This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Resource-Efficient Cooperative Online Scalar Field Mapping via Distributed Sparse Gaussian Process Regression

Tianyi Ding, Ronghao Zheng, Senlin Zhang, Meiqin Liu Manuscript received: September 28, 2023; Revised: December 7, 2023; Accepted: January 8, 2024.This paper was recommended for publication by Editor Javier Civera upon evaluation of the Associate Editor and Reviewers’ comments. The authors Tianyi Ding, Ronghao Zheng, Senlin Zhang and Meiqin Liu are with the College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China. Senlin Zhang is also with the Jinhua Institute of Zhejiang University, Jinhua 321036, China. Meiqin Liu is also with the National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, Xi’an Jiaotong University, Xi’an 710049, China. All authors are also with the National Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China. Emails: {ty_ding, rzheng, slzhang, liumeiqin}@zju.edu.cnCorresponding authorThis work was supported by the National Natural Science Foundation of China under Grant 62173294, the Zhejiang Provincial Natural Science Foundation of China under Grant LZ24F030001, and the National Natural Science Foundation of China under Grant U23B2060.Digital Object Identifier (DOI): see top of this page.
Abstract

Cooperative online scalar field mapping is an important task for multi-robot systems. Gaussian process regression is widely used to construct a map that represents spatial information with confidence intervals. However, it is difficult to handle cooperative online mapping tasks because of its high computation and communication costs. This letter proposes a resource-efficient cooperative online field mapping method via distributed sparse Gaussian process regression. A novel distributed online Gaussian process evaluation method is developed such that robots can cooperatively evaluate and find observations of sufficient global utility to reduce computation. The error bounds of distributed aggregation results are guaranteed theoretically, and the performances of the proposed algorithms are validated by real online light field mapping experiments.

Index Terms:
Multi-Robot Systems; Distributed Robot Systems; Mapping

I INTRODUCTION

Online mapping in unknown environments is a critical mission in environmental monitoring and exploration applications. Compared with static sensor networks [1], [2], multi-robot systems have higher exploration efficiency and flexibility for large-scale cooperative online mapping [3], [4]. Each robot moves and measures data locally in fields and then shares information with neighbors to construct the global scalar field map.

Gaussian process regression (GPR) is a framework for nonlinear non-parametric Bayesian inference widely used in field mapping [5], [6], [7]. Different from the traditional discrete occupancy grid model [8], [9], GPR predicts a continuous function to learn the dependencies between points in the fields and represent the map. Another benefit of GPR mapping is the explicit uncertainty representation, which can be used for efficient path planning.

Unfortunately, the standard GPR requires 𝒪(N3)\mathcal{O}(N^{3}) time complexity with the training sample size NN, which is not suitable for large-scale online mapping due to the high cost in computation, communication, and memory [10]. In this letter, we consider cooperative online scalar field mapping for distributed multi-robot systems and propose a resource-efficient distributed sparse Gaussian process regression method to solve these challenges.

Refer to caption
Refer to caption
Figure 1: Light field mapping experiments in a 7.5m×5m7.5~{}\mathrm{m}\times 5~{}\mathrm{m} workspace (top) and distributed light field mapping results (bottom). The value is the light intensity (lx).

I-A Related Work

To speed up GPR, sparse variational GPR (SVGPR) is developed [11], [12], which employs a set of MNM\ll N pseudo-points based on KL divergence to summarize the NN sample data thereby reducing computational costs to 𝒪(NM2)\mathcal{O}(NM^{2}). Meanwhile, many Gaussian process aggregation methods are proposed for parallel computation, like product-of-experts (PoE) [13] and robust Bayesian committee machine [14]. Then, SVGPR combined parallel computation [15] and stochastic optimization [16] methods are developed to further reduce computational costs. Moreover, Refs. [17] and [18] provide recursive frameworks for standard GPR and sparse variational GPR to handle online streaming data. Ref. [19] combine these sparse variational, mini-batches and streaming methods and apply them to Bayesian robot model learning. However, these methods both require a central node, in which SVGPR [11, 12, 17, 18, 19] requires global information of the observations for sparse approximations, and the parallel methods [13, 14, 15, 16] require a central node for model aggregations. Therefore, these methods cannot be easily extended to distributed multi-robot systems since all observations and models are required to communicate across networks, which increases inter-robot communications and causes repeated computations about the same observations on different robots.

For dynamic networks without a center, distributed Gaussian process aggregation methods based on average consensus are proposed in [20], [21] and [22]. Then, Ref. [23] applies an online distributed Gaussian process method to scalar field mapping. These methods avoid communicating observations on networks. However, these methods do not provide error bounds with centralized aggregation methods and do not consider the sparse computation, causing 𝒪(N3)\mathcal{O}(N^{3}) computational costs. Ref. [24] provides a local online Gaussian process evaluation method to reduce computation and inter-robot communications by only computing and communicating partial observations. Ref. [25] employs the SVGPR for multi-robot systems, in which each robot obtains sparse subsets based on its local observations. Unfortunately, these approaches have limited global accuracy because the online evaluation only uses local information.

I-B Main Contributions

This letter proposes a distributed sparse online Gaussian process regression method for cooperative online scalar field mapping. The main contributions of this letter are as follows.

  • Propose a distributed recursive Gaussian process based on dynamic average consensus for streaming data and cooperative online mapping. The error bounds between distributed consensus results and the centralized results are guaranteed theoretically (Theorem 1).

  • Propose a novel distributed online evaluation method for Gaussian process. Compared with [24] and [25], each robot online evaluates observations based on distributed consensus results instead of only local information to obtain better global accuracy without additional communications.

  • Develop a resource-efficient cooperative online scalar field mapping method via distributed sparse Gaussian process regression. The performances of the proposed algorithms are evaluated by real online light field mapping experiments.

II Preliminaries And System Modeling

II-A Problem Statement

(Network Model) Consider a team of pp robots, labeled by iV={1,,p}i\in V=\{1,...,p\}. The communication networks at time tt can be represented by a directed graph 𝒢(t)=(V,E(t))\mathcal{G}(t)=(V,E(t)) with an edge set E(t)V×VE(t)\subset V\times V. We consider that (i,j)E(t)(i,j)\in E(t) if and only if node ii communicates to node jj at time tt. Define the set of the neighbors of robot ii at time tt as i,t={jV|(i,j)E(t)}\mathbb{N}_{i,t}=\{j\in V|(i,j)\in E(t)\}. The matrix A(t):=[aij,t]i,j=1p,pp×pA(t):=[a_{ij,t}]_{i,j=1}^{p,p}\in\mathbb{R}^{p\times p} represents the adjacency matrix of 𝒢(t)\mathcal{G}(t).

(Observation Model) Each robot ii independently senses the fields f:𝒳𝒴f:\mathcal{X}\rightarrow\mathcal{Y} and gets the measurements yi,t𝒴y_{i,t}\in\mathcal{Y} with zero-mean Gaussian noise ei,te_{i,t} at time tt, where 𝒳n𝐱\mathcal{X}\subset\mathbb{R}^{n_{\mathbf{x}}} is the input feature space for ff and 𝒴\mathcal{Y}\subset\mathbb{R} is the corresponding output space. This letter considers 2D cases (n𝐱=2n_{\mathbf{x}}=2) and it can also be used in 3D cases as [25]. The observation model is given by

yi,t=f(𝐱i,t)+ei,t,ei,t𝒩(0,σe2),y_{i,t}=f\left(\mathbf{x}_{i,t}\right)+e_{i,t},~{}e_{i,t}\sim\mathcal{N}(0,\sigma_{e}^{2}),

where 𝐱i,t𝒳\mathbf{x}_{i,t}\in\mathcal{X} is the position of robot ii at time tt. Let the local datasets of robot ii at time tt be in the form 𝐃i,t:={𝐗i,t,𝐘i,t}\mathbf{D}_{i,t}:=\{\mathbf{X}_{i,t},\mathbf{Y}_{i,t}\}, where 𝐗i,t={𝐱i,k}k=1t,𝐘i,t={yi,k}k=1t\mathbf{X}_{i,t}=\{\mathbf{x}_{i,k}\}_{k=1}^{t},~{}\mathbf{Y}_{i,t}=\{y_{i,k}\}_{k=1}^{t} are the sets of observations from begin to current time tt.

