This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Representation of PDE Systems with Delay and Stability Analysis using Convex Optimization – Extended Version

Declan S. Jagt    Matthew M. Peet Acknowledgement: This work was supported by National Science Foundation grant CMMI-1935453.
Abstract

Partial Integral Equations (PIEs) have been used to represent both systems with delay and systems of Partial Differential Equations (PDEs) in one or two spatial dimensions. In this paper, we show that these results can be combined to obtain a PIE representation of any suitably well-posed 1D PDE model with constant delay. In particular, we represent these delayed PDE systems as coupled systems of 1D and 2D PDEs, obtaining a PIE representation of both subsystems. Taking the feedback interconnection of these PIE subsystems, we then obtain a 2D PIE representation of the 1D PDE with delay. Next, based on the PIE representation, we formulate the problem of stability analysis as convex optimization of positive operators which can be solved using the PIETOOLS software suite. We apply the result to PDE examples with delay in the state and boundary conditions.

1 INTRODUCTION

We consider the problem of analysis of coupled systems of Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs). Such ODE-PDE systems are frequently used to model physical processes, modeling the dynamics on the interior of the domain with the PDE, and the dynamics at the boundaries using the ODE.

In both modeling and control of PDE systems, the evolution of the system often depends on the internal state of the system at earlier points in time, giving rise to delays in different components of the model. For example, these delays may be inherent to the dynamics of the system itself, appearing within the PDE (sub)system, as in the following wave equation,

𝐮tt(t,x)\displaystyle\mathbf{u}_{tt}(t,x) =𝐮xx(tτ,x),\displaystyle=\mathbf{u}_{xx}(t-\tau,x),
𝐮(t,1)\displaystyle\mathbf{u}(t,1) =𝐮(t,x),𝐮(t,0)=0.\displaystyle=-\mathbf{u}(t,x),\qquad\mathbf{u}(t,0)=0.

Alternatively, delay may occur in the interaction between coupled systems, explicitly appearing in the Boundary Conditions (BCs) of the PDE,

w˙(t)\displaystyle\dot{w}(t) =w(t)+𝐮x(t,1),\displaystyle=-w(t)+\mathbf{u}_{x}(t,1),
𝐮tt(t,x)\displaystyle\mathbf{u}_{tt}(t,x) =𝐮xx(t,x),\displaystyle=\mathbf{u}_{xx}(t,x),
𝐮t(t,1)\displaystyle\mathbf{u}_{t}(t,1) =w(tτ),𝐮(t,0)=0.\displaystyle=-w(t-\tau),\qquad\mathbf{u}(t,0)=0.

or defining the dynamics at the boundary of the domain,

w˙(t)\displaystyle\dot{w}(t) =w(tτ)+𝐮x(t,1),\displaystyle=-w(t-\tau)+\mathbf{u}_{x}(t,1),
𝐮tt(t,x)\displaystyle\mathbf{u}_{tt}(t,x) =𝐮xx(t,x),\displaystyle=\mathbf{u}_{xx}(t,x),
𝐮t(t,1)\displaystyle\mathbf{u}_{t}(t,1) =w(t),𝐮(t,0)=0.\displaystyle=-w(t),\qquad\mathbf{u}(t,0)=0.

In each case, the presence of delays naturally complicates analysis of solution properties such as stability of the system, as at any time t0t\geq 0, the state of the system involves not only the current value of the state 𝐮(t)\mathbf{u}(t), but also the value of the ODE and PDE states w(s)w(s) and 𝐮(s)\mathbf{u}(s) at all s[tτ,t]s\in[t-\tau,t].

To verify stability of PDEs with delay, one common approach involves testing for existence of a positive definite functional VV that decays along solutions to the system – i.e. a Lyapunov-Krasovskii Functional (LKF) [1]. In particular, for a delayed PDE with state 𝐮(t)\mathbf{u}(t) and delayed state ϕ(t)\boldsymbol{\phi}(t) defined by ϕ(t,s):=𝐮(tsτ)\boldsymbol{\phi}(t,s):=\mathbf{u}(t-s\tau) for s[0,1]s\in[0,1], the challenge of proving stability then becomes that of finding a functional V(𝐮,ϕ)V(\mathbf{u},\boldsymbol{\phi}) that satisfies V(0)=0V(0)=0, V(𝐮,ϕ)>0V(\mathbf{u},\boldsymbol{\phi})>0 for (𝐮,ϕ)0(\mathbf{u},\boldsymbol{\phi})\neq 0, and V˙(𝐮(t),ϕ(t))0\dot{V}(\mathbf{u}(t),\boldsymbol{\phi}(t))\leq 0 along all solutions (𝐮,ϕ)(\mathbf{u},\boldsymbol{\phi}) to the system. In practice, a candidate LKF V>0V>0 is usually fixed a priori, often as some variation on the energy functional V(𝐮,ϕ)=𝐮2+ϕ2V(\mathbf{u},\boldsymbol{\phi})=\|\mathbf{u}\|^{2}+\|\boldsymbol{\phi}\|^{2}, and then proven to decay along solutions to a system of interest. Although stability properties of a variety of PDEs with delay have been proven this way, including for heat and wave equations with both time-varying and constant delay [2, 3], results obtained in this manner are difficult to extend to other systems. Specifically, a LKF that certifies stability for one system may not be valid for another, and identifying a suitable candidate LKF for a given system requires significant insight.

To test existence of LKFs for more general PDEs with delay, a cone of positive candidate functionals V>0V>0 is often parameterized by positive definite matrices P0P\succ 0. The challenge in testing stability then becomes that of enforcing decay of the functionals, V˙0\dot{V}\leq 0, as a Linear Matrix Inequality (LMI), Q0Q\preceq 0, which can be efficiently solved using semidefinite programming. Unfortunately, enforcing V˙0\dot{V}\leq 0 along solutions to a PDE with delay as an LMI is complicated by the fact that PDE dynamics are defined by (unbounded) differential operators, and that solutions are constrained to satisfy BCs. As such, most prior work in this field focuses only on specific PDEs with delay, exploiting the structure of the PDE (parabolic, hyperbolic, elliptic) and the type of BCs (Dirichlet, Neumann, Robin) to enforce V˙0\dot{V}\leq 0. For example, stability tests for heat and wave equations were derived in [4], using the Wirtinger inequality to prove LMI constraints for negativity V˙0\dot{V}\leq 0. Using a similar approach, LMIs for stability of linear and semi-linear diffusive PDEs with delay were derived in [5, 6, 7], as well as for reaction-diffusion systems with delayed boundary inputs in [8].

The disadvantage of these approaches, however, is that the results are again valid only for a restricted class of systems, and rely on the use of specific inequalities (e.g. Wirtinger, Jensen, Poincaré) to enforce V˙0\dot{V}\leq 0. Extending these results to even slightly different models, then, may require significant expertise from the user.

In this paper, we propose an alternative, LMI-based method for testing stability of a general class of linear ODE-PDE systems with fixed, constant delay, by representing them as Partial Integral Equations (PIEs). A PIE is an alternative representation of linear ODE-PDE systems, taking the form

𝒯𝐯t(t)\displaystyle\mathcal{T}\mathbf{v}_{t}(t) =𝒜𝐯(t),\displaystyle=\mathcal{A}\mathbf{v}(t),

where the operators {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} are Partial Integral (PI) operators. In [9] and [10], it was shown that the sets of 1D and 2D PI operators form *-algebras, meaning that the sum, composition, and adjoint of such PI operators is a PI operator as well. As such, parameterizing Lyapunov functionals V(𝐯(t))=𝒯𝐯(t),𝒫𝒯𝐯(t)V(\mathbf{v}(t))=\left\langle\mathcal{T}\mathbf{v}(t),\mathcal{P}\mathcal{T}\mathbf{v}(t)\right\rangle by PI operators 𝒫0\mathcal{P}\succ 0, the decay condition V˙0\dot{V}\leq 0 along solutions to the PIE can be enforced as a Linear PI Inequality (LPI)

𝒯𝒫𝒜+𝒜𝒫𝒯0,\displaystyle\mathcal{T}^{*}\mathcal{P}\mathcal{A}+\mathcal{A}^{*}\mathcal{P}\mathcal{T}\leq 0, (1)

Such LPIs constitute a specific class of linear operator inequalities (introduced for stability analysis of PDEs with delay in [4]), wherein the operator variable 𝒫\mathcal{P} has the structure of a PI operator. Since the fundamental state 𝐯(t)L2\mathbf{v}(t)\in L_{2} in the PIE representation is not constrained by e.g. BCs, these LPI constraints need only be enforced on L2L_{2}. Parameterizing positive PI operators 𝒫0\mathcal{P}\succeq 0 by positive matrices P0P\succeq 0, then, LPIs can be readily tested as LMIs, allowing problems of stability analysis [9], optimal control [11], and optimal estimation [12] to be solved using convex optimization.

In [13], it was shown that a general class of linear Delay Differential Equations (DDEs) can be equivalently represented as PIEs. Similarly, in [14], it was shown that any suitably well-posed PDE system without delay can also be equivalently represented as a PIE. However, constructing a PIE representation for 1D PDE systems with delay is complicated by the fact that the delayed state ϕ(t,s,x)=𝐮(ts,x)\boldsymbol{\phi}(t,s,x)=\mathbf{u}(t-s,x) in this case varies in two spatial variables. To address this problem, in this paper, we decompose the delayed PDE into a feedback interconnection of a 1D PDE and a 2D transport equation, where the interconnection signals are infinite-dimensional. We prove that each of these subsystems can be equivalently represented as an associated PIE with infinite-dimensional inputs and outputs, extending prior work on PIE input-output systems to the case of infinite-dimensional inputs and outputs. Next, we consider the feedback interconnection of PIEs with infinite-dimensional inputs and outputs, and derive formulae for the resulting closed-loop PIE. Finally, paramaterizing a LKF by PI operators, we establish stability conditions expressed as a convex optimization program, subject to LPI constraints. These LPIs are then converted to semidefinite programming problems using the PIETOOLS software package and tested on several examples of delayed PDE systems.

2 Problem Formulation

2.1 Notation

For a given domain Ωd\Omega\subset\mathbb{R}^{d}, let L2n[Ω]L_{2}^{n}[\Omega] and Ln[Ω]L_{\infty}^{n}[\Omega] denote the sets of n\mathbb{R}^{n}-valued square-integrable and bounded functions on Ω\Omega, respectively, where we omit the domain when clear from context. Define intervals Ωab:=[a,b]\Omega_{a}^{b}:=[a,b] and Ωcd:=[c,d]\Omega_{c}^{d}:=[c,d], and let Ωacbd:=Ωab×Ωcd\Omega_{ac}^{bd}:=\Omega_{a}^{b}\times\Omega_{c}^{d}. For k=(k1,k2)2\text{k}=(k_{1},k_{2})\in\mathbb{N}^{2}, define Sobolev subspaces Hk1n[Ωab]H_{k_{1}}^{n}[\Omega_{a}^{b}] and Hkn[Ωabcd]H_{\text{k}}^{n}[\Omega_{ab}^{cd}] of L2nL_{2}^{n} as

Hk1n[Ωab]={𝐯xα𝐯L2n[Ωab],α:αk1},\displaystyle H_{k_{1}}^{n}[\Omega_{a}^{b}]=\bigl{\{}\mathbf{v}\mid\partial_{x}^{\alpha}\mathbf{v}\!\in\!L_{2}^{n}[\Omega_{a}^{b}],\ \forall\alpha\in\mathbb{N}:\!\alpha\!\leq k_{1}\bigr{\}},
Hkn[Ωabcd]={𝐯|xα1sα2𝐯L2n[Ωabcd],[α1α2]2:α1k1α2k2}.\displaystyle H_{\text{k}}^{n}[\Omega_{ab}^{cd}]=\Bigl{\{}\!\mathbf{v}\!\ \Bigr{\rvert}\ \partial_{x}^{\alpha_{1}}\partial_{s}^{\alpha_{2}}\mathbf{v}\!\in\!L_{2}^{n}[\Omega_{ab}^{cd}],\ \forall\bigl{[}{\scriptsize\begin{smallmatrix}\alpha_{1}\\ \alpha_{2}\end{smallmatrix}}\bigr{]}\!\in\!\mathbb{N}^{2}:\!\scriptsize\begin{smallmatrix}\alpha_{1}\leq k_{1}\\ \alpha_{2}\leq k_{2}\end{smallmatrix}\Bigr{\}}.

2.2 Objectives and Approach

Refer to caption
Figure 1: Block diagram representation of delayed PDE (8). In Section 3, we expand the Delayed PDE (DPDE) as the interconnection of a 1D and 2D PDE. In Subsection 3.1 and Subsection 3.1, we prove that the 1D and 2D subsystems can be equivalently represented as PIEs, respectively. Finally, In Section 4, we prove that the feedback interconnection of these PIEs can be represented as a PIE as well, allowing us to test stability of the DPDE using the approach presented in Section 5.

In this paper, we propose a framework for testing exponential stability of linear, 1D, 2nd order PDEs, with delay, focusing primarily on systems with delay in the dynamics. Specifically, we consider a delayed PDE of the form

𝐮t(t,x)=A(x)[𝐮(t,x)𝐮x(t,x)𝐮xx(t,x)]+Ad(x)[𝐮(tτ,x)𝐮x(tτ,x)𝐮xx(tτ,x)],\displaystyle\mathbf{u}_{t}(t,x)=A(x)\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t,x)\\ \mathbf{u}_{x}(t,x)\\ \mathbf{u}_{xx}(t,x)\end{array}\!\!\!\right]+A_{d}(x)\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t-\tau,x)\\ \mathbf{u}_{x}(t-\tau,x)\\ \mathbf{u}_{xx}(t-\tau,x)\end{array}\!\!\!\right], (8)
𝐮(t)XB[Ωab],t0,xΩab,\displaystyle\mathbf{u}(t)\in X_{B}[\Omega_{a}^{b}],\hskip 85.35826ptt\geq 0,~{}x\in\Omega_{a}^{b},

where A,AdLn×3n[Ωab]A,A_{d}\in L_{\infty}^{n\times 3n}[\Omega_{a}^{b}], and where the PDE domain XBX_{B} is constrained by boundary conditions and continuity constraints, and is defined by a matrix B2n×4nB\in\mathbb{R}^{2n\times 4n} as

XB[Ωab]:={𝐮H2n[Ωab]|B[𝐮(a)𝐮(b)𝐮x(a)𝐮x(b)]=0},\displaystyle X_{B}[\Omega_{a}^{b}]:=\left\{\mathbf{u}\in H_{2}^{n}[\Omega_{a}^{b}]~{}\biggr{\rvert}~{}\small B\left[\scriptsize\begin{smallmatrix}\mathbf{u}(a)\\ \mathbf{u}(b)\\ \mathbf{u}_{x}(a)\\ \mathbf{u}_{x}(b)\end{smallmatrix}\right]=0\right\}, (9)

where BB must be of full row-rank, defining sufficient and independent boundary conditions (see also Sec. 3.2 in [9]). In order to test stability of the delayed PDE (8), we will first derive an equivalent representation of the system as a Partial Integral Equation (PIE), using the approach illustrated in Figure 1. In particular, we take the following three steps:
1. First, in Section 3, we represent the Delayed PDE (DPDE) as the interconnection of a 1D PDE and a 2D PDE.
2. Then, in Subsection 3.1 and 3.2, we derive equivalent 1D and 2D PIE representations of the 1D and 2D PDE subsystems, respectively.
3. Next, in Section 4, we prove that the feedback interconnection of PIEs can be represented as a PIE as well, and take the interconnection of the 1D and 2D PIEs to obtain a PIE representation for the DPDE.

The resulting PIE representation will be of the form

𝒯𝐰t(t,s,x)\displaystyle\mathcal{T}\mathbf{w}_{t}(t,s,x) =𝒜𝐰(t,s,x),\displaystyle=\mathcal{A}\mathbf{w}(t,s,x), (s,x)\displaystyle(s,x) Ω0a1b,\displaystyle\in\Omega_{0a}^{1b}, (10)

wherein the state 𝐰(t)L2[Ωab]×L2[Ω0a1b]\mathbf{w}(t)\in L_{2}[\Omega_{a}^{b}]\times L_{2}[\Omega_{0a}^{1b}] is free of boundary conditions, and where the operators 𝒯\mathcal{T} and 𝒜\mathcal{A} are Partial Integral (PI) operators, defined as in Block 1. In Section 5, we show that given such a PIE representation of a system, we can test stability of the system by solving a Linear PI operator Inequality (LPI) optimization program, defined by the operators 𝒯\mathcal{T} and 𝒜\mathcal{A}. In particular, using this approach, we can test stability of the delayed PDE (8) as follows.

Proposition 1

Let A,AdLn×3nA,A_{d}\in L_{\infty}^{n\times 3n}, B2n×4nB\in\mathbb{R}^{2n\times 4n} and τ>0\tau>0 define a delayed PDE as in (8). Define PI operators 𝒯,𝒜\mathcal{T},\mathcal{A} as in Block 1. Suppose that there exist constants ϵ,α>0\epsilon,\alpha>0 and a PI operator 𝒫\mathcal{P} such that 𝒫=𝒫\mathcal{P}=\mathcal{P}^{*}, 𝒫ϵ2I\mathcal{P}\succeq\epsilon^{2}I, and

𝒜𝒫𝒯+𝒯𝒫𝒜2α𝒯𝒫𝒯.\displaystyle\mathcal{A}^{*}\mathcal{P}\mathcal{T}+\mathcal{T}^{*}\mathcal{P}\mathcal{A}\preceq-2\alpha\mathcal{T}^{*}\mathcal{P}\mathcal{T}. (11)

Finally, let ζ=𝒫\zeta=\sqrt{\|\mathcal{P}\|_{\mathcal{L}}}. Then, for any solution 𝐮\mathbf{u} to the PDE (8) with ϕ(t,s)=𝐮(tsτ)\boldsymbol{\phi}(t,s)=\mathbf{u}(t-s\tau) for s[0,1]s\in[0,1], we have

[𝐮(t)ϕ(t)]Zζϵ[𝐮(0)ϕ(0)]Zeαt,t0,\displaystyle\left\lVert{\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t)\\ \boldsymbol{\phi}(t)\end{array}\!\!\!\right]}\right\rVert_{\text{Z}}\leq\frac{\zeta}{\epsilon}\left\lVert{\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(0)\\ \boldsymbol{\phi}(0)\end{array}\!\!\!\right]}\right\rVert_{\text{Z}}e^{-\alpha t},\qquad\forall t\geq 0,

where [𝐮(t)ϕ(t)]Z2=𝐮(t)L22+01ϕ(t,s)L22𝑑s\left\lVert{\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t)\\ \boldsymbol{\phi}(t)\end{smallmatrix}\right]}\right\rVert_{\text{Z}}^{2}=\|\mathbf{u}(t)\|_{L_{2}}^{2}+\int_{0}^{1}\|\boldsymbol{\phi}(t,s)\|_{L_{2}}^{2}ds.

In the following sections, we show how we arrive at this result, explicitly proving it in Cor. 12. In Section 6, we will also briefly consider how other systems with delay, such as PDEs with delay in the boundary conditions or delay in a coupled ODE, can be converted to equivalent PIEs as well, allowing stability of those systems to be tested using a similar approach. A more detailed discussion on deriving this PIE representation can be found in the appendices. In Section 7, we apply the proposed methodology to numerically test stability of several delayed PDE systems.

Define 𝒯:=[𝒯10𝒯1𝒯2]\mathcal{T}:=\begin{bmatrix}\mathcal{T}_{1}&0\\ \mathcal{T}_{1}&\mathcal{T}_{2}\end{bmatrix}, 𝒜:=[𝒜11+𝒜11,d𝒜120𝒜22]\mathcal{A}:=\begin{bmatrix}\mathcal{A}_{11}+\mathcal{A}_{11,\text{d}}&\!\mathcal{A}_{12}\\ 0&\!\mathcal{A}_{22}\end{bmatrix}, where 𝒯1:=𝒫T\mathcal{T}_{1}:=\mathcal{P}_{\text{T}}, 𝒜11:=𝒫A\mathcal{A}_{11}:=\mathcal{P}_{\text{A}}, and 𝒜11,d:=𝒫Ad\mathcal{A}_{11,d}:=\mathcal{P}_{\text{A}_{d}} are 3-PI operators (see Defn. 3), and where for 𝐯^L2[Ω0a1b]\hat{\mathbf{v}}\in L_{2}[\Omega_{0a}^{1b}],

(𝒯2𝐯^)(s)\displaystyle\hskip 128.0374pt(\mathcal{T}_{2}\hat{\mathbf{v}})(s) :=0s(𝒯1𝐯^(θ))𝑑θ,\displaystyle:=\int_{0}^{s}(\mathcal{T}_{1}\hat{\mathbf{v}}(\theta))d\theta, (𝒜12𝐯^):=01(𝒜11,d𝐯^(s))𝑑s,\displaystyle(\mathcal{A}_{12}\hat{\mathbf{v}}):=\int_{0}^{1}(\mathcal{A}_{11,\text{d}}\hat{\mathbf{v}}(s))ds, (𝒜22𝐯^)(s):=1τ(𝒯1𝐯^(s)),\displaystyle(\mathcal{A}_{22}\hat{\mathbf{v}})(s):=-\frac{1}{\tau}(\mathcal{T}_{1}\hat{\mathbf{v}}(s)),

with parameters

T:={0,T1,T2}T1(x,θ):=(xθ)In+T2(x,θ),T2(x,θ):=K(x)(BH)1BQ(x,θ),K(x):=[In(xa)In],\displaystyle\begin{array}[]{l}\text{T}:=\{0,T_{1},T_{2}\}\\ T_{1}(x,\theta):=(x-\theta)I_{n}+T_{2}(x,\theta),\\ T_{2}(x,\theta):=-K(x)(BH)^{-1}BQ(x,\theta),\\ K(x):=\begin{bmatrix}I_{n}&(x-a)I_{n}\end{bmatrix},\end{array} H:=[In0In(ba)In0In0In],\displaystyle H\!:=\!\left[\begin{array}[]{ll}I_{n}&0\\ I_{n}&(b-a)I_{n}\\ 0&I_{n}\\ 0&I_{n}\end{array}\right], Q(x,θ):=[0(bθ)In0In],\displaystyle Q(x,\theta):=\!\left[\begin{array}[]{l}0\\ (b-\theta)I_{n}\\ 0\\ I_{n}\end{array}\right], A0(x):=A(x)[00In],Ad,0(x):=Ad(x)[00In],\displaystyle\begin{array}[]{l}A_{0}(x):=A(x)\left[\scriptsize\begin{smallmatrix}0\\ 0\\ I_{n}\end{smallmatrix}\right],\\ A_{d,0}(x):=A_{d}(x)\left[\scriptsize\begin{smallmatrix}0\\ 0\\ I_{n}\end{smallmatrix}\right],\end{array}
A:={A0,A1,A2},Ad:={Ad,0,Ad,1,Ad,2},Aj(x,θ):=A(x)[Tj(x,θ)xTj(x,θ)0],Ad,j(x,θ):=Ad(x)[Tj(x,θ)xTj(x,θ)0],j{1,2}.\begin{array}[]{l}\text{A}:=\{A_{0},A_{1},A_{2}\},\\ \text{A}_{d}:=\{A_{d,0},A_{d,1},A_{d,2}\},\end{array}\hskip 64.01869ptA_{j}(x,\theta):=A(x)\left[\scriptsize\begin{smallmatrix}T_{j}(x,\theta)\\ \partial_{x}T_{j}(x,\theta)\\ 0\end{smallmatrix}\right],\qquad A_{d,j}(x,\theta):=A_{d}(x)\left[\scriptsize\begin{smallmatrix}T_{j}(x,\theta)\\ \partial_{x}T_{j}(x,\theta)\\ 0\end{smallmatrix}\right],\qquad j\in\{1,2\}.
Block 1 Operators 𝒯\mathcal{T} and 𝒜\mathcal{A} defining the PIE (10) associated to the DPDE (8) with BCs as in (9)

3 A PIE Representation of Delayed PDEs

In order to test stability of the DPDE (8), we first derive a representation of this system wherein we model the delay using a transport equation. In particular, let ϕ(t,s)\boldsymbol{\phi}(t,s) represent 𝐮(tsτ)\mathbf{u}(t-s\tau) for s[0,1]s\in[0,1]. Then, 𝐮(t)\mathbf{u}(t) satisfies the PDE (8) if and only if the augmented state (𝐮(t),ϕ(t))(\mathbf{u}(t),\boldsymbol{\phi}(t)) satisfies

𝐮t(t)\displaystyle\mathbf{u}_{t}(t) =MA[𝐮(t)𝐮x(t)𝐮xx(t)]+MAd[ϕ(t,1)ϕx(t,1)ϕxx(t,1)],\displaystyle=\text{M}_{A}\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t)\\ \mathbf{u}_{x}(t)\\ \mathbf{u}_{xx}(t)\end{array}\!\!\!\right]+\text{M}_{A_{\text{d}}}\small\left[\!\!\!\begin{array}[]{l}\boldsymbol{\phi}(t,1)\\ \boldsymbol{\phi}_{x}(t,1)\\ \boldsymbol{\phi}_{xx}(t,1)\end{array}\!\!\!\right], 𝐮(t)\displaystyle\mathbf{u}(t) XB,\displaystyle\in X_{B}, (18)
ϕt(t)\displaystyle\boldsymbol{\phi}_{t}(t) =(1/τ)ϕs(t),\displaystyle=-(1/\tau)\boldsymbol{\phi}_{s}(t), ϕ(t)\displaystyle\boldsymbol{\phi}(t) Y𝐮(t),\displaystyle\in Y_{\mathbf{u}(t)},

where MA\text{M}_{A} denotes the multiplier operator associated to ALA\in L_{\infty}, so that (MA𝐪)(x)=A(x)𝐪(x)(\text{M}_{A}\mathbf{q})(x)=A(x)\mathbf{q}(x) for 𝐪L2\mathbf{q}\in L_{2}, and where we define the domain of the delayed state ϕ(t)\boldsymbol{\phi}(t) as

Y𝐮:={ϕH(1,2)n[Ω0a1b]|ϕ(0,x)=𝐮(x),ϕ(s,.)XB}.\displaystyle Y_{\mathbf{u}}\!:=\!\Bigl{\{}\!\boldsymbol{\phi}\in H_{(1,2)}^{n}[\Omega_{0a}^{1b}]\,\Bigr{\rvert}\,\boldsymbol{\phi}(0,x)=\mathbf{u}(x),~{}\boldsymbol{\phi}(s,.)\in X_{B}\!\Bigr{\}}.

(19)

Given this expanded representation of the system, we define solutions to the DPDE (8) as follows.

Definition 2 (Solution to the DPDE)

For a given initial state (𝐮0,ϕ0)XB×Y𝐮0(\mathbf{u}_{0},\boldsymbol{\phi}_{0})\in X_{B}\times Y_{\mathbf{u}_{0}}, we say that (𝐮,ϕ)(\mathbf{u},\boldsymbol{\phi}) is a solution to the DPDE defined by {A,Ad,B,τ}\{A,A_{\text{d}},B,\tau\} if (𝐮,ϕ)(\mathbf{u},\boldsymbol{\phi}) is Frechét differentiable, (𝐮(0),ϕ(0))=(𝐮0,ϕ0)(\mathbf{u}(0),\boldsymbol{\phi}(0))=(\mathbf{u}_{0},\boldsymbol{\phi}_{0}), and for all t0t\geq 0, (𝐮(t),ϕ(t))\bigl{(}\mathbf{u}(t),\boldsymbol{\phi}(t)\bigr{)} satisfies (18).

Although the expanded representation in (18) no longer involves explicit time-delay in the state, stability analysis in this representation is still complicated by the auxiliary constraints (𝐮(t),ϕ(t))XB×Y𝐮(t)\bigl{(}\mathbf{u}(t),\boldsymbol{\phi}(t)\bigr{)}\in X_{B}\times Y_{\mathbf{u}(t)}. Therefore, in the following subsections, we will separately consider the dynamics of 𝐮(t)\mathbf{u}(t) and ϕ(t)\boldsymbol{\phi}(t), representing these dynamics in an equivalent format free of auxiliary constraints – as PIEs.

3.1 A PIE Representation of 1D PDEs

Consider the 1D subsystem of the coupled PDE in (18),

𝐮t(t)=MA[𝐮(t)𝐮x(t)𝐮xx(t)]+𝐩(t),𝐮(t)XB,\mathbf{u}_{t}(t)=\text{M}_{A}\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t)\\ \mathbf{u}_{x}(t)\\ \mathbf{u}_{xx}(t)\end{smallmatrix}\right]+\mathbf{p}(t),\qquad\mathbf{u}(t)\in X_{B}, (20)

where now 𝐩(t)=MAd[ϕ(t,1)ϕx(t,1)ϕxx(t,1)]L2n[Ωab]\mathbf{p}(t)=\text{M}_{A_{\text{d}}}\left[\scriptsize\begin{smallmatrix}\boldsymbol{\phi}(t,1)\\ \boldsymbol{\phi}_{x}(t,1)\\ \boldsymbol{\phi}_{xx}(t,1)\end{smallmatrix}\right]\in L_{2}^{n}[\Omega_{a}^{b}] is considered to be an input. In this system, the state 𝐮(t)XBH2n[Ωab]\mathbf{u}(t)\in X_{B}\subseteq H_{2}^{n}[\Omega_{a}^{b}] at any time t0t\geq 0 is only second-order differentiable with respect to the spatial variable xx. As such, the second-order derivative 𝐯(t):=𝐮xx(t)L2n[Ωab]\mathbf{v}(t):=\mathbf{u}_{xx}(t)\in L_{2}^{n}[\Omega_{a}^{b}] of the state does not have to satisfy any boundary conditions or continuity constraints, and we refer to 𝐯(t)\mathbf{v}(t) as the fundamental state associated to the PDE. In this subsection, we will derive an equivalent representation of the 1D subsystem in (20) in terms of this fundamental state 𝐯(t)\mathbf{v}(t), as a PIE. To this end, we first recall the definition of a 3-PI operator.

