This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Resistive Anomaly near a Ferromagnetic Phase Transition:
A Classical Memory Effect

Dmitrii L. Maslov1    Vladimir I. Yudson2,3    Cristian D. Batista4,5 1Department of Physics, University of Florida, P.O. Box Gainesville, Florida 32611 2Laboratory for Condensed Matter Physics, HSE University, 20 Myasnitskaya St., Moscow, 101000 Russia 3 Russian Quantum Center, Skolkovo, Moscow 143025, Russia 4 Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA 5 Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Abstract

We investigate resistive anomalies in metals near a ferromagnetic phase transition, emphasizing the role of long-range critical fluctuations. Our analysis shows that electron diffusion near the critical temperature TcT_{c} enhances the singular behavior of resistivity via a classical memory effect, exceeding the prediction of Fisher and Langer [1]. Close to TcT_{c}, the resistivity develops a cusp or anticusp controlled by the critical exponent of the order parameter. We also express a concomitant non-Drude behavior of the optical conductivity in terms of critical exponents. These results provide deeper insight into the origin of resistive anomalies and their connection to criticality in metallic systems.

Introduction:

Second-order phase transitions are accompanied by diverging order-parameter fluctuations near the critical temperature TcT_{c}. A classic manifestation is critical opalescence— strong scattering of light by a fluid near its critical point. In metals approaching a magnetic or structural transition, electron waves are similarly scattered by critical fluctuations. The metallic analog of critical opalescence is a knee- or cusp-like anomaly in the temperature dependence of resistivity near TcT_{c}.

Since the pioneering work of Gerlach [2], resistive anomalies have been widely observed in elemental metallic ferromagnets (FMs), such as Ni, Fe, Co, and Gd [3], in rare-earth intermetallics [4, 5], and in metallic antiferromagnets (AFMs), including elemental (Tb, Ho) [6], intermetallic [7], and iron pnictides [8]. Similar anomalies also occur near structural transitions, e.g., near order-disorder transitions in binary alloys [9] and the cubic-to-tetragonal transition in doped SrTiO3 [10].

Resistive anomalies offer two main advantages: they enable rapid identification of magnetic transitions without direct magnetic measurements, and their shapes reveals information about critical exponents. This is particularly valuable given the higher precision of resistivity measurements compared to specific heat. However, extracting such information requires a suitable theoretical framework [11], which we revisit and refine in this Letter.

Theoretical studies of resistive anomalies began with de Gennes and Friedel (dGF) [12], who attributed the resistive anomaly near a FM transition to spin-flip scattering of free electrons by localized magnetic moments. Modeling this as quenched long-range disorder (LRD), they computed the transport scattering time τtr\tau_{\rm tr}, using the Fermi’s Golden Rule (FGR):

1/τtrq2kFddqq22kF2Δt(q)W(𝐪),\displaystyle 1/\tau_{\rm tr}\propto\int_{q\leq 2k_{F}}d^{d}q\,\frac{q^{2}}{2k_{\mathrm{F}}^{2}}\,\Delta t(q)\,W({\bf q}), (1)

where kFk_{\mathrm{F}} is the Fermi momentum, W(𝐪)=δ𝐒𝐪δ𝐒𝐪W({\bf q})=\langle\delta{\bf S}_{{\bf q}}\cdot\delta{\bf S}_{-{\bf q}}\rangle is the connected spin correlation function, Δt(q)=1/\varvFq\Delta t(q)=1/\varv_{\mathrm{F}}q arises from the energy-conserving delta-function averaged over directions of 𝐪{\bf q}, and the “transport factor”–q2/2kF2q^{2}/2k_{\mathrm{F}}^{2}–suppresses small-angle scattering. In the mean-field theory, W(q)((𝐪𝐐)2+ξ2)1W(q)\propto\left(({\bf q}-{\bf Q})^{2}+\xi^{-2}\right)^{-1}, where the correlation length ξ|θ|1/2\xi\propto|\theta|^{-1/2} and θ=(TTc)/Tc\theta=(T-T_{c})/T_{c}. For FMs, 𝐐=0{\bf Q}=0 and thus Eq. (1) is dominated by qkFq\sim k_{\mathrm{F}}. Subtracting off this non-universal part, dGF retained only the critical contribution from qξ1kFq\sim\xi^{-1}\ll k_{\mathrm{F}}, leading to a resistivity cusp: δρdGF|θ|ln(1/|θ|)\delta\rho_{\rm dGF}\propto-|\theta|\ln(1/|\theta|) in d=3d=3 and δρdGF|θ|1/2\delta\rho_{\rm dGF}\propto-|\theta|^{1/2} in d=2d=2.

Ten years later, Fisher and Langer (FL) [1] challenged two key aspects of dGF’s analysis. First, they correctly pointed out that impurity and phonon scattering—which plays the role pf short-range disorder (SRD)—cannot be treated independently of magnetic scattering, if the corresponding mean free path s\ell_{\mathrm{s}} is shorter than ξ\xi; a condition inevitably met near TcT_{c}. While FL conjectured that this interplay would weaken the dGF singularity, they did not provide a quantitative treatment. Instead, they focused on the second issue: the short-range (qkFq\sim k_{\mathrm{F}}) contribution to Eq. (1), discarded by dGF, but which, in fact, contributes to the critical θ\theta-dependence. Noting that in typical metallic magnets kFaM1a1k_{\mathrm{F}}\sim a^{-1}_{\rm M}\sim a^{-1}, where aMa_{\rm M} is the spacing between magnetic moments and aa the lattice constant, FL observed that the upper limit of the integral in Eq. (1) probes the short-distance part of the spin correlation function. This contribution to 1/τtr1/\tau_{\rm tr} scales with temperature as the magnetic internal energy, U(T)U(T). Beyond the mean-field theory, the specific heat C(T)=dU/dT|θ|αC(T)=dU/dT\propto|\theta|^{-\alpha}, with 0<α<10<\alpha<1, leading FL to conclude that dδρ/dTdτtr1/dTC(T)d\delta\rho/dT\propto d\tau_{\rm tr}^{-1}/dT\propto C(T), or

δρFLsgnθ|θ|1α,\displaystyle\delta\rho_{\rm FL}\propto\text{sgn}\,\theta\,|\theta|^{1-\alpha}, (2)

which is known as “FL scaling”. Unlike the dGF prediction, FL scaling implies that ρ(T)\rho(T) is a monotonic—generally increasing—function of θ\theta [13], with a cusp in its derivative at TcT_{c}, consistent with observations in elemental FMs away from the critical point [3].

While FL’s argument applies to both FMs and AFMs, Suezaki and Mori (SM) [14] pointed out an additional short-range contribution in metallic AFMs with QkFa1Q\sim k_{\mathrm{F}}\sim a^{-1}. In this case, the region 𝐪𝐐{\bf q}\approx{\bf Q} contributes critically to the integral (1), while neither the transport factor nor Δt(q)\Delta t(q) affect the scaling. On changing variables to 𝐪=𝐪𝐐{\bf q}^{\prime}={\bf q}-{\bf Q}, the integral is dominated by qξ1q^{\prime}\sim\xi^{-1}, yielding

δρSM𝑑qqd1W(q)=δM2|θ|2β,\displaystyle\delta\rho_{\rm SM}\propto\int dq^{\prime}\,q^{\prime d-1}W(q^{\prime})=\langle\delta M^{2}\rangle\propto|\theta|^{2\beta}, (3)

where δM\delta M is the fluctuation of the magnetic order parameter and β\beta is the critical exponent, defined by M(θ)β\langle M\rangle\propto(-\theta)^{\beta} for θ<0\theta<0.

Here, we show that in the diffusive regime (ξs\xi\gg\ell_{\mathrm{s}}), Eq. (3) applies not only to AFMs but also to FMs. In this case, the anomaly originates from long-range critical fluctuations—the same mechanism considered by dGF. Our result departs from dGF’s prediction due to the breakdown of Matthiessen’s rule, as noted by FL. Crucially, when properly accounted for, this breakdown enhances rather than suppresses the resistive anomaly. While Ref. [15] attributed such enhancement to mesoscopic fluctuations, we demonstrate that even classical diffusive motion of phase-incoherent electrons in a background of long-range magnetic fluctuations produces a competing mechanism to FL scaling. The effect stems from a classical memory mechanism: repeated returns of a diffusive trajectory to the same location.

Qualitative arguments.

As in previous work, we treat spin-flip scattering as arising from quenched long-range disorder (LRD), characterized by the correlation function W(q)=ddrei𝐪𝐫V(𝐫)V(0)W(q)=\int d^{d}r\,e^{i{\bf q}\cdot{\bf r}}\langle V({\bf r})V(0)\rangle. This approximation is justified in the small-qq limit, where critical fluctuations exhibit critical slowing down: their relaxation time diverges as qzq^{-z} near a continuous phase transition, with zz the dynamical exponent [16]. Assuming that LRD is weaker than SRD, the key question is: what is the resulting resistivity of the metal?

