O\left({\delta}\right),
ωμνϖμνO(ϖ),ϖμνβωμνO(),\displaystyle{\omega}_{{\mu}{\nu}}\sim{\varpi}_{{\mu}{\nu}}\sim O\left({\varpi}\right),\quad{\varpi}_{{\mu}{\nu}}-{\beta}{\omega}_{{\mu}{\nu}}\sim O\left(\partial\right), (18)

where O(δ)O\left({\delta}\right) could be O(ϖ)O\left({\hbar}{\varpi}\right) if the spin susceptibility is O(0)O\left({\hbar}\partial^{0}\right). In general, O(ϖ)O\left({\varpi}\right) could range from O()O\left(\partial\right) for hydrodynamics with an isotropy background to O(0)O\left(\partial^{0}\right) for gyrohydrodynamics Cao:2022aku with an anisotropic background. We count O(δ)O\left({\delta}\right) and O(ϖ)O\left({\varpi}\right) independently of O()O\left(\partial\right) so that the formulation of the spin hydrodynamics is applicable to a broad scale of the thermal vorticity instead of subject to a specific power counting scheme of it.

We aim to determine the constitutive relations of Θ̊μν{\mathring{{\Theta}}}^{{\mu}{\nu}}, Σ̊{\mathring{{\Sigma}}} and s̊μ{\mathring{s}}^{\mu} to O()O\left(\partial\right) where (16) should be semipositive to O(2)O\left(\partial^{2}\right). In the precedent set by Hongo:2021ona , the entropy production rate is ensured to be semipositive to O(2)O\left(\partial^{2}\right) under a specific power counting scheme with μνωμνO(){\cal R}^{{\mu}{\nu}}\sim{\omega}_{{\mu}{\nu}}\sim O\left(\partial\right) and without the presence of μν{\cal B}^{{\mu}{\nu}}, where the non-semipositive terms Θ̊[μν]uν(μβσβωμσ)uσ{\mathring{{\Theta}}}^{[{\mu}{\nu}]}u_{\nu}\left(\partial_{{\mu}}{\beta}_{{\sigma}}-{\beta}{\omega}_{{\mu}{\sigma}}\right)u^{\sigma} and βωμνα(uναμ){\beta}{\omega}_{{\mu}{\nu}}\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}\right) in (16) can be neglected as O(3)O\left(\partial^{3}\right). However, in a broad scale of the thermal vorticity, these non-semipositive terms are of O(ϖδ)O\left(\partial{\varpi}{\delta}\right) which are generally non-ignorable and therefore have to be cancelled out. By noting (5), we drop the first term in the first line of (16). Taking the GTE limit (17) in (16), one has

0=μsGTEμ=\displaystyle 0=\partial_{\mu}s_{\mathrm{GTE}}^{{\mu}}= μ(s̊GTEμ+Θ̊GTEμνβν+12Σ̊GTEϵμανσϖανuσ)\displaystyle\partial_{{\mu}}\left({\mathring{s}}_{\mathrm{GTE}}^{{\mu}}+{\mathring{{\Theta}}}_{\mathrm{GTE}}^{{\mu}{\nu}}{\beta}_{\nu}+\frac{1}{2}{\mathring{{\Sigma}}}_{\mathrm{GTE}}\,{\epsilon}^{{\mu}{\alpha}{\nu}{\sigma}}{\varpi}_{{\alpha}{\nu}}u_{\sigma}\right)
+[α(uναμ)12α(uαμν)]ϖμν.\displaystyle+\left[\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}\right)-\frac{1}{2}\partial_{\alpha}\left(u^{{\alpha}}{\cal B}^{{\mu}{\nu}}\right)\right]{\varpi}_{{\mu}{\nu}}. (19)

Noting the nonvanishing terms in the last brackets of (19), it is evident that s̊μΘ̊μνβν12Σ̊ϵμανσϖανuσ{\mathring{s}}^{{\mu}}\neq-{\mathring{{\Theta}}}^{{\mu}{\nu}}{\beta}_{\nu}-\frac{1}{2}{\mathring{{\Sigma}}}\,{\epsilon}^{{\mu}{\alpha}{\nu}{\sigma}}{\varpi}_{{\alpha}{\nu}}u_{\sigma} in general. Therefore, terms involving {\cal R} and {\cal B} must be present in either Θ̊μν{\mathring{{\Theta}}}^{{\mu}{\nu}}, s̊μ{\mathring{s}}^{\mu} or Σ̊{\mathring{{\Sigma}}} to offset the above nonvanishing terms. Note that, in the vicinity of GTE, these nonvanishing terms arise from the leading-order term ϵμνασσ{\epsilon}^{{\mu}{\nu}{\alpha}{\sigma}}{\cal R}_{\sigma} in the spin current (11). As pointed out in Hattori:2019lfp , the entropy production rate from the leading-order of the spin current is zero if spin and orbital angular momentum are separately conserved222Although there are no additional symmetries beyond the Lorentz group that would allow for individual conservation laws in field theory, and ideal spin hydrodynamics does not exist, we can establish an ad hoc criterion for formulating spin hydrodynamics, which suggests that a hydrodynamic framework should be non-dissipative at the leading-order in the conservation limit of the currents involved.. At the lowest order of the non-conservation equation (2) of the spin current, the dissipation of spin only stem from the source/absorption term Θ̊[μν]{\mathring{{\Theta}}}^{[{\mu}{\nu}]}.

We separate the non-dissipative parts from the dissipative parts by marking the former with subscript δ{\delta} and the latter with tick, i.e., Θ̊μν=Θδμν+Θˇμν{\mathring{{\Theta}}}^{{\mu}{\nu}}={\Theta}_{{\delta}}^{{\mu}{\nu}}+{\check{\Theta}}^{{\mu}{\nu}}, Σ̊=Σδ+Σˇ{\mathring{{\Sigma}}}={\Sigma}_{{\delta}}+{\check{\Sigma}} and s̊μ=sδμ+sˇμ{\mathring{s}}^{\mu}=s_{{\delta}}^{\mu}+{\check{s}}^{\mu}. At this stage, we manifest the assumption that the constitutive relations of Θ̊μν{\mathring{{\Theta}}}^{{\mu}{\nu}}, s̊μ{\mathring{s}}^{\mu} and Σ̊{\mathring{{\Sigma}}}, as expressions in terms of the spin hydrodynamic variables β{\beta}, uμu^{\mu}, ωμν{\omega}^{{\mu}{\nu}} and 𝒮μν{\cal S}^{{\mu}{\nu}}, consistently satisfy the entropy principle, i.e.,

Θ̊μν,s̊μ,Σ̊ as functions of β,uμ,ωμν and 𝒮μνβ,uμ,ωμν and 𝒮μν:μsμ0.\displaystyle\exists\,{\mathring{{\Theta}}}^{{\mu}{\nu}},{\mathring{s}}^{{\mu}},{\mathring{{\Sigma}}}\text{ as functions of }{\beta},u^{{\mu}},{\omega}^{{\mu}{\nu}}\text{ and }{\cal S}^{{\mu}{\nu}}\;\forall\,{\beta},u^{{\mu}},{\omega}^{{\mu}{\nu}}\text{ and }{\cal S}^{{\mu}{\nu}}:\partial_{\mu}s^{\mu}\geq 0. (20)

Here the 𝒮μν{\cal S}^{{\mu}{\nu}} dependent parts of the constitutive relations are to cancel out the non-semipositive terms in (16) where we take 𝒮μν{\cal S}^{{\mu}{\nu}} as extra free variables besides β,uμ{\beta},u^{{\mu}} and ωμν{\omega}^{{\mu}{\nu}}333Note that 𝒮μν{\cal S}^{{\mu}{\nu}} is free in the sense that the the dependence of 𝒮μν{\cal S}^{{\mu}{\nu}} on β,uμ{\beta},u^{{\mu}} and ωμν{\omega}^{{\mu}{\nu}} could vary with specific type of fluid and physical regime while the constitutive relations should satisfy the entropy principle in general.. The entropy production rate is written as

μsμ\displaystyle\partial_{\mu}s^{{\mu}} =μ[sˇμΘˇμνβν+12Σˇϵμανσβωανuσ]\displaystyle=\partial_{\mu}\left[{\check{s}}^{{\mu}}-{\check{\Theta}}^{{\mu}{\nu}}{\beta}_{{\nu}}+\frac{1}{2}{\check{\Sigma}}{\epsilon}^{{\mu}{\alpha}{\nu}{\sigma}}{\beta}{\omega}_{{\alpha}{\nu}}u_{\sigma}\right] (21)
Θˇ(μν)μβνΘˇ[μν](μβνβωμν)12Σˇϵαμνσα(βωμν)uσ\displaystyle-{\check{\Theta}}^{({\mu}{\nu})}\partial_{\mu}{\beta}_{{\nu}}-{\check{\Theta}}^{[{\mu}{\nu}]}\left(\partial_{{\mu}}{\beta}_{{\nu}}-{\beta}{\omega}_{{\mu}{\nu}}\right)-\frac{1}{2}{\check{\Sigma}}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}\partial_{\alpha}\left({\beta}{\omega}_{{\mu}{\nu}}\right)u_{\sigma}
+μsδμ+μΘδμνβν+[Θδμν+α(uναμ)12α(uαμν)+12ϵαμνσα(Σδuσ)]βωμν.\displaystyle+\partial_{\mu}s_{{\delta}}^{\mu}+\partial_{\mu}{\Theta}_{{\delta}}^{{\mu}{\nu}}{\beta}_{\nu}+\left[{\Theta}_{{\delta}}^{{\mu}{\nu}}+\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}\right)-\frac{1}{2}\partial_{\alpha}\left(u^{{\alpha}}{\cal B}^{{\mu}{\nu}}\right)+\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}\partial_{\alpha}\left({\Sigma}_{{\delta}}\,u_{\sigma}\right)\right]{\beta}{\omega}_{{\mu}{\nu}}.

The dissipative part Θˇμν{\check{\Theta}}^{{\mu}{\nu}} can be decomposed into the irreducible tensor basis Hattori:2019lfp ; Fukushima:2020ucl ; Daher:2022xon (see also Baier:2007ix ; Denicol:2012cn ; Molnar:2013lta ) as follows,

Θˇ(μν)=2u(μhν)+τμν,Θˇ[μν]=2u[μqν]+ϕμν,\displaystyle{\check{\Theta}}^{({\mu}{\nu})}=2u^{({\mu}}h^{{\nu})}+{\tau}^{{\mu}{\nu}},\qquad{\check{\Theta}}^{[{\mu}{\nu}]}=2u^{[{\mu}}q^{{\nu}]}+{\phi}^{{\mu}{\nu}}, (22)

where the dissipative currents satisfy τμν=τνμ,ϕμν=ϕνμ,uμhμ=uμqμ=uμτμν=uμϕμν=0{\tau}^{{\mu}{\nu}}={\tau}^{{\nu}{\mu}},\,{\phi}^{{\mu}{\nu}}=-{\phi}^{{\nu}{\mu}},\,u_{\mu}h^{\mu}=u_{\mu}q^{\mu}=u_{\mu}{\tau}^{{\mu}{\nu}}=u_{\mu}{\phi}^{{\mu}{\nu}}=0. We have uμΘˇμνuν=εu_{\mu}{\check{\Theta}}^{{\mu}{\nu}}u_{\nu}={\varepsilon} while uμΘδμνuνu_{\mu}{\Theta}_{{\delta}}^{{\mu}{\nu}}u_{\nu} is not necessarily zero. Moreover, in contrast to Biswas:2023qsw , we do not require uμs̊μ0u_{\mu}{\mathring{s}}^{\mu}\leq 0. This is because we assume that the local thermodynamic relations (5)-(6) hold near LTE, where all the thermodynamic variables, including the entropy density ss, are extended to be applicable out of equilibrium. Therefore, a general entropy density ss evolving towards equilibrium is not identically equal to the maximum value that is to be reached in equilibrium.