Definition 3

[3-PI Operators (Π3\Pi_{3})] For m,nm,n\in\mathbb{N}, define

𝒩3m×n[Ωab]:=L2m×n[Ωab]×L2m×n[Ωab×Ωab]×L2m×n[Ωab×Ωab].\mathcal{N}_{3}^{m\times n}[\Omega_{a}^{b}]\!:=\!L_{2}^{m\times n}[\Omega_{a}^{b}]\!\times\!L_{2}^{m\times n}[\Omega_{a}^{b}\!\times\!\Omega_{a}^{b}]\times L_{2}^{m\times n}[\Omega_{a}^{b}\!\times\!\Omega_{a}^{b}].

Then, for given parameters R:={R0,R1,R2}𝒩3\text{R}:=\{R_{0},R_{1},R_{2}\}\in\mathcal{N}_{3}, we define the operator =𝒫R\mathcal{R}=\mathcal{P}_{\text{R}} for 𝐮L2n[Ωab]\mathbf{u}\in L_{2}^{n}[\Omega_{a}^{b}] as

(𝐮)(x)=R0(x)𝐮(x)+axR1(x,θ)𝐮(θ)𝑑θ+xbR2(x,θ)𝐮(θ)𝑑θ.\displaystyle\bigl{(}\mathcal{R}\mathbf{u}\bigr{)}(x)=R_{0}(x)\mathbf{u}(x)+\!\int_{a}^{x}\!\!R_{1}(x,\theta)\mathbf{u}(\theta)d\theta+\!\int_{x}^{b}\!\!R_{2}(x,\theta)\mathbf{u}(\theta)d\theta.

We say Π3\mathcal{R}\in\Pi_{3} if :=𝒫R\mathcal{R}:=\mathcal{P}_{\text{R}} for some R𝒩3\text{R}\in\mathcal{N}_{3}. For convenience, we say that \mathcal{R} is a 3-PI operator.

Defining 3-PI operators in this manner, it has been shown that Π3\Pi_{3} forms a *-algebra – i.e. is closed under summation, composition, scalar-multiplication and adjoint with respect to L2L_{2} [14]. Moreover, under mild assumptions on the boundary conditions BB, we can define a continuous, bijective map 𝒯1:L2nXB\mathcal{T}_{1}:L_{2}^{n}\to X_{B} from the fundamental to the PDE state space as a 3-PI operator, as shown in the following result from [9].

Lemma 4

Let XBX_{B} be as defined in (9) for some B2n×4nB\in\mathbb{R}^{2n\times 4n} which is such that the matrix BH2n×2nBH\in\mathbb{R}^{2n\times 2n} is invertible with HH as in Block 1. If 𝒯1Π3\mathcal{T}_{1}\in\Pi_{3} is as defined in Block 1, then, for every 𝐮XB\mathbf{u}\in X_{B} and 𝐯L2n\mathbf{v}\in L_{2}^{n},

𝐮\displaystyle\mathbf{u} =𝒯1(x2𝐮),\displaystyle=\mathcal{T}_{1}(\partial_{x}^{2}\mathbf{u}), and 𝐯\displaystyle\mathbf{v} =x2(𝒯1𝐯).\displaystyle=\partial_{x}^{2}(\mathcal{T}_{1}\mathbf{v}).
Proof 3.1.

Defining the parameters K,H,Q,TjK,H,Q,T_{j} as in Block 1, and using the fundamental theorem of calculus and Cauchy’s formula for repeated integration, we can show that

𝐮\displaystyle\mathbf{u} =MK[𝐮(a)𝐮x(a)]+𝒫{0,T1T2,0}𝐮xx,\displaystyle=\text{M}_{K}\left[\scriptsize\begin{smallmatrix}\mathbf{u}(a)\\ \mathbf{u}_{x}(a)\end{smallmatrix}\right]+\mathcal{P}_{\{0,T_{1}-T_{2},0\}}\mathbf{u}_{xx},
[𝐮(a)𝐮(b)𝐮x(a)𝐮x(b)]\displaystyle\left[\scriptsize\begin{smallmatrix}\mathbf{u}(a)\\ \mathbf{u}(b)\\ \mathbf{u}_{x}(a)\\ \mathbf{u}_{x}(b)\end{smallmatrix}\right] =H[𝐮(a)𝐮x(a)]+𝒫{0,Q,Q}𝐮xx,\displaystyle=H\left[\scriptsize\begin{smallmatrix}\mathbf{u}(a)\\ \mathbf{u}_{x}(a)\end{smallmatrix}\right]+\mathcal{P}_{\{0,Q,Q\}}\mathbf{u}_{xx}, 𝐮H2n[Ωab].\displaystyle\forall\mathbf{u}\in H_{2}^{n}[\Omega_{a}^{b}].

Imposing the boundary conditions B[𝐮(a)𝐮(b)𝐮x(a)𝐮x(b)]=0B\left[\scriptsize\begin{smallmatrix}\mathbf{u}(a)\\ \mathbf{u}(b)\\ \mathbf{u}_{x}(a)\\ \mathbf{u}_{x}(b)\end{smallmatrix}\right]=0, and performing standard algebraic manipulations, we can then show that for all 𝐮XB\mathbf{u}\in X_{B},

𝐮=[𝒫{0,T1T2,0}MK(BH)1B𝒫{0,Q,Q}]𝐮xx=𝒯1𝐮xx.\mathbf{u}=\bigl{[}\mathcal{P}_{\{0,T_{1}-T_{2},0\}}-\text{M}_{K}(BH)^{-1}B\mathcal{P}_{\{0,Q,Q\}}\bigr{]}\mathbf{u}_{xx}=\mathcal{T}_{1}\mathbf{u}_{xx}.

Conversely, using the Leibniz integral rule, we can show that x2𝒯1=I\partial_{x}^{2}\circ\mathcal{T}_{1}=I, so that 𝐯=x2(𝒯1𝐯)\mathbf{v}=\partial_{x}^{2}(\mathcal{T}_{1}\mathbf{v}) for all 𝐯L2\mathbf{v}\in L_{2}. A full proof is given in [9].

Lem. 4 proves that, given sufficiently well-posed boundary conditions, any 𝐮XB\mathbf{u}\in X_{B} is uniquely defined by its highest-order partial derivative 𝐯=𝐮xxL2n\mathbf{v}=\mathbf{u}_{xx}\in L_{2}^{n} as 𝐮=𝒯1𝐯\mathbf{u}=\mathcal{T}_{1}\mathbf{v}. Using the Leibniz integral rule, we can then also express

MA[𝐮𝐮x𝐮xx]=MA[𝒯1𝐮xxx𝒯1𝐮xx𝐮xx]=MA[𝒫{0,T1,T2}𝐯𝒫{0,xT1,xT2}𝐯𝒫{In,0,0}𝐯]=𝒜11𝐯,\displaystyle\text{M}_{A}\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \mathbf{u}_{x}\\ \mathbf{u}_{xx}\end{smallmatrix}\right]=\text{M}_{A}\left[\scriptsize\begin{smallmatrix}\mathcal{T}_{1}\mathbf{u}_{xx}\\ \partial_{x}\mathcal{T}_{1}\mathbf{u}_{xx}\\ \mathbf{u}_{xx}\end{smallmatrix}\right]=\text{M}_{A}\left[\scriptsize\begin{smallmatrix}\mathcal{P}_{\{0,T_{1},T_{2}\}}\mathbf{v}\\ \mathcal{P}_{\{0,\partial_{x}T_{1},\partial_{x}T_{2}\}}\mathbf{v}\\ \mathcal{P}_{\{I_{n},0,0\}}\mathbf{v}\end{smallmatrix}\right]=\mathcal{A}_{11}\mathbf{v},

for 𝒜11Π3\mathcal{A}_{11}\in\Pi_{3} as in Block 1. It follows that 𝐮(t)\mathbf{u}(t) satisfies the PDE (20) if and only if 𝐯(t)=𝐮xx(t)\mathbf{v}(t)=\mathbf{u}_{xx}(t) satisfies the PIE

𝒯1𝐯t(t)\displaystyle\mathcal{T}_{1}\mathbf{v}_{t}(t) =𝒜11𝐯(t)+𝐩(t),𝐯(t)L2n[Ωab].\displaystyle=\mathcal{A}_{11}\mathbf{v}(t)+\mathbf{p}(t),\qquad\mathbf{v}(t)\in L_{2}^{n}[\Omega_{a}^{b}]. (21)

In particular, we have the following result.

Lemma 5.

Suppose that ALn×3n[Ωab]A\in L_{\infty}^{n\times 3n}[\Omega_{a}^{b}] and B2n×4nB\in\mathbb{R}^{2n\times 4n} satisfies the conditions of Lem. 4. Define operators 𝒯1,𝒜1Π3\mathcal{T}_{1},\mathcal{A}_{1}\in\Pi_{3} as in Block 1. Then, for any given input 𝐩(t)L2n[Ωab]\mathbf{p}(t)\in L_{2}^{n}[\Omega_{a}^{b}], 𝐯\mathbf{v} is a solution to the PIE (21) with initial state 𝐯0L2n[Ωab]\mathbf{v}_{0}\in L_{2}^{n}[\Omega_{a}^{b}] if and only if 𝐮=𝒯1𝐯\mathbf{u}=\mathcal{T}_{1}\mathbf{v} is a solution to the PDE (20) with initial state 𝐮0=𝒯1𝐯0\mathbf{u}_{0}=\mathcal{T}_{1}\mathbf{v}_{0}. Conversely, 𝐮\mathbf{u} is a solution to the PDE (20) with initial state 𝐮0XB\mathbf{u}_{0}\in X_{B} if and only if 𝐯=x2𝐮\mathbf{v}=\partial_{x}^{2}\mathbf{u} is a solution to the PIE (21) with initial state 𝐯0=x2𝐮0\mathbf{v}_{0}=\partial_{x}^{2}\mathbf{u}_{0}.

Proof 3.2.

The proof follows substituting the relation 𝐮(t)=𝒯1𝐯(t)\mathbf{u}(t)=\mathcal{T}_{1}\mathbf{v}(t) into the PDE (20). A full proof is given in e.g. [9].

3.2 A PIE Representation of 2D Transport Equations

Consider now the 2D subsystem of the coupled PDE in (18),

ϕt(t)\displaystyle\boldsymbol{\phi}_{t}(t) =(1/τ)ϕs(t),\displaystyle=-(1/\tau)\boldsymbol{\phi}_{s}(t), ϕ(t)Y𝒯1𝐯(t),\displaystyle\boldsymbol{\phi}(t)\in Y_{\mathcal{T}_{1}\mathbf{v}(t)}, (22)
𝐩(t)\displaystyle\mathbf{p}(t) =MAd[ϕ(t,1)ϕx(t,1)ϕxx(t,1)],\displaystyle=\text{M}_{A_{d}}\left[\scriptsize\begin{smallmatrix}\boldsymbol{\phi}(t,1)\\ \boldsymbol{\phi}_{x}(t,1)\\ \boldsymbol{\phi}_{xx}(t,1)\end{smallmatrix}\right],

wherein we consider 𝐯(t)=𝐮xx(t)L2n[Ωab]\mathbf{v}(t)=\mathbf{u}_{xx}(t)\in L_{2}^{n}[\Omega_{a}^{b}] as an input, and 𝐩(t)L2n[Ωab]\mathbf{p}(t)\in L_{2}^{n}[\Omega_{a}^{b}] as an output. Although a framework for constructing PIE representations for general 2D PDEs has been developed in [10], in this case, we can significantly simplify this construction by exploiting the structure of the 2D subsystem. In particular, by definition of the space Y𝐮(t)Y_{\mathbf{u}(t)}, any ϕ(t)Y𝐮(t)\boldsymbol{\phi}(t)\in Y_{\mathbf{u}(t)} must satisfy the same boundary conditions as 𝐮(t)\mathbf{u}(t). As such, we can use the same operator 𝒯1\mathcal{T}_{1} as in Lem. 4 to also express ϕ(t)\boldsymbol{\phi}(t) in terms of its associated fundamental state ϕsxx(t)\boldsymbol{\phi}_{sxx}(t), as shown in the following lemma.

Lemma 6.

Let Y𝐮Y_{\mathbf{u}} be as defined in (164), with the set XBX_{B} as defined in (9) for some B2n×4nB\in\mathbb{R}^{2n\times 4n} satisfying the conditions of Lem. 4. If 𝒯1Π3\mathcal{T}_{1}\in\Pi_{3} and 𝒯2\mathcal{T}_{2} are as defined in Block 1 and 𝐮XB\mathbf{u}\in X_{B}, then, for every ϕY𝐮\boldsymbol{\phi}\in Y_{\mathbf{u}} and every 𝛙L2n[Ω0a1b]\boldsymbol{\psi}\in L_{2}^{n}[\Omega_{0a}^{1b}],

ϕ\displaystyle\boldsymbol{\phi} =𝐮+𝒯2(sx2ϕ),\displaystyle=\mathbf{u}+\mathcal{T}_{2}(\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}), and 𝝍\displaystyle\boldsymbol{\psi} =sx2(𝐮+𝒯2𝝍).\displaystyle=\partial_{s}\partial_{x}^{2}(\mathbf{u}+\mathcal{T}_{2}\boldsymbol{\psi}).
Proof 3.3.

Fix arbitrary 𝐮XB\mathbf{u}\in X_{B} and ϕY𝐮\boldsymbol{\phi}\in Y_{\mathbf{u}}. By definition of the set ϕY𝐮\boldsymbol{\phi}\in Y_{\mathbf{u}}, we have ϕ(0)=𝐮\boldsymbol{\phi}(0)=\mathbf{u} and ϕ(s)XB\boldsymbol{\phi}(s)\in X_{B} for all s[0,1]s\in[0,1]. By Lemma 4, then, ϕ(s)=𝒯1(x2ϕ(s))\boldsymbol{\phi}(s)=\mathcal{T}_{1}(\partial_{x}^{2}\boldsymbol{\phi}(s)) for all s[0,1]s\in[0,1], implying that also

sϕ(s)=s𝒯1(x2ϕ(s))=𝒯1(sx2ϕ(s)).\partial_{s}\boldsymbol{\phi}(s)=\partial_{s}\mathcal{T}_{1}(\partial_{x}^{2}\boldsymbol{\phi}(s))=\mathcal{T}_{1}(\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}(s)).

Invoking the fundamental theorem of calculus, and using the definition of the operator 𝒯2\mathcal{T}_{2}, it follows that

ϕ(s)\displaystyle\boldsymbol{\phi}(s) =ϕ(0)+0ssϕ(θ)dθ\displaystyle=\boldsymbol{\phi}(0)+\!\int_{0}^{s}\!\!\partial_{s}\boldsymbol{\phi}(\theta)d\theta
=𝐮+0s𝒯1(sx2ϕ(θ))𝑑θ=𝐮+(𝒯2(sx2ϕ))(s).\displaystyle=\mathbf{u}+\!\int_{0}^{s}\!\!\mathcal{T}_{1}(\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}(\theta))d\theta=\mathbf{u}+\bigl{(}\mathcal{T}_{2}(\partial_{s}\partial_{x}^{2}\boldsymbol{\phi})\bigr{)}(s).

Now, fix arbitrary 𝛙L2n[Ω0a1b]\boldsymbol{\psi}\in L_{2}^{n}[\Omega_{0a}^{1b}]. Then, for all s[0,1]s\in[0,1],

sx2(𝐮+(𝒯2𝛙)(s))=x2s(0s𝒯1(𝛙(θ))𝑑θ)=x2𝒯1(𝛙(s)).\displaystyle\partial_{s}\partial_{x}^{2}\bigl{(}\mathbf{u}+(\mathcal{T}_{2}\boldsymbol{\psi})(s)\bigr{)}=\partial_{x}^{2}\partial_{s}\biggl{(}\int_{0}^{s}\!\!\mathcal{T}_{1}\bigl{(}\boldsymbol{\psi}(\theta)\bigr{)}d\theta\!\biggr{)}=\partial_{x}^{2}\mathcal{T}_{1}(\boldsymbol{\psi}(s)).

Here, by Lem. 4, x2𝒯1(𝛙(s))=𝛙(s)\partial_{x}^{2}\mathcal{T}_{1}(\boldsymbol{\psi}(s))=\boldsymbol{\psi}(s) for all s[0,1]s\in[0,1].

Using the relation ϕ(t)=𝒯1𝐯(t)+𝒯2𝝍(t)\boldsymbol{\phi}(t)=\mathcal{T}_{1}\mathbf{v}(t)+\mathcal{T}_{2}\boldsymbol{\psi}(t) with 𝝍(t)=ϕsxx(t)\boldsymbol{\psi}(t)=\boldsymbol{\phi}_{sxx}(t), and defining operators {𝒜22,𝒜11,d,𝒜12}\{\mathcal{A}_{22},\mathcal{A}_{11,d},\mathcal{A}_{12}\} as in Block 1, we can show that if (ϕ,𝐯,𝐩)(\boldsymbol{\phi},\mathbf{v},\mathbf{p}) satisfies the 2D transport PDE (22), then (𝝍,𝐯,𝐩)(\boldsymbol{\psi},\mathbf{v},\mathbf{p}) satisfies the PIE

𝒯1𝐯t(t)+𝒯2𝝍t(t)=𝒜22𝝍(t),\displaystyle\mathcal{T}_{1}\mathbf{v}_{t}(t)+\mathcal{T}_{2}\boldsymbol{\psi}_{t}(t)=\mathcal{A}_{22}\boldsymbol{\psi}(t), 𝝍(t)\displaystyle\boldsymbol{\psi}(t) L2n[Ω0a1b],\displaystyle\in L_{2}^{n}[\Omega_{0a}^{1b}], (23)
𝐩(t)=𝒜11,d𝐯(t)+𝒜12𝝍(t).\displaystyle\mathbf{p}(t)=\mathcal{A}_{11,d}\mathbf{v}(t)+\mathcal{A}_{12}\boldsymbol{\psi}(t).

In particular, we have the following result.

Lemma 7.

Suppose that AdLn×3n[Ωab]A_{d}\in L_{\infty}^{n\times 3n}[\Omega_{a}^{b}] and τ>0\tau>0, and that B2n×4nB\in\mathbb{R}^{2n\times 4n} satisfies the conditions of Lem. 4. Define PI operators {𝒯1,𝒯2,𝒜22,𝒜11,d,𝒜12}\{\mathcal{T}_{1},\mathcal{T}_{2},\mathcal{A}_{22},\mathcal{A}_{11,d},\mathcal{A}_{12}\} as in Block 1. Then, for any given input 𝐯(t)L2[Ωab]\mathbf{v}(t)\in L_{2}[\Omega_{a}^{b}], (𝛙,𝐩)(\boldsymbol{\psi},\mathbf{p}) solves the PIE (23) with initial state 𝛙0L2n[Ω0a1b]\boldsymbol{\psi}_{0}\in L_{2}^{n}[\Omega_{0a}^{1b}] if and only if ϕ=𝒯1𝐯+𝒯2𝛙\boldsymbol{\phi}=\mathcal{T}_{1}\mathbf{v}+\mathcal{T}_{2}\boldsymbol{\psi} solves the PDE (22) with initial state ϕ0=𝒯1𝐯(0)+𝒯2𝛙0\boldsymbol{\phi}_{0}=\mathcal{T}_{1}\mathbf{v}(0)+\mathcal{T}_{2}\boldsymbol{\psi}_{0}. Conversely, (ϕ,𝐩)(\boldsymbol{\phi},\mathbf{p}) solves the PDE (22) with initial state ϕ0Y𝒯1𝐯(0)\boldsymbol{\phi}_{0}\in Y_{\mathcal{T}_{1}\mathbf{v}(0)} if and only if 𝛙=sx2ϕ\boldsymbol{\psi}=\partial_{s}\partial_{x}^{2}\boldsymbol{\phi} solves the PIE (23) with initial state 𝛙0=sx2ϕ0\boldsymbol{\psi}_{0}=\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}_{0}.

Proof 3.4.

Fix arbitrary 𝛙0L2n[Ω0a1b]\boldsymbol{\psi}_{0}\in L_{2}^{n}[\Omega_{0a}^{1b}] and 𝐯(t)L2n[Ωab]\mathbf{v}(t)\in L_{2}^{n}[\Omega_{a}^{b}] for t0t\geq 0. Let 𝛙(t)L2[Ω0a1b]\boldsymbol{\psi}(t)\in L_{2}[\Omega_{0a}^{1b}] and define ϕ(t)=𝒯1𝐯(t)+𝒯2𝛙(t)\boldsymbol{\phi}(t)=\mathcal{T}_{1}\mathbf{v}(t)+\mathcal{T}_{2}\boldsymbol{\psi}(t). By Lemma 6, ϕ(t)Y𝒯1𝐯(t)\boldsymbol{\phi}(t)\in Y_{\mathcal{T}_{1}\mathbf{v}(t)}. In addition, it is clear that 𝛙(0)=𝛙0\boldsymbol{\psi}(0)=\boldsymbol{\psi}_{0} if and only if ϕ(0)=𝒯1𝐯(0)+𝒯2𝛙0\boldsymbol{\phi}(0)=\mathcal{T}_{1}\mathbf{v}(0)+\mathcal{T}_{2}\boldsymbol{\psi}_{0}. Moreover, since 𝐯(t)\mathbf{v}(t) does not vary in s[0,1]s\in[0,1],

ϕs(t)=s𝒯2𝛙(t)=s0s(𝒯1𝛙)(t,θ)𝑑θ=𝒯1𝛙(t)=τ𝒜22𝛙(t).\displaystyle\boldsymbol{\phi}_{s}(t)=\partial_{s}\mathcal{T}_{2}\boldsymbol{\psi}(t)=\partial_{s}\!\int_{0}^{s}\!\!\bigl{(}\mathcal{T}_{1}\boldsymbol{\psi}\bigr{)}(t,\theta)d\theta=\mathcal{T}_{1}\boldsymbol{\psi}(t)=-\tau\mathcal{A}_{22}\boldsymbol{\psi}(t).

where we invoke the definition of the operator 𝒜22=1τ𝒯1\mathcal{A}_{22}=-\frac{1}{\tau}\mathcal{T}_{1}. It follows that

𝒯1𝐯t(t)+𝒯2𝝍t(t)𝒜22𝝍(t)=ϕt(t)+(1/τ)ϕs(t).\mathcal{T}_{1}\mathbf{v}_{t}(t)+\mathcal{T}_{2}\boldsymbol{\psi}_{t}(t)-\mathcal{A}_{22}\boldsymbol{\psi}(t)=\boldsymbol{\phi}_{t}(t)+(1/\tau)\boldsymbol{\phi}_{s}(t). (24)

Furthermore, using the Leibniz integral rule, we find that for any 𝐰L2n[Ωab]\mathbf{w}\in L_{2}^{n}[\Omega_{a}^{b}],

x(𝒯1𝐰)\displaystyle\partial_{x}\bigl{(}\mathcal{T}_{1}\mathbf{w}\bigr{)} =xaxT1(x,θ)𝐰(θ)𝑑θ+xxbT2(x,θ)𝐰(θ)𝑑θ\displaystyle=\partial_{x}\int_{a}^{x}\!T_{1}(x,\theta)\mathbf{w}(\theta)d\theta+\partial_{x}\int_{x}^{b}\!T_{2}(x,\theta)\mathbf{w}(\theta)d\theta
=T1(x,x)𝐰(x)+axxT1(x,θ)𝐰(θ)dθ\displaystyle=T_{1}(x,x)\mathbf{w}(x)+\int_{a}^{x}\!\partial_{x}T_{1}(x,\theta)\mathbf{w}(\theta)d\theta
T2(x,x)𝐰(x)+xbxT2(x,θ)𝐰(θ)dθ\displaystyle\qquad-T_{2}(x,x)\mathbf{w}(x)+\int_{x}^{b}\!\partial_{x}T_{2}(x,\theta)\mathbf{w}(\theta)d\theta
=axxT1(x,θ)𝐰(θ)dθ+xbxT2(x,θ)𝐰(θ)dθ.\displaystyle=\int_{a}^{x}\!\partial_{x}T_{1}(x,\theta)\mathbf{w}(\theta)d\theta+\int_{x}^{b}\!\partial_{x}T_{2}(x,\theta)\mathbf{w}(\theta)d\theta.

Noting that I𝒯1=𝒯1I\circ\mathcal{T}_{1}=\mathcal{T}_{1} and x2𝒯1=I\partial_{x}^{2}\circ\mathcal{T}_{1}=I, and invoking the definition of the operators 𝒜11,d\mathcal{A}_{11,d} and 𝒜12\mathcal{A}_{12}, it follows that

(𝒜11,d𝐯)(t,x)+(𝒜12𝝍)(t,x)\displaystyle\bigl{(}\mathcal{A}_{11,d}\mathbf{v}\bigr{)}(t,x)+\bigl{(}\mathcal{A}_{12}\boldsymbol{\psi}\bigr{)}(t,x) (25)
=Ad(x)([Ixx2](𝒯1𝐯)(t,x)+01[Ixx2](𝒯1𝝍)(t,s,x)𝑑s)\displaystyle=A_{d}(x)\left(\left[\scriptsize\begin{smallmatrix}I\\ \partial_{x}\\ \partial_{x}^{2}\end{smallmatrix}\right]\bigl{(}\mathcal{T}_{1}\mathbf{v}\bigr{)}(t,x)+\!\int_{0}^{1}\!\left[\scriptsize\begin{smallmatrix}I\\ \partial_{x}\\ \partial_{x}^{2}\end{smallmatrix}\right]\!\bigl{(}\mathcal{T}_{1}\boldsymbol{\psi}\bigr{)}(t,s,x)ds\right)
=Ad(x)[Ixx2]ϕ(t,1,x).\displaystyle\hskip 128.0374pt=A_{d}(x)\left[\scriptsize\begin{smallmatrix}I\\ \partial_{x}\\ \partial_{x}^{2}\end{smallmatrix}\right]\boldsymbol{\phi}(t,1,x).

By (24) and (25), we conclude that (𝛙(t),𝐩(t))(\boldsymbol{\psi}(t),\mathbf{p}(t)) satisfies the PIE (23) if and only if (ϕ(t),𝐩(t))(\boldsymbol{\phi}(t),\mathbf{p}(t)) satisfies the PDE (22).

For the converse result, let ϕ0Y𝒯1𝐯(0)\boldsymbol{\phi}_{0}\in Y_{\mathcal{T}_{1}\mathbf{v}(0)} and ϕ(t)Y𝒯1𝐯(t)\boldsymbol{\phi}(t)\in Y_{\mathcal{T}_{1}\mathbf{v}(t)}, and define 𝛙0=sx2ϕ0\boldsymbol{\psi}_{0}=\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}_{0} and 𝛙(t)=sx2ϕ(t)\boldsymbol{\psi}(t)=\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}(t). By Lem. 6, ϕ(t)=𝒯1𝐯(t)+𝒯2𝛙(t)\boldsymbol{\phi}(t)=\mathcal{T}_{1}\mathbf{v}(t)+\mathcal{T}_{2}\boldsymbol{\psi}(t) and ϕ0=𝒯1𝐯(0)+𝒯2𝛙0\boldsymbol{\phi}_{0}=\mathcal{T}_{1}\mathbf{v}(0)+\mathcal{T}_{2}\boldsymbol{\psi}_{0}. By the first implication, it follows that (ϕ,𝐩)(\boldsymbol{\phi},\mathbf{p}) is a solution to the PDE with initial state ϕ0\boldsymbol{\phi}_{0} if and only if (𝛙,𝐩)(\boldsymbol{\psi},\mathbf{p}) is a solution to the PIE with initial state 𝛙0\boldsymbol{\psi}_{0}.

4 Feedback Interconnection of PIEs

Having constructed a PIE representation of both the 1D and 2D subsystems of the PDE (18), we now take the feedback interconnection of these PIE subsystems to obtain a PIE representation for the full delayed PDE. Specifically, we first prove that such a feedback interconnection of PIEs can itself be represented as PIE as well. To this end, consider a standardized PIE with input 𝐩\mathbf{p} and output 𝐪\mathbf{q} of the form

𝒯p𝐩t(t)+𝒯𝐯t(t)\displaystyle\mathcal{T}_{p}\mathbf{p}_{t}(t)+\mathcal{T}\mathbf{v}_{t}(t) =𝒜𝐯(t)+𝐩(t),\displaystyle=\mathcal{A}\mathbf{v}(t)+\mathcal{B}\mathbf{p}(t), 𝐯(t)\displaystyle\mathbf{v}(t) Znv[Ω],\displaystyle\in\text{Z}^{\text{n}_{\text{v}}}[\Omega],
𝐪(t)\displaystyle\mathbf{q}(t) =𝒞𝐯(t)+𝒟𝐩(t),\displaystyle=\mathcal{C}\mathbf{v}(t)+\mathcal{D}\mathbf{p}(t), (26)

where 𝒯p\mathcal{T}_{p} through 𝒟\mathcal{D} are all PI operators, and where we define

Zn[Ω]:=n0×L2n1[Ω1]×L2n2[Ω2]×L2n3[Ω1×Ω2]\text{Z}^{\text{n}_{\text{}}}[\Omega]:=\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[\Omega_{1}]\times L_{2}^{n_{2}}[\Omega_{2}]\times L_{2}^{n_{3}}[\Omega_{1}\times\Omega_{2}] (27)

for Ω=Ω1×Ω22\Omega=\Omega_{1}\times\Omega_{2}\subseteq\mathbb{R}^{2} and n4\text{n}_{\text{}}\in\mathbb{N}^{4}, so that we may use this format to express (coupled) 1D and 2D PDEs. We will allow the inputs 𝐩(t)Znp\mathbf{p}(t)\in\text{Z}^{\text{n}_{\text{p}}} and outputs 𝐪(t)Znq\mathbf{q}(t)\in\text{Z}^{\text{n}_{\text{q}}} to be distributed as well. We may collect the PI operators defining the system as 𝐆:={𝒯,𝒯p,𝒜,,𝒞,𝒟}\mathbf{G}:=\{\mathcal{T},\mathcal{T}_{p},\mathcal{A},\mathcal{B},\mathcal{C},\mathcal{D}\}, writing 𝐆𝚷(nv,nq)×(nv,np)\mathbf{G}\in\mathbf{\Pi}^{(\text{n}_{\text{v}},\text{n}_{\text{q}})\times(\text{n}_{\text{v}},\text{n}_{\text{p}})}. If np=nq=0\text{n}_{\text{p}}=\text{n}_{\text{q}}=0, we write 𝐆:={𝒯,𝒜}𝚷nv×nv\mathbf{G}:=\{\mathcal{T},\mathcal{A}\}\in\mathbf{\Pi}^{\text{n}_{\text{v}}\times\text{n}_{\text{v}}}.