II-B Gaussian Process Regression

Let the unknown fields f:𝒳𝒴f:\mathcal{X}\rightarrow\mathcal{Y} be the target regression functions. A robot can use Gaussian process regression [26] to predict the latent function value f(𝐱)f(\mathbf{x}^{*}) at the test data points 𝐱𝒳\mathbf{x}^{*}\in\mathcal{X} using the training datasets 𝐃={𝐗,𝐘}\mathbf{D}=\{\mathbf{X},\mathbf{Y}\}.

In GPR, the Gram function K(𝐗,𝐗):=[κ(𝐱i,𝐱j)]i,j=1N,NK(\mathbf{X},\mathbf{X}):=[\kappa(\mathbf{x}_{i},\mathbf{x}_{j})]_{i,j=1}^{N,N} is constructed from the kernel function κ:𝒳×𝒳\kappa:\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R}. A commonly used kernel function is the squared exponential (SE) kernel defined as

κ(𝐱i,𝐱j)=σf2exp(𝐱i𝐱j2𝚺η2)\kappa(\mathbf{x}_{i},\mathbf{x}_{j})=\sigma_{f}^{2}\exp\left(-\frac{\|\mathbf{x}_{i}-\mathbf{x}_{j}\|^{2}}{\bm{\Sigma}_{\eta}^{2}}\right) (1)

with hyper-parameters {σf,𝚺η}\{\sigma_{f},\bm{\Sigma}_{\eta}\}. Then, the posterior distribution is derived as ρ(𝐱):=𝒫(f(𝐱)|𝐗,𝐘,𝐱)𝒩(𝝁(𝐱),𝚺(𝐱))\rho(\mathbf{x}^{*}):=\mathcal{P}(f(\mathbf{x}^{*})|\mathbf{X},\mathbf{Y},\mathbf{x}^{*})\sim\mathcal{N}\left(\bm{\mu}(\mathbf{x}^{*}),\bm{\Sigma}(\mathbf{x}^{*})\right), where

𝝁(𝐱)=\displaystyle\bm{\mu}(\mathbf{x}^{*})= K(𝐱,𝐗)[K(𝐗,𝐗)+σe2𝐈]1𝐘,\displaystyle K(\mathbf{x}^{*},\mathbf{X})[K(\mathbf{X},\mathbf{X})+\sigma_{e}^{2}\mathbf{I}]^{-1}\mathbf{Y}, (2)
𝚺(𝐱)=\displaystyle\bm{\Sigma}(\mathbf{x}^{*})= K(𝐱,𝐱)\displaystyle K(\mathbf{x}^{*},\mathbf{x}^{*})
K(𝐱,𝐗)[K(𝐗,𝐗)+σe2𝐈]1K(𝐗,𝐱).\displaystyle-K(\mathbf{x}^{*},\mathbf{X})[K(\mathbf{X},\mathbf{X})+\sigma_{e}^{2}\mathbf{I}]^{-1}K(\mathbf{X},\mathbf{x}^{*}).

In this letter, we assume the hyper-parameters can be typically selected by maximizing the marginal log-likelihood offline [26] and focus on GP predictions (2) for field mapping, like Refs. [20], [21], [23], [24] and [25].

II-C Recursive Gaussian process update for streaming data

In the online mapping mission, the data arrives sequentially. At any time tt, the new data point {𝐱t,yt}\{\mathbf{x}_{t},y_{t}\} is added to datasets 𝐃t=[𝐃t1;𝐱t,yt]\mathbf{D}_{t}=[\mathbf{D}_{t-1};\mathbf{x}_{t},y_{t}] in streaming set. In this case, the Gaussian process prediction (2) will suffer from slow updating. To speed up the online mapping, we employ the recursive Gaussian process update [17],

𝝁(𝐱)\displaystyle\bm{\mu}(\mathbf{x}^{*}) =K(𝐱,𝐗t)𝜶t,\displaystyle=K(\mathbf{x}^{*},\mathbf{X}_{t})\bm{\alpha}_{t}, (3)
𝚺(𝐱)\displaystyle\bm{\Sigma}(\mathbf{x}^{*}) =K(𝐱,𝐱)+K(𝐱,𝐗t)𝐂tK(𝐗t,𝐱),\displaystyle=K(\mathbf{x}^{*},\mathbf{x}^{*})+K(\mathbf{x}^{*},\mathbf{X}_{t})\mathbf{C}_{t}K(\mathbf{X}_{t},\mathbf{x}^{*}),

where 𝜶tt\bm{\alpha}_{t}\in\mathbb{R}^{t} and 𝐂tt×t\mathbf{C}_{t}\in\mathbb{R}^{t\times t} are recursive updated variables. Suppose a new data point {𝐱t+1,yt+1}\{\mathbf{x}_{t+1},y_{t+1}\} has been collected, the recursive updates are designed as,

𝜶t+1=[𝜶t0]+qt+1𝐬t+1,\displaystyle\bm{\alpha}_{t+1}=\begin{bmatrix}\bm{\alpha}_{t}\\ 0\end{bmatrix}+q_{t+1}\mathbf{s}_{t+1}, (4)
𝐂t+1=[𝐂t𝟎t𝟎tT0]+rt+1𝐬t+1𝐬t+1T,\displaystyle\mathbf{C}_{t+1}=\begin{bmatrix}\mathbf{C}_{t}&\mathbf{0}_{t}\\ \mathbf{0}^{T}_{t}&0\end{bmatrix}+r_{t+1}\mathbf{s}_{t+1}\mathbf{s}^{T}_{t+1},
𝐐t+1=[𝐐t𝟎t𝟎tT0]+γt+1𝐞t+1𝐞t+1T,\displaystyle\mathbf{Q}_{t+1}=\begin{bmatrix}\mathbf{Q}_{t}&\mathbf{0}_{t}\\ \mathbf{0}^{T}_{t}&0\end{bmatrix}+\gamma_{t+1}\mathbf{e}_{t+1}\mathbf{e}^{T}_{t+1},
𝐬t+1=[𝐂tK(𝐗t,𝐱t+1)1],𝐞t+1=[𝐐tK(𝐗t,𝐱t+1)1]\displaystyle\mathbf{s}_{t+1}=\begin{bmatrix}\mathbf{C}_{t}K(\mathbf{X}_{t},\mathbf{x}_{t+1})\\ 1\end{bmatrix},~{}\mathbf{e}_{t+1}=\begin{bmatrix}\mathbf{Q}_{t}K(\mathbf{X}_{t},\mathbf{x}_{t+1})\\ -1\end{bmatrix}

with the scalars qt+1q_{t+1}, rt+1r_{t+1} and γt+1\gamma_{t+1} given by

qt+1=yt+1K(𝐱t+1,𝐗t)𝜶tσe2+κ(𝐱t+1,𝐱t+1)+K(𝐱t+1,𝐗t)𝐂tK(𝐗t,𝐱t+1),q_{t+1}=\frac{y_{t+1}-K(\mathbf{x}_{t+1},\mathbf{X}_{t})\bm{\alpha}_{t}}{\sigma_{e}^{2}+\kappa(\mathbf{x}_{t+1},\mathbf{x}_{t+1})+K(\mathbf{x}_{t+1},\mathbf{X}_{t})\mathbf{C}_{t}K(\mathbf{X}_{t},\mathbf{x}_{t+1})},
rt+1=1σe2+κ(𝐱t+1,𝐱t+1)+K(𝐱t+1,𝐗t)𝐂tK(𝐗t,𝐱t+1),r_{t+1}=\frac{-1}{\sigma_{e}^{2}+\kappa(\mathbf{x}_{t+1},\mathbf{x}_{t+1})+K(\mathbf{x}_{t+1},\mathbf{X}_{t})\mathbf{C}_{t}K(\mathbf{X}_{t},\mathbf{x}_{t+1})},
γt+1=1κ(𝐱t+1,𝐱t+1)K(𝐱t+1,𝐗t)𝐐tK(𝐗t,𝐱t+1).\gamma_{t+1}=\frac{1}{\kappa(\mathbf{x}_{t+1},\mathbf{x}_{t+1})-K(\mathbf{x}_{t+1},\mathbf{X}_{t})\mathbf{Q}_{t}K(\mathbf{X}_{t},\mathbf{x}_{t+1})}. (5)

Upon comparison with (3), 1/γt+11/\gamma_{t+1} can be interpreted as the recursive predictive variance of the new data point 𝐱t+1\mathbf{x}_{t+1} given the observations at 𝐃t\mathbf{D}_{t} without noise. This property and the variable 𝐐\mathbf{Q} will be used in Section IV for sparse approximation.

III Consensus-based Distributed Gaussian Process Regression

In this section, we introduce the distributed Gaussian process regression methods for cooperative online field mapping. Each robot constructs an individual field map and aggregates the global map in a distributed fashion using dynamic average consensus methods.