Classical electrodynamics offers a partial answer to this question [17]. In the diffusive regime, regions of size ξ\sim\xi act as local Ohmic resistors with spatially varying conductivity σ(𝐫)\sigma({\bf r}). Consequently, both the electric field and current density fluctuate, while obeying Ohm’s law: 𝐣(𝐫)=σ(𝐫)𝐄(𝐫){\bf j}({\bf r})=\sigma({\bf r}){\bf E}({\bf r}). The measured conductivity is defined via the relation between averaged quantities 𝐣=σexp𝐄\langle{\bf j}\rangle=\sigma_{\rm exp}\langle{\bf E}\rangle, where 𝐄\langle{\bf E}\rangle is is the ratio of the voltage to sample length [18]. For weak fluctuations, σexp\sigma_{\rm exp} splits into two contributions [19]:

σexp=σK+δσfl,\displaystyle\sigma_{\rm exp}=\sigma_{\rm K}+\delta\sigma_{\rm fl}, (4)

where σK\sigma_{\rm K} is the Kubo conductivity in a uniform field, and δσfl\delta\sigma_{\rm fl} is a correction due to spatial inhomogeneity. The result of Ref. [17] for a weakly inhomogeneous medium translates into δσfl=δσ2/dσK\delta\sigma_{\rm fl}=-\langle\delta\sigma^{2}\rangle/d\,\sigma_{\rm K} [18, 19, 15]. In our context, these conductivity fluctuations stem from order-parameter fluctuations, implying δσflδM2\delta\sigma_{\rm fl}\propto\langle\delta M^{2}\rangle, thus justifying the scaling in Eq. (3).

The Kubo conductivity itself consists of two parts: σK=σs+δσ\sigma_{\rm K}=\sigma_{\rm s}+\delta\sigma_{\ell}, where σs\sigma_{\rm s} is the Drude contribution from SRD and δσ\delta\sigma_{\ell} is the correction due to LRD. The form of δσ\delta\sigma_{\ell} depends on the relation between ξ\xi and s\ell_{\mathrm{s}}, with the key quantity being the “interaction time” Δt(q)\Delta t(q) in Eq. (1), which is the duration of a scattering event with momentum transfer qξ1q\sim\xi^{-1} [20]. By the uncertainty principle, such momentum transfer occurs within a region of size 1/q\sim 1/q.

In the ballistic regime (ξs\xi\ll\ell_{\mathrm{s}}), an electron traverses this region in time Δt(q)ξ/\varvFτs=s/\varvF\Delta t(q)\sim\xi/\varv_{\mathrm{F}}\ll\tau_{\mathrm{s}}=\ell_{\mathrm{s}}/\varv_{\mathrm{F}}, so SRD and LRD act independently, and their scattering rates add according to Matthiessen’s rule.

In the diffusive regime (ξs\xi\gg\ell_{\mathrm{s}}), scattering by SRD broadens electron states, requiring the energy-conserving delta function in FGR to be replaced by a Lorentzian of width 1/τs1/\tau_{\mathrm{s}} [21, 22, 23, 24]. Consequently, Δt(q)τs=const\Delta t(q)\sim\tau_{\mathrm{s}}=\text{const}, and the integrand in Eq. (1) becomes less singular as q0q\to 0, thus weakening the dGF anomaly. However, the dominant effect of diffusion is that it significantly enhances the time required for an electron to traverse a region of size ξ\sim\xi, now given by Δt(q)1/Dsq2\Delta t(q)\sim 1/D_{\rm s}q^{2}, where Ds=\varvF2τs/dD_{\rm s}=\varv_{\mathrm{F}}^{2}\tau_{\mathrm{s}}/d is the diffusion coefficient due to SRD. As a result, the integrand in Eq. (1) becomes more singular than in the ballistic regime: the 1/q21/q^{2} divergence in Δt(q)\Delta t(q) cancels the q2q^{2} transport factor, reducing the integral to 𝑑qqd1W(q)δM2\int dq\,q^{d-1}W(q)\sim\langle\delta M^{2}\rangle. Thus, δσδσflδM2\delta\sigma_{\ell}\sim\delta\sigma_{\rm fl}\propto\langle\delta M^{2}\rangle, consistent with Eq. (3).

Refer to caption
Refer to caption
Refer to caption
Figure 1: Corrections to the Kubo part of the measured conductivity, σK\sigma_{\rm K} in Eq. (4), due to long-range disorder. Solid lines: Green’s functions averaged over realizations of short-range disorder; wiggly lines: current vertices, dashed line: correlation function of long-range disorder; dotted line: correlation function of short-range disorder; shaded box: diffuson ladder, satisfying the equation shown graphically by diagram h.
Quantitative analysis.

We now outline the main steps of the derivation. We consider a metal with parabolic dispersion ε𝐤=k2/2mμ\varepsilon_{\bf k}=k^{2}/2m-\mu, subject to the condition μτs1\mu\tau_{\mathrm{s}}\gg 1, where μ\mu is the chemical potential. The leading corrections to the Kubo term in Eq. (4) due to LRD are captured by diagrams a–g in Fig. 1. Solid lines represent disorder-averaged retarded/advanced Green’s functions,

G𝐤R/A(ω)=1ωε𝐤±iτs/2,\displaystyle G^{R/A}_{\bf k}(\omega)=\frac{1}{\omega-\varepsilon_{\bf k}\pm i\tau_{\mathrm{s}}/2}, (5)

while dashed and dotted lines correspond to the correlation functions of LRD and SRD, respectively. The shaded box denotes the diffuson ladder R(q,ω)\mathcal{L}^{R}(q,\omega), which satisfies the integral equation shown in panel h. Diagrams a–c were previously analyzed in Ref. [25], but only for Qs1Q\ell_{\mathrm{s}}\gg 1, which excludes the FM case. Diagrams d–g were shown in Ref. [26] to reflect a classical memory effect in the optical conductivity: a power-law, rather than exponential, decay of the velocity-velocity correlation function at long times [27, *Hauge:1974].

In general, the correlator of magnetic fluctuations in a FM can be written as

W(q)=q2+ηF(qξ),\displaystyle W(q)=q^{-2+\eta}F(q\xi), (6)

where F(x)F(x) is a universal scaling function. Using the ϵ\epsilon-expansion and renormalization group, its asymptotic form for qξ1q\xi\gg 1 was found to be [29, 30]:

F(qξ1)=A+B±sgnθ(|θ|q1/ν)1α+C±|θ|q1/ν+,\displaystyle F(q\xi\gg 1)=A+B_{\pm}\,\text{sgn}\,\theta\left(\frac{|\theta|}{q^{1/\nu}}\right)^{1-\alpha}+C_{\pm}\frac{|\theta|}{q^{1/\nu}}+\dots, (7)

with A>0A>0, and B±B_{\pm}, C±C_{\pm} generally different above and below TcT_{c}. The critical exponents α\alpha, η\eta, and ν\nu for common universality classes are listed in Table 1.

The sum of diagrams a–c in Fig. 1 gives the following correction to the dc conductivity

δσ,ac=e22πdm2𝐪q2W(q)𝐤|G𝐤𝐪/2R(0)G𝐤+𝐪/2R(0)|2,\displaystyle\delta\sigma_{\ell,a\text{--}c}=-\frac{e^{2}}{2\pi dm^{2}}\int_{\bf q}q^{2}W(q)\int_{\bf k}\left|G_{{\bf k}-{\bf q}/2}^{R}(0)G_{{\bf k}+{\bf q}/2}^{R}(0)\right|^{2}, (8)

where 𝐩ddp/(2π)d\int_{\bf p}\equiv\int d^{d}p/(2\pi)^{d}. The overall q2q^{2} factor is the same transport factor as in Eq. (1). The momentum integral is evaluated using 𝐤=νF𝑑ε𝐤k^\int_{\bf k}=\nu_{\text{F}}\int d\varepsilon_{\bf k}\int_{\hat{k}}, with νF\nu_{\text{F}} the density of states at the Fermi level and k^\int_{\hat{k}} denoting angular averaging. For qξ1kFq\sim\xi^{-1}\ll k_{\mathrm{F}}, the dispersion simplifies to ε𝐤±𝐪/2ε𝐤±\varvFk^𝐪/2\varepsilon_{{\bf k}\pm{\bf q}/2}\approx\varepsilon_{\bf k}\pm\varv_{\mathrm{F}}\hat{k}\cdot{\bf q}/2, yielding

