This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\cftsetpnumwidth

5cm \cftsetrmarg6cm \settocbibnameReferences

Representing and Learning
Functions Invariant Under Crystallographic Groups

Ryan P Adams and Peter Orbanz
Abstract

Crystallographic groups describe the symmetries of crystals and other repetitive structures encountered in nature and the sciences. These groups include the wallpaper and space groups. We derive linear and nonlinear representations of functions that are (1) smooth and (2) invariant under such a group. The linear representation generalizes the Fourier basis to crystallographically invariant basis functions. We show that such a basis exists for each crystallographic group, that it is orthonormal in the relevant 𝐋2\mathbf{L}_{2} space, and recover the standard Fourier basis as a special case for pure shift groups. The nonlinear representation embeds the orbit space of the group into a finite-dimensional Euclidean space. We show that such an embedding exists for every crystallographic group, and that it factors functions through a generalization of a manifold called an orbifold. We describe algorithms that, given a standardized description of the group, compute the Fourier basis and an embedding map. As examples, we construct crystallographically invariant neural networks, kernel machines, and Gaussian processes.

1 Introduction

Among the many forms of symmetry observed in nature, those that arise from repetitive spatial patterns are particularly important. These are described by sets of transformations of Euclidean space called crystallographic groups [65, 62]. For example, consider a problem in materials science, where atoms are arranged in a crystal lattice. The symmetries of the lattice are then characterized by a crystallographic group 𝔾\mathbb{G}. Symmetry means that, if we apply one of the transformations in 𝔾\mathbb{G} to move the lattice—say to rotate or shift it—the transformed lattice is indistinguishable from the untransformed one. In such a lattice, the Coulomb potential acting on any single electron due to a collection of fixed nuclei does not change under any of the transformations in 𝔾\mathbb{G} [12, 42, 36]. If we think of the potential field as a function on 3\mathbb{R}^{3}, this is an example of a 𝔾\mathbb{G}-invariant function, i.e., a function whose values do not change if its arguments are transformed by elements of the group. When solving the resulting Schrödinger equation for single particle states, members of the group commute with the Hamiltonian, and quantum observables are again 𝔾\mathbb{G}-invariant [12, 37, 36, 57, 42, 26]. A different example are ornamental tilings on the walls of the Alhambra, which, when regarded as functions on 2\mathbb{R}^{2}, are invariant under two-dimensional crystallographic groups [58]. The purpose of this work is to construct smooth invariant functions for any given crystallographic group in any dimension.

For finite groups, invariant functions can be constructed easily by summing over all group elements; for compact infinite groups, the sum can be replaced by an integral. This and related ideas have received considerable attention in machine learning [e.g., 38, 21, 14]. Such summations are not possible for crystallographic groups, which are neither finite nor compact, but their specific algebraic and geometric properties allow us to approach the problem in a different manner. We postpone a detailed literature review to Section 10, and use the remainder of this section to give a non-technical sketch of our results.

1.1. A non-technical overview

This section sketches our results in a purely heuristic way; proper definitions follow in Section 2.
Crystallographic symmetry. Crystallographic groups are groups that tile a Euclidean space n\mathbb{R}^{n} with a convex shape. Suppose we place a convex polytope Π\Pi in the space n\mathbb{R}^{n}, say a square or a rectangle in the plane. Now make a copy of Π\Pi, and use a transformation ϕ:22{\phi:\mathbb{R}^{2}\rightarrow\mathbb{R}^{2}} to move this copy to another location. We require that ϕ\phi is an isometry, which means it may shift, rotate or flip Π\Pi, but does not change its shape or size. Here are some examples, where the original shape Π\Pi is marked in red:

[Uncaptioned image][Uncaptioned image][Uncaptioned image]p1p2p2mm

The descriptors p1, p2, and p2mm follow the naming standard for groups developed by crystallographers [31], and the symbol “F” is inscribed to clarify which transformations are used. The transformations in these examples are horizontal and vertical shifts (in p1), rotations around the corners of the rectangle in (p2), and reflections about its edges (p2mm). Suppose we repeat one of these processes indefinitely so that the copies of Π\Pi cover the entire plane and overlap only on their boundaries. That requires a countably infinite number of transformations, one per copy. Collect these into a set 𝔾\mathbb{G}. If this set forms a group, this group is called crystallographic. Such groups describe all possible symmetries of crystals, and have been thoroughly studied in crystallography. For each dimension nn, there is—up to a natural notion of isomorphy that we explain in Section 2—only a finite number of crystallographic groups: Two on \mathbb{R}, 17 on 2\mathbb{R}^{2}, 230 on 3\mathbb{R}^{3}, and so forth. Those on 2\mathbb{R}^{2} are also known as wallpaper groups, and those on 3\mathbb{R}^{3} as space groups.
The objects of interest. A function ff is invariant under 𝔾\mathbb{G} if it satisfies

f(ϕx)=f(x) for all ϕ𝔾 and all xn.f(\phi x)\;=\;f(x)\qquad\text{ for all }\phi\in\mathbb{G}\text{ and all }x\in\mathbb{R}^{n}\;.

A simple way to construct such a function is to start with a tiling as above, define a function on Π\Pi, and then replicate it on every copy of Π\Pi. Here are two examples on 2\mathbb{R}^{2}, corresponding to (ii) and (iii) above, and an example on 3\mathbb{R}^{3}:

[Uncaptioned image][Uncaptioned image][Uncaptioned image]p2p2mmI4122

However, as the examples illustrate, functions obtained this way are typically not continuous. Our goal is to construct smooth invariant functions, such as these:

[Uncaptioned image][Uncaptioned image][Uncaptioned image]p2p2mmI4122

We identify two representations of such functions, one linear and one nonlinear. Working with either representation algorithmically requires a data structure representing the invariance constraint. We construct such a structure, which we call an orbit graph, in Section 4. This graph is constructed from a description of the group (which can be encoded as a finite set of matrices) and of Π\Pi (a finite set of vectors).
Linear representations: Invariant Fourier transforms. We are primarily interested in two and three dimensions, but a one-dimensional example is a good place to start: In one dimension, a convex polytope is always an interval, say Π=[0,1]{\Pi=[0,1]}. If we choose 𝔾\mathbb{G} as the group \mathbb{Z} of all shifts of integer length, it tiles the line \mathbb{R} with Π\Pi. In this case, an invariant function is simply a periodic function with period 11. Smooth periodic functions can be represented as a Fourier series,

f(x)=\medmathi=0aicos(ix2π)+bisin(ix2π)f(x)\;=\;\operatorname{\medmath\sum}_{i=0}^{\infty}a_{i}\cos\bigl{(}\tfrac{ix}{2\pi}\bigr{)}+b_{i}\sin\bigl{(}\tfrac{ix}{2\pi}\bigr{)}

for sequences of scalar coefficients aia_{i} and bib_{i}. Note each sine and cosine on the right is 𝔾\mathbb{G}-invariant and infinitely often differentiable. Now suppose we abstract from the specific form of these sines and cosines, and only regard them as 𝔾\mathbb{G}-invariant functions that are very smooth. The series representation above then has the general form

f(x)=\medmathi=0ciei(x),f(x)\;=\;\operatorname{\medmath\sum}_{i=0}^{\infty}c_{i}e_{i}(x)\;,

where the eie_{i} are smooth, 𝔾\mathbb{G}-invariant functions that depend only on 𝔾\mathbb{G} and Π\Pi, and the cic_{i} are scalar coefficients that depend on ff. (In the Fourier series, eie_{i} is a cosine for odd and a sine for even indices.) In Section 5, we obtain generalizations of this representation to crystallographically invariant functions. To do so, we observe that the Fourier basis can be derived as the set of eigenfunctions of the Laplace operator: The sine and cosine functions above are precisely those functions e:{e:\mathbb{R}\rightarrow\mathbb{R}} that solve

Δe\displaystyle-\Delta e =λe\displaystyle\;=\;\lambda e
subject to e\displaystyle\text{ subject to }\quad\qquad e is periodic with period 1\displaystyle\text{ is periodic with period }1

for some λ0{\lambda\geq 0}. (The negative sign is chosen to make the eigenvalues λ\lambda non-negative.) The periodicity constraint is equivalent to saying that ee is invariant under the shift group 𝔾={\mathbb{G}=\mathbb{Z}}. The corresponding problem for a general crystallographic group 𝔾\mathbb{G} on n\mathbb{R}^{n} is hence

(1) Δe=λe subject to e=eϕ for all ϕ𝔾.\begin{split}-\Delta e\;&=\;\lambda e\\ \text{ subject to }\quad\qquad e\;&=\;e\circ\phi\text{ for all }\phi\in\mathbb{G}\;.\end{split}

Theorem 7 shows that this problem has solutions for any dimension nn, convex polytope Πn{\Pi\subset\mathbb{R}^{n}}, and crystallographic group 𝔾\mathbb{G} that tiles n\mathbb{R}^{n} with Π\Pi. As in the Fourier case, the solution functions e1,e2,{e_{1},e_{2},\ldots} are very smooth.

If we choose Π2{\Pi\subset\mathbb{R}^{2}} as the square [0,1]2{[0,1]^{2}} and 𝔾\mathbb{G} as the group 2\mathbb{Z}^{2} of discrete horizontal and vertical shifts—that is, the two-dimensional analogue of the example above—we recover the two-dimensional Fourier transform. The function e0e_{0} is constant; the functions e1,,e5{e_{1},\ldots,e_{5}} are shown in Figure 4. If the group also contains other transformations, the basis looks less familiar. These are the basis functions e1,,e5{e_{1},\ldots,e_{5}} for a group (p3) containing shifts and rotations of order three:

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

The same idea applies in any finite dimension nn. For n=3{n=3}, the eie_{i} can be visualized as contour plots. For instance, the first five non-constant basis elements for a specific three-dimensional group, designated I41 by crystallographers, look like this:

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

Our results show that any continuous invariant function can be represented by a series expansion in functions eie_{i}. As for the Fourier transform, the functions form a orthonormal basis of the relevant 𝐋2\mathbf{L}_{2} space. The functions eie_{i} can hence be seen as a generalization of the Fourier transform from pure shift groups to crystallographic groups. All of this is made precise in Section 5.
Nonlinear representations: Factoring through an orbifold. The second representation, in Section 6, generalizes an idea of David MacKay [45], who constructs periodic functions on the line as follows: Start with a continuous function h:2{h:\mathbb{R}^{2}\rightarrow\mathbb{R}}. Choose a circle of circumference 11 in 2\mathbb{R}^{2}, and restrict hh to the circle. The restriction is still continuous. Now “cut and unfold the circle with hh on it” to obtain a function on the unit interval. Since this function takes the same value at both interval boundaries, replicating it by shifts of integer length defines a function on \mathbb{R} that is periodic and continuous:

[Uncaptioned image][Uncaptioned image][Uncaptioned image]function hh on 2\mathbb{R}^{2}restrict hh to circleunfold circle and replicate

More formally, MacKay’s approach constructs a function ρ:circle2{\rho:\mathbb{R}\rightarrow\text{circle}\subset\mathbb{R}^{2}} such that

f is continuous and periodic on  f=hρ for some continuous h:2.f\text{ is continuous and periodic on $\mathbb{R}$ }\quad\Leftrightarrow\quad f\;=\;h\circ\rho\quad\text{ for some continuous }h:\mathbb{R}^{2}\rightarrow\mathbb{R}\;.

We show how to generalize this construction to any finite dimension nn, any crystallographic group 𝔾\mathbb{G} on n\mathbb{R}^{n}, and any convex polytope with which 𝔾\mathbb{G} tiles the space: For each 𝔾\mathbb{G} and Π\Pi, there is a continuous, surjective map

(2) ρ:nΩ for some finite Nn and a compact set ΩN\rho:\mathbb{R}^{n}\rightarrow\Omega\qquad\text{ for some finite }N\geq n\text{ and a compact set }\Omega\subset\mathbb{R}^{N}

such that

f is continuous and invariant f=hρ for some continuous h:N.f\text{ is continuous and invariant }\quad\Leftrightarrow\quad f\;=\;h\circ\rho\quad\text{ for some continuous }h:\mathbb{R}^{N}\rightarrow\mathbb{R}\;.

This is Theorem 15. Section 6.1 shows how to compute a representation of ρ\rho using multidimensional scaling.

The set Ω\Omega can be thought of as an nn-dimensional surface in a higher-dimensional space N\mathbb{R}^{N}. If 𝔾\mathbb{G} contains only shifts, this surface is completely smooth, and hence a manifold. That is the case in MacKay’s construction, where Ω\Omega is the circle, and the group p1 on 2\mathbb{R}^{2}, for which Ω\Omega is the torus shown on the left:

[Uncaptioned image][Uncaptioned image]

For most crystallographic groups, Ω\Omega is not a manifold, but rather a more general object called an orbifold. The precise definition (see Appendix C) is somewhat technical, but loosely speaking, an orbifold is a surface that resembles a manifold almost everywhere, except at a small number of points at which it is not smooth. That is illustrated by the orbifold on the right, which represents a group containing rotations, and has several “sharp corners”.
Applications I: Neural networks. We can now define 𝔾\mathbb{G}-invariant models by factoring through ρ\rho. To define an invariant neural network, for example, start with a continuous neural network hθ:NY{h_{\theta}:\mathbb{R}^{N}\rightarrow Y} with weight vector θ\theta and some output space YY. Then ρhθ{\rho\circ h_{\theta}} is a continuous and invariant neural network nY{\mathbb{R}^{n}\rightarrow Y}. Here are examples for three groups (cm, p4, and p4gm) on 2\mathbb{R}^{2}, with three hidden layers and randomly generated weights:

[Uncaptioned image][Uncaptioned image][Uncaptioned image]

Applications II: Invariant kernels. We can similarly define 𝔾\mathbb{G}-invariant reproducing kernels on n\mathbb{R}^{n}, by starting with a kernel κ^\hat{\kappa} on N\mathbb{R}^{N} and defining a function on n\mathbb{R}^{n} as

κ(x,y)=κ^(ρρ)(x,y)=κ^(ρ(x),ρ(y)).\kappa(x,y)\;=\;\hat{\kappa}\circ(\rho\otimes\rho)(x,y)\;=\;\hat{\kappa}(\rho(x),\rho(y))\;.

This function is again a kernel. In Section 7, we show that its reproducing kernel Hilbert space consists of continuous 𝔾\mathbb{G}-invariant functions on n\mathbb{R}^{n}. We also show that, even though n\mathbb{R}^{n} is not compact, κ\kappa behaves essentially like a kernel on a compact domain (Proposition 23). In particular, it satisfies a Mercer representation and a compact embedding property, both of which usually require compactness. This behavior is specific to kernels invariant under crystallographic groups, and does not extend to more general groups of isometries on n\mathbb{R}^{n}.
Applications III: Invariant Gaussian processes. There are two ways in which a Gaussian process (GP) can be invariant under a group: A GP is a distribution on functions, and we can either ask for each function it generates to be invariant, or only require that its distribution is invariant (see Section 8 for definitions). The former implies the latter. Both types of processes can be constructed by factoring through an orbifold: Suppose we start with a kernel κ^\hat{\kappa} (a covariance function) and a real-valued function μ^\hat{\mu} (the mean function), both defined on N\mathbb{R}^{N}. If we then generate a random function FF on n\mathbb{R}^{n} as

F:=Hρ where HGP(μ^,κ^),F\;:=\;H\circ\rho\qquad\text{ where }\qquad H\,\sim\,\text{GP}(\hat{\mu},\hat{\kappa})\;,

the function FF is 𝔾\mathbb{G}-invariant with probability 1. The following are examples of such random functions, rendered as contour plots with non-smooth colormaps.

[Uncaptioned image][Uncaptioned image][Uncaptioned image][Uncaptioned image]

If we instead generate FF as

FGP(μ,κ) where μ:=μ^ρ and κ:=κ^(ρρ),F\,\sim\,\text{GP}(\mu,\kappa)\qquad\text{ where }\qquad\mu\;:=\;\hat{\mu}\circ\rho\;\text{ and }\;\kappa\;:=\;\hat{\kappa}\circ(\rho\otimes\rho)\;,

the distribution of FF is 𝔾\mathbb{G}-invariant. See Section 8.
Properties of the Laplace operator. Section 9 studies differentials and Laplacians of crystallographically invariant functions f:n{f:\mathbb{R}^{n}\rightarrow\mathbb{R}}. The results are then used in the proof of the Fourier representation. Consider a vector field FF, i.e., a function F:nn{F:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}}. An example of such a vector field is the gradient F=f{F=\nabla f}. Lemma 27 shows that the gradient transforms under elements ϕ\phi of 𝔾\mathbb{G} as

f(ϕx)=(linear part of ϕ)f or abstractly Fϕ=(linear part of ϕ)F.\nabla f(\phi x)\;=\;(\text{linear part of }\phi)\cdot\nabla f\quad\text{ or abstractly }\quad F\circ\phi\;=\;(\text{linear part of }\phi)\circ F\;.

Proposition 28 shows that, for any vector field FF that transforms in this way, the total flux through the boundary of the polytope Π\Pi vanishes,

\medintΠF(x)𝖳(normal vector of Π at x)𝑑x= 0.\medint\int_{\partial\Pi}F(x)^{\sf{T}}(\text{normal vector of $\partial\Pi$ at $x$})dx\;=\;0\;.

We can combine this fact with a result from the theory of partial differential equations, the so-called Green identity, which decomposes the Laplacian on functions on Π\Pi as

Δf=self-adjoint component on interior of Πcorrection term on Π.-\Delta f\;=\;\text{self-adjoint component on interior of }\Pi\;-\;\text{correction term on }\partial\Pi\;.

29 makes the statement precise. Using the fact that the flux vanishes, we can show that the correction term on Π\partial\Pi vanishes, and from that deduce that the Laplace operator on invariant functions is self-adjoint (Theorem 30). That allows us to draw on results from the spectral theory of self-adjoint operators to solve (1).
Background and reference results. Since our methods draw on a number of different fields, the appendix provides additional background on groups of isometries (App. A), functional analysis (App. B), and orbifolds (App. C), and spectral theory (App. D).

2 Preliminaries: Crystallographic groups

Throughout, we consider a Euclidean space n\mathbb{R}^{n}, and write dnd_{n} for Euclidean distance in nn dimensions. Euclidean volume (that is, Lebesgue measure on n\mathbb{R}^{n}) is denoted voln\text{\rm vol}_{n}. As we work with both sets and their boundaries, we must carefully distinguish dimensions: The span of a set An{A\subset\mathbb{R}^{n}} is the smallest affine subspace that contains it. We define the dimension and relative interior of AA as

dimA:=dimspanA and A:= largest subset of A that is open in spanA.\dim A\,:=\,\dim\text{span}\,A\quad\text{ and }\quad A^{\circ}\,:=\,\text{ largest subset of }A\text{ that is open in }\text{span}\,A\;.

The boundary of AA is the set A:=A A{\partial A:=A\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}A^{\circ}}. If AA has dimension k<n{k<n}, then volk(A){\text{\rm vol}_{k}(A)} denotes Euclidean volume in spanA\text{span}\,A. For example: If A3{A\subset\mathbb{R}^{3}} is a closed line segment, then dimA=1{\dim A=1}, and vol1(A){\text{\rm vol}_{1}(A)} is the length of the line segment, whereas vol3(A)=vol2(A)=0{\text{\rm vol}_{3}(A)=\text{\rm vol}_{2}(A)=0}. Taking the relative interior AA^{\circ} removes the two endpoints, whereas interior of AA in 3\mathbb{R}^{3} is the empty set. (No such distinction is required for the closure A¯\bar{A}, since AA is closed in spanA\text{span}\,A if and only if it is closed in n\mathbb{R}^{n}.)

2.1. Defining crystallographic groups

Consider a group 𝔾\mathbb{G} of isometries of n\mathbb{R}^{n}. (See Appendix A for a brief review of definitions.) Every isometry ϕ\phi of n\mathbb{R}^{n} is of the form

(3) ϕx=Aϕx+bϕ for some orthogonal n×n matrix Aϕ and some bϕn.\phi x\;=\;A_{\phi}x+b_{\phi}\qquad\text{ for some orthogonal $n\times n$ matrix }A_{\phi}\text{ and some }b_{\phi}\in\mathbb{R}^{n}\;.

Let Mn{M\subset\mathbb{R}^{n}} be a set. We say that 𝔾\mathbb{G} tiles the space n\mathbb{R}^{n} with MM if the image sets ϕM{\phi M} completely cover the space so that only their boundaries overlap:

ϕ𝔾ϕM=n and ϕMψM(ϕM) whenever ϕψ.\operatorname*{\raisebox{-1.49994pt}{$\mathbin{{\cup}}$}}\nolimits_{\phi\in\mathbb{G}}\phi M\;=\;\mathbb{R}^{n}\qquad\text{ and }\qquad\phi M\cap\psi M\;\subset\;\partial(\phi M)\quad\text{ whenever }\phi\neq\psi\;.

Each set ϕM\phi M is a tile, and the collection 𝔾M:={ϕM|ϕ𝔾}{\mathbb{G}M:={\{\phi M|\phi\in\mathbb{G}\}}} is a tiling of n\mathbb{R}^{n}.

By a convex polytope, we mean the convex hull of a finite set of points [70]. Let Πn{\Pi\subset\mathbb{R}^{n}} be an nn-dimensional convex polytope. The boundary Π\partial\Pi consists of a finite number of (n1){(n-1)}-dimensional convex polytopes, called the facets of Π\Pi. Thus, if 𝔾\mathbb{G} tiles n\mathbb{R}^{n} with Π\Pi, only points on facets are contained in more than one tile.

Definition 1.

A crystallographic group is a group of isometries that tiles n\mathbb{R}^{n} with an nn-dimensional convex polytope Π\Pi.

The polytope Π\Pi is then also called a fundamental region (in geometry) or an asymmetric unit (in materials science) for 𝔾\mathbb{G}. This definition of crystallographic groups differs from those given in the literature, but we clarify in Section A.2 that it is equivalent.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Tiling behavior of the 17 crystallographic groups on n\mathbb{R}^{n} (the wallpaper groups).

2.2. Basic properties

Some properties of 𝔾\mathbb{G} can be read right off the definition: Since 𝔾\mathbb{G} tiles the entire space with a set Π\Pi of finite diameter, we must have |𝔾|={|\mathbb{G}|=\infty}. Since Π\Pi is nn-dimensional and convex, it contains an open metric ball of positive radius. Each tile contains a copy of this ball, and these copies do not overlap. It follows that

(4) d(ϕ(x),ψ(x))>ε for all distinct ϕ,ψ𝔾 and all xΠ.d(\phi(x),\psi(x))\;>\;\varepsilon\qquad\text{ for all distinct }\phi,\psi\in\mathbb{G}\text{ and all }x\in\Pi^{\circ}\;.

A group of isometries that satisfies (4) for some ε>0{\varepsilon>0} is called discrete, in contrast to groups which contain, e.g., continuous rotations. Discreteness implies 𝔾\mathbb{G} is countable, but not all countable groups of isometries are discrete (the group n\mathbb{Q}^{n} of rational-valued shifts is a non-example). In summary, every crystallographic group is an infinite, discrete (and hence countable) subgroup of the Euclidean group on n\mathbb{R}^{n}.

Suppose we choose one of the tilings in Figure 1, and rotate or shift the entire plane with the tiling on it. Informally speaking, that changes the tiling, but not the tiling mechanism, and it is natural to consider the two tilings isomorphic. More formally, two crystallographic groups 𝔾\mathbb{G} and 𝔾\mathbb{G}^{\prime} are isomorphic if there is an orientation-preserving, invertible, and affine (but not necessarily isometric) map γ:nn{\gamma:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}} such that 𝔾=γ𝔾{\mathbb{G}^{\prime}=\gamma\mathbb{G}}, where γ𝔾:={γϕγ1|ϕ𝔾}{\gamma\mathbb{G}:={\{\gamma\phi\gamma^{-1}\,|\,\phi\in\mathbb{G}\}}}.

Fact 2 ([62, 4.2.2]).

Up to isomorphy, there are only finitely many crystallographic groups on n\mathbb{R}^{n} for each n{n\in\mathbb{N}}. Specifically, there 17 such groups for n=2{n=2}, and 230 for n=3{n=3}.

3 Preliminaries: Invariant functions

A function f:n𝐗{f:\mathbb{R}^{n}\rightarrow\mathbf{X}}, with values in some set 𝐗\mathbf{X}, is ϕ\phi-invariant if it satisfies

f(ϕx)=f(x) for all xn or in short fϕ=f.f(\phi x)=f(x)\quad\text{ for all }x\in\mathbb{R}^{n}\qquad\text{ or in short }\quad f\circ\phi=f\;.

It is 𝔾\mathbb{G}-invariant if it is ϕ\phi-invariant for all ϕ𝔾{\phi\in\mathbb{G}}. We are specifically interested in 𝔾\mathbb{G}-invariant functions that are continuous, and write

𝐂(M):={f:n|f continuous} and 𝐂𝔾:={f𝐂(n)|f is 𝔾-invariant}.\mathbf{C}(M):={\{f:\mathbb{R}^{n}\rightarrow\mathbb{R}\,|\,\text{$f$ continuous}\}}\quad\text{ and }\quad\mathbf{C}_{\mathbb{G}}:={\{f\in\mathbf{C}(\mathbb{R}^{n})\,|\,f\text{ is $\mathbb{G}$-invariant}\}}\;.

More generally, a function f:(n)k𝐗{f:(\mathbb{R}^{n})^{k}\rightarrow\mathbf{X}} is 𝔾\mathbb{G}-invariant in each argument if

(5) f(ϕ1x1,,ϕkxk)=f(x1,,xk) for all ϕ1,ϕk𝔾 and x1,,xkn.f(\phi_{1}x_{1},\ldots,\phi_{k}x_{k})\;=\;f(x_{1},\ldots,x_{k})\quad\text{ for all }\phi_{1},\ldots\phi_{k}\in\mathbb{G}\text{ and }x_{1},\ldots,x_{k}\in\mathbb{R}^{n}\;.

3.1. Tiling with functions

To construct a 𝔾\mathbb{G}-invariant function, we may start with a function hh on Π\Pi and “replicate it by tiling”. For that to be possible, hh must in turn be the restriction of a 𝔾\mathbb{G}-invariant function to Π\Pi. It must then satisfy h(ϕx)=h(x){h(\phi x)=h(x)} if both ϕx\phi x and xx are in Π\Pi. We hence define the relation

xy:x,yΠ and y=ϕ(x) for some ϕ𝔾 {𝟏}.x\;\sim\;y\quad:\Longleftrightarrow\quad x,y\in\Pi\text{ and }y=\phi(x)\text{ for some }\phi\in\mathbb{G}\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}{\{\mathbf{1}\}}\;.

We note immediately that xy{x\sim y} implies each point is also contained in an adjacent tile, so both must be on the boundary Π\partial\Pi of Π\Pi. The requirement

(6) h(x)=h(y) whenever xyh(x)\;=\;h(y)\qquad\text{ whenever }x\sim y

is therefore a periodic boundary condition. If it holds, the function

(7) f(x):=h(ϕ1x) for xϕ(Π) and each ϕ𝔾f(x)\;:=\;h(\phi^{-1}x)\qquad\text{ for }x\in\phi(\Pi)\text{ and each }\phi\in\mathbb{G}

is well-defined on n\mathbb{R}^{n}, and is 𝔾\mathbb{G}-invariant. Conversely, every 𝔾\mathbb{G}-invariant function ff can be obtained this way (by choosing hh as the restriction f|Πf|_{\Pi}). Informally, (7) says that we stitch together function segments on tiles that are all copies of hh, and these segments overlap on the tile boundaries. The boundary condition ensures that wherever such overlaps occur, the segments have the same value, so that (7) produces no ambiguities. The special case of (6) for pure shift groups—where AϕA_{\phi} is the identity matrix for all ϕ𝔾{\phi\in\mathbb{G}}—is known as a Born-von Karman boundary condition (e.g., Ashcroft and Mermin [7]).

3.2. Orbits and quotients

An alternative way to express invariance is as follows: A function is 𝔾\mathbb{G}-invariant if and only if it is constant on each set of the form

𝔾(x):={ϕx|ϕ𝔾} for each xn.\mathbb{G}(x)\;:=\;{\{\phi x\,|\,\phi\in\mathbb{G}\}}\qquad\text{ for each }x\in\mathbb{R}^{n}\;.

The set 𝔾(x)\mathbb{G}(x) is called the orbit of xx. We see immediately that each orbit of a crystallographic group is countably infinite, but locally finite: The definition of discreteness in (4) implies that every bounded subset of n\mathbb{R}^{n} contains only finitely many points of each orbit. We also see that each point xn{x\in\mathbb{R}^{n}} is in one and only one orbit, which means the orbits form a partition of n\mathbb{R}^{n}. The assignment x𝔾(x){x\mapsto\mathbb{G}(x)} is hence a well-defined map

q(x):=𝔾(x) with image n/𝔾:=q(n)={𝔾(x)|xn}.q(x)\;:=\;\mathbb{G}(x)\quad\text{ with image }\quad\mathbb{R}^{n}/\mathbb{G}\;:=\;q(\mathbb{R}^{n})\;=\;{\{\mathbb{G}(x)\,|\,x\in\mathbb{R}^{n}\}}\;.

The orbit set n/𝔾\mathbb{R}^{n}/\mathbb{G} is also called the quotient set or just the quotient of 𝔾\mathbb{G}, and qq is called the quotient map (e.g., Bonahon [15]). Since the orbits are mutually disjoint, we can informally think of qq as collapsing each orbit into a single point, and n/𝔾\mathbb{R}^{n}/\mathbb{G} is the set of such points.

Figure 2: Left: A point xx and points on its orbit 𝔾(x)\mathbb{G}(x) in a shift tiling of 2\mathbb{R}^{2}. Right: The infimum in the definition of d𝔾(𝔾(x),𝔾(y))d_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y)) may be attained by the Euclidean distance dn(x,y)d_{n}(x,y) between a point yy in Π\Pi and a point ϕx\phi x in a different tile ϕΠ\phi\Pi.
Refer to captionRefer to caption

Quotient spaces are abstract but useful tools for expressing invariance properties: For any function f:n{f:\mathbb{R}^{n}\rightarrow\mathbb{R}}, we have

(8) f is 𝔾-invariant f=f^q for some function f^:n/𝔾,f\text{ is $\mathbb{G}$-invariant }\quad\Longleftrightarrow\quad f=\hat{f}\circ q\quad\text{ for some function }\hat{f}:\mathbb{R}^{n}/\mathbb{G}\rightarrow\mathbb{R}\;,

since each point of n/𝔾{\mathbb{R}^{n}/\mathbb{G}} represents an orbit and ff is invariant iff it is constant on orbits. We can also use the quotient to express continuity, by equipping it with a topology that satisfies

(9) f𝐂𝔾f=h^q for some continuous h^:n/𝔾.f\in\mathbf{C}_{\mathbb{G}}\quad\Longleftrightarrow\quad f=\hat{h}\circ q\quad\text{ for some continuous }\hat{h}:\mathbb{R}^{n}/\mathbb{G}\rightarrow\mathbb{R}\;.

There is exactly one such topology, called the quotient topology in the literature. Its definition can be made more concrete by metrizing it:

Fact 3 (see Bonahon [15], Theorem 7.7).

If 𝔾\mathbb{G} is crystallographic, the function

d𝔾(ω1,ω2):=inf{d(x,y)|xω1,yω2} for ω1,ω2n/𝔾d_{\mathbb{G}}(\omega_{1},\omega_{2})\,:=\,\inf{\{d(x,y)\,|\,{x\in\omega_{1},y\in\omega_{2}}\}}\quad\text{ for }\omega_{1},\omega_{2}\in\mathbb{R}^{n}/\mathbb{G}

is a valid metric on n/𝔾{\mathbb{R}^{n}/\mathbb{G}}, and it metrizes the quotient topology. A subset Un/𝔾{U\subset\mathbb{R}^{n}/\mathbb{G}} is open if and only if its preimage q1U{q^{-1}U} is open in n\mathbb{R}^{n}.

Since 𝔾\mathbb{G} is discrete, the infimum in d𝔾d_{\mathbb{G}} is a minimum. The distance of two orbits (considered as points in n/𝔾\mathbb{R}^{n}/\mathbb{G}) is hence the shortest Euclidean distance between points in these orbits (considered as sets in n\mathbb{R}^{n}), see Figure 2 (right). If xx and yy are points in the polytope Π\Pi, we have

xyd𝔾(𝔾(x),𝔾(y))= 0.x\sim y\quad\Longleftrightarrow\quad d_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y))\;=\;0\;.

Informally speaking, d𝔾d_{\mathbb{G}} implements the periodic boundary condition (6). The metric space (n/𝔾,d𝔾)(\mathbb{R}^{n}/\mathbb{G},d_{\mathbb{G}}) is also called the quotient space or orbit space of 𝔾\mathbb{G}. A very important property of crystallographic groups is that they have compact quotient spaces:

Fact 4 ([65, Proposition 1.6]).

If a discrete group 𝔾\mathbb{G} of isometries tiles n\mathbb{R}^{n} with a set MM, the quotient space (n/𝔾,d𝔾)(\mathbb{R}^{n}/\mathbb{G},d_{\mathbb{G}}) is homeomorphic to the quotient space M/𝔾M/\mathbb{G}. If 𝔾\mathbb{G} is crystallographic and tiles with a convex polytope, then (n/𝔾,d𝔾)(\mathbb{R}^{n}/\mathbb{G},d_{\mathbb{G}}) is compact.

3.3. Transversals and projections

Since orbit spaces are abstract objects, we can only work with them implicitly. One way to do so is by representing each orbit by one of its points in n\mathbb{R}^{n}. A subset of n\mathbb{R}^{n} that contains exactly one point of each orbit is called a transversal. In general, transversals can be exceedingly complex sets [9], but crystallographic groups always have simple transversals. Algorithm 2 in the next section constructs a transversal explicitly. In the following, we will always write Π~\tilde{\Pi} to mean

Π~:= a transversal contained in Π computed by Algorithm 2.\tilde{\Pi}\;:=\;\text{ a transversal contained in $\Pi$ computed by \lx@cref{creftype~refnum}{algorithm:transversal}.}

Given such a transversal, we can define the projector p:nΠ{p:\mathbb{R}^{n}\rightarrow\Pi} as

(10) p(x):= the unique element of 𝔾(x)Π~.p(x)\;:=\;\text{ the unique element of }\mathbb{G}(x)\cap\widetilde{\Pi}\;.