III-A Consensus-based distributed Gaussian posterior update

At time tt, each robot ii first samples a new training pair {𝐱i,t,yi,t}\{\mathbf{x}_{i,t},y_{i,t}\} in the fields. Then, robots recursive update local Gaussian process posterior mapping ρi,t[L](𝐱)\rho_{i,t}^{[L]}(\mathbf{x}^{*}) by (3) and (4), where 𝐱\mathbf{x}^{*} are the test map grid positions. With some abuse of notations, denote ρi,t[L]\rho_{i,t}^{[L]} and ρi,t[D]\rho_{i,t}^{[D]} as the local and distributed Gaussian posterior mapping of robot ii at time tt, respectively.

Next, we employ discrete-time dynamic average consensus methods [27] for distributed map aggregation. The first-order iterative aggregation process can be written as

𝝃i,t+1\displaystyle\bm{\xi}_{i,t+1} =𝝃i,t+ji,taij,t(𝝃j,t𝝃i,t)+Δ𝐫i,t,\displaystyle=\bm{\xi}_{i,t}+\sum_{j\in\mathbb{N}_{i,t}}a_{ij,t}\left(\bm{\xi}_{j,t}-\bm{\xi}_{i,t}\right)+\Delta\mathbf{r}_{i,t}, (6)
𝝃i,0\displaystyle\bm{\xi}_{i,0} =𝐫i,0,Δ𝐫i,0=𝟎,\displaystyle=\mathbf{r}_{i,0},~{}\Delta\mathbf{r}_{i,0}=\mathbf{0},

where 𝝃i,t\bm{\xi}_{i,t} denotes the local consensus state of robot ii at time tt and Δ𝐫i,t=𝐫i,t𝐫i,t1\Delta\mathbf{r}_{i,t}=\mathbf{r}_{i,t}-\mathbf{r}_{i,t-1} is the reference input, which determines the converged consensus results. Many aggregation schemes can be used to design this reference input. We employ the PoE method in this letter. The distributed Gaussian process update can be designed as

𝐫i,t=[𝝁i,t[L](𝚺^i,t[L])1(𝚺^i,t[L])1],[𝝁i,t[D]𝚺i,t[D]]=[𝝃i,t+1[1](𝝃i,t+1[2])1(𝝃i,t+1[2])1],\mathbf{r}_{i,t}=\begin{bmatrix}\bm{\mu}_{i,t}^{[L]}\cdot(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}\\ (\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}\end{bmatrix},~{}\begin{bmatrix}\bm{\mu}_{i,t}^{[D]}\\ \bm{\Sigma}_{i,t}^{[D]}\end{bmatrix}=\begin{bmatrix}\bm{\xi}_{i,t+1}^{[1]}\cdot({\bm{\xi}_{i,t+1}^{[2]}})^{-1}\\ ({\bm{\xi}_{i,t+1}^{[2]}})^{-1}\end{bmatrix}, (7)

where 𝝃i,t+1[k]\bm{\xi}_{i,t+1}^{[k]} denotes the kk-th element of the local consensus state and 𝚺^i,t[L]:=𝚺i,t[L]+σn2\hat{\bm{\Sigma}}_{i,t}^{[L]}:=\bm{\Sigma}_{i,t}^{[L]}+\sigma_{n}^{2} is the local Gaussian posterior variance with the correction biases σn2\sigma_{n}^{2} for avoiding singularity. Due to the theoretical foundation of consensus algorithms, the distributed aggregation mean 𝝁i,t[D]\bm{\mu}_{i,t}^{[D]} will converge to the centralized PoE results

𝝁~=i=1p(𝚺^i,t[L])1ip(𝚺^i,t[L])1𝝁i,t[L],\displaystyle\tilde{\bm{\mu}}=\sum_{i=1}^{p}\frac{(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}}{\sum_{i}^{p}(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}}\bm{\mu}_{i,t}^{[L]}, (8)

which will be discussed latter. In particular, robots are only required to communicate the local consensus state 𝝃i,t\bm{\xi}_{i,t} with constant size, instead of the online datasets 𝐃i,t\mathbf{D}_{i,t} with growing size.

III-B Error bounds derivation for distributed fusion

For the derivation of distributed aggregation error bounds, we introduce the following assumptions.

Assumption 1

(Periodical Strong Connectivity). There is some positive integer B1B\geq 1 such that, for all time instant t1t\geq 1, the directed graph (V,E(t)E(t+1)E(t+B1))(V,E(t)\cup E(t+1)\cup...\cup E(t+B-1)) is strongly connected.

Assumption 2

(Non-degeneracy and Doubly Stochastic). There exists a constant φ>0\varphi>0 such that aii,t=1ji,taij,tφa_{ii,t}=1-\sum_{j\in\mathbb{N}_{i,t}}a_{ij,t}\geq\varphi, and aij,t(ji,t)a_{ij,t}~{}(j\in\mathbb{N}_{i,t}) satisfies aij,t{0}[φ,1],t1a_{ij,t}\in\{0\}\cup[\varphi,1],~{}\forall t\geq 1. And there hold that 𝟏TA(t)=𝟏T\mathbf{1}^{T}A(t)=\mathbf{1}^{T} and A(t)𝟏=𝟏,t1A(t)\mathbf{1}=\mathbf{1},~{}\forall t\geq 1.

The Assumption 1 describes the periodical strong connectivity between robots and Assumption 2 defines the parameters selection of adjacency matrix, which are common for average consensus methods [27].

Assumption 3

(Bounded Observations). There exists time invariant constants y¯\bar{y} and μ¯\bar{\mu} such that all observations yi,ty_{i,t} and local Gaussian process predictions 𝛍i,t[L](𝐱)\bm{\mu}^{[L]}_{i,t}(\mathbf{x}^{*}) satisfy |yi,t|y¯|y_{i,t}|\leq\bar{y}|𝛍i,t[L](𝐱)|μ¯|\bm{\mu}^{[L]}_{i,t}(\mathbf{x}^{*})|\leq\bar{\mu}, t1,iV,𝐱𝒳~{}\forall t\geq 1,~{}\forall i\in V,~{}\forall\mathbf{x}^{*}\in\mathcal{X}.

The average consensus methods generally suppose the derivative of the consensus state is bounded [20], [21] and [27]. The derivative bounds are related to the consensus errors and can be used for parameter selections of the communication network in practice, like communication periods and adjacency matrix. However, the derivative bound is hard to get by sample if the field distribution is unknown in practice. This letter employs the character of the recursive Gaussian process to loosen this requirement to the bounded observations (Assumptions 3) for easier parameter selections on online mapping. Moreover, since the Gaussian process predictions are determined by the observations and the prior kernel function, it is bounded as the observations.

Theorem 1

Suppose Assumptions 1 \sim 3 hold and each robot ii runs recursive Gaussian process (3) and first-order consensus algorithms (6). Let δ^1\hat{\delta}_{1}δ^2\hat{\delta}_{2} and η\eta be positive constants, where

δ^1=y¯σf2(σn2+σf2)σn2(σe2+σf2)+μ¯σf4σn2(σe2+σf2),\displaystyle\hat{\delta}_{1}=\frac{\bar{y}\sigma_{f}^{2}(\sigma_{n}^{2}+\sigma_{f}^{2})}{\sigma_{n}^{2}(\sigma_{e}^{2}+\sigma_{f}^{2})}+\frac{\bar{\mu}\sigma_{f}^{4}}{\sigma_{n}^{2}(\sigma_{e}^{2}+\sigma_{f}^{2})}, (9)
δ^2=σf4σn2(σe2+σf2),\displaystyle\hat{\delta}_{2}=\frac{\sigma_{f}^{4}}{\sigma_{n}^{2}(\sigma_{e}^{2}+\sigma_{f}^{2})},
η=4(pB1)φ0.5p(p+1)B1.\displaystyle\eta=\frac{4(pB-1)}{\varphi^{0.5p(p+1)B-1}}.