In addition to the dissipative parts in the entropy production rate, we have collected all the non-dissipative components into the last line of (21). Explicitly, the entropy principle requires that the sum of the non-dissipative terms gives zero entropy production rate

μsδμ+μΘδμνβν\displaystyle\partial_{\mu}s_{{\delta}}^{\mu}+\partial_{\mu}{\Theta}_{{\delta}}^{{\mu}{\nu}}{\beta}_{\nu}
+[Θδμν+α(uναμ)12α(uαμν)+12ϵαμνσα(Σδuσ)]βωμν=0.\displaystyle\quad+\left[{\Theta}_{{\delta}}^{{\mu}{\nu}}+\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}\right)-\frac{1}{2}\partial_{\alpha}\left(u^{{\alpha}}{\cal B}^{{\mu}{\nu}}\right)+\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}\partial_{\alpha}\left({\Sigma}_{{\delta}}\,u_{\sigma}\right)\right]{\beta}{\omega}_{{\mu}{\nu}}=0. (23)

We consider the non-dissipative constitutive relations of Θδμν{\Theta}_{{\delta}}^{{\mu}{\nu}}, sδμs_{{\delta}}^{\mu} and Σδ{\Sigma}_{{\delta}} to all orders as solutions to (23). For this purpose, we explicitly write Θδμν{\Theta}_{{\delta}}^{{\mu}{\nu}} and sδμs_{{\delta}}^{\mu} into the terms of O(0ω0δ)O\left(\partial^{0}{\omega}^{0}{\delta}\right), O(0ωδ)O\left(\partial^{0}{\omega}{\delta}\right), O(ω0δ)O\left(\partial{\omega}^{0}{\delta}\right) and higher orders in a general form as

Θδασ=Θ0ασ+Θωασμνωμν+Θασ12ϵμασνμ(Σδuν)+O(ωδ),\displaystyle{\Theta}_{{\delta}}^{{\alpha}{\sigma}}={\Theta}_{0}^{{\alpha}{\sigma}}+{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}{\omega}_{{\mu}{\nu}}+{\Theta}_{\partial}^{{\alpha}{\sigma}}-\frac{1}{2}{\epsilon}^{{\mu}{\alpha}{\sigma}{\nu}}\partial_{\mu}\left({\Sigma}_{{\delta}}\,u_{\nu}\right)+O\left(\partial{\omega}{\delta}\right),
sδα=s0α+sωαμνβωμν+sα+O(ωδ),\displaystyle s_{{\delta}}^{\alpha}=s_{0}^{{\alpha}}+s_{{\omega}}^{{\alpha}{\mu}{\nu}}{\beta}{\omega}_{{\mu}{\nu}}+s_{\partial}^{\alpha}+O\left(\partial{\omega}{\delta}\right), (24)

where the O(0ω0δ)O\left(\partial^{0}{\omega}^{0}{\delta}\right) components Θ0,ω,s0,ω{\Theta}_{0,{\omega}},s_{0,{\omega}} and O(ω0δ)O\left(\partial{\omega}^{0}{\delta}\right) components Θ,s{\Theta}_{\partial},s_{\partial} are expressions in terms of β,uμ{\beta},u^{\mu} and 𝒮μν{\cal S}^{{\mu}{\nu}}. Now we collect the terms involving βωμν{\beta}{\omega}_{{\mu}{\nu}}, α(βωμν)\partial_{\alpha}\left({\beta}{\omega}_{{\mu}{\nu}}\right) and βωασβωμν{\beta}{\omega}_{{\alpha}{\sigma}}{\beta}{\omega}_{{\mu}{\nu}} into

Xμνβωμν+Yαμνα(βωμν)+ΘωασμνTβωασβωμν,\displaystyle X^{{\mu}{\nu}}{\beta}{\omega}_{{\mu}{\nu}}+Y^{{\alpha}{\mu}{\nu}}\partial_{\alpha}\left({\beta}{\omega}_{{\mu}{\nu}}\right)+{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}T{\beta}{\omega}_{{\alpha}{\sigma}}{\beta}{\omega}_{{\mu}{\nu}}, (25)

where XμνX^{{\mu}{\nu}} and YαμνY^{{\alpha}{\mu}{\nu}} are defined as

Xμναsωαμν+α(ΘωασμνT)βσ+Θμν+α(uναμ12uαμν),\displaystyle X^{{\mu}{\nu}}\equiv\partial_{\alpha}s_{{\omega}}^{{\alpha}{\mu}{\nu}}+\partial_{\alpha}\left({\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}T\right){\beta}_{\sigma}+{\Theta}_{\partial}^{{\mu}{\nu}}+\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}-\frac{1}{2}u^{{\alpha}}{\cal B}^{{\mu}{\nu}}\right),
Yαμνsωαμν+Θωασμνuσ.\displaystyle Y^{{\alpha}{\mu}{\nu}}\equiv s_{{\omega}}^{{\alpha}{\mu}{\nu}}+{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}u_{\sigma}. (26)

The two parts must vanish for any values of βωμν{\beta}{\omega}_{{\mu}{\nu}} and α(βωμν)\partial_{\alpha}\left({\beta}{\omega}_{{\mu}{\nu}}\right), resulting in the constraints

X[μν]=0 and Yα[μν]=0.\displaystyle X^{[{\mu}{\nu}]}=0\;\text{ and }\;Y^{{\alpha}[{\mu}{\nu}]}=0. (27)

Likewise, to ensure the term Θωασμνβωασβωμν{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}{\beta}{\omega}_{{\alpha}{\sigma}}{\beta}{\omega}_{{\mu}{\nu}} vanishes for arbitrary values of βωασβωμν{\beta}{\omega}_{{\alpha}{\sigma}}{\beta}{\omega}_{{\mu}{\nu}} in (25), Θωασμν{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}} can run through several switches as follows

Θωασ[μν]=0 or Θω[ασ]μν=0 or Θωασμν=Θωμνασ or Θωασμν=Θωνμσα.\displaystyle{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}=0\;\text{ or }\;{\Theta}_{{\omega}}^{[{\alpha}{\sigma}]{\mu}{\nu}}=0\;\text{ or }\;{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}=-{\Theta}_{{\omega}}^{{\mu}{\nu}{\alpha}{\sigma}}\;\text{ or }\;{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}=-{\Theta}_{{\omega}}^{{\nu}{\mu}{\sigma}{\alpha}}. (28)

We then combine (27) and (28) to constrain the solutions to (23). As a straightforward application of these constraints, one can readily confirm that

Θμν=0 and Θωασμν=0 and (27)sωα[μν]=0α(α[μuν]12uαμν)=0,\displaystyle{\Theta}_{\partial}^{{\mu}{\nu}}=0\;\text{ and }\;{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}=0\;\text{ and }\;\eqref{cnstrXY}\;\to\;s_{{\omega}}^{{\alpha}[{\mu}{\nu}]}=0\;\to\;\partial_{\alpha}\left({\cal R}^{{\alpha}[{\mu}}u^{{\nu}]}-\frac{1}{2}u^{{\alpha}}{\cal B}^{{\mu}{\nu}}\right)=0, (29)

leading to a contradiction as the left-hand side of the final equation is not identically zero. This implies that the stress-energy tensor must depend on SμνS^{{\mu}{\nu}} at O(δ)O\left(\partial{\delta}\right) or O(ωδ)O\left({\omega}{\delta}\right). In general, one can analyze the terms to all orders in (23) to obtain a complete constraint for the solution. Nevertheless, given that (23) must hold order by order, we concentrate exclusively on the constraints related to the O(δ)O\left(\partial{\delta}\right) and O(ωδ)O\left({\omega}{\delta}\right) terms. It will become apparent in the next section that the components dependent on ω{\omega} within these orders are sufficient to illustrate the difficulties in upholding the entropy principle in the absence of boost variables.

III entropy principle in the absence of boost variables

We now investigate the framework in the abscence of the degree of freedom related to the boost symmetry where there are only seven independent dynamical variables with four from relativistic translation symmetry and three from rotation symmetry. In such circumstances, it is necessary to select three out of the ten equations in (1)-(2) as redundant in order to avoid overdetermination. As pointed out in Hongo:2021ona , the physically meaningful choice is to consider the three equations ensuing from the boost symmetry in (2) as redundant identities since the boost variables are vanishing. The identities in the local rest frame are obtained by setting μ=0,ν=i{\mu}=0,{\nu}=i or μ=i,ν=0{\mu}=i,{\nu}=0 in (2), while the covariant form is manifested by projecting (2) onto uνu_{\nu} as

(αΣαμν+2Θ[μν])uν=0\displaystyle\left(\partial_{\alpha}{\Sigma}^{{\alpha}{\mu}{\nu}}+2{\Theta}^{[{\mu}{\nu}]}\right)u_{\nu}=0
12ϵαμνσuνα(σ+Σδuσ)+Θδ[μν]uν+12ϵαμνσuνΣˇαuσ+qμ=0.\displaystyle\qquad\Rightarrow\quad\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}u_{\nu}\partial_{\alpha}\left({\cal R}_{\sigma}+{\Sigma}_{{\delta}}u_{\sigma}\right)+{\Theta}_{{\delta}}^{[{\mu}{\nu}]}u_{\nu}+\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}u_{\nu}{\check{\Sigma}}\,\partial_{\alpha}u_{\sigma}+q^{\mu}=0. (30)

Noting that qμq^{\mu} at O(δ)O\left(\partial{\delta}\right) and Σˇ{\check{\Sigma}} at O(δ)O\left({\delta}\right) are both zero to ensure the semipositivity of the dissipative parts in (21), we isolate the O(δ)O\left(\partial{\delta}\right) terms from the other parts in the above identity,

qμ\displaystyle q^{\mu} =12ϵαμνσuνΣˇαuσ,\displaystyle=-\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}u_{\nu}{\check{\Sigma}}\,\partial_{\alpha}u_{\sigma}, (31)
Θδ[μν]uν\displaystyle{\Theta}_{{\delta}}^{[{\mu}{\nu}]}u_{\nu} =12ϵαμνσuνα(σ+Σδuσ),\displaystyle=-\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}u_{\nu}\partial_{\alpha}\left({\cal R}_{\sigma}+{\Sigma}_{{\delta}}u_{\sigma}\right), (32)

where the identity at O(δ)O\left(\partial{\delta}\right) in (32) should hold for arbitrary {\cal R}. Utilizing the identities (31)-(32) as the result of the vanishing boost variables, we can demonstrate that it is not possible to cancel out the non-semipositive term α(uναμ)βωμν\partial_{\alpha}\left(u^{\nu}{\cal R}^{{\alpha}{\mu}}\right){\beta}{\omega}_{{\mu}{\nu}} in (23).