If we think of each point in Π~\tilde{\Pi} as a concrete representative of an element of n/𝔾{\mathbb{R}^{n}/\mathbb{G}}, then pp is similarly a concrete representation of the quotient map qq, and we can translate the identities above accordingly: The projector is by definition 𝔾\mathbb{G}-invariant, since we can write ff in (7) as f=hp{f=h\circ p}. That shows

(11) f:n is 𝔾-invariant f=hp for some h:Π satisfying (6).f:\mathbb{R}^{n}\rightarrow\mathbb{R}\text{ is $\mathbb{G}$-invariant }\;\;\Longleftrightarrow\;\;f\;=\;h\circ p\text{ for some }h:\Pi\rightarrow\mathbb{R}\text{ satisfying }\eqref{pbc}\;.

Although pp is not continuous as a function nΠ{\mathbb{R}^{n}\rightarrow\Pi}, continuity only fails at the boundary, and pp behaves like a continuous function when composed with hh:

Lemma 5.

Let h:Π𝐗{h:\Pi\rightarrow\mathbf{X}} be a continuous function with values in a topological space 𝐗\mathbf{X}. If hh satisfies (6), then hp{h\circ p} is a continuous 𝔾\mathbb{G}-invariant function n𝐗{\mathbb{R}^{n}\rightarrow\mathbf{X}}. It follows that

(12) f𝐂𝔾f=hp for some continuous h:Π satisfying (6).f\in\mathbf{C}_{\mathbb{G}}\;\;\Longleftrightarrow\;\;f\;=\;h\circ p\quad\text{ for some continuous }h:\Pi\rightarrow\mathbb{R}\text{ satisfying }\eqref{pbc}\;.

Since pp exists for any choice of 𝔾\mathbb{G} and Π\Pi, and since it can be evaluated algorithmically, we have hence reduced the problem of constructing continuous invariant functions to the problem of finding functions that satisfy the periodic boundary condition (6).

4 Taking quotients algorithmically: Orbit graphs

Refer to captionRefer to captionRefer to captionRefer to captionΠ\Pi within the tilingconstruct netapply elements of 𝒜Π\mathcal{A}_{\Pi}orbit graphRefer to captionRefer to captionRefer to captionRefer to caption
Figure 3: Orbit graph construction for two plane groups: p1 and p31m. Starting with the fundamental region (left), place points to construct an ϵ\epsilon-net (middle left), apply local group operations to these points (middle right), then add edges which may include vertices outside the fundamental region (right).

To work with invariant functions computationally, we must approximate the quotient metric. We do so using a data structure that we call an orbit graph, in which two points are connected if their orbits are close to each other. More formally, any undirected graph is a metric space when equipped with path length as distance. The metric space defined by the graph 𝒢\mathcal{G} below discretizes the metric space (n/𝔾,d𝔾){(\mathbb{R}^{n}/\mathbb{G},d_{\mathbb{G}})}. To define 𝒢\mathcal{G}, fix constants ε,δ>0{\varepsilon,\delta>0}. A finite set Γ\Gamma is an ε\varepsilon-net in Π\Pi if each point lies within distance ε\varepsilon of Γ\Gamma,

Γ is an ε-net : for each xΠ there exists zΓ such that dn(x,z)<ε,\Gamma\text{ is an $\varepsilon$-net }\quad:\Leftrightarrow\quad\text{ for each }x\in\Pi\text{ there exists }z\in\Gamma\text{ such that }d_{n}(x,z)\,<\,\varepsilon\;,

see e.g., Cooper et al. [23]. If Γ\Gamma is an ε\varepsilon-net in Π\Pi, we call the graph

𝒢=𝒢(ε,δ)=(Γ,E) where E:={(x,y)|d𝔾(𝔾(x),𝔾(y)<δ}\mathcal{G}=\mathcal{G}(\varepsilon,\delta)=(\Gamma,E)\quad\text{ where }\quad E:={\{(x,y)\,|\,d_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y)<\delta\}}

an orbit graph for 𝔾\mathbb{G} and Π\Pi.

4.1. Computing orbit graphs

Algorithmically, an orbit graph can be constructed as follows: Constructing an ε\varepsilon-net is a standard problem in computational geometry and can be solved efficiently (e.g., Haussler and Welzl [33]). Having done so, the problem we have to solve is:

Given points x,yΠ, determine d𝔾(𝔾(x),𝔾(y)).\text{Given points }x,y\in\Pi\text{, determine }d_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y))\;.

Since Π\Pi is a polytope, its diameter

diam(Π):=max{dn(x,y)|x,yΠ}<\text{diam}(\Pi)\;:=\;\max{\{d_{n}(x,y)\,|\,x,y\in\Pi\}}\;<\;\infty

can also be evaluated computationally. By definition of d𝔾d_{\mathbb{G}}, we have

d𝔾(𝔾(x),𝔾(y))=minϕ𝔾dn(x,ϕy)dn(x,y)diam(Π).d_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y))\;=\;\min_{\phi\in\mathbb{G}}d_{n}(x,\phi y)\;\leq\;d_{n}(x,y)\;\leq\;\text{diam}(\Pi)\;.

That shows the minimum is always attained for a point ϕy\phi y on a tile ϕΠ\phi\Pi that lies within distance diam(Π)\text{diam}(\Pi) of xx. The set of transformations that specify these tiles is

𝒜Π={ϕ𝔾|dn(x,ϕz)diam(Π) for some zΠ}.\mathcal{A}_{\Pi}\;=\;{\{\phi\in\mathbb{G}\,|\,d_{n}(x,\phi z)\leq\text{diam}(\Pi)\text{ for some }z\in\Pi\}}\;.

This set is always finite, since 𝔾\mathbb{G} is discrete and the ball of radius diam(Π)\text{diam}(\Pi) is compact. We can hence evaluate the quotient metric as

d𝔾(𝔾(x),𝔾(y))=min{dn(x,ϕy)|ϕ𝒜Π},d_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y))\;=\;\min{\{d_{n}(x,\phi y)\,|\,\phi\in\mathcal{A}_{\Pi}\}}\,,

which reduces the construction of EE to a finite search problem. In summary:

Algorithm 1 (Constructing the orbit graph).
1.) Construct the ε\varepsilon-net Γ\Gamma.
2.) Find local group elements 𝒜Π\mathcal{A}_{\Pi}.
3.) For each pair x,yΓx,y\in\Gamma, find d𝔾(𝔾(x),𝔾(y))=min{dn(x,ϕy)|ϕ𝒜Π}d_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y))=\min{\{d_{n}(x,\phi y)\,|\,\phi\in\mathcal{A}_{\Pi}\}}.
4.) Add an edge between xx and yy if d𝔾(𝔾(x),𝔾(y))<δd_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y))<\delta.

The construction is illustrated in Figure 3.

4.2. Computing a transversal

Recall that the faces of a polytope are its vertices, edges, and so forth; the facets are the (n1){(n-1)}-dimensional faces. The polytope itself is also a face, of dimension nn. See [70] for a precise definition. Given Π\Pi and 𝔾\mathbb{G}, we will call two faces SS and SS^{\prime} 𝔾\mathbb{G}-equivalent if S=ϕS{S^{\prime}=\phi S} for some ϕ𝔾{\phi\in\mathbb{G}}. Thus, if S=Π{S=\Pi}, its equivalence class is {Π}{\{\Pi\}}. If SS is a facet, it is equivalent to at most one distinct facet, so its equivalence class has one or two elements. The equivalence classes of lower-dimensional faces may be larger—if 𝔾\mathbb{G} is p1 and Π\Pi a square, for example, all four vertices of Π\Pi are 𝔾\mathbb{G}-equivalent.

Algorithm 2 (Constructing a transversal).
1) Start with an exact tiling. Enumerate all faces of Π\Pi.
2) Sort faces into 𝔾\mathbb{G}-equivalence classes.
3) Select one face from each class and take its relative interior.
4) Output the union Π~\tilde{\Pi} of these relative interiors.
Lemma 6.

The set Π~\tilde{\Pi} constructed by Algorithm 2 is a transversal.

Proof.

The relative interiors of the faces of a convex polytope are mutually disjoint and their union is Π\Pi, so each point xΠ{x\in\Pi} is on exactly one such relative interior. Let SS be the face with xS{x\in S^{\circ}}, and consider any ϕ𝔾{\phi\in\mathbb{G}}. Since the tiling is exact, ϕS{\phi S} is either a face of Π\Pi or ϕSΠ={\phi S\cap\Pi=\varnothing}. If ϕxΠ{\phi x\in\Pi}, the intersection cannot be empty, so ϕS\phi S is a face and hence 𝔾\mathbb{G}-equivalent to SS. It follows that the interior of a face of Π\Pi intersect the orbit 𝔾x\mathbb{G}x if and only if it is in the equivalence class of SS. Since we select exactly one element of this class, exactly one point of 𝔾x\mathbb{G}x is contained in Π~\tilde{\Pi}. ∎

4.3. Computing the projector

Since 𝔾\mathbb{G} is crystallographic, it contains shifts in nn linearly independent directions, and these shifts hence specify a coordinate system of n\mathbb{R}^{n}. More precisely: There are nn elements ϕ1,,ϕn{\phi_{1},\ldots,\phi_{n}} of 𝔾\mathbb{G} that (1) are pure shifts (satisfy Aϕi=𝕀{A_{\phi_{i}}=\mathbb{I}}), (2) are linearly independent, and (3) are the shortest such elements (in terms of the Euclidean norm of bϕib_{\phi_{i}}). Up to a sign, each of these elements is uniquely determined. We refer to the vectors ϕ1,,ϕn{\phi_{1},\ldots,\phi_{n}} as the shift coordinate system of 𝔾\mathbb{G}.

Algorithm 3 (Computing the projector).
1.) Perform a basis change from the shift coordinates to the standard basis of n\mathbb{R}^{n}.
2.) Set x~=(x1mod1,,xnmod1){\tilde{x}=(x_{1}\mod 1,\ldots,x_{n}\mod 1)}.
3.) Find ϕ𝔾{\phi\in\mathbb{G}} such that ϕx~Π~{\phi\tilde{x}\in\tilde{\Pi}}.
4.) Apply the reverse change of basis from standard to shift coordinates.

5 Linear representation: Invariant Fourier transforms

In this section, we obtain a basis representation for invariant functions: given a crystallographic group 𝔾\mathbb{G}, we construct a sequence of 𝔾\mathbb{G}-invariant functions e1,e2,{e_{1},e_{2},\ldots} on n\mathbb{R}^{n} such that any 𝔾\mathbb{G}-invariant continuous function can be represented as a (possibly infinite) linear combination iciei{\sum_{i\in\mathbb{N}}c_{i}e_{i}}. If 𝔾\mathbb{G} is generated by nn orthogonal shifts, the functions eie_{i} are an nn-dimensional Fourier basis. Theorem 7 below obtains an analogous basis for each crystallographic group 𝔾\mathbb{G}.

5.1. Representation theorem

For any open set Mn{M\subseteq\mathbb{R}^{n}}, we define the Laplace operator on twice differentiable functions h:M{h:M\rightarrow\mathbb{R}} as

Δh:=\mfrac2hx12++\mfrac2hxn2=𝖳(h).\Delta h\;:=\;\mfrac{\partial^{2}h}{\partial x_{1}^{2}}+\ldots+\mfrac{\partial^{2}h}{\partial x_{n}^{2}}\;=\;\nabla^{\sf{T}}(\nabla h)\;.

Now consider specifically functions e:n{e:\mathbb{R}^{n}\rightarrow\mathbb{R}}. Fix some λ{\lambda\in\mathbb{R}}, and consider the constrained partial differential equation

(13) Δe\displaystyle-\Delta e =λe\displaystyle\;=\;\lambda e\quad on n\displaystyle\text{ on }\mathbb{R}^{n}
subject to e\displaystyle\text{subject to }\qquad e =eϕ\displaystyle\;=\;e\circ\phi\quad for ϕ𝔾.\displaystyle\text{ for }\phi\in\mathbb{G}\;.

Clearly, there is always a trivial solution, namely the constant function e=0{e=0}. If (13) has a non-trivial solution ee, we call this ee a 𝔾\mathbb{G}-eigenfunction and λ\lambda a 𝔾\mathbb{G}-eigenvalue of the linear operator Δ-\Delta. Denote the set of solutions by

𝒱(λ):={e:n|e satisfies (13)}.\mathcal{V}(\lambda)\;:=\;{\{e:\mathbb{R}^{n}\rightarrow\mathbb{R}\,|\,e\text{ satisfies }\eqref{sturm:liouville}\}}\;.

Since 0 is a solution, and any linear combination of solutions is again a solution, 𝒱(λ){\mathcal{V}(\lambda)} is a vector space, called the eigenspace of λ\lambda. Its dimension

k(λ):=dim𝒱(λ)k(\lambda)\;:=\;\dim\mathcal{V}(\lambda)

is the multiplicity of λ\lambda.

Theorem 7 (Crystallographically invariant Fourier basis).

Let 𝔾\mathbb{G} be a crystallographic group that tiles n\mathbb{R}^{n} with a convex polytope Π\Pi. Then the constrained problem (13) has solutions for countably many distinct values λ1,λ2,{\lambda_{1},\lambda_{2},\ldots} of λ\lambda, and these values satisfy

0=λ1<λ2<λ3< and λii.0\,=\,\lambda_{1}\,<\,\lambda_{2}\,<\,\lambda_{3}<\ldots\qquad\text{ and }\qquad\lambda_{i}\;\xrightarrow{i\rightarrow\infty}\;\infty\;.

Every solution function ee is infinitely often differentiable. There is a sequence e1,e2,{e_{1},e_{2},\ldots} of solutions whose restrictions e1|Π,e2|Π,{e_{1}|_{\Pi},e_{2}|_{\Pi},\ldots} to Π\Pi form an orthonormal basis of the the space 𝐋2(Π)\mathbf{L}_{2}(\Pi), and satisfy

|{j|ej𝒱(λi)}|=k(λi) for each i.\big{|}{\{\,j\in\mathbb{N}\,|\,e_{j}\in\mathcal{V}(\lambda_{i})\}}\big{|}\;=\;k(\lambda_{i})\qquad\text{ for each }i\in\mathbb{N}\;.

A function f:n{f:\mathbb{R}^{n}\rightarrow\mathbb{R}} is 𝔾\mathbb{G}-invariant and continuous if and only if

f=\medmathiciei for some sequence c1,c2,,f\;=\;\operatorname{\medmath\sum}_{i\in\mathbb{N}}c_{i}e_{i}\qquad\text{ for some sequence }c_{1},c_{2},\ldots\in\mathbb{R}\;,

where the series converges in the supremum norm.

Proof.

See Appendix G. ∎

Remark 8.

The space 𝐋2(n){\mathbf{L}_{2}(\mathbb{R}^{n})} contains no non-trivial 𝔾\mathbb{G}-invariant functions, since for every f𝐂𝔾{f\in\mathbf{C}_{\mathbb{G}}}

f𝐋2(n)=ϕ𝔾f|ϕΠ𝐋2(ϕΠ)={0f=0 almost everywhereotherwise.\|f\|_{\mathbf{L}_{2}(\mathbb{R}^{n})}\;=\;\operatorname{{\textstyle\sum}}_{\phi\in\mathbb{G}}\|\,f|_{\phi\Pi}\,\|_{\mathbf{L}_{2}(\phi\Pi)}\;=\;\begin{cases}0&f=0\text{ almost everywhere}\\ \infty&\text{otherwise}\end{cases}\;.

On the other hand, the restriction f|Πf|_{\Pi} is in 𝐋2(Π)\mathbf{L}_{2}(\Pi), and completely determines ff. That makes 𝐋2(Π)\mathbf{L}_{2}(\Pi) the natural 𝐋2\mathbf{L}_{2}-space in the context of crystallographic invariance, and is the reason why the restrictions ei|Πe_{i}|_{\Pi} are used in the theorem. Since 𝐋2(ϕΠ)\mathbf{L}_{2}(\phi\Pi) is isometric to 𝐋2(Π)\mathbf{L}_{2}(\Pi) for all ϕ𝔾{\phi\in\mathbb{G}}, it does not matter which tile we restrict to.

Refer to captionRefer to captionRefer to captionRefer to captionRefer to caption39.4839.4839.4839.4878.95
Figure 4: The first five non-constant basis functions e2,,e6{e_{2},\ldots,e_{6}} in Theorem 7, with their eigenvalues λi\lambda_{i}, for the group p1. The eigenbasis in this case is precisely the standard Fourier basis on 2\mathbb{R}^{2}.

5.2. Relationship to Fourier series

Refer to captionRefer to captionRefer to captionRefer to captionRefer to caption52.62157.87210.87368.02368.34Refer to captionRefer to captionRefer to captionRefer to captionRefer to caption473.55631.41683.39684.06841.80
Figure 5: The first ten non-constant basis functions e2,,e11{e_{2},\ldots,e_{11}} in Theorem 7, with their approximate eigenvalues λi\lambda_{i}, for the group p6. In this case, the mulitplicities k(λi)k(\lambda_{i}) are not 2n=42n=4 as for the standard Fourier transform.

The standard Fourier bases for periodic functions on n\mathbb{R}^{n} can be obtained as the special cases of Theorem 7 for shift groups: Fix some edge width c>0{c>0}, and choose Π\Pi and 𝔾\mathbb{G} as

Π=[0,c]n and 𝔾={xx+c(i1,,in)𝖳|i1,,in}.\Pi\;=\;[0,c]^{n}\qquad\text{ and }\qquad\mathbb{G}=\bigl{\{}x\mapsto x+c(i_{1},\ldots,i_{n})^{\sf{T}}\,\big{|}\,i_{1},\ldots,i_{n}\in\mathbb{Z}\bigr{\}}\;.

For these groups, all eigenvalue multiplicities are k(λi)=2n{k(\lambda_{i})=2n} for each i{i\in\mathbb{N}}. For n=2{n=2}, the group 𝔾\mathbb{G} is p1 (see Figure 1). Its eigenfunctions are shown in Figure 4.

To clarify the relationship in more detail, consider the case n=1{n=1}: Since Δ\Delta is a second derivative, the functions e(x)=cos(νx){e(x)=\cos(\nu x)} and e(x)=sin(νx){e(x)=\sin(\nu x)} satisfy

Δe(x)=ν2e(x) for each ν0,\Delta e(x)\;=\;-\nu^{2}e(x)\qquad\text{ for each }\nu\geq 0\;,

and are hence eigenfunctions of Δ{-\Delta} with eigenvalue λ=ν2{\lambda=\nu^{2}}. For this choice of Π\Pi and 𝔾\mathbb{G}, the invariance constraint in (13) holds iff e(x)=e(x+c){e(x)=e(x+c)} for every x{x\in\mathbb{R}}. That is true iff

ν(x+c)=νx+2π(i1) for some i, and hence λi=ν2=(\mfrac2π(i1)c)2.\nu(x+c)\;=\;\nu x+2\pi(i-1)\quad\text{ for some $i\in\mathbb{N}$, and hence }\quad\lambda_{i}\;=\;\nu^{2}\;=\;\Bigl{(}\mfrac{2\pi(i-1)}{c}\Bigr{)}^{2}\;.

The eigenspaces are therefore the two-dimensional vector spaces

𝒱(λi)=span{sin(λi),cosλi)} with k(λi)= 2 for all i.\mathcal{V}(\lambda_{i})\;=\;\text{span}{\{\sin(\sqrt{\lambda_{i}}{\,\vbox{\hbox{\tiny$\bullet$}}\,}),\cos\sqrt{\lambda_{i}}{\,\vbox{\hbox{\tiny$\bullet$}}\,})\}}\quad\text{ with }\quad k(\lambda_{i})\;=\;2\qquad\text{ for all }i\in\mathbb{N}\;.

Any continuous function ff that is 𝔾\mathbb{G}-invariant (or, equivalently, cc-periodic) can be expanded as

(14) f(x)=\medmathiaicos(λix)+bisin(λix).f(x)\;=\;\operatorname{\medmath\sum}_{i\in\mathbb{N}}a_{i}\cos(\sqrt{\lambda_{i}}x)+b_{i}\sin(\sqrt{\lambda_{i}}x)\;.

In the notation of Theorem 7, the coefficients are c2i=ai{c_{2i}=a_{i}} and c2i+1=bi{c_{2i+1}=b_{i}}, and

e2i(x)=cos(λ2ix) and e2i+1(x)=sin(λ2i+1x).e_{2i}(x)=\cos(\sqrt{\lambda_{2i}}x)\quad\text{ and }\quad e_{2i+1}(x)=\sin(\sqrt{\lambda_{2i+1}}x)\;.

Note that the unconstrained equation has solutions for all λ\lambda in the uncountable set [0,){[0,\infty)}. The invariance constraint limits possible values to the countable set λ1,λ2,{\lambda_{1},\lambda_{2},\ldots}. If ff was continuous but not invariant, the expansion (14) would hence require an integral on the right. Since ff is invariant, a series suffices.

Remark 9 (Multiplicities and real versus complex coefficients).

Fourier series, in particular in one dimension, are often written using complex-valued functions as

f(x)=\medmathiγiexp(Jλix) where γi and J:=1.f(x)\;=\;\operatorname{\medmath\sum}_{i\in\mathbb{N}}\gamma_{i}\exp(J\lambda_{i}x)\qquad\text{ where }\gamma_{i}\in\mathbb{C}\text{ and }J:=\sqrt{-1}\;.

Since Euler’s formula exp(Jx)=cos(x)+Jsin(x){\exp(Jx)=\cos(x)+J\sin(x)} shows

γiexp(Jλi)=aicos(λix)+bisin(λi) for (aiJbi)=γi,\gamma_{i}\exp(J\sqrt{\lambda_{i}})\;=\;a_{i}\cos(\sqrt{\lambda_{i}}x)+b_{i}\sin(\sqrt{\lambda_{i}})\quad\text{ for }(a_{i}-Jb_{i})=\gamma_{i}\;,

that is equivalent to (14). The complex plane \mathbb{C} is not inherent to the Fourier representation, but rather a convenient way to parameterize the two-dimensional eigenspace 𝒱(λi)\mathcal{V}(\lambda_{i}). For general crystallographic groups, the complex representation is less useful, since the multiplicities k(λi)k(\lambda_{i}) may not be even, as can be seen in Figure 5.

Refer to captionRefer to captionRefer to captionRefer to captionRefer to caption78.94158.46237.30238.46323.08Refer to captionRefer to captionRefer to captionRefer to captionRefer to caption395.37438.02489.34490.42576.43
Figure 6: The first ten non-constant basis functions e2,,e11{e_{2},\ldots,e_{11}} in Theorem 7, with their approximate eigenvalues λi\lambda_{i}, for the group I23 on 3\mathbb{R}^{3}.

5.3. Spectral algorithms

The eigenfunctions in Theorem 7 can be approximated by eigenvectors of a suitable graph Laplacian of the orbit graph as follows. We first compute an orbit graph 𝒢=(Γ,E){\mathcal{G}=(\Gamma,E)} as described in Section 4. We weight each edge (x,y)(x,y) of the graph by

(15) w(x,y)\displaystyle w(x,y) ={exp(d𝔾2(𝔾(x),𝔾(y))2ϵ2) if (x,y)E0 otherwise.\displaystyle=\begin{cases}\exp\Bigl{(}-\frac{d^{2}_{\mathbb{G}}(\mathbb{G}(x),\mathbb{G}(y))}{2\epsilon^{2}}\Bigr{)}&\text{ if }(x,y)\in E\\ 0&\text{ otherwise}\end{cases}\;.

The normalized Laplacian of the weighted graph is

(16) L=𝕀D1W where Wxy=w(x,y),\displaystyle L=\mathbb{I}-D^{-1}W\qquad\text{ where }W_{xy}=w(x,y)\,,

and D{D} is the diagonal matrix containing the sum of each row of WW. See e.g., Chung [20] for more on the matrix LL. Our estimates of the eigenvalues and -functions of Δ\Delta are the eigenvalues and eigenvectors of LL,

λ^i:=ith eigenvalue of L and e^i:=ith eigenvector of L.\hat{\lambda}_{i}\;:=\;\text{$i$th eigenvalue of }L\quad\text{ and }\quad\hat{e}_{i}\;:=\;\text{$i$th eigenvector of }L\,.

These approximate the spectrum of Δ\Delta in the sense that

λi\mfrac2ϵλ^i and ei(x)\mfrac2ϵ(e^i)x for xΓ,\lambda_{i}\;\approx\;\mfrac{2}{\epsilon}\,\hat{\lambda}_{i}\qquad\text{ and }\qquad e_{i}(x)\;\approx\;\mfrac{2}{\epsilon}\,(\hat{e}_{i})_{x}\qquad\text{ for }x\in\Gamma\;,

see Singer [56]. Once an eigenvector e^i\hat{e}_{i} is computed, values of eie_{i} at points xΓ{x\not\in\Gamma} can be estimated using standard interpolation methods.

Algorithm 4 (Computing Fourier basis).
1.) Construct the orbit graph (Γ,E)(\Gamma,E).
2.) Compute the normalized Laplacian matrix LL according to (16).
3.) Compute eigenvectors e^i\hat{e}_{i} and eigenvalues λ^i\hat{\lambda}_{i} of LL.
4.) Return eigenvalues and interpolated eigenfunctions.

Alternatively, the basis can be computed using a Galerkin approach, which is described in Section 9.5. The functions in Figures 4, 5 and 6 are computed using the Galerkin method.

Remark 10 (Reflections and Neumann boundary conditions).

The orbit graph automatically enforces the boundary condition (6), since it measures distance in terms of d𝔾d_{\mathbb{G}}. The exception are group elements that are reflections, since these imply an additional property that the graph does not resolve: If ϕ\phi is a reflection over a facet SS, xx a point on SS (and hence ϕx=x\phi x=x), and ff a ϕ\phi-invariant smooth function, we must have f(x)=f(ϕx){\nabla f(x)=-\nabla f(\phi x)}, and hence f=0\nabla f=0 on SS. In the parlance of PDEs, this is a Neumann boundary condition, and can be enforced in several ways:
1) For each point xjΓ{x_{j}\in\Gamma} that is on SS, add a point xjx_{j^{\prime}} to Γ\Gamma and the edge (xj,xj)(x_{j},x_{j}^{\prime}) to EE. Then constrain each eigenvector eie_{i} in Algorithm 4 to satisfy eij=eij{e_{ij}=e_{ij^{\prime}}}. This approach is common in spectral graph theory (e.g., Chung [20]).
2) Alternatively, one may symmetrize the orbit graph: For vertext xjx_{j} that is close to SS, add its reflection xj:=ϕ(xj){x_{j^{\prime}}:=\phi(x_{j})} to Γ\Gamma. Now construct the edge set according to d𝔾d_{\mathbb{G}} using the augmented vertex set, and again constrain eigenvectors to satisfy eij=eij{e_{ij}=e_{ij^{\prime}}}. Either constrained eigenvalue problem can be solved using techniques of Golub [29].

6 Nonlinear representation: Factoring through an orbifold

Refer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to caption
Figure 7: Visualizations of four-dimensional orbifold embeddings for wallpaper groups cm (top) and p2gg (bottom). Compare the p2gg embedding to the three-dimensional visualization in Figure 9.

We now generalize MacKay’s construction, as sketched in the introduction, from shifts to crystallographic groups. The construction defines a map

ρ|Π:ΠΩN which in turn defines ρ:=ρΠp:nΩ.\rho|_{\Pi}:\,\Pi\rightarrow\Omega\subset\mathbb{R}^{N}\quad\text{ which in turn defines }\quad\rho:=\rho_{\Pi}\circ p:\mathbb{R}^{n}\rightarrow\Omega\;.

In MacKay’s case, Π\Pi is an interval and Ω2{\Omega\in\mathbb{R}^{2}} a circle. The circle can be obtained from Π\Pi by “gluing” the ends of the interval to each other. To generalize this idea, we proceed as follows: Starting with the polytope Π\Pi, we find any pair of points xx and yy on the same orbit of 𝔾\mathbb{G}, and “bend” Π\Pi so that we can glue xx to yy. That results in a surface Ω\Omega in N\mathbb{R}^{N}, where Nn{N\geq n} since we have bent Π\Pi. If we denote the point on Ω\Omega that corresponds to xΠ{x\in\Pi} by ρ|Π(x){\rho|_{\Pi}(x)}, we obtain the maps above. We first show how to implement this construction numerically, and then consider its mathematical properties. In mathematical terms, the surface Ω\Omega is an orbifold, a concept that generalizes the notion of a manifold. The term 𝔾\mathbb{G}-orbifold is made precise in in Appendix C, but can be read throughout this section as a surface in N\mathbb{R}^{N} that is “smooth almost everywhere”.

6.1. Gluing algorithms

The gluing algorithm constructs numerical approximations ρ^\widehat{\rho} of ρ\rho and Ω^\widehat{\Omega} of Ω\Omega. Here, Ω^\widehat{\Omega} is a surface in N^\widehat{N} dimensions, where (as we explain below) N^{\widehat{N}} may be larger than NN. As in the linear formulation of Section 5, we start with the orbit graph 𝒢=(Γ,E){\mathcal{G}=(\Gamma,E)}, but in this case weight the edges to obtain a weighted graph

𝒢w=(Γ,Ew) with weight(x,y):={d𝔾(x,y)if (x,y)E0if (x,y)E.\mathcal{G}_{w}\;=\;(\Gamma,E_{w})\qquad\text{ with }\qquad\text{weight}(x,y):=\begin{cases}d_{\mathbb{G}}(x,y)&\text{if }(x,y)\in E\\ 0&\text{if }(x,y)\not\in E\end{cases}\;.

The weighted graph provides approximate distances in quotient space. The surface Ω^\widehat{\Omega} is constructed from this graph by multidimensional scaling (MDS) [40]. MDS proceeds as follows: Let RR be the matrix of squared geodesic distances, with entries

Rij=(weighted path length from xi to xj in 𝒢w)2.R_{ij}\;=\;(\text{weighted path length from $x_{i}$ to $x_{j}$ in $\mathcal{G}_{w}$})^{2}\;.

Let 0<δ1δ|Γ|{0<\delta_{1}\leq\ldots\leq\delta_{|\Gamma|}} be the eigenvalues and v1,,v|Γ|{v_{1},\ldots,v_{|\Gamma|}} the eigenvectors of the matrix

R~\displaystyle\tilde{R} =12(𝕀\mfrac1|Γ|𝕁)R(𝕀\mfrac1|Γ|𝕁) where 𝕀=diag(1,,1) and 𝕁=(11 . . . . . . 11).\displaystyle=-\frac{1}{2}\Bigl{(}\mathbb{I}-\mfrac{1}{|\Gamma|}\mathbb{J}\Bigr{)}\,R\,\Bigl{(}\mathbb{I}-\mfrac{1}{|\Gamma|}\mathbb{J}\Bigr{)}\qquad\text{ where }\mathbb{I}=\text{diag}(1,\ldots,1)\text{ and }\mathbb{J}={\scriptsize\begin{pmatrix}1&\cdots&1\\ \vbox{\hbox{.}\hbox{.}\hbox{.}\kern-0.79997pt}&&\vbox{\hbox{.}\hbox{.}\hbox{.}\kern-0.79997pt}\\ 1&\cdots&1\end{pmatrix}}\;.

The embedding of each point xi{x_{i}} in the ε\varepsilon-net Γ\Gamma is then given by

ρ^(xi):=(δ|Γ|v|Γ|,iδ|Γ|1v|Γ|1,iδ|Γ|N^v|Γ|N^,i).\widehat{\rho}(x_{i})\;:=\;\left(\begin{matrix}\sqrt{\delta_{|\Gamma|}}\,v_{|\Gamma|,i}\\[1.00006pt] \sqrt{\delta_{|\Gamma|-1}}\,v_{|\Gamma|-1,i}\\ \vdots\\ \sqrt{\delta_{\smash{|\Gamma|-\widehat{N}}}}\,v_{|\Gamma|-\widehat{N},i}\end{matrix}\right)\,.

The dimension N^\widehat{N} is chosen to minimize error in the distances. From ρ^(x1),,ρ^(x|Γ|){\smash{\widehat{\rho}}(x_{1}),\ldots,\smash{\widehat{\rho}}(x_{|\Gamma|})}, the surface Ω^\smash{\widehat{\Omega}} and the map ρ^|Π\smash{\widehat{\rho}|_{\Pi}} are obtained by interpolation.

Refer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to captionRefer to caption
Figure 8: Visualizations of five-dimensional orbifold embeddings for Imm2 (top) and P65{}_{\texttt{5}} (bottom).
Refer to captionRefer to captionRefer to captionp1pmp2ggRefer to captionRefer to captionRefer to captionp2mgp4gmp3m1
Figure 9: Visualization of several plane group orbifolds in three dimensions, computed as embeddings of orbit graphs as described in Section 6.1. The mesh on each orbifold is the image of the orbit graph. Note that reflections result in boundaries for pm, p2mg, p4mg, and p3m1, and that in particular all of the edges for p3m1 are boundaries. The self-intersections visible for p2gg are an artifact of visualizing in three dimensions—for a sufficiently high dimension, the surface does not self-intersect.
Algorithm 5 (Gluing with multidimensional scaling).
1.) Construct the weighted orbit graph 𝒢w\mathcal{G}_{w}.
2.) Compute the eigenvalues δi\delta_{i} and eigenvectors viv_{i} of R~\tilde{R}.
3.) Compute vertex embeddings ρ^(x1),,ρ^(x|Γ|){\smash{\widehat{\rho}}(x_{1}),\ldots,\smash{\widehat{\rho}}(x_{|\Gamma|})}.
4.) Return interpolated vertex embeddings.

Once ρ^|Π\smash{\widehat{\rho}|_{\Pi}} can be computed, we can also compute ρ^:=ρ^|Πp\widehat{\rho}:=\widehat{\rho}\,|_{\Pi}\circ p, since the projector pp can be evaluated using Algorithm 3.

Remark 11.