Select the correction term σn2\sigma_{n}^{2} to satisfy σn2ησf4σe2+σf2\sigma_{n}^{2}\geq\frac{\eta\sigma_{f}^{4}}{\sigma_{e}^{2}+\sigma_{f}^{2}}. Then, the error bounds between 𝛍i,t[D](𝐱)\bm{\mu}_{i,t}^{[D]}(\mathbf{x}^{*}) and PoE results 𝛍~(𝐱)\tilde{\bm{\mu}}(\mathbf{x}^{*}) (8) at any test point 𝐱\mathbf{x}^{*} will converge to

limt|𝝁i,t[D](𝐱)𝝁~(𝐱)|α+β𝝁~(𝐱),iV,𝐱𝒳,\lim\limits_{t\rightarrow\infty}\left\lvert\bm{\mu}_{i,t}^{[D]}(\mathbf{x}^{*})-\tilde{\bm{\mu}}(\mathbf{x}^{*})\right\rvert\leq\alpha+\beta\tilde{\bm{\mu}}(\mathbf{x}^{*}),~{}\forall i\in V,~{}\mathbf{x}^{*}\in\mathcal{X}, (10)

where

α=ηδ^11+ηδ^2,β=|ηδ^21ηδ^2|.\alpha=\frac{\eta\hat{\delta}_{1}}{1+\eta\hat{\delta}_{2}},~{}\beta=\left\lvert\frac{\eta\hat{\delta}_{2}}{1-\eta\hat{\delta}_{2}}\right\rvert. (11)

Furthermore, if there is a constant h>0h>0, Δ𝐫i,t+1=𝟎\Delta\mathbf{r}_{i,t+1}=\mathbf{0} for any time t>ht>h holds, the error bounds will converge to zero, i.e., 𝛍i,t[D](𝐱)𝛍~(𝐱),iV,𝐱𝒳\bm{\mu}_{i,t}^{[D]}(\mathbf{x}^{*})\rightarrow\tilde{\bm{\mu}}(\mathbf{x}^{*}),~{}\forall i\in V,~{}\mathbf{x}^{*}\in\mathcal{X} as time tt\rightarrow\infty.

Proof: The proof sketch is in the Appendix.

The error bounds given in Theorem 1 do not require the specific GP kernels and hyper-parameters and thus can be used in other distributed GP systems for communication parameter selections.

IV Distributed sparse Gaussian process approximation

To speed up the GPR for online mapping, it is necessary to design Gaussian process sparse approximation methods. In this section, a novel distributed metric is proposed for data evaluations such that predictions have better global performance without additional communication costs.

Refer to caption
(a) Centralized Compression
\begin{overpic}[width=159.3356pt,height=113.81102pt,trim=36.98866pt 0.0pt 28.45274pt 19.91684pt,clip]{graph/1D_local.eps} \put(34.0,60.0){\small\color[rgb]{0,0,0}{Repeated Information}} \end{overpic}
(b) Local Compression [24]
Refer to caption
(c) Distributed Compression
Figure 2: A 1-D toy example with different compression methods. There are 2 robots sampling and predicting the objective function, respectively, where Robot 1 samples points (N=300N=300) from x1,0=3x_{1,0}=3 to x1,300=0x_{1,300}=0 and Robot 2 samples from x2,0=1x_{2,0}=1 to x2,300=4x_{2,300}=4. The shaded area represents 95%95\% of the distributed GP confidence intervals. The diamond and star represent the sparse training data (M=10M=10) after the online compression. The toy objective function is f(x)=sin(2x)+cos(6x)+0.5f(x)=\sin(2x)+\cos(6x)+0.5. (a) The centralized compression requires all real-time sample data. (b) Each robot compresses sample data locally, causing information repeated and globally inefficient. (c) Each robot compresses sample data based on distributed predictions with better performance.

IV-A Distributed sparse metrics for recursive Gaussian process

For a robot ii, the recursive variable scalar qi,t+1q_{i,t+1} and ri,t+1r_{i,t+1} (5) for can be interpreted as the variance-weighted prediction at point 𝐱i,t+1\mathbf{x}_{i,t+1} using datasets 𝐃i,t\mathbf{D}_{i,t}. Ref. [24] use the sum of the changes in posterior mean at all current sample points {𝐱i,1,,𝐱i,t}\{\mathbf{x}_{i,1},...,\mathbf{x}_{i,t}\} to denote the score for the observation {𝐱i,t+1,yi,t+1}\{\mathbf{x}_{i,t+1},~{}y_{i,t+1}\}, which has been derived as

ϵi,t+1=|𝜶i,t+1[t+1]𝐝𝐢𝐚𝐠(𝐐i,t+1)[t+1]|,\epsilon_{i,t+1}=\left\lvert\frac{\bm{\alpha}_{i,t+1}^{[t+1]}}{\mathbf{diag}(\mathbf{Q}_{i,t+1})^{[t+1]}}\right\rvert, (12)

where [t+1][t+1] denotes the (t+1)(t+1)-th item of the vectors and 𝐝𝐢𝐚𝐠()\mathbf{diag}(\cdot) denotes the diagonal vectors of the matrix. However, for a multi-robot system, each robot ii has different datasets 𝐃i,t\mathbf{D}_{i,t} and recursive Gaussian process variables 𝜶i,t,𝐂i,t\bm{\alpha}_{i,t},~{}\mathbf{C}_{i,t}. The score (12) can only evaluate the points based on local information, which causes repeated information and limited global performances. A 1-D toy example is shown in Fig. 2. Two robots sample the 1-D toy function and compress observations. Compression based on only local information tends to retain repeated information in common areas because of the same local metrics.

In Section III, we have obtained the distributed aggregation results based on consensus methods. And then we employ the the distributed aggregation results ρi,t[D]\rho_{i,t}^{[D]} to improve the compression performances.

Bhattacharyya-Riemannian distance is employed to evaluate the sample points using the distributed aggregation results. For two Gaussian distributions ν1(𝐱)=𝒩(𝝁1,𝚺1)\nu_{1}(\mathbf{x})=\mathcal{N}(\bm{\mu}_{1},\bm{\Sigma}_{1}) and ν2(𝐱)=𝒩(𝝁2,𝚺2)\nu_{2}(\mathbf{x})=\mathcal{N}(\bm{\mu}_{2},\bm{\Sigma}_{2}) over feature space 𝒳\mathcal{X}, Bhattacharyya-Riemannian distance is defined as

d(ν1,ν2)=d(ν1,ν2)+d(𝚺1,𝚺2),\displaystyle d_{\mathcal{BR}}(\nu_{1},\nu_{2})=d_{\mathcal{B}}(\nu_{1},\nu_{2})+d_{\mathcal{R}}(\bm{\Sigma}_{1},\bm{\Sigma}_{2}), (13)
d(ν1,ν2)=(𝝁1𝝁2)T𝚺¯1(𝝁1𝝁2),\displaystyle d_{\mathcal{B}}(\nu_{1},\nu_{2})=\sqrt{(\bm{\mu}_{1}-\bm{\mu}_{2})^{T}\bar{\bm{\Sigma}}^{-1}(\bm{\mu}_{1}-\bm{\mu}_{2})},
d(𝚺1,𝚺2)=j=1nλ(logλj)2,\displaystyle d_{\mathcal{R}}(\bm{\Sigma}_{1},\bm{\Sigma}_{2})=\sqrt{\sum_{j=1}^{n_{\lambda}}(\log\lambda_{j})^{2}},

where 𝚺¯=12(𝚺1+𝚺2)\bar{\bm{\Sigma}}=\frac{1}{2}(\bm{\Sigma}_{1}+\bm{\Sigma}_{2}), and {λ1,,λnλ}\{\lambda_{1},...,\lambda_{n_{\lambda}}\} is the eigenvalues of 𝚺21𝚺1\bm{\Sigma}_{2}^{-1}\bm{\Sigma}_{1}. This metric (13) modifies the Hellinger distance by employing Riemannian item dd_{\mathcal{R}}, which is efficient for the Gaussian variance representation [28].

Denote 𝐒i,k:={𝐱i,k,yi,k}𝐃i,t\mathbf{S}_{i,k}:=\{\mathbf{x}_{i,k},~{}y_{i,k}\}\subset\mathbf{D}_{i,t} as the evaluated observation. We design a distributed sparse metrics as

ϕ(𝐒i,k):=kϕΩ(d(ρi,t[D],ρ~i,t,k[L]))+(1kϕ)Ω(ϵi,k),\phi(\mathbf{S}_{i,k}):=k_{\phi}\Omega\left(-d_{\mathcal{BR}}(\rho_{i,t}^{[D]},\widetilde{\rho}_{i,t,k}^{[L]})\right)+(1-k_{\phi})\Omega\left(\epsilon_{i,k}\right), (14)
ρ~i,t,k[L]:=𝒫(f(𝐱)|𝐃i,t𝐒i,k,𝐱),\widetilde{\rho}_{i,t,k}^{[L]}:=\mathcal{P}(f(\mathbf{x}^{*})|\mathbf{D}_{i,t}\setminus\mathbf{S}_{i,k},\mathbf{x}^{*}), (15)

where kϕ(0,1)k_{\phi}\in(0,1) is a constant weight for the local score and distributed score and Ω()\Omega(\cdot) is the normalization function for all evaluated observations. This letter uses the simple min-max normalization. ϵi,k\epsilon_{i,k} denotes the local score (12) for robot ii about the evaluated observation 𝐒i,k\mathbf{S}_{i,k}. ρ~i,t,k[L]\widetilde{\rho}_{i,t,k}^{[L]} is the local recursive Gaussian process distribution removing the evaluated observation, which will be introduced latter.