For the {\cal R} dependent parts, we further collect the O(ω0δ)O\left(\partial{\omega}^{0}{\delta}\right) and O(0ωδ)O\left(\partial^{0}{\omega}{\delta}\right) terms in (32) to obtain the extra constraints from the vanshing of {\cal B} as

Θ[μν]uν=12ϵαμνσuνασ,\displaystyle{\Theta}_{\partial}^{[{\mu}{\nu}]}u_{\nu}=-\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}u_{\nu}\partial_{\alpha}{\cal R}_{\sigma}, (33)
Θω[μν]ασuνωασ=0Θω[μν][ασ]uν=0.\displaystyle{\Theta}_{{\omega}}^{[{\mu}{\nu}]{\alpha}{\sigma}}u_{\nu}{\omega}_{{\alpha}{\sigma}}=0\quad\to\quad{\Theta}_{{\omega}}^{[{\mu}{\nu}][{\alpha}{\sigma}]}u_{\nu}=0. (34)

We now examine the combined constraints on Θω{\Theta}_{{\omega}} in (27)-(28) and (33)-(34). For the first switch in (28), one has

Θωασ[μν]=0 and Yα[μν]=0sωα[μν]=0X[μν]=Θ[μν]+α(α[μuν])=0,\displaystyle{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}=0\;\text{ and }\;Y^{{\alpha}[{\mu}{\nu}]}=0\,\to\,s_{{\omega}}^{{\alpha}[{\mu}{\nu}]}=0\;\to\;X^{[{\mu}{\nu}]}={\Theta}_{\partial}^{[{\mu}{\nu}]}+\partial_{\alpha}\left({\cal R}^{{\alpha}[{\mu}}u^{{\nu}]}\right)=0, (35)

which obviously contradicts the identity (33). Thus, we get Θωασ[μν]0{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}\neq 0.

For the rest three switches in (28), using (33) in (27) while noting uu=1u\cdot u=-1 and u=0u\cdot{\cal R}=0, we get

Θωασ[μν]uνuσαlnβ+Θωασ[μν]uναuσW1αμννα(uu)W2αμα(u)\displaystyle{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}u_{\nu}u_{\sigma}\partial_{\alpha}\ln{\beta}+{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}u_{\nu}\partial_{\alpha}u_{\sigma}-W_{1}^{{\alpha}{\mu}{\nu}}{\cal R}_{\nu}\partial_{\alpha}\left(u\cdot u\right)-W_{2}^{{\alpha}{\mu}}\partial_{\alpha}\left(u\cdot{\cal R}\right)
=αα[μuν]uν12ϵαμνσuνασ=12α(uαμν)uν=12uαϵμνσλλuναuσ,\displaystyle=\partial_{\alpha}{\cal R}^{{\alpha}[{\mu}}u^{{\nu}]}u_{\nu}-\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}u_{\nu}\partial_{\alpha}{\cal R}_{\sigma}=\frac{1}{2}\partial_{\alpha}\left(u^{\alpha}{\cal R}^{{\mu}{\nu}}\right)u_{\nu}=-\frac{1}{2}u^{\alpha}{\epsilon}^{{\mu}{\nu}{\sigma}{\lambda}}{\cal R}_{\lambda}u_{\nu}\partial_{\alpha}u_{\sigma}, (36)

where W1W_{1} and W2W_{2} could be any dimensionless tensors as expressions in terms of β,uμ{\beta},u^{\mu} and μ{\cal R}^{{\mu}}. We have used the first identity of (3) in the second equality. Given that the above equation holds for arbitrary αlnβ\partial_{\alpha}\ln{\beta}, ασ\partial_{\alpha}{\cal R}_{\sigma} and αuσ\partial_{\alpha}u_{\sigma}, we have the constraints

Θωασ[μν]uνuσ=0 and W2αμuσ=0\displaystyle{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}u_{\nu}u_{\sigma}=0\;\text{ and }\;W_{2}^{{\alpha}{\mu}}u^{\sigma}=0
 and Θωασ[μν]uνW1αμννuσW2αμσW3αμaσ=12uαϵμνσλλuν,\displaystyle\;\text{ and }\;{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}u_{\nu}-W_{1}^{{\alpha}{\mu}{\nu}}{\cal R}_{\nu}u^{\sigma}-W_{2}^{{\alpha}{\mu}}{\cal R}^{\sigma}-W_{3}^{{\alpha}{\mu}}a^{\sigma}=-\frac{1}{2}u^{\alpha}{\epsilon}^{{\mu}{\nu}{\sigma}{\lambda}}{\cal R}_{\lambda}u_{\nu}, (37)

which renders

0=Θωασ[μν]uνuσ=W1αμννW1αμν=0\displaystyle 0={\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}u_{\nu}u_{\sigma}=-W_{1}^{{\alpha}{\mu}{\nu}}{\cal R}_{\nu}\;\to\;W_{1}^{{\alpha}{\mu}{\nu}}=0
and W2αμuσ=0W2αμ=0Θωασ[μν]uν=12uαϵμνσλλuν\displaystyle\text{ and }\;W_{2}^{{\alpha}{\mu}}u^{\sigma}=0\;\to\;W_{2}^{{\alpha}{\mu}}=0\;\to\;{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}u_{\nu}=-\frac{1}{2}u^{\alpha}{\epsilon}^{{\mu}{\nu}{\sigma}{\lambda}}{\cal R}_{\lambda}u_{\nu}
Θω[ασ][μν]uν=12u[αϵσ]μνλλuν0.\displaystyle\to{\Theta}_{{\omega}}^{[{\alpha}{\sigma}][{\mu}{\nu}]}u_{\nu}=-\frac{1}{2}u^{[{\alpha}}{\epsilon}^{{\sigma}]{\mu}{\nu}{\lambda}}{\cal R}_{\lambda}u_{\nu}\neq 0. (38)

This excludes the second switch in (28), i.e., Θω[ασ]μν0{\Theta}_{{\omega}}^{[{\alpha}{\sigma}]{\mu}{\nu}}\neq 0.

The last two switches in (28) combined with (34) reduce to

(Θωασμν=Θωμνασ or Θωασμν=Θωνμσα) and Θω[ασ][μν]uσ=0\displaystyle\left({\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}=-{\Theta}_{{\omega}}^{{\mu}{\nu}{\alpha}{\sigma}}\;\text{ or }\;{\Theta}_{{\omega}}^{{\alpha}{\sigma}{\mu}{\nu}}=-{\Theta}_{{\omega}}^{{\nu}{\mu}{\sigma}{\alpha}}\right)\;\text{ and }\;{\Theta}_{{\omega}}^{[{\alpha}{\sigma}][{\mu}{\nu}]}u_{\sigma}=0
(Θωασ[μν]=Θω[μν]ασ or Θωασ[μν]=Θω[νμ]σα) and Θω[ασ][μν]uσ=0\displaystyle\,\to\,\left({\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}=-{\Theta}_{{\omega}}^{[{\mu}{\nu}]{\alpha}{\sigma}}\;\text{ or }\;{\Theta}_{{\omega}}^{{\alpha}{\sigma}[{\mu}{\nu}]}=-{\Theta}_{{\omega}}^{[{\nu}{\mu}]{\sigma}{\alpha}}\right)\;\text{ and }\;{\Theta}_{{\omega}}^{[{\alpha}{\sigma}][{\mu}{\nu}]}u_{\sigma}=0
Θω[ασ][μν]uν=Θω[μν][ασ]uν=0 or Θω[ασ][μν]uν=Θω[νμ][σα]uν=0,\displaystyle\,\to\,{\Theta}_{{\omega}}^{[{\alpha}{\sigma}][{\mu}{\nu}]}u_{\nu}=-{\Theta}_{{\omega}}^{[{\mu}{\nu}][{\alpha}{\sigma}]}u_{\nu}=0\;\text{ or }\;{\Theta}_{{\omega}}^{[{\alpha}{\sigma}][{\mu}{\nu}]}u_{\nu}=-{\Theta}_{{\omega}}^{[{\nu}{\mu}][{\sigma}{\alpha}]}u_{\nu}=0, (39)

which is also ruled out by (38). Hence, there is no consistent result for Θω{\Theta}_{{\omega}} to ensure the vanishing of the O(ωδ)O\left(\partial{\omega}{\delta}\right) and O(0ω2δ)O\left(\partial^{0}{\omega}^{2}{\delta}\right) parts in (23). In other words, with a general antisymmetric spin potential ωμν{\omega}_{{\mu}{\nu}} and vanishing boost variables μν{\cal B}^{{\mu}{\nu}}, it is generally not possible for the constitutive relations of spin hydrodynamics to satisfy the entropy principle. Note that (27)-(28) and (34) are constraints resulting from a general antisymmetric spin potential ωμν{\omega}_{{\mu}{\nu}}. A meaningful complement would be to apply the entropy-current analysis presented in this study to the case of a special spin potential rμνr_{{\mu}{\nu}} with rμνuν=0r_{{\mu}{\nu}}u^{\nu}=0, as utilized in Hongo:2021ona ; Cao:2022aku , to investigate the existance of a solution for Θδ{\Theta}_{{\delta}} and sδs_{{\delta}}. We will not attempt to address this issue here.

IV Consistent First-Order Spin hydrodynamics

The challenge in adhering to the entropy principle arises from the lack of degree of freedom associated with boost symmetry. Therefore, it is inevitable to activate the boost variables so that the canonical formulation of spin hydrodynamics aligns with the entropy principle. In this scenario, the boost components of the conservation law (2) are independent equations, rather than being fixed as identities like in (31)-(32). The semipositivity of the dissipative parts is ensured by adopting the constitutive relations that are basically the same as those in Hattori:2019lfp ; Fukushima:2020ucl ; Daher:2022xon ,

hμ\displaystyle h^{\mu} =Thμνααβν,\displaystyle=-Th^{{\mu}{\nu}{\alpha}}\partial_{\alpha}{\beta}_{\nu}, qμ\displaystyle q^{\mu} =Tqμνα(αβνβωαν),\displaystyle=-Tq^{{\mu}{\nu}{\alpha}}\left(\partial_{\alpha}{\beta}_{\nu}-{\beta}{\omega}_{{\alpha}{\nu}}\right),
τμν\displaystyle{\tau}^{{\mu}{\nu}} =Tτμνασαβσ,\displaystyle=-T{\tau}^{{\mu}{\nu}{\alpha}{\sigma}}\partial_{\alpha}{\beta}_{{\sigma}}, ϕμν\displaystyle{\phi}^{{\mu}{\nu}} =Tϕμνασ(αβσβωασ),\displaystyle=-T{\phi}^{{\mu}{\nu}{\alpha}{\sigma}}\left(\partial_{\alpha}{\beta}_{{\sigma}}-{\beta}{\omega}_{{\alpha}{\sigma}}\right), (40)
Σˇ\displaystyle{\check{\Sigma}} =12Tξϵμνασuσα(βωμν),\displaystyle=-\frac{1}{2}T{\xi}{\epsilon}^{{\mu}{\nu}{\alpha}{\sigma}}u_{\sigma}\partial_{\alpha}\left({\beta}{\omega}_{{\mu}{\nu}}\right), sˇμ\displaystyle{\check{s}}^{{\mu}} =βhμβqμ12Σˇϵμανσβωανuσ,\displaystyle={\beta}h^{{\mu}}-{\beta}q^{{\mu}}-\frac{1}{2}{\check{\Sigma}}{\epsilon}^{{\mu}{\alpha}{\nu}{\sigma}}{\beta}{\omega}_{{\alpha}{\nu}}u_{\sigma},

where

hμνα\displaystyle h^{{\mu}{\nu}{\alpha}} κΔμ(νuα),qμνακsΔμ[νuα],\displaystyle\equiv{\kappa}{\Delta}^{{\mu}({\nu}}u^{{\alpha})},\hskip 40.00006pt\ignorespaces q^{{\mu}{\nu}{\alpha}}\equiv{\kappa}_{s}{\Delta}^{{\mu}[{\nu}}u^{{\alpha}]},
τμναβ\displaystyle{\tau}^{{\mu}{\nu}{\alpha}{\beta}} 2η[12(ΔμαΔνβ+ΔμβΔμν)13ΔμνΔαβ]+ζΔμνΔαβ,\displaystyle\equiv 2{\eta}\left[\frac{1}{2}\left({\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}+{\Delta}^{{\mu}{\beta}}{\Delta}^{{\mu}{\nu}}\right)-\frac{1}{3}{\Delta}^{{\mu}{\nu}}{\Delta}^{{\alpha}{\beta}}\right]+{\zeta}{\Delta}^{{\mu}{\nu}}{\Delta}^{{\alpha}{\beta}},
ϕμναβ\displaystyle{\phi}^{{\mu}{\nu}{\alpha}{\beta}} 12ηs(ΔμαΔνβΔμβΔνα),\displaystyle\equiv\frac{1}{2}{\eta}_{s}\left({\Delta}^{{\mu}{\alpha}}{\Delta}^{{\nu}{\beta}}-{\Delta}^{{\mu}{\beta}}{\Delta}^{{\nu}{\alpha}}\right), (41)

with positive coefficients κ,κs,η,ζ,ηs{\kappa},\,{\kappa}_{s},\,{\eta},\,{\zeta},\,{\eta}_{s} and ξ{\xi}. In the case O(ϖ)O(0)O\left({\varpi}\right)\sim O\left(\partial^{0}\right), the dissipative currents in (40) can be further decomposed according to the anisotropy in gyrohydrodynamics Cao:2022aku .