Definition 8 (Solution to the PIE).

For a given input signal 𝐩\mathbf{p} and initial state 𝐯0Znv\mathbf{v}_{0}\in\text{Z}^{\text{n}_{\text{v}}}, we say that (𝐯,𝐪)(\mathbf{v},\mathbf{q}) is a solution to the PIE defined by 𝐆:={𝒯,𝒯p,𝒜,,𝒞,𝒟}\mathbf{G}:=\{\mathcal{T},\mathcal{T}_{p},\mathcal{A},\mathcal{B},\mathcal{C},\mathcal{D}\} if 𝐯\mathbf{v} is Frechét differentiable, 𝐯(0)=𝐯0\mathbf{v}(0)=\mathbf{v}_{0}, and for all t0t\geq 0, (𝐯(t),𝐪(t),𝐩(t))(\mathbf{v}(t),\mathbf{q}(t),\mathbf{p}(t)) satisfies Eqn. (4).

By the composition and addition rules of PI operators, it follows that the feedback interconnection of two suitable PIEs can be represented as a PIE as well.

Proposition 9 (Interconnection of PIEs).

Let

𝐆1\displaystyle\mathbf{G}_{1} :={𝒯1,𝒯p,𝒜1,p,𝒞q,𝒟qp}𝚷(n1,nq)×(n1,np),\displaystyle:=\{\mathcal{T}_{1},\mathcal{T}_{p},\mathcal{A}_{1},\mathcal{B}_{p},\mathcal{C}_{q},\mathcal{D}_{qp}\}\in\mathbf{\Pi}^{(\text{n}_{\text{1}},\text{n}_{\text{q}})\times(\text{n}_{\text{1}},\text{n}_{\text{p}})},
𝐆2\displaystyle\mathbf{G}_{2} :={𝒯2,𝒯q,𝒜2,q,𝒞p,0}𝚷(n2,np)×(n2,nq)\displaystyle:=\{\mathcal{T}_{2},\mathcal{T}_{q},\mathcal{A}_{2},\mathcal{B}_{q},\mathcal{C}_{p},0\}\in\mathbf{\Pi}^{(\text{n}_{\text{2}},\text{n}_{\text{p}})\times(\text{n}_{\text{2}},\text{n}_{\text{q}})}

and define 𝐆:={𝒯,𝒜}𝚷nv×nv\mathbf{G}:=\{\mathcal{T},\mathcal{A}\}\in\mathbf{\Pi}^{\text{n}_{\text{v}}\times\text{n}_{\text{v}}} with nv=n1+n2\text{n}_{\text{v}}=\text{n}_{\text{1}}+\text{n}_{\text{2}} as

𝒯:=[𝒯1𝒯p𝒞p𝒯q𝒞q𝒯2+𝒯q𝒟qp𝒞p],𝒜:=[𝒜1p𝒞pq𝒞q𝒜2+q𝒟qp𝒞p].\displaystyle\mathcal{T}\!:=\!\begin{bmatrix}\mathcal{T}_{1}&\!\mathcal{T}_{p}\mathcal{C}_{p}\\ \mathcal{T}_{q}\mathcal{C}_{q}&\!\mathcal{T}_{2}\!+\!\mathcal{T}_{q}\mathcal{D}_{qp}\mathcal{C}_{p}\end{bmatrix}\!,\quad\mathcal{A}\!:=\!\begin{bmatrix}\mathcal{A}_{1}&\!\mathcal{B}_{p}\mathcal{C}_{p}\\ \mathcal{B}_{q}\mathcal{C}_{q}&\!\mathcal{A}_{2}\!+\!\mathcal{B}_{q}\mathcal{D}_{qp}\mathcal{C}_{p}\end{bmatrix}\!.

Then, [𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] solves the PIE defined by 𝐆\mathbf{G} with initial values [𝐯0𝛙0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right] if and only if (𝐯,𝐪)(\mathbf{v},\mathbf{q}) and (𝛙,𝐩)(\boldsymbol{\psi},\mathbf{p}) solve the PIEs defined by 𝐆1\mathbf{G}_{1} and 𝐆2\mathbf{G}_{2} with initial values 𝐯0\mathbf{v}_{0} and 𝛙0\boldsymbol{\psi}_{0} and inputs 𝐩\mathbf{p} and 𝐪\mathbf{q}, respectively, where

𝐩(t)=𝒞p𝝍(t),𝐪(t)=𝒞q𝐯(t)+𝒟qp𝐩(t).\mathbf{p}(t)=\mathcal{C}_{p}\boldsymbol{\psi}(t),\qquad\mathbf{q}(t)=\mathcal{C}_{q}\mathbf{v}(t)+\mathcal{D}_{qp}\mathbf{p}(t). (28)
Proof 4.1.

Let 𝐯(t)Zn1\mathbf{v}(t)\in\text{Z}^{\text{n}_{\text{1}}} and 𝛙(t)Zn2\boldsymbol{\psi}(t)\in\text{Z}^{\text{n}_{\text{2}}} for t0t\geq 0. Then, 𝐩(t)\mathbf{p}(t) and 𝐪(t)\mathbf{q}(t) satisfy the PIEs defined by 𝐆2\mathbf{G}_{2} and 𝐆1\mathbf{G}_{1}, respectively, if and only if they are as in (28). In that case,

𝒯[𝐯t(t)𝝍t(t)]𝒜[𝐯(t)𝝍(t)]=[𝒯1𝐯t(t)+𝒯p𝒞p𝝍t(t)𝒯q𝒞q𝐯t(t)+𝒯2𝝍t(t)+𝒯q𝒟qp𝒞p𝝍t(t)]\displaystyle\mathcal{T}\small\left[\!\!\!\begin{array}[]{l}\mathbf{v}_{t}(t)\\ \boldsymbol{\psi}_{t}(t)\end{array}\!\!\!\right]\!-\!\mathcal{A}\small\left[\!\!\!\begin{array}[]{l}\mathbf{v}(t)\\ \boldsymbol{\psi}(t)\end{array}\!\!\!\right]\!=\!\small\left[\!\!\!\begin{array}[]{l}\mathcal{T}_{1}\mathbf{v}_{t}(t)+\mathcal{T}_{p}\mathcal{C}_{p}\boldsymbol{\psi}_{t}(t)\\ \mathcal{T}_{q}\mathcal{C}_{q}\mathbf{v}_{t}(t)+\mathcal{T}_{2}\boldsymbol{\psi}_{t}(t)+\mathcal{T}_{q}\mathcal{D}_{qp}\mathcal{C}_{p}\boldsymbol{\psi}_{t}(t)\end{array}\!\!\!\right]
[𝒜1𝐯(t)+p𝒞p𝝍(t)q𝒞q𝐯(t)+𝒜2𝝍(t)+q𝒟qp𝒞p𝝍(t)]\displaystyle\hskip 28.45274pt-\small\left[\!\!\!\begin{array}[]{l}\mathcal{A}_{1}\mathbf{v}(t)+\mathcal{B}_{p}\mathcal{C}_{p}\boldsymbol{\psi}(t)\\ \mathcal{B}_{q}\mathcal{C}_{q}\mathbf{v}(t)+\mathcal{A}_{2}\boldsymbol{\psi}(t)+\mathcal{B}_{q}\mathcal{D}_{qp}\mathcal{C}_{p}\boldsymbol{\psi}(t)\end{array}\!\!\!\right]
=[𝒯p𝐩t(t)+𝒯1𝐯t(t)𝒜1𝐯(t)p𝐩(t)𝒯q𝐪t(t)+𝒯2𝝍t(t)𝒜2𝝍(t)q𝐪(t)].\displaystyle\hskip 64.01869pt=\small\left[\!\!\!\begin{array}[]{l}\mathcal{T}_{p}\mathbf{p}_{t}(t)+\mathcal{T}_{1}\mathbf{v}_{t}(t)-\mathcal{A}_{1}\mathbf{v}(t)-\mathcal{B}_{p}\mathbf{p}(t)\\ \mathcal{T}_{q}\mathbf{q}_{t}(t)+\mathcal{T}_{2}\boldsymbol{\psi}_{t}(t)-\mathcal{A}_{2}\boldsymbol{\psi}(t)-\mathcal{B}_{q}\mathbf{q}(t)\end{array}\!\!\!\right].

From this expression, it follows that [𝐯(t)𝛙(t)]\left[\scriptsize\begin{smallmatrix}\mathbf{v}(t)\\ \boldsymbol{\psi}(t)\end{smallmatrix}\right] satisfies the PIE defined by 𝐆\mathbf{G} if and only if 𝐯(t)\mathbf{v}(t) and 𝛙(t)\boldsymbol{\psi}(t) satisfy the PIEs defined by 𝐆1\mathbf{G}_{1} and 𝐆2\mathbf{G}_{2}, respectively.

Using this result, we finally construct a PIE representation for the full delayed PDE in (18).

Corollary 10.

Suppose that A,AdLn×3n[Ωab]A,A_{d}\in L_{\infty}^{n\times 3n}[\Omega_{a}^{b}], τ>0\tau>0 and B2n×4nB\in\mathbb{R}^{2n\times 4n} satisfies the conditions of Lem. 4. Define 𝒯\mathcal{T} and 𝒜\mathcal{A} as in Block 1. Then, [𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} with initial state [𝐯0𝛙0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right] if and only if [𝐮ϕ]=𝒯[𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] is a solution to the DPDE defined by {A,Ad,B,τ}\{A,A_{d},B,\tau\} with initial state [𝐮0ϕ0]=𝒯[𝐯0𝛙0]\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{0}\\ \boldsymbol{\phi}_{0}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]. Conversely, [𝐮ϕ]\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right] is a solution to the DPDE defined by {A,Ad,B,τ}\{A,A_{d},B,\tau\} with initial state [𝐮0ϕ0]\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{0}\\ \boldsymbol{\phi}_{0}\end{smallmatrix}\right] if and only if [𝐯𝛙]=[x2𝐮sx2ϕ]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]=\left[\scriptsize\begin{smallmatrix}\partial_{x}^{2}\mathbf{u}\\ \partial_{s}\partial_{x}^{2}\boldsymbol{\phi}\end{smallmatrix}\right] is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} with initial state [𝐯0𝛙0]=[x2𝐮0sx2ϕ0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]=\left[\scriptsize\begin{smallmatrix}\partial_{x}^{2}\mathbf{u}_{0}\\ \partial_{s}\partial_{x}^{2}\boldsymbol{\phi}_{0}\end{smallmatrix}\right].

Proof 4.2.

By definition of the operators 𝒯,𝒜\mathcal{T},\mathcal{A}, and invoking Prop. 9, [𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} if and only if 𝐯\mathbf{v} and 𝛙\boldsymbol{\psi} are solutions to the PIEs (21) and (23), respectively. By Lem. 5 and Lem. 7, it follows that [𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} if and only if 𝐮=𝒯1𝐯\mathbf{u}=\mathcal{T}_{1}\mathbf{v} and ϕ=𝒯1𝐯+𝒯2𝛙\boldsymbol{\phi}=\mathcal{T}_{1}\mathbf{v}+\mathcal{T}_{2}\boldsymbol{\psi} are solutions to the PDEs (20) and (22), respectively. Taking the interconnection of these PDEs, we finally conclude that [𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} if and only if [𝐮ϕ]=𝒯[𝐯𝛙]=[𝒯10𝒯1𝒯2][𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]=\left[\scriptsize\begin{smallmatrix}\mathcal{T}_{1}&0\\ \mathcal{T}_{1}&\mathcal{T}_{2}\end{smallmatrix}\right]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] is a solution to the DPDE defined by {A,Ad,B,τ}\{A,A_{d},B,\tau\}. The converse result follows by similar reasoning.

5 Testing Stability in the PIE Representation

Having established a bijective map between the solution of the delayed PDE (18) and that of an associated PIE, we now show that the PIE representation can be used to formulate a convex optimization problem to verify stability of the delayed PDE. To derive such a result for a general PIE as in (4), recall the space Zn[Ω]\text{Z}^{\text{n}_{\text{}}}[\Omega] from (27). We define

𝐮,𝐯Z=u0Tv0+𝐮1,𝐯1L2+𝐮2,𝐯2L2+𝐮3,𝐯3L2.\left\langle\mathbf{u},\mathbf{v}\right\rangle_{\text{Z}}=u_{0}^{T}v_{0}+\left\langle\mathbf{u}_{1},\mathbf{v}_{1}\right\rangle_{L_{2}}+\left\langle\mathbf{u}_{2},\mathbf{v}_{2}\right\rangle_{L_{2}}+\left\langle\mathbf{u}_{3},\mathbf{v}_{3}\right\rangle_{L_{2}}.

for 𝐮=(u0,𝐮1,𝐮2,𝐮3)Zn\mathbf{u}=(u_{0},\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3})\in\text{Z}^{\text{n}_{\text{}}}, 𝐯=(v0,𝐯1,𝐯2,𝐯3)Zn\mathbf{v}=(v_{0},\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3})\in\text{Z}^{\text{n}_{\text{}}}.

Theorem 11.

Let {𝒯,𝒜}𝚷n×n\{\mathcal{T},\mathcal{A}\}\in\mathbf{\Pi}^{\text{n}_{\text{}}\times\text{n}_{\text{}}}, and suppose that there exist constants ϵ,α>0\epsilon,\alpha>0 and a PI operator 𝒫:ZnZn\mathcal{P}:\text{Z}^{\text{n}_{\text{}}}\to\text{Z}^{\text{n}_{\text{}}} such that 𝒫=𝒫\mathcal{P}=\mathcal{P}^{*}, 𝒫ϵ2I\mathcal{P}\succeq\epsilon^{2}I, and

𝒜𝒫𝒯+𝒯𝒫𝒜2α𝒯𝒫𝒯.\displaystyle\mathcal{A}^{*}\mathcal{P}\mathcal{T}+\mathcal{T}^{*}\mathcal{P}\mathcal{A}\preceq-2\alpha\mathcal{T}^{*}\mathcal{P}\mathcal{T}. (29)

Then, any solution 𝐰\mathbf{w} to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} satisfies

𝒯𝐰(t)Zζϵ𝒯𝐰(0)Zeαt,whereζ:=𝒫Z.\displaystyle\|\mathcal{T}\mathbf{w}(t)\|_{\text{Z}}\leq\frac{\zeta}{\epsilon}\|\mathcal{T}\mathbf{w}(0)\|_{\text{Z}}e^{-\alpha t},\quad\text{where}~{}\zeta:=\sqrt{\|\mathcal{P}\|_{\mathcal{L}_{\text{Z}}}}.
Proof 5.1.

Consider the candidate Lyapunov functional V(𝐰)=𝒯𝐰,𝒫𝒯𝐰ZV(\mathbf{w})=\left\langle\mathcal{T}\mathbf{w},\mathcal{P}\mathcal{T}\mathbf{w}\right\rangle_{\text{Z}}. Since 𝒫ϵ2I\mathcal{P}\succeq\epsilon^{2}I and 𝒫Z=ζ2\|\mathcal{P}\|_{\mathcal{L}_{\text{Z}}}=\zeta^{2}, this function is bounded above and below as

ϵ2𝒯𝐰Z2V(𝐰)ζ2𝒯𝐰Z2.\epsilon^{2}\|\mathcal{T}\mathbf{w}\|^{2}_{\text{Z}}\leq V(\mathbf{w})\leq\zeta^{2}\|\mathcal{T}\mathbf{w}\|_{\text{Z}}^{2}.

Now, let 𝐰\mathbf{w} be an arbitrary solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\}. Then, the temporal derivative of VV along 𝐰\mathbf{w} satisfies

V˙(𝐰)\displaystyle\dot{V}(\mathbf{w}) =𝒯𝐰t,𝒫𝒯𝐰Z+𝒯𝐰,𝒫𝒯𝐰tZ\displaystyle=\left\langle\mathcal{T}\mathbf{w}_{t},\mathcal{P}\mathcal{T}\mathbf{w}\right\rangle_{\text{Z}}+\left\langle\mathcal{T}\mathbf{w},\mathcal{P}\mathcal{T}\mathbf{w}_{t}\right\rangle_{\text{Z}}
=𝒜𝐰,𝒫𝒯𝐰Z+𝒯𝐰,𝒫𝒜𝐰Z\displaystyle=\left\langle\mathcal{A}\mathbf{w},\mathcal{P}\mathcal{T}\mathbf{w}\right\rangle_{\text{Z}}+\left\langle\mathcal{T}\mathbf{w},\mathcal{P}\mathcal{A}\mathbf{w}\right\rangle_{\text{Z}}
=𝐰,(𝒜𝒫𝒯+𝒯𝒫𝒜)𝐰Z\displaystyle=\left\langle\mathbf{w},\left(\mathcal{A}^{*}\mathcal{P}\mathcal{T}\!+\!\mathcal{T}^{*}\mathcal{P}\mathcal{A}\right)\mathbf{w}\right\rangle_{\text{Z}}
2α𝒯𝐰,𝒫𝒯𝐰Z=2αV(𝐰).\displaystyle\leq-2\alpha\left\langle\mathcal{T}\mathbf{w},\mathcal{P}\mathcal{T}\mathbf{w}\right\rangle_{\text{Z}}\hskip 42.67912pt=-2\alpha V(\mathbf{w}).

Applying the Grönwall-Bellman inequality, it follows that V(𝐰(t))V(𝐰(0))e2αt,V(\mathbf{w}(t))\leq V(\mathbf{w}(0))e^{-2\alpha t}, and therefore

𝒯𝐰(t)Z2(ζ/ϵ)2𝒯𝐰(0)Z2e2αt.\|\mathcal{T}\mathbf{w}(t)\|^{2}_{\text{Z}}\leq(\zeta/\epsilon)^{2}\|\mathcal{T}\mathbf{w}(0)\|_{\text{Z}}^{2}e^{-2\alpha t}.

Thm. 11 shows that, for a PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\}, feasibility of the Linear PI Inequality (LPI) (29) proves exponential stability of the function 𝒯𝐰\mathcal{T}\mathbf{w} for all solutions 𝐰\mathbf{w} to the PIE. By Cor. 10, we also know that 𝐰=[𝐯𝝍]\mathbf{w}=\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] is a solution to the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} as in Block 1 if and only if [𝐮ϕ]=𝒯[𝐯𝝍]=𝒯𝐰\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]=\mathcal{T}\mathbf{w} is a solution to the DPDE (18), with [𝐯𝝍]=[𝐮xxϕsxx]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]=\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{xx}\\ \boldsymbol{\phi}_{sxx}\end{smallmatrix}\right]. Using this result, we can thus test stability of solutions [𝐮ϕ]\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right] to the DPDE as follows.

Corollary 12.

Let {A,Ad,B,τ}\{A,A_{d},B,\tau\} define a DPDE system, and let {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\} define the associated PIE representation as in Cor. 10. Suppose that there exist ϵ,α,ζ>0\epsilon,\alpha,\zeta>0 and 𝒫\mathcal{P} satisfying the conditions of Thm. 11. Then any solution [𝐮ϕ]\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right] to the DPDE defined by {A,Ad,B,τ}\{A,A_{d},B,\tau\} satisfies

[𝐮(t)ϕ(t)]Zζϵ[𝐮(0)ϕ(0)]Zeαt.\displaystyle\left\lVert{\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t)\\ \boldsymbol{\phi}(t)\end{smallmatrix}\right]}\right\rVert_{\text{Z}}\leq\frac{\zeta}{\epsilon}\left\lVert{\left[\scriptsize\begin{smallmatrix}\mathbf{u}(0)\\ \boldsymbol{\phi}(0)\end{smallmatrix}\right]}\right\rVert_{\text{Z}}e^{-\alpha t}.
Proof 5.2.

Let [𝐮ϕ]\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right] be a solution to the DPDE defined by {A,Ad,B,τ}\{A,A_{d},B,\tau\}, and let [𝐯𝛙]:=[𝐮xxϕsxx]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]:=\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{xx}\\ \boldsymbol{\phi}_{sxx}\end{smallmatrix}\right]. By Cor. 10, [𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right] solves the PIE defined by {𝒯,𝒜}\{\mathcal{T},\mathcal{A}\}, and [𝐮ϕ]=𝒯[𝐯𝛙]\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]. By Thm. 11,

[𝐮(t)ϕ(t)]Z\displaystyle\left\lVert{\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t)\\ \boldsymbol{\phi}(t)\end{smallmatrix}\right]}\right\rVert_{\text{Z}} =𝒯[𝐯(t)𝝍(t)]Z\displaystyle=\left\lVert{\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}(t)\\ \boldsymbol{\psi}(t)\end{smallmatrix}\right]}\right\rVert_{\text{Z}}
ζϵ𝒯[𝐯(0)𝝍(0)]Zeαt=ζϵ[𝐮(0)ϕ(0)]Zeαt.\displaystyle\leq\frac{\zeta}{\epsilon}\left\lVert{\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}(0)\\ \boldsymbol{\psi}(0)\end{smallmatrix}\right]}\right\rVert_{\text{Z}}e^{-\alpha t}=\frac{\zeta}{\epsilon}\left\lVert{\left[\scriptsize\begin{smallmatrix}\mathbf{u}(0)\\ \boldsymbol{\phi}(0)\end{smallmatrix}\right]}\right\rVert_{\text{Z}}e^{-\alpha t}.\quad

By Cor. 12, we can finally test stability of the DPDE (18), by the solving LPI (29). Note that stability is proven in the norm [𝐮(t)ϕ(t)]Z2=𝐮(t)L22+01ϕ(t,s)L22𝑑s\left\lVert{\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t)\\ \boldsymbol{\phi}(t)\end{smallmatrix}\right]}\right\rVert_{\text{Z}}^{2}=\|\mathbf{u}(t)\|_{L_{2}}^{2}+\int_{0}^{1}\|\boldsymbol{\phi}(t,s)\|_{L_{2}}^{2}ds, bounding both the PDE state 𝐮(t)\mathbf{u}(t) and its history ϕ(t,s)=𝐮(tsτ)\boldsymbol{\phi}(t,s)=\mathbf{u}(t-s\tau).

In order to numerically solve the LPI (29), we note that we can parameterize a cone of positive semidefinite PI operators 𝒫0\mathcal{P}\succeq 0 by positive semidefinite matrices P0P\succeq 0 as

Π+:={𝒫Π𝒫=𝒵MP𝒵,𝒵Π,P0},\displaystyle\Pi_{+}:=\{\mathcal{P}\in\Pi\mid\mathcal{P}=\mathcal{Z}^{*}\text{M}_{P}\mathcal{Z},\ \mathcal{Z}\in\Pi,\ P\succeq 0\},

where 𝒵\mathcal{Z} is some fixed PI operator. Then, if 𝒫Π+\mathcal{P}\in\Pi_{+}, there exists some P=[P1/2]TP1/20P=[P^{1/2}]^{T}P^{1/2}\succeq 0 and 𝒵Π\mathcal{Z}\in\Pi such that, for any 𝐮\mathbf{u} in the domain of 𝒫\mathcal{P}

𝐮,𝒫𝐮=MP1/2𝒵𝐮,MP1/2𝒵𝐮0,\displaystyle\left\langle\mathbf{u},\mathcal{P}\mathbf{u}\right\rangle=\left\langle\text{M}_{P^{1/2}}\mathcal{Z}\mathbf{u},\text{M}_{P^{1/2}}\mathcal{Z}\mathbf{u}\right\rangle\geq 0,

guaranteeing that 𝒫0\mathcal{P}\succeq 0. In this manner, LPI conditions such as 𝒫0\mathcal{P}\succeq 0 can be posed as LMI constraints P0P\succeq 0, allowing feasibility of the LPI in Thm. 11 to be numerically tested using semidefinite programming. This process of parsing LPIs as LMIs has been automated in the MATLAB software package PIETOOLS [15], wherein the operator 𝒵=𝒵d\mathcal{Z}=\mathcal{Z}_{d} used in the parameterization of 𝒫0\mathcal{P}\succeq 0 is defined by monomials of degree at most dd in each of the spatial variables. Conservatism introduced through the parameterization 𝒫=𝒵dMP𝒵d\mathcal{P}=\mathcal{Z}_{d}^{*}\text{M}_{P}\mathcal{Z}_{d} can then be reduced by increasing the maximal degree dd of the monomials, at the expense of increasing the size of the matrix P0P\succeq 0 and thus the complexity of the LMI.

In Section 7, we use the PIETOOLS software to test stability of several delayed PDE systems.

6 PDEs with Delay at Boundary

In the previous section, we showed how stability of a 2nd order, linear, 1D PDE with delay can be verified by solving a LPI, based on the PIE representation associated to this PDE. This result can be readily generalized to coupled systems of NNth order, linear, 1D PDEs with delay, using the fundamental state 𝐯(t)=xN𝐮(t)\mathbf{v}(t)=\partial_{x}^{N}\mathbf{u}(t) for PDE state 𝐮(t)HN\mathbf{u}(t)\in H_{N}, and using the formulae from [14] to compute an associated operator 𝒯1\mathcal{T}_{1} such that 𝒯1𝐯(t)=𝐮(t)\mathcal{T}_{1}\mathbf{v}(t)=\mathbf{u}(t).

More generally, using the formulae presented in [14], a PIE representation for a very general class of PDEs with delay can be constructed. For example, consider a 1D PDE coupled to an ODE with delay, taking the form

w˙(t)=A00w(t)+A00,dw(tτ)+A01[𝐮(t,0)𝐮x(t,0)𝐮(t,1)𝐮x(t,1)],\displaystyle\dot{w}(t)=A_{00}w(t)+A_{00,d}w(t-\tau)+A_{01}\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t,0)\\ \mathbf{u}_{x}(t,0)\\ \mathbf{u}(t,1)\\ \mathbf{u}_{x}(t,1)\end{smallmatrix}\right], (30)
𝐮t(t)=A10w(t)+A11[𝐮(t)𝐮x(t)𝐮xx(t)],𝐮(t)H2n[Ω01],\displaystyle\mathbf{u}_{t}(t)=A_{10}w(t)+A_{11}\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t)\\ \mathbf{u}_{x}(t)\\ \mathbf{u}_{xx}(t)\end{array}\!\!\!\right],\hskip 34.14322pt\mathbf{u}(t)\in H_{2}^{n}[\Omega_{0}^{1}], (34)
B0w(t)+B1[𝐮(t,0)𝐮x(t,0)𝐮(t,1)𝐮x(t,1)]=0t0,\displaystyle B_{0}w(t)+B_{1}\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t,0)\\ \mathbf{u}_{x}(t,0)\\ \mathbf{u}(t,1)\\ \mathbf{u}_{x}(t,1)\end{smallmatrix}\right]=0\hskip 99.58464ptt\geq 0,

Introducing the state ϕ(t,x)=w(txτ)\phi(t,x)=w(t-x\tau) for x[0,1]x\in[0,1], this system can be equivalently represented as

w˙(t)=A00w(t)+A00,dϕ(t,1)+A01[𝐮(t,0)𝐮x(t,0)𝐮(t,1)𝐮x(t,1)],\displaystyle\dot{w}(t)=A_{00}w(t)+A_{00,d}\phi(t,1)+A_{01}\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t,0)\\ \mathbf{u}_{x}(t,0)\\ \mathbf{u}(t,1)\\ \mathbf{u}_{x}(t,1)\end{smallmatrix}\right],
ϕt(t)=(1/τ)ϕx(t),𝐯(t)H1[Ω01],\displaystyle\phi_{t}(t)=-(1/\tau)\phi_{x}(t),\hskip 92.47145pt\mathbf{v}(t)\in H_{1}[\Omega_{0}^{1}],
𝐮t(t)=A10w(t)+A11[𝐮(t)𝐮x(t)𝐮xx(t)],𝐮(t)H2n[Ω01],\displaystyle\mathbf{u}_{t}(t)=A_{10}w(t)+A_{11}\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t)\\ \mathbf{u}_{x}(t)\\ \mathbf{u}_{xx}(t)\end{array}\!\!\!\right],\hskip 42.67912pt\mathbf{u}(t)\in H_{2}^{n}[\Omega_{0}^{1}],
B0w(t)+B1[𝐮(t,0)𝐮x(t,0)𝐮(t,1)𝐮x(t,1)]=0w(t)𝐯(t,0)=0,t0.\displaystyle B_{0}w(t)+B_{1}\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t,0)\\ \mathbf{u}_{x}(t,0)\\ \mathbf{u}(t,1)\\ \mathbf{u}_{x}(t,1)\end{smallmatrix}\right]=0\qquad w(t)-\mathbf{v}(t,0)=0,\quad t\geq 0.

Then, the dynamics are defined by a coupled ODE - 1D PDE system, on the state [w(t)ϕ(t)𝐮(t)]\left[\scriptsize\begin{smallmatrix}w(t)\\ \boldsymbol{\phi}(t)\\ \mathbf{u}(t)\end{smallmatrix}\right]. Using the formulae from [14], an equivalent PIE representation for this system can be readily constructed, introducing the fundamental state [w(t)ϕx(t)𝐮xx(t)]\left[\scriptsize\begin{smallmatrix}w(t)\\ \boldsymbol{\phi}_{x}(t)\\ \mathbf{u}_{xx}(t)\end{smallmatrix}\right].

