This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Resonance: Learning to Predict Social-Aware Pedestrian Trajectories
as Co-Vibrations

Conghao Wong Ziqian Zou Beihao Xia Xinge You
Huazhong University of Science and Technology
conghaowong@icloud.com, ziqianzoulive@icloud.com, xbh_hust@hust.edu.cn, youxg@mail.hust.edu.cn
Abstract

Learning to forecast trajectories of intelligent agents has caught much more attention recently. However, it remains a challenge to accurately account for agents’ intentions and social behaviors when forecasting, and in particular, to simulate the unique randomness within each of those components in an explainable and decoupled way. Inspired by vibration systems and their resonance properties, we propose the Resonance (short for Re) model to encode and forecast pedestrian trajectories in the form of “co-vibrations”. It decomposes trajectory modifications and randomnesses into multiple vibration portions to simulate agents’ reactions to each single cause, and forecasts trajectories as the superposition of these independent vibrations separately. Also, benefiting from such vibrations and their spectral properties, representations of social interactions can be learned by emulating the resonance phenomena, further enhancing its explainability. Experiments on multiple datasets have verified its usefulness both quantitatively and qualitatively.

1 Experiments

References

  • Alahi et al. [2016] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 961–971, 2016.
  • Alahi et al. [2017] Alexandre Alahi, Vignesh Ramanathan, Kratarth Goel, Alexandre Robicquet, Amir A Sadeghian, Li Fei-Fei, and Silvio Savarese. Learning to predict human behavior in crowded scenes. In Group and Crowd Behavior for Computer Vision, pages 183–207. Elsevier, 2017.
  • Anvari et al. [2015] Bani Anvari, Michael GH Bell, Aruna Sivakumar, and Washington Y Ochieng. Modelling shared space users via rule-based social force model. Transportation Research Part C: Emerging Technologies, 51:83–103, 2015.
  • Bae et al. [2024a] Inhwan Bae, Junoh Lee, and Hae-Gon Jeon. Can language beat numerical regression? language-based multimodal trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 753–766, 2024a.
  • Bae et al. [2024b] Inhwan Bae, Young-Jae Park, and Hae-Gon Jeon. Singulartrajectory: Universal trajectory predictor using diffusion model. arXiv preprint arXiv:2403.18452, 2024b.
  • Caesar et al. [2019] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. arXiv preprint arXiv:1903.11027, 2019.
  • Caesar et al. [2020] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11621–11631, 2020.
  • Chai et al. [2019] Yuning Chai, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov. Multipath: Multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv preprint arXiv:1910.05449, 2019.
  • Chen et al. [2021] Guangyi Chen, Junlong Li, Nuoxing Zhou, Liangliang Ren, and Jiwen Lu. Personalized trajectory prediction via distribution discrimination. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15580–15589, 2021.
  • Chen et al. [2022] Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Scept: Scene-consistent, policy-based trajectory predictions for planning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17103–17112, 2022.
  • Chib and Singh [2024a] Pranav Singh Chib and Pravendra Singh. Enhancing trajectory prediction through self-supervised waypoint distortion prediction. In International Conference on Machine Learning, pages 8403–8416. PMLR, 2024a.
  • Chib and Singh [2024b] Pranav Singh Chib and Pravendra Singh. Lg-traj: Llm guided pedestrian trajectory prediction. arXiv preprint arXiv:2403.08032, 2024b.
  • Chib et al. [2024] Pranav Singh Chib, Achintya Nath, Paritosh Kabra, Ishu Gupta, and Pravendra Singh. Ms-tip: Imputation aware pedestrian trajectory prediction. In International Conference on Machine Learning, pages 8389–8402. PMLR, 2024.
  • Choi et al. [2024] Younwoo Choi, Ray Coden Mercurius, Soheil Mohamad Alizadeh Shabestary, and Amir Rasouli. Dice: Diverse diffusion model with scoring for trajectory prediction. In 2024 IEEE Intelligent Vehicles Symposium (IV), pages 3023–3029. IEEE, 2024.