As regards the non-dissipative terms in (23), it is known that there is a solution corresponding to a pseudogauge transformation from the phenomenological formulation of spin hydrodynamicsDaher:2022xon ,

Θδμν=α(αμuν+αμuν),sδμ=0,Σδ=0.\displaystyle{\Theta}_{{\delta}}^{{\mu}{\nu}}=-\partial_{\alpha}\left({\cal R}^{{\alpha}{\mu}}u^{{\nu}}+{\cal B}^{{\alpha}{\mu}}u^{{\nu}}\right),\hskip 20.00003pt\ignorespaces s_{{\delta}}^{\mu}=0,\hskip 20.00003pt\ignorespaces{\Sigma}_{{\delta}}=0. (42)

Actually, it has been point out in Hattori:2019lfp that given a formulation of spin hydrodynamics with (Θ,Σ)({\Theta},{\Sigma}) that satisfies entropy principle, a pseudogauge transformation always renders another consistent formulation (Θ,Σ)({\Theta}^{\prime},{\Sigma}^{\prime}) since the entropy production rate in the entropy-current analysis remains unchanged, though different pairs (Θ,Σ)({\Theta},{\Sigma}) and (Θ,Σ)({\Theta}^{\prime},{\Sigma}^{\prime}) are generally thermodynamically inequivalent Becattini:2011ev ; Becattini:2012pp . Therefore, a general pseudogauge-transforming solution is

Θδμν=α(αμuν+αμuν)12ϵαμνσα(Σδuσ),sδμ=0,Σδ(β,u,ω,𝒮),\displaystyle{\Theta}_{{\delta}}^{{\mu}{\nu}}=-\partial_{\alpha}\left({\cal R}^{{\alpha}{\mu}}u^{{\nu}}+{\cal B}^{{\alpha}{\mu}}u^{{\nu}}\right)-\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}\partial_{\alpha}\left({\Sigma}_{{\delta}}\,u_{\sigma}\right),\hskip 20.00003pt\ignorespaces s_{{\delta}}^{\mu}=0,\hskip 20.00003pt\ignorespaces{\Sigma}_{{\delta}}\left({\beta},u,{\omega},{\cal S}\right), (43)

where Σδ{\Sigma}_{{\delta}} can be any possible scalar expression in terms of β,u,ω{\beta},u,{\omega} and 𝒮{\cal S} with Σδ(β,u,ω=0,𝒮=0)=0{\Sigma}_{{\delta}}({\beta},u,{\omega}=0,{\cal S}=0)=0 so that Σδ{\Sigma}_{{\delta}} vanishes in spinless limit. In addition, the entropy-gauge transformation Becattini:2023ouz sδμ=αAαμs_{\delta}^{\mu}=\partial_{\alpha}A^{{\alpha}{\mu}} with Aαμ=AμαA^{{\alpha}{\mu}}=-A^{{\mu}{\alpha}} gives an extra general solution where AαμA^{{\alpha}{\mu}} could be any possible antisymmetric tensor expression in terms of β,u,ω{\beta},u,{\omega} and 𝒮{\cal S}. It remains to be seen whether there are non-dissipative solutions Θδ{\Theta}^{\prime}_{{\delta}}, sδs^{\prime}_{{\delta}} and Σδ{\Sigma}^{\prime}_{{\delta}} beyond the pseudogauge and the entropy-gauge transformations. Concretely, such solutions are constrained by the entropy principle as

μsδμ+μΘδμνβν+[Θδμν+12ϵαμνσα(Σδuσ)]βωμν=0.\displaystyle\partial_{\mu}{s^{\prime}}_{{\delta}}^{{\mu}}+\partial_{\mu}{{\Theta}^{\prime}}_{{\delta}}^{{\mu}{\nu}}{\beta}_{\nu}+\left[{{\Theta}^{\prime}}_{{\delta}}^{{\mu}{\nu}}+\frac{1}{2}{\epsilon}^{{\alpha}{\mu}{\nu}{\sigma}}\partial_{\alpha}\left({\Sigma}^{\prime}_{{\delta}}\,u_{\sigma}\right)\right]{\beta}{\omega}_{{\mu}{\nu}}=0. (44)

Especially, with nonvanishing Θδ{{\Theta}^{\prime}}_{{\delta}} which may significantly modify the dynamical equations of hydrodynamics and bring in extra ambiguity besides pseudogauge and entropy-gauge. For simplicity, we verify in Appendix (A) that the non-dissipative solution of O(0)O\left(\partial^{0}\right) is unique, which is essentially the leading-order solution in (10)-(12). It could be interesting to figure out if there are extra non-dissipative solution to O()O\left(\partial\right). We leave it for future work.

One can easily verify that the constitutive relations in (40) give zero entropy production rate in the GTE limit (17). Moreover, keeping only the lowest-order terms in (15) and taking the separate conservation limits

Θˇ[μν]=0,\displaystyle{\check{\Theta}}^{[{\mu}{\nu}]}=0,
αΣαμν+2Θδ[μν]=0,\displaystyle\partial_{\alpha}{\Sigma}^{{\alpha}{\mu}{\nu}}+2{\Theta}_{{\delta}}^{[{\mu}{\nu}]}=0, (45)

in (16), we readily confirm that μ(suμ)=0\partial_{\mu}\left(su^{\mu}\right)=0. It turns out that the orbital angular momentum conservation in the first equation of (45) contains only the dissipative component of the stress-energy tensor while the spin angular momentum conservation in the second equation have to include the divergence term Θδ[μν]{\Theta}_{{\delta}}^{[{\mu}{\nu}]}.

V Linear-mode analysis

We perform the linear-mode analysis of the spin hydrodynamic equations (1)-(2) using the constitutive relations (40) and (43). For simplicity, we consider the isotropy background with O(ϖ)O()O\left({\varpi}\right)\sim O\left(\partial\right). The fluctuations, counted as O(Δ)O\left({\Delta}\right), are near GTE without background spin density,

ε(x)=ε¯+ε¯(x),p(x)=p¯+p¯(x),T(x)=T¯+T¯(x),\displaystyle{\varepsilon}(x)={{\bar{\varepsilon}}}+{\underaccent{\bar}{\ep}}(x),\qquad p(x)={{\bar{p}}}+{\underaccent{\bar}{p}}(x),\qquad T(x)={{\bar{T}}}+{\underaccent{\bar}{T}}(x),
vi(x)=0+v¯i(x),i(x)=0+¯i(x),i(x)=0+¯i(x),\displaystyle v^{i}(x)=0+{\underaccent{\bar}{v}}^{i}(x),\qquad{\cal R}^{i}(x)=0+{\underaccent{\bar}{\cR}}^{i}(x),\qquad{\cal B}^{i}(x)=0+{\underaccent{\bar}{\cB}}^{i}(x), (46)

with overbar denoting background and underbar denoting fluctuations, where viv^{i} is the fluid three-velocity with uμ=(1,vi)+O(v2)u^{\mu}=(1,v^{i})+O(v^{2}). Noting Σδ=O(Δ2){\Sigma}_{{\delta}}=O\left({\Delta}^{2}\right) and using

(5)(7)\displaystyle\eqref{Euler}\eqref{GibDuh}\quad\to T¯=T¯p¯ε¯+p¯+O(Δ2),\displaystyle\quad{\underaccent{\bar}{T}}=\frac{{\bar{T}}{\underaccent{\bar}{p}}}{{\bar{\varepsilon}}+{\bar{p}}}+O\left({\Delta}^{2}\right), (47)

we expand (1) to O(2Δ)O(\partial^{2}{\Delta}) and (2) to O(Δ)O(\partial{\Delta}) as

(0cs2κsii)π¯0+(1+κs0)iπ¯i(0+Γb)i¯i=0,\displaystyle\left(\partial_{0}-c_{s}^{2}{\kappa}^{\prime}_{s}\partial_{i}\partial^{i}\right){\underaccent{\bar}{\p}}^{0}+\left(1+{\kappa}^{\prime}_{s}\partial_{0}\right)\partial_{i}{\underaccent{\bar}{\p}}^{i}-\left(\partial_{0}+{\Gamma}_{b}\right)\partial_{i}{\underaccent{\bar}{\cB}}^{i}=0, (48)
0π¯i+cs2i(π¯0k¯k)γikπ¯k(γ+γs)(δkijjik)π¯k\displaystyle\partial_{0}{\underaccent{\bar}{\p}}^{i}+c_{s}^{2}\partial^{i}\left({\underaccent{\bar}{\p}}^{0}-\partial_{k}{\underaccent{\bar}{\cB}}^{k}\right)-{\gamma}_{\parallel}\partial^{i}\partial_{k}{\underaccent{\bar}{\p}}^{k}-\left({\gamma}_{\bot}+{\gamma}_{s}\right)\left({\delta}_{k}^{i}\partial_{j}\partial^{j}-\partial^{i}\partial_{k}\right){\underaccent{\bar}{\p}}^{k}
12ϵijkΓrj¯k=0,\displaystyle\hskip 210.00032pt\ignorespaces-\frac{1}{2}{\epsilon}^{ijk}{\Gamma}_{r}\partial_{j}{\underaccent{\bar}{\cR}}_{k}=0, (49)
(0+Γb)¯i+ϵijkk¯j+cs2κsiπ¯0κs0π¯i=0,\displaystyle\left(\partial_{0}+{\Gamma}_{b}\right){\underaccent{\bar}{\cB}}^{i}+{\epsilon}^{ijk}\partial_{k}{\underaccent{\bar}{\cR}}_{j}+c_{s}^{2}{\kappa}^{\prime}_{s}\partial^{i}{\underaccent{\bar}{\p}}^{0}-{\kappa}^{\prime}_{s}\partial_{0}{\underaccent{\bar}{\p}}^{i}=0, (50)
0¯i+Γr¯i2γsϵijkjπ¯k=0,\displaystyle\partial_{0}{\underaccent{\bar}{\cR}}^{i}+{\Gamma}_{r}{\underaccent{\bar}{\cR}}^{i}-2{\gamma}_{s}{\epsilon}^{ijk}\partial_{j}{\underaccent{\bar}{\p}}_{k}=0, (51)