The procedure satisfies two desiderata for constructing the orbifold map: 1) facets to be glued will be brought together, and 2) distances between interior points in Π\Pi will be approximately preserved. The embedding is unique up to isometric transformations. The embedding step is similar to the Isomap [61] algorithm, but unlike Isomap embeds into a higher-dimensional space rather than a lower-dimensional one.

6.2. Example: Invariant neural networks

Given 𝔾\mathbb{G} and Π\Pi, compute ρ^\widehat{\rho} and Ω^\widehat{\Omega} using Algorithm 5. Choose a neural network

hθ:N^ with parameter vector θ and set fθ:=hθρ^.h_{\theta}:\mathbb{R}^{\smash{\widehat{N}}}\rightarrow\mathbb{R}\quad\text{ with parameter vector }\theta\text{ and set }\quad f_{\theta}:=h_{\theta}\circ\smash{\widehat{\rho}}\;.

Then fθf_{\theta} is a real-valued neural network on n\mathbb{R}^{n}. Figure 10 shows examples of fθf_{\theta} for n=3{n=3}, where hθh_{\theta} has three hidden layers of ten units each, with rectified linear (relu) activations, although the input dimension N^\widehat{N} may vary according to the choice of 𝔾\mathbb{G} and Π\Pi. The parameter vector is generated at random.

Remark 12.

Since most ways of performing interpolation in the construction of ρ^\smash{\widehat{\rho}} are amenable to automatic differentiation tools, this representation is easy to incorporate into machine learning pipelines. Moreover, universality results for neural networks (e.g., Hornik et al. [35]) carry over: If a class of neural networks hθh_{\theta} approximates to arbitrary precision in 𝐂(N){\mathbf{C}(\mathbb{R}^{N})}, the the resulting functions fθf_{\theta} approximate to arbitrary precision in 𝐂𝔾\mathbf{C}_{\mathbb{G}} (though the approximation rate may change under composition with ρ\rho). See Corollary 17.

Refer to captionRefer to captionRefer to captionRefer to captionP32Pnn2Aea2P41212
Figure 10: Four random neural networks for four different space groups, each with three hidden layers of ten units each and relu activations.
Figure 11: Dirichlet domains. Left: The set Rϕ(x)R_{\phi}(x), shown in gray, is the closed half space of all points at least as close to xx as to ϕx\phi x. (In machine learning terms, the boundary of Rϕ(x)R_{\phi}(x) orthogonally intersects the connecting line between xx and ϕx\phi x at its center, and is hence the support vector classifier with two support vectors xx and ϕx\phi x.) Right: A Dirichlet domain 𝐃(x)\mathbf{D}(x) defined by the group generated by a vertical shift ϕ\phi and a diagonal shift ψ\psi in the plane.
xxϕx\phi xRϕ(x)R_{\phi}(x)xxϕx\phi xψx\psi xϕ1ψx\phi^{-1}\psi xϕ1x\phi^{-1}xψ1x\psi^{-1}xϕψ1x\phi\psi^{-1}x

6.3. Exact tilings

Although the properties of general orbifolds constitute one of the more demanding problems of modern mathematics, orbifolds of crystallographic groups are particularly well-behaved, and are well-understood. That we can draw directly on this theory is due to the fact that it uses a notion of gluing very similar to that employed by our algorithms as a proof technique [15, 53]. The two notions align under an additional condition: A convex polytope Π\Pi is exact for 𝔾\mathbb{G} if 𝔾\mathbb{G} tiles with Π\Pi, and if each face SS of Π\Pi can be represented as

S=ΠϕΠ for some ϕ𝔾.S\;=\;\Pi\cap\phi\Pi\qquad\text{ for some }\phi\in\mathbb{G}\;.

Not every Π\Pi with which 𝔾\mathbb{G} tiles is exact—in Figure 1, for example, the polytopes shown for pg and p3 are not exact, though all others are. However, given Π\Pi and 𝔾\mathbb{G}, we can always construct an exact surrogate as follows: Choose any point x{x\in\mathbb{R}} that is not a fixed point for any ϕ𝔾 {𝟏}{\phi\in\mathbb{G}\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}{\{\mathbf{1}\}}}. If 𝔾\mathbb{G} is crystallographic, that is true for every point in the interior of Π\Pi. For each ϕ𝔾{\phi\in\mathbb{G}}, the set

Rϕ(x):={yn|dn(y,x)dn(y,ϕx)},R_{\phi}(x)\;:=\;{\{y\in\mathbb{R}^{n}\,|\,d_{n}(y,x)\leq d_{n}(y,\phi x)\}}\;,

is a half-space in n\mathbb{R}^{n} (see Figure 11/left). The intersection

𝐃(x):=ϕ𝔾Rϕ(x)=ϕ|ϕΠΠRϕ(x)\mathbf{D}(x)\;:=\;\operatorname*{\raisebox{-1.49994pt}{$\mathbin{{\cap}}$}}\nolimits_{\phi\in\mathbb{G}}R_{\phi}(x)\;=\;\operatorname*{\raisebox{-1.49994pt}{$\mathbin{{\cap}}$}}\nolimits_{\phi\,|\,\phi\Pi\cap\Pi\neq\varnothing}R_{\phi}(x)

of these half-spaces is called a Dirichlet domain for 𝔾\mathbb{G} (Figure 11/right).

Fact 13 ([53, 6.7.4]).

If 𝔾\mathbb{G} is crystallographic, 𝐃(x)\mathbf{D}(x) is an exact convex polytope for 𝔾\mathbb{G}.

Example 14.

For illustration, consider the group pg: We start with a rectangle Π\Pi. The group is generated by two glide reflections ϕ\phi and ψ\psi, each of which shifts Π\Pi horizontally and then reflects it about one of its long edges (Figure 12/left). Exactness fails because the set ΠϕΠ{\Pi\cap\phi\Pi}, marked in black, is not a complete edge of Π\Pi. A Dirichlet domain for this tiling differs significantly from Π\Pi (Figure 12/right). Although substituting 𝐃(x)\mathbf{D}(x) for Π\Pi changes the look of the tiling, it does not change the group—that is, we still work with the same set of transformations (rather than another group in the same isomorphism class), and the axes of reflections are still defined by the faces of Π\Pi rather than those of 𝐃(x)\mathbf{D}(x).

Figure 12: The Dirichlet domain of a tiling may differ from the convex polytope defining the tiling. Left: A group generated by two glide reflections ϕ\phi and ψ\psi that tiles with a rectangle Π\Pi. Both glides shift the rectangle and then reflect it about one of its long edges. The set ΠϕΠ{\Pi\cap\phi\Pi}, marked black, is not a face of Π\Pi. Right: The Dirichlet domain 𝐃(x)\mathbf{D}(x). When 𝔾\mathbb{G} tiles with 𝐃(x)\mathbf{D}(x), the axes of reflection are still defined by the edges of Π\Pi.
xxϕx\phi xψx\psi xψ1x\psi^{-1}xϕ1x\phi^{-1}xxxϕx\phi xψx\psi xψ1x\psi^{-1}xϕ1x\phi^{-1}x

6.4. Properties of embeddings

Algorithm 5 can be interpreted as computing a numerical approximation ρ^\widehat{\rho} to a “true” embedding map ρ\rho, namely the map in (2) in the introduction. Our main result on the nonlinear representation, Theorem 15 below, shows that this map indeed exists for every crystallographic group, and describes some of its properties. The proof of the theorem shows that ρ\rho and the set Ω\Omega can be constructed by the following abstract gluing algorithm.   Abstract gluing construction.
1.) Glue: Identify each xΠ{x\in\partial\Pi} with the unique point yΠ{y\in\partial\Pi} satisfying xy{x\sim y}. 2.) Equip the glued set MM with metric d𝔾d_{\mathbb{G}}. 3.) Embed the metric space (M,d𝔾)(M,d_{\mathbb{G}}) as a subset ΩN{\Omega\subset\mathbb{R}^{N}} for some N{N\in\mathbb{N}}. 4.) For each xΠ{x\in\Pi}, define ρ|Π(x)\rho|_{\Pi}(x) as the representative of xx on Ω\Omega. 5.) Set ρ:=ρ|Πp{\rho:=\rho|_{\Pi}\circ p}.

Since Π\Pi contains at least one point of each orbit, and the gluing step identifies all points identifies all points on the same orbit with each other, the glued set MM can be regarded as the quotient set n/𝔾{\mathbb{R}^{n}/\mathbb{G}}. Recall that an embedding is a map MΩN{M\rightarrow\Omega\subset\mathbb{R}^{N}} that is a homeomorphism (a continuous bijection with continuous inverse) of the metric spaces (M,d𝔾)(M,d_{\mathbb{G}}) and (Ω,dN)(\Omega,d_{N}).

The state the theorem, we need one additional bit of terminology: The stabilizer of xx in 𝔾\mathbb{G} is the set of all ϕ\phi that leave xx invariant,

Stab(x):={ϕ𝔾|ϕx=x}\text{\rm Stab}(x)\;:=\;{\{\phi\in\mathbb{G}\,|\,\phi x=x\}}\;

see Vinberg and Shvartsman [65], Ratcliffe [53], Bonahon [15]. We explain the role of the stabilizer in more detail in the next subsection.

Theorem 15.

Let 𝔾\mathbb{G} be a crystallographic group that tiles n\mathbb{R}^{n} with an exact convex polytope Π\Pi. Then the set MM constructed by gluing is a compact 𝔾\mathbb{G}-orbifold that is isometric to n/𝔾\mathbb{R}^{n}/\mathbb{G}. This orbifold can be embedded into N\mathbb{R}^{N} for some

nN< 2(n+maxxΠ|Stab(x)|)<,n\;\leq\;N\;<\;2(n+\max_{x\in\Pi}|\text{\rm Stab}(x)|)\;<\;\infty\;,

that is, there is compact subset ΩN{\Omega\subset\mathbb{R}^{N}} such that the metric space (Ω,dN){(\Omega,d_{N})} is homeomorphic to (n/𝔾,d𝔾){(\mathbb{R}^{n}/\mathbb{G},d_{\mathbb{G}})}. In particular, every point xΠ{x\in\Pi} is represented by one and only one point ρΠ(x)\rho_{\Pi}(x). We can hence define a map

ρ:nΩN as ρ(x):=ρΠ(p(x)).\rho:\mathbb{R}^{n}\rightarrow\Omega\subset\mathbb{R}^{N}\qquad\text{ as }\qquad\rho(x)\;:=\;\rho_{\Pi}(p(x))\;.

The map ρ\rho is continuous, surjective, and 𝔾\mathbb{G}-invariant. A function f:nY{f:\mathbb{R}^{n}\rightarrow Y}, with values in some topological space YY, is 𝔾\mathbb{G}-invariant and continuous if and only if

f=hρ for some continuous h:NY.f=h\circ\rho\qquad\text{ for some continuous }h:\mathbb{R}^{N}\rightarrow Y\;.

Ω\Omega is smooth almost everywhere, in the sense that

voln{xΠ|ΩBε(ρ(x)) is not a manifold for any ε>0}= 0\text{\rm vol}_{n}{\{x\in\Pi\,|\,\Omega\cap B_{\varepsilon}(\rho(x))\text{ is not a manifold for any }\varepsilon>0\}}\;=\;0

where Bε(z)B_{\varepsilon}(z) denotes the open Euclidean metric ball of radius ε\varepsilon centered at zN{z\in\mathbb{R}^{N}}.

Proof.

See Appendix H. ∎

Remark 16.

(a) Note carefully what the theorem does and does not show about the embedding algorithm in Section 6.1: It does say that the glued set constructed by the algorithm discretizes an orbifold, and that an NN-dimensional embedding of this orbifold exists. It does not show that the embedding computed by MDS matches this dimension—indeed, since MDS attempts to construct an embedding that is also isometric (rather than just homeomorphic), we must in general expect the MDS embedding dimension to be larger, and we have at present no proof that an isometric embedding always exists.
(b) If the tiling defined by 𝔾\mathbb{G} and Π\Pi is not exact, we can nonetheless define an embedding ρ\rho that represents continuous functions that are invariant functions with respect to this tiling: Construct a Dirichlet domain 𝐃\mathbf{D}, and then construct ρ\rho by applying the gluing algorithm to 𝐃\mathbf{D}. Functions constructed as hρ{h\circ\rho} are then invariant for the tiling (𝔾,Π)(\mathbb{G},\Pi).

We have now seen different representations of continuous 𝔾\mathbb{G}-invariant functions on n\mathbb{R}^{n}, respectively by continuous functions on Π\Pi, on the abstract space n/𝔾\mathbb{R}^{n}/\mathbb{G}, and on Ω\Omega. On Π\Pi, we must explicitly impose the periodic boundary condition, so we are using the set

𝐂pbc(Π):={f^𝐂(Π)|f^ satisfies (6)}.\mathbf{C}_{\text{\rm pbc}}(\Pi)\;:=\;{\{\hat{f}\in\mathbf{C}(\Pi)\,|\,\hat{f}\text{ satisfies \eqref{pbc}}\}}\;.

In these representations, the projector pp, the quotient map qq, and the embedding map ρ\rho play very similar roles. We can make that observation more rigorous:

Corollary 17.

Given a crystallographic group 𝔾\mathbb{G} that tiles with a convex polytope Π\Pi, consider the maps

IΠ:𝐂pbc(Π)\displaystyle I_{\Pi}:\mathbf{C}_{\text{\rm pbc}}(\Pi) 𝐂𝔾\displaystyle\rightarrow\mathbf{C}_{\mathbb{G}} and In/𝔾:𝐂(n/𝔾)\displaystyle I_{\mathbb{R}^{n}/\mathbb{G}}:{\mathbf{C}(\mathbb{R}^{n}/\mathbb{G})} 𝐂𝔾\displaystyle\rightarrow\mathbf{C}_{\mathbb{G}} and IΩ:𝐂(Ω)\displaystyle I_{\Omega}:\mathbf{C}(\Omega) 𝐂𝔾\displaystyle\rightarrow\mathbf{C}_{\mathbb{G}}
f^\displaystyle\hat{f} f^p\displaystyle\mapsto\hat{f}\circ p g^\displaystyle\hat{g} g^q\displaystyle\mapsto\hat{g}\circ q h^\displaystyle\hat{h} h^ρ\displaystyle\mapsto\hat{h}\circ\rho

where IΩI_{\Omega} is only defined if Π\Pi is exact. Equip all spaces with the supremum norm. Then IΠI_{\Pi} and In/𝔾I_{\mathbb{R}^{n}/\mathbb{G}} are isometric isomorphisms, and if Π\Pi is exact, so is IΩI_{\Omega}. In particular, 𝐂𝔾\mathbf{C}_{\mathbb{G}} is always a separable Banach space.

Proof.

By Lemma 5, (8) and Theorem 15, all three maps are bijections. We also have

f^sup=supxΠ|f^(x)|=supxn|f^(p(x))|=f^psup for f^𝐂pbc(Π),\|\hat{f}\|_{\sup}\;=\;\sup\nolimits_{x\in\Pi}|\hat{f}(x)|\;=\;\sup\nolimits_{x\in\mathbb{R}^{n}}|\hat{f}(p(x))|\;=\;\|\hat{f}\circ p\|_{\sup}\quad\text{ for }\hat{f}\in\mathbf{C}_{\text{\rm pbc}}(\Pi)\;,

and the same holds mutatis mutandis on n/𝔾\mathbb{R}^{n}/\mathbb{G} and Ω\Omega, so all maps are isometries. Since Π\Pi is compact, 𝐂(Π)\mathbf{C}(\Pi) is separable [3, 3.99]. The same hence holds for the closed subspace 𝐂pbc(Π)\mathbf{C}_{\text{\rm pbc}}(\Pi), and by isometry for 𝐂𝔾\mathbf{C}_{\mathbb{G}}. ∎

6.5. Why the glued surface may not be smooth

Figure 13: Fixed points become non-smooth under gluing. Left: A triangular polytope Π\Pi is transformed by a rotation ϕ\phi, which rotates by 120120^{\circ} around the vertex xx of Π\Pi. Note that ϕ2=ϕ1{\phi^{2}=\phi^{-1}} and ϕ3=𝟏{\phi^{3}=\mathbf{1}}. Middle: The gluing defined by ϕ\phi identifies the edge (x,z)(x,z) and the edge (x,y)(x,y). Right: The resulting glued surface is a cone, with xx mapped to the tip. Locally around xx, the cone is not a manifold.
Refer to caption

Whether or not the glued surface is smooth depends on whether the transformations in 𝔾\mathbb{G} leave any points invariant. It is a known fact in geometry (and made precise in the proof of Theorem 15) that

glued surface is a manifold ϕxxfor all ϕ𝔾 {𝟏} and xn.\displaystyle\Leftrightarrow\qquad\phi x\;\neq\;x\quad\text{for all }\phi\in\mathbb{G}\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}{\{\mathbf{1}\}}\text{ and }x\in\mathbb{R}^{n}\;.
That can be phrased in terms of the stabilizer as
glued surface is a manifold Stab(x)={𝟏} for all xn.\displaystyle\Leftrightarrow\qquad\text{\rm Stab}(x)\;=\;{\{\mathbf{1}\}}\qquad\text{ for all }x\in\mathbb{R}^{n}\;.

It is straightforward to check that Stab(x)\text{\rm Stab}(x) is a group [65]. Since each ϕ\phi is an isometry, and shifts of n\mathbb{R}^{n} have no fixed points, ϕ(x)=x\phi(x)=x can only hold if bϕ=0{b_{\phi}=0}. Thus, Stab(x)\text{\rm Stab}(x) is always a subset of the point group 𝔾o\mathbb{G}_{o} (in the terminology of Appendix A), which means it is finite. To illustrate its effect on the surface, consider the following examples.

Example 18.

(a) Recall that MacKay’s construction [45], as sketched in the introduction, can be translated to crystallographic groups by setting Π=[0,1]{\Pi=[0,1]} and choosing 𝔾\mathbb{G} as shifts. In this case, Stab(x)={𝟏}{\text{\rm Stab}(x)={\{\mathbf{1}\}}} for each x{x\in\mathbb{R}}, and the glued surface is a circle, which is indeed a manifold. The two-dimensional analogue is to choose Π=[0,1]2{\Pi=[0,1]^{2}} and 𝔾\mathbb{G} as the group p1 in Figure 1, in which case the glued surface is a torus as shown in Figure 9, and hence again a manifold.
(b) Now suppose Π\Pi is a triangle, xx one of its corners, and ϕ\phi a 120120^{\circ} rotation around xx, as illustrated in Figure 13. Then Stab(x)={𝟏,ϕ,ϕ2=ϕ1}{\text{\rm Stab}(x)={\{\mathbf{1},\phi,\phi^{2}=\phi^{-1}\}}}, and the glued surface Ω=ρ(Π){\Omega=\rho(\Pi)} is a cone with ρ(x)\rho(x) as its tip. That means Ω\Omega is not a manifold, because no neighborhood of the tip can be mapped isometrically to a neighborhood in 2\mathbb{R}^{2}.

7 Invariant kernels

Refer to captionRefer to captionRefer to captionRefer to caption
Figure 14: Invariant kernel functions using the kernel in (21), for groups on 2\mathbb{R}^{2} and 3\mathbb{R}^{3}: pg with =0.1\ell=0.1, p4gm with =0.01\ell=0.01, I41 with =0.01\ell=0.01, and P63/m with =0.05\ell=0.05 (from left to right).

Throughout this section, κ:n×n{\kappa:\mathbb{R}^{n}\times\mathbb{R}^{n}\rightarrow\mathbb{R}} is a kernel, i.e., a positive definite function, and \mathbb{H} is its reproducing kernel Hilbert space, or RKHS. Appendix B reviews definitions. We consider kernels that are 𝔾\mathbb{G}-invariant in both arguments in the sense of (5), that is,

κ(ϕx,ψy)=κ(x,y) for all ϕ,ψ𝔾 and all x,yn.\kappa(\phi x,\psi y)\;=\;\kappa(x,y)\qquad\text{ for all }\phi,\psi\in\mathbb{G}\text{ and all }x,y\in\mathbb{R}^{n}\;.

That is the natural notion of invariance for most purposes, since such kernels are precisely those that define spaces of 𝔾\mathbb{G}-invariant functions:

Proposition 19.

If and only if κ\kappa is 𝔾\mathbb{G}-invariant in each argument, all functions f{f\in\mathbb{H}} are 𝔾\mathbb{G}-invariant. If κ\kappa is also continuous, all f{f\in\mathbb{H}} are continuous, and hence 𝐂𝔾{\mathbb{H}\subset\mathbf{C}_{\mathbb{G}}}.

Theorem 15 implies that, to define an invariant kernel, we can start with any kernel κ^\hat{\kappa} on the embedding space N\mathbb{R}^{N}, and compose it with the embedding map ρ\rho:

Corollary 20.

Let κ^\hat{\kappa} be a kernel on N{\mathbb{R}^{N}}. Then the function

κ(x,y):=κ^(ρ(x),ρ(y)) or in short κ=κ^(ρρ)\kappa(x,y):=\hat{\kappa}(\rho(x),\rho(y))\quad\text{ or in short }\quad\kappa=\hat{\kappa}\circ(\rho\otimes\rho)

is a kernel on n{\mathbb{R}^{n}} that is 𝔾\mathbb{G}-invariant in both arguments. If κ^\hat{\kappa} is continuous, so is κ\kappa.

That follows immediately from Theorem 15 and the fact that the restriction of a kernel to a subset is again a kernel [59].

Example 21.

Suppose κ^\hat{\kappa} is an radial basis function (RBF) kernel with length scale \ell on N\mathbb{R}^{N}, and hence of the form κ^(z,z)=exp(zz2/2){\hat{\kappa}(z,z^{\prime})=\exp(-\|z-z^{\prime}\|^{2}/\ell^{2})}. Then κ\kappa is simply

κ(x,y)=κ^(ρ(x),ρ(z))=exp(ρ(x)ρ(y)222).\kappa(x,y)\;=\;\hat{\kappa}(\rho(x),\rho(z))\;=\;\exp\Bigl{(}-\frac{||\rho(x)-\rho(y)||^{2}}{2\ell^{2}}\Bigr{)}\;.

Figure 14 illustrates this kernel the two-dimensional groups pg and p4gm and the three-dimensional groups I41{}_{\texttt{1}} and P63{}_{\texttt{3}}/m.

Once we have constructed an invariant kernel, its application to machine learning problems is straightforward. That becomes obvious if we define Φ(x)=κ(x,){\Phi(x)\;=\;\kappa(x,{\,\vbox{\hbox{\tiny$\bullet$}}\,})}, often called the feature map of κ\kappa [59]. Using the definition of the scalar product on \mathbb{H} and the reproducing property (see Section B.4), we then have

Φ:n and κ(x,y)=Φ(x),Φ(y).\Phi:\mathbb{R}^{n}\rightarrow\mathbb{H}\qquad\text{ and }\qquad\kappa(x,y)\;=\;\left<\mkern 2.0mu\smash{\Phi(x),\Phi(y)}\mkern 2.0mu\right>_{\mathbb{H}}\;.

If κ\kappa is 𝔾\mathbb{G}-invariant, then Φ\Phi is also 𝔾\mathbb{G}-invariant by construction. Recall that most kernel methods in machine learning are derived by substituting a Euclidean scalar product by Φ(x),Φ(y)\left<\mkern 2.0mu\smash{\Phi(x),\Phi(y)}\mkern 2.0mu\right>_{\mathbb{H}}, thereby making a linear method nonlinear. Using a 𝔾\mathbb{G}-invariant kernel results in a 𝔾\mathbb{G}-invariant method.

Example 22 (Invariant SVM).

A support vector machine (SVM) with kernel κ\kappa is determined by two finite sets of points 𝒳\mathcal{X} and 𝒴\mathcal{Y} in n\mathbb{R}^{n}. To train the SVM, one maps these points into \mathbb{H} via Φ\Phi, finds the shortest connecting line between the convex hulls of Φ(𝒳)\Phi(\mathcal{X}) and Φ(𝒴)\Phi(\mathcal{Y}), and determines a hyperplane FF that is orthogonal to this line and intersects its center—equivalently, in dual formulation, the unique hyperplane that separates the convex hulls of Φ(𝒳)\Phi(\mathcal{X}) and Φ(𝒴)\Phi(\mathcal{Y}) and maximizes the \mathbb{H}-norm distance to both. The set of points xx in n\mathbb{R}^{n} whose image Φ(x)\Phi(x) lies on FF is the decision surface of the SVM in n\mathbb{R}^{n}. The hyperplane can be specified by two functions gg (an offset vector) and hh (a normal vector) in \mathbb{H}: A function f{f\in\mathbb{H}} lies on FF if and only if

fg,h= 0 or equivalently f,h=g,h.\left<\mkern 2.0mu\smash{f-g,h}\mkern 2.0mu\right>_{\mathbb{H}}\;=\;0\qquad\text{ or equivalently }\qquad\left<\mkern 2.0mu\smash{f,h}\mkern 2.0mu\right>_{\mathbb{H}}\;=\;\left<\mkern 2.0mu\smash{g,h}\mkern 2.0mu\right>_{\mathbb{H}}\;.

Let xx be a point in n\mathbb{R}^{n}. If yy and zz are points with g=Φ(y){g=\Phi(y)} and h=Φ(z){h=\Phi(z)}, then

x is on decision surface κ(x,z)=κ(y,z).x\text{ is on decision surface }\qquad\Longleftrightarrow\qquad\kappa(x,z)\;=\;\kappa(y,z)\;.

Since invariance of κ\kappa implies κ(ϕx,z)=κ(x,z){\kappa(\phi x,z)=\kappa(x,z)}, that shows the decision surface is 𝔾\mathbb{G}-invariant. Figure 15 shows examples. In these figures the data were randomly generated with regions assigned labels using a random function generated as in Section 8. The support vectors are highlighted and illustrate the effects of symmetry constraints: the decision surface can be determined by data observed far away.

Two of the most important results on kernels are Mercer’s theorem and the compact inclusion theorem [59, Chapter 4]. The latter shows the inclusion map 𝐂{\mathbb{H}\hookrightarrow\mathbf{C}} is compact, and is used in turn to establish good statistical properties of kernel methods, such as oracle inequalities and finite covering numbers [59]. Both results assume that κ\kappa has compact support. If κ\kappa is invariant under a crystallographic group, its support is necessarily non-compact, but the next result shows that versions of both theorems hold nonetheless:

Proposition 23.

If κ\kappa is continuous and 𝔾\mathbb{G}-invariant in both arguments, the inclusion map 𝐂𝔾{\mathbb{H}\hookrightarrow\mathbf{C}_{\mathbb{G}}} is compact. There exist functions f1,f2,{f_{1},f_{2},\ldots\in\mathbb{H}} and scalars c1c2>0{c_{1}\geq c_{2}\geq\ldots>0} such that

κ(x,y)=icifi(x)fi(y) for all x,yn,\kappa(x,y)\;=\;\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}c_{i}f_{i}(x)f_{i}(y)\qquad\text{ for all }x,y\in\mathbb{R}^{n}\;,

and the scaled sequence (cifi){(\sqrt{c_{i}}f_{i})} is an orthonormal basis of \mathbb{H}. With this basis,

={f=iaicifi|a1,a2, with i|ai|2<},\mathbb{H}\;=\;{\{\;f\!=\!\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}a_{i}\sqrt{c_{i}}f_{i}\,|\,a_{1},a_{2},\ldots\in\mathbb{R}\text{ with }\operatorname{{\textstyle\sum}}_{i}|a_{i}|^{2}<\infty\}}\;,

where each series converges in \mathbb{H} and hence (by compactness of inclusion) also uniformly.

Intuitively, that is the case because every 𝔾\mathbb{G}-invariant kernel is the pullback of a kernel on Ω\Omega, and Ω\Omega is compact. Figure 15 shows an application of such a kernel to generate a two-class classifier with an 𝔾\mathbb{G}-invariant decision surface.

Refer to captionRefer to captionRefer to caption
Figure 15: Support vector machine decision surfaces for 𝔾\mathbb{G}-invariant kernels constructed as in LABEL:{result:constructing:invariant:kernel}. The groups used are p1 (left), p2 (middle), and p3 (right). Support vectors are highlighted with red circles.

8 Invariant Gaussian processes

We now consider the problem of generating random functions F:n{F:\mathbb{R}^{n}\rightarrow\mathbb{R}} such that each instance of FF is continuous and 𝔾\mathbb{G}-invariant with probability 1. That can be done linearly using the generalized Fourier representation, by generating the coefficients cic_{i} in Theorem 7 at random. Here, we consider the nonlinear representation instead: If we set

F:=Hρ for a random continuous function H:N,F\;:=\;H\circ\rho\qquad\text{ for a random continuous function }H:\mathbb{R}^{N}\rightarrow\mathbb{R}\;,

Theorem 15 implies that FF is indeed continuous and 𝔾\mathbb{G}-invariant with probability 11, and hence a random element of 𝐂𝔾\mathbf{C}_{\mathbb{G}}. Conversely, the result also implies that every random element of 𝐂𝔾\mathbf{C}_{\mathbb{G}} is of this form, for some random element HH of 𝐂(N)\mathbf{C}(\mathbb{R}^{N}).

8.1. Almost surely invariant processes

Recall that a random function F:Mn{F:M\subseteq\mathbb{R}^{n}\rightarrow\mathbb{R}} is a Gaussian process if the joint distribution of the random vector (F(x1),,F(xk)){(F(x_{1}),\ldots,F(x_{k}))} is Gaussian for any finite set of points x1,,xkM{x_{1},\ldots,x_{k}\in M}. The mean and covariance function of a Gaussian process are defined as

μ(x):=𝔼[F(x)] and κ(x,y):=𝔼[(F(x)μ(x))(F(y)μ(y)] for x,yM.\mu(x)\;:=\;\mathbb{E}[F(x)]\quad\text{ and }\quad\kappa(x,y)\;:=\;\mathbb{E}[(F(x)-\mu(x))(F(y)-\mu(y)]\quad\text{ for }x,y\in M\;.

The covariance function is always positive definite, and hence a kernel on MM. The distribution of a Gaussian process is completely determined by μ\mu and κ\kappa, and conditions for FF to satisfy continuity or stronger regularity conditions can be formulated in terms of κ\kappa. See e.g., Marcus and Rosen [46] for more background.

Proposition 24.

Let HH be a continuous Gaussian process on N\mathbb{R}^{N}, with mean μ\mu and covariance function κ\kappa. Then F:=Hρ{F:=H\circ\rho} is a continuous random function on n\mathbb{R}^{n}, and is 𝔾\mathbb{G}-invariant with probability 1. Consider any finite set of points

x1,,xkn such that xi≁xj for all distinct i,jk.x_{1},\ldots,x_{k}\in\mathbb{R}^{n}\quad\text{ such that }x_{i}\not\sim x_{j}\text{ for all distinct }i,j\leq k\;.

Then (F(x1),,F(xk)){(F(x_{1}),\ldots,F(x_{k}))} is a Gaussian random vector, with mean and covariance

𝔼[F(xi)]=μ(ρ(xi)) and Cov[F(xi),F(xj)]=κ(ρ(xi),ρ(xj)) for i,jk.\mathbb{E}[F(x_{i})]=\mu(\rho(x_{i}))\quad\text{ and }\quad\text{\rm Cov}[F(x_{i}),F(x_{j})]=\kappa(\rho(x_{i}),\rho(x_{j}))\quad\text{ for }i,j\leq k\;.

Clearly, FF cannot be a Gaussian process on n\mathbb{R}^{n}: Since FF is invariant, F(x)F(x) completely determines F(ϕ(x))F(\phi(x)), so (F(x),F(ϕx)){(F(x),F(\phi x))} cannot be jointly Gaussian. Put differently, conditioning FF on its values on Π\Pi renders FF non-random. Loosely speaking, the proposition hence says that FF is “as Gaussian” as a 𝔾\mathbb{G}-invariant random function can be. Figure 16 illustrates random functions generated by such a process.

Example 25.

The construction of MacKay [45] described in the introduction was designed specifically for Gaussian processes, to generate periodic functions at random. We can now generalize these processes from periodicity to crystallographic invariance: Given 𝔾\mathbb{G} and Π\Pi, construct the embedding map ρ:nN{\rho:\mathbb{R}^{n}\rightarrow\mathbb{R}^{N}}. Choose κ^\hat{\kappa} as the RBF kernel (21) on N\mathbb{R}^{N}, and μ^\hat{\mu} as the constant function 0 on N\mathbb{R}^{N}. Then generate FF as

HGP(μ^,κ^) and F:=Hρ.H\sim\text{GP}(\hat{\mu},\hat{\kappa})\qquad\text{ and }\qquad F\;:=\;H\circ\rho\;.

For visualization, draws can be approximated by the randomized feature scheme of Rahimi and Recht [51]. Figure 16 shows examples for 𝔾\mathbb{G} chosen as p2 and p31m on 2\mathbb{R}^{2}, and for P-6 and P422 on 3\mathbb{R}^{3}.

Refer to captionRefer to captionRefer to captionRefer to caption
Figure 16: Random invariant functions on 2\mathbb{R}^{2} and 3\mathbb{R}^{3}, generated by Gaussian processes as described in Example 25. The groups are, from left to right, p2, p31m, P-6, and P422.

8.2. Distributionally invariant processes

Another type of invariance that random functions can satisfy is distributional 𝔾\mathbb{G}-invariance, which holds if

F=dFϕ for all ϕ𝔾.F\;\stackrel{{\scriptstyle\text{\rm\tiny d}}}{{=}}\;F\circ\phi\qquad\text{ for all }\phi\in\mathbb{G}\;.

Here, =d\smash{\stackrel{{\scriptstyle\text{\rm\tiny d}}}{{=}}} denotes equality in distribution. That is equivalent to requiring that the distribution PP of FF satisfies P(ϕA)=P(A){P(\phi A)=P(A)} for every measurable set AA. For crystallographic groups, distributionally invariant Gaussian processes can be constructed by factoring the parameters, rather than the random function FF, through the embedding in Theorem 15:

Corollary 26.