  • Duan et al. [2022] Jinghai Duan, Le Wang, Chengjiang Long, Sanping Zhou, Fang Zheng, Liushuai Shi, and Gang Hua. Complementary attention gated network for pedestrian trajectory prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 542–550, 2022.
  • Fernando et al. [2018] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton Fookes. Soft+ hardwired attention: An lstm framework for human trajectory prediction and abnormal event detection. Neural networks, 108:466–478, 2018.
  • Ge et al. [2023] Chunjiang Ge, Shiji Song, and Gao Huang. Causal intervention for human trajectory prediction with cross attention mechanism. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 658–666, 2023.
  • Granger [1969] Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: journal of the Econometric Society, pages 424–438, 1969.
  • Gupta et al. [2018] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan: Socially acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2255–2264, 2018.
  • Helbing and Molnar [1995] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical review E, 51(5):4282, 1995.
  • Huang et al. [2019] Yingfan Huang, Huikun Bi, Zhaoxin Li, Tianlu Mao, and Zhaoqi Wang. Stgat: Modeling spatial-temporal interactions for human trajectory prediction. In Proceedings of the IEEE International Conference on Computer Vision, pages 6272–6281, 2019.
  • Huang et al. [2021] Zhi Huang, Jun Wang, Lei Pi, Xiaolin Song, and Lingfang Yang. Lstm based trajectory prediction model for cyclist utilizing multiple interactions with environment. Pattern Recognition, 112:107800, 2021.
  • Jain et al. [2016] Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn: Deep learning on spatio-temporal graphs. In Proceedings of the ieee conference on computer vision and pattern recognition, pages 5308–5317, 2016.
  • Karras et al. [2019] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4401–4410, 2019.
  • Kim et al. [2017] ByeoungDo Kim, Chang Mook Kang, Jaekyum Kim, Seung Hi Lee, Chung Choo Chung, and Jun Won Choi. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pages 399–404. IEEE, 2017.
  • Kipf and Welling [2016] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.
  • Kosaraju et al. [2019] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, Hamid Rezatofighi, and Silvio Savarese. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks. In Advances in Neural Information Processing Systems, pages 137–146, 2019.
  • Kothari and Alahi [2023] Parth Kothari and Alexandre Alahi. Safety-compliant generative adversarial networks for human trajectory forecasting. IEEE Transactions on Intelligent Transportation Systems, 24(4):4251–4261, 2023.
  • Lee et al. [2022] Mihee Lee, Samuel S Sohn, Seonghyeon Moon, Sejong Yoon, Mubbasir Kapadia, and Vladimir Pavlovic. Muse-vae: Multi-scale vae for environment-aware long term trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2221–2230, 2022.
  • Lee et al. [2017] Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmohan Chandraker. Desire: Distant future prediction in dynamic scenes with interacting agents. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 336–345, 2017.
  • Lerner et al. [2007] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. Computer Graphics Forum, 26(3):655–664, 2007.
  • Li et al. [2021a] Jiachen Li, Fan Yang, Hengbo Ma, Srikanth Malla, Masayoshi Tomizuka, and Chiho Choi. Rain: Reinforced hybrid attention inference network for motion forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 16096–16106, 2021a.
  • Li et al. [2022] Lihuan Li, Maurice Pagnucco, and Yang Song. Graph-based spatial transformer with memory replay for multi-future pedestrian trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2231–2241, 2022.
  • Li et al. [2024] Rongqing Li, Changsheng Li, Dongchun Ren, Guangyi Chen, Ye Yuan, and Guoren Wang. Bcdiff: Bidirectional consistent diffusion for instantaneous trajectory prediction. Advances in Neural Information Processing Systems, 36, 2024.
  • Li et al. [2021b] Shijie Li, Yanying Zhou, Jinhui Yi, and Juergen Gall. Spatial-temporal consistency network for low-latency trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 1940–1949, 2021b.
  • Liang et al. [2019] Junwei Liang, Lu Jiang, Juan Carlos Niebles, Alexander G Hauptmann, and Li Fei-Fei. Peeking into the future: Predicting future person activities and locations in videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5725–5734, 2019.