δρ,ac/ρs=δσ,ac/σs=(τs2/kF2)𝐪q2W(q)fd(qs),\displaystyle\delta\rho_{\ell,a\text{--}c}/\rho_{\mathrm{s}}=-\delta\sigma_{\ell,a\text{--}c}/\sigma_{\rm s}=(\tau_{\mathrm{s}}^{2}/k_{\mathrm{F}}^{2})\int_{\bf q}q^{2}W(q)f_{d}(q\ell_{\mathrm{s}}), (9)

with ρs=1/σs\rho_{\mathrm{s}}=1/\sigma_{\rm s}, f2(x)=1/x2+1f_{2}(x)=1/\sqrt{x^{2}+1}, and f3(x)=tan1x/xf_{3}(x)=\tan^{-1}x/x. For qs1q\gg\ell_{\mathrm{s}}^{-1}, Eq. (9) is reduced back to FGR, Eq. (1). The FL result [Eq. (2)] arises from the second term in Eq. (7), and is present in both ballistic and diffusive regimes. Subtracting it off, the remaining contribution from qξ1q\sim\xi^{-1} scales as δρac|θ|(d1+η)ν\delta\rho_{a\text{--}c}\propto|\theta|^{(d-1+\eta)\nu}, which generalizes the dGF result beyond the mean-field level. In this limit, Matthiessen’s rule holds: δρac=ρs(τs/τtr)\delta\rho_{a\text{--}c}=\rho_{\mathrm{s}}(\tau_{\mathrm{s}}/\tau_{\rm tr}). In the diffusive regime (qs1q\ll\ell_{\mathrm{s}}^{-1}), fd(x)fd(0)=1f_{d}(x)\approx f_{d}(0)=1, which adds an extra qq factor to the integrand and yields δρac|θ|(d+η)ν\delta\rho_{a\text{--}c}\propto|\theta|^{(d+\eta)\nu}, thus confirming that the dGF anomaly is weakened compared to the ballistic case.

Diagrams d–g in Fig. 1, which are of primary interest here, yield

δσ,dg=4e2πd𝐪W(q)R(q,0)(Im𝐮𝐪)2,\displaystyle\delta\sigma_{\ell,d-g}=-\frac{4e^{2}}{\pi d}\int_{\bf q}W(q)\mathcal{L}^{R}(q,0)\left({\mathrm{Im}}\,{\bf u}_{\bf q}\right)^{2}, (10)

where 𝐮𝐪=𝐤(𝐤/m)|G𝐤R(0)|2G𝐤+𝐪A(0){\bf u}_{\bf q}=\int_{\bf k}({\bf k}/m)\left|G^{R}_{\bf k}(0)\right|^{2}G^{A}_{{\bf k}+{\bf q}}(0) is the current vertex and R(q,0)\mathcal{L}^{R}(q,0) is the static diffuson ladder, given by R(q,0)=(1/2πνFτs)𝒟d(qs)\mathcal{L}^{R}(q,0)=(1/2\pi\nu_{\text{F}}\tau_{\mathrm{s}})\mathcal{D}_{d}(q\ell_{\mathrm{s}}) with 𝒟2(x)=(11/x2+1)1\mathcal{D}_{2}(x)=\left(1-1/\sqrt{x^{2}+1}\right)^{-1} and 𝒟3(x)=(1tan1x/x)1\mathcal{D}_{3}(x)=\left(1-\tan^{-1}x/x\right)^{-1}. The limit R(q0,0)1/q2\mathcal{L}^{R}(q\to 0,0)\propto 1/q^{2} corresponds to the diffusive limit of the interaction time, Δt(q)\Delta t(q) in Eq. (1). Integrating over 𝐤{\bf k}, we obtain

δρ,dgρs=δσ,dgσs=14μ2𝐪W(q)𝒟d(qs)gd(qs).\displaystyle\frac{\delta\rho_{\ell,d-g}}{\rho_{\mathrm{s}}}=-\frac{\delta\sigma_{\ell,d-g}}{\sigma_{\rm s}}=\frac{1}{4\mu^{2}}\int_{\bf q}W(q)\mathcal{D}_{d}(q\ell_{\mathrm{s}})g_{d}(q\ell_{\mathrm{s}}). (11)

where g2(x)=x2/(1+x2)3g_{2}(x)=x^{2}/(1+x^{2})^{3} and g3(x)=x2/(1+x2)2g_{3}(x)=x^{2}/(1+x^{2})^{2}. In the ballistic limit, δρ,dgδρ,ac\delta\rho_{\ell,d-g}\ll\delta\rho_{\ell,a-c}. In the diffusive limit, one can replace 𝒟d(x)\mathcal{D}_{d}(x) and gd(x)g_{d}(x) in Eq. (11) by their small-xx limits, i.e., by d/x2d/x^{2} and x2x^{2}, respectively, which yields

δρ,dg/ρs=(d/4μ2)𝐪W(q)=(d/4)V2/μ2,\displaystyle\delta\rho_{\ell,d-g}/\rho_{\mathrm{s}}=(d/4\mu^{2})\int_{\bf q}W(q)=(d/4)\langle V^{2}\rangle/\mu^{2}, (12)

where V2=𝐪W(q)\langle V^{2}\rangle=\int_{\bf q}W(q) is the variance of the potential energy due to LRD. δρ,dg\delta\rho_{\ell,d-g} is obviously more singular than δρ,ac\delta\rho_{\ell,a-c} in the diffusive limit, and thus the latter can be neglected.

Finally, we come to the second, fluctuational term in Eq. (4), which becomes relevant in the diffusion limit, when a region of size ξ\sim\xi can be assigned its own conductivity. At fixed μ\mu, fluctuations of the local conductivity result from fluctuations of the Fermi energy. If σs[εF(𝐫)]=σs[μV(𝐫)]\sigma_{\rm s}\left[\varepsilon_{\text{F}}({\bf r})\right]=\sigma_{\rm s}\left[\mu-V({\bf r})\right] is the local conductivity due to SRD at fixed Fermi energy, then δσfl2=σs2[μV(𝐫)]σs[μV(𝐫)]2V2(σs(μ)/μ)2=(V2/μ2)σs2\langle\delta\sigma_{\rm fl}^{2}\rangle=\langle\sigma_{\rm s}^{2}\left[\mu-V({\bf r})\right]\rangle-\langle\sigma_{\rm s}\left[\mu-V({\bf r})\right]\rangle^{2}\approx\langle V^{2}\rangle\left(\partial\sigma_{\rm s}(\mu)/\partial\mu\right)^{2}=\left(\langle V^{2}\rangle/\mu^{2}\right)\sigma_{\rm s}^{2}, where at the last step we took into account that ν(ϵ)τs(ϵ)=const\nu(\epsilon)\tau_{\mathrm{s}}(\epsilon)={\rm const} for SRD. Therefore, the fluctuational correction equals to δρfl/ρs=δσfl/σs=V2/dμ2\delta\rho_{\rm fl}/\rho_{\rm s}=-\delta\sigma_{\rm fl}/\sigma_{\rm s}=\langle V^{2}\rangle/d\,\mu^{2}, which is of the same order as the Kubo contribution in Eq. (12). Adding up the Kubo and fluctuational corrections gives the final result in the diffusive limit:

δρ/ρs=(d/4+1/d)V2/μ2.\displaystyle\delta\rho/\rho_{\rm s}=(d/4+1/d)\langle V^{2}\rangle/\mu^{2}. (13)

Substituting Eq. (7) into Eq. (13), integrating term by term over the interval 1/ξq1/s1/\xi\lesssim q\lesssim 1/\ell_{\mathrm{s}}, and keeping only the contribution from the lower limit 111Here, we assume the most common scenario in which the integral of W(q)W(q) up to the upper cutoff 1/ls1/l_{s} remains far from saturating the sum rule BZW(q)ddq=NS2\int_{\rm BZ}W(q)\,d^{d}q=NS^{2}, where NN is the total number of spins., we arrive at the scaling form in Eq. (3):

δρA|θ|2β=A|θ|1αζ,\displaystyle\delta\rho\propto A^{\prime}|\theta|^{2\beta}=A^{\prime}|\theta|^{1-\alpha-\zeta}, (14)

where 2β=(d2+η)ν>02\beta=(d-2+\eta)\nu>0, ζ=(2η)ν1\zeta=(2-\eta)\nu-1, and where the hyperscaling relation νd=2α\nu d=2-\alpha [32] was employed at the last step. The dominant singular contribution in the diffusive regime scales like the Bragg peak intensity (square of the order parameter). As long as ζ>0\zeta>0, the “diffusive anomaly” in Eq. (14) is more singular than the FL one, Eq. (2). Table 1 confirms that this holds for the most common universality classes. The sign of the diffusive anomaly–whether it manifests as a cusp or anti-cusp in ρ\rho–is non-universal, as it depends on the relative magnitudes of the constants AA, B±B_{\pm}, and C±C_{\pm} in Eq. (7). In particular, δρ\delta\rho in Eq. (14) exhibits a cusp at θ=0\theta=0 if A<0A^{\prime}<0 and an anti-cusp if A>0A^{\prime}>0.

Optical conductivity.