Let μ\mu be a real-valued function and κ\kappa a kernel on N\mathbb{R}^{N}. If FF is the Gaussian process on n\mathbb{R}^{n} with mean μρ{\mu\circ\rho} and covariance function κ(ρρ){\kappa\circ(\rho\otimes\rho)}, then FF is distributionally 𝔾\mathbb{G}-invariant, i.e. Fϕ=dF{F\circ\phi\stackrel{{\scriptstyle\text{\rm\tiny d}}}{{=}}F} for all ϕ𝔾{\phi\in\mathbb{G}}.

Almost sure invariance implies distributional invariance; distributional invariance is typically a much weaker property. Frequently encountered examples of distributional invariance are all forms of stationarity (distributional invariance under shift groups) and of exchangeability (permutation groups).

9 The Laplace operator on invariant functions

The results in this section describe the behavior of the Laplace operator on 𝔾\mathbb{G}-invariant functions. All of these are ingredients in the proof of the Fourier representation. We first describe the transformation behavior of differentials of invariant functions, in Section 9.1. Gradients turn out to be invariant under shifts and equivariant under orthogonal transformations. Gradient vector fields, and more generally vector fields with the same transformation behavior as gradients, have a cancellation property—their integral orthogonal to the tile boundary vanishes (Section 9.2). We then define the relevant solution space for the spectral problem, which has Hilbert space structure (so that we can define orthogonality and self-adjointness) but has smoother elements than 𝐋2\mathbf{L}_{2}, in Section 9.3. Once the Laplacian has been properly defined on this space, we can use the cancellation property to show it is self-adjoint.

9.1. Differentials and gradients of invariant functions

Given a differentiable function f:nm{f:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}}, denote the differential at xx as

Df(x)=(\mfracfjxi)in,jmn×m.Df(x)\;=\;\left(\mfrac{\partial f_{j}}{\partial x_{i}}\right)_{i\leq n,j\leq m}\;\in\mathbb{R}^{n\times m}\;.

The next result summarizes how invariance of ff under a transformation ϕ\phi affects DfDf. Note the order of operations matters: D(fϕ)D(f\circ\phi) is the differential of the function fϕf\circ\phi, whereas (Df)ϕ{(Df)\circ\phi} transforms the differential DfDf of ff by ϕ\phi.

Lemma 27.

If f:nm{f:\mathbb{R}^{n}\rightarrow\mathbb{R}^{m}} is invariant under an isometry ϕx=Aϕx+bϕ{\phi x=A_{\phi}x+b_{\phi}} and differentiable, then

(17) (Df)(ϕx)=Df(x)Aϕ𝖳.(Df)(\phi x)\;=\;Df(x)\cdot A_{\phi}^{\sf{T}}\;.

If in particular f:n{f:\mathbb{R}^{n}\rightarrow\mathbb{R}}, the gradient satisfies

(18) f(ϕx)=Aϕf(x) for all xn.\nabla f(\phi x)\;=\;A_{\phi}\cdot\nabla f(x)\qquad\text{ for all }x\in\mathbb{R}^{n}\;.

The Hessian matrix HfH_{f} and the Laplacian satisfy

(19) Hf(ϕx)=AϕHf(x)Aϕ𝖳 and Δf(ϕx)=Δf(x) for all xn.H_{f}(\phi x)\;=\;A_{\phi}H_{f}(x)A_{\phi}^{\sf{T}}\quad\text{ and }\quad\Delta f(\phi x)\;=\;\Delta f(x)\qquad\text{ for all }x\in\mathbb{R}^{n}\;.
Proof.

Since ϕ\phi is affine, its differential (Dϕ)(x)=Aϕ{(D\phi)(x)=A_{\phi}} is constant. The chain rule shows

D(fϕ)=(Df)ϕ(Dϕ)=((Df)ϕ)Aϕ.D(f\circ\phi)\;=\;(Df)\circ\phi\cdot(D\phi)\;=\;((Df)\circ\phi)\cdot A_{\phi}\;.

By invariance, fϕ{f\circ\phi} and ff are the same function, and hence D(fϕ)=Df{D(f\circ\phi)=Df}. Substituting into the identity above shows (17), since Aϕ𝖳=Aϕ1{A_{\phi}^{\sf{T}}=A_{\phi}^{-1}}. For m=1{m=1}, the transpose D𝖳={D^{\sf{T}}=\nabla} is the gradient, and (17) becomes (18). Using (18), the Hessian can be written as

Hf=D(f)=D(Aϕfϕ1).H_{f}\;=\;D(\nabla f)\;=\;D(A_{\phi}\nabla f\circ\phi^{-1})\;.

Another application of the chain rule then shows

Hf=D(Aϕf)ϕ1Dϕ1=Aϕ(Df)ϕ1Aϕ1=Aϕ(Hfϕ1)Aϕ𝖳,\displaystyle H_{f}\;=\;D(A_{\phi}\nabla f)\circ\phi^{-1}\cdot D\phi^{-1}\;=\;A_{\phi}(D\nabla f)\circ\phi^{-1}\cdot A_{\phi^{-1}}\;=\;A_{\phi}(H_{f}\circ\phi^{-1})A_{\phi}^{\sf{T}}\;,

which is the first statement in (19). Since the Laplacian is the trace of HfH_{f}, and the trace in invariant under change of basis, that implies

Δf(ϕx)=tr(Hf(ϕx))=tr(AϕHf(x)Aϕ𝖳)=tr(Hf(x))=Δf(x).\Delta f(\phi x)\;=\;\text{tr}(H_{f}(\phi x))\;=\;\text{tr}(A_{\phi}H_{f}(x)A_{\phi}^{\sf{T}})\;=\;\text{tr}(H_{f}(x))\;=\;\Delta f(x)\;.\qed

9.2. Flux through the tile boundary

The next result is the key tool we use to prove self-adjointness of the Laplacian. We have seen above that the gradient of a 𝔾\mathbb{G}-invariant function transforms under 𝔾\mathbb{G} according to (18). We now abstract from the specific function f\nabla f, and consider any vector field F:Πn{F:\Pi\rightarrow\mathbb{R}^{n}} that transforms like the gradient on the tile boundary, i.e.

(20) F(y)=AϕF(x) whenever y=ϕx.F(y)\;=\;A_{\phi}F(x)\qquad\text{ whenever }y=\phi x\;.

For a polytope Π\Pi with facets S1,,Sk{S_{1},\ldots,S_{k}}, we define the normal field on the boundary as

𝐍Π:Πn given by 𝐍Π(x):={𝐍i if xSi0 otherwise \mathbf{N}_{\Pi}:\partial\Pi\rightarrow\mathbb{R}^{n}\qquad\text{ given by }\qquad\mathbf{N}_{\Pi}(x)\;:=\;\begin{cases}\mathbf{N}_{i}&\text{ if }x\in S_{i}^{\circ}\\ 0&\text{ otherwise }\end{cases}

where 𝐍i\mathbf{N}_{i} is the unit normal vector of the facet SiS_{i}, directed outward with respect to Π\Pi. In vector analysis, the projection F𝖳𝐍Π{F^{\sf{T}}\mathbf{N}_{\Pi}} of a vector field onto the direction orthogonal to Π\partial\Pi is known as the flux of FF through the boundary.

Proposition 28 (Flux).

Let 𝔾\mathbb{G} be a crystallographic group that tiles n\mathbb{R}^{n} with a convex polytope Π\Pi. If a vector field F:Πn{F:\Pi\rightarrow\mathbb{R}^{n}} is integrable on Π\partial\Pi and satisfies (20), then

\medintΠF(x)𝖳𝐍Π(x)voln1(dx)= 0.\medint\int_{\partial\Pi}F(x)^{\sf{T}}\mathbf{N}_{\Pi}(x)\text{\rm vol}_{n-1}(dx)\;=\;0\;.
Proof.

See Appendix E. ∎

9.3. The Sobolev space of invariant functions

The proof of Theorem 7 follows a well-established strategy in spectral theory: The relevant spectral results hold for self-adjoint operators, and self-adjointness can only be defined with respect to an inner product. Since the space 𝐂2\mathbf{C}^{2} on which the Laplace operator is defined is a Banach space, but has no inner product, one must hence first embed the problem into a suitable Hilbert space. For the Laplacian, this is generally a first-order Sobolev space; see Appendix B for a review of definitions, and Brezis [19], Maz’ya [47], McLean [48] for more on spectral theory and the general approach.

In our case, we proceed as follows: Since invariant functions are completely determined by their values on Π\Pi, we can equivalently solve the problem on the bounded domain Π\Pi rather than the unbounded domain n\mathbb{R}^{n}. That gives us access to a number of results specific to bounded domains. We also observe that the invariance constraint e=eϕ{e=e\circ\phi} is a linear constraint—if two functions satisfy it, so do their linear combinations—so the feasible set of this constraint is a vector space, and we can encode the constraint by restriction to a suitable subspace. We start with the vector space

(21) :={f|Π|f:n infinitely often differentiable and 𝔾-invariant}.\mathcal{H}\;:=\;{\{f|_{\Pi^{\circ}}\,|\,f:\mathbb{R}^{n}\rightarrow\mathbb{R}\text{ infinitely often differentiable and $\mathbb{G}$-invariant}\}}\;.

The elements of \mathcal{H} are hence infinitely often differentiable on Π\Pi^{\circ}, and their continuous extensions to the closure Π\Pi satisfy the periodic boundary condition (6). We then define the Sobolev space of candidate solutions as

𝐇𝔾:= closure of  in 𝐇1(Π),\mathbf{H}_{\mathbb{G}}\;:=\;\text{ closure of $\mathcal{H}$ in }\mathbf{H}^{1}(\Pi^{\circ})\;,

equipped with the norm and inner product of 𝐇1(Π){\mathbf{H}^{1}(\Pi^{\circ})}. As a closed subspace of a Hilbert space, it is a Hilbert space.

9.4. The Laplace operator on 𝐇𝔾\mathbf{H}_{\mathbb{G}}

We now have to extend Δ\Delta to all elements of 𝐇𝔾\mathbf{H}_{\mathbb{G}}. In general, a linear operator Λ\Lambda on a closed subspace V𝐇1(Π){V\subset\mathbf{H}^{1}(\Pi^{\circ})} is an extension of Δ\Delta to VV if it satisfies

(22) Λf=Δf for all fV𝐂2(Π).\Lambda f\;=\;\Delta f\qquad\text{ for all }f\in V\cap\mathbf{C}^{2}(\Pi^{\circ})\;.

The extended operator is self-adjoint on VV if

Λf,h𝐇1=f,Λh𝐇1 for all f,hV.\left<\mkern 2.0mu\smash{\Lambda f,h}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;\left<\mkern 2.0mu\smash{f,\Lambda h}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\qquad\text{ for all }f,h\in V\;.

To prove self-adjointness, one decomposes Λ\Lambda as

Δf,h𝐋2=(integral over Γ that is symmetric in f and h)(integral over Γ).\left<\mkern 2.0mu\smash{-\Delta f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\,=\,(\text{integral over $\Gamma^{\circ}$ that is symmetric in $f$ and $h$})\;-\;(\text{integral over }\partial\Gamma)\;.

This is the Green identity alluded to in the introduction. To make it precise, we need two quantities: One is the energy form or energy product

(23) a(f,h):=\medintΓf(x)𝖳h(x)voln(dx).a(f,h)\;:=\;\medint\int_{\Gamma}\nabla f(x)^{\sf{T}}\nabla h(x)\,\text{\rm vol}_{n}(dx)\;.

Since it only involves first derivatives, and both appear under the integral, it is well-defined for any f,h𝐇1(Π){f,h\in\mathbf{H}^{1}(\Pi^{\circ})}, and is hence a symmetric bilinear form a:𝐇1×𝐇1{a:\mathbf{H}^{1}\times\mathbf{H}^{1}\rightarrow\mathbb{R}}. It is positive definite, since

(24) a(f,h)=\medmathinif,ih𝐋2 and hence a(f,f)=\medmathinif𝐋2 0.a(f,h)\;=\;\operatorname{\medmath\sum}_{i\leq n}\left<\mkern 2.0mu\smash{\partial_{i}f,\partial_{i}h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\quad\text{ and hence }\quad a(f,f)\;=\;\operatorname{\medmath\sum}_{i\leq n}\|\partial_{i}f\|_{\mathbf{L}_{2}}\;\geq\;0\;.

Substituting the definition of aa into that of the 𝐇1\mathbf{H}^{1} scalar product in (B.6) shows that

(25) f,h𝐇1=f,h𝐋2+a(f,h) for all f,h𝐇1(Γ).\left<\mkern 2.0mu\smash{f,h}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;\left<\mkern 2.0mu\smash{f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\,+\,a(f,h)\qquad\text{ for all }f,h\in\mathbf{H}^{1}(\Gamma^{\circ})\;.

The second quantity is the conormal derivative

𝐍f(x):=f(x)𝖳𝐍Π(x).\partial_{\mathbf{N}}f(x)\;:=\;\nabla f(x)^{\sf{T}}\mathbf{N}_{\Pi}(x)\;.

The precise statement of the decomposition above is then as follows.

Fact 29 (Green’s identity).

If the domain Π\Pi is sufficiently regular—in particular, if Π\Pi is a convex polytope—then

Λf,h𝐋2=a(f,h)\medintΓ𝐍f(x)h(x)voln1(dx) for f,h𝐇1(Π).\left<\mkern 2.0mu\smash{-\Lambda f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;a(f,h)\,-\,\medint\int_{\partial\Gamma}\partial_{\mathbf{N}}f(x)h(x)\text{\rm vol}_{n-1}(dx)\qquad\text{ for }f,h\in\mathbf{H}^{1}(\Pi^{\circ})\;.

Informally, this shows that Δ\Delta “behaves self-adjointly” in the interior of Π\Pi, where derivatives can be computed in all directions around a point. At points on Π\partial\Pi, the boundary truncates derivatives in some direction, and that requires a correction term 𝐍f\partial_{\mathbf{N}}f.

Theorem 30 (Properties of the Laplacian).

Let 𝔾\mathbb{G} be a crystallographic group that tiles n\mathbb{R}^{n} with a convex polytope Π\Pi. Then Δ\Delta has a unique extension to a linear operator Λ\Lambda on 𝐇𝔾\mathbf{H}_{\mathbb{G}}. This operator is self-adjoint and continuous on 𝐇𝔾\mathbf{H}_{\mathbb{G}}, and satisfies

(26) (i) Λf,h𝐋2=a(f,h) and (ii) Λf,f𝐇1f𝐇12f𝐋22\text{\rm(i) }\;\left<\mkern 2.0mu\smash{-\Lambda f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;a(f,h)\qquad\text{ and }\qquad\text{\rm(ii) }\left<\mkern 2.0mu\smash{-\Lambda f,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;\geq\;\|f\|^{2}_{\mathbf{H}^{1}}-\|f\|^{2}_{\mathbf{L}_{2}}

for all f,h𝐇𝔾{f,h\in\mathbf{H}_{\mathbb{G}}}.

The proof uses the flux property to show that crystallographic symmetry makes the boundary term cancel. Since aa is symmetric, that makes Λ\Lambda self-adjoint. In the parlance of elliptic differential equations, (26ii) says that Λ\Lambda is coercive on 𝐇𝔾\mathbf{H}_{\mathbb{G}} (see [48]).

Proof.

See Appendix F. ∎

9.5. Linear representations from a nonlinear ansatz

The properties of Laplace operators lead naturally to a class of numerical approximations known as Galerkin methods (e.g., Braess [18]). Using the embedding map ρ\rho, we can derive a Galerkin method that can be used to compute the Fourier basis functions in Theorem 7—that is, we can use the nonlinear representation approach in the numerical approximation of the linear representation. The Galerkin method can be more accurate than the spectral approach in Algorithm 4, and was used to render Figures 4, 5 and 6.

Galerkin methods posit basis functions χ1,,χm{\chi_{1},\ldots,\chi_{m}} and approximate an infinite dimensional function space by the finite-dimensional subspace span{χ1,,χm}{\text{span}{\{\chi_{1},\ldots,\chi_{m}\}}}. In our case, we approximate solutions ee of (13) by approximating their restrictions e|Πe|_{\Pi}. We hence need functions χi:Π{\chi_{i}:\Pi\rightarrow\mathbb{R}}. W we start with functions χ~i:N{\tilde{\chi}_{i}:\mathbb{R}^{N}\rightarrow\mathbb{R}}, and set χi:=χ~iρ{\chi_{i}:=\tilde{\chi}_{i}\circ\rho}. We then assume e|Π{e|_{\Pi}} of (13) is in the span, and hence of the form

(27) e|Π=\medmathimciχi.e|_{\Pi}\;=\;\operatorname{\medmath\sum}_{i\leq m}c_{i}\chi_{i}\;.

If ee solves the eigenvalue problem (13), e|Πe|_{\Pi} satisfies

Δe|Π,χj𝐋2=λe|Π,χj𝐋2 for all jm.\displaystyle\left<\mkern 2.0mu\smash{-\Delta e|_{\Pi},\chi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;\lambda\left<\mkern 2.0mu\smash{e|_{\Pi},\chi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\qquad\text{ for all }j\leq m\;.

Applying (26) and substituting in (27) shows

a(e|Π,χj)=λe|Π,χj𝐋2 and \medmathicia(χi,χj)=λ\medmathiciχi,χj𝐋2.a(e|_{\Pi},\chi_{j})\,=\,\lambda\left<\mkern 2.0mu\smash{e|_{\Pi},\chi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\quad\text{ and }\quad\operatorname{\medmath\sum}_{i}c_{i}a(\chi_{i},\chi_{j})\,=\,\lambda\operatorname{\medmath\sum}_{i}c_{i}\left<\mkern 2.0mu\smash{\chi_{i},\chi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\,.

If we define matrices with entries Aij:=a(χi,χj){A_{ij}:=a(\chi_{i},\chi_{j})} and Bij:=χi,χj𝐋2{B_{ij}:=\left<\mkern 2.0mu\smash{\chi_{i},\chi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}}, that becomes

Ac=λBc where c=(c1,,cm)𝖳.Ac\;=\;\lambda Bc\qquad\text{ where }c=(c_{1},\ldots,c_{m})^{\sf{T}}\;.

The entries of AA and BB can be computed with off-the-shelf cubature methods, and we can then solve for the pair (λ,c)(\lambda,c).

Remark 31.

(a) If ρ\rho and the basis functions are implemented with JAX [17] or a similar automatic differentiation tool, the gradients in (23) are available, which avoids finite difference approximation and explicit computation of second derivatives.
(b) Neumann boundary conditions for reflections (see Remark 10) can be enforced using the methods of Golub [29].
(c) The basis functions χ~i\tilde{\chi}_{i} can be almost any basis on N\mathbb{R}^{N}. Figures 46 were rendered by placing points x1,x2,{x_{1},x_{2},\ldots} uniformly on Π\Pi, and centering radial basis functions at the points ρ(xi){\rho(x_{i})} in N\mathbb{R}^{N}.

10 Related work and additional references

In machine learning. There has been substantial work on group invariance and equivariance in machine learning, with a focus on finite and compact groups. Most salient has been work on approximate translation invariance and equivariance in convolutional neural networks for images [44, 39] and speech [1], although this work has not been framed in a group-theoretic way. To our knowledge the earliest explicit consideration of compact and finite group structure in machine learning was from a Fourier perspective by Kondor [38]; this was primarily in the context of Hilbert-space formalisms of learning. The current perspective on compact and finite group equivariance in deep learning arose largely from Cohen and Welling [21]. There has been widespread application of machine learning models when group invariance or equivariance is desired, e.g., permutation invariance for sets [69] and equivariance for neural auction design [52]. In the natural sciences, rotation invariance has been used for astronomy [25] and E(3)E(3) equivariance has proved important for molecular applications [8]. Permutation equivariance of transformer architectures plays a crucial role in large language model [64].
In crystallography. Crystallographers have completely described the 17 two-dimensional and 230 three-dimensional crystallgraphic groups and various tilings they describe, and tabulated many of their properties [31]. The emphasis in this work differs somewhat from that in mathematics—in particular, work in crystallography emphasizes polytopes Π\Pi that occur in crystal structures (and which are not necessarily exact in the terminology used in Theorem 15), whereas more abstract work in geometry tends to work with Dirichlet domains or other exact tilings. A long line of work in the context of X-ray crystallography modifies the matrices that occur in fast Fourier transforms (FFTs) to speed up computation if a crystallographic symmetry is present in the data. This starts with the work of Bienenstock and Ewald [13] and Ten Eyck [60], see also An et al. [5]. The introduction of Seguel and Burbano [55] gives an overview. This work does not attempt to derive invariant Fourier bases.
In Fourier and PDE analysis. As we have already explained in some detail, the special case of Theorem 7 for Π=[0,1]n{\Pi=[0,1]^{n}} and 𝔾=n{\mathbb{G}=\mathbb{Z}^{n}} yields the Fourier transform. For this problem, the periodic boundary condition can be replaced by a Neumann condition, and spectral problems with Neumann conditions are standard material in textbooks [19, 43]. For shifts that are not axis-parallel, the periodic boundary condition is known as a Born-von Karman boundary condition [7]. We are not aware of extensions to crystallographic groups. An introduction to the PDE techniques used in our proofs can be found in Brezis [19]. The conditions imposed there are too restrictive for our problems, however; a treatment general enough to cover all results we use is given by McLean [48].
In geometry. Thurston [e.g., 62] coined the term orbifold in the 1970s. Commonly cited references include Scott [54], Bonahon and Siebenmann [16], Thurston [62]; Apanasov [6] has a detailed bibliography. These all focus on general groups, however, for which the theory is much harder than in our case. The quotient space structure of crystallographic groups was already understood much earlier by the Göttingen and Moscow schools [65]. A readable introduction to isometry groups and their quotients is given by Bonahon [15]. The comprehensive account of Ratcliffe [53] is more demanding, but covers all results needed in our proofs. Vinberg and Shvartsman [65] cover the geometric aspects of crystallographic groups. Conway, Burgiel, and Goodman-Strauss [22] explain the geometry of orbifolds heuristically, with many illustrations.

11 Some open problems

Our approach raises a range of further questions well beyond the scope of the present paper, including in particular those concerning numerical and statistical accuracy. We briefly discuss some aspects of this problem.
Linear representation. Suppose we represent a 𝔾\mathbb{G}-invariant continuous function ff by evaluating the generalized Fourier basis in Theorem 7 using the spectral algorithm in Section 5.3. The algorithm returns numerical approximations e^1,e^2,{\hat{e}_{1},\hat{e}_{2},\ldots} of the basis functions. We may then expand ff as

f\medmathi=1mcie^i.f\;\approx\;\operatorname{\medmath\sum}_{i=1}^{m}c_{i}\hat{e}_{i}\;.

There are three principal sources of error in this representation:

  1. 1.

    The truncation error, since mm is finite.

  2. 2.

    Any error incurred in computation of the coefficients cic_{i}.

  3. 3.

    The error incurred by approximating the actual basis functions eie_{i} by e^i\hat{e}_{i}.

The truncation error (1) concerns the question how well the vector space span{e1,,em}{\text{span}{\{e_{1},\ldots,e_{m}\}}} approximates the space 𝐂𝔾\mathbf{C}_{\mathbb{G}} or 𝐋2(Π)\mathbf{L}_{2}(\Pi). This problem is studied in approximation theory. Depending on the context, one may choose the first mm basis vectors (a strategy called “linear approximation” in approximation theory), or greedily choose those mm basis vectors that minimize some error measure (“nonlinear approximation”), see DeVore [24]. Problem (2) depends on the function ff, and on how it is represented computationally. If ff must itself be reconstructed from samples, the coefficients are themselves estimators and incur statistical errors.

The error immediately related to our method is (3), and for the method of Section 5 depends on how well the graph Laplacian used in Section 5.3 approximates the Laplacian Δ\Delta. This problem has been studied in a number of fields, including machine learning in the context of dimensionality reduction [10] and numerical mathematics in the context of homogenous Helmholtz equations [32], and is the subject of a rich literature [41, 11, 56, 34, 27, 28]. Available results show that, as ε0{\varepsilon\rightarrow 0} in the ε\varepsilon-net, the matrix LL converges to Δ\Delta, where the approximation can be measures in different notions of convergence, in particular pointwise and spectral convergence. The cited results all concern the manifold case. We are not aware of similar results for orbifolds.

For the method of Section 9.5, the error depends largely on the choice of basis in N\mathbb{R}^{N} and the accuracy of the numerical integrals, as well as the orbifold map approximation itself (see below). Error analysis of the Rayleigh-Ritz method has a long history, see, e.g., Weinberger [66], Wendroff [68], Weinberger [67].
Nonlinear representation. If we define a 𝔾\mathbb{G}-invariant statistical or machine learning model on n\mathbb{R}^{n} by factoring it through an orbifold, one may ask approximation questions of a more statistical flavor: Suppose we define a class ={hθ|θT}{\mathcal{H}={\{h_{\theta}|\theta\in T\}}} of functions hθ:N{h_{\theta}:\mathbb{R}^{N}\rightarrow\mathbb{R}} on the embedding space N\mathbb{R}^{N}, with some parameter space TT. We then define a class \mathcal{F} of 𝔾\mathbb{G}-invariant functions on n\mathbb{R}^{n} as

:={fθ|θT} where fθ:=hθρ.\mathcal{F}\;:=\;{\{f_{\theta}|\theta\in T\}}\quad\text{ where }\quad f_{\theta}\;:=\;h_{\theta}\circ\rho\;.

Depending on the context, we may think of the functions fθf_{\theta} e.g., as neural networks or regressors. The task is then to conduct inference, i.e., to compute a point estimate θ^\hat{\theta} of θ\theta (say by maximum likelihood estimation or empirical risk minimization), or to compute a posterior on TT in a Bayesian setup. Since \mathcal{H} and \mathcal{F} share the same parameter space, any such inference task can be “pushed forward” forward to the embedding space, that is,

inference under  given x1,,xn=inference under  given ρ(x1),,ρ(xn)\text{inference under }\mathcal{F}\text{ given }x_{1},\ldots,x_{n}\;=\;\text{inference under }\mathcal{H}\text{ given }\rho(x_{1}),\ldots,\rho(x_{n})

The error can again be separated into components:

  1. 1.

    The statistical error associated with fitting {hθ|θT}{\{h_{\theta}|\theta\in T\}}.

  2. 2.

    The “forward distortion” introduced by the map xjρ(xj){x_{j}\mapsto\rho(x_{j})}.

  3. 3.

    The “backward distortion” introduced by the map hθhθρh_{\theta}\mapsto h_{\theta}\circ\rho.

Problem (1) reduces to the statistical properties of \mathcal{H}, and depends on both the model and the chosen inference method. Problem (2) and (3), however, raise a number of new questions: The map ρ\rho is, by Theorem 15, bijective (which means it does not introduce identifiability problems) and continuous. As the proof of Proposition 23 shows, it also preserves density properties of certain function spaces, which can be thought of as a qualitative approximation result. Quantitative results are different matter: To bound the effect of transformations on statistical errors typically requires a stronger property than continuity, such as differentiability or at least a Lipschitz property. In results on manifold learning, the curvature of Ω\Omega often plays an explicit role. Orbifolds introduce a further challenge, since smoothness properties fail at the tips and edges introduced by points with non-trivial stabilizers. On the other hand, non-differentiabilities of crystallographic orbifolds have lower-bounded opening angles [62]—note the tip of the cone in Figure 13, for example, is not a cusp—so it may be possible to mitigate these problems.

Acknowledgements

The authors would like to thank Elif Ertekin and Eric Toberer for valuable discussions. RPA is supported in part by NSF grants IIS-2007278 and OAC-2118201. PO is supported by the Gatsby Charitable Foundation.

References

  • Abdel-Hamid et al. [2014] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process., 22:1533–1545, 2014.
  • Adams and Fournier [2003] R. A. Adams and J. J. F. Fournier. Sobolev Spaces. Academic Press, 2003.
  • Aliprantis and Border [2006] C. D. Aliprantis and K. C. Border. Infinite-Dimensional Analysis. Springer, 2006.
  • Aliprantis and Burkinshaw [2006] C. D. Aliprantis and O. Burkinshaw. Positive Operators. Springer, 2006.
  • An et al. [1990] M. An, J. W. Cooley, and R. Tolimieri. Factorization method for crystallographic Fourier transforms. Adv. Appl. Math, 11:358–371, 1990.
  • Apanasov [2000] B. Apanasov. Conformal geometry of discrete groups and manifolds. de Gruyter, 2000.
  • Ashcroft and Mermin [1976] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Harcourt, 1976.
  • Batzner et al. [2022] S. Batzner, A. Musaelian, L. Sun, M. Geiger, J. P. Mailoa, M. Kornbluth, N. Molinari, T. E. Smidt, and B. Kozinsky. E (3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nature Communications, 13(1):2453, 2022.
  • Becker and Kechris [1996] H. Becker and A. S. Kechris. The descriptive set theory of Polish group actions. Cambridge Univ. Press, 1996.
  • Belkin and Niyogi [2003] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput., 15(6):1373–1396, 2003.
  • Belkin and Niyogi [2008] M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods. J. Comput. System Sci., 74(8):1289–1308, 2008.
  • Bell [1954] D. G. Bell. Group theory and crystal lattices. Rev. of Modern Phys., 26(3):311, 1954.
  • Bienenstock and Ewald [1962] A. Bienenstock and P. P. Ewald. Symmetry of Fourier space. Acta Cryst., 15:1253–1261, 1962.
  • Bloem-Reddy and Teh [2020] B. Bloem-Reddy and Y. W. Teh. Probabilistic symmetries and invariant neural networks. J. Mach. Learn. Res., 21(90):1–61, 2020.
  • Bonahon [2009] F. Bonahon. Low-Dimensional Geometry. Amer. Math. Soc., 2009.
  • Bonahon and Siebenmann [1985] F. Bonahon and L. Siebenmann. Seifert orbifolds and their role as natural crystalline parts of arbitrary compact irreducible 3-orbifolds. In London Math. Soc. Lect. Notes, volume 95, pages 18–85. Cambridge Univ. Press, 1985.
  • Bradbury et al. [2018] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. al Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.
  • Braess [2007] D. Braess. Finite Elements. Springer, 2007.
  • Brezis [2011] H. Brezis. Functional Analysis, Sobolev Spaces, and Partial Differential Equations. Springer, 2011.
  • Chung [1997] F. Chung. Spectral graph theory. Amer. Math. Soc., 1997.
  • Cohen and Welling [2016] T. Cohen and M. Welling. Group equivariant convolutional networks. In Int. Conf. Machine Learning, pages 2990–2999. PMLR, 2016.
  • Conway et al. [2016] J. H. Conway, H. Burgiel, and C. Goodman-Strauss. The Symmetries of Things. CRC Press, 2016.
  • Cooper et al. [2000] D. Cooper, C. D. Hodgson, and S. P. Kerckhoff. Three-dimensional Orbifolds and Cone-Manifolds. Math. Soc. Japan, 2000.
  • DeVore [1998] R. A. DeVore. Nonlinear approximation. Acta Numer., pages 51–150, 1998.
  • Dieleman et al. [2015] S. Dieleman, K. W. Willett, and J. Dambre. Rotation-invariant convolutional neural networks for galaxy morphology prediction. Monthly Not. Roy. Astronom. Soc., 450(2):1441–1459, 2015.
  • Dresselhaus et al. [2007] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio. Group theory: application to the physics of condensed matter. Springer, 2007.
  • Dunson et al. [2021] D. B. Dunson, H.-T. Wu, and N. Wu. Spectral convergence of graph Laplacian and heat kernel reconstruction in ll_{\infty} from random samples. Appl. Comput. Harmon. Anal., 55:282–336, 2021.
  • Garc´ıa Trillos et al. [2020] N. García Trillos, M. Gerlach, M. Hein, and D. Slepčev. Error estimates for spectral convergence of the graph Laplacian on random geometric graphs toward the Laplace–Beltrami operator. Found. Comput. Math., 20(4):827–887, 2020.
  • Golub [1973] G. H. Golub. Some modified matrix eigenvalue problems. SIAM review, 15(2):318–334, 1973.
  • Gruber [2007] P. M. Gruber. Convex and Discrete Geometry. Springer, 2007.
  • Hahn [2011] T. Hahn. International tables for crystallography, volume A. Wiley, 2011.
  • Harari and Turkel [1995] I. Harari and E. Turkel. Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys., 119(2):252–270, 1995.
  • Haussler and Welzl [1987] D. Haussler and E. Welzl. ε\varepsilon-nets and simplex range queries. Discrete Comput. Geom., 2(2):127–151, 1987.
  • Hein et al. [2005] M. Hein, J.-Y. Audibert, and U. v. Luxburg. From graphs to manifolds–weak and strong pointwise consistency of graph Laplacians. In Proc. of COLT, pages 470–485, 2005.
  • Hornik et al. [1989] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359–366, 1989.
  • Johnston [1960] D. Johnston. Group theory in solid state physics. Rep. Progr. Phys., 23(1):66, 1960.
  • Killingbeck [1970] J. Killingbeck. Group theory and topology in solid state physics. Rep. Progr. Physics, 33(2):533, 1970.
  • Kondor [2008] I. R. Kondor. Group Theoretical Methods in Machine Learning. PhD thesis, Columbia Univ., 2008.
  • Krizhevsky et al. [2017] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.
  • Kruskal [1964] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.
  • Lafon [2004] S. Lafon. Diffusion maps and geometric harmonics. PhD thesis, Yale University, 2004.
  • Lax [2001] M. Lax. Symmetry principles in solid state and molecular physics. Courier Corporation, 2001.
  • Lax [2002] P. D. Lax. Functional Analysis. Wiley, 2002.
  • LeCun et al. [1989] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Systems, 2, 1989.
  • MacKay [1998] D. J. C. MacKay. Introduction to Gaussian processes. NATO ASI Series F, 168:133–166, 1998.
  • Marcus and Rosen [2006] M. B. Marcus and J. Rosen. Markov processes, Gaussian processes, and local times. Cambridge Univ. Press, 2006.
  • Maz’ya [2011] V. Maz’ya. Sobolev Spaces. Springer, 2nd edition, 2011.
  • McLean [2000] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge Univ. Press, 2000.
  • Munkres [2000] J. R. Munkres. Topology. Prentice Hall, 2nd edition, 2000.
  • Pears [1975] A. R. Pears. Dimension theory of general spaces. Cambridge University Press, 1975.
  • Rahimi and Recht [2007] A. Rahimi and B. Recht. Random features for large-scale kernel machines. Adv. Neural Inf. Process. Systems, 20, 2007.
  • Rahme et al. [2021] J. Rahme, S. Jelassi, J. Bruna, and S. M. Weinberg. A permutation-equivariant neural network architecture for auction design. In Proc. AAAI, volume 35, pages 5664–5672, 2021.
  • Ratcliffe [2006] J. G. Ratcliffe. Foundations of Hyperbolic Manifolds. Springer, 2nd edition, 2006.
  • Scott [83] P. Scott. The geometries of 33-manifolds. Bull. London Math. Soc, 5:401–487, 83.
  • Seguel and Burbano [2003] J. Seguel and D. Burbano. A scalable crystallographic FFT. In Lecture Notes in Comput. Sci., volume 2840, pages 134–141. Springer, 2003.
  • Singer [2006] A. Singer. From graph to manifold Laplacian: The convergence rate. Appl. Comput. Harmon. Anal., 21(1):128–134, 2006.
  • Slater [1965] J. Slater. Space groups and wave-function symmetry in crystals. Rev. Modern Phys., 37(1):68, 1965.
  • Speiser [1956] A. Speiser. Die Theorie der Gruppen endlicher Ordnung. Birkhäuser, 1956.
  • Steinwart and Christmann [2008] I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008.
  • Ten Eyck [1973] L. F. Ten Eyck. Crystallographic fast Fourier transforms. Acta Cryst. A, 29:183–191, 1973.
  • Tenenbaum et al. [2000] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.
  • Thurston [1997] W. P. Thurston. Three-Dimensional Geometry and Topology, Vol. 1. Princeton Univ. Press, 1997.
  • van der Vaart and van Zanten [2008] A. van der Vaart and J. H. van Zanten. Reproducing Hilbert spaces of Gaussian priors. In Inst. Math. Stat. (IMS) Collect., volume 3, pages 200–222. 2008.
  • Vaswani et al. [2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. Adv. Neural Inf. Process. Systems, 30, 2017.
  • Vinberg and Shvartsman [1993] E. B. Vinberg and O. V. Shvartsman. Discrete groups of motions of spaces of constant curvature. In E. B. Vinberg, editor, Geometry II. Spaces of Constant Curvature. Springer, 1993.
  • Weinberger [1952] H. Weinberger. Error estimation in the Weinstein method for eigenvalues. Proc. Amer. Math. Soc., 3(4):643–646, 1952.
  • Weinberger [1974] H. F. Weinberger. Variational methods for eigenvalue approximation. SIAM, 1974.
  • Wendroff [1965] B. Wendroff. Bounds for eigenvalues of some differential operators by the Rayleigh-Ritz method. Math. Comp., 19(90):218–224, 1965.
  • Zaheer et al. [2017] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola. Deep sets. Adv. Neural Inf. Process. Systems, 30, 2017.
  • Ziegler [1995] G. M. Ziegler. Lectures on Polytopes. Springer, 1995.