In Section III, we have proved the distributed mean will converge to the centralized PoE results. Therefore, the distributed sparse metrics (14) can find observations of sufficient global utility.

Algorithm 1 Cooperative Online Filed Mapping Algorithm for Robot ii
1:for t=1,2,t=1,2,... do
2:     /* Sensing and Local Update */
3:     Sample independent training point {𝐱i,t,yi,t}\{\mathbf{x}_{i,t},y_{i,t}\}
4:     𝐃i,t={𝐃i,t1;(𝐱i,t,yi,t)},M~i=Size(𝐃i,t)\mathbf{D}_{i,t}=\{\mathbf{D}_{i,t-1};(\mathbf{x}_{i,t},y_{i,t})\},~{}\tilde{M}_{i}=\textbf{Size}(\mathbf{D}_{i,t})
5:     Update local Gaussian process predictions (3) ρi,t[L]=𝒫(f(𝐱)|𝐃i,t,𝐱)=𝒩(𝝁i,t[L],𝚺i,t[L])\rho_{i,t}^{[L]}=\mathcal{P}(f(\mathbf{x}^{*})|\mathbf{D}_{i,t},\mathbf{x}^{*})=\mathcal{N}(\bm{\mu}_{i,t}^{[L]},~{}\bm{\Sigma}_{i,t}^{[L]})
6:     /* Communication and Achieving Consensus */
7:     Receive 𝝃j,t\bm{\xi}_{j,t} from neighbors ji,tj\in\mathbb{N}_{i,t}
8:     Compute local consensus state 𝝃i,t+1\bm{\xi}_{i,t+1} (6)
9:     Update distributed Gaussian process predictions (7) ρi,t[D]=𝒩(𝝁i,t[D],𝚺i,t[D])\rho_{i,t}^{[D]}=\mathcal{N}(\bm{\mu}_{i,t}^{[D]},~{}\bm{\Sigma}_{i,t}^{[D]})
10:     Send 𝝃i,t+1\bm{\xi}_{i,t+1} to neighbors ji,t+1j\in\mathbb{N}_{i,t+1}
11:     /* Distributed Data Compress (Algorithm 2) */
12:     if DataSize M~i>Mi\tilde{M}_{i}>M_{i} then
13:         𝐃i,t=Compress(𝐃i,t,ρi,t[D])\mathbf{D}_{i,t}=\textbf{Compress}\left(\mathbf{D}_{i,t},\rho_{i,t}^{[D]}\right)
14:     end if
15:end for

IV-B Distributed sparse Gaussian process update

Then, we employ the distributed sparse metrics (14) to select the information-efficient subsets with MM points and design the distributed sparse Gaussian process.

Reorder the elements of 𝜶i,t,𝐂i,t,𝐐i,t{\bm{\alpha}}_{i,t},~{}\mathbf{C}_{i,t},~{}\mathbf{Q}_{i,t} so that they are consistent with 𝐒i,k\mathbf{S}_{i,k} being the last element in the current datasets 𝐃i,t\mathbf{D}_{i,t}, and define

𝜶~i,k=[𝜶i,t[k~]𝜶i,t[k]]=[𝜶~i,k[1:M]αi,k],\tilde{\bm{\alpha}}_{i,k}=\begin{bmatrix}\bm{\alpha}_{i,t}^{[\tilde{k}]}\\ \bm{\alpha}_{i,t}^{[k]}\end{bmatrix}=\begin{bmatrix}\tilde{\bm{\alpha}}_{i,k}^{[1:M]}\\ \alpha^{*}_{i,k}\end{bmatrix},\\
𝐂~i,k\displaystyle\tilde{\mathbf{C}}_{i,k} =[𝐂i,t[k~,k~]𝐂i,t[k~,k]𝐂i,t[k,k~]𝐂i,t[k,k]]=[𝐂~i,k[1:M,1:M]𝐜i,k𝐜i,kTci,k],\displaystyle=\begin{bmatrix}\mathbf{C}_{i,t}^{[\tilde{k},\tilde{k}]}&\mathbf{C}_{i,t}^{[\tilde{k},k]}\\ \mathbf{C}_{i,t}^{[k,\tilde{k}]}&\mathbf{C}_{i,t}^{[k,k]}\end{bmatrix}=\begin{bmatrix}\tilde{\mathbf{C}}_{i,k}^{[1:M,1:M]}&\mathbf{c}_{i,k}\\ \mathbf{c}^{T}_{i,k}&c^{*}_{i,k}\end{bmatrix}, (16)
𝐐~i,k\displaystyle\tilde{\mathbf{Q}}_{i,k} =[𝐐i,t[k~,k~]𝐐i,t[k~,k]𝐐i,t[k,k~]𝐐i,t[k,k]]=[𝐐~i,k[1:M,1:M]𝐪i,k𝐪i,kTqi,k],\displaystyle=\begin{bmatrix}\mathbf{Q}_{i,t}^{[\tilde{k},\tilde{k}]}&\mathbf{Q}_{i,t}^{[\tilde{k},k]}\\ \mathbf{Q}_{i,t}^{[k,\tilde{k}]}&\mathbf{Q}_{i,t}^{[k,k]}\end{bmatrix}=\begin{bmatrix}\tilde{\mathbf{Q}}_{i,k}^{[1:M,1:M]}&\mathbf{q}_{i,k}\\ \mathbf{q}^{T}_{i,k}&q^{*}_{i,k}\end{bmatrix},

where 𝐂[i,j]\mathbf{C}^{[i,j]} denotes the elements of the matrix 𝐂\mathbf{C} at ii-th row and jj-th column and k~=[1,,k1,k+1,,M+1]\tilde{k}=[1,\dots,k-1,k+1,\dots,M+1] denotes an index vector from 11 to M+1M+1 except kk. The recursive variables removing points 𝐒i,k\mathbf{S}_{i,k} are given as [17]

𝜶^i,k\displaystyle\hat{\bm{\alpha}}_{i,k} =𝜶~i,k[1:M]αi,kqi,k𝐪i,k,\displaystyle=\tilde{\bm{\alpha}}_{i,k}^{[1:M]}-\frac{\alpha^{*}_{i,k}}{q^{*}_{i,k}}\mathbf{q}_{i,k}, (17)
𝐂^i,k\displaystyle\hat{\mathbf{C}}_{i,k} =𝐂~i,k[1:M,1:M]+ci,k(qi,k)2𝐪i,k𝐪i,kT1qi,k𝚪i,k,\displaystyle=\tilde{\mathbf{C}}_{i,k}^{[1:M,1:M]}+\frac{c^{*}_{i,k}}{(q^{*}_{i,k})^{2}}\mathbf{q}_{i,k}\mathbf{q}^{T}_{i,k}-\frac{1}{q^{*}_{i,k}}\mathbf{\Gamma}_{i,k},
𝐐^i,k\displaystyle\hat{\mathbf{Q}}_{i,k} =𝐐~i,k[1:M,1:M]1qi,k𝐪i,k𝐪i,kT,\displaystyle=\tilde{\mathbf{Q}}_{i,k}^{[1:M,1:M]}-\frac{1}{q^{*}_{i,k}}\mathbf{q}_{i,k}\mathbf{q}^{T}_{i,k},

where 𝚪i,k=𝐪i,k𝐜i,kT+𝐜i,k𝐪i,kT\mathbf{\Gamma}_{i,k}=\mathbf{q}_{i,k}\mathbf{c}^{T}_{i,k}+\mathbf{c}_{i,k}\mathbf{q}^{T}_{i,k}, so as to compute ρ~i,t,k[L]\widetilde{\rho}_{i,t,k}^{[L]} using the reduced 𝜶^i,k,𝐂^i,k,𝐐^i,k\hat{\bm{\alpha}}_{i,k},~{}\hat{\mathbf{C}}_{i,k},~{}\hat{\mathbf{Q}}_{i,k} by (3).