Similarly, consider a 1D PDE with delay in the boundary conditions,

𝐮t(t)=A[𝐮(t)𝐮x(t)𝐮xx(t)],𝐮(t)H2n[Ω01],\displaystyle\mathbf{u}_{t}(t)=A\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t)\\ \mathbf{u}_{x}(t)\\ \mathbf{u}_{xx}(t)\end{array}\!\!\!\right],\hskip 56.9055pt\mathbf{u}(t)\in H_{2}^{n}[\Omega_{0}^{1}], (38)
B[𝐮(t,0)𝐮x(t,0)𝐮(t,1)𝐮x(t,1)]+Bd[𝐮(tτ,0)𝐮x(tτ,0)𝐮(tτ,1)𝐮x(tτ,1)]=0t0,\displaystyle B\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t,0)\\ \mathbf{u}_{x}(t,0)\\ \mathbf{u}(t,1)\\ \mathbf{u}_{x}(t,1)\end{smallmatrix}\right]+B_{d}\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t-\tau,0)\\ \mathbf{u}_{x}(t-\tau,0)\\ \mathbf{u}(t-\tau,1)\\ \mathbf{u}_{x}(t-\tau,1)\end{smallmatrix}\right]=0\hskip 42.67912ptt\geq 0,

In this case, introducing ϕ(t,s)=[𝐮(tsτ,0)𝐮x(tsτ,0)𝐮(tsτ,1)𝐮x(tsτ,1)]\boldsymbol{\phi}(t,s)=\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t-s\tau,0)\\ \mathbf{u}_{x}(t-s\tau,0)\\ \mathbf{u}(t-s\tau,1)\\ \mathbf{u}_{x}(t-s\tau,1)\end{smallmatrix}\right] for s[0,1]s\in[0,1], the PDE may be represented as

𝐮t(t)=A(x)[𝐮(t)𝐮x(t)𝐮xx(t)],𝐮(t)H2n[Ω01],\displaystyle\mathbf{u}_{t}(t)=A(x)\small\left[\!\!\!\begin{array}[]{l}\mathbf{u}(t)\\ \mathbf{u}_{x}(t)\\ \mathbf{u}_{xx}(t)\end{array}\!\!\!\right],\hskip 71.13188pt\mathbf{u}(t)\in H_{2}^{n}[\Omega_{0}^{1}],
ϕt(t)=(1/τ)ϕs(t),ϕ(t)H14n[Ω01],\displaystyle\boldsymbol{\phi}_{t}(t)=-(1/\tau)\boldsymbol{\phi}_{s}(t),\hskip 71.13188pt\boldsymbol{\phi}(t)\in H_{1}^{4n}[\Omega_{0}^{1}],
B[𝐮(t,0)𝐮x(t,0)𝐮(t,1)𝐮x(t,1)]+Bdϕ(t,1)=0,ϕ(t,0)[𝐮(t,0)𝐮x(t,0)𝐮(t,1)𝐮x(t,1)]=0.\displaystyle B\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t,0)\\ \mathbf{u}_{x}(t,0)\\ \mathbf{u}(t,1)\\ \mathbf{u}_{x}(t,1)\end{smallmatrix}\right]+B_{d}\boldsymbol{\phi}(t,1)=0,\qquad\boldsymbol{\phi}(t,0)-\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t,0)\\ \mathbf{u}_{x}(t,0)\\ \mathbf{u}(t,1)\\ \mathbf{u}_{x}(t,1)\end{smallmatrix}\right]=0.

This representation is again expressed only in terms of coupled 1D PDEs on the state [𝐮(t)ϕ(t)]\left[\scriptsize\begin{smallmatrix}\mathbf{u}(t)\\ \boldsymbol{\phi}(t)\end{smallmatrix}\right], involving no explicit delay. Introducing the associated fundamental state [𝐮xx(t)ϕx(t)]\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{xx}(t)\\ \boldsymbol{\phi}_{x}(t)\end{smallmatrix}\right], this system too can be converted to an equivalent PIE using the formulae from [14].

Using this approach of modeling the delay using a transport equation, a very general class of infinite-dimensional systems with delay can be represented as coupled ODE-PDE systems, with the PDE being either 2D or 1D depending on whether the delay occurs in the dynamics (as in the previous section) or in the boundary conditions (as in Eqn. (38)). Then, an equivalent PIE representation of the system can be constructed using the methodology proposed in the previous section or that presented in [14], at which point stability can be readily tested by solving the LPI from Thm. 11. The appendices of this paper provide a full, though somewhat abstract overview of how a PIE representation can be constructed for a general class of ODE-PDE systems with delay. However, this process of computing the PIE representation and subsequently testing stability has also already been automated in the Matlab software suite PIETOOLS 2022 [15], applying semidefinite programming to test feasibility of the LPI (29). In the next section, we use this software to numerically test stability of several PDE systems with delay.

7 Numerical Examples

In this section, we provide several numerical examples, illustrating how stability of different ODE-PDE systems with delay can be numerically tested by verifying feasibility of the LPI from Thm. 11. In each case, the PIETOOLS software package [16] is used to declare the delayed system as a coupled systems of ODEs and PDEs, convert the system to an equivalent PIE, and subsequently declare and solve the stability LPI.

7.1 Heat Equation with Delay in PDE

Consider a heat equation with a delayed reaction term, as studied in [4, 17]

𝐮t(t,x)\displaystyle\mathbf{u}_{t}(t,x) =𝐮xx(t,x)+r𝐮(t,x)𝐮(tτ,x),xΩ0π,\displaystyle=\mathbf{u}_{xx}(t,x)+r\mathbf{u}(t,x)-\mathbf{u}(t-\tau,x),\quad x\in\Omega_{0}^{\pi},
𝐮(t,0)\displaystyle\mathbf{u}(t,0) =𝐮(t,π)=0.\displaystyle=\mathbf{u}(t,\pi)=0. (39)

We can model the delay using a 2D transport equation as

𝐮t(t,x)\displaystyle\mathbf{u}_{t}(t,x) =𝐮xx(t,x)+r𝐮(t,x)𝐯(t,1,x),\displaystyle=\mathbf{u}_{xx}(t,x)+r\mathbf{u}(t,x)-\mathbf{v}(t,1,x), xΩ0π,\displaystyle x\in\Omega_{0}^{\pi},
ϕt(t,s,x)\displaystyle\boldsymbol{\phi}_{t}(t,s,x) =(1/τ)ϕs(t,s,x),\displaystyle=-(1/\tau)\boldsymbol{\phi}_{s}(t,s,x), sΩ01,\displaystyle s\in\Omega_{0}^{1},
𝐮(t,0)\displaystyle\mathbf{u}(t,0) =𝐮(t,π)=0,ϕ(t,s,0)=ϕ(t,s,π)=0,\displaystyle=\mathbf{u}(t,\pi)=0,\qquad\boldsymbol{\phi}(t,s,0)=\boldsymbol{\phi}(t,s,\pi)=0,
ϕ(t,0,x)\displaystyle\boldsymbol{\phi}(t,0,x) =𝐮(t,x).\displaystyle=\mathbf{u}(t,x).

Using PIETOOLS, we then obtain a PIE representation

(𝒯𝐯t)(t,x)=𝐯(t,x)+(r1)(𝒯𝐯)(t,x)01(𝒯𝝍)(t,s,x)𝑑s,\displaystyle(\mathcal{T}\mathbf{v}_{t})(t,x)=\!\mathbf{v}(t,x)\!+\!(r\!-\!1)(\mathcal{T}\mathbf{v})(t,x)\!-\!\!\int_{0}^{1}\!\!(\mathcal{T}\boldsymbol{\psi})(t,s,x)ds,
(𝒯𝐯t)(t,x)+0s(𝒯𝝍t)(t,ν,x)𝑑ν=1τ(𝒯𝝍)(t,s,x),\displaystyle(\mathcal{T}\mathbf{v}_{t})(t,x)+\int_{0}^{s}(\mathcal{T}\boldsymbol{\psi}_{t})(t,\nu,x)d\nu=-\frac{1}{\tau}(\mathcal{T}\boldsymbol{\psi})(t,s,x),

where 𝐯(t,x)=x2𝐮(t,x)\mathbf{v}(t,x)=\partial_{x}^{2}\mathbf{u}(t,x), 𝝍(t,s,x)=sx2ϕ(t,s,x)\boldsymbol{\psi}(t,s,x)=\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}(t,s,x), and

(𝒯𝐯)(t,x)=0xθ(x1)𝐯(t,θ)𝑑θ+xπx(θ1)𝐯(t,θ)𝑑θ.\displaystyle\bigl{(}\mathcal{T}\mathbf{v}\bigr{)}(t,x)=\int_{0}^{x}\!\theta(x-1)\mathbf{v}(t,\theta)d\theta+\int_{x}^{\pi}\!\!x(\theta-1)\mathbf{v}(t,\theta)d\theta.

In [17], it was shown that for 0<r<20<r<2, the DPDE (7.1) is stable if and only if and only if τ<τ¯:=cos1(r1)2rr2\tau<\bar{\tau}:=\frac{\cos^{-1}(r-1)}{\sqrt{2r-r^{2}}}. Performing bisection on the value of the delay τ\tau, stability for different values of rr can be numerically verified with PIETOOLS for delays up to τLPI\tau_{\text{LPI}} as presented in Tab. 1. Here, for each test, the LPI (29) was numerically parsed as an LMI by parameterizing the positive operator 𝒫0\mathcal{P}\succeq 0 by a symmetric positive semidefinit matrix P27×27P\in\mathbb{R}^{27\times 27}. The associated Lyapunov-Krasovskii functional is then parameterized by 1227(27+1)=378\frac{1}{2}27(27+1)=378 decision variables, substantially more complicated than the Lyapunov-Krasovskii functional used to test stability in [4], only involving 5 decision variables. Although the resulting stable delay bound is much less conservative using the LPI approach (τLPI=1.03470\tau_{\text{LPI}}=1.03470 versus τ=1.025\tau=1.025 for r=1.9r=1.9), the computational complexity of the LMI used to achieve this bound is also much greater.

rr 0.1 0.5 0.8 1.2 1.5 1.9
τ¯\bar{\tau} 6.17258 2.41839 1.80870 1.39768 1.20920 1.03472
τLPI\tau_{\text{LPI}} 6.17248 2.41837 1.80869 1.39767 1.20919 1.03470
Table 1: Maximal delay τLPI\tau_{\text{LPI}} for which exponential stability of System (7.1) was verified using Thm. 11 with ϵ=102\epsilon=10^{-2}, α=0\alpha=0.

7.2 Wave Equation with Delay in Boundary

Consider a wave equation with delay in the boundary,

𝐮tt(t,x)\displaystyle\mathbf{u}_{tt}(t,x) =x2𝐮(t,x)xΩ01,\displaystyle=\partial_{x}^{2}\mathbf{u}(t,x)\hskip 99.58464ptx\in\Omega_{0}^{1}, (40)
𝐮(t,0)\displaystyle\mathbf{u}(t,0) =0,x𝐮(t,1)=(1μ)𝐮t(t,1)+μ𝐮t(tτ,1).\displaystyle=0,\hskip 14.22636pt\partial_{x}\mathbf{u}(t,1)=(1-\mu)\mathbf{u}_{t}(t,1)+\mu\mathbf{u}_{t}(t-\tau,1).

where μ(0,1)\mu\in(0,1). Introducing

𝐮1(t)=𝐮(t),𝐮2(t)=𝐮t(t),\displaystyle\mathbf{u}_{1}(t)=\mathbf{u}(t),\hskip 85.35826pt\mathbf{u}_{2}(t)=\mathbf{u}_{t}(t),
ϕ1(t,x)=𝐮1(tτx,1),ϕ2(t,x)=𝐮2(tτx,1),\displaystyle\boldsymbol{\phi}_{1}(t,x)=\mathbf{u}_{1}(t-\tau x,1),\hskip 35.56593pt\boldsymbol{\phi}_{2}(t,x)=\mathbf{u}_{2}(t-\tau x,1),
u0(t)=(1μ)𝐮1(t,1)+μϕ1(t,1)\displaystyle u_{0}(t)=(1-\mu)\mathbf{u}_{1}(t,1)+\mu\boldsymbol{\phi}_{1}(t,1)

this system can be equivalently represented as

u˙0(t)\displaystyle\dot{u}_{0}(t) =x𝐮1(t,1)\displaystyle=\partial_{x}\mathbf{u}_{1}(t,1)
t𝐮1(t,x)\displaystyle\partial_{t}\mathbf{u}_{1}(t,x) =𝐮2(t,x),t𝐮2(t,x)=x2𝐮1(t,x),\displaystyle=\mathbf{u}_{2}(t,x),\hskip 42.67912pt\partial_{t}\mathbf{u}_{2}(t,x)=\partial_{x}^{2}\mathbf{u}_{1}(t,x),
tϕ1(t,x)\displaystyle\partial_{t}\boldsymbol{\phi}_{1}(t,x) =1τxϕ1(t,x),tϕ2(t,x)=1τxϕ2(t,x),\displaystyle=-\frac{1}{\tau}\partial_{x}\boldsymbol{\phi}_{1}(t,x),\hskip 17.07182pt\partial_{t}\boldsymbol{\phi}_{2}(t,x)=-\frac{1}{\tau}\partial_{x}\boldsymbol{\phi}_{2}(t,x),
𝐮1(t,0)\displaystyle\mathbf{u}_{1}(t,0) =0,𝐮2(t,0)=0,\displaystyle=0,\hskip 71.13188pt\mathbf{u}_{2}(t,0)=0,
ϕ1(t,0)\displaystyle\boldsymbol{\phi}_{1}(t,0) =𝐮1(t,1),ϕ2(t,0)=𝐮2(t,1),\displaystyle=\mathbf{u}_{1}(t,1),\hskip 44.10185pt\boldsymbol{\phi}_{2}(t,0)=\mathbf{u}_{2}(t,1),
u0(t)\displaystyle u_{0}(t) =(1μ)𝐮1(t,1)+μϕ1(t,1),\displaystyle=(1-\mu)\mathbf{u}_{1}(t,1)+\mu\boldsymbol{\phi}_{1}(t,1),
x𝐮1(t,1)\displaystyle\partial_{x}\mathbf{u}_{1}(t,1) =(1μ)𝐮2(t,1)+μϕ2(t,1).\displaystyle=(1-\mu)\mathbf{u}_{2}(t,1)+\mu\boldsymbol{\phi}_{2}(t,1).

This ODE-PDE system can be readily declared in PIETOOLS, and converted to a PIE.

In [18], the PDE (40) was proven to be stable independent of delay if μ<12\mu<\frac{1}{2}, and unstable independent of delay if μ>12\mu>\frac{1}{2}. We examine the ability of the proposed algorithm to expand upon this result by determining bounds on the rate of decay for several values of μ\mu and τ\tau. First, fixing τ=1\tau=1, we note that stability can be numerically verified with PIETOOLS for any μ0.5103\mu\leq 0.5-10^{-3}. Next, fixing μ=0.4\mu=0.4 and performing bisection on the value of α\alpha, exponential decay rates can be computed as illustrated in Tab. 1. For each test, the operator 𝒫\mathcal{P} in the LPI (29) was parameterized by a symmetric positive semidefinite matrix P73×73P\in\mathbb{R}^{73\times 73}.

τ\tau 0.125 0.25 0.5 1.0 2.0 4.0 8.0
α\alpha 0.2023 0.1908 0.1513 0.1333 0.1060 0.0701 0.0135
Table 2: Decay rates α\alpha for which exponential stability of System (40)
with μ=0.4\mu=0.4 was verified using Thm. 11 with ϵ=103\epsilon=10^{-3}.

8 Conclusion

In this paper, an LMI-based method for verifying stability of coupled, linear, delayed, PDE systems in a single spatial dimension was presented. In particular, it was shown that for any suitably well-posed PDE with delay, there exists an associated (1D or 2D) PIE with a corresponding bijective map from solution of the delayed PDE to that of the PIE. The PIE representation was then used to propose a stability test for the delayed PDE. This stability test was posed as a linear operator inequality expressed using PI operator variables (an LPI). Finally, the PIETOOLS software package was used to convert the LPI to a semidefinite programming problem and the resulting stability conditions were applied to several common examples of delayed PDEs. While these results only apply to fixed, constant delays, an extension to time-varying delays may be possible using PDE representations such as in [2].

References

  • [1] V. Kolmanovskii and A. Myshkis, Applied theory of functional differential equations.   Springer Science & Business Media, 2012, vol. 85.
  • [2] S. Nicaise, J. Valein, and E. Fridman, “Stability of the heat and of the wave equations with boundary time-varying delays,” Discrete and Continuous Dynamical Systems-Series S, vol. 2, no. 3, pp. 559–581, 2009.
  • [3] K. Ammari, S. Nicaise, and C. Pignotti, “Feedback boundary stabilization of wave equations with interior delay,” Systems & Control Letters, vol. 59, no. 10, pp. 623–628, 2010.
  • [4] E. Fridman and Y. Orlov, “Exponential stability of linear distributed parameter systems with time-varying delays,” Automatica, vol. 45, no. 1, pp. 194–201, 2009.
  • [5] J.-W. Wang, C.-Y. Sun, X. Xin, and C.-X. Mu, “Sufficient conditions for exponential stabilization of linear distributed parameter systems with time delays,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 6062–6067, 2014.
  • [6] J.-W. Wang and C.-Y. Sun, “Delay-dependent exponential stabilization for linear distributed parameter systems with time-varying delay,” Journal of Dynamic Systems, Measurement, and Control, vol. 140, no. 5, 2018.
  • [7] O. Solomon and E. Fridman, “Stability and passivity analysis of semilinear diffusion PDEs with time-delays,” International Journal of Control, vol. 88, no. 1, pp. 180–192, 2015.
  • [8] H. Lhachemi and C. Prieur, “Boundary output feedback stabilization of a class of reaction-diffusion PDEs with delayed boundary measurement,” International Journal of Control, 2022.
  • [9] M. M. Peet, “A partial integral equation (PIE) representation of coupled linear PDEs and scalable stability analysis using LMIs,” Automatica, vol. 125, p. 109473, 2021.
  • [10] D. S. Jagt and M. M. Peet, “A PIE representation of coupled 2D PDEs and stability analysis using LPIs,” arXiv eprint:2109.06423, 2021.
  • [11] S. Shivakumar, A. Das, S. Weiland, and M. M. Peet, “Duality and HH_{\infty}-optimal control of coupled ODE-PDE systems,” in 2020 59th IEEE Conference on Decision and Control (CDC), 2020, pp. 5689–5696.
  • [12] S. Wu, M. M. Peet, F. Sun, and C. Hua, “hh_{\infty}-optimal observer design for systems with multiple delays in states, inputs and outputs: A PIE approach,” International Journal of Robust and Nonlinear Control, vol. 33, no. 8, pp. 4523–4540, 2023.
  • [13] M. Peet, “Representation of networks and systems with delay: DDEs, DDFs, ODE–PDEs and PIEs,” Automatica, vol. 127, p. 109508, 2021.
  • [14] S. Shivakumar, A. Das, S. Weiland, and M. Peet, “Extension of the partial integral equation representation to GPDE input-output systems,” arxiv eprint:2205.03735, 2022.
  • [15] S. Shivakumar, D. Jagt, D. Braghini, A. Das, and M. Peet, “PIETOOLS 2022: User manual,” arXiv eprint:2101.02050, 2021.
  • [16] S. Shivakumar, A. Das, and M. M. Peet, “PIETOOLS: A MATLAB toolbox for manipulation and optimization of partial integral operators,” in 2020 American Control Conference (ACC), 2020, pp. 2667–2672.
  • [17] S. Y. Çalışkan and H. Özbay, “Stability analysis of the heat equation with time-delayed feedback,” IFAC Proceedings Volumes, pp. 220–224, 2009.
  • [18] G. Q. Xu, S. P. Yung, and L. K. Li, “Stabilization of wave systems with input delay in the boundary control,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 12, no. 4, pp. 770–785, 2006.
{appendices}

9 Feedback Interconnection of Partial Integral Equations

In order to derive the PIE representation of a PDE with delay, in Section (10), we will first represent this delayed PDE as the feedback interconnection of a 1D PDE and a 2D PDE. Separately deriving a PIE representation of both the 1D PDE and 2D PDE subsystems, we can then construct a PIE representation of the original system by taking the feedback interconnection of the two PIE subsystems.

In this section, we prove that the feedback interconnection of PIEs can indeed be represented as a PIE as well. This result was already proven in [14], for the case of finite-dimensional interconnection signals, and will be extended here to include infinite-dimensional interconnection signals. To start, in the following subsection, we first suitable classes of PI operators to parameterize our PIEs. Although more general classes of PI operators have already been defined in other papers, the classes in the following subsection are sufficient for the purposes of this paper. In the next subsection, we then show how the interconnection of two suitable PIEs can be represented as a PIE as well.

9.1 Algebras of PI Operators in 2D

Partial integral (PI) operators are bounded, linear operators, parameterized by square integrable functions. In 1D, the standard class of PI operators is that of 3-PI operators, which we define as follows

Definition 13 (3-PI Operators (Π3\Pi_{3})).

For m,nm,n\in\mathbb{N}, define

𝒩3m×n[Ωab]:=Lm×n[Ωab]×L2m×n[Ωab×Ωab]×L2m×n[Ωab×Ωab].\displaystyle\mathcal{N}_{3}^{m\times n}[\Omega_{a}^{b}]\!:=\!L_{\infty}^{m\times n}[\Omega_{a}^{b}]\!\times\!L_{2}^{m\times n}[\Omega_{a}^{b}\!\times\!\Omega_{a}^{b}]\times L_{2}^{m\times n}[\Omega_{a}^{b}\!\times\!\Omega_{a}^{b}].

Then, for given parameters N:={N0,N1,N2}N:=\{N_{0},N_{1},N_{2}\}, we define the associated 3-PI operator for 𝐮L2n[Ωab]\mathbf{u}\in L_{2}^{n}[\Omega_{a}^{b}] as

(𝒫[N]𝐮)(x)\displaystyle\small\bigl{(}\mathcal{P}[N]\mathbf{u}\bigr{)}(x) =N0(x)𝐮(x)+axN1(x,θ)𝐮(θ)𝑑θ\displaystyle=N_{0}(x)\mathbf{u}(x)+\int_{a}^{x}\!N_{1}(x,\theta)\mathbf{u}(\theta)d\theta
+xbN2(x,θ)𝐮(θ)𝑑θ,xΩab.\displaystyle\qquad+\int_{x}^{b}\!N_{2}(x,\theta)\mathbf{u}(\theta)d\theta,\qquad x\in\Omega_{a}^{b}.

Since we are interested in coupled ODE-PDE systems, we need to be able to map between finite-dimensional ODE states un0u\in\mathbb{R}^{n_{0}} and infinite-dimensional PDE states 𝐮1L2n1[Ωab]\mathbf{u}_{1}\in L_{2}^{n_{1}}[\Omega_{a}^{b}]. For this purpose, we define a class of 4-PI operators, acting on the function space Z1n[Ωab]:=n0×L2n1[Ωab]\text{Z}_{1}^{\text{n}_{\text{}}}[\Omega_{a}^{b}]:=\mathbb{R}^{n_{0}}\times L_{2}^{n_{1}}[\Omega_{a}^{b}] for n=(n1,n1)2\text{n}_{\text{}}=(n_{1},n_{1})\in\mathbb{N}^{2}.

Definition 14 (4-PI Operators (Π4\Pi_{4})).

For given
m:=(m0,m1)2\text{m}:=(m_{0},m_{1})\in\mathbb{N}^{2}, n:=(n0,n1)2\text{n}:=(n_{0},n_{1})\in\mathbb{N}^{2}, define

𝒩4m×n[Ωab]:=[m0×n0L2m0×n1[Ωab]L2m1×n0𝒩3m1×n1[Ωab].].\displaystyle\mathcal{N}_{4}^{\text{m}\times\text{n}}[\Omega_{a}^{b}]:=\left[\!\begin{array}[]{ll}\mathbb{R}^{m_{0}\times n_{0}}&L_{2}^{m_{0}\times n_{1}}[\Omega_{a}^{b}]\\ L_{2}^{m_{1}\times n_{0}}&\mathcal{N}_{3}^{m_{1}\times n_{1}}[\Omega_{a}^{b}].\end{array}\!\right].

Then, for given parameters B=[B00B01B10B11]𝒩4m×n[Ωab]B=\left[\scriptsize\begin{smallmatrix}B_{00}&B_{01}\\ B_{10}&B_{11}\end{smallmatrix}\right]\in\mathcal{N}_{4}^{\text{m}\times\text{n}}[\Omega_{a}^{b}], we define the associated 4-PI operator for 𝐮=[u0𝐮1][n0L2n1]\mathbf{u}=\small\left[\!\!\!\begin{array}[]{r}u_{0}\\ \mathbf{u}_{1}\end{array}\!\!\!\right]\in\small\left[\!\!\!\begin{array}[]{r}\mathbb{R}^{n_{0}}\\ L_{2}^{n_{1}}\end{array}\!\!\!\right] as

(𝒫[B]𝐮)(x)\displaystyle\bigl{(}\mathcal{P}[B]\mathbf{u}\bigr{)}(x) =[B00u0+abB01(x)𝐮1(x)𝑑xB10(x)u0+(𝒫[B11]𝐮1)(x)],\displaystyle=\!\left[\!\begin{array}[]{rcl}B_{00}u_{0}&\!+\!\!&\int_{a}^{b}B_{01}(x)\mathbf{u}_{1}(x)dx\\ B_{10}(x)u_{0}&\!+\!\!&\bigl{(}\mathcal{P}[B_{11}]\mathbf{u}_{1})(x)\end{array}\!\right], x\displaystyle\!x Ωab.\displaystyle\in\Omega_{a}^{b}.

Finally, since our delayed system will actually yield 2D PDEs, we will need operators acting on 2D function spaces as well. In particular, we define the space Z2n[Ωacbd]=L2n0[Ωcd]×L2n1[Ωacbd]\text{Z}_{2}^{\text{n}}[\Omega_{ac}^{bd}]=L_{2}^{n_{0}}[\Omega_{c}^{d}]\times L_{2}^{n_{1}}[\Omega_{ac}^{bd}] for n=(n0,n1)2\text{n}_{\text{}}=(n_{0},n_{1})\in\mathbb{N}^{2}, and for n=(n1,n2)4\text{n}=(\text{n}_{1},\text{n}_{2})\in\mathbb{N}^{4}, we define Z12n[Ωacbd]:=Z1n1[Ωab]×Z2n2[Ωacbd]\text{Z}_{12}^{\text{n}}[\Omega_{ac}^{bd}]:=\text{Z}_{1}^{\text{n}_{1}}[\Omega_{a}^{b}]\!\times\text{Z}_{2}^{\text{n}_{2}}[\Omega_{ac}^{bd}]. Through some abuse of notation, we will allow 4-PI operators to act on functions in Z2:=[L2[Ωcd]L2[Ωacbd]]\text{Z}_{2}:=\left[\scriptsize\begin{smallmatrix}L_{2}[\Omega_{c}^{d}]\\ L_{2}[\Omega_{ac}^{bd}]\end{smallmatrix}\right] as well, assuming them to act as multipliers along yΩcdy\in\Omega_{c}^{d}. Then, we define a restricted class of 2D PI operators as follows.

Definition 15 (PI Operators on 2D (Π12\Pi_{12})).

For given m:=(m1,m2)4\text{m}:=(\text{m}_{1},\text{m}_{2})\in\mathbb{N}^{4} and n:=(n1,n2)4\text{n}:=(\text{n}_{1},\text{n}_{2})\in\mathbb{N}^{4}, define

𝒩12m×n[Ωacbd]:=[𝒩4m1×n1[Ωab]𝒩4m1×n2[Ωab]𝒩4m2×n1[Ωab](𝒩4m2×n2[Ωab])3].\displaystyle\mathcal{N}_{12}^{\text{m}\times\text{n}}[\Omega_{ac}^{bd}]:=\left[\!\begin{array}[]{ll}\mathcal{N}_{4}^{\text{m}_{1}\times\text{n}_{1}}[\Omega_{a}^{b}]&\mathcal{N}_{4}^{\text{m}_{1}\times\text{n}_{2}}[\Omega_{a}^{b}]\\ \mathcal{N}_{4}^{\text{m}_{2}\times\text{n}_{1}}[\Omega_{a}^{b}]&(\mathcal{N}_{4}^{\text{m}_{2}\times\text{n}_{2}}[\Omega_{a}^{b}])^{3}\end{array}\!\right].