Department of Computer Science
Princeton University
https://www.cs.princeton.edu/~rpa
Gatsby Computational Neuroscience Unit
University College London
https://www.gatsby.ucl.ac.uk/~porbanz

Appendix

The first three sections of this appendix provide mathematical background on isometries (Appendix A), function spaces and smoothness (Appendix B), orbifolds (Appendix C), and spectral theory (Appendix D). The proof of the Fourier representation is subdivided into three parts: We first prove of the flux property, Proposition 28, in Appendix E, and Theorem 30 on self-adjointness of the Laplacian in Appendix F. Using these results, we then prove the Fourier representation in Appendix G. The proof of the embedding theorem (Theorem 15) follows in Appendix H. Appendix I collects all proofs on kernels and Gaussian processes.

Appendix A Background I: Isometries of Euclidean space

Isometries are invertible functions that preserve distance. To define an isometry between two sets VV and WW, both must be equipped with metrics, say dVd_{V} and dWd_{W}. A map ϕ:𝐗𝐘{\phi:\mathbf{X}\rightarrow\mathbf{Y}} is then an isometry if it is one-to-one and satisfies

dW(ϕ(v1),ϕ(v2))=dV(v1,v2) for all v1,v2V.d_{W}(\phi(v_{1}),\phi(v_{2}))\;=\;d_{V}(v_{1},v_{2})\qquad\text{ for all }v_{1},v_{2}\in V\;.

Since this implies ϕ\phi is Lipschitz, isometries are always continuous. If W=V{W=V}, then ϕ\phi is necessarily bijective. An isometry of n\mathbb{R}^{n} is a bijection ϕ:nn{\phi:\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}} that satisfies

dn(ϕx,ϕy)=dn(x,y) for all x,yn.d_{n}(\phi x,\phi y)\;=\;d_{n}(x,y)\qquad\text{ for all }x,y\in\mathbb{R}^{n}\;.

Identity (3) shows that every isometry can be uniquely represented as an orthogonal transformation followed by a shift. Loosely speaking, an isometry may shift, rotate, or flip MM, but cannot change its shape or volume. Recall that a set 𝔾\mathbb{G} of functions nn{\mathbb{R}^{n}\rightarrow\mathbb{R}^{n}} is a group if it contains the identity map 𝟏\mathbf{1}, and if ϕ,ψ𝔾{\phi,\psi\in\mathbb{G}} implies ϕψ𝔾{\phi\circ\psi\in\mathbb{G}} and ϕ1𝔾{\phi^{-1}\in\mathbb{G}}. The set of all isometries of n\mathbb{R}^{n} forms a group, called the Euclidean group of order nn.

A.1. More on crystallographic groups

Representation by shifts and orthogonal transformations. Since every isometry can be decomposed into an orthogonal transformation and a shift according to (3), every crystallographic group 𝔾\mathbb{G} has two natural subgroups: One is the group

𝔾o:={ϕ𝔾|ϕ(x)=Ax for some A𝕆n}=𝔾𝕆n\mathbb{G}_{o}\;:=\;{\{\phi\in\mathbb{G}\,|\,\phi(x)=Ax\text{ for some }A\in\mathbb{O}_{n}\}}\;=\;\mathbb{G}\cap\mathbb{O}_{n}

of purely orthogonal transformations. This is an example of a point group, since all its elements have a common fixed point (namely the origin). It is always finite: Fix any xx on the unit sphere in n\mathbb{R}^{n}. Then ϕ(x){\phi(x)} is also on the sphere for every ϕ𝔾o{\phi\in\mathbb{G}_{o}}, since Aϕ{A_{\phi}} is orthogonal. However, discreteness requires there can only be finitely many such points ϕ(x)\phi(x) on the sphere. The other is the group of pure shifts,

𝔾t:={ϕ𝔾|ϕ(x)=x+b for some bn}.\mathbb{G}_{t}\;:=\;{\{\phi\in\mathbb{G}\,|\,\phi(x)=x+b\text{ for some }b\in\mathbb{R}^{n}\}}\;.

One can show there are linearly independent vectors b1,,bn{b_{1},\ldots,b_{n}} such that

𝔾t:={xx+b|b=a1b1++anbn for a1,,an}.\mathbb{G}_{t}\;:=\;{\{x\mapsto x+b\,|\,b=a_{1}b_{1}+\ldots+a_{n}b_{n}\text{ for }a_{1},\ldots,a_{n}\in\mathbb{Z}\}}\;.

Thus, the generating set for a crystallographic group on n\mathbb{R}^{n} always includes nn linearly independent shifts.

A.2. Equivalence to definitions in the literature

Our definition of a crystallographic group in Section 2 differs from those in the literature—we have chosen it for simplicity, but must verify it is equivalent. There are two standard definitions of crystallographic groups: Perhaps the most common one, used for example by Thurston [62], is as a discrete group of isometries for which n/𝔾{\mathbb{R}^{n}/\mathbb{G}} is compact in the quotient topology. Another is as a group of isometries of n\mathbb{R}^{n} such that n/𝔾{\mathbb{R}^{n}/\mathbb{G}} has finite volume when identified with a subset of Euclidean space [65]. These are known to be equivalent [65, Corollary of Theorem 1.11]. Our definition is equivalent to both:

Lemma 32.

A group 𝔾\mathbb{G} is crystallographic in the sense of Section 2 if and only if it is a discrete group of isometries of n\mathbb{R}^{n} such that n/𝔾{\mathbb{R}^{n}/\mathbb{G}} is compact.

Proof.

If 𝔾\mathbb{G} is crystallographic in our sense, it is discrete (see Section 2), and n/𝔾\mathbb{R}^{n}/\mathbb{G} is compact by 4, so it satisfies the second definition above. Conversely, if 𝔾\mathbb{G} satisfies Thurston’s definition, it tiles n\mathbb{R}^{n} with some set Π\Pi. This set can always be chosen as a convex polytope [65, Theorem 2.5], so 𝔾\mathbb{G} is crystallographic in our sense. ∎

We note only en passe that there are tilings that cannot be described by a group of isometries. That is not at all obvious—the question was one of Hilbert’s problems—but counter-examples of such tilings (with non-convex polytopes) are now known [see 30, Chapter 32].

Appendix B Background II: Function spaces

This section briefly reviews concepts from functional analysis that play a role in the proofs. Helpful references include Aliprantis and Border [3], Brezis [19] on general functional analysis and Banach spaces, Brezis [19], Adams and Fournier [2] on Sobolev spaces, Steinwart and Christmann [59] on reproducing kernel Hilbert spaces, and Aliprantis and Burkinshaw [4] on compact operators.

B.1. Spans and their closures

Consider a Banach space VV and a subset V{\mathcal{F}\subset V}. The span of \mathcal{F} is the set

span()={incifi|n,ci,fi}\text{span}(\mathcal{F})={\{\operatorname{{\textstyle\sum}}_{i\leq n}c_{i}f_{i}\,|\,n\in\mathbb{N},c_{i}\in\mathbb{R},f_{i}\in\mathcal{F}\}}

of finite linear combinations of elements of \mathcal{F}. Since function spaces are typically infinite-dimensional, we also consider infinite linear combinations. These are defined with respect to a norm \|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|:

f=icifi means fincifi 0 as n.f\;=\;\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}c_{i}f_{i}\quad\text{ means }\quad\|f-\operatorname{{\textstyle\sum}}_{i\leq n}c_{i}f_{i}\|\;\rightarrow\;0\;\text{ as }n\rightarrow\infty\;.

In other words, to get from the span to the set of infinite linear combinations, we take the closure in the relevant norm:

{icifi|ci,fi}=span()¯{\{\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}c_{i}f_{i}\,|\,c_{i}\in\mathbb{R},f_{i}\in\mathcal{F}\}}\;=\;\overline{\text{span}(\mathcal{F})}

B.2. Bases

A Hilbert space \mathbb{H} is a Banach space whose norm is induced by an inner product ,\left<\mkern 2.0mu\smash{{\,\vbox{\hbox{\tiny$\bullet$}}\,},{\,\vbox{\hbox{\tiny$\bullet$}}\,}}\mkern 2.0mu\right>_{\mathbb{H}}, that is,

f=f,f.\|f\|_{\mathbb{H}}\;=\;\sqrt{\vphantom{\left<\mkern 2.0mu\smash{{\,\vbox{\hbox{\tiny$\bullet$}}\,},{\,\vbox{\hbox{\tiny$\bullet$}}\,}}\mkern 2.0mu\right>}\smash{\left<\mkern 2.0mu\smash{f,f}\mkern 2.0mu\right>_{\mathbb{H}}}}\;.

A sequence f1,f2,{f_{1},f_{2},\ldots} in a Hilbert space is an orthonormal system if fi,fj=δij{\left<\mkern 2.0mu\smash{f_{i},f_{j}}\mkern 2.0mu\right>=\delta_{ij}}, where δ\delta is the Kronecker symbol (the indicator function of {i=j}{\{i=j\}}). An orthonormal system is complete if its span is dense in \mathbb{H}, that is, if

=span{f1,f2,}¯,\mathbb{H}\;=\;\overline{\text{span}{\{f_{1},f_{2},\ldots\}}}\;,

where the closure is taken in the norm of \mathbb{H}. A complete orthonormal system is also called an orthonormal basis. If f1,f2,{f_{1},f_{2},\ldots} is an orthonormal basis, \mathbb{H} can be represented as

={icifi (convergence in )|c1,c2, with ici2<}.\mathbb{H}\;=\;\bigl{\{}\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}c_{i}f_{i}\text{ (convergence in $\|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|_{\mathbb{H}}$)}\,|\,c_{1},c_{2},\ldots\in\mathbb{R}\text{ with }\operatorname{{\textstyle\sum}}_{i}c_{i}^{2}<\infty\bigr{\}}\;.

B.3. 𝐋2\mathbf{L}_{2} spaces

For any MM and a σ\sigma-finite measure ν\nu on MM, the 𝐋2\mathbf{L}_{2}-scalar product and pseudonorm are

f,g𝐋2(ν):=\medintMf(x)g(x)ν(dx) and f𝐋2(ν):=f,f𝐋2(ν).\left<\mkern 2.0mu\smash{f,g}\mkern 2.0mu\right>_{\mathbf{L}_{2}(\nu)}\;:=\;\medint\int_{M}f(x)g(x)\nu(dx)\quad\text{ and }\quad\|f\|_{\mathbf{L}_{2}(\nu)}:=\sqrt{\left<\mkern 2.0mu\smash{f,f}\mkern 2.0mu\right>_{\mathbf{L}_{2}(\nu)}}\;.

To make 𝐋2\|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|_{\mathbf{L}_{2}} a norm, one defines the equivalence classes [f]:={g|fg𝐋2=0}{[f]:={\{g\,|\,\|f-g\|_{\mathbf{L}_{2}}\!=0\}}} of functions identical outside a null set, and the vector space

𝐋2(ν):={[f]|f:M and f𝐋2<}\mathbf{L}_{2}(\nu)\;:=\;{\{[f]\,|\,f:M\rightarrow\mathbb{R}\text{ and }\|f\|_{\mathbf{L}_{2}}<\infty\}}

of such equivalence classes, which is a separable Hilbert space. Although its elements are not technically functions, we use the notation f𝐋2{f\in\mathbf{L}_{2}} rather than [f]𝐋2{[f]\in\mathbf{L}_{2}}. We write 𝐋2(n){\mathbf{L}_{2}(\mathbb{R}^{n})} and 𝐋2(Π){\mathbf{L}_{2}(\Pi)} respectively if ν\nu is Euclidean volume on n\mathbb{R}^{n} or on Π\Pi. See Aliprantis and Border [3] or Brezis [19] for background on 𝐋2\mathbf{L}_{2} spaces.

B.4. Reproducing kernel Hilbert spaces

Consider a set Mn{M\subseteq\mathbb{R}^{n}}. A symmetric positive definite function κ:M×M{\kappa:M\times M\rightarrow\mathbb{R}} is called a kernel. A kernel defines a Hilbert space as follows: The formula

iaiκ(xi,),jbjκ(yj,):=i,jaibiκ(xi,yj) for ai,bj and xi,yjM\left<\mkern 2.0mu\smash{\operatorname{{\textstyle\sum}}_{i}a_{i}\kappa(x_{i},{\,\vbox{\hbox{\tiny$\bullet$}}\,}),\,\operatorname{{\textstyle\sum}}_{j}b_{j}\kappa(y_{j},{\,\vbox{\hbox{\tiny$\bullet$}}\,})}\mkern 2.0mu\right>_{\mathbb{H}}\;:=\;\operatorname{{\textstyle\sum}}_{i,j}a_{i}b_{i}\kappa(x_{i},y_{j})\quad\text{ for }a_{i},b_{j}\in\mathbb{R}\text{ and }x_{i},y_{j}\in M

defines a scalar product on span{κ(x,)|xM}{\text{span}{\{\kappa(x,{\,\vbox{\hbox{\tiny$\bullet$}}\,})|x\in M\}}}. The closure

:=span{κ(x,)|xM}¯ with respect to the norm fκ:=f,f\mathbb{H}\;:=\;\overline{\text{span}{\{\kappa(x,{\,\vbox{\hbox{\tiny$\bullet$}}\,})|x\in M\}}}\quad\text{ with respect to the norm }\quad\|f\|_{\kappa}\;:=\;\sqrt{\left<\mkern 2.0mu\smash{f,f}\mkern 2.0mu\right>_{\mathbb{H}}}

is a real, separable Hilbert space with inner product ,{\left<\mkern 2.0mu\smash{{\,\vbox{\hbox{\tiny$\bullet$}}\,},{\,\vbox{\hbox{\tiny$\bullet$}}\,}}\mkern 2.0mu\right>_{\mathbb{H}}}, called the reproducing kernel Hilbert space or RKHS of kk. Every RKHS satisfies the “reproducing property”

(28) f(x)=f,κ(x,) for all f and all xM.f(x)\;=\;\left<\mkern 2.0mu\smash{f,\kappa(x,{\,\vbox{\hbox{\tiny$\bullet$}}\,})}\mkern 2.0mu\right>_{\mathbb{H}}\qquad\text{ for all }f\in\mathbb{H}\text{ and all }x\in M\;.

In particular, κ(x,y)=κ(x,),κ(y,){\kappa(x,y)=\left<\mkern 2.0mu\smash{\kappa(x,{\,\vbox{\hbox{\tiny$\bullet$}}\,}),\kappa(y,{\,\vbox{\hbox{\tiny$\bullet$}}\,})}\mkern 2.0mu\right>_{\mathbb{H}}}. If f1,f2,{f_{1},f_{2},\ldots} is an orthonormal basis of \mathbb{H}, then

(29) κ(x,y)=ifi(x)fi(y) for all x,yM.\kappa(x,y)\;=\;\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}f_{i}(x)f_{i}(y)\qquad\text{ for all }x,y\in M\;.

If \mathbb{H} is an RKHS, the map ff(x){f\mapsto f(x)} is continuous for each xM{x\in M}. Conversely, if \mathbb{H} is any Hilbert space of real-valued functions on MM, and if the maps are continuous on \mathbb{H} for all xM{x\in M}, there is a unique kernel satisfying (28) that generates \mathbb{H} as its RKHS.

B.5. Spaces of continuous functions

For any set MM, the vector space 𝐂(M)\mathbf{C}(M) of continuous functions equipped with the norm sup{\|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|_{\sup}} is a Banach space. It is separable if MM is compact [3]. In the proof of the spectral theorem, we must also consider the set

𝐂u(M):={f𝐂(M)|f uniformly continuous},\mathbf{C}_{u}(M)\;:=\;{\{f\in\mathbf{C}(M)\,|\,f\text{ uniformly continuous}\}}\;,

and the compactly supported functions

𝐂c(M)={f𝐂(M)|f=0 outside a compact set KM}.\mathbf{C}_{c}(M)\;=\;{\{f\in\mathbf{C}(M)\,|\,f=0\text{ outside a compact set }K\subset M\}}\;.

We recall some basic facts from analysis that are used in the proofs:

Fact 33 (Aliprantis and Border [3]).

(i) Every continuous function on a compact set is uniformly continuous. (ii) Every uniformly continuous function ff on a set Mn{M\subseteq\mathbb{R}^{n}} has a unique continuous extension f¯\bar{f} to the closure M¯\overline{M}. Its value at a boundary point xM{x\in\partial M} is given by f¯(x)=limj(xj){\bar{f}(x)=\lim_{j}(x_{j})} for any sequence of points xiM{x_{i}\in M} with xix{x_{i}\rightarrow x}.

B.6. Smoothness spaces

Smoothness spaces quantify the smoothness of functions in terms of a norm. Two types of such spaces play a role in our results, namely 𝐂k\mathbf{C}^{k} spaces and Sobolev spaces. Both define smoothness via derivatives: We denote partial derivatives as

αf:=|α|fx1α1xnαn where α=(α1,,αn)n and |α|:=α1++αn.\partial^{\alpha}f\;:=\;\frac{\partial^{|\alpha|}f}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}\qquad\text{ where }\alpha=(\alpha_{1},\ldots,\alpha_{n})\in\mathbb{N}^{n}\text{ and }|\alpha|:=\alpha_{1}+\ldots+\alpha_{n}\;.

If we are taking a derivative with respect to the iith coordinate, we use a subscript,

if:=\mfracfxi\partial_{i}f\;:=\;\mfrac{\partial f}{\partial x_{i}}

The set 𝐂k\mathbf{C}^{k} of kk times continuously differentiable functions can then be represented as

𝐂k(M):={f𝐂(M)|αf𝐂(M) whenever |α|k} where k{0,}.\mathbf{C}^{k}(M)\;:=\;{\{f\in\mathbf{C}(M)\,|\,\partial^{\alpha}f\in\mathbf{C}(M)\text{ whenever }|\alpha|\leq k\}}\qquad\text{ where }k\in\mathbb{N}\cup{\{0,\infty\}}\;.

Since that means the norm of 𝐂\mathbf{C} is applicable to αf\partial^{\alpha}f, we can define

f𝐂k:=fsup+\medmath|α|rαfsup.\|f\|_{\mathbf{C}^{k}}\;:=\;\|f\|_{\sup}+\operatorname{\medmath\sum}_{|\alpha|\leq r}\|\partial^{\alpha}f\|_{\sup}\;.

It can be shown that this is again a norm, and that it makes 𝐂k\mathbf{C}^{k} a Banach space [19]. 𝐂k\mathbf{C}^{k} functions are uniformly continuous, and even very smooth functions approximate elements of 𝐋2\mathbf{L}_{2} to arbitrary precision:

Fact 34.

Let Mn{M\subseteq\mathbb{R}^{n}} be a set. (i) If f𝐂k(M){f\in\mathbf{C}^{k}(M)} for k1{k\geq 1}, then ff and its first k1{k-1} derivatives are uniformly continuous. (ii) The set 𝐂c(M)𝐂(M){\mathbf{C}_{c}(M)\cap\mathbf{C}^{\infty}(M)} is dense in 𝐋2(M)\mathbf{L}_{2}(M).

The 𝐂k\mathbf{C}^{k} norms measure smoothness in a worst-case sense. To measure average smoothness instead, we can replace the sup norm by the 𝐋2(M)\mathbf{L}_{2}(M)-norm: The function

f𝐇k:=f𝐋2+\medmath|α|kαf𝐋2,\|f\|_{\mathbf{H}^{k}}\;:=\;\|f\|_{\mathbf{L}_{2}}+\operatorname{\medmath\sum}_{|\alpha|\leq k}\|\partial^{\alpha}f\|_{\mathbf{L}_{2}}\;,

is a norm, called the Sobolev norm of order kk. It makes the set

𝐇k(M):={f𝐋2(M)|f𝐇k<}={f𝐋2(M)|αf𝐋2(M)}\mathbf{H}^{k}(M):={\{f\in\mathbf{L}_{2}(M)\,|\,\|f\|_{\mathbf{H}^{k}}<\infty\}}\;=\;{\{f\in\mathbf{L}_{2}(M)\,|\,\partial^{\alpha}f\in\mathbf{L}_{2}(M)\}}

a Banach space, and even a Hilbert space, called the Sobolev space of order kk. We will only work with the spaces 𝐇1(M)\mathbf{H}^{1}(M). A inner product on 𝐇1(M)\mathbf{H}^{1}(M) is given by

f,g𝐇1:=f,g𝐋2+\medmathinif,ig𝐋2.\left<\mkern 2.0mu\smash{f,g}\mkern 2.0mu\right>_{\mathbf{H}_{1}}\;:=\;\left<\mkern 2.0mu\smash{f,g}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;+\;\operatorname{\medmath\sum}_{i\leq n}\left<\mkern 2.0mu\smash{\partial_{i}f,\partial_{i}g}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;.

The Sobolev norms are stronger than the 𝐋2{\mathbf{L}_{2}} norm: We have

f𝐋2(M)cMf𝐇1(M) for all f𝐋2(M) and some cM>0.\|f\|_{\mathbf{L}_{2}(M)}\;\leq\;c_{M}\|f\|_{\mathbf{H}_{1}(M)}\qquad\text{ for all }f\in\mathbf{L}_{2}(M)\text{ and some }c_{M}>0\;.

Consequently, the approximation property in 34(ii) does not necessarily hold in the Sobolev norm. Whether it does depends on whether the geometry of the domain MM is sufficiently regular:

Fact 35.

Let Γ\Gamma be a Lipschitz domain (such as a convex polytope). Then 𝐂c(Γ)𝐂(Γ){\mathbf{C}_{c}(\Gamma)\cap\mathbf{C}^{\infty}(\Gamma)} is dense in 𝐇1(Γ){\mathbf{H}^{1}(\Gamma^{\circ})}.

A readable introduction to Sobolev spaces is given by Brezis [19]. The monographs of Adams and Fournier [2] and Maz’ya [47] are comprehensive accounts.

B.7. Inclusion maps

If VW{V\subset W} are two sets, the inclusion map or injection map ι:VW{\iota:V\hookrightarrow W} is the restriction of the identity on WW to VV. Loosely speaking, ι\iota maps each point vv in VV to itself, but vv is regarded as an element of VV and its image ι(v)\iota(v) as an element of WW. This distinction is not consequential if VV and WW are simply sets without further structure, but if both are equipped with topologies, the properties of ι\iota encode relationships between these topologies.
Continuous inclusions. Suppose both VV and WW are equipped with topologies. Call these the VV- and WW-topology. The restriction of the WW-topology to VV, often called the relative WW-topology, consists of all sets of the form AVA\cap V, where AW{A\subset W} is open in WW. Since AV{A\cap V} is precisely the preimage ι1A\iota^{-1}A, and continuity means that preimages of open sets are open, we have

ι continuous  the V-topology is at least as fine as the restricted W-topology.\iota\text{ continuous }\quad\Longleftrightarrow\quad\text{ the $V$-topology is at least as fine as the restricted $W$-topology.}

Inclusions between Banach spaces. Let T:VW{T:V\rightarrow W} be a map from a Banach space VV to another Banach space WW. If such a map is linear, it is called a linear operator. It is continuous if and only if it is bounded,

(30) supvVT(v)WvV< or equivalently T(v)WcvV for some c>0.\sup_{v\in V}\frac{\|T(v)\|_{W}}{\|v\|_{V}}\;<\;\infty\quad\text{ or equivalently }\quad\|T(v)\|_{W}\;\leq\;c\|v\|_{V}\text{ for some }c>0\;.

If VV is a vector subspace of WW, then ι\iota is automatically linear, so it is continuous iff

vW=ι(v)WcvV.\|v\|_{W}\;=\;\|\iota(v)\|_{W}\;\leq\;c\|v\|_{V}\;.

Saying that ι\iota is continuous is hence another way of saying that  V\|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|_{V} is stronger than W\|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|_{W}. If VV and WW are smoothness spaces, continuity of ι\iota can hence often be interpreted as the elements VV being smoother than those of WW. A set AV{A\subset V} is norm-bounded if

supv,vAvvV<.\sup\nolimits_{v,v^{\prime}\in A}\|v-v^{\prime}\|_{V}\;<\;\infty\;.

A linear operator between Banach spaces is compact if the image T(A)T(A) of every norm-bounded set AV{A\subset V} has compact closure in WW [4]. The inclusion is hence compact iff

AV is bounded in V the W-closure of A in W is compact.A\subset V\text{ is bounded in }\|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|_{V}\quad\Longrightarrow\quad\text{ the $\|{\,\vbox{\hbox{\tiny$\bullet$}}\,}\|_{W}$-closure of }A\text{ in $W$ is compact.}

If VV and WW are smoothness spaces, the inclusion is often compact if VV is in some suitable sense smoother than WW. The well-known Arzela-Ascoli theorem [3], for example, can be interpreted in this way. For Sobolev spaces, a family of results known as Rellich-Kondrachov theorems [2] shows that, under suitable conditions on the domain, inclusions of the form 𝐇k+m𝐇k{\mathbf{H}^{k+m}\hookrightarrow\mathbf{H}^{k}} and 𝐇k+m𝐂k{\mathbf{H}^{k+m}\hookrightarrow\mathbf{C}^{k}} exist and are compact if the difference mm in smoothness is large enough. The following version is adapted to our purposes:

Lemma 36.

Let Π\Pi be a polytope and MΠ{M\subseteq\Pi^{\circ}} an open set. Then 𝐇k+1(M)𝐂k(M){\mathbf{H}^{k+1}(M)\subset\mathbf{C}^{k}(M)} for k0{k\geq 0}, and the inclusion map is compact.

Proof.

Since Π\Pi is a polytope, it has the strong local Lipschitz property in the terminology of Adams and Fournier [2, 4.9]. By the relevant version of the Rellich-Kondrachov theorem, that implies that the set of restrictions of functions in 𝐇k+1(Π){\mathbf{H}^{k+1}(\Pi^{\circ})} from Π\Pi^{\circ} to MM is a compactly embedded subset of 𝐂k(M){\mathbf{C}^{k}(M)} [2, 6.3 III]. The image of 𝐇k+1(Π){\mathbf{H}^{k+1}(\Pi^{\circ})} under the projection ff|M{f\mapsto f|_{M}} is precisely 𝐇k+1(M){\mathbf{H}^{k+1}(M)} [48, Chapter 3]. ∎

Appendix C Background III: Orbifolds

In this section, we give a rigorous definition of orbifolds and review those results from the literature required for our proofs. For more background, see [15, 65, 62, 16, 54, 23]. Bonahon [15] provides an accessible introduction to gluing and quotient spaces. Most results below are adapted from the monograph of Ratcliffe [53]. Ratcliffe’s formalism is very general and can be simplified significantly for our purposes. We state results here in just enough generality to apply to crystallographic groups.

C.1. Motivation: Manifolds

To motivate the somewhat abstract definition of an orbifold, we start with that of a manifold, and then generalize to orbifolds below. Recall that a set M{M} is a manifold if its topology “locally looks like n\mathbb{R}^{n}”. This idea can be formalized in a number of ways. We first give a definition using a metric, which is of the form often encountered in machine learning and statistics. We then generalize the metric definition to a more abstract one that brings us almost to orbifolds as we see in the following section.
Metric definition. Let MM be a set equipped with a metric dMd_{M}. We then call MM a manifold if, for every uM{u\in M}, we can choose a sufficiently small ε(u)>0{\varepsilon(u)>0} such that the dMd_{M}-ball around uu of radius ε\varepsilon is isometric to a dnd_{n}-ball of the same radius in n\mathbb{R}^{n}. There is, in other words, an isometry

θu:Bε(u)(u,dM)Bε(u)(θu(u),dn)n for each uM.\theta_{u}:\,B_{\varepsilon(u)}(u,d_{M})\;\rightarrow\;B_{\varepsilon(u)}(\theta_{u}(u),d_{n})\;\subset\;\mathbb{R}^{n}\qquad\text{ for each }u\in M\;.

For example, the circle, equipped with the geodesic distance, is a manifold in the sense of this definition: It is not possible to map the entire circle isometrically to a subset of \mathbb{R}. However, the ball Bε(u)(u,dM)B_{\varepsilon(u)}(u,d_{M}) around a point uu is a semiarc, drawn in black below:

θu\theta_{u}uuθu(u)\theta_{u}(u)\mathbb{R}MM

This semiarc can be mapped isometrically to an open interval in \mathbb{R}, and the same is true for the ball around any other point.
Coherence property. Before we generalize this definition, we observe that it implies a coherence property of the maps θu\theta_{u}. Suppose the balls around two points vv and ww in MM overlap, and uu is in both balls. We can then find a sufficiently small ε>0{\varepsilon>0} such that Bε(u,dM){B_{\varepsilon}(u,d_{M})} is completely contained in both balls. Since both maps θv\theta_{v} and θw\theta_{w} are applicable to the points in this ball, the restrictions

θv:Bε(u,dM)Bε(θv(u),dn) and θw:Bε(u,dM)Bε(θw(u),dn)\theta_{v}:B_{\varepsilon}(u,d_{M})\rightarrow B_{\varepsilon}(\theta_{v}(u),d_{n})\quad\text{ and }\quad\theta_{w}:B_{\varepsilon}(u,d_{M})\rightarrow B_{\varepsilon}(\theta_{w}(u),d_{n})

are both isometries. The points x=θv(u){x=\theta_{v}(u)} and y=θw(u){y=\theta_{w}(u)} are images under different maps, and the balls around them are not required to overlap. Both are, however, Euclidean balls of the same radius. If ψ=yx{\psi=y-x} is the (unique) shift of n\mathbb{R}^{n} that maps xx to yy, we hence have

Bε(θv(u),dn)=ψBε(θw(u),dn).B_{\varepsilon}(\theta_{v}(u),d_{n})=\psi B_{\varepsilon}(\theta_{w}(u),d_{n})\;.

Now observe that ψx=y=θwθv1(x){\psi x=y=\theta_{w}\theta_{v}^{-1}(x)}. There is, in summary, a shift ψ\psi such that

ψx=y and θwθv1(z)=ψz for all z in the ball Bε(x,dn).\psi x=y\quad\text{ and }\quad\theta_{w}\theta_{v}^{-1}(z)\;=\;\psi z\qquad\text{ for all }z\text{ in the ball }B_{\varepsilon}(x,d_{n})\;.

The definition hence implies that the map θwθv1\theta_{w}\theta_{v}^{-1}, often called a coordinate change in geometry, behaves like a shift on a sufficiently small neighborhood. When we drop the metric from the definition below, this property no longer arises automatically, and we must make it an explicit requirement.
Abstract definition. Let 𝔽\mathbb{F} be a group of isometries of n\mathbb{R}^{n}. The next definition generalizes the one above in two ways: It does not use a metric, and instead of requiring that coordinate changes look locally like shifts, it requires they look locally like elements of 𝔽\mathbb{F}. A Hausdorff space MM is a 𝔽\mathbb{F}-manifold if:

  1. 1.

    There is a family {Ui}i{\{U_{i}\}}_{i\in\mathcal{I}} of open connected subsets of MM that cover MM, i.e., each point of MM is in at least one set UiU_{i}. The set \mathcal{I} is an arbitrary index set.

  2. 2.

    For each i{i\in\mathcal{I}}, there is a homeomorphism θi:UiVi{\theta_{i}:U_{i}\rightarrow V_{i}} of UiU_{i} and an open set Vin{V_{i}\subset\mathbb{R}^{n}}.

  3. 3.