  • Liang et al. [2020] Junwei Liang, Lu Jiang, and Alexander Hauptmann. Simaug: Learning robust representations from simulation for trajectory prediction. In Proceedings of the European conference on computer vision (ECCV), 2020.
  • Lin et al. [2024] Xiaotong Lin, Tianming Liang, Jianhuang Lai, and Jian-Fang Hu. Progressive pretext task learning for human trajectory prediction. In European Conference on Computer Vision, pages 197–214. Springer, 2024.
  • Linou et al. [2016] Kostya Linou, Dzmitryi Linou, and Martijn de Boer. Nba player movements. https://github.com/linouk23/NBA-Player-Movements, 2016.
  • Liu et al. [2021] Congcong Liu, Yuying Chen, Ming Liu, and Bertram E Shi. Avgcn: Trajectory prediction using graph convolutional networks guided by human attention. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 14234–14240. IEEE, 2021.
  • Liu et al. [2024] Yao Liu, Zesheng Ye, Rui Wang, Binghao Li, Quan Z Sheng, and Lina Yao. Uncertainty-aware pedestrian trajectory prediction via distributional diffusion. Knowledge-Based Systems, page 111862, 2024.
  • Luber et al. [2010] Matthias Luber, Johannes A Stork, Gian Diego Tipaldi, and Kai O Arras. People tracking with human motion predictions from social forces. In 2010 IEEE international conference on robotics and automation, pages 464–469. IEEE, 2010.
  • Lv and Yuan [2023] Kai Lv and Liang Yuan. Skgacn: social knowledge-guided graph attention convolutional network for human trajectory prediction. IEEE Transactions on Instrumentation and Measurement, 2023.
  • Ma et al. [2019] Yuexin Ma, Xinge Zhu, Sibo Zhang, Ruigang Yang, Wenping Wang, and Dinesh Manocha. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 6120–6127, 2019.
  • Maeda and Ukita [2023] Takahiro Maeda and Norimichi Ukita. Fast inference and update of probabilistic density estimation on trajectory prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9795–9805, 2023.
  • Makansi et al. [2021] Osama Makansi, Julius Von Kügelgen, Francesco Locatello, Peter Gehler, Dominik Janzing, Thomas Brox, and Bernhard Schölkopf. You mostly walk alone: Analyzing feature attribution in trajectory prediction. arXiv preprint arXiv:2110.05304, 2021.
  • Mangalam et al. [2020] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik, and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned trajectory prediction. In European Conference on Computer Vision, pages 759–776, 2020.
  • Mangalam et al. [2021] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, waypoints & paths to long term human trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 15233–15242, 2021.
  • Mao et al. [2020] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History repeats itself: Human motion prediction via motion attention. In European Conference on Computer Vision, pages 474–489. Springer, 2020.
  • Mao et al. [2023] Weibo Mao, Chenxin Xu, Qi Zhu, Siheng Chen, and Yanfeng Wang. Leapfrog diffusion model for stochastic trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5517–5526, 2023.
  • Marchetti et al. [2024] Francesco Marchetti, Federico Becattini, Lorenzo Seidenari, and Alberto Del Bimbo. Smemo: social memory for trajectory forecasting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
  • Mehran et al. [2009] Ramin Mehran, Alexis Oyama, and Mubarak Shah. Abnormal crowd behavior detection using social force model. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 935–942. IEEE, 2009.
  • Mohamed et al. [2020] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 14424–14432, 2020.
  • Neumeier et al. [2021] Marion Neumeier, Michael Botsch, Andreas Tollkühn, and Thomas Berberich. Variational autoencoder-based vehicle trajectory prediction with an interpretable latent space. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pages 820–827. IEEE, 2021.
  • Park et al. [2024] Daehee Park, Jaeseok Jeong, Sung-Hoon Yoon, Jaewoo Jeong, and Kuk-Jin Yoon. T4p: Test-time training of trajectory prediction via masked autoencoder and actor-specific token memory. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15065–15076, 2024.