where we have introduced the hydrodynamic and spin modes as

π¯0Θ¯00=ε¯+i¯i+O(2)+O(Δ2),\displaystyle{\underaccent{\bar}{\p}}^{0}\equiv\underaccent{\bar}{\Th}^{00}={\underaccent{\bar}{\ep}}+\partial_{i}{\underaccent{\bar}{\cB}}^{i}+O\left(\partial^{2}\right)+O\left({\Delta}^{2}\right),
π¯iΘ¯0i=(ε¯+p¯)v¯i12(κ+κs)0v¯i12(κκs)cs2iε¯+12Γb¯i+O(2)+O(Δ2),\displaystyle{\underaccent{\bar}{\p}}^{i}\equiv\underaccent{\bar}{\Th}^{0i}=\left({\bar{\varepsilon}}+{\bar{p}}\right){\underaccent{\bar}{v}}^{i}-\frac{1}{2}\left({\kappa}+{\kappa}_{s}\right)\partial_{0}{\underaccent{\bar}{v}}^{i}-\frac{1}{2}\left({\kappa}^{\prime}-{\kappa}^{\prime}_{s}\right)c_{s}^{2}\partial^{i}{\underaccent{\bar}{\ep}}+\frac{1}{2}{\Gamma}_{b}{\underaccent{\bar}{\cB}}^{i}+O\left(\partial^{2}\right)+O({\Delta}^{2}),
Σ¯0ij=𝒮¯ij+O(2)+O(Δ2)=ϵijk¯k+O(2)+O(Δ2),\displaystyle\underaccent{\bar}{\S}^{0ij}=\underaccent{\bar}{\cS}^{ij}+O\left(\partial^{2}\right)+O({\Delta}^{2})={\epsilon}^{ijk}{\underaccent{\bar}{\cR}}_{k}+O\left(\partial^{2}\right)+O({\Delta}^{2}), (52)

and the constants as

cs2=pε,γ=1ε¯+p¯(ζ+43η),γ=ηε¯+p¯,2γs=ηsε¯+p¯,κ=κε¯+p¯,\displaystyle c_{s}^{2}=\frac{\partial p}{\partial{\varepsilon}},\quad{\gamma}_{\parallel}=\frac{1}{{\bar{\varepsilon}}+{\bar{p}}}\left({\zeta}+\frac{4}{3}{\eta}\right),\quad{\gamma}_{\bot}=\frac{{\eta}}{{\bar{\varepsilon}}+{\bar{p}}},\quad 2{\gamma}_{s}=\frac{{\eta}_{s}}{{\bar{\varepsilon}}+{\bar{p}}},\quad{\kappa}^{\prime}=\frac{{\kappa}}{{\bar{\varepsilon}}+{\bar{p}}},
χrδji=irj,Γr=2ηsχr,χbδji=ibj,Γb=2κsχb,κs=κsε¯+p¯.\displaystyle{\chi}_{r}{\delta}_{j}^{i}=\frac{\partial{\cal R}^{i}}{\partial r^{j}},\qquad{\Gamma}_{r}=\frac{2{\eta}_{s}}{{\chi}_{r}},\qquad{\chi}_{b}{\delta}_{j}^{i}=\frac{\partial{\cal B}^{i}}{\partial b^{j}},\qquad{\Gamma}_{b}=\frac{2{\kappa}_{s}}{{\chi}_{b}},\qquad{\kappa}^{\prime}_{s}=\frac{{\kappa}_{s}}{{\bar{\varepsilon}}+{\bar{p}}}. (53)

Note that π¯0{\underaccent{\bar}{\p}}^{0}, π¯i{\underaccent{\bar}{\p}}^{i} and Σ¯0ij\underaccent{\bar}{\S}^{0ij} are invariant components of Θμν{\Theta}^{{\mu}{\nu}} and Σμνα{\Sigma}^{{\mu}{\nu}{\alpha}} under frame choice Bhattacharya:2011tra ; Kovtun:2012rj , where Σ¯0ij\underaccent{\bar}{\S}^{0ij} can be replaced by ¯k{\underaccent{\bar}{\cR}}_{k} within linear approximation. The boost modes ¯i{\underaccent{\bar}{\cB}}^{i} are embedded in the divergence terms of Θμν{\Theta}^{{\mu}{\nu}} and can not be defined as the invariant components of spin current since Σ¯00i\underaccent{\bar}{\S}^{00i} vanish for totally antisymmetric Σμνα{\Sigma}^{{\mu}{\nu}{\alpha}}. We have counted ΓrΓb1/χr1/χbO(){\Gamma}_{r}\sim{\Gamma}_{b}\sim 1/{\chi}_{r}\sim 1/{\chi}_{b}\sim O\left(\partial\right) in the above linear expansion and neglected the anisotropy in εr\frac{\partial{\varepsilon}}{\partial r}, εb\frac{\partial{\varepsilon}}{\partial b}, b\frac{\partial{\cal R}}{\partial b} and r\frac{\partial{\cal B}}{\partial r}. For simplicity, we have taken the speed of sound csc_{s}, the susceptibilities χr,χb{\chi}_{r},{\chi}_{b} and all the kinetic coefficients as constants.

In the Fourier space with 𝒪~(k)d4xeiωtikx𝒪¯(x)\tilde{\cal O}\left(k\right)\equiv\int d^{4}xe^{i{\omega}t-i{\textbf{{k}}}\cdot{\textbf{{x}}}}\underaccent{\bar}{\cO}\left(x\right) and k=(0,0,k){\textbf{{k}}}=\left(0,0,k\right), one finds the block diagonal form of the linearized hydrodynamic equations,

(A4×4OOOOA,2×2A+2×2A2×2OOA,+2×2OOOOA,2×2)y=0,\displaystyle\left(\begin{array}[]{cccc}A_{\parallel}^{4\times 4}&O&O&O\\ O&A_{\bot,{\cal B}}^{2\times 2}&A_{+}^{2\times 2}&A_{-}^{2\times 2}\\ O&O&A_{\bot,+}^{2\times 2}&O\\ O&O&O&A_{\bot,-}^{2\times 2}\end{array}\right){\vec{y}}=0, (58)

with y=(π¯0,π¯z,¯z,¯z,¯x,¯y,π¯x,¯y,π¯y,¯x)T{\vec{y}}=\left({\underaccent{\bar}{\p}}_{0},{\underaccent{\bar}{\p}}_{z},{\underaccent{\bar}{\cB}}_{z},{\underaccent{\bar}{\cR}}_{z},{\underaccent{\bar}{\cB}}_{x},{\underaccent{\bar}{\cB}}_{y},{\underaccent{\bar}{\p}}_{x},{\underaccent{\bar}{\cR}}_{y},{\underaccent{\bar}{\p}}_{y},{\underaccent{\bar}{\cR}}_{x}\right)^{T}, where the blocks are

A4×4\displaystyle A_{\parallel}^{4\times 4} =(iω+cs2κsk2i|k|+κsω|k|i(iωΓb)|k|0ics2|k|iω+γk2cs2k20ics2κs|k|iκsωiω+Γb0000iω+Γr),\displaystyle=\left(\begin{array}[]{cccc}-i{\omega}+c_{s}^{2}{\kappa}^{\prime}_{s}{\textbf{{k}}}^{2}&i|{\textbf{{k}}}|+{\kappa}^{\prime}_{s}{\omega}|{\textbf{{k}}}|&i\left(i{\omega}-{\Gamma}_{b}\right)|{\textbf{{k}}}|&0\\ ic_{s}^{2}|{\textbf{{k}}}|&-i{\omega}+{\gamma}_{\parallel}{\textbf{{k}}}^{2}&c_{s}^{2}{\textbf{{k}}}^{2}&0\\ ic_{s}^{2}{\kappa}^{\prime}_{s}|{\textbf{{k}}}|&i{\kappa}^{\prime}_{s}{\omega}&-i{\omega}+{\Gamma}_{b}&0\\ 0&0&0&-i{\omega}+{\Gamma}_{r}\end{array}\right), (63)
A,2×2\displaystyle A_{\bot,{\cal B}}^{2\times 2} =(iω+Γb00iω+Γb),A,±2×2=(iω+(γ+γs)k2±i2Γr|k|2iγs|k|iω+Γr),\displaystyle=\left(\begin{array}[]{ccc}-i{\omega}+{\Gamma}_{b}&0\\ 0&-i{\omega}+{\Gamma}_{b}\end{array}\right),\quad A_{\bot,\pm}^{2\times 2}=\left(\begin{array}[]{cc}-i{\omega}+\left({\gamma}_{\bot}+{\gamma}_{s}\right){\textbf{{k}}}^{2}&\pm\frac{i}{2}{\Gamma}_{r}|{\textbf{{k}}}|\\ \mp 2i{\gamma}_{s}|{\textbf{{k}}}|&-i{\omega}+{\Gamma}_{r}\end{array}\right), (68)
A+2×2\displaystyle A_{+}^{2\times 2} =(iκsωi|k|00),A2×2=(00iκsωi|k|).\displaystyle=\left(\begin{array}[]{cc}i{\kappa}^{\prime}_{s}{\omega}&i|{\textbf{{k}}}|\\ 0&0\end{array}\right),\qquad A_{-}^{2\times 2}=\left(\begin{array}[]{cc}0&0\\ i{\kappa}^{\prime}_{s}{\omega}&-i|{\textbf{{k}}}|\end{array}\right). (73)

Note that ω{\omega} denotes frequency in this section, not to be confused with spin potential ωμν{\omega}_{{\mu}{\nu}}. The power counting in Fourier space is ΓrΓbωO(k){\Gamma}_{r}\sim{\Gamma}_{b}\sim{\omega}\sim O({\textbf{{k}}}) where (48)-(49) are exact to O(k2)O\left({\textbf{{k}}}^{2}\right) while (50)-(51) are accurate to O(k)O\left({\textbf{{k}}}\right). Solving the characteristic equations, detA4×4=0A_{\parallel}^{4\times 4}=0 and detA2×2=0A_{\bot}^{2\times 2}=0, we obtain the dispersion relations,