We now turn to the anomaly in the optical conductivity. Following Ref. [26], we initially ignore the effect of electron-electron interaction on diffusion, and also focus on the regime of Ωτs1\Omega\tau_{\mathrm{s}}\ll 1, when the frequency enters only through the diffuson as R(q,Ω)=(1/2πνFτs2)(Dsq2iΩ)1{\mathcal{L}}^{R}(q,\Omega)=(1/2\pi\nu_{F}\tau_{\mathrm{s}}^{2})(D_{\mathrm{s}}q^{2}-i\Omega)^{-1}, while the rest of a diagram can be evaluated at zero frequency. In this regime, the dominant contribution to the optical conductivity is given by diagrams d-g. At finite Ω\Omega, Eq. (10) is replaced by

Reδσ(Ω)=4e2πd𝐪W(q)ReR(q,Ω)(Im𝐮𝐪)2.\displaystyle{\mathrm{Re}}\delta\sigma(\Omega)=-\frac{4e^{2}}{\pi d}\int_{\bf q}W(q){\mathrm{Re}}\mathcal{L}^{R}(q,\Omega)\left({\mathrm{Im}}\,{\bf u}_{\bf q}\right)^{2}. (15)

In the diffusive limit, (Im𝐮𝐪)2=(πνFτs/kF)2(qs)2({\mathrm{Im}}\,{\bf u}_{\bf q})^{2}=(\pi\nu_{\text{F}}\tau_{\mathrm{s}}/k_{\mathrm{F}})^{2}(q\ell_{\mathrm{s}})^{2}, which yields for ΔReσ(Ω)Reδσ(Ω)δσ(0)\Delta{\mathrm{Re}}\sigma(\Omega)\equiv{\mathrm{Re}}\delta\sigma(\Omega)-\delta\sigma(0):

ΔReσ(Ω)=d2σsΩ2EF2𝐪W(q)(Dsq2)2+Ω2,\displaystyle\Delta{\mathrm{Re}}\sigma(\Omega)=\frac{d}{2}\sigma_{\mathrm{s}}\frac{\Omega^{2}}{E_{F}^{2}}\int_{\bf q}\frac{W(q)}{(D_{\mathrm{s}}q^{2})^{2}+\Omega^{2}}, (16)

where σs=1/ρs\sigma_{\mathrm{s}}=1/\rho_{\mathrm{s}}. For ΩDs/ξ2\Omega\ll D_{\mathrm{s}}/\xi^{2}, one can set q=0q=0 in W(q)W(q) and factor it out from the integral, yielding

ΔReσ(Ω)=bdσs(|Ω|Ds)d/2W(0)μ2,\displaystyle\Delta{\mathrm{Re}}\sigma(\Omega)=b_{d}\sigma_{\mathrm{s}}\left(\frac{|\Omega|}{D_{\mathrm{s}}}\right)^{d/2}\frac{W(0)}{\mu^{2}}, (17)

where b2=1/16b_{2}=1/16 and b3=2/16πb_{3}=\sqrt{2}/16\pi. For Ds/ξ2Ω1/τsD_{\mathrm{s}}/\xi^{2}\ll\Omega\ll 1/\tau_{\mathrm{s}}, one can neglect the (Dsq2)2(D_{\mathrm{s}}q^{2})^{2} term in the denominator, arriving at the Ω\Omega-independent value: ΔReσ(Ω)=σs(d/4)V2/μ2\Delta{\mathrm{Re}}\sigma(\Omega)=-\sigma_{\mathrm{s}}(d/4)\langle V^{2}\rangle/\mu^{2}. Finally, the conventional Drude behavior is recovered for Ω1/τs\Omega\gg 1/\tau_{s}, i.e., Reσ(Ω)1/Ω2τs{\mathrm{Re}}\sigma(\Omega)\propto 1/\Omega^{2}\tau_{\mathrm{s}}. Note that a nonanalytic frequency dependence comes only from the Kubo part of the measured conductivity, whereas the fluctuational part gives the usual Drude behavior.

Refer to caption
Refer to caption
Figure 2: (a) Non-Drude behavior of the optical conductivity due to a classical memory effect. Here, ΔReσ=Reδσ(Ω)δσ(0)\Delta{\mathrm{Re}}\sigma={\mathrm{Re}}\delta\sigma(\Omega)-\delta\sigma(0), where δσ(0)\delta\sigma(0) is the dc correction due to LRD, τs\tau_{\mathrm{s}} is the mean free time due to SRD, DsD_{\mathrm{s}} the corresponding diffusion coefficient, and θ=(TTc)/Tc\theta=(T-T_{c})/T_{c}. Two curves correspond to |θ1|>|θ2||\theta_{1}|>|\theta_{2}|. Slanted dashed lines show the non-analytic scaling ΔReσ|Ω|d/2\Delta{\mathrm{Re}}\sigma\propto|\Omega|^{d/2} for ΩDs/ξ2(|θ|)\Omega\ll D_{\mathrm{s}}/\xi^{2}(|\theta|). Horizontal dashed lines mark the plateaus for Ds/ξ2Ω1/τsD_{\mathrm{s}}/\xi^{2}\ll\Omega\ll 1/\tau_{\mathrm{s}}; the Drude behavior emerges for Ω1/τs\Omega\gg 1/\tau_{\mathrm{s}}. (b) Diagrammatic relation between screened (black box) and bare (shaded box) diffusons; thin and thick wavy lines denote bare and screened Coulomb interactions, respectively.

The behavior of the optical conductivity near a phase transition is sketched in Fig. 2 for two reduced temperatures, |θ|1>|θ|2|\theta|_{1}>|\theta|_{2}. The slope of the nonanalytic part at lower frequencies is proportional to W(0)|θ|γW(0)\propto|\theta|^{-\gamma}. The non-analytic range is bounded from above by the Thouless energy at length ξ\xi, ETh(|θ|)=Ds/ξ2(|θ|)|θ|2νE_{\rm Th}(|\theta|)=D_{\mathrm{s}}/\xi^{2}(|\theta|)\propto|\theta|^{2\nu}, which vanishes for TTcT\to T_{c}. In the intermediate range, above ETh(|θ|)E_{\rm Th}(|\theta|) but below 1/τs1/\tau_{\mathrm{s}}, the optical conductivity reaches a plateau at a value that scales with |θ||\theta| is the same was as the dc resistivity, i.e., as |θ|2β|\theta|^{2\beta}. (We assume here that δρ\delta\rho in Eq. (14) has a cusp at θ=0\theta=0).

As shown in Ref. [33], however, Coulomb interaction modifies electron diffusion. In the presence of dynamic screening, the bare diffuson (shaded box in Fig. 2b) is replaced by the screened one, scR(q,ω)\mathcal{L}^{R}_{\rm sc}(q,\omega) (black box), as depicted in the first line of panel b), where the thick wavy line represents the dynamically screened interaction UscR(q,ω)U^{R}_{\rm sc}(q,\omega). This is related to the bare interaction U0(q)U_{0}(q) via the random-phase approximation (second line). For qs1q\ell_{\mathrm{s}}\ll 1 and ωτs1\omega\tau_{\mathrm{s}}\ll 1, the screened diffuson reads

scR(q,Ω)\displaystyle\mathcal{L}^{R}_{\rm sc}(q,\Omega) =\displaystyle= 12πνFτs21+νFU0(q)Dsq2(1+νFU0(q))iΩ.\displaystyle\frac{1}{2\pi\nu_{\text{F}}\tau_{\mathrm{s}}^{2}}\frac{1+\nu_{\text{F}}U_{0}(q)}{D_{\mathrm{s}}q^{2}\left(1+\nu_{\text{F}}U_{0}(q)\right)-i\Omega}. (18)

At Ω=0\Omega=0, this reduces to the singular static form 1/q2\propto 1/q^{2}, implying no change to the dc conductivity. For finite Ω\Omega, and with bare Coulomb interaction U0(q)1/qd1U_{0}(q)\propto 1/q^{d-1}, the denominator becomes Dsq3dκdd1iΩD_{\mathrm{s}}q^{3-d}\kappa_{d}^{d-1}-i\Omega, which eliminates the diffusion pole and suppresses the non-analyticity in σ(Ω)\sigma(\Omega).222In d=2d=2, a weak nonanalyticity survives: ΔReσ(Ω)Ω2lnΩ1\Delta{\mathrm{Re}}\sigma(\Omega)\propto\Omega^{2}\ln\Omega^{-1} for ΩDsκ2/ξ\Omega\ll D_{\mathrm{s}}\kappa_{2}/\xi. Here, κd\kappa_{d} denotes the inverse screening length in dd dimensions.

Nevertheless, we propose two scenarios in which non-analytic behavior in σ(ω)\sigma(\omega) may still be observable. The first, originally proposed in Ref. [33], involves a d=2d=2 electron system screened by a metallic gate. The gate transforms the bare Coulomb potential into a dipolar one, yielding U0(q0)=constU_{0}(q\to 0)=\text{const}, so screening leads only to an irrelevant renormalization of the diffusion coefficient. We therefore suggest measuring σ(Ω)\sigma(\Omega) near a ferromagnetic transition in a gated 2D metal, such as Fe3-xGeTe2.