  • Pellegrini et al. [2009] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th International Conference on Computer Vision, pages 261–268. IEEE, 2009.
  • Phong et al. [2024] Tran Phong, Haoran Wu, Cunjun Yu, Panpan Cai, Sifa Zheng, and David Hsu. What truly matters in trajectory prediction for autonomous driving? Advances in Neural Information Processing Systems, 36, 2024.
  • Quan et al. [2021] Ruijie Quan, Linchao Zhu, Yu Wu, and Yi Yang. Holistic lstm for pedestrian trajectory prediction. IEEE transactions on image processing, 30:3229–3239, 2021.
  • Rehder and Kloeden [2015] Eike Rehder and Horst Kloeden. Goal-directed pedestrian prediction. In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages 50–58, 2015.
  • Rehder et al. [2018] Eike Rehder, Florian Wirth, Martin Lauer, and Christoph Stiller. Pedestrian prediction by planning using deep neural networks. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 5903–5908. IEEE, 2018.
  • Robicquet et al. [2016] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese. Learning social etiquette: Human trajectory understanding in crowded scenes. In European conference on computer vision, pages 549–565. Springer, 2016.
  • Rossi et al. [2021] Luca Rossi, Marina Paolanti, Roberto Pierdicca, and Emanuele Frontoni. Human trajectory prediction and generation using lstm models and gans. Pattern Recognition, 120:108136, 2021.
  • Saadatnejad et al. [2022] Saeed Saadatnejad, Yi Zhou Ju, and Alexandre Alahi. Pedestrian 3d bounding box prediction. arXiv preprint arXiv:2206.14195, 2022.
  • Sadeghian et al. [2019] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and Silvio Savarese. Sophie: An attentive gan for predicting paths compliant to social and physical constraints. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1349–1358, 2019.
  • Saleh et al. [2020] Fatemeh Saleh, Sadegh Aliakbarian, Mathieu Salzmann, and Stephen Gould. Artist: Autoregressive trajectory inpainting and scoring for tracking. arXiv preprint arXiv:2004.07482, 2020.
  • Salzmann et al. [2020] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In Proceedings of the European conference on computer vision (ECCV), pages 683–700. Springer, 2020.
  • Shafiee et al. [2021] Nasim Shafiee, Taskin Padir, and Ehsan Elhamifar. Introvert: Human trajectory prediction via conditional 3d attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16815–16825, 2021.
  • Shi et al. [2023] Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou, Wei Tang, Nanning Zheng, and Gang Hua. Representing multimodal behaviors with mean location for pedestrian trajectory prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  • Song et al. [2021] Xiao Song, Kai Chen, Xu Li, Jinghan Sun, Baocun Hou, Yong Cui, Baochang Zhang, Gang Xiong, and Zilie Wang. Pedestrian trajectory prediction based on deep convolutional lstm network. IEEE Transactions on Intelligent Transportation Systems, 22(6):3285–3302, 2021.
  • Su et al. [2024] Yuchao Su, Yuanman Li, Wei Wang, Jiantao Zhou, and Xia Li. A unified environmental network for pedestrian trajectory prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 4970–4978, 2024.
  • Tran et al. [2021] Hung Tran, Vuong Le, and Truyen Tran. Goal-driven long-term trajectory prediction. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 796–805, 2021.
  • Vaswani et al. [2017] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017.
  • Vemula et al. [2018] Anirudh Vemula, Katharina Muelling, and Jean Oh. Social attention: Modeling attention in human crowds. In 2018 IEEE international Conference on Robotics and Automation (ICRA), pages 1–7. IEEE, 2018.
  • Wang et al. [2022] Jingke Wang, Tengju Ye, Ziqing Gu, and Junbo Chen. Ltp: Lane-based trajectory prediction for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17134–17142, 2022.
  • Wong et al. [2022] Conghao Wong, Beihao Xia, Ziming Hong, Qinmu Peng, Wei Yuan, Qiong Cao, Yibo Yang, and Xinge You. View vertically: A hierarchical network for trajectory prediction via fourier spectrums. In European Conference on Computer Vision, pages 682–700. Springer, 2022.