IV-C Resource-efficient cooperative online mapping algorithm and complexity analysis

The entire cooperative online field mapping method is shown in Algorithm 1 and the pipline is presented in Fig. 3. At the time tt, each robot samples at the field and updates local Gaussian process predictions ρi,t[L]\rho_{i,t}^{[L]} by (3). Next, robots share local consensus state 𝝃i,t\bm{\xi}_{i,t} (6) with neighbors and update distributed Gaussian process predictions ρi,t[D]\rho_{i,t}^{[D]} by (7). Moreover, robots use the distributed sparse metrics (14) to greedily select the information-efficient subsets (Algorithm 2). The recursive variables 𝜶i,t,𝐂i,t,𝐐i,t\bm{\alpha}_{i,t},~{}\mathbf{C}_{i,t},~{}\mathbf{Q}_{i,t} keep lower MM dimensions by (17) for fast Gaussian process predictions.

Algorithm 2 Distributed Data Compress for Robot ii
1:for k=1,,Mi+1k=1,...,M_{i}+1 do
2:     Compute test Gaussian posterior ρ~i,t,k[L]\widetilde{\rho}_{i,t,k}^{[L]} (15) without point 𝐒i,k={𝐱i,k,yi,k}\mathbf{S}_{i,k}=\{\mathbf{x}_{i,k},y_{i,k}\}
3:     Obtain distributed sparse metrics ϕ(𝐒i,k)\phi(\mathbf{S}_{i,k}) (14)
4:end for
5:Find minimal information sample index k=argmink𝐃i,tϕkk^{*}=\operatorname{argmin}_{k\in\mathbf{D}_{i,t}}\phi^{*}_{k}
6:Remove points {𝐱i,k,yi,k}\{\mathbf{x}_{i,k^{*}},y_{i,k^{*}}\} from datasets 𝐃i,t=𝐃i,t{𝐱i,k,yi,k}\mathbf{D}_{i,t}=\mathbf{D}_{i,t}\setminus\{\mathbf{x}_{i,k^{*}},y_{i,k^{*}}\}
7:Update recursive variables with MM dimensions (17) 𝜶i,t=𝜶^i,k,𝐂i,t=𝐂^i,k,𝐐i,t=𝐐^i,k\bm{\alpha}_{i,t}=\hat{\bm{\alpha}}_{i,k^{*}},~{}\mathbf{C}_{i,t}=\hat{\mathbf{C}}_{i,k^{*}},~{}\mathbf{Q}_{i,t}=\hat{\mathbf{Q}}_{i,k^{*}}
8:return 𝐃i,t,𝜶i,t,𝐂i,t,𝐐i,t\mathbf{D}_{i,t},~{}\bm{\alpha}_{i,t},~{}\mathbf{C}_{i,t},~{}\mathbf{Q}_{i,t}

A comparison of time, memory, and communication complexity is presented in Table I. Recall that the robot number is pp, and each robot samples NN training points and selects MM sparse points. The numbers of test points 𝐱\mathbf{x}^{*} and communication edges are 𝒯\mathcal{T} and |E||E|.

Computation and memory: for each robot, the recursive sparse update of local mapping yields 𝒪(N(M2+M3))\mathcal{O}\left(N(M^{2}+M^{3})\right) time and 𝒪(M2)\mathcal{O}(M^{2}) memory complexity, which is significantly less than distributed recursive GP with 𝒪(N3)\mathcal{O}(N^{3}) time and 𝒪(N2)\mathcal{O}(N^{2}) memory complexity. Compared with local sparse metrics (12), the proposed distributed sparse metrics (14) have better global accuracy with additional 𝒪(NM3)\mathcal{O}\left(NM^{3}\right) computation. Since MNM\ll N, the additional computation is acceptable for online mapping.

Communication: compared with communicating original observations 𝒪(p2N)\mathcal{O}(p^{2}N) or compressed observations 𝒪(p2M)\mathcal{O}(p^{2}M) [24], [25], the proposed methods only communicate consensus state 𝝃\bm{\xi} and have 𝒪(|E|𝒯)\mathcal{O}(|E|\mathcal{T}) communication complexity, where p1|E|p(p1)/2p-1\leq|E|\leq p(p-1)/2. Therefore, the proposed methods have lower communication costs for large-scale multi-robot systems where pp is large. Moreover, the proposed methods can avoid repeated computations based on the same observations for GP mapping in different robots.

Refer to caption
Figure 3: Pipeline of the proposed Algorithm 1.
TABLE I: Algorithm complexity for NN streaming data and pp robots.
Complexity Full GPR RGPR DGPR DRGPR Local SGPR This letter
[26] [17] [20], [21] [23] [24], [25]
Computation 𝒪(p4N4)\mathcal{O}(p^{4}N^{4}) 𝒪(p3N3)\mathcal{O}(p^{3}N^{3}) 𝒪(pN4)\mathcal{O}(pN^{4}) 𝒪(pN3)\mathcal{O}(pN^{3}) 𝒪(p3NM2)\mathcal{O}(p^{3}NM^{2}) 𝒪(pN(M2+M3))\mathcal{O}\left(pN(M^{2}+M^{3})\right)
Memory 𝒪(p2N2)\mathcal{O}(p^{2}N^{2}) 𝒪(p2N2)\mathcal{O}(p^{2}N^{2}) 𝒪(pN2)\mathcal{O}(pN^{2}) 𝒪(pN2)\mathcal{O}(pN^{2}) 𝒪(p3M2)\mathcal{O}(p^{3}M^{2}) 𝒪(pM2)\mathcal{O}(pM^{2})
Communication 𝒪(p2N)\mathcal{O}(p^{2}N) 𝒪(p2N)\mathcal{O}(p^{2}N) 𝒪(|E|𝒯)\mathcal{O}(|E|\mathcal{T}) 𝒪(|E|𝒯)\mathcal{O}(|E|\mathcal{T}) 𝒪(p2M)\mathcal{O}(p^{2}M) 𝒪(|E|𝒯)\mathcal{O}(|E|\mathcal{T})
  • *

    *Compared with local compression (12), the proposed method has better global accuracy with additional 𝒪(NM3)\mathcal{O}\left(NM^{3}\right) computation for compression, which is acceptable since MNM\ll N.

V Experimental results

In this section, the proposed algorithm is validated by experiments with multiple TurtleBot3-Burger robots. Each robot shown in Fig. 1 is equipped with the BH1750FVI light sensor, sampling and mapping the light field online in a 7.5m×5m7.5~{}\mathrm{m}\times 5~{}\mathrm{m} workspace. The sample rate of the light sensor is set as 3030 Hz. The locations of robots are obtained by April-Tags. The entire system is implemented in the Robot Operating System (ROS).

In this experiment, 5 robots are performing an exploration to map the light field in the workspace. The communication network is dynamic and determined by the distance between robots. The communication range and frequency between robots are set as 33 m and 55 Hz. The local and distributed model update frequencies are set as 3030 and 55 Hz, respectively. The corresponding adjacency matrix of networks is aij,t=0.1(ji,t)a_{ij,t}=0.1~{}(j\in\mathbb{N}_{i,t}), aii,t=1ji,taij,ta_{ii,t}=1-\sum_{j\in\mathbb{N}_{i,t}}a_{ij,t}. This letter does not consider path planning and the sample paths of robots are set as a fixed prior. Gaussian process hyper-parameters are set σf2=1\sigma_{f}^{2}=1, Ση=[1/260;01/40]\Sigma_{\eta}=[1/26~{}0;0~{}1/40]. The hyperparameters are typically selected by maximizing the marginal log-likelihood offline using 100100 samples as a priori knowledge. Observation noises and correction biases are set σe2=σn2=0.1\sigma_{e}^{2}=\sigma_{n}^{2}=0.1. The distributed weight is set kϕ=0.2k_{\phi}=0.2. All 5 robots sample a total of N=1056×5N=1056\times 5 training points.

V-A Convergence validation of distributed aggregation

Select a 50×5050\times 50 mesh grid in the workspace as the test points to construct the light field mapping. The size of sparse training subsets is set as M=13×5M=13\times 5. The averaged distributed predictions of all 5 robots for all test points in the experiment and the centralized PoE results are shown in Fig. 4. The communication network is dynamic and Robots 44 and 55 are out of communication ranges of Robots 1,21,~{}2 and 33 at first time. When sample number n>166n>166, Robots 44 and 55 begin sharing information in the communication network and the distributed aggregation results of all robots converge to the centralized PoE results.

Refer to caption
Figure 4: The averaged distributed predictions and centralized PoE results for all test points.