    If two sets UiU_{i} and UjU_{j} overlap, the maps θi\theta_{i} and θj\theta_{j} cohere as follows: If xx and yy are points in n\mathbb{R}^{n} that satisfy

    θjθi1(x)=y,\theta_{j}\theta_{i}^{-1}(x)\;=\;y\;,

    then there is a transformation ϕ𝔽{\phi\in\mathbb{F}} such that

    ψx=y and θj1θi(z)=ψz for all z in a neighborhood of x.\psi x\;=\;y\quad\text{ and }\quad\theta_{j}^{-1}\theta_{i}(z)\;=\;\psi z\qquad\text{ for all }z\text{ in a neighborhood of }x\;.

We recover the metric definition if we make MM a metric space (which is always Hausdorff), set =M{\mathcal{I}=M}, choose UiU_{i} as the ball around i=ui=u (which is always connected), and θi\theta_{i} as the isometry θu\theta_{u} (isometries are homeomorphisms).

C.2. Orbifolds

To capture the properties of the quotient n/𝔾\mathbb{R}^{n}/\mathbb{G}, the definition of a manifold is in general too restrictive. That follows from the following result:

Fact 37 (Bonahon [15] Theorem 7.8).

Let 𝔾\mathbb{G} be a crystallographic group that tiles n\mathbb{R}^{n} with a convex polytope. For every point xn{x\in\mathbb{R}^{n}}, there exists an ε>0{\varepsilon>0} such that the open metric ball Bd𝔾(𝔾(x),ε){B_{d_{\mathbb{G}}}(\mathbb{G}(x),\varepsilon)} in the quotient space n/𝔾\mathbb{R}^{n}/\mathbb{G} and the quotient Bdn(x,ε)/Stab(x){B_{d_{n}}(x,\varepsilon)/\text{\rm Stab}(x)} of the corresponding open ball in n\mathbb{R}^{n} are isometric.

We note this is precisely the metric definition of a manifold above if Stab(x)={𝟏}{\text{\rm Stab}(x)={\{\mathbf{1}\}}} for all points in n/𝔾\mathbb{R}^{n}/\mathbb{G}. It follows that, for a crystallographic group 𝔾\mathbb{G},

n/𝔾 is a manifold  no element of 𝔾 has a fixed point.\mathbb{R}^{n}/\mathbb{G}\text{ is a manifold }\quad\Longleftrightarrow\quad\text{ no element of $\mathbb{G}$ has a fixed point.}

Let 𝔽\mathbb{F} be a group of isometries of n\mathbb{R}^{n}. An 𝔽\mathbb{F}-orbifold is a Hausdorff space MM with the following properties:

  1. 1.

    There is a family {Ui}i{\{U_{i}\}}_{i\in\mathcal{I}} of open connected subsets of MM that cover MM, i.e., each point of MM is in at least one set UiU_{i}.

  2. 2.

    For each i{i\in\mathcal{I}}, there is a discrete group FiF_{i} of isometries of n\mathbb{R}^{n} and a homeomorphism θi:Uin/Fi{\theta_{i}:U_{i}\rightarrow\mathbb{R}^{n}/F_{i}} of UiU_{i} and an open subset of the quotient space n/Fi{\mathbb{R}^{n}/F_{i}}.

  3. 3.

    If two sets UiU_{i} and UjU_{j} overlap, the maps θi\theta_{i} and θj\theta_{j} cohere as follows: If xx and yy are points in n\mathbb{R}^{n}, and the corresponding points Fixn/Fi{F_{i}x\in\mathbb{R}^{n}/F_{i}} and Fjyn/Fj{F_{j}y\in\mathbb{R}^{n}/F_{j}} satisfy

    θjθi1(Fix)=Fjy,\theta_{j}\theta_{i}^{-1}(F_{i}x)\;=\;F_{j}y\;,

    then there is a transformation ϕ𝔽{\phi\in\mathbb{F}} such that

    ψx=y and θj1θi(Fiz)=Fj(ψz) for all z in a neighborhood of x.\psi x\;=\;y\quad\text{ and }\quad\theta_{j}^{-1}\theta_{i}(F_{i}z)\;=\;F_{j}(\psi z)\qquad\text{ for all }z\text{ in a neighborhood of }x\;.

The family {θi}i{\{\theta_{i}\}}_{i\in\mathcal{I}} is called an atlas. Clearly, an 𝔽\mathbb{F}-orbifold is an 𝔽\mathbb{F}-manifold if and only if each FiF_{i} is the trivial group Fi={𝟏}{F_{i}={\{\mathbf{1}\}}}.

Lemma 38.

If 𝔾\mathbb{G} is a crystallographic group that tiles n\mathbb{R}^{n} with a convex polytope Π\Pi, then n/𝔾\mathbb{R}^{n}/\mathbb{G} is a 𝔾\mathbb{G}-orbifold. At each point i=𝔾(x){i=\mathbb{G}(x)}, the group FiF_{i} is the stabilizer Stab(x){\text{Stab}(x)}.

This lemma is folklore in geometry—see e.g., Bonahon [15], Cooper et al. [23], Vinberg and Shvartsman [65] for results that are phrased differently but amount to the same. We give a proof here only to match our specific choices of definitions to each other.

Proof.

Let Π~\tilde{\Pi} be a transversal. We choose =n/𝔾{\mathcal{I}=\mathbb{R}^{n}/\mathbb{G}}, so each i{i\in\mathcal{I}} is the orbit 𝔾(x)\mathbb{G}(x) of some point in n\mathbb{R}^{n}, and hence of a unique point xΠ~{x\in\tilde{\Pi}}. By 37, there is hence a map θx{\theta_{x}} with θx(𝔾(x))=x{\theta_{x}(\mathbb{G}(x))=x} that isometrically maps a ball Bd𝔾(𝔾(x),ε){B_{d_{\mathbb{G}}}(\mathbb{G}(x),\varepsilon)} with suitable radius to Bdn(x,ε)/Stab(x){B_{d_{n}}(x,\varepsilon)/\text{\rm Stab}(x)}. We hence set Fi=Stab(x){F_{i}=\text{\rm Stab}(x)}, which is a finite subgroup of the discrete group 𝔾\mathbb{G}, and hence discrete. What remains to be shown is the coherence property. Suppose xx and yy are points in n\mathbb{R}^{n} with trivial stabilizers. If θyθx1(x)=y{\theta_{y}\theta_{x}^{-1}(x)=y}, then xx and yy are on the same orbit, so there is indeed a map ψ𝔾{\psi\in\mathbb{G}} with ψx=y{\psi x=y}. The coherence property then follows by the same argument as for metric manifolds above. If the stabilizers are non-trivial, the same holds if points are substituted by their orbits under stabilizers. ∎

Example 39.

Consider again the triangle Π\Pi and rotation ϕ\phi in Figure 13. Here, the stabilizer of the center of rotation xx is Stab(x)={𝟏,ϕ,ϕ2}{\text{\rm Stab}(x)={\{\mathbf{1},\phi,\phi^{2}\}}}. The metric ball around the point i=𝔾(x){i=\mathbb{G}(x)} on the orbifold (the tip of the cone) is a smaller cone:

i=𝔾(x)i=\mathbb{G}(x)xxθi\theta_{i}xxisomorphic inn/Stab(x)\begin{matrix}\text{isomorphic in}\\ \mathbb{R}^{n}/\text{\rm Stab}(x)\end{matrix}

Its image under θi\theta_{i} can be identified with the intersection of Π\Pi with a Euclidean ball around xx. Since Π\Pi and its image Stab(x)Π\text{\rm Stab}(x)\Pi under the stabilizer—the equilateral triangle on the right—are indistinguishable in n/Stab(x)\mathbb{R}^{n}/\text{\rm Stab}(x), that corresponds to the quotient of a metric ball in the plane.

C.3. Path metrics

An orbifold as defined above is a topological space. To work with the gluing results stated below, we must know it is also a metric space, and that this space is complete. 40 shows that that is true. Before we state the fact, we briefly describe how to construct the relevant metric, which is the standard metric on orbifolds. Our definition is again adapted from that of Ratcliffe [53]. Bonahon [15] offers an accessible introduction to this type of metric.

Intuitively, the metric generalizes the geodesic on a smooth surface, by measuring the length of the shortest curve between two points. Formally, a curve connecting two points ω1{\omega_{1}} and ω2{\omega_{2}} in MM is a continuous function

γ:[a,b]X such that γ(a)=ω1 and γ(b)=ω2.\gamma:[a,b]\subset\mathbb{R}\rightarrow X\qquad\text{ such that }\qquad\gamma(a)=\omega_{1}\text{ and }\gamma(b)=\omega_{2}\;.

To define the length γ\|\gamma\| of γ\gamma, first suppose ω1\omega_{1} and ω2\omega_{2} are in the same set UiU_{i}, and define

γ:=sup{jkdFi(θiγ(tj1),θiγ(tj)))|a=t0<t1<<tk=b for k},\|\gamma\|\;:=\;\sup{\{\,\operatorname{{\textstyle\sum}}_{j\leq k}d_{F_{i}}(\theta_{i}\circ\gamma(t_{j-1}),\theta_{i}\circ\gamma(t_{j})))\,|\,a=t_{0}<t_{1}<\ldots<t_{k}=b\text{ for }k\in\mathbb{N}\}}\;,

that is, the supremum is taken over the sequences (t0,,tk){(t_{0},\ldots,t_{k})}. In words: For each tj[a,b]{t_{j}\in[a,b]}, the point γ(tj)\gamma(t_{j}) lies on the curve γ\gamma in MM. By choosing a sequence t0,,tk{t_{0},\ldots,t_{k}} as above, we approximate the curve by kk line segments (γ(tj1),γ(tj)){(\gamma(t_{j-1}),\gamma(t_{j}))}, and then approximate the length of γ\gamma by summing the lengths of these segments. Since each line segment lies in MM, and we have no tool to measure distance in MM, we map each point γ(tj)\gamma(t_{j}) on the curve to a point θi(γ(tj))\theta_{i}(\gamma(t_{j})) in n/Fi\mathbb{R}^{n}/F_{i}, where we know how to measure distance using dFid_{F_{i}}. We then record the length of the piece-wise approximation as the sum of lengths of the segments. The length γ{\|\gamma\|} is the supremum over the lengths of all such approximations.

If there is no set UiU_{i} containing both points, one can always subdivide [a,b][a,b] into finitely many segments [tj1,tj][t_{j-1},t_{j}] such that every pair γ(tj1){\gamma(t_{j-1})} and γ(tj){\gamma(t_{j})} of consecutive points is in in some set UiU_{i} (see [53]). One then defines

γ:=\medmathikγ|[ti1,ti],\|\gamma\|\;:=\;\operatorname{\medmath\sum}_{i\leq k}\|\gamma|_{[t_{i-1},t_{i}]}\|\;,

and it can be shown that γ\|\gamma\| does not depend on the choice of subdivision.

Fact 40 (Ratcliffe [53] Lemma 1 of §13.2, Theorems 13.2.7 and 13.3.8).

If MM is an 𝔽\mathbb{F}-orbifold, any two points in MM can be connected by a curve of finite length. The function

dpath(ω1,ω1):=inf{γ|γ is a curve connecting ω1 and ω2 in M }d_{\text{\rm path}}(\omega_{1},\omega_{1})\;:=\;\inf{\{\|\gamma\|\,|\,\gamma\text{ is a curve connecting $\omega_{1}$ and $\omega_{2}$ in $M$ }\}}

is a metric on the set MM, and metrizes the Hausdorff topology of MM. The metric space so defined is complete.

C.4. Orbifolds constructed by abstract gluing

Let S1,,Sk{S_{1},\ldots,S_{k}} be the facets of Π\Pi. A side pairing is a finite set 𝒮={ψ1,,ψk}{\mathcal{S}={\{\psi_{1},\ldots,\psi_{k}\}}} of isometries of n\mathbb{R}^{n} if, for each ik{i\leq k}, there is a jk{j\leq k} such that

(i) ψi(Sj)=Si(ii) ψi=ψj1(iii) ΠψiΠ=Si.\text{(i) }\;\psi_{i}(S_{j})=S_{i}\qquad\text{(ii) }\;\psi_{i}\;=\;\psi_{j}^{-1}\qquad\text{(iii) }\;\Pi\cap\psi_{i}\Pi\;=\;S_{i}\;.

The definition permits i=j{i=j}. A crystallographic group is determined by a side pairing:

Fact 41 (Bonahon [15] Theorem 7.11).

If a crystallographic group 𝔾\mathbb{G} tiles with a convex polytope Π\Pi, the tiling is exact, and 𝒮\mathcal{S} is a side pairing for Π\Pi and 𝔾\mathbb{G}, the group generated by 𝒮\mathcal{S} is 𝔾\mathbb{G}.

The side pairing defines an equivalence relation \equiv on points x,yΠ{x,y\in\Pi}, namely

xy:ψix=y for some ik.x\;\equiv\;y\qquad:\Longleftrightarrow\qquad\psi_{i}x=y\quad\text{ for some }i\leq k\;.

Let MM be the quotient space M:=Π/{M:=\Pi/\equiv}, equipped with the quotient topology, that is,

AM open :{xΠ| equivalence class of x is in A} is open set in ΠA\subset M\text{ open }\quad:\Leftrightarrow\quad{\{x\in\Pi|\text{ equivalence class of }x\text{ is in }A\}}\text{ is open set in }\Pi

We then refer to MM as the quotient obtained by abstract gluing from Π\Pi and 𝒮\mathcal{S}. We will be interested in a specific type of side pairing, called a subproper side pairing. The precise definition is somewhat involved, and can be found in §13.4 of Ratcliffe [53]. We omit it here, since we will see that all side pairings relevant to our purposes are subproper.

Fact 42 (Ratcliffe [53] Theorem 13.4.2).

Let 𝔽\mathbb{F} be a group of isometries of n\mathbb{R}^{n} and Π\Pi a convex polytope. Let MM be the metric space obtained by abstract gluing from Π\Pi and a subproper 𝔽\mathbb{F}-side pairing. Then MM is an 𝔽\mathbb{F}-orbifold. The natural inclusion ΠM{\Pi^{\circ}\hookrightarrow M}, i.e., the map that takes each point xΠ{x\in\Pi^{\circ}} to its \equiv-equivalence class, is continuous.

For the next result, recall the definition of d𝔾d_{\mathbb{G}} from 3. We define a metric d𝕊d_{\mathbb{S}} for a group 𝕊\mathbb{S} analogously, by substituting 𝕊\mathbb{S} for 𝔾\mathbb{G}.

Fact 43 (Ratcliffe [53] Theorem 13.5.3).

Let MM be the orbifold in 42, and 𝕊\mathbb{S} be the group generated by all maps in the side pairing. If MM is a complete metric space, the natural inclusion map ΠM{\Pi\hookrightarrow M} induces an isometry from MM to (n/𝕊,d𝕊){(\mathbb{R}^{n}/\mathbb{S},d_{\mathbb{S}})}.

The final result on orbifolds we need gives a precise statement of the idea that the set of points around which an orbifold does not resemble a manifold is small. The next definition characterizes those points around which the manifold property breaks down as having order >1>1: Consider a point zM{z\in M}. Then we can find some xn{x\in\mathbb{R}^{n}} that corresponds to zz: We know that zUi{z\in U_{i}} for some ii, and hence ϕiz=Fix{\phi_{i}z=F_{i}x} in the quotient space n/Fi{\mathbb{R}^{n}/F_{i}}. The order of zM{z\in M} is the number of elements of FiF_{i} that leave xx invariant (formally, the order of the stabilizer of xx in FiF_{i}). It can be shown that this number does not depend on the choice of ii, so each zM{z\in M} has a uniquely defined order.

Fact 44 (Ratcliffe [53] Theorem 13.2.4).

If MM is an 𝔽\mathbb{F}-orbifold, the set of points of order 11 in MM is an open dense subset of MM. The set of points of order >1>1 is nowhere dense.

C.5. Topological dimension

The notion of dimension we have used throughout is the algebraic dimension dimA\dim A of a set AA in a vector space (see Section 2). For the proof of the embedding theorem, we also need another notion of dimension that does not require vector space structure, known variously as topological dimension, covering dimension, or Lebesgue dimension. The definition is slightly more involved: Consider a topological space XX. An open cover of XX is a collection 𝒜\mathcal{A} of open sets in XX that cover XX, that is, each point of XX is in at least one of the sets. The order of an open cover is

order(𝒜):=sup{ number of elements of 𝒜 containing x|xX}.\text{order}(\mathcal{A})\;:=\;\sup{\{\text{ number of elements of $\mathcal{A}$ containing }x\,|\,x\in X\}}\;.

The topological dimension Dim X\text{\rm Dim\,}X of XX is the smallest value m{}{m\in\;\mathbb{N}\cup{\{\infty\}}} such that, for every open covering \mathcal{B} of XX, there is an open covering 𝒜\mathcal{A} with order(𝒜)=m+1{\text{order}(\mathcal{A})=m+1} such that every set of \mathcal{B} contains a set of 𝒜\mathcal{A}.

Fact 45 ([50, 3.2.7]).

The topological dimension of Euclidean space equals its algebraic dimension, Dim n=dimn=n{\text{\rm Dim\,}\mathbb{R}^{n}=\dim\mathbb{R}^{n}=n}, and any closed metric balls Bn{B\subset\mathbb{R}^{n}} has Dim B=n{\text{\rm Dim\,}B=n}.

In general, however, the topological dimension of a set An{A\subset\mathbb{R}^{n}} may differ from its dimension dimA\dim A as defined in Section 2 (as the algebraic dimension of the linear hull), and even the proof that Dim n=n{\text{\rm Dim\,}\mathbb{R}^{n}=n} is not entirely trivial. Munkres [49] provides a readable overview. The reason why topological dimension is of interest in our context is the following classical result. Recall that, given topological spaces XX and YY, an embedding of XX into YY is an injective map XY{X\rightarrow Y} that is a homeomorphism of XX and its image.

Fact 46 ([49, 50.5]).

Every compact metrizable space XX with Dim X<{\text{\rm Dim\,}X<\infty} can be embedded into 2Dim X+1\mathbb{R}^{2\text{\rm Dim\,}X+1}.

We also collect two additional facts for use in the proofs. Recall that a function is called closed if the image of every closed set is closed.

Fact 47 ([49, 50.2] and [50, 9.2.10]).

(i) If XX is a topological space and Y1,,Yk{Y_{1},\ldots,Y_{k}} are closed and finite-dimensional subspaces, then

X=Y1Yk implies Dim X=maxiDim Yi.X\;=\;Y_{1}\cup\ldots\cup Y_{k}\qquad\text{ implies }\qquad\text{\rm Dim\,}X=\max_{i}\text{\rm Dim\,}Y_{i}\;.

(ii) Let f:XY{f:X\rightarrow Y} be a continuous, closed and surjective map between metric spaces. If |f1y|m+1{|f^{-1}y|\leq m+1} for some m{0}{m\in\mathbb{N}\cup{\{0\}}} and all yY{y\in Y}, then

Dim XDim YDim X+m.\text{\rm Dim\,}X\;\leq\;\text{\rm Dim\,}Y\;\leq\;\text{\rm Dim\,}X+m\;.

Appendix D Background IV: Spectral theory

The proof of the Fourier representation draws on the spectral theory of linear operators, and we now review the relevant facts of this theory. We are interested in an operator AA (think Δ-\Delta) defined on a space VV (think 𝐇𝔾\mathbf{H}_{\mathbb{G}}) which is contained in a space WW (think 𝐋2\mathbf{L}_{2}). If VV approximates 𝐋2\mathbf{L}_{2} sufficiently well, and if AA is self-adjoint on VV, a general spectral result guarantees the existence of an orthonormal basis for 𝐋2\mathbf{L}_{2} consisting of eigenfunctions (48). To apply the result to the negative Laplacian, we must extend Δ\Delta to an operator on 𝐇𝔾\mathbf{H}_{\mathbb{G}} (since Δ\Delta is defined on twice differentiable functions, and elements of 𝐇𝔾\mathbf{H}_{\mathbb{G}} need not be that smooth). 49 shows that is possible. Once we have obtained the eigenfunctions, there is a generic way to show they are smooth (50).

D.1. Spectra of self-adjoint operators

Spectral decompositions of self-adjoint operators have been studied widely, see Brezis [19], McLean [48] for sample results. We use the following formulation, adapted from Theorem 2.37 and Corollary 2.38 of McLean [48].

Fact 48 (Spectral decomposition [48]).

Let Π\Pi be a polytope, and VV a closed subspace of 𝐇1(Π)\mathbf{H}^{1}(\Pi^{\circ}). Require that the inclusion maps

(31) V𝐋2(Π)VV\;\hookrightarrow\;\mathbf{L}_{2}(\Pi^{\circ})\;\hookrightarrow\;V^{*}

are both continuous and dense, and the first inclusion is also compact. Let A:VV{A:V\rightarrow V^{*}} be a bounded linear operator that is self-adjoint on VV and satisfies

(32) Af,fVcVfV2cLf𝐋22 for some cV,cL>0 and all fV.\left<\mkern 2.0mu\smash{Af,f}\mkern 2.0mu\right>_{V}\;\geq\;c_{V}\|f\|^{2}_{V}-c_{L}\|f\|^{2}_{\mathbf{L}_{2}}\qquad\text{ for some }c_{V},c_{L}>0\text{ and all }f\in V\;.

Then there is a countable number of scalars

λ1λ2 with λii\lambda_{1}\leq\lambda_{2}\leq\ldots\qquad\text{ with }\qquad\lambda_{i}\;\xrightarrow{i\rightarrow\infty}\;\infty

and functions ξ1,ξ2,V{\xi_{1},\xi_{2},\ldots\in V} such that

Aξi=λξi for all i.A\xi_{i}\;=\;\lambda\xi_{i}\qquad\text{ for all }i\in\mathbb{N}\;.

The functions ξi\xi_{i} form an orthonormal basis for VV. For each vV{v\in V},

\medmathimλiv,ξiξimAv\operatorname{\medmath\sum}_{i\leq m}\lambda_{i}\left<\mkern 2.0mu\smash{v,\xi_{i}}\mkern 2.0mu\right>\xi_{i}\;\xrightarrow{m\rightarrow\infty}\;Av

holds in the dual VV^{*}. If AA is also strictly positive definite, then λ1>0{\lambda_{1}>0}.

If the inclusions in (48) are continuous and dense, 𝐋2\mathbf{L}_{2} is called a pivot space for VV. See Remark 3 in Chapter 5 of Brezis [19] for a discussion of pivot spaces.

D.2. Extension of Laplacians to Sobolev spaces

Recall that the Laplace operator Δ\Delta on a domain Γ\Gamma is defined on twice continuously differentiable functions. It can be extended to a continuous linear operator on 𝐇1(Γ)\mathbf{H}^{1}(\Gamma^{\circ}), provided the geometry of Γ\Gamma is sufficiently regular. That is the case if Γ\Gamma is a Lipschitz domain, which loosely speaking means it is bounded by a finite number of Lipschitz-smooth surfaces. Since a precise definition (which can be found in McLean [48]) is rather technical, we omit details and only note that every polytope is a Lipschitz domain [48, p 90].

Fact 49.

Let Γ\Gamma be a Lipschitz domain, and denote by 𝐇1(Γ){\mathbf{H}^{1}(\Gamma^{\circ})^{*}} the dual space of 𝐇1(Γ){\mathbf{H}^{1}(\Gamma^{\circ})}. There is a unique linear operator Λ:𝐇1(Γ)𝐇1(Γ){\Lambda:\mathbf{H}^{1}(\Gamma^{\circ})\rightarrow\mathbf{H}^{1}(\Gamma^{\circ})^{*}} that extends the Laplace operator. This operator is bounded on 𝐇1(Γ)\mathbf{H}^{1}(\Gamma^{\circ}).

D.3. Smoothness of eigenfunctions

One hallmark of differential operators is that their eigenfunctions tend to be very smooth. The sines and cosines that make up the standard Fourier basis on the line are examples. Intuitively, that is due to the fact that the Laplacian is a second-order differential operator, and “removes two orders of smoothness”: If Δf\Delta f is in 𝐂k\mathbf{C}^{k}, then ff must be in 𝐂k+2\mathbf{C}^{k+2}. Since an eigenfunction appears on both sides of the spectral equation

Δξ=λξ,-\Delta\xi\;=\;\lambda\xi\;,

one can iterate the argument: If ξ\xi is in 𝐂\mathbf{C}, it must also be in 𝐂2\mathbf{C}^{2}, hence also in 𝐂4\mathbf{C}^{4}, and so forth. This argument is not immediately applicable to the functions ξ\xi constructed in 48 above, since it does not guarantee the functions to be in 𝐂2\mathbf{C}^{2}. It only shows they are in VV, which in the context of differential operators (and specifically in the problems we study) is typically a Sobolev space. Under suitable conditions on the domain, however, one can show that argument above generalizes to Sobolev space, at least on certain open subsets. The following version is again adapted to our problem from a more general result.

Fact 50 ([48, 4.16]).

Let Π\Pi be a polytope and MM an open set such that M¯Π{\overline{M}\subset\Pi^{\circ}}. Let Λ\Lambda be the extension of the Laplace operator guaranteed by 49. Suppose f𝐇1(M){f\in\mathbf{H}^{1}(M)} and k{0}{k\in\mathbb{N}\cup{\{0\}}}. Then Λf=g{\Lambda f=g} on MM for g𝐇k(M){g\in\mathbf{H}^{k}(M)} implies f𝐇k+2(M){f\in\mathbf{H}^{k+2}(M)}.

Appendix E Proofs I: The flux property

This and the following two sections comprise the proof of Theorem 7, the Fourier representation. In this section, we prove the flux property of Proposition 28.

E.1. Tools: Subfacets

We next introduce a simple geometric tool to deal with non-exact tilings: Theorem 15 assumes the tiling is exact, but the the flux property and the Fourier representation make no such assumption. Although they do not use a gluing construction explicitly, they use the periodic boundary condition (6), which matches up points on the boundary Π\partial\Pi as gluing does. Absent exactness, that requires dealing with parts of facets. We call each set of the form

σ:=(ΠϕΠ) for some ϕ𝔾 and σ\sigma\;:=\;(\Pi\cap\phi\Pi)^{\circ}\qquad\text{ for some }\phi\in\mathbb{G}\text{ and }\sigma\neq\varnothing

a subfacet of Π\Pi. Let Σ\Sigma be the (finite) set of subfacets of Π\Pi. Whereas the division of Π\partial\Pi into facets is a property of the polytope that does not depend on 𝔾\mathbb{G}, the subfacets are a property of the tiling.

Example 51.

Consider an edge of a rectangle Π2{\Pi\subset\mathbb{R}^{2}}. Suppose ϕ\phi is a 180180^{\circ} rotation around the center xx of the edge, as shown on the left:

xxxxfacetsubfacetsubfacet

Then ϕ\phi maps the facet to itself, and maps the point xx to itself, but no other point is fixed. In this case, xx divides the interior of the facet into two subfacets (right). If ϕ\phi is instead a reflection about the same edge, each point on the edge is a fixed point, and the entire interior of the edge is a single subfacet. Another example of a subfacet is the edge segment marked in Figure 12/left.

Lemma 52.

The subfacets are convex (n1)(n-1)-dimensional open subsets of Π\partial\Pi, and their closures cover Π\partial\Pi. In particular,

voln1(σ)>0 for all σΣ and \medmathσΣvoln1(σ)=voln1(Π).\text{\rm vol}_{n-1}(\sigma)>0\;\text{ for all }\sigma\in\Sigma\quad\text{ and }\quad\operatorname{\medmath\sum}_{\sigma\in\Sigma}\text{\rm vol}_{n-1}(\sigma)=\text{\rm vol}_{n-1}(\partial\Pi)\;.

Each subfacet is mapped by 𝔾\mathbb{G} to exactly one subfacet, possibly itself: For each σΣ{\sigma\in\Sigma},

ϕσ(σ)Σ for one and only one ϕσ𝔾 {𝟏},\phi_{\sigma}(\sigma)\;\in\;\Sigma\qquad\text{ for one and only one }\phi_{\sigma}\in\mathbb{G}\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}{\{\mathbf{1}\}}\;,

where ϕσ(σ)=σ{\phi_{\sigma}(\sigma)=\sigma} if and only if σ\sigma contains a fixed point of ϕσ\phi_{\sigma}.

Proof of Lemma 52.

Each subfacet is by definition of the form σ=(ΠψΠ){\sigma=(\Pi\cap\psi\Pi)^{\circ}}, for some ψ𝔾{\psi\in\mathbb{G}}. Since 𝔾(Π)\mathbb{G}(\Pi) is a tiling, Π\Pi and ψΠ{\psi\Pi} are the only tiles intersecting σ\sigma. We hence have

σϕσ1Π for one and only one ϕσ𝔾 {𝟏},\sigma\cap\phi_{\sigma}^{-1}\Pi\;\neq\;\varnothing\qquad\text{ for one and only one }\phi_{\sigma}\in\mathbb{G}\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}{\{\mathbf{1}\}}\;,

namely for ϕσ=ψ1{\phi_{\sigma}=\psi^{-1}}. Since the set Πϕσ1Π{\Pi\cap\phi_{\sigma}^{-1}\Pi} is the intersection of two facets, and hence of two convex sets, it is convex. By the definition of subfacets, its relative interior σ\sigma is non-empty. That makes σ\sigma a (n1){(n-1)}-dimensional, convex, open subset of Π\partial\Pi.
11^{\circ} Volumes. Since σ\sigma is open in n1n-1 dimensions,

voln1(σ)>0.\text{\rm vol}_{n-1}(\sigma)>0\;.

The definition of a tiling implies each boundary point xΠ{x\in\partial\Pi} is on the facet of some adjacent tile ϕΠ\phi\Pi. It follows that

Π=ϕ𝔾{𝟏}ΠϕΠ=σΣσ¯.\partial\Pi\;=\;\operatorname*{\raisebox{-1.49994pt}{$\mathbin{{\cup}}$}}\nolimits_{\phi\in\mathbb{G}\smallsetminus{\{\mathbf{1}\}}}\Pi\cap\phi\Pi\;=\;\operatorname*{\raisebox{-1.49994pt}{$\mathbin{{\cup}}$}}\nolimits_{\sigma\in\Sigma}\overline{\sigma}\;.

Since distinct subfacets do not intersect, applying volumes on both sides shows

voln1(Π)=\medmathσΣvoln1(σ).\text{\rm vol}_{n-1}(\partial\Pi)\;=\;\operatorname{\medmath\sum}_{\sigma\in\Sigma}\text{\rm vol}_{n-1}(\sigma)\;.

22^{\circ} Each subfacet maps to exactly one subfacet. We have already noted that σ\sigma intersects only the tiles Π\Pi and ϕσ1Π\phi_{\sigma}^{-1}\Pi. Since ϕσ1Π{\phi_{\sigma}^{-1}\Pi} is adjacent to Π\Pi, so is ϕσΠ{\phi_{\sigma}\Pi}. That implies ϕ(σ)=(ΠϕσΠ){\phi(\sigma)=(\Pi\cap\phi_{\sigma}\Pi)^{\circ}}, and hence

ϕσ(σ)Σ and σϕ1Π= if ϕ𝟏,ϕσ.\phi_{\sigma}(\sigma)\in\Sigma\qquad\text{ and }\qquad\sigma\cap\phi^{-1}\Pi\;=\;\varnothing\quad\text{ if }\phi\neq\mathbf{1},\phi_{\sigma}\;.

Thus, σ\sigma maps to ϕσ\phi_{\sigma} and vice versa, and neither maps to any other subfacet.
33^{\circ} Fixed points. We know that σ\sigma and ϕσ(σ)\phi_{\sigma}(\sigma) are either identical or disjoint. Suppose first that σϕσ(σ){\sigma\neq\phi_{\sigma}(\sigma)}. Then

ϕσ1ΠϕσΠ and hence ϕσ(σ)σ=,\phi_{\sigma}^{-1}\Pi\;\neq\;\phi_{\sigma}\Pi\quad\text{ and hence }\quad\phi_{\sigma}(\sigma)\cap\sigma=\varnothing\;,

so ϕσ\phi_{\sigma} has no fixed points in σ\sigma. On the other hand, suppose ϕσ(σ)=σ{\phi_{\sigma}(\sigma)=\sigma}. Then the restriction of ϕσ\phi_{\sigma} to the closure σ¯\bar{\sigma} is a continuous map σ¯σ¯{\overline{\sigma}\rightarrow\overline{\sigma}} from a compact convex set to itself. That implies, by Brouwer’s theorem [3, 17.56], that the closure σ¯\overline{\sigma} contains at least one fixed point, and we only have to ensure that at least one of these fixed points is in the interior σ\sigma. But if the boundary σ\partial\sigma contains fixed points and σ\sigma does not, then ϕσ(σ)σ{\phi_{\sigma}(\sigma)\neq\sigma} since ϕσ\phi_{\sigma} is an isometry, which contradicts the assumption. In summary, we have shown that ϕσ(σ)=σ{\phi_{\sigma}(\sigma)=\sigma} if and only if σ\sigma contains a fixed point. ∎

E.2. Proof of the flux property

To establish the flux property in Proposition 28, we first show how the normal vector 𝐍Π\mathbf{N}_{\Pi} of the boundary of a tile Π\Pi transforms under elements of the group 𝔾\mathbb{G}.

Lemma 53 (Transformation behavior of normal vectors).

If a crystallographic group tiles n\mathbb{R}^{n} with a convex polytope Π\Pi, then

(33) Aϕ𝐍Π(x)=𝐍Π(ϕx) whenever x,ϕxΠ.A_{\phi}\mathbf{N}_{\Pi}(x)\;=\;-\mathbf{N}_{\Pi}(\phi x)\qquad\text{ whenever }x,\phi x\in\Pi\;.
Proof.

If ϕΠ\phi\Pi is a tile adjacent to Π\Pi, its normal vector 𝐍ϕΠ{\mathbf{N}_{\phi\Pi}} satisfies

𝐍Π(y)=𝐍ϕΠ(y) if yΠϕΠ.\mathbf{N}_{\Pi}(y)\;=\;-\mathbf{N}_{\phi\Pi}(y)\qquad\text{ if }y\in\Pi\cap\phi\Pi\;.