Then, for given parameters B=[B11B12B21N]𝒩12m×n[Ωacbd]B=\left[\scriptsize\begin{smallmatrix}B_{11}&B_{12}\\ B_{21}&N\end{smallmatrix}\right]\in\mathcal{N}_{12}^{\text{m}\times\text{n}}[\Omega_{ac}^{bd}], define the associated PI operator for 𝐮=[𝐮1𝐮2][Z1n1[Ωab]Z2n2[Ωacbd]]\mathbf{u}=\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}_{1}\\ \mathbf{u}_{2}\end{array}\!\!\!\right]\in\small\left[\!\!\!\begin{array}[]{r}\text{Z}_{1}^{\text{n}_{\text{1}}}[\Omega_{a}^{b}]\\ \text{Z}_{2}^{\text{n}_{\text{2}}}[\Omega_{ac}^{bd}]\end{array}\!\!\!\right] and (x,y)Ωacbd(x,y)\in\Omega_{ac}^{bd} as

(𝒫[B]𝐮)(x,y)\displaystyle\bigl{(}\mathcal{P}[B]\mathbf{u}\bigr{)}(x,y) =[(𝒫[B11]𝐮1)(x)+cd(𝒫[B12]𝐮2)(x,y)𝑑y(𝒫[B21]𝐮1)(x,y)+(𝒫[N]𝐮2)(x,y)],\displaystyle\!=\!\left[\!\!{\small\begin{array}[]{rl}\bigl{(}\mathcal{P}[B_{11}]\mathbf{u}_{1}\bigr{)}(x)&\!+\int_{c}^{d}\bigl{(}\mathcal{P}[B_{12}]\mathbf{u}_{2}\bigr{)}(x,y)dy\\ \bigl{(}\mathcal{P}[B_{21}]\mathbf{u}_{1}\bigr{)}(x,y)&\!+\bigl{(}\mathcal{P}[N]\mathbf{u}_{2}\bigr{)}(x,y)\end{array}}\!\right]\!,

where for N={N0,N1,N2}(𝒩4m2×n2[Ωab])3N=\{N_{0},N_{1},N_{2}\}\in(\mathcal{N}_{4}^{\text{m}_{2}\times\text{n}_{2}}[\Omega_{a}^{b}])^{3},

(𝒫[N]𝐮2)(x,y)\displaystyle\bigl{(}\mathcal{P}[N]\mathbf{u}_{2}\bigr{)}(x,y) =(𝒫[N0]𝐮2)(x,y)+cy(𝒫[N1]𝐮2)(x,ν)𝑑ν\displaystyle=\bigl{(}\mathcal{P}[N_{0}]\mathbf{u}_{2}\bigr{)}(x,y)+\int_{c}^{y}\bigl{(}\mathcal{P}[N_{1}]\mathbf{u}_{2}\bigr{)}(x,\nu)d\nu
+yd(𝒫[N2]𝐮2)(x,ν)𝑑ν.\displaystyle\qquad+\int_{y}^{d}\bigl{(}\mathcal{P}[N_{2}]\mathbf{u}_{2}\bigr{)}(x,\nu)d\nu.

Throughout this paper, we will use Π\Pi to denote the general class of PI operators, writing Πm×n\mathcal{B}\in\Pi^{\text{m}\times\text{n}} if there exist parameters B𝒩12m×nB\in\mathcal{N}_{12}^{\text{m}\times\text{n}} such that =𝒫[B]\mathcal{B}=\mathcal{P}[B]. We will make extensive use of the following properties of PI operators.

  1. 1.

    The sum 𝒬+=𝒫Πm×n\mathcal{Q}+\mathcal{R}=\mathcal{P}\in\Pi^{\text{m}\times\text{n}} of two PI operators 𝒬,Πm×n\mathcal{Q},\mathcal{R}\in\Pi^{\text{m}\times\text{n}} is a PI operator.

  2. 2.

    The composition 𝒬=𝒫Πm×n\mathcal{Q}\circ\mathcal{R}=\mathcal{P}\in\Pi^{\text{m}\times\text{n}} of two PI operators 𝒬Πm×p\mathcal{Q}\in\Pi^{\text{m}\times\text{p}}, Πp×n\mathcal{R}\in\Pi^{\text{p}\times\text{n}} is a PI operator.

  3. 3.

    The adjoint 𝒫Πn×m\mathcal{P}^{*}\in\Pi^{\text{n}\times\text{m}} of a PI operator 𝒫Πm×n\mathcal{P}\in\Pi^{\text{m}\times\text{n}} is a PI operator.

We refer to [14] (1D) and [10] (2D) for more details on PI operators, including explicit definitions of the parameters associated to operations such as addition and multiplication.

9.2 A Feedback Interconnection of PIEs

Having defined a sufficiently general class of PI operators for the purposes of this paper, consider now a PIE of the form

[𝒯r𝐫t(t)+𝒯w𝐰t(t)+𝒯𝐯t(t)𝐳(t)𝐪(t)]=[𝒜wr𝒞z𝒟zw𝒟zr𝒞q𝒟qw𝒟qr][𝐯(t)𝐰(t)𝐫(t)],\displaystyle\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}_{r}\mathbf{r}_{t}(t)+\mathcal{T}_{w}\mathbf{w}_{t}(t)+\mathcal{T}\mathbf{v}_{t}(t)\\ \mathbf{z}(t)\\ \mathbf{q}(t)\end{array}\!\!\!\right]\!=\!\left[\!\begin{array}[]{lll}\mathcal{A}&\mathcal{B}_{w}&\mathcal{B}_{r}\\ \mathcal{C}_{z}&\mathcal{D}_{zw}&\mathcal{D}_{zr}\\ \mathcal{C}_{q}&\mathcal{D}_{qw}&\mathcal{D}_{qr}\\ \end{array}\!\right]\!\small\left[\!\!\!\begin{array}[]{r}\mathbf{v}(t)\\ \mathbf{w}(t)\\ \mathbf{r}(t)\end{array}\!\!\!\right], (50)

where at each time t0t\geq 0, 𝐯(t)Z12nu\mathbf{v}(t)\in\text{Z}_{12}^{\text{n}_{\text{u}}}, 𝐰(t)Z12nw\mathbf{w}(t)\in\text{Z}_{12}^{\text{n}_{\text{w}}}, 𝐫(t)Z12nr\mathbf{r}(t)\in\text{Z}_{12}^{\text{n}_{\text{r}}}, 𝐳(t)Z12nz\mathbf{z}(t)\in\text{Z}_{12}^{\text{n}_{\text{z}}} and 𝐪(t)Z12nq\mathbf{q}(t)\in\text{Z}_{12}^{\text{n}_{\text{q}}}, for some nu,nw,nz,nr,nq4\text{n}_{\text{u}},\text{n}_{\text{w}},\text{n}_{\text{z}},\text{n}_{\text{r}},\text{n}_{\text{q}}\in\mathbb{N}^{4}. We collect the PI operators defining the PIE in

𝐆pie=[𝒯𝒯w𝒯r𝒜wr𝒞z𝒟zw𝒟zr𝒞q𝒟qw𝒟qr][Πnu×nuΠnu×nwΠnu×nrΠnu×nuΠnu×nwΠnu×nrΠnz×nuΠnz×nwΠnz×nrΠnq×nuΠnq×nwΠnq×nr].\displaystyle\mathbf{G}_{\text{pie}}\!=\!\!\left[\!{\small\begin{array}[]{lll}\mathcal{T}&\mathcal{T}_{w}&\mathcal{T}_{r}\\ \mathcal{A}&\mathcal{B}_{w}&\mathcal{B}_{r}\\ \mathcal{C}_{z}&\mathcal{D}_{zw}&\mathcal{D}_{zr}\\ \mathcal{C}_{q}&\mathcal{D}_{qw}&\mathcal{D}_{qr}\end{array}}\!\right]\in\left[\!{\small\begin{array}[]{lll}\Pi^{\text{n}_{\text{u}}\times\text{n}_{\text{u}}}&\Pi^{\text{n}_{\text{u}}\times\text{n}_{\text{w}}}&\Pi^{\text{n}_{\text{u}}\times\text{n}_{\text{r}}}\\ \Pi^{\text{n}_{\text{u}}\times\text{n}_{\text{u}}}&\Pi^{\text{n}_{\text{u}}\times\text{n}_{\text{w}}}&\Pi^{\text{n}_{\text{u}}\times\text{n}_{\text{r}}}\\ \Pi^{\text{n}_{\text{z}}\times\text{n}_{\text{u}}}&\Pi^{\text{n}_{\text{z}}\times\text{n}_{\text{w}}}&\Pi^{\text{n}_{\text{z}}\times\text{n}_{\text{r}}}\\ \Pi^{\text{n}_{\text{q}}\times\text{n}_{\text{u}}}&\Pi^{\text{n}_{\text{q}}\times\text{n}_{\text{w}}}&\Pi^{\text{n}_{\text{q}}\times\text{n}_{\text{r}}}\end{array}}\!\right]. (59)

If the PIE involves only a single output and a single output signal, so that nq=nr=0\text{n}_{\text{q}}=\text{n}_{\text{r}}=0, we will exclude the PI operators associated to 𝐪,𝐫\mathbf{q},\mathbf{r}, writing 𝐆pie={𝒯,𝒯w,𝒜,w,𝒞z,𝒟zw}\mathbf{G}_{\text{pie}}=\{\mathcal{T},\mathcal{T}_{w},\mathcal{A},\mathcal{B}_{w},\mathcal{C}_{z},\mathcal{D}_{zw}\}. If the PIE describes an autonomous system, so that also nw=nz=0\text{n}_{\text{w}}=\text{n}_{\text{z}}=0, we will simply write 𝐆pie={𝒯,𝒜}\mathbf{G}_{\text{pie}}=\{\mathcal{T},\mathcal{A}\}.

Definition 16 (Solution to the PIE).

For given input signals (𝐰,𝐫)(\mathbf{w},\mathbf{r}) and given initial conditions 𝐯0Z12nu\mathbf{v}_{0}\in\text{Z}_{12}^{\text{n}_{\text{u}}}, we say that (𝐯,𝐳,𝐪)(\mathbf{v},\mathbf{z},\mathbf{q}) is a solution to the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} if 𝐯\mathbf{v} is Frechét differentiable, 𝐯(0)=𝐯0\mathbf{v}(0)=\mathbf{v}_{0}, and for all t0t\geq 0, (𝐯(t),(𝐳(t),𝐪(t)),(𝐰(t),𝐫(t)))(\mathbf{v}(t),(\mathbf{z}(t),\mathbf{q}(t)),(\mathbf{w}(t),\mathbf{r}(t))) satisfies Eqn. (50) with operators defined as in (59).

Using the composition and addition rules of PI operators, it is easy to show that the interconnection of two suitable PIEs can also be represented as a PIE.

Proposition 17 (Interconnection of PIEs).

Let

𝐆pie,1\displaystyle\mathbf{G}_{\text{pie},1} =[𝒯1𝒯1w𝒯1r𝒜11w1r𝒞z1𝒟zw𝒟zr𝒞q1𝒟qw0],and𝐆pie,2=[𝒯2𝒯2q𝒜22q𝒞r2𝒟rq],\displaystyle=\left[\!{\small\begin{array}[]{lll}\mathcal{T}_{1}&\mathcal{T}_{1w}&\mathcal{T}_{1r}\\ \mathcal{A}_{1}&\mathcal{B}_{1w}&\mathcal{B}_{1r}\\ \mathcal{C}_{z1}&\mathcal{D}_{zw}&\mathcal{D}_{zr}\\ \mathcal{C}_{q1}&\mathcal{D}_{qw}&0\end{array}}\!\right],\quad\text{and}\quad\mathbf{G}_{\text{pie},2}=\left[\!{\small\begin{array}[]{ll}\mathcal{T}_{2}&\mathcal{T}_{2q}\\ \mathcal{A}_{2}&\mathcal{B}_{2q}\\ \mathcal{C}_{r2}&\mathcal{D}_{rq}\end{array}}\!\right],

define two PIEs. Define the associated PIE interconnection as 𝐆pie={𝒯,𝒯w,𝒜,w,𝒞z,𝒟zw}=pie×pie(𝐆pie,1,𝐆pie,2)\mathbf{G}_{\text{pie}}\!=\!\{\mathcal{T},\mathcal{T}_{w},\mathcal{A},\mathcal{B}_{w},\mathcal{C}_{z},\mathcal{D}_{zw}\}\!=\!\mathcal{L}_{\text{pie}\times\text{pie}}(\mathbf{G}_{\text{pie},1},\!\mathbf{G}_{\text{pie},2}), where

𝒯\displaystyle\mathcal{T} =[𝒯1+𝒯1r𝒟rq𝒞q1𝒯1r𝒞r2𝒯2q𝒞q1𝒯2],𝒯w=[𝒯1w+𝒯1r𝒟rq𝒟qw𝒯2q𝒟qw],\displaystyle\!=\!\left[\!\begin{array}[]{ll}\mathcal{T}_{1}+\mathcal{T}_{1r}\mathcal{D}_{rq}\mathcal{C}_{q1}&\ \mathcal{T}_{1r}\mathcal{C}_{r2}\\ \mathcal{T}_{2q}\mathcal{C}_{q1}&\ \mathcal{T}_{2}\end{array}\!\right],\hskip 11.38092pt\mathcal{T}_{w}\!=\!\left[\!\begin{array}[]{l}\mathcal{T}_{1w}+\mathcal{T}_{1r}\mathcal{D}_{rq}\mathcal{D}_{qw}\\ \mathcal{T}_{2q}\mathcal{D}_{qw}\end{array}\!\right],
𝒜\displaystyle\mathcal{A} =[𝒜1+1r𝒟rq𝒞q11r𝒞q22q𝒞q1𝒜2],w=[1w+1r𝒟rq𝒟qw2q𝒟qw],\displaystyle\!=\!\left[\!\begin{array}[]{ll}\mathcal{A}_{1}+\mathcal{B}_{1r}\mathcal{D}_{rq}\mathcal{C}_{q1}&\ \mathcal{B}_{1r}\mathcal{C}_{q2}\\ \mathcal{B}_{2q}\mathcal{C}_{q1}&\ \mathcal{A}_{2}\end{array}\!\right],\hskip 5.69046pt\mathcal{B}_{w}\!=\!\left[\!\begin{array}[]{l}\mathcal{B}_{1w}+\mathcal{B}_{1r}\mathcal{D}_{rq}\mathcal{D}_{qw}\\ \mathcal{B}_{2q}\mathcal{D}_{qw}\end{array}\!\right],
𝒞z\displaystyle\mathcal{C}_{z} =[𝒞z1+𝒟zr𝒟rq𝒞q1𝒟zr𝒞r2],𝒟zw=𝒟zw+𝒟zr𝒟rq𝒟qw.\displaystyle\!=\!\left[\!\begin{array}[]{ll}\mathcal{C}_{z1}+\mathcal{D}_{zr}\mathcal{D}_{rq}\mathcal{C}_{q1}&\ \mathcal{D}_{zr}\mathcal{C}_{r2}\end{array}\!\right],\hskip 5.69046pt\mathcal{D}_{zw}=\mathcal{D}_{zw}+\mathcal{D}_{zr}\mathcal{D}_{rq}\mathcal{D}_{qw}.

Then, ([𝐯𝛙],𝐳)(\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right],\mathbf{z}) solves the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} with initial conditions [𝐯0𝛙0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right] and input 𝐰\mathbf{w} if and only if (𝐯,𝐳,𝐪)(\mathbf{v},\mathbf{z},\mathbf{q}) and (𝛙,𝐫)(\boldsymbol{\psi},\mathbf{r}) solve the PIEs defined by 𝐆pie,1\mathbf{G}_{\text{pie},1} and 𝐆pie,2\mathbf{G}_{\text{pie},2} with initial conditions 𝐯0\mathbf{v}_{0} and 𝛙0\boldsymbol{\psi}_{0} and inputs (𝐰,𝐫)(\mathbf{w},\mathbf{r}) and 𝐪\mathbf{q}, respectively, where

𝐪(t)\displaystyle\mathbf{q}(t) =𝒞q1𝐯(t)+𝒟qw𝐰(t),\displaystyle=\mathcal{C}_{q1}\mathbf{v}(t)+\mathcal{D}_{qw}\mathbf{w}(t), (60)
𝐫(t)\displaystyle\mathbf{r}(t) =𝒞r2𝝍(t)+𝒟rq(𝒞q1𝐯(t)+𝒟qw𝐰(t)).\displaystyle=\mathcal{C}_{r2}\boldsymbol{\psi}(t)+\mathcal{D}_{rq}\bigl{(}\mathcal{C}_{q1}\mathbf{v}(t)+\mathcal{D}_{qw}\mathbf{w}(t)\bigr{)}.
Proof 9.1.

A proof is given in Block 2.

Let inputs (𝐰,𝐫)(\mathbf{w},\mathbf{r}) and 𝐪\mathbf{q} be given, and such that (𝐯,𝐳,𝐪)(\mathbf{v},\mathbf{z},\mathbf{q}) and (ϕ,𝐫)(\boldsymbol{\phi},\mathbf{r}) solve the PIEs defined by 𝐆pie,1\mathbf{G}_{\text{pie},1} and 𝐆pie,2\mathbf{G}_{\text{pie},2} with initial conditions 𝐯0\mathbf{v}_{0} and 𝝍0\boldsymbol{\psi}_{0}, respectively. Then, [𝐯(0)𝝍(0)]=[𝐯0𝝍0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}(0)\\ \boldsymbol{\psi}(0)\end{smallmatrix}\right]=\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right], and therefore [𝐯(0)𝝍(0)]\left[\scriptsize\begin{smallmatrix}\mathbf{v}(0)\\ \boldsymbol{\psi}(0)\end{smallmatrix}\right] satisfies the initial conditions defined by [𝐯0𝝍0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]. In addition, the outputs 𝐪\mathbf{q} to 𝐆pie\mathbf{G}_{\text{pie}} and 𝐫\mathbf{r} to 𝐆pie,2\mathbf{G}_{\text{pie},2} will satisfy Eqn. (60), by definition of the PIEs defined by 𝐆pie,1\mathbf{G}_{\text{pie},1} and 𝐆pie,2\mathbf{G}_{\text{pie},2}. Finally, by definition of the operators 𝐆pie\mathbf{G}_{\text{pie}}, at any time t0t\geq 0, the signals ([𝐯𝝍],𝐳)\bigl{(}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right],\mathbf{z}\bigr{)} will satisfy

0\displaystyle 0 =[𝒯[𝐯t(t)𝝍t(t)]𝐳(t)][𝒜w𝒞z𝒟zw][[𝐯(t)𝝍(t)]𝐰(t)]\displaystyle=\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{t}(t)\\ \boldsymbol{\psi}_{t}(t)\end{smallmatrix}\right]\\ \mathbf{z}(t)\end{array}\!\!\!\right]-\left[\!\begin{array}[]{ll}\mathcal{A}&\mathcal{B}_{w}\\ \mathcal{C}_{z}&\mathcal{D}_{zw}\end{array}\!\right]\small\left[\!\!\!\begin{array}[]{r}\left[\scriptsize\begin{smallmatrix}\mathbf{v}(t)\\ \boldsymbol{\psi}(t)\end{smallmatrix}\right]\\ \mathbf{w}(t)\end{array}\!\!\!\right] (67)
=[(𝒯1+𝒯1r𝒟rq)𝐯t(t)+𝒯1r𝒞r2𝝍t(t)+(𝒯1w+𝒯1r𝒟rq𝒟qw)𝐰t(t)𝒯2q𝒞q1𝐯t(t)+𝒯2𝝍t(t)+𝒯2q𝒟qw𝐰t(t)𝐳(t)]\displaystyle=\left[\!\begin{array}[]{rcrcr}(\mathcal{T}_{1}+\mathcal{T}_{1r}\mathcal{D}_{rq})\mathbf{v}_{t}(t)&\!\!\!\!+\!\!\!\!&\mathcal{T}_{1r}\mathcal{C}_{r2}\boldsymbol{\psi}_{t}(t)&\!\!\!\!+\!\!\!\!&(\mathcal{T}_{1w}+\mathcal{T}_{1r}\mathcal{D}_{rq}\mathcal{D}_{qw})\mathbf{w}_{t}(t)\\ \mathcal{T}_{2q}\mathcal{C}_{q1}\mathbf{v}_{t}(t)&\!\!\!\!+\!\!\!\!&\mathcal{T}_{2}\boldsymbol{\psi}_{t}(t)&\!\!\!\!+\!\!\!\!&\mathcal{T}_{2q}\mathcal{D}_{qw}\mathbf{w}_{t}(t)\\ \mathbf{z}(t)\end{array}\!\right] (71)
[(𝒜1+1r𝒟rq)𝐯(t)+1r𝒞r2𝝍(t)+(1w+1r𝒟rq𝒟qw)𝐰(t)2q𝒞q1𝐯(t)+𝒜2𝝍(t)+2q𝒟qw𝐰(t)(𝒞z1+𝒟zr𝒟rq)𝐯(t)(𝒞z1+𝒟zr𝒟rq)𝐯(t)+𝒟zr𝒞r2𝝍(t)+(𝒟zw+zr𝒟rq𝒟qw)𝐰(t)]\displaystyle\hskip 56.9055pt-\left[\!\begin{array}[]{rcrcr}(\mathcal{A}_{1}+\mathcal{B}_{1r}\mathcal{D}_{rq})\mathbf{v}(t)&\!\!\!\!+\!\!\!\!&\mathcal{B}_{1r}\mathcal{C}_{r2}\boldsymbol{\psi}(t)&\!\!\!\!+\!\!\!\!&(\mathcal{B}_{1w}+\mathcal{B}_{1r}\mathcal{D}_{rq}\mathcal{D}_{qw})\mathbf{w}(t)\\ \mathcal{B}_{2q}\mathcal{C}_{q1}\mathbf{v}(t)&\!\!\!\!+\!\!\!\!&\mathcal{A}_{2}\boldsymbol{\psi}(t)&\!\!\!\!+\!\!\!\!&\mathcal{B}_{2q}\mathcal{D}_{qw}\mathbf{w}(t)\\ (\mathcal{C}_{z1}+\mathcal{D}_{zr}\mathcal{D}_{rq})\mathbf{v}(t)(\mathcal{C}_{z1}+\mathcal{D}_{zr}\mathcal{D}_{rq})\mathbf{v}(t)&\!\!\!\!+\!\!\!\!&\mathcal{D}_{zr}\mathcal{C}_{r2}\boldsymbol{\psi}(t)&\!\!\!\!+\!\!\!\!&(\mathcal{D}_{zw}+\mathcal{B}_{zr}\mathcal{D}_{rq}\mathcal{D}_{qw})\mathbf{w}(t)\end{array}\!\right] (75)
=[𝒯1𝐯t(t)+𝒯1w𝐰t(t)+𝒯1r𝐫t(t)𝒯2ϕt(t)+𝒯2q𝐪t(t)𝐳(t)][𝒜1𝐯(t)+1w𝐰(t)+1r𝐫(t)𝒜2𝝍(t)+2q𝐪(t)𝒞z1𝐯(t)+𝒟zw𝐰(t)+𝒟zr𝐫(t)].\displaystyle=\left[\!\begin{array}[]{lll}\mathcal{T}_{1}\mathbf{v}_{t}(t)~{}+\!\!\!&\mathcal{T}_{1w}\mathbf{w}_{t}(t)~{}+\!\!\!\!\!&\mathcal{T}_{1r}\mathbf{r}_{t}(t)\\ \mathcal{T}_{2}\boldsymbol{\phi}_{t}(t)~{}+\!\!\!\!\!&\mathcal{T}_{2q}\mathbf{q}_{t}(t)\\ \mathbf{z}(t)\end{array}\!\right]-\left[\!\begin{array}[]{lll}\mathcal{A}_{1}\mathbf{v}(t)~{}+\!\!\!\!\!&\mathcal{B}_{1w}\mathbf{w}(t)~{}+\!\!\!\!\!&\mathcal{B}_{1r}\mathbf{r}(t)\\ \mathcal{A}_{2}\boldsymbol{\psi}(t)~{}+\!\!\!\!\!&\mathcal{B}_{2q}\mathbf{q}(t)\\ \mathcal{C}_{z1}\mathbf{v}(t)~{}+\!\!\!\!\!&\mathcal{D}_{zw}\mathbf{w}(t)~{}+\!\!\!\!\!&\mathcal{D}_{zr}\mathbf{r}(t)\end{array}\!\right]. (82)

Hence, at any time t0t\geq 0, ([𝐯(t)𝝍(t)],𝐳(t),𝐰(t))\bigl{(}\left[\scriptsize\begin{smallmatrix}\mathbf{v}(t)\\ \boldsymbol{\psi}(t)\end{smallmatrix}\right],\mathbf{z}(t),\mathbf{w}(t)\bigr{)} satisfies the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}}. It follows that, ([𝐯𝝍],𝐳)\bigl{(}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right],\mathbf{z}\bigr{)} solves the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}}, with input 𝐰\mathbf{w}, and initial conditions [𝐯0𝝍0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right].

Conversely, let now an input 𝐰\mathbf{w} be given, and suppose that ([𝐯𝝍],𝐳)\bigl{(}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right],\mathbf{z}\bigr{)} solves the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}}, with initial conditions [𝐯0𝝍0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]. Then, 𝐯(0)=𝐯0\mathbf{v}(0)=\mathbf{v}_{0} and 𝝍(0)=𝝍0\boldsymbol{\psi}(0)=\boldsymbol{\psi}_{0}, and therefore 𝐯\mathbf{v} and 𝝍\boldsymbol{\psi} satisfy the initial conditions defined by 𝐯0\mathbf{v}_{0} and 𝝍0\boldsymbol{\psi}_{0}. Moreover, defining 𝐪\mathbf{q} and 𝐫\mathbf{r} as in (60), at any time t0t\geq 0, the identities in Eqn. (67) will be satisfied. By these identities, it follows that (𝐯(t),(𝐳(t),𝐪(t)),(𝐰(t),𝐫(t)))\bigl{(}\mathbf{v}(t),(\mathbf{z}(t),\mathbf{q}(t)),(\mathbf{w}(t),\mathbf{r}(t))\bigr{)} and (𝝍(t),𝐫(t),𝐪(t))\bigl{(}\boldsymbol{\psi}(t),\mathbf{r}(t),\mathbf{q}(t)\bigr{)} satisfy the PIEs defined by 𝐆pie,1\mathbf{G}_{\text{pie},1} and 𝐆pie,2\mathbf{G}_{\text{pie},2}. Thus, (𝐯,𝐳,𝐪)(\mathbf{v},\mathbf{z},\mathbf{q}) and (ϕ,𝐫)(\boldsymbol{\phi},\mathbf{r}) solve the PIEs defined by 𝐆pie,1\mathbf{G}_{\text{pie},1} and 𝐆pie,2\mathbf{G}_{\text{pie},2} with initial conditions 𝐯0\mathbf{v}_{0} and 𝝍0\boldsymbol{\psi}_{0}, respectively.

Block 2 Proof of Proposition 17.

10 A PIE Representation of 1D ODE-PDE Systems with Delay

In this section, we provide the main technical contribution of this paper, showing that for suitably well-posed linear 1D ODE-PDE systems, with delay in either the ODE or in the PDE, there exists an equivalent PIE representation. To reduce notational complexity, we will not explicitly derive the parameters defining this PIE representation in full detail here, instead leveraging results from earlier papers. In particular, in Subsection 10.1, we repeat the result from [13], showing that an equivalent 1D PIE representation exists for any linear ODE with constant delays. In Subsection 10.2, we then use the results from [14] to prove that, for any well-posed, linear, 1D PDE with constant delays, there exists an equivalent 2D PIE representation. Finally, in Subsection 10.3, we combine these results, proving that any well-posed, linear, ODE-PDE system with constant delay can be equivalently represented as a PIE as well.

10.1 A PIE Representation of ODEs with Delay

In [13], it was shown that a general class of linear Delay Differential Equations (DDEs) can be equivalently represented as PIEs. In this paper, we consider only a restricted subclass of such DDEs, taking the form

[u˙(t)z(t)]\displaystyle\small\left[\!\!\!\begin{array}[]{r}\dot{u}(t)\\ z(t)\end{array}\!\!\!\right] =[ABwCz0][u(t)w(t)]+j=1K[AjCz,j]u(tτj),\displaystyle=\left[\!{\small\begin{array}[]{ll}A&B_{w}\\ C_{z}&0\end{array}}\!\right]\small\left[\!\!\!\begin{array}[]{r}u(t)\\ w(t)\end{array}\!\!\!\right]+\sum_{j=1}^{K}\left[\!{\small\begin{array}[]{ll}A_{j}\\ C_{z,j}\end{array}}\!\right]u(t-\tau_{j}), (91)

where 0<τ1<<τK0<\tau_{1}<\ldots<\tau_{K} are the delays, and where u(t)nuu(t)\in\mathbb{R}^{n_{u}}, z(t)nzz(t)\in\mathbb{R}^{n_{z}} and w(t)nww(t)\in\mathbb{R}^{n_{w}} are all finite-dimensional.

Example

Consider the ODE with delay

u˙(t)\displaystyle\dot{u}(t) =u(t)+u(tτ),\displaystyle=-u(t)+u(t-\tau), (92)
z(t)\displaystyle z(t) =u(t).\displaystyle=u(t).

Defining A=1A=-1, Cz=1C_{z}=1, A1=1A_{1}=1 and Cz,1=0C_{z,1}=0, this system can be represented as in (91), letting τ1=τ\tau_{1}=\tau and nw=0n_{w}=0.

Expanding the Delays

To derive a PIE representation associated to the DDE (91), we first introduce delayed states ϕj(t,s)=u(tτjs)\boldsymbol{\phi}_{j}(t,s)=u(t-\tau_{j}s), defining an equivalent ODE-PDE representation of the system as

[u˙(t)z(t)]\displaystyle\small\left[\!\!\!\begin{array}[]{r}\dot{u}(t)\\ z(t)\end{array}\!\!\!\right] =[AAdBwCzCzd0][u(t)ϕ(t,1)w(t)]\displaystyle\!=\!\left[\!{\small\begin{array}[]{lll}A&A_{\text{d}}&B_{w}\\ C_{z}&C_{z\text{d}}&0\end{array}}\!\right]\small\left[\!\!\!\begin{array}[]{r}u(t)\\ \boldsymbol{\phi}(t,1)\\ w(t)\end{array}\!\!\!\right] (100)
tϕj(t,s)\displaystyle\partial_{t}\boldsymbol{\phi}_{j}(t,s) =1τjsϕj(t,s),ϕj(t,0)=u(t),sΩ01,j{1,,K},\displaystyle\!=\!-\frac{1}{\tau_{j}}\partial_{s}\boldsymbol{\phi}_{j}(t,s),\quad\boldsymbol{\phi}_{j}(t,0)\!=\!u(t),\hskip 2.84544pt{\small\begin{array}[]{r}s\in\Omega_{0}^{1},\\[1.79997pt] j\in\{1,\ldots,K\},\end{array}} (103)

where [AdCzd]:=[A1AKCz,1Cz,K]\small\left[\!\!\!\begin{array}[]{r}A_{\text{d}}\\ C_{z\text{d}}\end{array}\!\!\!\right]\!:=\!\left[\!{\small\begin{array}[]{lll}A_{1}\!&\!\ldots\!&\!A_{K}\\ C_{z,1}\!&\!\ldots\!&\!C_{z,K}\end{array}}\!\right] and ϕ(t,s):=[ϕ1(t,s):ϕK(t,s)]\boldsymbol{\phi}(t,s)\!:=\!\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\phi}_{1}(t,s)\\ :\\ \boldsymbol{\phi}_{K}(t,s)\end{array}\!\!\!\right]. For unuu\in\mathbb{R}^{n_{u}}, we denote the domain of the delayed states ϕj\boldsymbol{\phi}_{j} as

Yu:={ϕH1nu[Ω01]|Δs0ϕ=u}\displaystyle Y_{u}:=\left\{\boldsymbol{\phi}\in H_{1}^{n_{u}}[\Omega_{0}^{1}]\ \Bigr{\rvert}\ \Delta_{s}^{0}\boldsymbol{\phi}=u\right\}

where for 𝐯Hk[Ωacbd]\mathbf{v}\in H_{\text{k}}[\Omega_{ac}^{bd}], we denote the Dirac delta operators

[Δxa𝐯](y):=𝐯(a,y)and[Δyc𝐯](x):=𝐯(x,c).[\Delta_{x}^{a}\mathbf{v}](y):=\mathbf{v}(a,y)\quad\text{and}\quad[\Delta_{y}^{c}\mathbf{v}](x):=\mathbf{v}(x,c).