  • Wong et al. [2023] Conghao Wong, Beihao Xia, Qinmu Peng, Wei Yuan, and Xinge You. Msn: multi-style network for trajectory prediction. IEEE Transactions on Intelligent Transportation Systems, 24:9751 – 9766, 2023.
  • Wong et al. [2024a] Conghao Wong, Beihao Xia, Ziqian Zou, Yulong Wang, and Xinge You. Socialcircle: Learning the angle-based social interaction representation for pedestrian trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 19005–19015, 2024a.
  • Wong et al. [2024b] Conghao Wong, Beihao Xia, Ziqian Zou, and Xinge You. Socialcircle+: Learning the angle-based conditioned interaction representation for pedestrian trajectory prediction. arXiv preprint arXiv:2409.14984, 2024b.
  • Xia et al. [2023] Beihao Xia, Conghao Wong, Duanquan Xu, Qinmu Peng, and Xinge You. Another vertical view: A hierarchical network for heterogeneous trajectory prediction via spectrums. arXiv preprint arXiv:2304.05106, 2023.
  • Xie et al. [2024] Jiajia Xie, Sheng Zhang, Beihao Xia, Zhu Xiao, Hongbo Jiang, Siwang Zhou, Zheng Qin, and Hongyang Chen. Pedestrian trajectory prediction based on social interactions learning with random weights. IEEE Transactions on Multimedia, 2024.
  • Xu et al. [2022a] Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. Groupnet: Multiscale hypergraph neural networks for trajectory prediction with relational reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6498–6507, 2022a.
  • Xu et al. [2022b] Chenxin Xu, Weibo Mao, Wenjun Zhang, and Siheng Chen. Remember intentions: Retrospective-memory-based trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6488–6497, 2022b.
  • Xu et al. [2023] Chenxin Xu, Robby T Tan, Yuhong Tan, Siheng Chen, Yu Guang Wang, Xinchao Wang, and Yanfeng Wang. Eqmotion: Equivariant multi-agent motion prediction with invariant interaction reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1410–1420, 2023.
  • Xu et al. [2022c] Pei Xu, Jean-Bernard Hayet, and Ioannis Karamouzas. Socialvae: Human trajectory prediction using timewise latents. In European Conference on Computer Vision, pages 511–528, 2022c.
  • Xu and Fu [2024] Yi Xu and Yun Fu. Adapting to length shift: Flexilength network for trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15226–15237, 2024.
  • Yang et al. [2025] Heming Yang, Yu Tian, Changyuan Tian, Hongfeng Yu, Wanxuan Lu, Chubo Deng, and Xian Sun. Sopermodel: Leveraging social perception for multi-agent trajectory prediction. IEEE Transactions on Geoscience and Remote Sensing, 2025.
  • Yu et al. [2020] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In European Conference on Computer Vision, pages 507–523. Springer, 2020.
  • Yuan et al. [2021] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris M. Kitani. Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 9813–9823, 2021.
  • Yue et al. [2022] Jiangbei Yue, Dinesh Manocha, and He Wang. Human trajectory prediction via neural social physics. In European Conference on Computer Vision, pages 376–394. Springer, 2022.
  • Zhang et al. [2019] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and Nanning Zheng. Sr-lstm: State refinement for lstm towards pedestrian trajectory prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 12085–12094, 2019.
  • Zhang et al. [2022] Pu Zhang, Jianru Xue, Pengfei Zhang, Nanning Zheng, and Wanli Ouyang. Social-aware pedestrian trajectory prediction via states refinement lstm. IEEE transactions on pattern analysis and machine intelligence, 44(5):2742–2759, 2022.
  • Zhou et al. [2022] Zikang Zhou, Luyao Ye, Jianping Wang, Kui Wu, and Kejie Lu. Hivt: Hierarchical vector transformer for multi-agent motion prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8823–8833, 2022.

Appendix