The second scenario involves a ferroelectric transition in a weakly doped insulator, where the divergence of the lattice dielectric constant, ϵL\epsilon_{\rm L}, near TcT_{c} suppresses Coulomb interaction among itinerant electrons. For this mechanism to be effective, the inverse screening length must vanish faster than the correlation length. In d=3d=3, κ3|θ|γ/2\kappa_{3}\propto|\theta|^{\gamma/2} and ξκ3|θ|γ/2ν\xi\kappa_{3}\propto|\theta|^{\gamma/2-\nu}, which only vanishes if γ>2ν\gamma>2\nu—a condition marginally satisfied for 3D Ising transitions [35]. In d=2d=2, however, κ2|θ|γ\kappa_{2}\propto|\theta|^{\gamma}, so ξκ20\xi\kappa_{2}\to 0 requires only γ>ν\gamma>\nu, which holds for the 2D Ising class. We thus propose probing the optical conductivity near the phase transition in weakly doped 2D ferroelectrics such as α\alpha-In2Se3, which undergoes a second-order transition in both bulk [36] and exfoliated forms [37], and can be doped [38], or in monolayer SnTe [39]. At low doping, carriers near TcT_{c} are likely to be non-degenerate, but this does not affect the resistive anomaly, which remains a single-particle effect. Our results extend to this regime by replacing εFT\varepsilon_{\text{F}}\to T.

Universality class ν\nu η\eta α\alpha 2β2\beta γ\gamma ζ\zeta
O(3), d=3d=3 [40] 0.71 0.038 -0.13 0.738 1.40 0.39
O(2), d=3d=3 [41] 0.67 0.038 -0.015 0.698 1.32 0.31
Ising, d=3d=3 [42, 43] 0.63 0.037 0.11 0.652 1.24 0.24
Ising, d=2d=2 [32] 1 1/4 0 1/4 7/4 3/4
Table 1: Critical exponents for common universality classes. ν\nu governs the correlation length, η\eta is defined in Eq. (6), α\alpha is the specific heat exponent, β\beta describes the order parameter (2β2\beta governs the Bragg peak intensity), γ\gamma is the susceptibility exponent, and ζ=ν(2η)1\zeta=\nu(2-\eta)-1. For the d=2d=2 Ising model, α=0\alpha=0 implies a logarithmic divergence. Exponents for d=3d=3 are rounded to two significant digits.
Connection to the experiment.

While resistive anomalies near TcT_{c} are widely observed in metallic ferromagnets [2, 44, 45, 3], the scaling predicted by Fisher and Langer (FL) is not universally obeyed. In some cases, such as Ni, the anomaly aligns with FL scaling over a finite temperature range [11], whereas in others, like the rare-earth FMs RNi5 (R = Tb, Dy, Er), ρ\rho itself—not dρ/dTd\rho/dT—peaks at TcT_{c}, deviating from FL behavior [5]. Even for Ni, fitting the data using only FL singular and regular terms fails within ±1\pm 1 K of TcT_{c} [11].

In contrast to the FL anomaly, which produces a peak in dρ/dTd\rho/dT, the diffusive mechanism discussed in this Letter yields a cusp or anticusp in ρ\rho, consistent with the resistivity peak observed in RNi5 [5]. A similar cusp in ρ\rho, together with an asymmetric peak-antipeak structure in dρ/dTd\rho/dT from the sum of regular and singular contributions, may also explain the anomaly seen in GaR2 FMs (R = Ni, Rh, Pt) [4].

Resolving the FL and diffusive contributions may require measurements too close to TcT_{c} for conclusive interpretation. A more robust signature is the non-Drude behavior of the optical conductivity, shown in Fig. 2, which reflects classical memory effects. However, such behavior is only expected in gated d=2d=2 systems or near ferroelectric transitions.

An alternative route is to study periodic intermetallic magnets, where the spacing between localized moments matches s\ell_{\mathrm{s}}, thus extending the temperature range of the diffusive regime near TcT_{c}. These systems may permit extraction of the β\beta exponent from transport and its comparison to neutron scattering data. Ongoing efforts also aim to realize 2D analogs of such materials [46].

Note added in proof: Recent non-linear optical experiments on ferromagnetic Ca2RuO4 (Bhandia et al., arXiv:2412.08749) confirmed that scattering by magnetic moments is elastic and revealed a cusp in the momentum relaxation rate, consistent with our prediction.

We thank P. Armitage, G. Blumberg, A. Chubukov, V. Kravtsov, S. Kundu, A. Levchenko, S. Kivelson, A. McLeod, A. Mirlin, B. Shklovskii, Y. Wang, and K. Alp Yay for illuminating discussions. We are especially grateful to D. Polyakov for bringing Ref. [33] to our attention. DLM acknowledges support from the National Science Foundation (NSF) via grant DMR-2224000, from the Simons Foundation Targeted Grant 920184 to the W. I. Fine Theoretical Physics Institute, University of Minnesota, and hospitality of the Kavli Institute for Theoretical Physics, Santa Barbara, supported by the NSF grants PHY-1748958 and PHY-2309135, VIY acknowledges support from the Basic Research Program of HSE. DLM and CDB thank the Aspen Center for Physics, supported by NSF grant PHY-2210452. CDB also acknowledges support from the Center for Nonlinear Studies (CNLS) through the Stanislaw M. Ulam Distinguished Scholar position, funded by LANL’s LDRD program.