We define Y¯uK=Yu××YuK times\bar{Y}_{u}^{K}=\overbrace{Y_{u}\times\ldots\times Y_{u}}^{K\text{ times}} as the domain of the full state ϕ\boldsymbol{\phi}. Finally, collecting the delays as 𝝉=(τ1,,τK)\boldsymbol{\tau}=(\tau_{1},\ldots,\tau_{K}), and the parameters defining this system as

𝐆dde\displaystyle\mathbf{G}_{\text{dde}} =[AAdBwCzCzd0][nu×nunu×Knunu×nwnz×nunu×Knunz×nw],\displaystyle=\left[\!{\small\begin{array}[]{lll}A&A_{\text{d}}&B_{w}\\ C_{z}&C_{z\text{d}}&0\end{array}}\!\right]\!\in\!\left[\!{\small\begin{array}[]{lll}\mathbb{R}^{n_{u}\times n_{u}}&\mathbb{R}^{n_{u}\times Kn_{u}}&\mathbb{R}^{n_{u}\times n_{w}}\\ \mathbb{R}^{n_{z}\times n_{u}}&\mathbb{R}^{n_{u}\times Kn_{u}}&\mathbb{R}^{n_{z}\times n_{w}}\end{array}}\!\right],

we define solutions to the DDE as follows.

Definition 18 (Solution to the DDE).

For a given input signal ww and initial conditions (u0,ϕ0)nu×Y¯u0K(u_{0},\boldsymbol{\phi}_{0})\in\mathbb{R}^{n_{u}}\times\bar{Y}_{u_{0}}^{K}, we say that (u,ϕ,z)(u,\boldsymbol{\phi},z) is a solution to the DDE defined by {𝐆dde,𝛕}\{\mathbf{G}_{\text{dde}},\boldsymbol{\tau}\} if (u,ϕ)(u,\boldsymbol{\phi}) is Frechét differentiable, (u(0),ϕ(0))=(u0,ϕ0)(u(0),\boldsymbol{\phi}(0))=(u_{0},\boldsymbol{\phi}_{0}), and for all t0t\geq 0, (u(t),ϕ(t),z(t),w(t))\bigl{(}u(t),\boldsymbol{\phi}(t),z(t),w(t)\bigr{)} satisfies Eqn. (100).

Deriving a PIE Representation

To derive a PIE representation associated to the ODE-PDE (100), we first define a fundamental state 𝝍L2Knu[Ω01]\boldsymbol{\psi}\in L_{2}^{Kn_{u}}[\Omega_{0}^{1}] associated to the delayed states ϕ\boldsymbol{\phi}. In particular, this fundamental state must be free of the BCs ϕj(t,0)=u(t)\boldsymbol{\phi}_{j}(t,0)=u(t) imposed upon the delayed state ϕY¯uK\boldsymbol{\phi}\in\bar{Y}_{u}^{K}. To achieve this, we take the derivative of the state ϕ\boldsymbol{\phi} along Ω01\Omega_{0}^{1} as

𝝍(t,s)=sϕ(t,s).\displaystyle\boldsymbol{\psi}(t,s)=\partial_{s}\boldsymbol{\phi}(t,s).

Then, imposing the BCs, ϕ\boldsymbol{\phi} can be expressed in terms of the fundamental state 𝝍\boldsymbol{\psi} and uu using PI operators as

ϕj(s)\displaystyle\boldsymbol{\phi}_{j}(s) =ϕj(0)+0s(sϕj)(θ)𝑑θ=u+0s𝝍j(θ)𝑑θ,\displaystyle\!=\!\boldsymbol{\phi}_{j}(0)\!+\!\int_{0}^{s}\!\bigl{(}\partial_{s}\boldsymbol{\phi}_{j}\bigr{)}(\theta)d\theta=u\!+\!\!\int_{0}^{s}\!\boldsymbol{\psi}_{j}(\theta)d\theta, s\displaystyle s Ω01.\displaystyle\in\Omega_{0}^{1}.

Using this relation, an equivalent PIE representation of the ODE-PDE (100) can be easily defined, as shown in e.g. [13].

Corollary 19.

[PIE Representation of DDE] Let the linear map piedde\mathcal{L}_{\text{pie}\leftarrow\text{dde}} be as defined in Lemma 4 of [13], and let {𝒯,0,𝒜,w,𝒞z,0}=𝐆pie=piedde(𝐆dde,𝛕)\{\mathcal{T},0,\mathcal{A},\mathcal{B}_{w},\mathcal{C}_{z},0\}=\mathbf{G}_{\text{pie}}=\mathcal{L}_{\text{pie}\leftarrow\text{dde}}(\mathbf{G}_{\text{dde}},\boldsymbol{\tau}). Then, for any input ww, ([u𝛙],z)(\left[\scriptsize\begin{smallmatrix}u\\ \boldsymbol{\psi}\end{smallmatrix}\right],z) is a solution to the 1D PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} with initial conditions (u0,𝛙0)nu×L2Knu[Ω01](u_{0},\boldsymbol{\psi}_{0})\in\mathbb{R}^{n_{u}}\times L_{2}^{Kn_{u}}[\Omega_{0}^{1}] if and only if (𝒯[u𝛙],z)(\mathcal{T}\left[\scriptsize\begin{smallmatrix}u\\ \boldsymbol{\psi}\end{smallmatrix}\right],z) is a solution to the DDE defined by 𝐆dde\mathbf{G}_{\text{dde}} with initial conditions [u0ϕ0]=𝒯[u0𝛙0]\left[\scriptsize\begin{smallmatrix}u_{0}\\ \boldsymbol{\phi}_{0}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}u_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right].

Proof 10.1.

A proof is given in [13], Lemma 4.

Example

For the delayed ODE System (92), we define the delayed state ϕ(t,s):=u(tsτ)\boldsymbol{\phi}(t,s):=u(t-s\tau), and fundamental state 𝝍(t,s):=sϕ(t,s)\boldsymbol{\psi}(t,s):=\partial_{s}\boldsymbol{\phi}(t,s). Then, the ODE with delay can be equivalently represented as a PIE as

u˙(t)\displaystyle\dot{u}(t) =01𝝍(t,s)𝑑s,\displaystyle=\int_{0}^{1}\boldsymbol{\psi}(t,s)ds, u˙(t)+0s𝝍t(t,θ)𝑑θ\displaystyle\dot{u}(t)+\int_{0}^{s}\boldsymbol{\psi}_{t}(t,\theta)d\theta =1τ𝝍(t,s),\displaystyle=-\frac{1}{\tau}\boldsymbol{\psi}(t,s),
z(t)\displaystyle z(t) =u(t).\displaystyle=u(t).

10.2 A PIE Representation of 1D PDEs with Delay

Having shown that an equivalent 1D PIE representation exists for suitable ODEs with delay, in this subsection, we show that an equivalent 2D PIE representation exists for any well-posed, linear 1D PDE with delay. In particular, we consider a system of the form

[𝐮t(t)w(t)]\displaystyle\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}_{t}(t)\\ w(t)\end{array}\!\!\!\right] =[ApAbBzab[Cwp]CwbBwz][(𝒟int𝐮)(t)(Λbf𝐮)(t)z(t)]\displaystyle=\left[\!{\small\begin{array}[]{lll}A_{\text{p}}&A_{\text{b}}&B_{z}\\ \smallint_{a}^{b}[C_{w\text{p}}]&C_{w\text{b}}&B_{wz}\end{array}}\!\right]\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}\bigr{)}(t)\\ \bigl{(}\Lambda_{\text{bf}}\mathbf{u}\bigr{)}(t)\\ z(t)\end{array}\!\!\!\right] (111)
+j=1K[Ap,jAb,jBz,jab[Cwp,j]Cwb,jDwz,j][(𝒟int𝐮)(tτj)(Λbf𝐮)(tτj)z(tτj)],\displaystyle\hskip 2.84544pt+\sum_{j=1}^{K}\left[\!{\small\begin{array}[]{lll}A_{\text{p},j}&A_{\text{b},j}&B_{z,j}\\ \smallint_{a}^{b}[C_{w\text{p},j}]&C_{w\text{b},j}&D_{wz,j}\end{array}}\!\right]\!\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}\bigr{)}(t-\tau_{j})\\ \bigl{(}\Lambda_{\text{bf}}\mathbf{u}\bigr{)}(t-\tau_{j})\\ z(t-\tau_{j})\end{array}\!\!\!\right], (117)
with BCs 0=[ab[Ep]EbEz][𝒟int𝐮(t)Λbf𝐮(t)z(t)],\displaystyle\qquad 0=\left[\!{\small\begin{array}[]{lll}\smallint_{a}^{b}[E_{\text{p}}]&E_{\text{b}}&E_{z}\end{array}\!}\right]\small\left[\!\!\!\begin{array}[]{r}\mathscr{D}_{\text{int}}\mathbf{u}(t)\\ \Lambda_{\text{bf}}\mathbf{u}(t)\\ z(t)\end{array}\!\!\!\right], (122)

where the PDE state variables are distinguished based on their order of differentiability as

𝐮(t)=[𝐮1(t)𝐮2(t)𝐮3(t)][L2n1[Ωab]H1n2[Ωab]H2n3[Ωab]]=:Unp[Ωab],\displaystyle\mathbf{u}(t)=\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}_{1}(t)\\ \mathbf{u}_{2}(t)\\ \mathbf{u}_{3}(t)\end{array}\!\!\!\right]\in\small\left[\!\!\!\begin{array}[]{r}L_{2}^{n_{1}}[\Omega_{a}^{b}]\\ H_{1}^{n_{2}}[\Omega_{a}^{b}]\\ H_{2}^{n_{3}}[\Omega_{a}^{b}]\end{array}\!\!\!\right]=:U^{\text{n}_{\text{p}}}[\Omega_{a}^{b}],

for np=(n1,n2,n3)3\text{n}_{\text{p}}=(n_{1},n_{2},n_{3})\in\mathbb{N}^{3}, defining an associated differential operator 𝒟int:UnpL2nint\mathscr{D}_{\text{int}}:U^{\text{n}_{\text{p}}}\rightarrow L_{2}^{n_{\text{int}}} and boundary Dirac operator Λbf:UnpL2nbf\Lambda_{\text{bf}}:U^{\text{n}_{\text{\text{p}}}}\rightarrow L_{2}^{n_{\text{bf}}} for nint=n+1+2+n2+3n3n_{\text{int}}=n+1+2+n_{2}+3n_{3} and nbf=2(n2+2n3)n_{\text{bf}}=2(n_{2}+2n_{3}) as

𝒟int\displaystyle\mathscr{D}_{\text{int}} :=[I000I000I0x000x00x2],\displaystyle:=\begin{bmatrix}I&0&0\\ 0&I&0\\ 0&0&I\\ 0&\partial_{x}&0\\ 0&0&\partial_{x}\\ 0&0&\partial_{x}^{2}\end{bmatrix}, Λbf:=[Δxa𝒟bcΔxb𝒟bc],where𝒟bc:=[0I000I00x].\displaystyle\begin{array}[]{l}\Lambda_{\text{bf}}:=\begin{bmatrix}\Delta_{x}^{a}\mathscr{D}_{\text{bc}}\\ \Delta_{x}^{b}\mathscr{D}_{\text{bc}}\end{bmatrix},\\ \text{where}\\ \mathscr{D}_{\text{bc}}:=\begin{bmatrix}0&I&0\\ 0&0&I\\ 0&0&\partial_{x}\end{bmatrix}.\end{array}
Example

Consider a delayed reaction-diffusion PDE

𝐮t(t,x)\displaystyle\mathbf{u}_{t}(t,x) =𝐮xx(t,x)+10𝐮(t,x)3𝐮(tτ,x),\displaystyle=\mathbf{u}_{xx}(t,x)+10\mathbf{u}(t,x)-3\mathbf{u}(t-\tau,x), x\displaystyle x Ω01,\displaystyle\in\Omega_{0}^{1},
𝐮(t,0)\displaystyle\mathbf{u}(t,0) =0,𝐮(t,1)=z(t).\displaystyle=0,\qquad\mathbf{u}(t,1)=z(t). (123)

In this PDE, 𝐮(t)U(0,0,1)[Ω01]=H2[Ω01]\mathbf{u}(t)\in U^{(0,0,1)}[\Omega_{0}^{1}]=H_{2}[\Omega_{0}^{1}], and therefore 𝒟int=[Ixx2]\mathscr{D}_{\text{int}}=\small\left[\!\!\!\begin{array}[]{r}I\\ \partial_{x}\\ \partial_{x}^{2}\end{array}\!\!\!\right] and Λbf=[Δx0Δx0xΔx1Δx1x]\Lambda_{\text{bf}}=\left[\scriptsize\begin{smallmatrix}\Delta_{x}^{0}\\ \Delta_{x}^{0}\partial_{x}\\ \Delta_{x}^{1}\\ \Delta_{x}^{1}\partial_{x}\end{smallmatrix}\right]. Defining Ap:=[1010]A_{\text{p}}:=\begin{bmatrix}1&0&10\end{bmatrix}, Ap,1:=[300]A_{\text{p},1}:=\begin{bmatrix}-3&0&0\end{bmatrix}, Eb:=[10000010]E_{\text{b}}:=\left[\scriptsize\begin{smallmatrix}1&0&0&0\\ 0&0&1&0\end{smallmatrix}\right], Ez:=[01]E_{z}:=\left[\scriptsize\begin{smallmatrix}0\\ -1\end{smallmatrix}\right], and setting all other parameters equal to zero, the delayed PDE (10.2) can be represented as in (111), with τ1=τ\tau_{1}=\tau and nw=0n_{w}=0.

Expanding the Delays

To derive a PIE representation of the delayed PDE (111), we first represent the system as the interconnection of a 1D PDE

[𝐮t(t)w(t)𝐪(t)]=[ApAbBzr𝒞wpCwbDwz𝒟wrCqpCqbDqz0][(𝒟int𝐮)(t)(Λbf𝐮)(t)z(t)𝐫(t)],\displaystyle\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}_{t}(t)\\ w(t)\\ \mathbf{q}(t)\end{array}\!\!\!\right]\!=\!\left[\!{\small\begin{array}[]{llll}A_{\text{p}}&A_{\text{b}}&B_{z}&\mathcal{B}_{r}\\ \mathcal{C}_{w\text{p}}&C_{w\text{b}}&D_{wz}&\mathcal{D}_{wr}\\ C_{q\text{p}}&C_{q\text{b}}&D_{qz}&0\end{array}}\!\right]\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}\bigr{)}(t)\\ \bigl{(}\Lambda_{\text{bf}}\mathbf{u}\bigr{)}(t)\\ z(t)\\ \mathbf{r}(t)\end{array}\!\!\!\right], (134)
0=[01[Ep]EbEz][𝒟int𝐮(t)Λbf𝐮(t)z(t)],\displaystyle\ 0=\left[\!{\small\begin{array}[]{lll}\smallint_{0}^{1}[E_{\text{p}}]&E_{\text{b}}&E_{z}\end{array}\!}\right]\small\left[\!\!\!\begin{array}[]{r}\mathscr{D}_{\text{int}}\mathbf{u}(t)\\ \Lambda_{\text{bf}}\mathbf{u}(t)\\ z(t)\end{array}\!\!\!\right], (139)

with a 2D PDE,

tϕj(t,s)=(1/τj)sϕj(t,s),sΩ01,\displaystyle\partial_{t}\boldsymbol{\phi}_{j}(t,s)=-(1/\tau_{j})\ \partial_{s}\boldsymbol{\phi}_{j}(t,s),\hskip 56.9055pts\in\Omega_{0}^{1}, (140)
𝐫j(t)=[(𝒟intϕu,j)(t,1)(Λbfϕu,j)(t,1)ϕz,j(t,1)],j{1,,K},\displaystyle\mathbf{r}_{j}(t)=\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\boldsymbol{\phi}_{u,j}\bigr{)}(t,1)\\ \bigl{(}\Lambda_{\text{bf}}\boldsymbol{\phi}_{u,j}\bigr{)}(t,1)\\ \boldsymbol{\phi}_{z,j}(t,1)\end{array}\!\!\!\right],\hskip 56.9055ptj\in\{1,\ldots,K\}, (144)
ϕj(t,0)=Tq𝐪(t),0=[ab[Ep]EbEz][(𝒟intϕu,j)(t,s)(Λbfϕu,j)(t,s)ϕz,j(t,s)],\displaystyle\boldsymbol{\phi}_{j}(t,0)=T_{q}\mathbf{q}(t),\quad 0=\left[\!{\small\begin{array}[]{lll}\smallint_{a}^{b}[E_{\text{p}}]&\!E_{\text{b}}&\!E_{z}\end{array}\!}\right]\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\boldsymbol{\phi}_{u,j}\bigr{)}(t,s)\\ \bigl{(}\Lambda_{\text{bf}}\boldsymbol{\phi}_{u,j}\bigr{)}(t,s)\\ \boldsymbol{\phi}_{z,j}(t,s)\end{array}\!\!\!\right], (149)

where 𝐫=[𝐫1:𝐫K]\mathbf{r}=\small\left[\!\!\!\begin{array}[]{r}\mathbf{r}_{1}\\ :\\ \mathbf{r}_{K}\end{array}\!\!\!\right], ϕj(t,s)=[ϕu,j(t,s)ϕz,j(t,s)]=[𝐮(t+τjs)z(t+τjs)]\boldsymbol{\phi}_{j}(t,s)=\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\phi}_{u,j}(t,s)\\ \boldsymbol{\phi}_{z,j}(t,s)\end{array}\!\!\!\right]=\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}(t+\tau_{j}s)\\ z(t+\tau_{j}s)\end{array}\!\!\!\right], and where we define the new parameters such that

[r𝒟wr]=[[Ap,jAb,jBz,jab[Cwp,j]Cwb,jDwz,j]j=(1,,K)],\displaystyle\small\left[\!\!\!\begin{array}[]{r}\mathcal{B}_{r}\\ \mathcal{D}_{wr}\end{array}\!\!\!\right]=\left[\ \left[\!{\small\begin{array}[]{lll}A_{\text{p},j}&A_{\text{b},j}&B_{z,j}\\ \smallint_{a}^{b}[C_{w\text{p},j}]&C_{w\text{b},j}&D_{wz,j}\end{array}}\!\right]_{j=(1,\ldots,K)}\ \right],
𝒞wp=ab[Cwp],[CrpCrbDrz]=I(nint+nbf+nz),\displaystyle\mathcal{C}_{wp}=\smallint_{a}^{b}[C_{w\text{p}}],\qquad\begin{bmatrix}C_{r\text{p}}&C_{r\text{b}}&D_{rz}\end{bmatrix}=I_{(n_{\text{int}}+n_{\text{bf}}+n_{z})},
Tq𝐪(t)=[Tvq0Tvz][(𝒟int𝐮)(t)(Λbf𝐮)(t)z(t)]=[𝐮(t)z(t)].\displaystyle T_{q}\mathbf{q}(t)=\begin{bmatrix}T_{vq}&0&T_{vz}\end{bmatrix}\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}\bigr{)}(t)\\ \bigl{(}\Lambda_{\text{bf}}\mathbf{u})(t)\\ z(t)\end{array}\!\!\!\right]=\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}(t)\\ z(t)\end{array}\!\!\!\right].

We denote the parameters defining the PDE (134) as

𝐆pde\displaystyle\mathbf{G}_{\text{pde}} :=[ApAbBzCwpCwbDwz]\displaystyle:=\left[\!{\small\begin{array}[]{lll}A_{\text{p}}&A_{\text{b}}&B_{z}\\ C_{w\text{p}}&C_{w\text{b}}&D_{wz}\end{array}}\!\right] 𝐆pde,d\displaystyle\mathbf{G}_{\text{pde,d}} :=[r𝒟wr],\displaystyle:=\left[\!{\small\begin{array}[]{l}\mathcal{B}_{r}\\ \mathcal{D}_{wr}\end{array}}\!\right], (154)
𝐆bc\displaystyle\mathbf{G}_{\text{bc}} :={Ep,Eb,Ez}.\displaystyle:=\{E_{\text{p}},E_{\text{b}},E_{z}\}. 𝐆pdde\displaystyle\mathbf{G}_{\text{pdde}} :={𝐆pde,𝐆pde,d}.\displaystyle:=\{\mathbf{G}_{\text{pde}},\mathbf{G}_{\text{pde,d}}\}.

Given parameters 𝐆bc\mathbf{G}_{\text{bc}}, we define the domain of 𝐮\mathbf{u} as

Xznp:={𝐮Unp|[ab[Ep]EbEz][𝒟int𝐮Λbf𝐮z]=0},\displaystyle X_{z}^{\text{n}_{\text{\text{p}}}}:=\left\{\mathbf{u}\in U^{\text{n}_{\text{p}}}~{}\biggr{\rvert}~{}\left[\!{\small\begin{array}[]{lll}\smallint_{a}^{b}[E_{\text{p}}]&E_{\text{b}}&E_{z}\end{array}\!}\right]\!\small\left[\!\!\!\begin{array}[]{r}\mathscr{D}_{\text{int}}\mathbf{u}\\ \Lambda_{\text{bf}}\mathbf{u}\\ z\end{array}\!\!\!\right]\!=\!0\right\}, (159)

so that 𝐮Xz\mathbf{u}\in X_{z} only if 𝐮\mathbf{u} satisfies the BCs defined by 𝐆bc\mathbf{G}_{\text{bc}}. Similarly, for a given input 𝐪\mathbf{q}, we define the domain of the delayed states ϕj\boldsymbol{\phi}_{j} at any time as

𝐘𝐪:={\displaystyle\mathbf{Y}_{\mathbf{q}}\!:=\!\Biggl{\{} [ϕuϕz][Vnp[Ω0a1b]H1nz[Ω01]]|Δs0ϕ=Tq𝐪,\displaystyle\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\phi}_{u}\\ \boldsymbol{\phi}_{z}\end{array}\!\!\!\right]\in\small\left[\!\!\!\begin{array}[]{r}V^{\text{n}_{\text{p}}}[\Omega_{0a}^{1b}]\\ H_{1}^{n_{z}}[\Omega_{0}^{1}]\end{array}\!\!\!\right]\ \Biggr{\rvert}\ \Delta_{s}^{0}\boldsymbol{\phi}=T_{q}\mathbf{q}, (164)
0=[ab[Ep]EbEz][𝒟intϕuΛbfϕuϕz]},\displaystyle\hskip 78.24507pt0=\left[\!{\small\begin{array}[]{lll}\smallint_{a}^{b}[E_{\text{p}}]&\!E_{\text{b}}&E_{z}\end{array}\!}\right]\small\left[\!\!\!\begin{array}[]{r}\mathscr{D}_{\text{int}}\boldsymbol{\phi}_{u}\\ \Lambda_{\text{bf}}\boldsymbol{\phi}_{u}\\ \boldsymbol{\phi}_{z}\end{array}\!\!\!\right]\Biggr{\}}, (169)

where the components of ϕu,j(t,s)=𝐮(tτjs)\boldsymbol{\phi}_{u,j}(t,s)=\mathbf{u}(t-\tau_{j}s) are distinguished based on their order of differentiability as

ϕu,j=[ϕ1,jϕ2,jϕ3,j][H(0,1)[Ω0a1b]H(1,1)[Ω0a1b]H(2,1)[Ωa0b1]]=:Vnp[Ω0a1b].\displaystyle\boldsymbol{\phi}_{u,j}=\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\phi}_{1,j}\\ \boldsymbol{\phi}_{2,j}\\ \boldsymbol{\phi}_{3,j}\end{array}\!\!\!\right]\in\small\left[\!\!\!\begin{array}[]{r}H_{(0,1)}[\Omega_{0a}^{1b}]\\ H_{(1,1)}[\Omega_{0a}^{1b}]\\ H_{(2,1)}[\Omega_{a0}^{b1}]\end{array}\!\!\!\right]=:V^{\text{n}_{\text{p}}}[\Omega_{0a}^{1b}].

For the full state ϕ:=(ϕ1,,ϕK)\boldsymbol{\phi}:=(\boldsymbol{\phi}_{1},\ldots,\boldsymbol{\phi}_{K}), we define the domain 𝐘¯𝐪K=𝐘𝐪××𝐘𝐪\bar{\mathbf{Y}}_{\mathbf{q}}^{K}=\mathbf{Y}_{\mathbf{q}}\times\ldots\times\mathbf{Y}_{\mathbf{q}}.

Definition 20 (Solution to the DPDE).

For a given input zz and given initial conditions (𝐮0,ϕ0)Xnp×𝐘¯𝐪0K(\mathbf{u}_{0},\boldsymbol{\phi}_{0})\in X^{\text{n}_{\text{p}}}\times\bar{\mathbf{Y}}_{\mathbf{q}_{0}}^{K} with 𝐪0=[(𝒟int𝐮0)(t)(Λbf𝐮0)(t)z(0)]\mathbf{q}_{0}=\left[\scriptsize\begin{smallmatrix}(\mathscr{D}_{\text{int}}\mathbf{u}_{0})(t)\\ (\Lambda_{\text{bf}}\mathbf{u}_{0})(t)\\ z(0)\end{smallmatrix}\right], we say that ((𝐮,ϕ),w)((\mathbf{u},\boldsymbol{\phi}),w) is a solution to the delayed PDE defined by {𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\} if (𝐮,ϕ)(\mathbf{u},\boldsymbol{\phi}) is Frechét differentiable, (𝐮(0),ϕ(0))=(𝐮0,ϕ0)(\mathbf{u}(0),\boldsymbol{\phi}(0))=(\mathbf{u}_{0},\boldsymbol{\phi}_{0}), and there exist (𝐪,𝐫)(\mathbf{q},\mathbf{r}) such that (𝐮(t),ϕ(t),w(t),z(t),𝐪(t),𝐫(t))\bigl{(}\mathbf{u}(t),\boldsymbol{\phi}(t),w(t),z(t),\mathbf{q}(t),\mathbf{r}(t)\bigr{)} satisfies Eqns. (134) and (140) for all t0t\geq 0.

Deriving a PIE Representation

To show that the system defined by the 1D PDE (134) coupled to the 2D PDE (140) can be equivalently represented as a PIE, we first show that each individual system can be represented as a PIE. Consider first the PDE (134). To define the fundamental state associated to this PDE, we use a differential operator 𝒟:XnpL2np\mathscr{D}:X^{\text{n}_{\text{\text{p}}}}\rightarrow L_{2}^{\|\text{n}_{\text{\text{p}}}\|}, where np=n1+n2+n3\|\text{n}_{\text{\text{p}}}\|=n_{1}+n_{2}+n_{3} for np=(n1,n2,n3)3\text{n}_{\text{\text{p}}}=(n_{1},n_{2},n_{3})\in\mathbb{N}^{3}. In particular, we define

𝐯=[𝐯1𝐯2𝐯3]=[In1xx2]𝒟[𝐮1𝐮2𝐮3]=𝒟𝐮.\displaystyle\mathbf{v}=\small\left[\!\!\!\begin{array}[]{r}\mathbf{v}_{1}\\ \mathbf{v}_{2}\\ \mathbf{v}_{3}\end{array}\!\!\!\right]=\underbrace{\left[\!{\small\begin{array}[]{lll}I_{n_{1}}\\ &\partial_{x}\\ &&\partial_{x}^{2}\end{array}}\!\right]}_{\mathscr{D}}\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}_{1}\\ \mathbf{u}_{2}\\ \mathbf{u}_{3}\end{array}\!\!\!\right]=\mathscr{D}\mathbf{u}. (179)

Then, if the BCs defined by 𝐆bc\mathbf{G}_{\text{bc}} are well-posed, by Theorem 10 in [14], there exist PI operators 𝒯\mathcal{T} and 𝒯z\mathcal{T}_{z} such that 𝐮(t)=𝒯𝐯(t)+𝒯z𝐳(t)Xznp\mathbf{u}(t)=\mathcal{T}\mathbf{v}(t)+\mathcal{T}_{z}\mathbf{z}(t)\in X_{z}^{\text{n}_{\text{p}}} for any 𝐯L2np\mathbf{v}\in L_{2}^{\|\text{n}_{\text{p}}\|}. Using this relation, we can define a PIE representation of the PDE (134) for arbitrary inputs 𝐫\mathbf{r}.

Lemma 21 (PIE Representation of 1D PDE).