{ One pair of sound modes: ωsound(k)=±cs|k|i2γk2cs3κsk3Γb+O(k3), One longitudinal spin-boost mode: ωspin,b,=iΓbics2κsk2+O(k2), One longitudinal spin-rotation mode: ωspin,r,=iΓr+O(k2),\displaystyle\begin{cases}\blacklozenge\text{ One pair of sound modes: }{\omega}_{\mathrm{sound}}\left({\textbf{{k}}}\right)=\pm c_{s}|{\textbf{{k}}}|-\frac{i}{2}{\gamma}_{\parallel}{\textbf{{k}}}^{2}\mp c_{s}^{3}{\kappa}^{\prime}_{s}\frac{k^{3}}{{\Gamma}_{b}}+O\left({\textbf{{k}}}^{3}\right),\\ \blacklozenge\text{ One longitudinal spin-boost mode: }{\omega}_{\mathrm{spin,b},\parallel}=-i{\Gamma}_{b}-ic_{s}^{2}{\kappa}^{\prime}_{s}{\textbf{{k}}}^{2}+O\left({\textbf{{k}}}^{2}\right),\\ \blacklozenge\text{ One longitudinal spin-rotation mode: }{\omega}_{\mathrm{spin,r},\parallel}=-i{\Gamma}_{r}+O\left({\textbf{{k}}}^{2}\right),\end{cases} (74)
 Two transverse spin-boost modes: ωspin,b,=iΓb+O(k2),\displaystyle\quad\blacklozenge\text{ Two transverse spin-boost modes: }{\omega}_{\mathrm{spin,b},\bot}=-i{\Gamma}_{b}+O\left({\textbf{{k}}}^{2}\right), (75)
{ Two shear modes: ωshear(k)=iγk2+O(k3), Two transverse spin-rotation modes: ωspin,r,=iΓriγsk2+O(k2).\displaystyle\begin{cases}\blacklozenge\text{ Two shear modes: }{\omega}_{\mathrm{shear}}\left({\textbf{{k}}}\right)=-i{\gamma}_{\bot}{\textbf{{k}}}^{2}+O\left({\textbf{{k}}}^{3}\right),\\ \blacklozenge\text{ Two transverse spin-rotation modes: }{\omega}_{\mathrm{spin,r},\bot}=-i{\Gamma}_{r}-i{\gamma}_{s}{\textbf{{k}}}^{2}+O\left({\textbf{{k}}}^{2}\right).\end{cases} (76)

The dispersion relations of both the hydrodynamic modes and spin modes happen to be the same as the phenomenological formulationHattori:2019lfp to O(k)O({\textbf{{k}}}). However, to O(k2)O({\textbf{{k}}}^{2}) the dispersion relations of sound modes and longitudinal spin-boost mode are different. As a comparison to (74), we give the results of the phenomenological formulation as follows

{ One pair of sound modes: ωsound(k)=±cs|k|i2γk22cs3κsk3Γb+O(k3), One longitudinal spin-boost mode: ωspin,b,=iΓb3ics2κsk2+O(k2).\displaystyle\begin{cases}\blacklozenge\text{ One pair of sound modes: }{\omega}_{\mathrm{sound}}\left({\textbf{{k}}}\right)=\pm c_{s}|{\textbf{{k}}}|-\frac{i}{2}{\gamma}_{\parallel}{\textbf{{k}}}^{2}\mp 2c_{s}^{3}{\kappa}^{\prime}_{s}\frac{k^{3}}{{\Gamma}_{b}}+O\left({\textbf{{k}}}^{3}\right),\\ \blacklozenge\text{ One longitudinal spin-boost mode: }{\omega}_{\mathrm{spin,b},\parallel}=-i{\Gamma}_{b}-3ic_{s}^{2}{\kappa}^{\prime}_{s}{\textbf{{k}}}^{2}+O\left({\textbf{{k}}}^{2}\right).\end{cases}

This implies that if one introduces the hydrodynamic and spin modes based on the frame-invariant components of Θμν{\Theta}^{{\mu}{\nu}} and Σμνα{\Sigma}^{{\mu}{\nu}{\alpha}}, the dispersion relations will typically differ depending on the specific formulation of spin hydrodynamics.

VI Summary and Outlook

We have shown that in the canonical formulation of spin hydrodynamics for Dirac fermions featuring a completely antisymmetric spin tensor and a generic spin potential, the stress-energy tensor must be influenced by spin variables at the first order of gradient. Additionally, the inclusion of boost variables is necessary to uphold the entropy principle.

When boost variables are included, we conduct a linear-mode analysis utilizing the spin hydrodynamic equations derived from the canonical formulation. Upon comparison with the phenomenological formulation, we observe that the dispersion relations of the sound modes and the longitudinal spin-boost mode differ at the second order of gradient.

The violation of the entropy principle in the absence of boost variables is demonstrated with a general antisymmetric spin potential. It is yet to be determined if spin hydrodynamics can be developed solely using the spatial component rμνr_{{\mu}{\nu}} of the spin potential ωμν{\omega}_{{\mu}{\nu}} for general rotational fluids with finite thermal vorticity. Furthermore, in the presence of boost variables, instead of opting the constitutive relations of canonical formulation to be related to the pseudogauge transformation of the phenomenological formulation, it would be intriguing to explore if there exist alternative non-dissipative constitutive relations constrained by (44), and how such constitutive relations would impact the behavior of the hydrodynamic and spin modes. These aspects are left for future investigation.

Acknowledgements.
We thank Xu-Guang Huang for stimulating discussions in several stages of this work. L.X.Y thanks Shi Pu for useful discussions at a workshop, ”The 15th QCD Phase Transition and Relativistic Heavy Ion Physics”, on Dec.15-19, 2023. L.X.Y is supported by the China Postdoctoral Science Foundation 2023M730707.

Appendix A Completeness of First-Order spin hydrodynamics

For completeness, we confirm that there is no O(0δ)O\left(\partial^{0}{\delta}\right) non-dissipative solution to (23). To this end, we consider the leading-order terms Θ0{\Theta}_{0} and s0s_{0} in (24). We define

Θ0ασTδ=,Θδ0ασνδν,s0αδ=,sδ0ανδν,\displaystyle{\Theta}_{0}^{{\alpha}{\sigma}}\equiv T\sum_{{\delta}={\cal R},{\cal B}}{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}{\delta}_{\nu},\hskip 10.00002pt\ignorespaces s_{0}^{\alpha}\equiv\sum_{{\delta}={\cal R},{\cal B}}s_{{\delta}0}^{{\alpha}{\nu}}{\delta}_{\nu}, (77)

where Θδ0{\Theta}_{{\delta}0} and sδ0s_{{\delta}0} are O(0ω0δ0)O\left(\partial^{0}{\omega}^{0}{\delta}^{0}\right) coefficients of δν{\delta}_{\nu} as expressions in terms of β{\beta} and uμu^{\mu}. Here we have excluded the dependence on δ{\delta} in Θδ0{\Theta}_{{\delta}0} and sδ0s_{{\delta}0} since the linear dependence on δν{\delta}^{\nu} has been factored out444We expect that the leading-order constitutive relations should exhibit linearity that is homogeneous in both the magnitude and direction of δμ{\delta}^{{\mu}}, akin to the behavior in thermodynamic relations where extensive quantities and their corresponding density quantities are linearly homogeneous. Therefore, the only viable covariant linear factor of δμ{\delta}^{\mu} is in the form of a four-vector, while the coefficients of δμ{\delta}^{\mu} do not depend on its magnitude or direction.. The single O(0ωδ)O\left(\partial^{0}{\omega}{\delta}\right) term Θ0ασωασ{\Theta}_{0}^{{\alpha}{\sigma}}{\omega}_{{\alpha}{\sigma}} in (23) should be vanishing for any value of ωασ{\omega}_{{\alpha}{\sigma}}. This gives the constraint

Θδ0[ασ]νδν=0.\displaystyle{\Theta}_{{\delta}0}^{[{\alpha}{\sigma}]{\nu}}{\delta}_{\nu}=0. (78)

The O(ω0δ)O\left(\partial{\omega}^{0}{\delta}\right) terms in (21) can be written as

αs0α\displaystyle\partial_{\alpha}s_{0}^{\alpha} +αΘ0ασβσ=δ=,α(sδ0ανδν)+α(TΘδ0ασνδν)βσ\displaystyle+\partial_{\alpha}{\Theta}_{0}^{{\alpha}{\sigma}}{\beta}_{\sigma}=\sum_{{\delta}={\cal R},{\cal B}}\partial_{\alpha}\left(s_{{\delta}0}^{{\alpha}{\nu}}{\delta}_{\nu}\right)+\partial_{\alpha}\left(T{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}{\delta}_{\nu}\right){\beta}_{\sigma}
=\displaystyle= δ=,Nδ1ανδνβαlnβ+Nδ2ανμδναuμ+Nδ3αναδν+Nδ4ανμσδναωμσ,\displaystyle\sum_{{\delta}={\cal R},{\cal B}}N_{{\delta}1}^{{\alpha}{\nu}}{\delta}_{\nu}{\beta}\partial_{\alpha}\ln{\beta}+N_{{\delta}2}^{{\alpha}{\nu}{\mu}}{\delta}_{\nu}\partial_{\alpha}u_{\mu}+N_{{\delta}3}^{{\alpha}{\nu}}\partial_{\alpha}{\delta}_{\nu}+N_{{\delta}4}^{{\alpha}{\nu}{\mu}{\sigma}}{\delta}_{\nu}\partial_{\alpha}{\omega}_{{\mu}{\sigma}}, (79)

where

Nδ1ανsδ0,βαν+(TΘδ0ασν),ββσ,\displaystyle N_{{\delta}1}^{{\alpha}{\nu}}\equiv s_{{\delta}0,{\beta}}^{{\alpha}{\nu}}+\left(T{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}\right)_{,{\beta}}{\beta}_{\sigma}, Nδ2ανμsδ0,uαν,μ+Θδ0,uασν,μuσ,\displaystyle N_{{\delta}2}^{{\alpha}{\nu}{\mu}}\equiv s_{{\delta}0,u}^{{\alpha}{\nu},{\mu}}+{\Theta}_{{\delta}0,u}^{{\alpha}{\sigma}{\nu},{\mu}}u_{\sigma}, (80)
Nδ3ανsδ0αν+Θδ0ασνuσ,\displaystyle N_{{\delta}3}^{{\alpha}{\nu}}\equiv s_{{\delta}0}^{{\alpha}{\nu}}+{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}u_{\sigma}, Nδ4ανμσsδ0,ωαν,μσ+TΘδ0,ωαρν,μσβρ,\displaystyle N_{{\delta}4}^{{\alpha}{\nu}{\mu}{\sigma}}\equiv s_{{\delta}0,{\omega}}^{{\alpha}{\nu},{\mu}{\sigma}}+T{\Theta}_{{\delta}0,{\omega}}^{{\alpha}{\rho}{\nu},{\mu}{\sigma}}{\beta}_{\rho},

with notations A,βA/βA_{,{\beta}}\equiv\partial A/\partial{\beta}, A,u,μA/uμA_{,u}^{,{\mu}}\equiv\partial A/\partial u_{\mu} and A,ω,μνA/ωμνA_{,{\omega}}^{,{\mu}{\nu}}\equiv\partial A/\partial{\omega}_{{\mu}{\nu}}. Noting uu=1u\cdot u=-1 and uδ=0u\cdot{\delta}=0, (A) should be identically zero in groups as follows,

Nδ1ανδνβαlnβ=0,\displaystyle N_{{\delta}1}^{{\alpha}{\nu}}{\delta}_{\nu}{\beta}\partial_{\alpha}\ln{\beta}=0,
Nδ2ανμδναuμ+Nδ3αναδν=0=Mδ0ανδνα(uu)+Mδ2αα(uδ),\displaystyle N_{{\delta}2}^{{\alpha}{\nu}{\mu}}{\delta}_{\nu}\partial_{\alpha}u_{\mu}+N_{{\delta}3}^{{\alpha}{\nu}}\partial_{\alpha}{\delta}_{\nu}=0=M_{{\delta}0}^{{\alpha}{\nu}}{\delta}_{\nu}\partial_{\alpha}\left(u\cdot u\right)+M_{{\delta}2}^{{\alpha}}\partial_{\alpha}\left(u\cdot{\delta}\right), (81)

where the constraints can be written as

Nδ1ανδν=0 and 𝒩δ2ανμδν=0 and 𝒩δ3αν=0 and 𝒩δ4αν[μσ]δν=0,\displaystyle N_{{\delta}1}^{{\alpha}{\nu}}{\delta}_{\nu}=0\;\text{ and }\;{\cal N}_{{\delta}2}^{{\alpha}{\nu}{\mu}}{\delta}_{\nu}=0\;\text{ and }\;{\cal N}_{{\delta}3}^{{\alpha}{\nu}}=0\;\text{ and }\;{\cal N}_{{\delta}4}^{{\alpha}{\nu}[{\mu}{\sigma}]}{\delta}_{\nu}=0, (82)

with

𝒩δ2ανμNδ2ανμ2Mδ0ανuμMδ2αgνμ,𝒩δ3ανNδ3ανMδ2αuν.\displaystyle{\cal N}_{{\delta}2}^{{\alpha}{\nu}{\mu}}\equiv N_{{\delta}2}^{{\alpha}{\nu}{\mu}}-2M_{{\delta}0}^{{\alpha}{\nu}}u^{\mu}-M_{{\delta}2}^{{\alpha}}g^{{\nu}{\mu}},\hskip 30.00005pt\ignorespaces{\cal N}_{{\delta}3}^{{\alpha}{\nu}}\equiv N_{{\delta}3}^{{\alpha}{\nu}}-M_{{\delta}2}^{{\alpha}}u^{\nu}. (83)