References

  • Fisher and Langer [1968] M. E. Fisher and J. S. Langer, Resistive anomalies at magnetic critical points, Phys. Rev. Lett. 20, 665 (1968).
  • Gerlach [1932] W. Gerlach, On the quantum theory of the spin of the electron, Phys. Z. 33, 953 (1932).
  • Campbell and Fert [1982] I. Campbell and A. Fert, Transport properties of ferromagnets, in Ferromagnetic Materials, Vol. 3, edited by E. Wohlfarth (North-Holland Publishing Company, 1982) Chap. 9, p. 747.
  • Kawatra et al. [1970] M. P. Kawatra, J. A. Mydosh, and J. I. Budnick, Electrical Resistivity near the Magnetic Transition of Some Rare-Earth Laves Phase Compounds, Phys. Rev. B 2, 665 (1970).
  • Blanco et al. [1994] J. A. Blanco, D. Gignoux, D. Schmitt, A. Tari, and F. Y. Zhang, Resistivity anomalies in ferromagnetic RNi5 (R=Tb, Dy or Er) compounds, Journal of Physics: Condensed Matter 6, 4335 (1994).
  • Nellis and Legvold [1969] W. J. Nellis and S. Legvold, Thermal Conductivities and Lorenz Functions of Gadolinium, Terbium, and Holmium Single Crystals, Phys. Rev. 180, 581 (1969).
  • Fote et al. [1970] A. Fote, H. Lutz, T. Mihalisin, and J. Crow, Electrical resistance of three low temperature antiferromagnets near their Neel temperatures, Physics Letters A 33, 416 (1970).
  • Hristov et al. [2019] A. T. Hristov, M. S. Ikeda, J. C. Palmstrom, P. Walmsley, and I. R. Fisher, Elastoresistive and elastocaloric anomalies at magnetic and electronic-nematic critical points, Phys. Rev. B 99, 100101 (2019).
  • Simons and Salamon [1971] D. S. Simons and M. B. Salamon, Specific Heat and Resistivity Near the Order-Disorder Transition in β\beta-Brass, Phys. Rev. Lett. 26, 750 (1971).
  • Sugawara [1988] K. Sugawara, Anomalous Resistivity of SrTiO3 in the Vicinity of its Structural Phase Transition Temperature, Jpn. J. App. Phys. 27, L182 (1988).
  • Källbäck et al. [1981] O. Källbäck, S. G. Humble, and G. Malmström, Critical parameters from electrical resistance of nickel, Phys. Rev. B 24, 5214 (1981).
  • De Gennes and Friedel [1958] P. De Gennes and J. Friedel, Anomalies de résistivité dans certains métaux magníques, J. Phys. Chem. Solids 4, 71 (1958).
  • Alexander et al. [1976] S. Alexander, J. S. Helman, and I. Balberg, Critical behavior of the electrical resistivity in magnetic systems, Phys. Rev. B 13, 304 (1976).
  • Suezaki and Mori [1969] Y. Suezaki and H. Mori, Dynamic Critical Phenomena in Magnetic Systems. II: Electrical Resistivity near the Néel Point, Prog. Theor. Phys. 41, 1177 (1969).
  • Timm et al. [2005] C. Timm, M. E. Raikh, and F. von Oppen, Disorder-Induced Resistive Anomaly Near Ferromagnetic Phase Transitions, Phys. Rev. Lett. 94, 036602 (2005).
  • Hohenberg and Halperin [1977] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435 (1977).
  • Landau and Lifshitz [1994] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Ch. II.9 (Pergamon Press, New York, 1994, 1994).
  • Dykhne [1971] A. M. Dykhne, Conductivity of a two-dimensional two-phase system, Sov.Phys. JETP. 32, 63 (1971).
  • Al’tshuler [1985] B. L. Al’tshuler, Fluctuations in the extrinsic conductivity of disordered conductors, Sov. Phys. JETP Lett. 41, 699 (1985).
  • Altshuler and Aronov [1985] B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros and M. Pollak (North-Holland, Amsterdam, 1985) p. 1.
  • Geldart and Richard [1975] D. J. W. Geldart and T. G. Richard, Theory of spin-fluctuation resistivity near the critical point of ferromagnets, Phys. Rev. B 12, 5175 (1975).
  • Entin-Wohlman et al. [1975] O. Entin-Wohlman, G. Deutscher, and R. Orbach, Anomalous spin-flip lifetime near the Heisenberg- ferromagnet critical point, Phys. Rev. B 11, 219 (1975).
  • Geldart and De’Bell [1985] D. J. W. Geldart and K. De’Bell, Effect of finite mean free path on spin-flip scattering rates near the critical point of magnetically ordered systems, Phys. Rev. B 32, 3285 (1985).
  • Kataoka [2001] M. Kataoka, Resistivity and magnetoresistance of ferromagnetic metals with localized spins, Phys. Rev. B 63, 134435 (2001).
  • Takada [1971] S. Takada, Resistive anomalies at magnetic critical points, Prog. Theor. Phys. 46, 15 (1971).
  • Wilke et al. [2000] J. Wilke, A. D. Mirlin, D. G. Polyakov, F. Evers, and P. Wölfle, Zero-frequency anomaly in quasiclassical ac transport: Memory effects in a two-dimensional metal with a long-range random potential or random magnetic field, Phys. Rev. B 61, 13774 (2000).
  • Ernst and Weyland [1971] M. Ernst and A. Weyland, Long time behaviour of the velocity auto-correlation function in a Lorentz gas, Phys.Lett. A 34, 39 (1971).
  • Hauge [1974] E. Hauge, in Transport Phenomena, edited by G. Kirczenow and J. Marro (Springer, Berlin, 1974) p. 337.
  • Fisher and Aharony [1973] M. E. Fisher and A. Aharony, Scaling Function for Critical Scattering, Phys. Rev. Lett. 31, 1238 (1973).
  • Wegner [1975] F. J. Wegner, Correlation functions near the critical point, Journal of Physics A: Mathematical and General 8, 710 (1975).
  • Note [1] Here, we assume the most common scenario in which the integral of W(q)W(q) up to the upper cutoff 1/ls1/l_{s} remains far from saturating the sum rule \ilimits@BZW(q)ddq=NS2\intop\ilimits@_{\rm BZ}W(q)\,d^{d}q=NS^{2}, where NN is the total number of spins.
  • Cardy [1996] J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, 1996).
  • Evers et al. [2001] F. Evers, A. D. Mirlin, D. G. Polyakov, and P. Wölfle, Quasiclassical memory effects: anomalous transport properties of two-dimensional electrons and composite fermions subject to a long-range disorder, Phys. Usp. 44, 27 (2001).
  • Note [2] In d=2d=2, a weak nonanalyticity survives: ΔReσ(Ω)Ω2lnΩ1\Delta{\mathrm{Re}}\sigma(\Omega)\propto\Omega^{2}\ln\Omega^{-1} for ΩDsκ2/ξ\Omega\ll D_{\mathrm{s}}\kappa_{2}/\xi.
  • Chaikin and Lubensky [1995] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).
  • Zheng et al. [2018] C. Zheng, L. Yu, L. Zhu, J. L. Collins, D. Kim, Y. Lou, C. Xu, M. Li, Z. Wei, Y. Zhang, M. T. Edmonds, S. Li, J. Seidel, Y. Zhu, J. Z. Liu, W.-X. Tang, and M. S. Fuhrer, Room temperature in-plane ferroelectricity in van der Waals In2Se3Sci. Adv. 4, 7720 (2018).
  • Zhou et al. [2017] Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α\alpha-In2Se3 Nanoflakes, Nano Letters 17, 5508 (2017).
  • Zaslonkin et al. [2007] A. V. Zaslonkin, Z. D. Kovalyuk, and I. V. Mintyanskii, Electrical properties of In2Se3 layered crystals doped with cadmium, iodine, or copper, Inorganic Materials 43, 1271 (2007).
  • Chang et al. [2016] K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q.-K. Xue, X. Chen, and S.-H. Ji, Discovery of robust in-plane ferroelectricity in atomic-thick SnTe, Science 353, 274 (2016).
  • Campostrini et al. [2002] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Critical exponents and equation of state of the three-dimensional Heisenberg universality class, Phys. Rev. B 65, 144520 (2002).
  • Campostrini et al. [2001] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and E. Vicari, Critical behavior of the three-dimensional XY\mathrm{XY} universality class, Phys. Rev. B 63, 214503 (2001).
  • Kos et al. [2016] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, Precision islands in the Ising and O(N)O(N) models, Journal of High Energy Physics 2016, 36 (2016).
  • Reehorst [2022] M. Reehorst, Rigorous bounds on irrelevant operators in the 3d Ising model CFT, Journal of High Energy Physics 2022, 177 (2022).
  • Bittel and Gerlach [1938] H. Bittel and W. Gerlach, On the spin of the electron in a magnetic field, Ann. Phys. (Berlin) 33, 661 (1938).
  • Craig et al. [1967] P. P. Craig, W. I. Goldburg, T. A. Kitchens, and J. I. Budnick, Transport properties at critical points: The resistivity of nickel, Phys. Rev. Lett. 19, 1334 (1967).
  • Zhang et al. [2010] X. P. Zhang, B. F. Miao, L. Sun, C. L. Gao, A. Hu, H. F. Ding, and J. Kirschner, Atomic superlattice formation mechanism revealed by scanning tunneling microscopy and kinetic monte carlo simulations, Phys. Rev. B 81, 125438 (2010).

End Matter

I Details of diagrammatic calculations

I.1 Diagrams a-g, Fig. 1

The Kubo formula for the conductivity at frequency Ω\Omega reads

Reσ(Ω)=ImKR(Ω)Ω,\displaystyle{\mathrm{Re}}\sigma(\Omega)=\frac{{\mathrm{Im}}K^{R}(\Omega)}{\Omega}, (1)

where the retarded current-current correlation function is obtained from its Matsubara counterpart via analytic continuation

KR(Ω)=K(iΩniΩ+0+)=1d01/T𝑑τeiΩnτ𝐣(τ)𝐣(0)|iΩniΩ+0+.\displaystyle K^{R}(\Omega)=K(i\Omega_{n}\to i\Omega+0^{+})=\frac{1}{d}\int^{1/T}_{0}d\tau e^{i\Omega_{n}\tau}\langle{\bf j}(\tau){\bf j}(0)\rangle\Big{|}_{i\Omega_{n}\to i\Omega+0^{+}}. (2)
Diagrams a-c, Fig. 1.

Diagrams a-c for K(iΩn)K(i\Omega_{n}) read

Kab(iΩn)\displaystyle K_{ab}(i\Omega_{n}) =\displaystyle= Ka(iΩn)+Kb(iΩn)=2e2dm2Tωm𝐤k2[G𝐤2(iωm+iΩn)Σ𝐤(iωm+iΩn)G𝐤(iωm)\displaystyle K_{a}(i\Omega_{n})+K_{b}(i\Omega_{n})=-\frac{2e^{2}}{dm^{2}}T\sum_{\omega_{m}}\int_{\bf k}k^{2}\left[G^{2}_{\bf k}(i\omega_{m}+i\Omega_{n})\Sigma_{{\bf k}}(i\omega_{m}+i\Omega_{n})G_{\bf k}(i\omega_{m})\right. (3a)
+G𝐤2(iωm)Σ𝐤(iωm)G𝐤(iωm+iΩn)],\displaystyle\left.+G^{2}_{\bf k}(i\omega_{m})\Sigma_{\bf k}(i\omega_{m})G_{{\bf k}}(i\omega_{m}+i\Omega_{n})\right],
Kc(iΩn)\displaystyle K_{c}(i\Omega_{n}) =\displaystyle= Kc(1)+Kc(1),\displaystyle K_{c}^{(1)}+K_{c}^{(1)}, (3b)
Kc(1)\displaystyle K_{c}^{(1)} =\displaystyle= 2e2dm2Tωm𝐤,𝐪k2G𝐤(iωm+iΩn)G𝐤+𝐪(iωm+iΩn)G𝐤+𝐪(iωm)G𝐤(iωm)W(q),\displaystyle-\frac{2e^{2}}{dm^{2}}T\sum_{\omega_{m}}\int_{{\bf k},{\bf q}}k^{2}G_{\bf k}(i\omega_{m}+i\Omega_{n})G_{{\bf k}+{\bf q}}(i\omega_{m}+i\Omega_{n})G_{{\bf k}+{\bf q}}(i\omega_{m})G_{\bf k}(i\omega_{m})W(q), (3c)
Kc(2)\displaystyle K_{c}^{(2)} =\displaystyle= 2e2dm2Tωm𝐤,𝐪(𝐤𝐪)G𝐤(iωm+iΩn)G𝐤+𝐪(iωm+iΩn)G𝐤+𝐪(iωm)G𝐤(iωm)W(q),\displaystyle-\frac{2e^{2}}{dm^{2}}T\sum_{\omega_{m}}\int_{{\bf k},{\bf q}}({\bf k}\cdot{\bf q})G_{\bf k}(i\omega_{m}+i\Omega_{n})G_{{\bf k}+{\bf q}}(i\omega_{m}+i\Omega_{n})G_{{\bf k}+{\bf q}}(i\omega_{m})G_{\bf k}(i\omega_{m})W(q), (3d)