Let parameters {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\} be as in (154), and such that 𝐆bc\mathbf{G}_{\text{bc}} defines a well-posed set of BCs. Let 𝐆pie,0={𝒯,𝒯z,𝒜,z,𝒞w,𝒟wz}\mathbf{G}_{\text{pie},0}\!=\!\{\mathcal{T},\mathcal{T}_{z},\mathcal{A},\mathcal{B}_{z},\mathcal{C}_{w},\mathcal{D}_{wz}\!\} define the PIE associated to the PDE {𝐆pde,𝐆bc}\{\mathbf{G}_{\text{pde}},\mathbf{G}_{\text{bc}}\} without delay (nq=nr=0n_{q}=n_{r}=0), as defined in Thm. 12 of [14]. Define

𝐆pie\displaystyle\mathbf{G}_{\text{pie}} =[𝒯𝒯z0𝒜zr𝒞w𝒟wz𝒟wr𝒞q𝒟qz0],\displaystyle\!=\!\left[\!{\small\begin{array}[]{lll}\mathcal{T}&\mathcal{T}_{z}&0\\ \mathcal{A}&\mathcal{B}_{z}&\mathcal{B}_{r}\\ \mathcal{C}_{w}&\mathcal{D}_{wz}&\mathcal{D}_{wr}\\ \mathcal{C}_{q}&\mathcal{D}_{qz}&0\end{array}}\!\right], 𝒞q=Cqp𝒯int+Cqb𝒯bf,𝒟qz=Dqz+Cqp𝒯int,z+Cqb𝒯bf,w,\displaystyle{\small\begin{array}[]{l}\mathcal{C}_{q}=C_{q\text{p}}\mathcal{T}_{\text{int}}+C_{q\text{b}}\mathcal{T}_{\text{bf}},\\[4.5pt] \mathcal{D}_{qz}=D_{qz}+C_{q\text{p}}\mathcal{T}_{\text{int},z}\\[2.25pt] \hskip 49.79231pt+\ C_{q\text{b}}\mathcal{T}_{\text{bf},w},\end{array}}

where [r𝒟wr]=𝐆pde,d\small\left[\!\!\!\begin{array}[]{r}\mathcal{B}_{r}\\ \mathcal{D}_{wr}\end{array}\!\!\!\right]=\mathbf{G}_{\text{pde,d}},   [CrpCrbDrz]=Inq\begin{bmatrix}C_{r\text{p}}&C_{r\text{b}}&D_{rz}\end{bmatrix}=I_{n_{q}}, and

𝒯int\displaystyle\mathcal{T}_{\text{int}} =𝒟int𝒯,\displaystyle=\mathscr{D}_{\text{int}}\circ\mathcal{T}, 𝒯bf\displaystyle\mathcal{T}_{\text{bf}} =Λbf𝒯,\displaystyle=\Lambda_{\text{bf}}\circ\mathcal{T},
𝒯int,z\displaystyle\mathcal{T}_{\text{int},z} =𝒟int𝒯z,\displaystyle=\mathscr{D}_{\text{int}}\circ\mathcal{T}_{z}, 𝒯bf,z\displaystyle\mathcal{T}_{\text{bf},z} =Λbf𝒯z,\displaystyle=\Lambda_{\text{bf}}\circ\mathcal{T}_{z}, (180)

Then, (𝐯,w,𝐪)(\mathbf{v},w,\mathbf{q}) is a solution to the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} with inputs (z,𝐫)(z,\mathbf{r}) and initial conditions 𝐯0L2np[Ωab]\mathbf{v}_{0}\in L_{2}^{\|\text{n}_{\text{p}}\|}[\Omega_{a}^{b}] if and only if (𝐮,w,𝐪)(\mathbf{u},w,\mathbf{q}) with 𝐮=𝒯𝐯+𝒯zz\mathbf{u}=\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z is a solution to the PDE (134) defined by {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\} with inputs (z,𝐫)(z,\mathbf{r}) and initial conditions 𝐮0=𝒯𝐯0+𝒯zzXz(0)np\mathbf{u}_{0}=\mathcal{T}\mathbf{v}_{0}+\mathcal{T}_{z}z\in X_{z(0)}^{\text{n}_{\text{p}}}.

Proof 10.2.

Defining 𝐆pie,0\mathbf{G}_{\text{pie},0} as in Thm. 12 of [14], (𝐯,w)(\mathbf{v},w) is a solution to the PIE defined by 𝐆pie,0\mathbf{G}_{\text{pie},0} with initial conditions 𝐯0\mathbf{v}_{0} if and only if (𝐮,z)(\mathbf{u},z) with 𝐮=𝒯𝐯+𝒯zz\mathbf{u}=\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z is a solution to the PDE defined by {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\} with nq=nr=0n_{q}=n_{r}=0 and with initial conditions 𝐮0=𝒯𝐯0\mathbf{u}_{0}=\mathcal{T}\mathbf{v}_{0}. Since the BCs in the PDE defined by {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\} do not depend on the input signal 𝐫\mathbf{r}, it follows that for any 𝐯L2np[Ωab]\mathbf{v}\in L_{2}^{\|\text{n}_{\text{p}}\|}[\Omega_{a}^{b}], 𝐮=𝒯𝐯+𝒯zzXznp\mathbf{u}=\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z\in X_{z}^{\text{n}_{\text{p}}} also satisfies the BCs of the PDE defined by {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\} with nr,nq0n_{r},n_{q}\neq 0. Moreover, 𝐯\mathbf{v} satisfies the initial conditions defined by 𝐯0\mathbf{v}_{0} if and only if 𝐮\mathbf{u} satisfies the initial conditions defined by 𝐮0\mathbf{u}_{0}.

Now, let 𝐯L2np\mathbf{v}\in L_{2}^{\|\text{n}_{\text{p}}\|} be arbitrary, and let 𝐮=𝒯𝐯+𝒯zzXznp\mathbf{u}=\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z\in X_{z}^{\text{n}_{\text{p}}}. Since 𝐯\mathbf{v} is a solution to the PIE defined by 𝐆pie,0\mathbf{G}_{\text{pie},0} if and only if 𝐮\mathbf{u} is a solution to the PDE defined by {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\}, it follows that, for any t0t\geq 0,

[𝐮t(t)w(t)][ApAbBzCwpCwbDwz][(𝒟int𝐮)(t)(Λbf𝐮)(t)z(t)][r𝒟wr]𝐫(t)\displaystyle\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}_{t}(t)\\ w(t)\end{array}\!\!\!\right]-\left[\!\!{\small\begin{array}[]{lll}A_{\text{p}}&A_{\text{b}}&B_{z}\\ C_{w\text{p}}&C_{w\text{b}}&D_{wz}\end{array}}\!\!\right]\!\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}\bigr{)}(t)\\ \bigl{(}\Lambda_{\text{bf}}\mathbf{u}\bigr{)}(t)\\ z(t)\end{array}\!\!\!\right]-\small\left[\!\!\!\begin{array}[]{r}\mathcal{B}_{r}\\ \mathcal{D}_{wr}\end{array}\!\!\!\right]\mathbf{r}(t)
=[𝒯𝐯t(t)+𝒯zz˙(t)w(t)][𝒜zr𝒞w𝒟wz𝒟wr][𝐯(t)z(t)𝐫(t)]\displaystyle\hskip 35.56593pt=\!\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\mathbf{v}_{t}(t)+\mathcal{T}_{z}\dot{z}(t)\\ w(t)\end{array}\!\!\!\right]-\left[\!{\small\begin{array}[]{lll}\mathcal{A}&\mathcal{B}_{z}&\mathcal{B}_{r}\\ \mathcal{C}_{w}&\mathcal{D}_{wz}&\mathcal{D}_{wr}\end{array}}\!\right]\small\left[\!\!\!\begin{array}[]{r}\mathbf{v}(t)\\ z(t)\\ \mathbf{r}(t)\end{array}\!\!\!\right]

Similarly, applying the definition of the operators 𝒞q\mathcal{C}_{q},

𝐪(t)Cqp(𝒟int𝐮)(t)Cqb(Λbf𝐮)(t)Dqzz(t)\displaystyle\mathbf{q}(t)-C_{q\text{p}}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}\bigr{)}(t)-C_{q\text{b}}\bigl{(}\Lambda_{\text{bf}}\mathbf{u}\bigr{)}(t)-D_{qz}z(t)
=𝐪(t)Cqp(𝒟int[𝒯𝐯+𝒯zz])(t)\displaystyle=\mathbf{q}(t)-C_{q\text{p}}\bigl{(}\mathscr{D}_{\text{int}}[\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z]\bigr{)}(t)
Cqb(Λbf[𝒯𝐯+𝒯zz])(t)Dqzz(t)\displaystyle\qquad\qquad-C_{q\text{b}}\bigl{(}\Lambda_{\text{bf}}[\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z]\bigr{)}(t)-D_{qz}z(t)
=𝐪(t)𝒞q𝐯(t)𝒟qzz(t).\displaystyle\hskip 120.92421pt=\mathbf{q}(t)-\mathcal{C}_{q}\mathbf{v}(t)-\mathcal{D}_{qz}z(t).

It follows that, (𝐯,w,𝐪)(\mathbf{v},w,\mathbf{q}) satisfies the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} if and only if (𝒯𝐯+𝒯zz,𝐪)(\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z,\mathbf{q}) satisfies the PDE (134) defined by {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\}.

Example

For the PDE with delay defined by (10.2), the fundamental state is given by 𝐯(t,x)=x2𝐮(t,x)\mathbf{v}(t,x)=\partial_{x}^{2}\mathbf{u}(t,x). Defining

(𝒯𝐯)(t,x)=axθ(x1)𝐯(t,θ)𝑑θ+xbx(θ1)𝐯(t,θ)𝑑θ,\displaystyle\bigl{(}\!\mathcal{T}\mathbf{v}\bigr{)}(t,x)\!=\!\!\int_{a}^{x}\!\!\!\theta(x\!-\!1)\mathbf{v}(t,\theta)d\theta\!+\!\!\int_{x}^{b}\!\!\!x(\theta\!-\!1)\mathbf{v}(t,\theta)d\theta, (181)

and (𝒯zz)(t,x)=xz(t)(\mathcal{T}_{z}z)(t,x)=xz(t), we can retrieve the PDE state as 𝐮(t)=(𝒯𝐯)(t)+(𝒯zz)(t)\mathbf{u}(t)=(\mathcal{T}\mathbf{v})(t)+(\mathcal{T}_{z}z)(t). Defining ϕu(t,s)=𝐮(tτs)\boldsymbol{\phi}_{u}(t,s)=\mathbf{u}(t-\tau s), the PDE (10.2) can then be equivalently represented as

𝒯zz˙(t)+𝒯𝐯t(t)\displaystyle\mathcal{T}_{z}\dot{z}(t)+\mathcal{T}\mathbf{v}_{t}(t) =𝐯(t)+10𝒯zz(t)+10𝒯𝐯(t)3ϕu(t,1).\displaystyle=\mathbf{v}(t)+10\mathcal{T}_{z}z(t)+10\mathcal{T}\mathbf{v}(t)-3\boldsymbol{\phi}_{u}(t,1).

Having shown that the PDE (134) can be equivalently represented as a PIE, we now show that the PDE (140) can also be equivalently represented as a PIE. For this, we define the fundamental state associated to the states ϕj\boldsymbol{\phi}_{j} as

𝝍j=[𝝍u,j𝝍z,j]=[s𝒟s]𝒟¯v[ϕu,jϕz,j]=𝒟¯vϕj,\displaystyle\boldsymbol{\psi}_{j}=\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\psi}_{u,j}\\ \boldsymbol{\psi}_{z,j}\end{array}\!\!\!\right]=\underbrace{\left[\!{\small\begin{array}[]{ll}\partial_{s}\circ\mathscr{D}\\ &\partial_{s}\end{array}}\!\right]}_{\bar{\mathscr{D}}_{v}}\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\phi}_{u,j}\\ \boldsymbol{\phi}_{z,j}\end{array}\!\!\!\right]=\bar{\mathscr{D}}_{v}\boldsymbol{\phi}_{j}, (188)

where 𝒟\mathscr{D} is as defined in (179), so that 𝐯=𝒟𝐮\mathbf{v}=\mathscr{D}\mathbf{u} is the fundamental state associated to 𝐮Xz\mathbf{u}\in X_{z}. Since the BCs imposed upon the states ϕj\boldsymbol{\phi}_{j} are defined by the same 𝐆bc\mathbf{G}_{\text{bc}} as the BCs imposed upon 𝐮\mathbf{u}, the same PI operators 𝒯\mathcal{T} and 𝒯z\mathcal{T}_{z} can also be used to derive the PIE representation of the PDE (140), as we prove in the following Lemma.

Lemma 22.

Let 𝐆bc\mathbf{G}_{\text{bc}} define a well-posed set of boundary conditions, and let operators {𝒯,𝒯z}\{\mathcal{T},\mathcal{T}_{z}\} be as defined Lemma 21. For 𝛙j=[𝛙u,j𝛙z,j]\boldsymbol{\psi}_{j}=\left[\scriptsize\begin{smallmatrix}\boldsymbol{\psi}_{u,j}\\ \boldsymbol{\psi}_{z,j}\end{smallmatrix}\right], define the 2D PI operators

(𝒯¯v,j𝝍j)(t,s)\displaystyle\bigl{(}\bar{\mathcal{T}}_{v,j}\boldsymbol{\psi}_{j}\bigr{)}(t,s) =0s[𝒯𝝍u,j(t,θ)+𝒯z𝝍z,j(t,θ)𝝍z,j(t,θ)]𝑑θ,sΩ01,\displaystyle=\!\int_{0}^{s}\!\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\boldsymbol{\psi}_{u,j}(t,\theta)+\mathcal{T}_{z}\boldsymbol{\psi}_{z,j}(t,\theta)\\ \boldsymbol{\psi}_{z,j}(t,\theta)\end{array}\!\!\!\right]d\theta,\quad s\in\Omega_{0}^{1},
(𝒜¯v,j𝝍j)(t,s)\displaystyle\bigl{(}\bar{\mathcal{A}}_{v,j}\boldsymbol{\psi}_{j}\bigr{)}(t,s) =1τj[𝒯𝝍u,j(t,s)+𝒯z𝝍z,j(t,s)𝝍z,j(t,s)],\displaystyle=-\frac{1}{\tau_{j}}\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\boldsymbol{\psi}_{u,j}(t,s)+\mathcal{T}_{z}\boldsymbol{\psi}_{z,j}(t,s)\\ \boldsymbol{\psi}_{z,j}(t,s)\end{array}\!\!\!\right],
(𝒞¯r,j𝝍j)(t)\displaystyle\bigl{(}\bar{\mathcal{C}}_{r,j}\boldsymbol{\psi}_{j}\bigr{)}(t) =01[𝒯int𝝍u,j(t,s)+𝒯int,z𝝍z,j(t,s)𝒯bf𝝍u,j(t,s)+𝒯bf,z𝝍z,j(t,s)𝝍z,j(t,s)]𝑑s,\displaystyle=\!\int_{0}^{1}\!\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}_{\text{int}}\boldsymbol{\psi}_{u,j}(t,s)+\mathcal{T}_{\text{int},z}\boldsymbol{\psi}_{z,j}(t,s)\\ \mathcal{T}_{\text{bf}}\boldsymbol{\psi}_{u,j}(t,s)+\mathcal{T}_{\text{bf},z}\boldsymbol{\psi}_{z,j}(t,s)\\ \boldsymbol{\psi}_{z,j}(t,s)\end{array}\!\!\!\right]ds,

where 𝒯int\mathcal{T}_{\text{int}}, 𝒯int,z\mathcal{T}_{\text{int},z}, 𝒯bf\mathcal{T}_{\text{bf}}, and 𝒯bf,z\mathcal{T}_{\text{bf},z} are as defined in (21). Then, for a given input 𝐪=[𝒟int𝐪u(t)Λbf𝐪u(t)𝐪z(t)]\mathbf{q}=\left[\scriptsize\begin{smallmatrix}\mathscr{D}_{\text{int}}\mathbf{q}_{u}(t)\\ \Lambda_{\text{bf}}\mathbf{q}_{u}(t)\\ \mathbf{q}_{z}(t)\end{smallmatrix}\right], (𝛙j,𝐫j)(\boldsymbol{\psi}_{j},\mathbf{r}_{j}) is a solution to the PIE defined by 𝐆pie={𝒯¯v,j,Tq,𝒜¯v,j,0,𝒞¯r,j,Inq}\mathbf{G}_{\text{pie}}=\{\bar{\mathcal{T}}_{v,j},T_{q},\bar{\mathcal{A}}_{v,j},0,\bar{\mathcal{C}}_{r,j},I_{n_{q}}\} with initial conditions 𝛙0,jL2np+nz\boldsymbol{\psi}_{0,j}\in L_{2}^{\|\text{n}_{\text{\text{p}}}\|+n_{z}} if and only if (ϕj,𝐫j)(\boldsymbol{\phi}_{j},\mathbf{r}_{j}) with ϕj=𝒯¯v,j𝛙j+Tq𝐪\boldsymbol{\phi}_{j}=\bar{\mathcal{T}}_{v,j}\boldsymbol{\psi}_{j}+T_{q}\mathbf{q} is a solution to the jjth PDE (140) with initial conditions ϕ0,j=𝒯¯v,j𝛙0,j+Tq𝐪(0)𝐘𝐪(0)\boldsymbol{\phi}_{0,j}=\bar{\mathcal{T}}_{v,j}\boldsymbol{\psi}_{0,j}+T_{q}\mathbf{q}(0)\in\mathbf{Y}_{\mathbf{q}(0)}.

Proof 10.3.

Since 𝐆bc\mathbf{G}_{\text{bc}} is the same as in Lemma 21, letting {𝒯,𝒯z}\{\mathcal{T},\mathcal{T}_{z}\} be as in Lemma 21 as well, each ϕj(t,s)\boldsymbol{\phi}_{j}(t,s) must satisfy

ϕu,j(s)\displaystyle\boldsymbol{\phi}_{u,j}(s) =𝒯𝒟ϕu,j(s)+𝒯zϕz,j,\displaystyle=\mathcal{T}\mathscr{D}\boldsymbol{\phi}_{u,j}(s)+\mathcal{T}_{z}\boldsymbol{\phi}_{z,j}, s\displaystyle s Ω01.\displaystyle\in\Omega_{0}^{1}.

By the fundamental theorem of calculus, it follows that

ϕj(s)\displaystyle\boldsymbol{\phi}_{j}(s) =ϕj(0)+0s[(s𝒯𝒟ϕu,j)(θ)+(s𝒯zϕz,j)(θ)(sϕz,j)(θ)]𝑑θ\displaystyle=\boldsymbol{\phi}_{j}(0)+\int_{0}^{s}\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\partial_{s}\mathcal{T}\mathscr{D}\boldsymbol{\phi}_{u,j}\bigr{)}(\theta)+\bigl{(}\partial_{s}\mathcal{T}_{z}\boldsymbol{\phi}_{z,j}\bigr{)}(\theta)\\ \bigl{(}\partial_{s}\boldsymbol{\phi}_{z,j}\bigr{)}(\theta)\end{array}\!\!\!\right]d\theta
=Tq𝐪+0s[(𝒯𝝍u,j)(θ)+(𝒯z𝝍z,j)(θ)𝝍z,j(θ)]𝑑θ,\displaystyle=T_{q}\mathbf{q}+\int_{0}^{s}\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathcal{T}\boldsymbol{\psi}_{u,j}\bigr{)}(\theta)+\bigl{(}\mathcal{T}_{z}\boldsymbol{\psi}_{z,j}\bigr{)}(\theta)\\ \boldsymbol{\psi}_{z,j}(\theta)\end{array}\!\!\!\right]d\theta,

where 𝛙j=𝒟¯vϕj\boldsymbol{\psi}_{j}=\bar{\mathscr{D}}_{v}\boldsymbol{\phi}_{j} is as in (188). Hence, for any 𝛙j(t)L2np+nz\boldsymbol{\psi}_{j}(t)\in L_{2}^{\|\text{n}_{\text{\text{p}}}\|+n_{z}}, ϕj=𝒯¯v,j𝛙j(t)+Tq𝐪(t)𝐘𝐪(t)\boldsymbol{\phi}_{j}=\bar{\mathcal{T}}_{v,j}\boldsymbol{\psi}_{j}(t)+T_{q}\mathbf{q}(t)\in\mathbf{Y}_{\mathbf{q}(t)} will satisfy the BCs defined by 𝐆bc\mathbf{G}_{\text{bc}}.

Let now (𝛙j,𝐫j)(\boldsymbol{\psi}_{j},\mathbf{r}_{j}) be a solution to the PIE defined by 𝐆pie={𝒯¯v,j,Tq,𝒜¯v,j,0,𝒞¯r,j,Inq}\mathbf{G}_{\text{pie}}=\{\bar{\mathcal{T}}_{v,j},T_{q},\bar{\mathcal{A}}_{v,j},0,\bar{\mathcal{C}}_{r,j},I_{n_{q}}\} with initial conditions 𝛙0,jL2np+nz\boldsymbol{\psi}_{0,j}\in L_{2}^{\|\text{n}_{\text{\text{p}}}\|+n_{z}} and input 𝐪=[𝒟int𝐪u(t)Λbf𝐪u(t)𝐪z(t)]\mathbf{q}=\left[\scriptsize\begin{smallmatrix}\mathscr{D}_{\text{int}}\mathbf{q}_{u}(t)\\ \Lambda_{\text{bf}}\mathbf{q}_{u}(t)\\ \mathbf{q}_{z}(t)\end{smallmatrix}\right]. Then

tϕj(t,s)\displaystyle\partial_{t}\boldsymbol{\phi}_{j}(t,s) =(t𝒯¯v,j𝝍j)(t,s)+Tq𝐪t(t)\displaystyle=\bigl{(}\partial_{t}\bar{\mathcal{T}}_{v,j}\boldsymbol{\psi}_{j}\bigr{)}(t,s)+T_{q}\mathbf{q}_{t}(t)
=(𝒜¯v,j𝝍j)(t,s)\displaystyle=\bigl{(}\bar{\mathcal{A}}_{v,j}\boldsymbol{\psi}_{j}\bigr{)}(t,s)
=1τj[𝒯𝝍u,j(t,s)+𝒯z𝝍z,j(t,s)𝝍z,j(t,s)]\displaystyle=-\frac{1}{\tau_{j}}\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\boldsymbol{\psi}_{u,j}(t,s)+\mathcal{T}_{z}\boldsymbol{\psi}_{z,j}(t,s)\\ \boldsymbol{\psi}_{z,j}(t,s)\end{array}\!\!\!\right]
=1τj[sϕu,j(t,s)sϕz,j(t,s)]=(1/τj)sϕj(t,s),\displaystyle=-\frac{1}{\tau_{j}}\small\left[\!\!\!\begin{array}[]{r}\partial_{s}\boldsymbol{\phi}_{u,j}(t,s)\\ \partial_{s}\boldsymbol{\phi}_{z,j}(t,s)\end{array}\!\!\!\right]=-(1/\tau_{j})~{}\partial_{s}\boldsymbol{\phi}_{j}(t,s),

and

𝐫j(t)=(𝒞¯r,j𝝍j)(t)+𝐪(t)\displaystyle\mathbf{r}_{j}(t)=\bigl{(}\bar{\mathcal{C}}_{r,j}\boldsymbol{\psi}_{j}\bigr{)}(t)+\mathbf{q}(t)
=01[𝒯int𝝍u,j(t,s)+𝒯int,z𝝍z,j(t,s)𝒯bf𝝍u,j(t,s)+𝒯bf,z𝝍z,j(t,s)𝝍z,j(t,s)]𝑑s+[𝒟int𝐪u(t)Λbf𝐪u(t)𝐪z(t)]\displaystyle=\!\int_{0}^{1}\!\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}_{\text{int}}\boldsymbol{\psi}_{u,j}(t,s)+\mathcal{T}_{\text{int},z}\boldsymbol{\psi}_{z,j}(t,s)\\ \mathcal{T}_{\text{bf}}\boldsymbol{\psi}_{u,j}(t,s)+\mathcal{T}_{\text{bf},z}\boldsymbol{\psi}_{z,j}(t,s)\\ \boldsymbol{\psi}_{z,j}(t,s)\end{array}\!\!\!\right]ds+\small\left[\!\!\!\begin{array}[]{r}\mathscr{D}_{\text{int}}\mathbf{q}_{u}(t)\\ \Lambda_{\text{bf}}\mathbf{q}_{u}(t)\\ \mathbf{q}_{z}(t)\end{array}\!\!\!\right]
=01[𝒟int(𝒯𝝍u,j+𝒯z𝝍z,j)(t,s)Λbf(𝒯𝝍u,j+𝒯z𝝍z,j)(t,s)𝝍z,j(t,s)]𝑑s+[(𝒟intϕu,j)(0)(Λbfϕu,j)(0)ϕz,j(0)]\displaystyle=\!\int_{0}^{1}\!\small\left[\!\!\!\begin{array}[]{r}\mathscr{D}_{\text{int}}(\mathcal{T}\boldsymbol{\psi}_{u,j}+\mathcal{T}_{z}\boldsymbol{\psi}_{z,j})(t,s)\\ \Lambda_{\text{bf}}(\mathcal{T}\boldsymbol{\psi}_{u,j}+\mathcal{T}_{z}\boldsymbol{\psi}_{z,j})(t,s)\\ \boldsymbol{\psi}_{z,j}(t,s)\end{array}\!\!\!\right]ds+\small\left[\!\!\!\begin{array}[]{r}(\mathscr{D}_{\text{int}}\boldsymbol{\phi}_{u,j})(0)\\ (\Lambda_{\text{bf}}\boldsymbol{\phi}_{u,j})(0)\\ \boldsymbol{\phi}_{z,j}(0)\end{array}\!\!\!\right]
=01[(𝒟intsϕu,j)(t,s)(Λbfsϕu,j)(t,s)s𝝍z,j(t,s)]𝑑s+[(𝒟intϕu,j)(0)(Λbfϕu,j)(0)ϕz,j(0)]=[(𝒟intϕu,j)(t,1)(Λbfϕu,j)(t,1)ϕz,j(t,1)],\displaystyle=\!\int_{0}^{1}\!\small\left[\!\!\!\begin{array}[]{r}(\mathscr{D}_{\text{int}}\partial_{s}\boldsymbol{\phi}_{u,j})(t,s)\\ (\Lambda_{\text{bf}}\partial_{s}\boldsymbol{\phi}_{u,j})(t,s)\\ \partial_{s}\boldsymbol{\psi}_{z,j}(t,s)\end{array}\!\!\!\right]ds\!+\!\small\left[\!\!\!\begin{array}[]{r}(\mathscr{D}_{\text{int}}\boldsymbol{\phi}_{u,j})(0)\\ (\Lambda_{\text{bf}}\boldsymbol{\phi}_{u,j})(0)\\ \boldsymbol{\phi}_{z,j}(0)\end{array}\!\!\!\right]=\!\small\left[\!\!\!\begin{array}[]{r}(\mathscr{D}_{\text{int}}\boldsymbol{\phi}_{u,j})(t,1)\\ (\Lambda_{\text{bf}}\boldsymbol{\phi}_{u,j})(t,1)\\ \boldsymbol{\phi}_{z,j}(t,1)\end{array}\!\!\!\right],

proving that (ϕj,𝐫)(\boldsymbol{\phi}_{j},\mathbf{r}) satisfies the jjth PDE (140). Using a similar derivation, it also follows that for any solution (ϕj,𝐫)(\boldsymbol{\phi}_{j},\mathbf{r}) to the jjth PDE, with (𝒯¯v,j𝛙j)(t,s)+Tq𝐪(t)\bigl{(}\bar{\mathcal{T}}_{v,j}\boldsymbol{\psi}_{j}\bigr{)}(t,s)+T_{q}\mathbf{q}(t), (𝛙j,𝐫)(\boldsymbol{\psi}_{j},\mathbf{r}) is also a solution to the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}}.

Having shown that both the PDE (134) and the PDE (140) can be equivalently represented as PIEs, we now take the feedback interconnection of these systems to obtain a PIE representation of the delayed PDE.

Corollary 23.

[PIE Representation of DPDE] Let 𝐆pdde\mathbf{G}_{\text{pdde}} and 𝐆bc\mathbf{G}_{\text{bc}} as in (154) define a well-posed system of PDEs as in (134) and (140). Let 𝐆pie,1\mathbf{G}_{\text{pie},1} denote the operators defining the PIE associated to the PDE (134), as in Lemma 21, and let 𝐆pie,2\mathbf{G}_{\text{pie},2} denote the operators defining the PIE associated to the PDE (140), as in Lemma 22. Finally, let {𝒯,𝒯z,𝒜,z,𝒞w,𝒟wz}=𝐆pie=pie×pie(𝐆pie,1,𝐆pie,2)\{\mathcal{T},\mathcal{T}_{z},\mathcal{A},\mathcal{B}_{z},\mathcal{C}_{w},\mathcal{D}_{wz}\}=\mathbf{G}_{\text{pie}}=\mathcal{L}_{\text{pie}\times\text{pie}}(\mathbf{G}_{\text{pie},1},\mathbf{G}_{\text{pie},2}), where the linear operator map pie×pie\mathcal{L}_{\text{pie}\times\text{pie}} is as defined in Prop. 17. Then, ([𝐯𝛙],w)(\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right],w) is a solution to the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} with initial conditions (𝐯0,𝛙0)L2np×Z2K(nz,np)(\mathbf{v}_{0},\boldsymbol{\psi}_{0})\in L_{2}^{\|\text{n}_{\text{p}}\|}\times\text{Z}_{2}^{K(n_{z},\|\text{n}_{\text{p}}\|)} and input zz if and only if ([𝐮ϕ],w)(\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right],w) with [𝐮ϕ]=𝒯[𝐯𝛙]+𝒯zz\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]+\mathcal{T}_{z}z is a solution to the delayed PDE defined by {𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\} with initial conditions [𝐮0ϕ0]=𝒯[𝐯0𝛙0]+𝒯z\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{0}\\ \boldsymbol{\phi}_{0}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]+\mathcal{T}_{z}.