Using the above constraints we have

𝒩δ3αν=0 0=𝒩δ3ανδν=Nδ3ανδν 0=(Nδ3ανδν),u,μ=(Nδ2ανμ+Θδ0αμν)δν,\displaystyle{\cal N}_{{\delta}3}^{{\alpha}{\nu}}=0\;\to\;0={\cal N}_{{\delta}3}^{{\alpha}{\nu}}{\delta}_{\nu}=N_{{\delta}3}^{{\alpha}{\nu}}{\delta}_{\nu}\;\to\;0=\left(N_{{\delta}3}^{{\alpha}{\nu}}{\delta}_{\nu}\right)_{,u}^{,{\mu}}=\left(N_{{\delta}2}^{{\alpha}{\nu}{\mu}}+{\Theta}_{{\delta}0}^{{\alpha}{\mu}{\nu}}\right){\delta}_{\nu},
𝒩δ2ανμδν=0 0=(Θδ0αμν+2Mδ0ανuμ+Mδ2αgνμ)δν 0=(Θδ0αμνuμ2Mδ0αν)δν,\displaystyle{\cal N}_{{\delta}2}^{{\alpha}{\nu}{\mu}}{\delta}_{\nu}=0\;\to\;0=\left({\Theta}_{{\delta}0}^{{\alpha}{\mu}{\nu}}+2M_{{\delta}0}^{{\alpha}{\nu}}u^{\mu}+M_{{\delta}2}^{{\alpha}}g^{{\nu}{\mu}}\right){\delta}_{\nu}\;\to\;0=\left({\Theta}_{{\delta}0}^{{\alpha}{\mu}{\nu}}u_{\mu}-2M_{{\delta}0}^{{\alpha}{\nu}}\right){\delta}_{\nu},
0=(Nδ3ανδν),β=(Nδ1αν+TΘδ0ασνuσ)δν=TΘδ0ασνuσδνΘδ0ασνuσδν=0,\displaystyle 0=\left(N_{{\delta}3}^{{\alpha}{\nu}}{\delta}_{\nu}\right)_{,{\beta}}=\left(N_{{\delta}1}^{{\alpha}{\nu}}+T{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}u_{\sigma}\right){\delta}_{\nu}=T{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}u_{\sigma}{\delta}_{\nu}\;\to\;{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}u_{\sigma}{\delta}_{\nu}=0,
0=Nδ3ανδν=(sδ0αν+Θδ0ασνuσ)δνsδ0ανδν=0,\displaystyle 0=N_{{\delta}3}^{{\alpha}{\nu}}{\delta}_{\nu}=\left(s_{{\delta}0}^{{\alpha}{\nu}}+{\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}u_{\sigma}\right){\delta}_{\nu}\;\to\;s_{{\delta}0}^{{\alpha}{\nu}}{\delta}_{\nu}=0, (84)
𝒩δ2ανμδνuμ=0 0=(Θδ0αμνuμ2Mδ0αν)δν=2Mδ0ανδνMδ0ανδν=0,\displaystyle{\cal N}_{{\delta}2}^{{\alpha}{\nu}{\mu}}{\delta}_{\nu}u_{\mu}=0\;\to\;0=\left({\Theta}_{{\delta}0}^{{\alpha}{\mu}{\nu}}u_{\mu}-2M_{{\delta}0}^{{\alpha}{\nu}}\right){\delta}_{\nu}=-2M_{{\delta}0}^{{\alpha}{\nu}}{\delta}_{\nu}\;\to\;M_{{\delta}0}^{{\alpha}{\nu}}{\delta}_{\nu}=0,
0=(Θδ0αμν+2Mδ0ανuμ+Mδ2αgνμ)δν=Θδ0αμνδν+Mδ2αδμΘδ0αμνδν=Mδ2αδμ.\displaystyle 0=\left({\Theta}_{{\delta}0}^{{\alpha}{\mu}{\nu}}+2M_{{\delta}0}^{{\alpha}{\nu}}u^{\mu}+M_{{\delta}2}^{{\alpha}}g^{{\nu}{\mu}}\right){\delta}_{\nu}={\Theta}_{{\delta}0}^{{\alpha}{\mu}{\nu}}{\delta}_{\nu}+M_{{\delta}2}^{{\alpha}}{\delta}^{\mu}\;\to\;{\Theta}_{{\delta}0}^{{\alpha}{\mu}{\nu}}{\delta}_{\nu}=-M_{{\delta}2}^{{\alpha}}{\delta}^{\mu}.
𝒩δ2ανμδν=0 0=Nδ2ανμδνMδ2αδμ=(sδ0ανδν),u,μ+(Θδ0ασνδν),u,μuσMδ2αδμ=Mδ2αδμ,\displaystyle{\cal N}_{{\delta}2}^{{\alpha}{\nu}{\mu}}{\delta}_{\nu}=0\;\to\;0=N_{{\delta}2}^{{\alpha}{\nu}{\mu}}{\delta}_{\nu}-M_{{\delta}2}^{{\alpha}}{\delta}^{{\mu}}=\left(s_{{\delta}0}^{{\alpha}{\nu}}{\delta}_{\nu}\right)_{,u}^{,{\mu}}+\left({\Theta}_{{\delta}0}^{{\alpha}{\sigma}{\nu}}{\delta}_{\nu}\right)_{,u}^{,{\mu}}u_{\sigma}-M_{{\delta}2}^{{\alpha}}{\delta}^{{\mu}}=-M_{{\delta}2}^{{\alpha}}{\delta}^{{\mu}},

which gives Mδ2α=0M_{{\delta}2}^{\alpha}=0. Consequently, the combined constraints from (78) and (82) lead to s0α=0s_{0}^{\alpha}=0 and Θ0ασ=0{\Theta}_{0}^{{\alpha}{\sigma}}=0. This means that there are no other zeroth-order non-dissipative terms in (10)-(12).