where G𝐤(iωm)=(iωmε𝐤+isgnωm/2τs)1G_{\bf k}(i\omega_{m})=\left(i\omega_{m}-\varepsilon_{\bf k}+i\rm{sgn}\omega_{m}/2\tau_{\mathrm{s}}\right)^{-1} and Σ𝐤(iωm)=𝐪G𝐤+𝐪(iωm)W(q)\Sigma_{\bf k}(i\omega_{m})=\int_{{\bf q}}G_{{\bf k}+{\bf q}}(i\omega_{m})W(q) is the lowest-order self-energy due to scattering by LRD. Without loss of generality, we choose Ωn>0\Omega_{n}>0 such that the integral over ε𝐤\varepsilon_{\bf k} is non-zero only if ωm<0\omega_{m}<0 and ωm+Ωn>0\omega_{m}+\Omega_{n}>0. Applying several times the identity G𝐤(iωm)G𝐤(iωm+iΩn)=[G𝐤(iωm)G𝐤(iωm+iΩn)]/i(Ωn+1/τs)G_{\bf k}(i\omega_{m})G_{\bf k}(i\omega_{m}+i\Omega_{n})=\left[G_{\bf k}(i\omega_{m})-G_{\bf k}(i\omega_{m}+i\Omega_{n})\right]/i(\Omega_{n}+1/\tau_{\mathrm{s}}) to Eqs. (3a) and (3c), we find that they cancel each other:

Kab(iΩn)=Kc(1)(iΩn)\displaystyle K_{ab}(i\Omega_{n})=-K^{(1)}_{c}(i\Omega_{n}) =\displaystyle= 2e2dm21(Ωn+1/τs)2Tωm𝐤,𝐪k2[G𝐤(iωm)G𝐤+𝐪(iωm+iΩn)+G𝐤(iωm+iΩn)G𝐤+𝐪(iωm)]W(q).\displaystyle\frac{2e^{2}}{dm^{2}}\frac{1}{(\Omega_{n}+1/\tau_{\mathrm{s}})^{2}}T\sum_{\omega_{m}}\int_{{\bf k},{\bf q}}k^{2}\left[G_{\bf k}(i\omega_{m})G_{{\bf k}+{\bf q}}(i\omega_{m}+i\Omega_{n})+G_{\bf k}(i\omega_{m}+i\Omega_{n})G_{{\bf k}+{\bf q}}(i\omega_{m})\right]W(q).

Although the remaining part, Kc2K_{c2}, appears to be linear in qq, one can show, by relabeling the momenta as 𝐤𝐤𝐪/2{\bf k}\to{\bf k}-{\bf q}/2 and 𝐤+𝐪𝐤+𝐪/2{\bf k}+{\bf q}\to{\bf k}+{\bf q}/2, that it is, in fact, quadratic in qq:

Kc2=2e2dm21(Ωn+1/τs)2Tωm𝐤,𝐪\displaystyle K_{c2}=-\frac{2e^{2}}{dm^{2}}\frac{1}{(\Omega_{n}+1/\tau_{\mathrm{s}})^{2}}T\sum_{\omega_{m}}\int_{{\bf k},{\bf q}} q2G𝐤𝐪/2(iωm+iΩn)G𝐤+𝐪/2(iωm+iΩn)G𝐤+𝐪/2(iωm)G𝐤𝐪/2(iωm)W(q).\displaystyle q^{2}G_{{\bf k}-{\bf q}/2}(i\omega_{m}+i\Omega_{n})G_{{\bf k}+{\bf q}/2}(i\omega_{m}+i\Omega_{n})G_{{\bf k}+{\bf q}/2}(i\omega_{m})G_{{\bf k}-{\bf q}/2}(i\omega_{m})W(q). (5)

Carrying out analytic continuation, discarding GRGRG^{R}G^{R} and GAGAG^{A}G^{A} parts, and taking the limit Ω0\Omega\to 0, we arrive at Eq. (8) of the Main Text (MT).

Next, we replace ddk/(2π)dd^{d}k/(2\pi)^{d} by νF𝑑ε𝐤𝑑𝒪𝐤/𝒪d\nu_{\text{F}}\!\!\int d\varepsilon_{\bf k}\int d\mathcal{O}_{\bf k}/\mathcal{O}_{d}, where νF\nu_{\text{F}} is the density of states per spin at the Fermi energy, d𝒪𝐤d\mathcal{O}_{\bf k} is the solid angle subtended by 𝐤{\bf k}, 𝒪2=2π\mathcal{O}_{2}=2\pi, and 𝒪3=4π\mathcal{O}_{3}=4\pi, and expand ϵ𝐤±𝐪/2=ε𝐤±\varvFk^𝐪/2\epsilon_{{\bf k}\pm{\bf q}/2}=\varepsilon_{\bf k}\pm\varv_{\mathrm{F}}\hat{k}\cdot{\bf q}/2, where k^=𝐤/k\hat{k}={\bf k}/k. After integration over ε𝐤\varepsilon_{\bf k} and 𝒪𝐤\mathcal{O}_{\bf k}, we obtain

𝐤|G𝐤𝐪/2R(0)G𝐤+𝐪/2R(0)|2=4πνFτs3Imd𝒪𝐤𝒪d1ik^𝐪s=4πνFτs3{(q2s2+1)1/2,d=2tan1(qs)/qs,d=34πνFτs3fd(qs).\displaystyle\int_{\bf k}\left|G^{R}_{{\bf k}-{\bf q}/2}(0)G^{R}_{{\bf k}+{\bf q}/2}(0)\right|^{2}=-4\pi\nu_{\text{F}}\tau_{\mathrm{s}}^{3}\,{\mathrm{Im}}\int\frac{d\mathcal{O_{\bf k}}}{\mathcal{O}_{d}}\frac{1}{i-\hat{k}\cdot{\bf q}\ell_{\mathrm{s}}}=4\pi\nu_{\text{F}}\tau_{\mathrm{s}}^{3}\left\{\begin{array}[]{ccc}(q^{2}\ell_{\mathrm{s}}^{2}+1)^{-1/2},\;d=2\\ \tan^{-1}(q\ell_{\mathrm{s}})/q\ell_{\mathrm{s}},\;d=3\\ \end{array}\right.\equiv 4\pi\nu_{\text{F}}\tau_{\mathrm{s}}^{3}f_{d}(q\ell_{\mathrm{s}}). (8)
Diagrams d-g, Fig. 1.

Diagrams d-g can be calculated immediately in the static limit, when d and is equal to e, and f is equal tog. Carrying out analytic continuation, taking the static limit, and discarding the GRGRG^{R}G^{R} and GAGAG^{A}G^{A} parts, we obtain Eq. (10) of MT.