Fig. LABEL:fig:field represents the progress of this experiment and the corresponding distributed GP results of Robot 33 during time t=35t=35 (n=1056n=1056) seconds. Fig. LABEL:fig:field(a) shows the experiment snapshots and the robot number. Fig. LABEL:fig:field(b) shows the results of the distributed online GP variance predictions for Robot 33 with the exploration trajectories of all robots. The black points denote the sparse subsets for GP predictions. Fig. LABEL:fig:field(c) shows that the GP mean predictions for Robot 33 gradually converges to the real light field in Fig. LABEL:fig:field(a). Compared with the local GP results of Robot 33 shown in Fig. 6, the distributed aggregation methods efficiently construct light field maps for unvisited areas.

Refer to caption
(a) Local GP variance 𝚺3[L]\bm{\Sigma}_{3}^{[L]}
Refer to caption
(b) Local GP mean 𝝁3[L]\bm{\mu}_{3}^{[L]}
Figure 6: Local Gaussian process mapping results of Robot 33. Compared with Fig. LABEL:fig:field, the distributed aggregation methods efficiently construct light field maps for unvisited areas.

V-B Sparse prediction accuracy validation

To analyze the map accuracy with different GP prediction methods, 10×1010\times 10 equal interval points in the workspace are sampled by hand as the test points. Fig. 7(a) shows the mean RMSE of the distributed predictions on the test points for all robots. Compared with the local data compression [24], the proposed distributed compression improves the prediction accuracy. Fig. 7(b) shows the mean online prediction computational time for all robots on 2020 repeated experiments. The proposed sparse GP has an efficient constant prediction time with the increasing sample NN. In addition, the data compression is run all the time here to illustrate the constant computation time. In practice, it is not necessary when the sample number NN is small.

Refer to caption
Refer to caption
(a) RMSE
Refer to caption
(b) Prediction Time
Figure 7: Performance of the distributed GP [21], the distributed recursive GP [23], the local sparse GP [24] and the proposed Algorithm 1 in this experiment. The proposed algorithm has an efficient constant prediction time with better global accuracy.

VI CONCLUSIONS

This letter proposes a resource-efficient cooperative online field mapping method via distributed sparse Gaussian process regression. Novel distributed online sparse metrics are developed such that robots can cooperatively evaluate observations with better global accuracy. The bounded errors of distributed aggregation results are guaranteed theoretically, and performances of proposed algorithms are validated by online light field mapping experiments. Our future work will focus on the distributed sparse GP hyper-parameters training and variance-based sample path planning.

APPENDIX: proof of Theorem 1

Without loss of generality, we consider the test data 𝐱\mathbf{x}^{*} is a point here such that 𝝁(𝐱),𝚺(𝐱)\bm{\mu}(\mathbf{x}^{*})\in\mathbb{R},~{}\bm{\Sigma}(\mathbf{x}^{*})\in\mathbb{R}. For simplicity, we omit the test points (𝐱)(\mathbf{x}^{*}) in the following Gaussian process descriptions. We first derive the bounds of the reference input Δ𝐫i,t\|\Delta\mathbf{r}_{i,t}\| in (6).

Δ𝐫i,t+1\displaystyle\Delta\mathbf{r}_{i,t+1} =[Δ𝐫i,t+1[1]Δ𝐫i,t+1[2]]\displaystyle=\begin{bmatrix}\Delta\mathbf{r}_{i,t+1}^{[1]}\\ \Delta\mathbf{r}_{i,t+1}^{[2]}\end{bmatrix} (18)
=[𝝁i,t+1[L](𝚺^i,t+1[L])1𝝁i,t[L](𝚺^i,t[L])1(𝚺^i,t+1[L])1(𝚺^i,t[L])1].\displaystyle=\begin{bmatrix}\bm{\mu}_{i,t+1}^{[L]}\cdot(\hat{\bm{\Sigma}}_{i,t+1}^{[L]})^{-1}-\bm{\mu}_{i,t}^{[L]}\cdot(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}\\ (\hat{\bm{\Sigma}}_{i,t+1}^{[L]})^{-1}-(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}\end{bmatrix}.

According to Ref. [26] and the SE kernel (1), the local Gaussian posterior variances have the bounds 0<𝚺i,tσf20<\bm{\Sigma}_{i,t}\leq\sigma_{f}^{2}. Therefore, we derive

σn2𝚺^i,t+1[L]<σn2+σf2,\sigma_{n}^{2}\leq\hat{\bm{\Sigma}}_{i,t+1}^{[L]}<\sigma_{n}^{2}+\sigma_{f}^{2}, (19)

Denote K(𝐱t+1):=K(𝐱,𝐱t+1)K_{*}(\mathbf{x}_{t+1}):=K(\mathbf{x}^{*},\mathbf{x}_{t+1}) and Kt(𝐱t+1):=K(𝐗t,𝐱t+1)K_{t}(\mathbf{x}_{t+1}):=K(\mathbf{X}_{t},\mathbf{x}_{t+1}). The recursive updates of 𝜶t+1\bm{\alpha}_{t+1} and 𝐂t+1\mathbf{C}_{t+1} (4) can be rewritten as

𝜶t+1=[𝜶t+qt+1𝐂tKt(𝐱t+1)qt+1],\displaystyle\bm{\alpha}_{t+1}=\begin{bmatrix}\bm{\alpha}_{t}+q_{t+1}\mathbf{C}_{t}K_{t}(\mathbf{x}_{t+1})\\ q_{t+1}\end{bmatrix}, (20)
𝐂t+1=\displaystyle\mathbf{C}_{t+1}=
[𝐂t+rt+1𝐂tKt(𝐱t+1)KtT(𝐱t+1)𝐂tTrt+1𝐂tKt(𝐱t+1)rt+1KtT(𝐱t+1)𝐂tTrt+1],\displaystyle\begin{bmatrix}\mathbf{C}_{t}+r_{t+1}\mathbf{C}_{t}K_{t}(\mathbf{x}_{t+1})K_{t}^{T}(\mathbf{x}_{t+1})\mathbf{C}_{t}^{T}&r_{t+1}\mathbf{C}_{t}K_{t}(\mathbf{x}_{t+1})\\ r_{t+1}K_{t}^{T}(\mathbf{x}_{t+1})\mathbf{C}_{t}^{T}&r_{t+1}\end{bmatrix},

The Gram function has K(𝐗t+1)=[K(𝐗t),K(𝐱t+1)]K_{*}(\mathbf{X}_{t+1})=[K_{*}(\mathbf{X}_{t}),K_{*}(\mathbf{x}_{t+1})]. Then, according to (3), we obtain

𝝁i,t+1[L]𝝁i,t[L]=\displaystyle\bm{\mu}_{i,t+1}^{[L]}-\bm{\mu}_{i,t}^{[L]}= (21)
[K(𝐗t),K(𝐱t+1)][𝜶t+qt+1𝐂tKt(𝐱t+1)qt+1]K(𝐗t)𝜶t\displaystyle[K_{*}(\mathbf{X}_{t}),K_{*}(\mathbf{x}_{t+1})]\begin{bmatrix}\bm{\alpha}_{t}+q_{t+1}\mathbf{C}_{t}K_{t}(\mathbf{x}_{t+1})\\ q_{t+1}\end{bmatrix}-K_{*}(\mathbf{X}_{t})\bm{\alpha}_{t}
=qt+1(K(𝐗t)𝐂tKt(𝐱t+1)+K(𝐱t+1)).\displaystyle=q_{t+1}\Big{(}K_{*}(\mathbf{X}_{t})\mathbf{C}_{t}K_{t}(\mathbf{x}_{t+1})+K_{*}(\mathbf{x}_{t+1})\Big{)}.