Since xϕx{x\sim\phi x} holds, xx is on at least one facet SS of Π\Pi, and ϕx\phi x is hence on the facet ϕS{\phi S} of ϕΠ\phi\Pi. If 𝐍\mathbf{N} is a normal vector of SS (exterior to Π)\Pi), then Aϕ𝐍{A_{\phi}\mathbf{N}} is a normal vector of ϕS\phi S (exterior to ϕΠ\phi\Pi). That shows

𝐍ϕΠ(ϕx)=Aϕ𝐍Π(x) if x,ϕxΠ.\mathbf{N}_{\phi\Pi}(\phi x)\;=\;A_{\phi}\mathbf{N}_{\Pi}(x)\qquad\text{ if }x,\phi x\in\Pi\;.

In summary, we hence have Aϕ𝐍Π(x)=𝐍Π(y){A_{\phi}\mathbf{N}_{\Pi}(x)\;=\;-\mathbf{N}_{\Pi}(y)} whenever xx and ϕx\phi x are both in Π\Pi. ∎

Proof of Proposition 28.

11^{\circ} Let σ\sigma be a subfacet. Since 𝐍Π\mathbf{N}_{\Pi} is constant on σ\sigma, we define the vectors

𝐍Π(σ):=𝐍Π(x) for any xσ and I(σ):=\medintσF(x)voln1(dx).\mathbf{N}_{\Pi}(\sigma)\;:=\;\mathbf{N}_{\Pi}(x)\text{ for any }x\in\sigma\quad\text{ and }\quad I(\sigma)\;:=\;\medint\int_{\sigma}F(x)\text{\rm vol}_{n-1}(dx)\;.

By Lemma 52, the subfacets cover Π\partial\Pi up to a null set. We hence have

\medintΠF(x)𝖳𝐍Π(x)voln1(dx)=\medmathσ𝒮\medintσF(x)𝖳𝐍Π(x)voln1(dx)=\medmathσ𝒮𝐍(σ)𝖳I(σ).\medint\int_{\partial\Pi}F(x)^{\sf{T}}\mathbf{N}_{\Pi}(x)\text{\rm vol}_{n-1}(dx)\;=\;\operatorname{\medmath\sum}_{\sigma\in\mathcal{S}}\medint\int_{\sigma}F(x)^{\sf{T}}\mathbf{N}_{\Pi}(x)\text{\rm vol}_{n-1}(dx)\;=\;\operatorname{\medmath\sum}_{\sigma\in\mathcal{S}}\mathbf{N}(\sigma)^{\sf{T}}I(\sigma)\;.

We must show this sum vanishes.
22^{\circ} If ϕσΠ{\phi\sigma\in\Pi}, the ϕ\phi-invariance of voln1\text{\rm vol}_{n-1} and condition (20) imply

I(ϕσ)=\medintϕσF(x)voln1(dx)\displaystyle I(\phi\sigma)\;=\;\medint\int_{\phi\sigma}F(x)\text{\rm vol}_{n-1}(dx)\; =\medintσF(ϕ(x))voln1(dx)\displaystyle=\;\medint\int_{\sigma}F(\phi(x))\text{\rm vol}_{n-1}(dx)
=Aϕ\medintσF(x)voln1(dx)=AϕI(σ).\displaystyle=\;A_{\phi}\medint\int_{\sigma}F(x)\text{\rm vol}_{n-1}(dx)\;=\;A_{\phi}I(\sigma)\;.

Lemma 53 implies Aϕ𝐍Π(σ)=𝐍Π(ϕσ){A_{\phi}\mathbf{N}_{\Pi}(\sigma)=-\mathbf{N}_{\Pi}(\phi\sigma)} for ϕσΠϕΠ{\phi\sigma\subset\Pi\cap\phi\Pi}. That shows

𝐍Π(ϕσ)𝖳I(ϕσ)=(Aϕ𝐍Π(σ))𝖳AϕI(σ)=𝐍Π(σ)𝖳Aϕ𝖳AϕI(σ)=𝐍Π(σ)𝖳I(σ),\mathbf{N}_{\Pi}(\phi\sigma)^{\sf{T}}I(\phi\sigma)\;=\;-(A_{\phi}\mathbf{N}_{\Pi}(\sigma))^{\sf{T}}A_{\phi}I(\sigma)\;=\;-\mathbf{N}_{\Pi}(\sigma)^{\sf{T}}A_{\phi}^{\sf{T}}A_{\phi}I(\sigma)\;=\;-\mathbf{N}_{\Pi}(\sigma)^{\sf{T}}I(\sigma)\;,

since Aϕ𝖳=Aϕ1{A_{\phi}^{\sf{T}}=A_{\phi}^{-1}}. It follows that

𝐍Π(σ)𝖳I(σ)+𝐍Π(ϕσ)𝖳I(ϕσ)= 0 and even 𝐍Π(σ)𝖳I(σ)= 0 if σ=ϕσ.\mathbf{N}_{\Pi}(\sigma)^{\sf{T}}I(\sigma)\,+\,\mathbf{N}_{\Pi}(\phi\sigma)^{\sf{T}}I(\phi\sigma)\,=\,0\quad\text{ and even }\quad\mathbf{N}_{\Pi}(\sigma)^{\sf{T}}I(\sigma)\,=\,0\;\text{ if }\sigma=\phi\sigma\;.

33^{\circ} By Lemma 52, the set Σ\Sigma of subfacets can be sorted into pairs (σ,ϕσσ)(\sigma,\phi_{\sigma}\sigma) such that no subfacet occurs in more than one pair (though σ=ϕσσ{\sigma=\phi_{\sigma}\sigma} is possible). It follows that

\medmathσΣ𝐍Π(σ)𝖳I(σ)=\mfrac12\medmathσΣ(𝐍Π(σ)𝖳I(σ)+𝐍Π(ϕσσ)𝖳I(ϕσσ))= 0\operatorname{\medmath\sum}_{\sigma\in\Sigma}\mathbf{N}_{\Pi}(\sigma)^{\sf{T}}I(\sigma)\;=\;\mfrac{1}{2}\operatorname{\medmath\sum}_{\sigma\in\Sigma}\bigl{(}\mathbf{N}_{\Pi}(\sigma)^{\sf{T}}I(\sigma)+\mathbf{N}_{\Pi}(\phi_{\sigma}\sigma)^{\sf{T}}I(\phi_{\sigma}\sigma)\bigr{)}\;=\;0

as we set out to show. ∎

Appendix F Proofs II: The Laplacian and its properties

The purpose of this section is to prove Theorem 30. We use the flux property to show that the symmetries imposed by a crystallographic group simplify the Green identity considerably. We can then use this symmetric form of the Green identity to show Λ\Lambda has the desired properties.

F.1. Green’s identity under crystallographic symmetry

That the extended Laplace operator is self-adjoint on 𝐇𝔾\mathbf{H}_{\mathbb{G}} for any crystallographic group derives from the fact that the symmetry imposed by the group makes the correction term in Green’s identity vanish. That enters in the proof of Theorem 30 via the two identities in the following lemma. The first one is Green’s identity under symmetry; the second shows that a similar identity holds for the Sobolev inner product.

Lemma 54 (Symmetric Green identities).

If a crystallographic group 𝔾\mathbb{G} tiles n\mathbb{R}^{n} with a convex polytope Π\Pi, the negative Laplace operator satisfies the identities

(34) Δf,h𝐋2\displaystyle\left<\mkern 2.0mu\smash{-\Delta f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\; =a(f,h)\displaystyle=\;a(f,h)
(35) Δf,h𝐇1\displaystyle\left<\mkern 2.0mu\smash{-\Delta f,h}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\; =a(f,h)+ina(if,ih)\displaystyle=\;a(f,h)\,+\,\operatorname{{\textstyle\sum}}_{i\leq n}a(\partial_{i}f,\partial_{i}h)

for all functions ff and hh in \mathcal{H}.

Proof.

Let f¯\bar{f} and h¯\bar{h} be the unique continuous extensions of ff and hh to the closure Π\Pi, and set F:=f¯h¯{F:=\bar{f}\nabla\bar{h}}. Since f¯\bar{f} and h¯\bar{h} satisfy the periodic boundary condition, (18) shows

F(ϕx)=h¯(ϕx)f¯(ϕx)=h¯(x)Aϕf¯(x)=AϕF(x).F(\phi x)\;=\;\bar{h}(\phi x)\nabla\bar{f}(\phi x)\;=\;\bar{h}(x)A_{\phi}\nabla\bar{f}(x)\;=\;A_{\phi}F(x)\;.

By the flux property (Proposition 28), we hence have

\medintΠ(𝐍Πf¯)h¯=\medintΠ𝐍Π𝖳F= 0,\medint\int_{\partial\Pi}(\partial_{\mathbf{N}_{\Pi}}\bar{f})\bar{h}\;=\;\medint\int_{\partial\Pi}\mathbf{N}_{\Pi}^{\sf{T}}F\;=\;0\;,

and substituting into Green’s identity (29) shows

(36) Δf,h𝐋2=a(f,h)\medintΠ(𝐍Πf)h=a(f,h),\left<\mkern 2.0mu\smash{\Delta f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;a(f,h)-\medint\int_{\partial\Pi}(\partial_{\mathbf{N}_{\Pi}}f)h\;=\;a(f,h)\;,

so (34) holds. Now consider (35). Since ff has three continuous derivatives, we have

i2jf=ji2f and hence Δ(jf)=j(Δf).\partial_{i}^{2}\partial_{j}\,f\;=\;\partial_{j}\partial_{i}^{2}\,f\quad\text{ and hence }\quad\Delta(\partial_{j}f)\;=\;\partial_{j}(\Delta f)\;.

The 𝐇1\mathbf{H}^{1}-product can then be written as

Δf,h𝐇1=Δf,h𝐋2+\medmathii(Δf),ih𝐋2=Δf,h𝐋2+\medmathiΔ(if),ih𝐋2.\left<\mkern 2.0mu\smash{\Delta f,h}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;\left<\mkern 2.0mu\smash{\Delta f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}+\operatorname{\medmath\sum}_{i}\left<\mkern 2.0mu\smash{\partial_{i}(\Delta f),\partial_{i}h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;\left<\mkern 2.0mu\smash{\Delta f,h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}+\operatorname{\medmath\sum}_{i}\left<\mkern 2.0mu\smash{\Delta(\partial_{i}f),\partial_{i}h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;.

Substituting the final sum into Green’s identity shows

\medmathiΔ(if),ih𝐋2=\medmathia(if,ih)+Π\medmathi(𝐍Πif)ih\operatorname{\medmath\sum}_{i}\left<\mkern 2.0mu\smash{\Delta(\partial_{i}f),\partial_{i}h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;\operatorname{\medmath\sum}_{i}a(\partial_{i}f,\partial_{i}h)\,+\,\int_{\partial\Pi}\operatorname{\medmath\sum}_{i}(\partial_{\mathbf{N}_{\Pi}}\partial_{i}f)\partial_{i}h

Since (if){\nabla(\partial_{i}f)} is precisely the iith row vector of the Hessian Hf{Hf}, the integrand is

\medmathi(𝐍Πif)ih=\medmathi(𝐍Π𝖳(if)ih=𝐍Π𝖳(Hf)h.\operatorname{\medmath\sum}_{i}(\partial_{\mathbf{N}_{\Pi}}\partial_{i}f)\partial_{i}h\;=\;\operatorname{\medmath\sum}_{i}(\mathbf{N}_{\Pi}^{\sf{T}}(\nabla\partial_{i}f)\partial_{i}h\;=\;\mathbf{N}_{\Pi}^{\sf{T}}(Hf)\nabla h\;.

Consider the vector field F(x):=(Hf)h{F(x):=(Hf)\nabla h}. By Lemma 27, FF transforms as

F(ϕx)=Hf(ϕx)h(ϕx)=AϕHf(x)Aϕ𝖳Aϕh(x)=AϕF(x),F(\phi x)\;=\;Hf(\phi x)\nabla h(\phi x)\;=\;A_{\phi}\cdot Hf(x)\cdot A_{\phi}^{\sf{T}}A_{\phi}\nabla h(x)\;=\;A_{\phi}\cdot F(x)\;,

and hence satisfies (20). Another application of the flux property then shows

\medmathiΔ(if),ih𝐋2=\medmathia(if,ih).\operatorname{\medmath\sum}_{i}\left<\mkern 2.0mu\smash{\Delta(\partial_{i}f),\partial_{i}h}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;\operatorname{\medmath\sum}_{i}a(\partial_{i}f,\partial_{i}h)\;.

Substituting this identity and (34) into the 𝐇1\mathbf{H}^{1}-product above yields (35). ∎

F.2. Approximation properties of the space 𝐇𝔾\mathbf{H}_{\mathbb{G}}

That we can use the space 𝐇𝔾\mathbf{H}_{\mathbb{G}} to prove results about continuous and 𝐋2\mathbf{L}_{2}-functions relies on the fact that such functions are sufficiently well approximated by elements of 𝐇𝔾\mathbf{H}_{\mathbb{G}}, and that 𝐇𝔾\mathbf{H}_{\mathbb{G}} can in turn be approximated by useful dense subsets. We collect these technical facts in the following lemma. Consider the space of functions

𝐂pbc(Π)={f|Π|f𝐂𝔾}\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})\,=\,{\{f|_{\Pi^{\circ}}\,|\,f\in\mathbf{C}_{\mathbb{G}}\}}

which we equip with the supremum norm. These are precisely those uniformly continuous functions on the interior Π\Pi^{\circ} whose unique continuous extension to Π\Pi satisfies the periodic boundary conditions. Note that we can then express the definition of \mathcal{H} in (21) as

=𝐂pbc(Π)𝐂(Π).\mathcal{H}\;=\;\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})\cap\mathbf{C}^{\infty}(\Pi^{\circ})\;.
Lemma 55.

If 𝔾\mathbb{G} is crystallographic and tiles with Π\Pi, the inclusions

ι1𝐇𝔾ι2𝐋2(Π)ι3𝐇𝔾,\mathcal{H}\;\xhookrightarrow{\iota_{1}}\;\mathbf{H}_{\mathbb{G}}\;\xhookrightarrow{\iota_{2}}\;\mathbf{L}_{2}(\Pi^{\circ})\;\xhookrightarrow{\iota_{3}}\;\mathbf{H}_{\mathbb{G}}^{*}\;,

are all dense, ι2\iota_{2} and ι3\iota_{3} are continuous, and ι2\iota_{2} is compact. Moreover, if 𝐇𝔾𝐂pbc(Π){\mathcal{F}\subset\mathbf{H}_{\mathbb{G}}\cap\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})} is dense in 𝐇𝔾\mathbf{H}_{\mathbb{G}}, it is also dense in 𝐂pbc(Π){\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})} in the supremum norm.

When we take closures in the proof, we write ¯sup{\overline{\mathcal{F}}^{\,\sup}} and ¯𝐇1{\overline{\mathcal{F}}^{\,\mathbf{H}^{1}}} to indicate the norm used to take the closure of a set \mathcal{F}.

Proof.

That \mathcal{H} is dense in 𝐇𝔾\mathbf{H}_{\mathbb{G}} holds by definition, see (21).
11^{\circ} Inclusions ι2\iota_{2} and ι3\iota_{3} are dense and continuous. Denote by 𝐂c:=𝐂c(Π)𝐂(Π){\mathbf{C}_{c}^{\infty}:=\mathbf{C}_{c}(\Pi^{\circ})\cap\mathbf{C}^{\infty}(\Pi^{\circ})} the set of compactly supported and infinitely differentiable functions on Π\Pi^{\circ}. Denote by

𝐇01:=𝐂c¯𝐇1\mathbf{H}_{0}^{1}\;:=\;\smash{\overline{\mathbf{C}_{c}^{\infty}}^{\mathbf{H}^{1}}}

its 𝐇1\mathbf{H}^{1}-closure. This is, loosely speaking, the Sobolev space of functions that vanish on the boundary [19, 48], and it is a standard result that

𝐇01𝐋2(Π)(𝐇01),\mathbf{H}_{0}^{1}\;\subset\;\mathbf{L}_{2}(\Pi^{\circ})\;\subset\;(\mathbf{H}_{0}^{1})^{*}\;,

where both inclusion maps are dense and bounded [19, Chapter 9.5]. Consider any f𝐂c{f\in\mathbf{C}_{c}^{\infty}}. Since ff is uniformly continuous, it has a unique continuous extension f¯\bar{f} to Π\Pi. This extension satisfies f¯=0\bar{f}=0 on the boundary Π\partial\Pi. (This fact is well known [e.g., 19], but also easy to verify: Since the support of ff is a closed subset of the open set Π\Pi^{\circ}, each point xx on the boundary is the center of some open ball BB that does not intersect the support, so f¯=0\bar{f}=0 on ΠB\Pi^{\circ}\cap B.) It therefore trivially satisfies the periodic boundary condition (6), which shows 𝐂c{\mathbf{C}_{c}^{\infty}\subset\mathcal{H}}. Taking 𝐇1\mathbf{H}_{1}-closures shows 𝐇01𝐇𝔾{\mathbf{H}^{1}_{0}\subset\mathbf{H}_{\mathbb{G}}}. We hence have

𝐇01(Π)𝐇𝔾𝐇1(Π)𝐋2(Π)𝐇1(Π)𝐇𝔾𝐇01(Π).\mathbf{H}_{0}^{1}(\Pi^{\circ})\;\subset\;\mathbf{H}_{\mathbb{G}}\;\subset\;\mathbf{H}^{1}(\Pi^{\circ})\;\subset\;\mathbf{L}_{2}(\Pi^{\circ})\;\subset\;\mathbf{H}^{1}(\Pi^{\circ})^{*}\;\subset\;\mathbf{H}_{\mathbb{G}}^{*}\;\subset\;\mathbf{H}_{0}^{1}(\Pi^{\circ})^{*}\;.

Since 𝐇01𝐋2{\mathbf{H}_{0}^{1}\hookrightarrow\mathbf{L}_{2}} and 𝐋2(𝐇01){\mathbf{L}_{2}\hookrightarrow(\mathbf{H}_{0}^{1})^{*}} are both dense and bounded, 𝐇𝔾𝐋2{\mathbf{H}_{\mathbb{G}}\hookrightarrow\mathbf{L}_{2}} and 𝐋2𝐇𝔾{\mathbf{L}_{2}\hookrightarrow\mathbf{H}_{\mathbb{G}}^{*}} are dense and bounded (and hence continuous), and 𝐇𝔾𝐇1{\mathbf{H}_{\mathbb{G}}\hookrightarrow\mathbf{H}^{1}} is bounded (and hence continuous).
22^{\circ} Inclusion ι2\iota_{2} is compact. We can decompose ι2\iota_{2} as

𝐇𝔾𝐇1𝐋2.\mathbf{H}_{\mathbb{G}}\;\hookrightarrow\;\mathbf{H}^{1}\;\hookrightarrow\;\mathbf{L}_{2}\;.

It is known that 𝐇1𝐋2{\mathbf{H}^{1}\hookrightarrow\mathbf{L}_{2}} is compact [2]. If one of two inclusions is compact, their composition is compact (see [2], or simply note that any bounded sequence in 𝐇𝔾\mathbf{H}_{\mathbb{G}} is also bounded in 𝐇1\mathbf{H}^{1}). That shows 𝐇𝔾𝐋2{\mathbf{H}_{\mathbb{G}}\hookrightarrow\mathbf{L}_{2}} is compact.
33^{\circ} \mathcal{F} is dense in 𝐂pbc{\mathbf{C}_{\text{\rm pbc}}}. We know from Lemma 36 that 𝐇1(Π)𝐂(Π){\mathbf{H}^{1}(\Pi^{\circ})\subset\mathbf{C}(\Pi^{\circ})}, and hence h𝐇1hsup{\|h\|_{\mathbf{H}^{1}}\geq\|h\|_{\sup}} for all h𝐂(Π){h\in\mathbf{C}(\Pi^{\circ})}. In other words, the sup-closure of the 𝐇1\mathbf{H}^{1}-closure is the sup-closure, so

¯sup=(¯𝐇1)¯sup=𝐇𝔾¯sup=(¯𝐇1)¯sup=¯sup.\overline{\mathcal{F}}^{\,\sup}\;=\;\overline{(\overline{\mathcal{F}}^{\mathbf{H}^{1}})}^{\,\sup}\;=\;\overline{\mathbf{H}_{\mathbb{G}}}^{\,\sup}\;=\;\overline{(\overline{\mathcal{H}}^{\mathbf{H}^{1}})}^{\,\sup}\;=\;\overline{\mathcal{H}}^{\,\sup}\;.

It hence suffices to show \mathcal{H} is dense in 𝐂pbc\mathbf{C}_{\text{\rm pbc}}. To this end, we use a standard fact: If we consider the closed set Π\Pi instead of the interior, 𝐂(Π){\mathbf{C}^{\infty}(\Pi)} is dense in 𝐂(Π){\mathbf{C}(\Pi)}, since Π\Pi is compact. (One way to see this is that 𝐂\mathbf{C}^{\infty} contains all polynomials, which are dense in 𝐂(Π)\mathbf{C}(\Pi) by the Stone-Weierstrass theorem [2].) Since 𝐂pbc(Π){\mathbf{C}_{\text{\rm pbc}}(\Pi)} is a closed linear subspace of 𝐂(Π)\mathbf{C}(\Pi), it follows that

𝐂pbc(Π)𝐂(Π) is dense in 𝐂pbc(Π)𝐂(Π)=𝐂pbc(Π).\mathbf{C}_{\text{\rm pbc}}(\Pi)\cap\mathbf{C}^{\infty}(\Pi)\quad\text{ is dense in }\quad\mathbf{C}_{\text{\rm pbc}}(\Pi)\cap\mathbf{C}(\Pi)\;=\;\mathbf{C}_{\text{\rm pbc}}(\Pi)\;.

Consider a function f𝐂pbc(Π){f\in\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})}. Then ff has a unique continuous extension f¯{\bar{f}} to Π\Pi, which satisfies the periodic boundary condition. That shows that

(37) ff¯ is an isometric isomorphism 𝐂pbc(Π)𝐂pbc(Π),f\mapsto\bar{f}\quad\text{ is an isometric isomorphism }\quad\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})\rightarrow\mathbf{C}_{\text{\rm pbc}}(\Pi)\;,

since the extension is unique and does not change the supremum norm. If ff is also infinitely differentiable (and hence in \mathcal{H}), then f¯\bar{f} is infinitely differentiable, so the same map is also an isometric isomorphism

=𝐂pbc(Π)𝐂(Π)𝐂pbc(Π)𝐂(Π).\mathcal{H}\;=\;\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})\cap\mathbf{C}^{\infty}(\Pi^{\circ})\;\rightarrow\;\mathbf{C}_{\text{\rm pbc}}(\Pi)\cap\mathbf{C}^{\infty}(\Pi)\;.

In summary, we hence have

isomorphic𝐂pbc(Π)𝐂(Π)dense𝐂pbc(Π)isomorphic𝐂pbc(Π),\mathcal{H}\;\xrightarrow{\;\text{isomorphic}\;}\;\mathbf{C}_{\text{\rm pbc}}(\Pi)\cap\mathbf{C}^{\infty}(\Pi)\;\xhookrightarrow{\;\text{dense}\;}\;\mathbf{C}_{\text{\rm pbc}}(\Pi)\;\xrightarrow{\;\text{isomorphic}\;}\;\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})\;,

and since isomorphisms preserve dense subsets, \mathcal{H} is indeed dense in 𝐂pbc(Π){\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})}. ∎

F.3. Existence and properties of the Laplacian

Proof of Theorem 30.

Since Π\Pi is a convex polytope, it is a Lipschitz domain, and Δ{\Delta} hence extends to a bounded linear operator Λ\Lambda on 𝐇1(Π)\mathbf{H}^{1}(\Pi^{\circ}), by 49. The restriction of Λ\Lambda to the closed linear subspace of 𝐇𝔾\mathbf{H}_{\mathbb{G}} is again a bounded linear operator that extends Δ{\Delta}. It remains to verify self-adjointness and (26) on 𝐇𝔾\mathbf{H}_{\mathbb{G}}. Since Λ\Lambda is bounded and hence continuous, it suffices to do so on the dense subset \mathcal{H}. For (26i), that has already been established in Lemma 54. To show (26ii), we note (25) implies

f𝐇12=f,f𝐇1=f,f𝐋2+a(f,f) for f\|f\|^{2}_{\mathbf{H}^{1}}\;=\;\left<\mkern 2.0mu\smash{f,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;\left<\mkern 2.0mu\smash{f,f}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\,+\,a(f,f)\qquad\text{ for }f\in\mathcal{H}

and hence

a(f,f)=f𝐇12f𝐋22.a(f,f)\;=\;\|f\|^{2}_{\mathbf{H}^{1}}\,-\,\|f\|^{2}_{\mathbf{L}_{2}}\;.

Since f{f\in\mathcal{H}} and hence Λf=Δf{\Lambda f=\Delta f}, we can substitute into (35), which shows

Δf,f𝐇1=a(f,f)+\medmathina(if,if)f𝐇12f𝐋22\left<\mkern 2.0mu\smash{-\Delta f,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;a(f,f)\,+\,\operatorname{\medmath\sum}_{i\leq n}a(\partial_{i}f,\partial_{i}f)\;\geq\;\|f\|^{2}_{\mathbf{H}^{1}}\,-\,\|f\|^{2}_{\mathbf{L}_{2}}

where the last step uses the fact that aa is positive semi-definite by (24). That proves coercivity. Since the bilinear form aa is symmetric, (35) also shows

Δf,h𝐇1=a(f,h)+\medmathia(if,ih)=a(h,f)+\medmathia(ih,if)=Δh,f𝐇1\left<\mkern 2.0mu\smash{-\Delta f,h}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;a(f,h)\,+\,\operatorname{\medmath\sum}_{i}a(\partial_{i}f,\partial_{i}h)\;=\;a(h,f)\,+\,\operatorname{\medmath\sum}_{i}a(\partial_{i}h,\partial_{i}f)\;=\;\left<\mkern 2.0mu\smash{-\Delta h,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}

on \mathcal{H}, so Λ\Lambda is self-adjoint on 𝐇𝔾\mathbf{H}_{\mathbb{G}}. ∎

Appendix G Proofs III: Fourier representation

We now prove the Fourier representation. We first restrict all function to a single tile Π\Pi. By Lemma 55, we can then choose the space VV in the spectral theorem (48) as 𝐇𝔾\mathbf{H}_{\mathbb{G}}. Since we also know the Laplacian is self-adjoint on 𝐇𝔾\mathbf{H}_{\mathbb{G}}, we can use the spectral theorem to obtain an eigenbasis. We then deduce Theorem 7 by extending the representation from Π\Pi to the entire space n\mathbb{R}^{n}.

G.1. Proof of the Fourier representation on a single tile

The eigenvalue problem (13) in Theorem 7 is defined on the unbounded domain n\mathbb{R}^{n}. We first restrict the problem to the compact domain Π\Pi, that is, we consider

(38) Δh\displaystyle-\Delta h =λh\displaystyle\;=\;\lambda h\quad on Π\displaystyle\text{ on }\Pi^{\circ}
subject to h(x)\displaystyle\text{subject to }\qquad h(x) =h(y)\displaystyle\;=\;h(y) whenever xy on Π.\displaystyle\text{ whenever }x\sim y\text{ on }\partial\Pi\;.

That allows us to apply 48 and 50 above, which hold on compact domains. (The deeper relevance of compact domains is that function spaces on such domains tend to have better approximation properties than on unbounded domains.) The restricted version of Theorem 7 we prove first is as follows.

Lemma 56.

Let 𝔾\mathbb{G} be a crystallographic group that tiles n\mathbb{R}^{n} with a convex polytope Π\Pi. Then (38) has solutions for countably many distinct values of λ\lambda, which satisfy

0=λ1<λ2<λ3< and λii.0\,=\,\lambda_{1}\,<\,\lambda_{2}\,<\,\lambda_{3}<\ldots\qquad\text{ and }\qquad\lambda_{i}\;\xrightarrow{i\rightarrow\infty}\;\infty\;.

Each solution hh is infinitely often differentiable on Π\Pi^{\circ}. There exists a sequence of solutions h1,h2,{h_{1},h_{2},\ldots} that is an orthonormal basis of 𝐋2(Π)\mathbf{L}_{2}(\Pi), and satisfies

|{j|hj solves (38) for λi}|=k(λi).\big{|}{\{\,j\in\mathbb{N}\,|\,h_{j}\text{ solves \eqref{sturm:liouville:restricted} for }\lambda_{i}\}}\big{|}\;=\;k(\lambda_{i})\;.

In the proof, we again use the notation M¯𝐋2\smash{\overline{M}^{\mathbf{L}_{2}}} and M¯𝐇1\smash{\overline{M}^{\mathbf{H}^{1}}} to indicate the norm used to take the closure of a set MM.

Proof of Lemma 56.

We apply the spectral decomposition result (48), with A=Λ{A=\Lambda} and V=𝐇𝔾{V=\mathbf{H}_{\mathbb{G}}}. We have already established its conditions are satisfied (except for the optional assumption of strict positive definiteness): By Theorem 30, Λ\Lambda exists, is a bounded and self-adjoint linear operator on 𝐇𝔾\mathbf{H}_{\mathbb{G}}, and satisfies (32). By Lemma 55, 𝐇𝔾\mathbf{H}_{\mathbb{G}} approximates 𝐋2(Π)\mathbf{L}_{2}(\Pi^{\circ}) in the sense of (31). 48 hence shows that there is an orthonormal basis of eigenfunctions for 𝐇𝔾\mathbf{H}_{\mathbb{G}}, i.e., functions ξ1,ξ2,{\xi_{1},\xi_{2},\ldots} that satisfy

(39) (i) Λξi=λiξi(ii) ξi,ξj𝐇1=δij(iii) span{ξ1,ξ2,}¯𝐇1=𝐇𝔾.\text{(i) }\;\Lambda\xi_{i}\;=\;\lambda_{i}\xi_{i}\qquad\text{(ii) }\;\left<\mkern 2.0mu\smash{\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;\delta_{ij}\qquad\text{(iii) }\;\smash{\overline{\text{span}{\{\xi_{1},\xi_{2},\ldots\}}}^{\mathbf{H}^{1}}}\;=\;\mathbf{H}_{\mathbb{G}}\;.

What remains to be shown are the properties of the eigenvalues and eigenfunctions, and that the ONB of 𝐇𝔾\mathbf{H}_{\mathbb{G}} can be translated into an ONB of 𝐋2\mathbf{L}_{2}.
Non-negativity of eigenvalues. The operator Λ\Lambda is positive semi-definite, but not strictly positive definite, on VV. To show this, it again suffices to consider Δ-\Delta on \mathcal{H}. By (35), we have

(40) Λf,f𝐇1\displaystyle\left<\mkern 2.0mu\smash{\Lambda f,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\; =a(f,f)+\medmathia(if,if)\displaystyle=\;a(f,f)\,+\,\operatorname{\medmath\sum}_{i}a(\partial_{i}f,\partial_{i}f)
=\medintf(x)n2vol(dx)+\medmathi\medintif(x)n2vol(dx) 0.\displaystyle=\;\medint\int\|\nabla f(x)\|^{2}_{\mathbb{R}^{n}}\text{\rm vol}(dx)\,+\,\operatorname{\medmath\sum}_{i}\medint\int\|\nabla\partial_{i}f(x)\|^{2}_{\mathbb{R}^{n}}\text{\rm vol}(dx)\;\geq\;0\;.

That shows Λ\Lambda is positive semi-definite. Now consider, for any ε>0{\varepsilon>0}, the operator

Λε:𝐇𝔾𝐇𝔾 defined by Λεf:=Λf+εf.\Lambda_{\varepsilon}:\mathbf{H}_{\mathbb{G}}\rightarrow\mathbf{H}_{\mathbb{G}}\quad\text{ defined by }\quad\Lambda_{\varepsilon}f\;:=\;\Lambda f+\varepsilon f\;.

This is operator is still bounded, coercive and self-adjoint, so 48 is applicable. Clearly, Λ\Lambda has the same eigenfunctions as Λ\Lambda, with eigenvalues λi+ε{\lambda_{i}+\varepsilon}. It is also strictly positive definite, since

Λεf,f𝐇1=Λf,f𝐇1+εf,f𝐇1εf𝐇1.\left<\mkern 2.0mu\smash{\Lambda_{\varepsilon}f,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;\left<\mkern 2.0mu\smash{\Lambda f,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}+\left<\mkern 2.0mu\smash{\varepsilon f,f}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;\geq\;\varepsilon\|f\|_{\mathbf{H}^{1}}\;.

It hence follows from 48 that the smallest eigenvalue satisfies λ1+ε>0{\lambda_{1}+\varepsilon>0}. Since that holds for every ε>0{\varepsilon>0}, we have λ10{\lambda_{1}\geq 0}.
The smallest eigenvalue and its eigenspace. If a function ff is constant on Π\Pi^{\circ}, then

f𝐇𝔾 and Λf=Δf= 0.f\in\mathbf{H}_{\mathbb{G}}\qquad\text{ and }\qquad\Lambda f\;=\;-\Delta f\;=\;0\;.

That shows the smallest eigenvalue is λ1=0{\lambda_{1}=0}, and its eigenspace (0)\mathcal{H}(0) contains all constant functions. To show that it contains no other functions, note that

Λf,f= 0 and by (40) hence f(x)2=0 for almost all xΠ.\left<\mkern 2.0mu\smash{\Lambda f,f}\mkern 2.0mu\right>\;=\;0\qquad\text{ and by \eqref{positive:definite} hence }\qquad\|\nabla f(x)\|^{2}=0\text{ for almost all }x\in\Pi^{\circ}\;.