In an isotropic system, 𝐮𝐪{\bf u}_{\bf q} must be collinear with 𝐪{\bf q}. Dotting 𝐮𝐪{\bf u}_{\bf q} into q^=𝐪/q\hat{q}={\bf q}/q, we obtain with ϵε𝐤\epsilon\equiv\varepsilon_{\bf k}

Im(𝐮𝐪q^)=1md𝒪𝐤𝒪d𝑑ϵν(ϵ)k(ϵ)k^q^|G𝐤R(0)|21/2τs[ϵ+\varv(ϵ)qk^q^]2+(1/2τs)2.\displaystyle{\mathrm{Im}}\left({\bf u}_{{\bf q}}\cdot\hat{q}\right)=\frac{1}{m}\int\frac{d\mathcal{O}_{\bf k}}{\mathcal{O}_{d}}\int d\epsilon\nu(\epsilon)k(\epsilon)\hat{k}\cdot\hat{q}\left|G^{R}_{\bf k}(0)\right|^{2}\frac{1/2\tau_{\mathrm{s}}}{\left[\epsilon+\varv(\epsilon)q\hat{k}\cdot\hat{q}\right]^{2}+(1/2\tau_{\mathrm{s}})^{2}}. (9)

Unlike the case for diagrams a-c, projecting the integrand of the last equation onto the Fermi surface, i.e, putting ν(ε)=νF\nu(\varepsilon)=\nu_{F}, k(ε)=kFk(\varepsilon)=k_{\mathrm{F}}, and \varv(ε)=\varvF\varv(\varepsilon)=\varv_{\mathrm{F}}, gives a zero result [26], because the integrand becomes odd under ϵϵ\epsilon\to-\epsilon and k^k^\hat{k}\to-\hat{k} on such projection. To obtain a non-zero result, one needs to expand ν(ε)=νF+νFϵ\nu(\varepsilon)=\nu_{\text{F}}+\nu_{\text{F}}^{\prime}\epsilon, k(ε)=kF+ϵ/\varvFk(\varepsilon)=k_{\mathrm{F}}+\epsilon/\varv_{\mathrm{F}}, and \varv(ε)=\varvF+ε/kF\varv(\varepsilon)=\varv_{\mathrm{F}}+\varepsilon/k_{\mathrm{F}}, where νF=ν/ε|ε=εF=(d/21)νF/εF\nu_{\text{F}}^{\prime}=\partial\nu/\partial\varepsilon|_{\varepsilon=\varepsilon_{\text{F}}}=(d/2-1)\nu_{\text{F}}/\varepsilon_{\text{F}} for a parabolic spectrum in dd dimensions. Integrating over ϵ\epsilon and 𝒪𝐤\mathcal{O}_{\bf k}, we obtain

Im(𝐮𝐪q^)\displaystyle{\mathrm{Im}}\left({\bf u}_{{\bf q}}\cdot\hat{q}\right) =\displaystyle= πνFτskFRe[(d1)d𝒪𝐤𝒪dcosθi+qscosθqsd𝒪𝐤𝒪dcos2θ(i+qscosθ)2],\displaystyle\frac{\pi\nu_{\text{F}}\tau_{\mathrm{s}}}{k_{\mathrm{F}}}{\mathrm{Re}}\left[(d-1)\int\frac{d\mathcal{O}_{\bf k}}{\mathcal{O}_{d}}\frac{\cos\theta}{i+q\ell_{\mathrm{s}}\cos\theta}-q\ell_{\mathrm{s}}\int\frac{d\mathcal{O}_{\bf k}}{\mathcal{O}_{d}}\frac{\cos^{2}\theta}{\left(i+q\ell_{\mathrm{s}}\cos\theta\right)^{2}}\right], (13)
=\displaystyle= πqνFτs2m×{1/[(qs)2+1]3/2,d=2;1/[(qs)2+1],d=3.\displaystyle\pi\frac{q\nu_{\text{F}}\tau_{\mathrm{s}}^{2}}{m}\times\left\{\begin{array}[]{cc}&1/\left[(q\ell_{\mathrm{s}})^{2}+1\right]^{3/2},\;d=2;\\ &\\ &1/\left[(q\ell_{\mathrm{s}})^{2}+1\right],\;d=3.\end{array}\right.

Upon taking a square, the last result reproduces the expression for (Im𝐮𝐪)2({\mathrm{Im}}\,{\bf u}_{\bf q})^{2} quoted in the MT.

I.1.1 Diagrams in panel b), Fig. 2

In the diffusive limit, the dynamically screened potential of Coulomb interaction is given by [20]

UscR(q,Ω)=U0(q)1+U0(q)νFDsq2Dsq2iΩ.\displaystyle U^{R}_{\rm sc}(q,\Omega)=\frac{U_{0}(q)}{1+U_{0}(q)\nu_{\text{F}}\frac{D_{\mathrm{s}}q^{2}}{D_{\mathrm{s}}q^{2}-i\Omega}}. (14)

Algebraically, the diagram for the screened diffuson reads [33]

scR(q,ω)\displaystyle\mathcal{L}^{R}_{\rm sc}(q,\omega) =\displaystyle= R(q,ω)[12πiΩ(νFτs)2R(q,Ω)UscR(q,Ω)].\displaystyle\mathcal{L}^{R}(q,\omega)\left[1-2\pi i\Omega(\nu_{\text{F}}\tau_{\mathrm{s}})^{2}\mathcal{L}^{R}(q,\Omega)U^{R}_{\rm sc}(q,\Omega)\right]. (15)

Substituting Eq. (14) into Eq. (15) yields Eq. (18) of the MT.

II Integral of the spin-spin correlation function beyond the mean-field level

In this section we show how Eq. (14) for the resistive anomaly in the diffusive regime was obtained. Substituting Eq. (6) with F(qξ)F(q\xi) given by Eq (7) into Eq. (12), and limiting the range of integration to ξ1|θ|νq1/s\xi^{-1}\propto|\theta|^{\nu}\lesssim q\lesssim 1/\ell_{\mathrm{s}}, we obtain

δρ\displaystyle\delta\rho \displaystyle\propto |θ|ν1/s𝑑q(Aqd3+η+B±sgnθ|θ|1αqd3+η(1α)/ν+C±|θ|qd3+η1/ν).\displaystyle\int^{1/\ell_{\mathrm{s}}}_{|\theta|^{\nu}}dq\left(Aq^{d-3+\eta}+B_{\pm}{\rm sgn}\theta\,|\theta|^{1-\alpha}q^{d-3+\eta-(1-\alpha)/\nu}+C_{\pm}|\theta|q^{d-3+\eta-1/\nu}\right). (16)

In the second term, we neglect its contribution from the upper limit, because it is of same form (sgnθ|θ|1α\propto{\rm sgn\theta}\,|\theta|^{1-\alpha}) but of smaller magnitude as the FL term, coming from the range of qkFq\sim k_{\mathrm{F}} in the ballistic limit. Then,

δρ\displaystyle\delta\rho \displaystyle\propto [Ad2+η|θ|(d2+η)νsgnθ|θ|1αB±d2+η(1α)/ν|θ|(d2+η)ν(1α)C±d2+η1/ν|θ|(d2+η)ν]\displaystyle\left[-\frac{A}{d-2+\eta}|\theta|^{(d-2+\eta)\nu}-{\rm sgn}\theta\,|\theta|^{1-\alpha}\frac{B_{\pm}}{d-2+\eta-(1-\alpha)/\nu}|\theta|^{(d-2+\eta)\nu-(1-\alpha)}-\frac{C_{\pm}}{d-2+\eta-1/\nu}|\theta|^{(d-2+\eta)\nu}\right] (17)
=\displaystyle= A|θ|(d2+η)ν=A|θ|2β,\displaystyle A^{\prime}|\theta|^{(d-2+\eta)\nu}=A^{\prime}|\theta|^{2\beta},

where β=(d2+η)ν/2\beta=(d-2+\eta)\nu/2 is the critical exponent of the order parameter, defined by M(θ)β\langle M\rangle\propto(-\theta)^{\beta} for θ<0\theta<0, and

A\displaystyle A^{\prime} =\displaystyle= [Ad2+η+sgnθB±2η1/ν+C±d2+η1/ν].\displaystyle-\left[\frac{A}{d-2+\eta}+{\rm sgn}\theta\frac{B_{\pm}}{2-\eta-1/\nu}+\frac{C_{\pm}}{d-2+\eta-1/\nu}\right]. (18)

Using the hyperscaling relation νd=2α\nu d=2-\alpha, the results can be re-written as

δρ\displaystyle\delta\rho =\displaystyle= A|θ|1αζ\displaystyle A^{\prime}|\theta|^{1-\alpha-\zeta}
A\displaystyle A^{\prime} =\displaystyle= Ad2+η+sgnθB±2η1/νC±d2+η1/ν,\displaystyle-\frac{A}{d-2+\eta}+{\rm sgn}\theta\frac{B_{\pm}}{2-\eta-1/\nu}-\frac{C_{\pm}}{d-2+\eta-1/\nu},

where ζ=ν(2η)1\zeta=\nu(2-\eta)-1.

III Alternative interpretation of the resistive anomaly

As it was argued in the main text, the most adequate interpretation of the enhanced resistivity anomaly in the diffusive regime is a classical memory effect, arising from multiple returns of the electron trajectory to the same position [26]. However, we would also like to point out a similarity between diagrams d-g in Fig. 1 and the diagrams describing the Altshuler-Aronov (AA) correction to the conductivity, which arises from quantum interference between electron-electron and electron-impurity interactions [20]. In AA diagrams, the dashed line is replaced with the dynamical potential of electron-electron interaction and, in addition, each vertex of this interaction is dressed by a diffuson ladder. Since our LR potential is static, it cannot change the analyticity of the Green’s functions adjacent to the vertex, and vertex corrections vanish to leading order in 1/μτs1/\mu\tau_{\mathrm{s}}. However, the common theme of quantum interference and classical memory effects is that diffusing electrons are more susceptible to external perturbations, be it the Coulomb potential of other electrons in the AA case or LRD in our case.