References

  • [1] Zuo-Tang Liang and Xin-Nian Wang. Globally polarized quark-gluon plasma in non-central A+A collisions. Phys. Rev. Lett., 94:102301, 2005. [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
  • [2] Zuo-Tang Liang and Xin-Nian Wang. Spin alignment of vector mesons in non-central A+A collisions. Phys. Lett. B, 629:20–26, 2005.
  • [3] Sergei A. Voloshin. Polarized secondary particles in unpolarized high energy hadron-hadron collisions? 10 2004.
  • [4] Barbara Betz, Miklos Gyulassy, and Giorgio Torrieri. Polarization probes of vorticity in heavy ion collisions. Phys. Rev. C, 76:044901, 2007.
  • [5] F. Becattini, F. Piccinini, and J. Rizzo. Angular momentum conservation in heavy ion collisions at very high energy. Phys. Rev. C, 77:024906, 2008.
  • [6] Xu-Guang Huang, Pasi Huovinen, and Xin-Nian Wang. Quark Polarization in a Viscous Quark-Gluon Plasma. Phys. Rev. C, 84:054910, 2011.
  • [7] L. Adamczyk et al. Global Λ\Lambda hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature, 548:62–65, 2017.
  • [8] Jaroslav Adam et al. Global polarization of Λ\Lambda hyperons in Au+Au collisions at sNN\sqrt{s_{{}_{NN}}} = 200 GeV. Phys. Rev. C, 98:014910, 2018.
  • [9] J. Adam et al. Global Polarization of Ξ\Xi and Ω\Omega Hyperons in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV. Phys. Rev. Lett., 126(16):162301, 2021. [Erratum: Phys.Rev.Lett. 131, 089901 (2023)].
  • [10] Shreyasi Acharya et al. Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions. Phys. Rev. Lett., 125(1):012301, 2020.
  • [11] M. S. Abdallah et al. Pattern of global spin alignment of ϕ\phi and K∗0 mesons in heavy-ion collisions. Nature, 614(7947):244–248, 2023.
  • [12] Shreyasi Acharya et al. Measurement of the J/ψ\psi Polarization with Respect to the Event Plane in Pb-Pb Collisions at the LHC. Phys. Rev. Lett., 131(4):042303, 2023.
  • [13] F. Becattini and F. Piccinini. The Ideal relativistic spinning gas: Polarization and spectra. Annals Phys., 323:2452–2473, 2008.
  • [14] F. Becattini, L. Csernai, and D. J. Wang. Λ\Lambda polarization in peripheral heavy ion collisions. Phys. Rev. C, 88(3):034905, 2013. [Erratum: Phys.Rev.C 93, 069901 (2016)].
  • [15] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi. Relativistic distribution function for particles with spin at local thermodynamical equilibrium. Annals Phys., 338:32–49, 2013.
  • [16] F. Becattini, G. Inghirami, V. Rolando, A. Beraudo, L. Del Zanna, A. De Pace, M. Nardi, G. Pagliara, and V. Chandra. A study of vorticity formation in high energy nuclear collisions. Eur. Phys. J. C, 75(9):406, 2015. [Erratum: Eur.Phys.J.C 78, 354 (2018)].
  • [17] F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin. Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down. Phys. Rev. C, 95(5):054902, 2017.
  • [18] I. Karpenko and F. Becattini. Study of Λ\Lambda polarization in relativistic nuclear collisions at sNN=7.7\sqrt{s_{\mathrm{NN}}}=7.7 –200 GeV. Eur. Phys. J. C, 77(4):213, 2017.
  • [19] Long-Gang Pang, Hannah Petersen, Qun Wang, and Xin-Nian Wang. Vortical Fluid and Λ\Lambda Spin Correlations in High-Energy Heavy-Ion Collisions. Phys. Rev. Lett., 117(19):192301, 2016.
  • [20] Yilong Xie, Dujuan Wang, and László P. Csernai. Global Λ\Lambda polarization in high energy collisions. Phys. Rev. C, 95(3):031901, 2017.
  • [21] F. Becattini and Iu. Karpenko. Collective Longitudinal Polarization in Relativistic Heavy-Ion Collisions at Very High Energy. Phys. Rev. Lett., 120(1):012302, 2018.
  • [22] Francesco Becattini and Michael A. Lisa. Polarization and Vorticity in the Quark–Gluon Plasma. Ann. Rev. Nucl. Part. Sci., 70:395–423, 2020.
  • [23] Takafumi Niida. Global and local polarization of Λ\Lambda hyperons in Au+Au collisions at 200 GeV from STAR. Nucl. Phys. A, 982:511–514, 2019.
  • [24] Jaroslav Adam et al. Polarization of Λ\Lambda (Λ¯\bar{\Lambda}) hyperons along the beam direction in Au+Au collisions at sNN\sqrt{s_{{}_{NN}}} = 200 GeV. Phys. Rev. Lett., 123(13):132301, 2019.
  • [25] Yu-Chen Liu and Xu-Guang Huang. Anomalous chiral transports and spin polarization in heavy-ion collisions. Nucl. Sci. Tech., 31(6):56, 2020.
  • [26] Jian-Hua Gao, Guo-Liang Ma, Shi Pu, and Qun Wang. Recent developments in chiral and spin polarization effects in heavy-ion collisions. Nucl. Sci. Tech., 31(9):90, 2020.
  • [27] Xu-Guang Huang. Vorticity and Spin Polarization — A Theoretical Perspective. Nucl. Phys. A, 1005:121752, 2021.
  • [28] Francesco Becattini. Spin and polarization: a new direction in relativistic heavy ion physics. Rept. Prog. Phys., 85(12):122301, 2022.
  • [29] David Montenegro, Leonardo Tinti, and Giorgio Torrieri. Ideal relativistic fluid limit for a medium with polarization. Phys. Rev. D, 96(5):056012, 2017. [Addendum: Phys.Rev.D 96, 079901 (2017)].
  • [30] David Montenegro, Leonardo Tinti, and Giorgio Torrieri. Sound waves and vortices in a polarized relativistic fluid. Phys. Rev. D, 96(7):076016, 2017.
  • [31] Wojciech Florkowski, Bengt Friman, Amaresh Jaiswal, and Enrico Speranza. Relativistic fluid dynamics with spin. Phys. Rev. C, 97(4):041901, 2018.
  • [32] Wojciech Florkowski, Avdhesh Kumar, and Radoslaw Ryblewski. Relativistic hydrodynamics for spin-polarized fluids. Prog. Part. Nucl. Phys., 108:103709, 2019.
  • [33] David Montenegro and Giorgio Torrieri. Causality and dissipation in relativistic polarizable fluids. Phys. Rev. D, 100(5):056011, 2019.
  • [34] Koichi Hattori, Masaru Hongo, Xu-Guang Huang, Mamoru Matsuo, and Hidetoshi Taya. Fate of spin polarization in a relativistic fluid: An entropy-current analysis. Phys. Lett. B, 795:100–106, 2019.
  • [35] Shiyong Li and Ho-Ung Yee. Quantum Kinetic Theory of Spin Polarization of Massive Quarks in Perturbative QCD: Leading Log. Phys. Rev. D, 100(5):056022, 2019.
  • [36] David Montenegro and Giorgio Torrieri. Linear response theory and effective action of relativistic hydrodynamics with spin. Phys. Rev. D, 102(3):036007, 2020.
  • [37] Markus Garbiso and Matthias Kaminski. Hydrodynamics of simply spinning black holes & hydrodynamics for spinning quantum fluids. JHEP, 12:112, 2020.
  • [38] A. D. Gallegos and U. Gürsoy. Holographic spin liquids and Lovelock Chern-Simons gravity. JHEP, 11:151, 2020.
  • [39] Kenji Fukushima and Shi Pu. Spin hydrodynamics and symmetric energy-momentum tensors – A current induced by the spin vorticity –. Phys. Lett. B, 817:136346, 2021.
  • [40] Samapan Bhadury, Wojciech Florkowski, Amaresh Jaiswal, Avdhesh Kumar, and Radoslaw Ryblewski. Relativistic dissipative spin dynamics in the relaxation time approximation. Phys. Lett. B, 814:136096, 2021.
  • [41] Shiyong Li, Mikhail A. Stephanov, and Ho-Ung Yee. Nondissipative Second-Order Transport, Spin, and Pseudogauge Transformations in Hydrodynamics. Phys. Rev. Lett., 127(8):082302, 2021.
  • [42] Shuzhe Shi, Charles Gale, and Sangyong Jeon. From chiral kinetic theory to relativistic viscous spin hydrodynamics. Phys. Rev. C, 103(4):044906, 2021.
  • [43] Jin Hu. Kubo formulae for first-order spin hydrodynamics. Phys. Rev. D, 103(11):116015, 2021.
  • [44] A. D. Gallegos, U. Gürsoy, and A. Yarom. Hydrodynamics of spin currents. SciPost Phys., 11:041, 2021.
  • [45] Hao-Hao Peng, Jun-Jie Zhang, Xin-Li Sheng, and Qun Wang. Ideal Spin Hydrodynamics from the Wigner Function Approach. Chin. Phys. Lett., 38(11):116701, 2021.
  • [46] Masaru Hongo, Xu-Guang Huang, Matthias Kaminski, Mikhail Stephanov, and Ho-Ung Yee. Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation. JHEP, 11:150, 2021.
  • [47] Dong-Lin Wang, Shuo Fang, and Shi Pu. Analytic solutions of relativistic dissipative spin hydrodynamics with Bjorken expansion. Phys. Rev. D, 104(11):114043, 2021.
  • [48] Dong-Lin Wang, Xin-Qing Xie, Shuo Fang, and Shi Pu. Analytic solutions of relativistic dissipative spin hydrodynamics with radial expansion in Gubser flow. Phys. Rev. D, 105(11):114050, 2022.
  • [49] Duan She, Anping Huang, Defu Hou, and Jinfeng Liao. Relativistic viscous hydrodynamics with angular momentum. Sci. Bull., 67:2265–2268, 2022.
  • [50] Jin Hu. Relativistic first-order spin hydrodynamics via the Chapman-Enskog expansion. Phys. Rev. D, 105(7):076009, 2022.
  • [51] Casey Cartwright, Markus Garbiso Amano, Matthias Kaminski, Jorge Noronha, and Enrico Speranza. Convergence of hydrodynamics in a rotating strongly coupled plasma. Phys. Rev. D, 108(4):046014, 2023.
  • [52] Masaru Hongo, Xu-Guang Huang, Matthias Kaminski, Mikhail Stephanov, and Ho-Ung Yee. Spin relaxation rate for heavy quarks in weakly coupled QCD plasma. JHEP, 08:263, 2022.
  • [53] Nora Weickgenannt, David Wagner, Enrico Speranza, and Dirk H. Rischke. Relativistic second-order dissipative spin hydrodynamics from the method of moments. Phys. Rev. D, 106(9):096014, 2022.
  • [54] Samapan Bhadury, Wojciech Florkowski, Amaresh Jaiswal, Avdhesh Kumar, and Radoslaw Ryblewski. Relativistic Spin Magnetohydrodynamics. Phys. Rev. Lett., 129(19):192301, 2022.
  • [55] Zheng Cao, Koichi Hattori, Masaru Hongo, Xu-Guang Huang, and Hidetoshi Taya. Gyrohydrodynamics: Relativistic spinful fluid with strong vorticity. PTEP, 2022(7):071D01, 2022.
  • [56] Asaad Daher, Arpan Das, Wojciech Florkowski, and Radoslaw Ryblewski. Canonical and phenomenological formulations of spin hydrodynamics. Phys. Rev. C, 108(2):024902, 2023.
  • [57] Rajeev Singh, Masoud Shokri, and S. M. A. Tabatabaee Mehr. Relativistic hydrodynamics with spin in the presence of electromagnetic fields. Nucl. Phys. A, 1035:122656, 2023.
  • [58] A. D. Gallegos, U. Gursoy, and A. Yarom. Hydrodynamics, spin currents and torsion. JHEP, 05:139, 2023.
  • [59] Rajesh Biswas, Asaad Daher, Arpan Das, Wojciech Florkowski, and Radoslaw Ryblewski. Relativistic second-order spin hydrodynamics: An entropy-current analysis. Phys. Rev. D, 108(1):014024, 2023.
  • [60] Xin-Qing Xie, Dong-Lin Wang, Chen Yang, and Shi Pu. Causality and stability analysis for the minimal causal spin hydrodynamics. Phys. Rev. D, 108(9):094031, 2023.
  • [61] Francesco Becattini, Asaad Daher, and Xin-Li Sheng. Entropy current and entropy production in relativistic spin hydrodynamics. Phys. Lett. B, 850:138533, 2024.
  • [62] In general, a totally antisymmetric rank-3 tensor Σαμν{\Sigma}^{{\alpha}{\mu}{\nu}} can contain, at most, four independent components, of which only three can be present in μν{\cal R}^{{\mu}{\nu}} by the definition μνuαΣαμν{\cal R}^{{\mu}{\nu}}\equiv-u_{\alpha}{\Sigma}^{{\alpha}{\mu}{\nu}}. In any case, the totally antisymmetric spin tensor cannot encompass all six independent components associated with Lorentz symmetry.
  • [63] F. Becattini, L. Bucciantini, E. Grossi, and L. Tinti. Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid. Eur. Phys. J. C, 75(5):191, 2015.
  • [64] Jyotirmoy Bhattacharya, Sayantani Bhattacharyya, Shiraz Minwalla, and Amos Yarom. A Theory of first order dissipative superfluid dynamics. JHEP, 05:147, 2014.
  • [65] Pavel Kovtun. Lectures on hydrodynamic fluctuations in relativistic theories. J. Phys. A, 45:473001, 2012.
  • [66] Although there are no additional symmetries beyond the Lorentz group that would allow for individual conservation laws in field theory, and ideal spin hydrodynamics does not exist, we can establish an ad hoc criterion for formulating spin hydrodynamics, which suggests that a hydrodynamic framework should be non-dissipative at the leading order in the conservation limit of the currents involved.
  • [67] Note that 𝒮μν{\cal S}^{{\mu}{\nu}} is free in the sense that the the dependence of 𝒮μν{\cal S}^{{\mu}{\nu}} on β,uμ{\beta},u^{{\mu}} and ωμν{\omega}^{{\mu}{\nu}} could vary with specific type of fluid and physical regime while the constitutive relations should satisfy the entropy principle in general.
  • [68] Rudolf Baier, Paul Romatschke, Dam Thanh Son, Andrei O. Starinets, and Mikhail A. Stephanov. Relativistic viscous hydrodynamics, conformal invariance, and holography. JHEP, 04:100, 2008.
  • [69] G. S. Denicol, H. Niemi, E. Molnar, and D. H. Rischke. Derivation of transient relativistic fluid dynamics from the Boltzmann equation. Phys. Rev. D, 85:114047, 2012. [Erratum: Phys.Rev.D 91, 039902 (2015)].
  • [70] E. Molnár, H. Niemi, G. S. Denicol, and D. H. Rischke. Relative importance of second-order terms in relativistic dissipative fluid dynamics. Phys. Rev. D, 89(7):074010, 2014.
  • [71] F. Becattini and L. Tinti. Thermodynamical inequivalence of quantum stress-energy and spin tensors. Phys. Rev. D, 84:025013, 2011.
  • [72] F. Becattini and L. Tinti. Nonequilibrium Thermodynamical Inequivalence of Quantum Stress-energy and Spin Tensors. Phys. Rev. D, 87(2):025029, 2013.
  • [73] We expect that the leading-order constitutive relations should exhibit linearity that is homogeneous in both the magnitude and direction of δμ{\delta}^{{\mu}}, akin to the behavior in thermodynamic relations where extensive quantities and their corresponding density quantities are linearly homogeneous. Therefore, the only viable covariant linear factor of δμ{\delta}^{\mu} is in the form of a four-vector, while the coefficients of δμ{\delta}^{\mu} do not depend on its magnitude or direction.