That implies ff is piece-wise constant. Since the only piece-wise constant function contained in 𝐇1\mathbf{H}^{1} are those that are strictly constant (see Adams and Fournier [2]), (0)\mathcal{H}(0) is the set of constant functions, and dim(0)=1{\dim\mathcal{H}(0)=1}.
Regularity of eigenfunctions. We now use the strategy outlined in Section D.3. Let ξ\xi be an eigenfunction. We have shown that implies ξ𝐇𝔾{\xi\in\mathbf{H}_{\mathbb{G}}}, and hence ξ𝐇1(Π){\xi\in\mathbf{H}^{1}(\Pi^{\circ})}. Consider any xΠ{x\in\Pi^{\circ}}. Since the interior is open, we can find ε>0{\varepsilon>0} such that the open ball B=Bε(x){B=B_{\varepsilon}(x)} of radius ε\varepsilon centered at xx satisfies B¯Π{\overline{B}\subset\Pi^{\circ}}. The restriction ξ|B\xi|_{B} of ξ\xi to BB then satisfies

f|Bε(x)𝐇1(B) and Λf|B=λf|B.f|_{B_{\varepsilon}(x)}\in\mathbf{H}^{1}(B)\quad\text{ and }\quad\Lambda f|_{B}\;=\;\lambda f|_{B}\;.

Since ξ|B\xi|_{B} appears on both sides of the equation, 50 implies that f|Bf|_{B} is also in 𝐇1+2(B)\mathbf{H}^{1+2}(B), hence also in 𝐇1+4(B){\mathbf{H}^{1+4}(B)}, and so forth, so ξ|B𝐇k(B){\xi|_{B}\in\mathbf{H}^{k}(B)} for all k{k\in\mathbb{N}}. Lemma 36 then shows that ξ|B{\xi|_{B}} is even in 𝐂k(B){\mathbf{C}^{k}(B)} for each k{k\in\mathbb{N}}, and hence in 𝐂(B){\mathbf{C}^{\infty}(B)}. We have thus shown that ξ\xi has infinitely many derivatives on a neighborhood of each xΠ{x\in\Pi^{\circ}}, and hence that ξ𝐂(Π){\xi\in\mathbf{C}^{\infty}(\Pi^{\circ})}.
Turning the Sobolev basis into an 𝐋2\mathbf{L}_{2} basis. The functions ξi{\xi_{i}} form an orthonormal basis of 𝐇𝔾\mathbf{H}_{\mathbb{G}}, by (39). To obtain an orthonormal basis for 𝐋2(Π)\mathbf{L}_{2}(\Pi^{\circ}), we substitute (25) into (39ii), and obtain

δij=ξi,ξj𝐇1=ξi,ξj𝐋2+a(ξi,ξj)=ξi,ξj𝐋2+Λξi,ξj𝐋2.\displaystyle\delta_{ij}\;=\;\left<\mkern 2.0mu\smash{\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{H}^{1}}\;=\;\left<\mkern 2.0mu\smash{\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;+\;a(\xi_{i},\xi_{j})\;=\;\left<\mkern 2.0mu\smash{\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;+\;\left<\mkern 2.0mu\smash{\Lambda\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;.

Since ξi\xi_{i} is an eigenfunction, it follows that

δij=ξi,ξj𝐋2+λiξi,ξj𝐋2 and hence \mfrac11+λiξi,ξj𝐋2=δij.\displaystyle\delta_{ij}\;=\;\left<\mkern 2.0mu\smash{\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}+\lambda_{i}\left<\mkern 2.0mu\smash{\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\quad\text{ and hence }\quad\mfrac{1}{1+\lambda_{i}}\left<\mkern 2.0mu\smash{\xi_{i},\xi_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\;=\;\delta_{ij}\;.

The functions hi:=ξi/1+λi{h_{i}:=\xi_{i}/\sqrt{1+\lambda_{i}}} then satisfy

Δhi=λihi on Π and hi,hj𝐋2=δij.-\Delta h_{i}\,=\,\lambda_{i}h_{i}\;\text{ on }\Pi^{\circ}\qquad\text{ and }\qquad\left<\mkern 2.0mu\smash{h_{i},h_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}}\,=\,\delta_{ij}\;.

Since we have merely scaled the functions ξi\xi_{i}, we also have

span{h1,h2,}=span{ξ1,ξ2,}.\text{span}{\{h_{1},h_{2},\ldots\}}\;=\;\text{span}{\{\xi_{1},\xi_{2},\ldots\}}\;.

That implies

𝐋2-closure of span{h1,h2,}\displaystyle\mathbf{L}_{2}\text{-closure of }\text{span}{\{h_{1},h_{2},\ldots\}}\; =𝐋2-closure of 𝐇1-closure of span{h1,h2,}\displaystyle=\;\mathbf{L}_{2}\text{-closure of }\mathbf{H}^{1}\text{-closure of }\text{span}{\{h_{1},h_{2},\ldots\}}
=𝐋2-closure of 𝐇𝔾,\displaystyle=\;\mathbf{L}_{2}\text{-closure of }\mathbf{H}_{\mathbb{G}}\;,

and since the inclusion 𝐇𝔾𝐋2(Π){\mathbf{H}_{\mathbb{G}}\hookrightarrow\mathbf{L}_{2}(\Pi^{\circ})} is dense by Lemma 55, we have

span{h1,h2,}¯𝐋2=𝐋2(Π).\overline{\text{span}{\{h_{1},h_{2},\ldots\}}}^{\mathbf{L}_{2}}\;=\;\mathbf{L}_{2}(\Pi^{\circ})\;.

In summary, we have shown that {h1,h2,}{\{h_{1},h_{2},\ldots\}} is an orthonormal basis of 𝐋2(Π)\mathbf{L}_{2}(\Pi^{\circ}) consisting of eigenfunctions of Δ{-\Delta}.
Extending the basis on Π\Pi^{\circ} to a basis on Π\Pi. Each hih_{i} is in 𝐂(Π){\mathbf{C}^{\infty}(\Pi^{\circ})}, and hence has a unique continuous extension h¯i\bar{h}_{i} to Π\Pi^{\circ}. Since voln(Π)=0{\text{\rm vol}_{n}(\partial\Pi)=0}, we can isometrically identify 𝐋2(Π)\mathbf{L}_{2}(\Pi^{\circ}) with 𝐋2(Π)\mathbf{L}_{2}(\Pi): Under this identification, each function hih_{i} on the interior Π\Pi^{\circ} is equivalent to any measurable extension of hih_{i} to Π\Pi, so

span{h1,h2,}¯𝐋2=𝐋2(Π).\overline{\text{span}{\{h_{1},h_{2},\ldots\}}}^{\mathbf{L}_{2}}\;=\;\mathbf{L}_{2}(\Pi)\;.

The extended functions also satisfy

Δh¯i=λih¯i on Π and h¯i,h¯j𝐋2(Π)=δij,-\Delta\bar{h}_{i}\;=\;\lambda_{i}\bar{h}_{i}\;\text{ on }\Pi\qquad\text{ and }\qquad\left<\mkern 2.0mu\smash{\bar{h}_{i},\bar{h}_{j}}\mkern 2.0mu\right>_{\mathbf{L}_{2}(\Pi)}\;=\;\delta_{ij}\;,

where the first identity extends from Π\Pi^{\circ} to Π\Pi by 𝐂\mathbf{C}^{\infty}-continuity, and the second holds since the boundary does not affect the integral. The functions h¯i\bar{h}_{i} are hence eigenfunctions of Δ-\Delta on Π\Pi, and form and orthonormal basis of 𝐋2(Π)\mathbf{L}_{2}(\Pi). ∎

G.2. Proof of the Fourier representation on n\mathbb{R}^{n}

Proof of Theorem 7.

To deduce the theorem from Lemma 56, we must (1) extend the basis constructed on Π\Pi above to a basis on n\mathbb{R}^{n}, and (2) show that every continuous invariant function can be represented in this basis.
11^{\circ} Consider the function h¯i\bar{h}_{i} in the proof of Lemma 56. Recall each h¯i\bar{h}_{i} is infinitely smooth on Π\Pi and satisfies the periodic boundary condition. It follows by (12) that

ei:=h¯ipe_{i}\;:=\;\bar{h}_{i}\circ p

is in 𝐂𝔾\mathbf{C}_{\mathbb{G}}. Let Δk\Delta^{k} denote the kk-fold application of Δ\Delta. By Lemma 27, the fact that h¯i\bar{h}_{i} satisfies the periodic boundary condition (6) implies that the continuous extension Δhi¯\smash{\overline{\Delta h_{i}}} also satisfies (6). Iterating the argument shows that the same holds for the continuous extension of Δkhi\Delta^{k}h_{i} for any k{k\in\mathbb{N}}. We hence have

Δkei=Δk(h¯ip)=(Δkhi¯)p and (Δkhi¯)p𝐂𝔾 for all k,\Delta^{k}e_{i}\;=\;\Delta^{k}(\bar{h}_{i}\circ p)\;=\;(\overline{\Delta^{k}h_{i}})\circ p\qquad\text{ and }\qquad(\overline{\Delta^{k}h_{i}})\circ p\in\mathbf{C}_{\mathbb{G}}\quad\text{ for all }k\in\mathbb{N}\;,

so eie_{i} has infinitely many continuous derivatives on n\mathbb{R}^{n}. Since it is also 𝔾\mathbb{G}-invariant, it solves the constrained eigenvalue problem (13) on n\mathbb{R}^{n}. That extends Lemma 56 to n\mathbb{R}^{n}.
22^{\circ} It remains to be shown that a function ff on n\mathbb{R}^{n} is in 𝐂𝔾{\mathbf{C}_{\mathbb{G}}} if and only if f=ciei{f=\sum c_{i}e_{i}} for some sequence (ci){(c_{i})}, where the series converges in the supremum norm. Combining Corollary 17 and (37) shows that

hh¯p is an isometry 𝐂pbc(Π)𝐂𝔾.h\mapsto\bar{h}\circ p\quad\text{ is an isometry }\quad\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})\rightarrow\mathbf{C}_{\mathbb{G}}\;.

For any f:n{f:\mathbb{R}^{n}\rightarrow\mathbb{R}}, we hence have

f=\medmathcieif|Π=\medmathciei|Π.f=\operatorname{\medmath\sum}c_{i}e_{i}\qquad\Longleftrightarrow\qquad f|_{\Pi^{\circ}}=\operatorname{\medmath\sum}c_{i}e_{i}|_{\Pi^{\circ}}\;.

In other words, we have to show that

h𝐂pbc(Π)h=\medmathciei|Πand hence that𝐂pbc(Π)=span{ei|Π|i}¯sup.h\in\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})\;\Leftrightarrow\;h=\operatorname{\medmath\sum}c_{i}e_{i}|_{\Pi^{\circ}}\quad\text{and hence that}\quad\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})=\overline{\text{span}{\{e_{i}|_{\Pi^{\circ}}\,|\,i\in\mathbb{N}\}}}^{\,\sup}\;.

Since the proof of Lemma 56 shows {ei|Π|i}{{\{e_{i}|_{\Pi^{\circ}}\,|\,i\in\mathbb{N}\}}} is a rescaled orthonormal basis of 𝐇𝔾\mathbf{H}_{\mathbb{G}}, and hence a subset of 𝐇𝔾𝐂pbc(Π){\mathbf{H}_{\mathbb{G}}\cap\mathbf{C}_{\text{\rm pbc}}(\Pi^{\circ})} that is dense in 𝐇𝔾\mathbf{H}_{\mathbb{G}}, that holds by Lemma 55. ∎

Appendix H Proofs IV: Embeddings

To prove Theorem 15, we first establish two auxiliary results on topological dimensions of quotient spaces. Recall from 37 that n/𝔾\mathbb{R}^{n}/\mathbb{G} is locally isometric to quotients of metric balls. The first lemma considers the effect of taking a quotient on the dimension of a ball. The second lemma combines this result with 37 to bound the dimension of n/𝔾\mathbb{R}^{n}/\mathbb{G}.

Lemma 57 (Quotients of metric balls).

Let BB be an open metric ball in n\mathbb{R}^{n}, and GG a finite group of isometries of n\mathbb{R}^{n}. Then the quotient B/GB/G has topological dimension

nDim (B/G)<n+|G|.n\;\leq\;\text{\rm Dim\,}(B/G)\;<\;n+|G|\;.
Proof.

The quotient map q:BB/G{q:B\rightarrow B/G} is, by definition, continuous and surjective. Recall that preimages of points under qq are orbits: If ωn/G{\omega\in\mathbb{R}^{n}/G} is the orbit G(x)G(x) of some xn{x\in\mathbb{R}^{n}}, then q1ω=G(x){q^{-1}\omega=G(x)}. We show qq is also closed: Let AB{A\subset B} be a subset. First observe that

qA closed B/G qA open q1(B/G qA) open,qA\text{ closed }\;\Leftrightarrow\;B/G\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}qA\text{ open }\;\Leftrightarrow\;q^{-1}(B/G\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}qA)\text{ open,}

by continuity of qq. This set can be expressed as

q1(B/G qA)=B q1qA=B (ϕGϕA)=ϕGϕ(B A),q^{-1}(B/G\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}qA)\;=\;B\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}q^{-1}qA\;=\;B\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}\Bigl{(}\operatorname*{\raisebox{-1.49994pt}{$\mathbin{{\cup}}$}}\nolimits_{\phi\in G}\phi A\Bigr{)}\;=\;\operatorname*{\raisebox{-1.49994pt}{$\mathbin{{\cap}}$}}\nolimits_{\phi\in G}\phi(B\mathbin{\mathchoice{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to3.6pt{\vbox to6.6pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.3pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.6pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{3.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{6.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to2.45pt{\vbox to4.45pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.22499pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.45pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{2.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{4.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}{\hbox{ \leavevmode\hbox to1.9pt{\vbox to3.4pt{\pgfpicture\makeatletter\hbox{\thinspace\lower-0.2pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{{}{}}{{}}{} {{}{}}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\pgfsys@roundcap\pgfsys@invoke{ }{}\pgfsys@moveto{1.5pt}{0.0pt}\pgfsys@lineto{0.0pt}{3.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope} \pgfsys@invoke{ }\pgfsys@endscope{}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}}}}A)\;,

and is therefore open whenever AA is closed, since each ϕ\phi is an isometry and GG is finite. Consider any element ωB/G{\omega\in B/G}. Then there is some xB{x\in B} with ω=q(x){\omega=q(x)}, and

q1ω={ϕx|ϕG and ϕxB} which shows that |q1ω||G|.q^{-1}\omega\;=\;{\{\phi x|\phi\in G\text{ and }\phi x\in B\}}\quad\text{ which shows that }\quad|q^{-1}\omega|\;\leq\;|G|\;.

47(ii) is now applicable, and shows

Dim BDim (B/G)<Dim B+|G|,\text{\rm Dim\,}B\;\leq\;\text{\rm Dim\,}(B/G)\;<\;\text{\rm Dim\,}B+|G|\;,

and by 47(i), Dim B=n{\text{\rm Dim\,}B=n}. ∎

Lemma 58 (Topological dimension of the quotient space).

Let 𝔾\mathbb{G} be a crystallographic group that tiles n\mathbb{R}^{n} with a convex polytope Π\Pi. Then n/𝔾{\mathbb{R}^{n}/\mathbb{G}} is a 𝔾\mathbb{G}-orbifold, of topological dimension

nDim n/𝔾<n+maxxΠ|Stab(x)|n\;\leq\;\text{\rm Dim\,}\mathbb{R}^{n}/\mathbb{G}\;<\;n\;+\;\max_{x\in\Pi}|\text{\rm Stab}(x)|
Proof.

Choose the index set in the orbifold definition as =Π{\mathcal{I}=\Pi}. By 37, we may then choose Ux=Bd𝔾(q(x),ε){U_{x}=B_{d_{\mathbb{G}}}(q(x),\varepsilon)}, the group HxH_{x} as Stab(x)\text{\rm Stab}(x), and the map

θx:Bd𝔾(q(x),ε)Bdn(x,ε)\theta_{x}:B_{d_{\mathbb{G}}}(q(x),\varepsilon)\rightarrow B_{d_{n}}(x,\varepsilon)

as the isometry guaranteed by 37. That makes n/𝔾\mathbb{R}^{n}/\mathbb{G} an orbifold. Isometry of the open balls also implies for the corresponding closed balls of radius δ=ε/2{\delta=\varepsilon/2} that

B¯d𝔾(q(x),δ) is homeomorphic to B¯d𝔾(x,δ)/Stab(x) for each xΠ.\overline{B}_{d_{\mathbb{G}}}(q(x),\delta)\quad\text{ is homeomorphic to }\quad\overline{B}_{d_{\mathbb{G}}}(x,\delta)/\text{Stab}(x)\quad\text{ for each }x\in\Pi\;.

Since homeomorphic spaces have the same topological dimension, Lemma 57 shows

B¯d𝔾(q(x),δ)=B¯d𝔾(x,δ)/Stab(x)<n+|Stab(x)|.\overline{B}_{d_{\mathbb{G}}}(q(x),\delta)\;=\;\overline{B}_{d_{\mathbb{G}}}(x,\delta)/\text{Stab}(x)\;<\;n+|\text{Stab}(x)|\;.

Since 𝔾\mathbb{G} is crystallographic, the quotient space is compact, and we can hence cover it with a finite number of the closed balls above. Applying 47(i) then shows the result. ∎

Proof of Theorem 15.

Let 𝒮\mathcal{S} be the side pairing defined by 𝔾\mathbb{G} for Π\Pi. Since 𝔾\mathbb{G} is by definition a discrete group of isometries, 𝒮\mathcal{S} is subproper (see [53], 13.4, problem 2). The gluing construction hence constructs a set MM that is a 𝔾\mathbb{G}-orbifold, according to 42. By definition of MM as a quotient, the gluing construction also defines a quotient map

qM:ΠM,q_{M}:\Pi\rightarrow M\;,

which is continuous and surjective. By 40, the quotient topology is metrized by dpathd_{\text{\rm path}}. By 40, the metric space (M,dpath)(M,d_{\text{\rm path}}) is complete. It hence follows by 43 that there exists a isometry

γM:(M,dpath)(n/𝕊,d𝕊),\gamma_{M}:(M,d_{\text{\rm path}})\rightarrow(\mathbb{R}^{n}/\mathbb{S},d_{\mathbb{S}})\;,

where 𝕊\mathbb{S} is the group generated by 𝒮\mathcal{S}. In our case, 𝕊=𝒮Π{\mathbb{S}=\mathcal{S}_{\Pi}}, and by 41, the generated group is 𝕊=𝔾{\mathbb{S}=\mathbb{G}}. That shows γM\gamma_{M} in fact an isometry

γM:(M,dpath)(n/𝔾,d𝔾).\gamma_{M}:(M,d_{\text{\rm path}})\rightarrow(\mathbb{R}^{n}/\mathbb{G},d_{\mathbb{G}})\;.

Since isometric spaces have the same topological dimension, Lemma 58 shows

Dim M<n+maxxΠ|Stab(x)|.\text{\rm Dim\,}M\;<\;n+\max_{x\in\Pi}|\text{\rm Stab}(x)|\;.

By 47(ii) there is an embedding e:MN{e:M\rightarrow\mathbb{R}^{N}} with N2(n+max|Stab(x)|)1{N\leq 2(n+\max|\text{\rm Stab}(x)|)-1}. Since 𝔾\mathbb{G} is crystallographic, and n/𝔾\mathbb{R}^{n}/\mathbb{G} hence compact, MM and Ω:=e(M){\Omega:=e(M)} are compact. Using the restriction q:Πn/𝔾{q:\Pi\rightarrow\mathbb{R}^{n}/\mathbb{G}} of the quotient map to Π\Pi, we can define

ρΠ:ΠΩ as ρΠ:=eγ1q.\rho_{\Pi}:\Pi\rightarrow\Omega\qquad\text{ as }\qquad\rho_{\Pi}\;:=\;e\circ\gamma^{-1}\circ q\;.

By the properties of the constituent maps, ρΠ\rho_{\Pi} is continuous and satisfies the periodic boundary condition (6). That makes ρ:=ρΠp{\rho:=\rho_{\Pi}\circ p} continuous and 𝔾\mathbb{G}-invariant. If h:NY{h:\mathbb{R}^{N}\rightarrow Y} is a continuous function, the composition f=hρ{f=h\circ\rho} is hence continuous and 𝔾\mathbb{G}-invariant on n\mathbb{R}^{n}. Conversely, suppose f:nY{f:\mathbb{R}^{n}\rightarrow Y} is continuous and 𝔾\mathbb{G}-invariant. For each zΩ{z\in\Omega}, the preimage ρ1{z}{\rho^{-1}{\{z\}}} is precisely the orbit 𝔾(x)\mathbb{G}(x) of some xΠ{x\in\Pi}. Since 𝔾\mathbb{G}-invariant function are constant on orbits, the assignment

h^(z):= the unique value of f on the orbit ρ1{z}\hat{h}(z)\;:=\;\text{ the unique value of }f\text{ on the orbit }\rho^{-1}{\{z\}}

is a well-defined and continuous function h^:ΩY{\hat{h}:\Omega\rightarrow Y}. Since Ω\Omega is compact, h^\hat{h} has a (non-unique) continuous extension to a function h:NY{h:\mathbb{R}^{N}\rightarrow Y}, which satisfies f=hρ{f=h\circ\rho}. ∎

Appendix I Proofs V: Kernels and Gaussian processes

I.1. Kernels

Proof of Proposition 19.

Suppose κ\kappa is invariant. For any f{f\in\mathbb{H}}, (28) implies

f(ϕx)=f,κ(ϕx,)=f,κ(x,)=f(x),f(\phi x)\;=\;\left<\mkern 2.0mu\smash{f,\kappa(\phi x,{\,\vbox{\hbox{\tiny$\bullet$}}\,})}\mkern 2.0mu\right>_{\mathbb{H}}\;=\;\left<\mkern 2.0mu\smash{f,\kappa(x,{\,\vbox{\hbox{\tiny$\bullet$}}\,})}\mkern 2.0mu\right>_{\mathbb{H}}\;=\;f(x)\;,

so ff is 𝔾\mathbb{G}-invariant. Conversely, suppose all f{f\in\mathbb{H}} are 𝔾\mathbb{G}-invariant. Let f1,f2,{f_{1},f_{2},\ldots} be a complete orthonormal system. Then all fif_{i} are 𝔾\mathbb{G}-invariant, so (29) shows

κ(ϕx,ψy)=ifi(ϕx)fi(ψy)=ifi(x)fi(y)=κ(x,y)\kappa(\phi x,\psi y)\;=\;\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}f_{i}(\phi x)f_{i}(\psi y)\;=\;\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}f_{i}(x)f_{i}(y)\;=\;\kappa(x,y)

and κ\kappa is invariant. Suppose κ\kappa is also continuous. If κ\kappa is invariant, its infimum and supremum on n\mathbb{R}^{n} equal its infimum and supremum on the compact set Π\Pi, and since κ\kappa is continuous, that implies it is bounded. That shows all functions in \mathbb{H} are continuous [59, 4.28]. ∎

The main ingredient in the proof of Proposition 23 is the following lemma, which shows that the RKHS of κ\kappa is isometric to that of κ^\hat{\kappa}, and that an explicit isometric isomorphism between them is given by composition with the embedding map ρ\rho.

Lemma 59.

Let κ^{\hat{\kappa}} be a continuous kernel on Ω\Omega with RKHS ^\hat{\mathbb{H}}. Set

κ:=κ^(ρρ) and := RKHS defined by κ.\kappa:=\hat{\kappa}\circ(\rho\otimes\rho)\qquad\text{ and }\qquad\mathbb{H}:=\text{ RKHS defined by }\kappa\;.

Then κ\kappa is a continuous kernel on n\mathbb{R}^{n}, is 𝔾\mathbb{G}-invariant in both arguments, and 𝐂𝔾{\mathbb{H}\subset\mathbf{C}_{\mathbb{G}}}. The map

I:^ defined by f^f^ρI:\hat{\mathbb{H}}\rightarrow\mathbb{H}\qquad\text{ defined by }\qquad\hat{f}\mapsto\hat{f}\circ\rho

is a linear isometric isomorphism, and two functions f^\hat{f} and g^\hat{g} in ^\hat{\mathbb{H}} are orthogonal if and only if f^ρ\hat{f}\circ\rho and g^ρ\hat{g}\circ\rho are orthogonal in \mathbb{H}.

Proof.

11^{\circ} The kernel κ\kappa is clearly continuous, since κ^\hat{\kappa} and ρ\rho are. Since Ω\Omega is compact, κ^\hat{\kappa} is bounded, and since κsup=κ^sup{\|\kappa\|_{\sup}=\|\hat{\kappa}\|_{\sup}}, it follows that κ\kappa is bounded. Bounded continuity of κ\kappa implies all elements of \mathbb{H} are continuous [59, Lemma 4.28]. That shows 𝐂𝔾{\mathbb{H}\subset\mathbf{C}_{\mathbb{G}}}.
22^{\circ} Next, consider the map II. Linearity of II is obvious. To show it is bijective, write

S:=span{κ(x,)|xn} and S^:=span{κ^(ω,)|ωΩ}.S:=\text{span}{\{\kappa(x,{\,\vbox{\hbox{\tiny$\bullet$}}\,})\,|\,x\in\mathbb{R}^{n}\}}\quad\text{ and }\quad\hat{S}:=\text{span}{\{\hat{\kappa}(\omega,{\,\vbox{\hbox{\tiny$\bullet$}}\,})\,|\,\omega\in\Omega\}}\;.

Note that makes \mathbb{H} the norm closure of SS, and ^\hat{\mathbb{H}} the norm closure of S^\hat{S} (see Section B.4).
33^{\circ} Consider any f^S^{\hat{f}\in\hat{S}}. Then f^=aiκ^(ωi,){\hat{f}=\sum a_{i}\hat{\kappa}(\omega_{i},{\,\vbox{\hbox{\tiny$\bullet$}}\,})} for some scalars aia_{i} and points ωi\omega_{i} in Ω\Omega. Since ρ\rho is surjective by Theorem 15, we can find points xix_{i} in n\mathbb{R}^{n} such that ωi=ρ(xi){\omega_{i}=\rho(x_{i})}. It follows that

f=f^ρ=(aiκ^(ρ(xi),))ρ=aiκ(xi,)S and hence I(S^)S.f\;=\;\hat{f}\circ\rho\;=\;\bigl{(}\operatorname{{\textstyle\sum}}a_{i}\hat{\kappa}(\rho(x_{i}),{\,\vbox{\hbox{\tiny$\bullet$}}\,})\bigr{)}\circ\rho\;=\;\operatorname{{\textstyle\sum}}a_{i}\kappa(x_{i},{\,\vbox{\hbox{\tiny$\bullet$}}\,})\;\in\;S\quad\text{ and hence }\quad I(\hat{S})\subset S\;.

Reversing the argument shows I1(S)S^{I^{-1}(S)\subset\hat{S}}. Thus, II is a linear bijection of S^\hat{S} and SS.
44^{\circ} Substituting f^S^{\hat{f}\in\hat{S}} as above into the definition of the scalar product shows

f^,f^^=aiajκ^(ρ(xi),ρ(xj))=aiajκ(xi,xj)=f,f\left<\mkern 2.0mu\smash{\hat{f},\hat{f}}\mkern 2.0mu\right>_{\hat{\mathbb{H}}}\;=\;\operatorname{{\textstyle\sum}}a_{i}a_{j}\hat{\kappa}(\rho(x_{i}),\rho(x_{j}))\;=\;\operatorname{{\textstyle\sum}}a_{i}a_{j}\kappa(x_{i},x_{j})\;=\;\left<\mkern 2.0mu\smash{f,f}\mkern 2.0mu\right>_{\mathbb{H}}

and hence f=f^^{\|f\|_{\mathbb{H}}=\|\hat{f}\|_{\hat{\mathbb{H}}}} for all f^S^{\hat{f}\in\hat{S}}. In summary, we have shown that the restriction of II to S^\hat{S} is a bijective linear isometry S^S{\hat{S}\rightarrow S}.
55^{\circ} Since II is an isometry on a dense subset, it has a unique uniformly continuous extension to the norm closure ^\hat{\mathbb{H}}, which takes the norm closure ^\hat{\mathbb{H}} to the norm closure \mathbb{H} of the image and is again an isometry [3, 3.11]. ∎

Proof of Proposition 23.

11^{\circ} By Theorem 15, there is a unique continuous function

κ^:Ω×Ω that satisfies κ=κ^(ρρ).\hat{\kappa}:\Omega\times\Omega\rightarrow\mathbb{R}\qquad\text{ that satisfies }\qquad\kappa=\hat{\kappa}\circ(\rho\otimes\rho)\;.

Lemma 59 then implies all f{f\in\mathbb{H}} are 𝔾\mathbb{G}-invariant and continuous.
22^{\circ} We next show the inclusion is compact. Consider first the map I:f^f^ρ{I:\hat{f}\mapsto\hat{f}\circ\rho} as in Lemma 59, but now defined on the larger space 𝐂(Ω){\mathbf{C}(\Omega)}. We know from Theorem 15 that II is an isometric isomorphism 𝐂(Ω)𝐂𝔾{\mathbf{C}(\Omega)\rightarrow\mathbf{C}_{\mathbb{G}}} (with respect to the supremum norm). By Lemma 59 its restriction to a map ^{\hat{\mathbb{H}}\rightarrow\mathbb{H}} is also an isometric isomorphism (with respect to the RKHS norms). It follows that the inclusion maps

ι:𝐂𝔾 and ι^:^𝐂(Ω) satisfy ι=Iι^I1.\iota:\mathbb{H}\rightarrow\mathbf{C}_{\mathbb{G}}\quad\text{ and }\quad\hat{\iota}:\hat{\mathbb{H}}\rightarrow\mathbf{C}(\Omega)\quad\text{ satisfy }\quad\iota=I\circ\hat{\iota}\circ I^{-1}\;.

Since κ^\hat{\kappa} is a continuous kernel by step 1, and its domain Ω\Omega is compact by Theorem 15, the inclusion ι^\hat{\iota} is compact [59, 4.31]. The composition of a compact linear operator with any continuous linear operator is again compact [4, Theorem 5.1]. Since II and its inverse are linear and continuous, that indeed makes ι\iota compact.
33^{\circ} Since κ^\hat{\kappa} is a continuous kernel on a compact domain, Mercer’s theorem [59, 4.49] holds for κ^\hat{\kappa}. It shows there are functions f^1,f^2,{\hat{f}_{1},\hat{f}_{2},\ldots} and scalars c1c2>0{c_{1}\geq c_{2}\geq\ldots>0} such that

(cif^i)i is an ONB for ^ and κ^(ω,ω)=\medmathicif^i(ω)f^i(ω) for all ω,ωΩ.(\sqrt{c_{i}}\hat{f}_{i})_{i\in\mathbb{N}}\text{ is an ONB for }\hat{\mathbb{H}}\quad\text{ and }\quad\hat{\kappa}(\omega,\omega^{\prime})=\operatorname{\medmath\sum}_{i}c_{i}\hat{f}_{i}(\omega)\hat{f}_{i}(\omega^{\prime})\quad\text{ for all }\omega,\omega^{\prime}\in\Omega\;.

The functions fi:=f^iρ{f_{i}:=\hat{f}_{i}\circ\rho} then satisfy

κ(x,y)=κ^(ρ(x),ρ(y))=icif^i(ρ(x))f^i(ρ(y))=icifi(x)fi(y).\kappa(x,y)\;=\;\hat{\kappa}(\rho(x),\rho(y))\;=\;\operatorname{{\textstyle\sum}}_{i}c_{i}\hat{f}_{i}(\rho(x))\hat{f}_{i}(\rho(y))\;=\;\operatorname{{\textstyle\sum}}_{i}c_{i}f_{i}(x)f_{i}(y)\;.

Since the map f^f^ρ{\hat{f}\mapsto\hat{f}\circ\rho} preserves the scalar product by Lemma 59, the sequence (cifi){(\sqrt{c_{i}}f_{i})} is an ONB for \mathbb{H}.
44^{\circ} It remains to verify the representation

\displaystyle\mathbb{H}\; ={f=iaicifi|a1,a2, with i|ai|2<}.\displaystyle=\;{\{\;f\!=\!\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}a_{i}\sqrt{c_{i}}f_{i}\,|\,a_{1},a_{2},\ldots\in\mathbb{R}\text{ with }\operatorname{{\textstyle\sum}}_{i}|a_{i}|^{2}<\infty\}}\;.
Since Mercer’s theorem applies to κ^\hat{\kappa}, the analogous representation
^\displaystyle\hat{\mathbb{H}}\; ={f^=iaicif^i|a1,a2, with i|ai|2<}\displaystyle=\;{\{\;\hat{f}\!=\!\operatorname{{\textstyle\sum}}_{i\in\mathbb{N}}a_{i}\sqrt{c_{i}}\hat{f}_{i}\,|\,a_{1},a_{2},\ldots\in\mathbb{R}\text{ with }\operatorname{{\textstyle\sum}}_{i}|a_{i}|^{2}<\infty\}}

holds on Ω\Omega, by Steinwart and Christmann [59, 4.51]. As f^f^ρ{\hat{f}\mapsto\hat{f}\circ\rho} is an isometric isomorphism by Lemma 59, that yields the representation for \mathbb{H} above. ∎

I.2. Gaussian processes

Proof of Proposition 24.

That FF is continuous and 𝔾\mathbb{G}-invariant almost surely follows immediately from Theorem 15. Let Π~\tilde{\Pi} be a transversal. Our task is to show that the restriction F|Π~F|_{\tilde{\Pi}} is a continuous Gaussian process on Π~\tilde{\Pi}. To this end, suppose hh is a continuous function on N\mathbb{R}^{N}. Then hρ{h\circ\rho} is continuous by Theorem 15, and the restriction is again continuous. That means

τ:h(hρ)|Π~ is a map 𝐂(Ω)𝐂(Π~).\tau:h\mapsto(h\circ\rho)|_{\tilde{\Pi}}\qquad\text{ is a map }\qquad\mathbf{C}(\Omega)\rightarrow\mathbf{C}(\tilde{\Pi})\;.

Since both composition with a fixed function and restriction to a subset are linear as operations on functions, τ\tau is linear, and since neither composition nor restriction can increase the sup norm, it is bounded. The restriction

F|Π~=τ(H)F|_{\tilde{\Pi}}\;=\;\tau(H)

is hence the image of a Gaussian process with values in the separable Banach space 𝐂(Ω){\mathbf{C}(\Omega)} under a bounded linear map into the Banach space 𝐂(Π~){\mathbf{C}(\tilde{\Pi})}. That implies it is a Gaussian process with values in 𝐂(Π~){\mathbf{C}(\tilde{\Pi})}, and that κ\kappa and μ\mu transform accordingly [63, Lemma 7.1]. ∎