Proof 10.4.

By Lemma 21, (𝐯,w,𝐪)(\mathbf{v},w,\mathbf{q}) is a solution to the PIE defined by {𝒯1,𝒯z,1,0,𝒜,}=𝐆pie,1\{\mathcal{T}_{1},\mathcal{T}_{z,1},0,\mathcal{A},\ldots\}=\mathbf{G}_{\text{pie},1} with inputs (z,𝐫)(z,\mathbf{r}) and initial conditions 𝐯0\mathbf{v}_{0} if and only if (𝒯1𝐯+𝒯z,1z,w,𝐪)(\mathcal{T}_{1}\mathbf{v}+\mathcal{T}_{z,1}z,w,\mathbf{q}) is a solution to the PDE (134) defined by {𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\} with initial conditions 𝒯1𝐯0+𝒯z,1z(0)\mathcal{T}_{1}\mathbf{v}_{0}+\mathcal{T}_{z,1}z(0) and inputs (z,𝐫)(z,\mathbf{r}). Similarly, by Lemma 22, (𝛙,𝐫)(\boldsymbol{\psi},\mathbf{r}) is a solution to the PIE defined by {𝒯2,𝒯q,2,}=𝐆pie,2\{\mathcal{T}_{2},\mathcal{T}_{q,2},\ldots\}=\mathbf{G}_{\text{pie},2} with input 𝐪\mathbf{q} and initial conditions 𝛙0\boldsymbol{\psi}_{0} if and only if (𝒯2𝛙+𝒯q,2𝐪,𝐫)(\mathcal{T}_{2}\boldsymbol{\psi}+\mathcal{T}_{q,2}\mathbf{q},\mathbf{r}) is a solution to the PDE (140) defined by {𝛕,𝐆bc}\{\boldsymbol{\tau},\mathbf{G}_{\text{bc}}\} with initial conditions 𝒯2𝛙0+𝒯q,2𝐪(0)\mathcal{T}_{2}\boldsymbol{\psi}_{0}+\mathcal{T}_{q,2}\mathbf{q}(0) and input 𝐪\mathbf{q}. By Prop. 17, it follows that ([𝐯𝛙],w)(\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right],w) is a solution to the PIE defined by 𝐆pie=pie×pie(𝐆pie,1,𝐆pie,2)\mathbf{G}_{\text{pie}}=\mathcal{L}_{\text{pie}\times\text{pie}}(\mathbf{G}_{\text{pie},1},\mathbf{G}_{\text{pie},2}) with initial conditions [𝐯0𝛙0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right] if and only if (𝐮,𝐪,w)(\mathbf{u},\mathbf{q},w) and (ϕ,𝐫)(\boldsymbol{\phi},\mathbf{r}) are solutions to the PDEs (134) and (140) defined by {𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\}, with initial conditions 𝐮0\mathbf{u}_{0} and ϕ0\boldsymbol{\phi}_{0} and inputs (z,𝐫)(z,\mathbf{r}) and 𝐪\mathbf{q}, where [𝐮ϕ]=𝒯[𝐯𝛙]+𝒯zz\left[\scriptsize\begin{smallmatrix}\mathbf{u}\\ \boldsymbol{\phi}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}\\ \boldsymbol{\psi}\end{smallmatrix}\right]+\mathcal{T}_{z}z and [𝐮0ϕ0]=𝒯[𝐯0𝛙0]+𝒯zz\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{0}\\ \boldsymbol{\phi}_{0}\end{smallmatrix}\right]=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]+\mathcal{T}_{z}z.

Example

For the delayed PDE (10.2), we define

[ϕu(t,s,x)ϕz(t,s)]:=[𝐮(tτs,x)z(tτs)],[𝝍u(t,s,x)𝝍z(t,s)]:=[sx2ϕ(t,s,x)sϕz(t,s)].\displaystyle\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\phi}_{u}(t,s,x)\\ \boldsymbol{\phi}_{z}(t,s)\end{array}\!\!\!\right]\!:=\!\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}(t\!-\!\tau s,x)\\ z(t\!-\!\tau s)\end{array}\!\!\!\right],\quad\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\psi}_{u}(t,s,x)\\ \boldsymbol{\psi}_{z}(t,s)\end{array}\!\!\!\right]\!:=\!\small\left[\!\!\!\begin{array}[]{r}\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}(t,s,x)\\ \partial_{s}\boldsymbol{\phi}_{z}(t,s)\end{array}\!\!\!\right].

Letting 𝒯,𝒯z\mathcal{T},\mathcal{T}_{z} be as in (181), the states (ϕu,ϕz)(\boldsymbol{\phi}_{u},\boldsymbol{\phi}_{z}) must satisfy

[ϕu(t,s)ϕz(t,s)]\displaystyle\small\left[\!\!\!\begin{array}[]{r}\boldsymbol{\phi}_{u}(t,s)\\ \boldsymbol{\phi}_{z}(t,s)\end{array}\!\!\!\right] =[𝐮(t)z(t)]+0s[(sϕu)(t,ν)(sϕz)(t,ν)]𝑑ν\displaystyle=\small\left[\!\!\!\begin{array}[]{r}\mathbf{u}(t)\\ z(t)\end{array}\!\!\!\right]+\int_{0}^{s}\small\left[\!\!\!\begin{array}[]{r}(\partial_{s}\boldsymbol{\phi}_{u})(t,\nu)\\ (\partial_{s}\boldsymbol{\phi}_{z})(t,\nu)\end{array}\!\!\!\right]d\nu
=[𝒯𝐯(t)+𝒯zz(t)z(t)]+0s[𝒯𝝍u(t,ν)+𝒯z𝝍z(t,ν)𝝍z(t,ν)]𝑑ν.\displaystyle=\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\mathbf{v}(t)+\mathcal{T}_{z}z(t)\\ z(t)\end{array}\!\!\!\right]+\int_{0}^{s}\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\boldsymbol{\psi}_{u}(t,\nu)+\mathcal{T}_{z}\boldsymbol{\psi}_{z}(t,\nu)\\ \boldsymbol{\psi}_{z}(t,\nu)\end{array}\!\!\!\right]d\nu.

Imposing this relation, as well as 𝐮=𝒯𝐯+𝒯zz\mathbf{u}=\mathcal{T}\mathbf{v}+\mathcal{T}_{z}z, the delayed PDE (10.2) can be equivalently represented as a PIE

𝒯zz˙(t)+𝒯𝐯t(t)=𝐯(t)+7𝒯zz(t)+7𝒯𝐯(t,x)\displaystyle\mathcal{T}_{z}\dot{z}(t)+\mathcal{T}\mathbf{v}_{t}(t)=\mathbf{v}(t)+7\mathcal{T}_{z}z(t)+7\mathcal{T}\mathbf{v}(t,x)
301[𝒯z𝝍z(t,s)+𝒯𝝍u(t,s)]𝑑s,\displaystyle\hskip 85.35826pt-3\int_{0}^{1}\bigl{[}\mathcal{T}_{z}\boldsymbol{\psi}_{z}(t,s)+\mathcal{T}\boldsymbol{\psi}_{u}(t,s)\bigr{]}ds,
[𝒯𝐯t(t)+𝒯zz˙(t)z˙(t)]+0st[𝒯ψu(t,ν)+𝒯z𝝍z(t,ν)𝝍z(t,ν)]dν\displaystyle\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\mathbf{v}_{t}(t)+\mathcal{T}_{z}\dot{z}(t)\\ \dot{z}(t)\end{array}\!\!\!\right]+\int_{0}^{s}\partial_{t}\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\psi_{u}(t,\nu)+\mathcal{T}_{z}\boldsymbol{\psi}_{z}(t,\nu)\\ \boldsymbol{\psi}_{z}(t,\nu)\end{array}\!\!\!\right]d\nu
=1τ[𝒯𝝍u(t,s)+𝒯z𝝍z(t,ν)𝝍z(t,s)].\displaystyle\hskip 106.69783pt=-\frac{1}{\tau}\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}\boldsymbol{\psi}_{u}(t,s)+\mathcal{T}_{z}\boldsymbol{\psi}_{z}(t,\nu)\\ \boldsymbol{\psi}_{z}(t,s)\end{array}\!\!\!\right].

10.3 A PIE Representation of ODE-PDEs with Delays

Having derived a PIE representation of both ODEs and PDEs with delay, we now take the interconnection of these PIEs, to derive a PIE representation of an ODE-PDE,

[u˙(t)z(t)]\displaystyle\small\left[\!\!\!\begin{array}[]{r}\dot{u}(t)\\ z(t)\end{array}\!\!\!\right] =[ABwCz0][u(t)w(t)]+j=1K[AjCz,j]u(tτj),\displaystyle=\left[\!{\small\begin{array}[]{ll}A&B_{w}\\ C_{z}&0\end{array}}\!\right]\small\left[\!\!\!\begin{array}[]{r}u(t)\\ w(t)\end{array}\!\!\!\right]+\sum_{j=1}^{K}\left[\!{\small\begin{array}[]{ll}A_{j}\\ C_{z,j}\end{array}}\!\right]u(t-\tau_{j}), (197)
[t𝐮p(t)w(t)]\displaystyle\small\left[\!\!\!\begin{array}[]{r}\partial_{t}\mathbf{u}_{\text{p}}(t)\\ w(t)\end{array}\!\!\!\right] =[ApAbBzab[Cwp]CwbBwz][(𝒟int𝐮p)(t)(Λbf𝐮p)(t)z(t)]\displaystyle=\left[\!{\small\begin{array}[]{lll}A_{\text{p}}&A_{\text{b}}&B_{z}\\ \smallint_{a}^{b}[C_{w\text{p}}]&C_{w\text{b}}&B_{wz}\end{array}}\!\right]\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}_{\text{p}}\bigr{)}(t)\\ \bigl{(}\Lambda_{\text{bf}}\mathbf{u}_{\text{p}}\bigr{)}(t)\\ z(t)\end{array}\!\!\!\right] (205)
+j=1K[Ap,jAb,jab[Cwp,j]Cwb,j][(𝒟int𝐮p)(tτj)(Λbf𝐮p)(tτj)],\displaystyle\hskip 14.22636pt+\sum_{j=1}^{K}\left[\!{\small\begin{array}[]{ll}A_{\text{p},j}&A_{\text{b},j}\\ \smallint_{a}^{b}[C_{w\text{p},j}]&C_{w\text{b},j}\end{array}}\!\right]\!\small\left[\!\!\!\begin{array}[]{r}\bigl{(}\mathscr{D}_{\text{int}}\mathbf{u}_{\text{p}}\bigr{)}(t-\tau_{j})\\ \bigl{(}\Lambda_{\text{bf}}\mathbf{u}_{\text{p}}\bigr{)}(t-\tau_{j})\end{array}\!\!\!\right], (210)
with BCs 0=[ab[Ep]EbEz][𝒟int𝐮p(t)Λbf𝐮p(t)z(t)],\displaystyle\qquad 0=\left[\!{\small\begin{array}[]{lll}\smallint_{a}^{b}[E_{\text{p}}]&E_{\text{b}}&E_{z}\end{array}\!}\right]\small\left[\!\!\!\begin{array}[]{r}\mathscr{D}_{\text{int}}\mathbf{u}_{\text{p}}(t)\\ \Lambda_{\text{bf}}\mathbf{u}_{\text{p}}(t)\\ z(t)\end{array}\!\!\!\right], (215)

defined by {𝐆dde,𝐆pdde,𝐆bc}\{\mathbf{G}_{\text{dde}},\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}}\} as before.

Example

Taking the interconnection of the delayed ODE (92) with the delayed PDE (10.2), we obtain a system

u˙(t)\displaystyle\dot{u}(t) =u(t)+u(tτ),\displaystyle=-u(t)+u(t-\tau), (216)
𝐮t(t,x)\displaystyle\mathbf{u}_{t}(t,x) =𝐮xx(t,x)+10𝐮(t,x)3𝐮(tτ,x),\displaystyle=\mathbf{u}_{xx}(t,x)+10\mathbf{u}(t,x)-3\mathbf{u}(t-\tau,x), x\displaystyle x Ω01,\displaystyle\in\Omega_{0}^{1},
𝐮(t,0)\displaystyle\mathbf{u}(t,0) =0,𝐮(t,1)=u(t).\displaystyle=0,\hskip 28.45274pt\mathbf{u}(t,1)=u(t).
Definition 24 (Solution to the DDE-DPDE).

For given initial conditions (u0,ϕ0)nu×Y¯u0K(u_{0},\boldsymbol{\phi}_{0})\in\mathbb{R}^{n_{u}}\times\bar{Y}_{u_{0}}^{K} and (𝐮p,0,ϕp,0)Xwnp×𝐘¯𝐪0K(\mathbf{u}_{\text{p},0},\boldsymbol{\phi}_{p,0})\in X_{w}^{\text{n}_{\text{p}}}\times\bar{\mathbf{Y}}_{\mathbf{q}_{0}}^{K}, where 𝐪0=[𝒟int𝐮p,0(t)Λbf𝐮p,0(t)Czu0+Czdϕ0(1)]\mathbf{q}_{0}=\left[\scriptsize\begin{smallmatrix}\mathscr{D}_{\text{int}}\mathbf{u}_{\text{p},0}(t)\\ \Lambda_{\text{bf}}\mathbf{u}_{\text{p},0}(t)\\ C_{z}u_{0}+C_{z\text{d}}\boldsymbol{\phi}_{0}(1)\end{smallmatrix}\right] we say that (u,ϕ,𝐮p,ϕp)(u,\boldsymbol{\phi},\mathbf{u}_{\text{p}},\boldsymbol{\phi}_{\text{p}}) is a solution to the delayed ODE-PDE system defined by {𝐆dde,𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{dde}},\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\} if ((u,ϕ),z)((u,\boldsymbol{\phi}),z) is a solution to the ODE with delay defined by {𝐆dde,𝛕}\{\mathbf{G}_{\text{dde}},\boldsymbol{\tau}\} with initial conditions (u0,ϕ0)(u_{0},\boldsymbol{\phi}_{0}) and input ww, and ((𝐮p,ϕp),w)((\mathbf{u}_{\text{p}},\boldsymbol{\phi}_{\text{p}}),w) is a solution to the PDE with delay defined by {𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\} with initial conditions (𝐮p,0,ϕp,0)(\mathbf{u}_{\text{p},0},\boldsymbol{\phi}_{\text{p},0}) and input zz.

Having derived PIE representations associated to both delayed ODEs and delayed PDEs, a PIE representation for the delayed ODE-PDE interconnection (197) can be obtained by simply taking the interconnection of the PIE representations of each subsystem. This PIE will model the dynamics of a fundamental state 𝐯Z12(nu,Knu,np,Knp)\mathbf{v}\in\text{Z}_{12}^{(n_{u},Kn_{u},\|\text{n}_{\text{p}}\|,K\|\text{n}_{\text{p}}\|)}, defined as

𝐯=[u^ϕ𝐮pϕp]=[Is𝒟𝒟¯v]𝒟¯u[uϕ𝐮pϕp]=𝒟¯u𝐮,\displaystyle\mathbf{v}=\small\left[\!\!\!\begin{array}[]{r}\hat{u}\\ \boldsymbol{\phi}\\ \mathbf{u}_{\text{p}}\\ \boldsymbol{\phi}_{\text{p}}\end{array}\!\!\!\right]=\overbrace{\left[\!\begin{array}[]{llll}I\\ &\partial_{s}\\ &&\mathscr{D}\\ &&&\bar{\mathscr{D}}_{v}\end{array}\!\right]}^{\bar{\mathscr{D}}_{u}}\small\left[\!\!\!\begin{array}[]{r}u\\ \boldsymbol{\phi}\\ \mathbf{u}_{\text{p}}\\ \boldsymbol{\phi}_{\text{p}}\end{array}\!\!\!\right]=\bar{\mathscr{D}}_{u}\mathbf{u},

where 𝒟\mathscr{D} and 𝒟¯v\bar{\mathscr{D}}_{v} are as in (179) and (188), respectively.

Corollary 25 (PIE Representation of Delayed ODE-PDE).

Let 𝐆¯dde-pdde={𝐆dde,𝐆pdde,𝐆bc,𝛕}\bar{\mathbf{G}}_{\text{dde-pdde}}=\{\mathbf{G}_{\text{dde}},\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\} define an ODE-PDE system with delay as in (197). Let 𝐆pie,1\mathbf{G}_{\text{pie},1} denote the parameters defining the PIE associated to the delayed ODE defined by {𝐆dde,𝛕}\{\mathbf{G}_{\text{dde}},\boldsymbol{\tau}\}, as in Cor. 19. Let further 𝐆pie,2\mathbf{G}_{\text{pie},2} denote the parameters defining the PIE associated to the delayed PDE defined by {𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\}, as in Cor. 23. Finally, let {𝒯,𝒜}=𝐆pie=pie×pie(𝐆pie,1,𝐆pie,2)\{\mathcal{T},\mathcal{A}\}=\mathbf{G}_{\text{pie}}=\mathcal{L}_{\text{pie}\times\text{pie}}(\mathbf{G}_{\text{pie},1},\mathbf{G}_{\text{pie},2}), where the linear operator map pie×pie\mathcal{L}_{\text{pie}\times\text{pie}} is as defined in Prop. 17. Then, 𝐯:=(u^,𝛙,𝐯p,𝛙p)\mathbf{v}:=(\hat{u},\boldsymbol{\psi},\mathbf{v}_{\text{p}},\boldsymbol{\psi}_{\text{p}}) is a solution to the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} with initial conditions 𝐯0=(u^0,𝛙0,𝐯p,0,𝛙p,0)nu×L2Knu[Ω01]×L2np[Ωab]×L2Knp[Ω0a1b]\mathbf{v}_{0}=(\hat{u}_{0},\boldsymbol{\psi}_{0},\mathbf{v}_{\text{p},0},\boldsymbol{\psi}_{\text{p},0})\in\mathbb{R}^{n_{u}}\times L_{2}^{Kn_{u}}[\Omega_{0}^{1}]\times L_{2}^{\|\text{n}_{\text{p}}\|}[\Omega_{a}^{b}]\times L_{2}^{K\|\text{n}_{\text{p}}\|}[\Omega_{0a}^{1b}] if and only if 𝒯𝐯\mathcal{T}\mathbf{v} is a solution to the ODE-PDE with delay defined by 𝐆¯dde-pdde\bar{\mathbf{G}}_{\text{dde-pdde}} with initial conditions 𝒯𝐯0\mathcal{T}\mathbf{v}_{0}.

Proof 10.5.

Let 𝐯:=(u^,𝛙,𝐯p,𝛙p)\mathbf{v}:=(\hat{u},\boldsymbol{\psi},\mathbf{v}_{\text{p}},\boldsymbol{\psi}_{\text{p}}) be an arbitrary solution to the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} with initial conditions 𝐯0=(u^0,𝛙0,𝐯p,0,𝛙p,0)nu×L2Knu[Ω01]×L2np[Ωab]×L2Knp[Ω0a1b]\mathbf{v}_{0}=(\hat{u}_{0},\boldsymbol{\psi}_{0},\mathbf{v}_{\text{p},0},\boldsymbol{\psi}_{\text{p},0})\in\mathbb{R}^{n_{u}}\times L_{2}^{Kn_{u}}[\Omega_{0}^{1}]\times L_{2}^{\|\text{n}_{\text{p}}\|}[\Omega_{a}^{b}]\times L_{2}^{K\|\text{n}_{\text{p}}\|}[\Omega_{0a}^{1b}]. By Prop. 17, it follows that there exist signals zz and ww such that ([u^𝛙],z)\bigl{(}\left[\scriptsize\begin{smallmatrix}\hat{u}\\ \boldsymbol{\psi}\end{smallmatrix}\right],z\bigr{)} and ([𝐯p𝛙p],w)\Bigl{(}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{\text{p}}\\ \boldsymbol{\psi}_{\text{p}}\end{smallmatrix}\right],w\Bigr{)} are solutions to the PIEs defined by 𝐆pie,1\mathbf{G}_{\text{pie},1} and 𝐆pie,2\mathbf{G}_{\text{pie},2} with initial conditions [u^0𝛙0]\left[\scriptsize\begin{smallmatrix}\hat{u}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right] and [𝐯p,0𝛙p,0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{\text{p},0}\\ \boldsymbol{\psi}_{\text{p},0}\end{smallmatrix}\right] and inputs ww and zz, respectively. Let 𝐆pie,1={𝒯1,𝒯1w,}\mathbf{G}_{\text{pie},1}=\{\mathcal{T}_{1},\mathcal{T}_{1w},\ldots\} and 𝐆pie,2={𝒯2,𝒯2z,}\mathbf{G}_{\text{pie},2}=\{\mathcal{T}_{2},\mathcal{T}_{2z},\ldots\}. Then, by Corollary 19, (𝒯1[u^𝛙]+𝒯1ww,z)\bigl{(}\mathcal{T}_{1}\left[\scriptsize\begin{smallmatrix}\hat{u}\\ \boldsymbol{\psi}\end{smallmatrix}\right]+\mathcal{T}_{1w}w,z\bigr{)} is a solution to the DDE defined by {𝐆dde,𝛕}\{\mathbf{G}_{\text{dde}},\boldsymbol{\tau}\} with initial conditions 𝒯1[u^0𝛙0]+𝒯1ww(0)\mathcal{T}_{1}\left[\scriptsize\begin{smallmatrix}\hat{u}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]+\mathcal{T}_{1w}w(0) and input ww. Similarly, by Corollary 23, (𝒯2[𝐯p𝛙p]+𝒯2zz,w)\Bigl{(}\mathcal{T}_{2}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{\text{p}}\\ \boldsymbol{\psi}_{\text{p}}\end{smallmatrix}\right]+\mathcal{T}_{2z}z,w\Bigr{)} is a solution to the PDE with delay defined by {𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\} with initial conditions 𝒯2[𝐯p,0𝛙p,0]+𝒯2zz(0)\mathcal{T}_{2}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{\text{p},0}\\ \boldsymbol{\psi}_{\text{p},0}\end{smallmatrix}\right]+\mathcal{T}_{2z}z(0) and input zz. By definition of the interconnection signals ww and zz, as well as the PI operator 𝒯\mathcal{T}, we further have that

𝒯𝐯:=[𝒯1[u^𝝍]+𝒯1ww𝒯2[𝐯p𝝍p]+𝒯2zz],\displaystyle\mathcal{T}\mathbf{v}\!:=\!\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}_{1}\left[\scriptsize\begin{smallmatrix}\hat{u}\\ \boldsymbol{\psi}\end{smallmatrix}\right]+\!\mathcal{T}_{1w}w\\ \mathcal{T}_{2}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{\text{p}}\\ \boldsymbol{\psi}_{\text{p}}\end{smallmatrix}\right]+\!\mathcal{T}_{2z}z\end{array}\!\!\!\right]\!, and 𝒯𝐯0=[𝒯1[u^0𝝍0]+𝒯1ww(0)𝒯2[𝐯p,0𝝍p,0]+𝒯2zz(0)].\displaystyle\mathcal{T}\mathbf{v}_{0}\!=\!\small\left[\!\!\!\begin{array}[]{r}\mathcal{T}_{1}\left[\scriptsize\begin{smallmatrix}\hat{u}_{0}\\ \boldsymbol{\psi}_{0}\end{smallmatrix}\right]+\!\mathcal{T}_{1w}w(0)\\ \mathcal{T}_{2}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{\text{p},0}\\ \boldsymbol{\psi}_{\text{p},0}\end{smallmatrix}\right]+\!\mathcal{T}_{2z}z(0)\end{array}\!\!\!\right]\!.

Combining these results, it follows that 𝒯𝐯\mathcal{T}\mathbf{v} is a solution to the ODE-PDE with delay defined by 𝐆¯ddepdde\bar{\mathbf{G}}_{\text{dde}-\text{pdde}} with initial conditions 𝒯𝐯0\mathcal{T}\mathbf{v}_{0}.

Conversely, let now [𝐮1𝐮2]:=𝒯[𝐯1𝐯2]\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{1}\\ \mathbf{u}_{2}\end{smallmatrix}\right]:=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{1}\\ \mathbf{v}_{2}\end{smallmatrix}\right] be a solution to the ODE-PDE with delay defined by 𝐆¯ddepdde\bar{\mathbf{G}}_{\text{dde}-\text{pdde}} with initial conditions [𝐮1,0𝐮2,0]:=𝒯[𝐯1,0𝐯2,0]\left[\scriptsize\begin{smallmatrix}\mathbf{u}_{1,0}\\ \mathbf{u}_{2,0}\end{smallmatrix}\right]:=\mathcal{T}\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{1,0}\\ \mathbf{v}_{2,0}\end{smallmatrix}\right]. Then, there exist interconnection signals zz and ww such that (𝐮1,z)(\mathbf{u}_{1},z) is a solution to the DDE defined by {𝐆dde,𝛕}\{\mathbf{G}_{\text{dde}},\boldsymbol{\tau}\} with initial conditions 𝐮1\mathbf{u}_{1} and input ww, and (𝐮2,w)(\mathbf{u}_{2},w) is a solution to the delayed PDE defined by {𝐆pdde,𝐆bc,𝛕}\{\mathbf{G}_{\text{pdde}},\mathbf{G}_{\text{bc}},\boldsymbol{\tau}\} with initial conditions 𝐮2\mathbf{u}_{2} and input zz. Letting 𝐆pie,1={𝒯1,𝒯1w,}\mathbf{G}_{\text{pie},1}=\{\mathcal{T}_{1},\mathcal{T}_{1w},\ldots\}, by definition of the operator 𝒯\mathcal{T} and Corollary 19, it follows that 𝐯1\mathbf{v}_{1} is a solution to the PIE defined by 𝐆pie,1\mathbf{G}_{\text{pie},1} with initial conditions 𝐯1,0\mathbf{v}_{1,0} and input ww. Similarly, letting 𝐆pie,2={𝒯2,𝒯2z,}\mathbf{G}_{\text{pie},2}=\{\mathcal{T}_{2},\mathcal{T}_{2z},\ldots\}, by definition of the operator 𝒯\mathcal{T} and Corollary 23, it follows that 𝐯2\mathbf{v}_{2} is a solution to the PIE defined by 𝐆pie,2\mathbf{G}_{\text{pie},2} with initial conditions 𝐯2,0\mathbf{v}_{2,0} and input zz. Finally, by Proposition 17, 𝐯:=[𝐯1𝐯2]\mathbf{v}:=\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{1}\\ \mathbf{v}_{2}\end{smallmatrix}\right] is a solution to the PIE defined by 𝐆pie\mathbf{G}_{\text{pie}} with initial conditions [𝐯1,0𝐯2,0]\left[\scriptsize\begin{smallmatrix}\mathbf{v}_{1,0}\\ \mathbf{v}_{2,0}\end{smallmatrix}\right].

Example

Letting 𝐯(t,x)=x2𝐮(t,x)\mathbf{v}(t,x)=\partial_{x}^{2}\mathbf{u}(t,x), 𝝍z(t,s)=sϕz(t,s)\boldsymbol{\psi}_{z}(t,s)=\partial_{s}\boldsymbol{\phi}_{z}(t,s) and 𝝍u(t,s,x)=sx2ϕu(t,s,x)\boldsymbol{\psi}_{u}(t,s,x)=\partial_{s}\partial_{x}^{2}\boldsymbol{\phi}_{u}(t,s,x), where ϕz(t,s)=u(tτs)\boldsymbol{\phi}_{z}(t,s)=u(t-\tau s) and ϕu(t,s,x)=𝐮(tτs,x)\boldsymbol{\phi}_{u}(t,s,x)=\mathbf{u}(t-\tau s,x), the delayed ODE-PDE (216) can be equivalently represented as a PIE as

u˙(t)=01𝝍z(t,s)𝑑s\displaystyle\dot{u}(t)=\int_{0}^{1}\boldsymbol{\psi}_{z}(t,s)ds
u˙(t)+0st𝝍z(t,ν)dν=1τ𝝍z(t,s),\displaystyle\dot{u}(t)+\!\!\int_{0}^{s}\!\partial_{t}\boldsymbol{\psi}_{z}(t,\nu)d\nu\!=\!-\frac{1}{\tau}\boldsymbol{\psi}_{z}(t,s),
𝒯zu˙(t)+𝒯𝐯t(t)\displaystyle\mathcal{T}_{z}\dot{u}(t)\!+\!\mathcal{T}\mathbf{v}_{t}(t)
=7𝒯zu(t)+[1+7𝒯]𝐯(t)301[𝒯z𝝍z(t,s)+𝒯𝝍u(t,s)]𝑑s,\displaystyle\hskip 14.22636pt=7\mathcal{T}_{z}u(t)\!+\![1\!+\!7\mathcal{T}]\mathbf{v}(t)\!-\!3\!\int_{0}^{1}\![\mathcal{T}_{z}\boldsymbol{\psi}_{z}(t,\!s)\!+\!\mathcal{T}\boldsymbol{\psi}_{u}(t,\!s)]ds,
𝒯zu˙(t)+𝒯𝐯t(t)+0s[t𝒯zϕz(t,ν)+t𝒯𝝍u(t,ν)]𝑑ν\displaystyle\mathcal{T}_{z}\dot{u}(t)\!+\!\mathcal{T}\mathbf{v}_{t}(t)\!+\!\!\!\int_{0}^{s}\!\!\![\partial_{t}\mathcal{T}_{z}\boldsymbol{\phi}_{z}(t,\!\nu)\!+\!\partial_{t}\mathcal{T}\boldsymbol{\psi}_{u}(t,\!\nu)]d\nu
=[𝒯zϕz(t,s)+𝒯𝝍u(t,s)]τ.\displaystyle\hskip 85.35826pt=-\frac{[\mathcal{T}_{z}\boldsymbol{\phi}_{z}(t,\!s)\!+\!\mathcal{T}\boldsymbol{\psi}_{u}(t,\!s)]}{\tau}.

Using PIETOOLS, applying Thm. 11, stability of this system can be verified for any delay τ<0.15\tau<0.15.