Similarly,

𝚺^i,t+1[L]𝚺^i,t[L]=rt+1(K(𝐗t)𝐂tKt(𝐱t+1)+K(𝐱t+1))2.\hat{\bm{\Sigma}}_{i,t+1}^{[L]}-\hat{\bm{\Sigma}}_{i,t}^{[L]}=r_{t+1}\Big{(}K_{*}(\mathbf{X}_{t})\mathbf{C}_{t}K_{t}(\mathbf{x}_{t+1})+K_{*}(\mathbf{x}_{t+1})\Big{)}^{2}. (22)

Then, Δ𝐫i,t+1[1]\Delta\mathbf{r}_{i,t+1}^{[1]} (18) can be rewritten as

Δ𝐫i,t+1[1]=𝝁i,t+1[L]𝚺^i,t[L]𝝁i,t[L]𝚺^i,t+1[L]𝚺^i,t+1[L]𝚺^i,t[L]\displaystyle\Delta\mathbf{r}_{i,t+1}^{[1]}=\frac{\bm{\mu}_{i,t+1}^{[L]}\cdot\hat{\bm{\Sigma}}_{i,t}^{[L]}-\bm{\mu}_{i,t}^{[L]}\cdot\hat{\bm{\Sigma}}_{i,t+1}^{[L]}}{\hat{\bm{\Sigma}}_{i,t+1}^{[L]}\cdot\hat{\bm{\Sigma}}_{i,t}^{[L]}} (23)
=(𝝁i,t+1[L]𝝁i,t[L])𝚺^i,t[L]𝝁i,t[L](𝚺^i,t+1[L]𝚺^i,t[L])𝚺^i,t+1[L]𝚺^i,t[L].\displaystyle=\frac{\big{(}\bm{\mu}_{i,t+1}^{[L]}-\bm{\mu}_{i,t}^{[L]}\big{)}\cdot\hat{\bm{\Sigma}}_{i,t}^{[L]}-\bm{\mu}_{i,t}^{[L]}\cdot\big{(}\hat{\bm{\Sigma}}_{i,t+1}^{[L]}-\hat{\bm{\Sigma}}_{i,t}^{[L]}\big{)}}{\hat{\bm{\Sigma}}_{i,t+1}^{[L]}\cdot\hat{\bm{\Sigma}}_{i,t}^{[L]}}.

Since the only different point between time tt and t+1t+1 is the 𝐱t+1\mathbf{x}_{t+1}, we have

maxt|𝝁i,t+1𝝁i,t|=σf2σe2+σf2|yt+1|,\displaystyle\mathop{\max}_{t}\left\lvert\bm{\mu}_{i,t+1}-\bm{\mu}_{i,t}\right\rvert=\frac{\sigma_{f}^{2}}{\sigma_{e}^{2}+\sigma_{f}^{2}}\left\lvert y_{t+1}\right\rvert, (24)
maxt|𝚺i,t𝚺i,t+1|=σf4σe2+σf2.\displaystyle\mathop{\max}_{t}\left\lvert\bm{\Sigma}_{i,t}-\bm{\Sigma}_{i,t+1}\right\rvert=\frac{\sigma_{f}^{4}}{\sigma_{e}^{2}+\sigma_{f}^{2}}.

which is obtained when 𝐱t+1=𝐱\mathbf{x}_{t+1}=\mathbf{x}^{*} and 𝐱k𝐱,k=1,,t\|\mathbf{x}_{k}-\mathbf{x}^{*}\|\rightarrow\infty,~{}k=1,...,t. Suppose that the Assumption 3 holds, we derive

|Δ𝐫i,t+1[1]|y¯σf2σn2(σe2+σf2)+μ¯σf4σn2(σn2+σf2)(σe2+σf2)=δ1.\displaystyle|\Delta\mathbf{r}_{i,t+1}^{[1]}|\leq\frac{\bar{y}\sigma_{f}^{2}}{\sigma_{n}^{2}(\sigma_{e}^{2}+\sigma_{f}^{2})}+\frac{\bar{\mu}\sigma_{f}^{4}}{\sigma_{n}^{2}(\sigma_{n}^{2}+\sigma_{f}^{2})(\sigma_{e}^{2}+\sigma_{f}^{2})}=\delta_{1}. (25)

Similarly, Δ𝐫i,t+1[2]\Delta\mathbf{r}_{i,t+1}^{[2]} is bounded as

Δ𝐫i,t+1[2]=𝚺^i,t[L]𝚺^i,t+1[L]𝚺^i,t+1[L]𝚺^i,t[L]σf4σn2(σn2+σf2)(σe2+σf2)=δ2.\displaystyle\Delta\mathbf{r}_{i,t+1}^{[2]}=\frac{\hat{\bm{\Sigma}}_{i,t}^{[L]}-\hat{\bm{\Sigma}}_{i,t+1}^{[L]}}{\hat{\bm{\Sigma}}_{i,t+1}^{[L]}\cdot\hat{\bm{\Sigma}}_{i,t}^{[L]}}\leq\frac{\sigma_{f}^{4}}{\sigma_{n}^{2}(\sigma_{n}^{2}+\sigma_{f}^{2})(\sigma_{e}^{2}+\sigma_{f}^{2})}=\delta_{2}. (26)

Define δ𝝃1,δ𝝃2\delta_{\bm{\xi}_{1}},~{}\delta_{\bm{\xi}_{2}} as the consensus errors, i.e.,

𝝃i,t+1[1]=1pi=1p𝝁i,t[L](𝚺^i,t[L])1+δ𝝃1,\displaystyle\bm{\xi}_{i,t+1}^{[1]}=\frac{1}{p}\sum_{i=1}^{p}\bm{\mu}_{i,t}^{[L]}\cdot(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}+\delta_{\bm{\xi}_{1}}, (27)
𝝃i,t+1[2]=1pi=1p(𝚺^i,t[L])1+δ𝝃2,\displaystyle\bm{\xi}_{i,t+1}^{[2]}=\frac{1}{p}\sum_{i=1}^{p}(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}+\delta_{\bm{\xi}_{2}},

According to the convergence of the FODAC algorithms (Theorem 3.1 in [27]), suppose the Assumptions 12 hold, the consensus error δ𝝃1,δ𝝃2\delta_{\bm{\xi}_{1}},~{}\delta_{\bm{\xi}_{2}} is bounded as,

|δ𝝃1|\displaystyle\lvert\delta_{\bm{\xi}_{1}}\rvert 4(pB1)δ1φ0.5p(p+1)B1,\displaystyle\leq\frac{4(pB-1)\delta_{1}}{\varphi^{0.5p(p+1)B-1}}, (28)
|δ𝝃2|\displaystyle\lvert\delta_{\bm{\xi}_{2}}\rvert 4(pB1)δ2φ0.5p(p+1)B1\displaystyle\leq\frac{4(pB-1)\delta_{2}}{\varphi^{0.5p(p+1)B-1}}

when time tt\rightarrow\infty.

Denote η=4(pB1)φ0.5p(p+1)B1\eta=\frac{4(pB-1)}{\varphi^{0.5p(p+1)B-1}}ζ𝝁=1pi=1p𝝁i,t[L](𝚺^i,t[L])1\zeta_{\bm{\mu}}=\frac{1}{p}\sum_{i=1}^{p}\bm{\mu}_{i,t}^{[L]}\cdot(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}, ζ𝚺=1pi=1p(𝚺^i,t[L])1\zeta_{\bm{\Sigma}}=\frac{1}{p}\sum_{i=1}^{p}(\hat{\bm{\Sigma}}_{i,t}^{[L]})^{-1}. Let |δ𝝃2|ηδ21σn2+σf2ζ𝚺\lvert\delta_{\bm{\xi}_{2}}\rvert\leq\eta\delta_{2}\leq\frac{1}{\sigma_{n}^{2}+\sigma_{f}^{2}}\leq\zeta_{\bm{\Sigma}}, i.e., the σn2\sigma_{n}^{2} satisfies σn2ησf4σe2+σf2\sigma_{n}^{2}\geq\frac{\eta\sigma_{f}^{4}}{\sigma_{e}^{2}+\sigma_{f}^{2}} such that we have ζ𝚺+δ𝝃2>0\zeta_{\bm{\Sigma}}+\delta_{\bm{\xi}_{2}}>0 for avoiding singularity. The difference between distributed the aggregation mean 𝝁i,t[D]\bm{\mu}_{i,t}^{[D]} and the PoE results (8) can be written as,

|𝝁i,t[D]𝝁~||ζ𝝁+δ𝝃1ζ𝚺+δ𝝃2ζ𝝁ζ𝚺||ζ𝚺δ𝝃1ζ𝝁δ𝝃2ζ𝚺(ζ𝚺+δ𝝃2)|\displaystyle\lvert\bm{\mu}_{i,t}^{[D]}-\tilde{\bm{\mu}}\rvert\leq\left\lvert\frac{\zeta_{\bm{\mu}}+\delta_{\bm{\xi}_{1}}}{\zeta_{\bm{\Sigma}}+\delta_{\bm{\xi}_{2}}}-\frac{\zeta_{\bm{\mu}}}{\zeta_{\bm{\Sigma}}}\right\rvert\leq\left\lvert\frac{\zeta_{\bm{\Sigma}}\delta_{\bm{\xi}_{1}}-\zeta_{\bm{\mu}}\delta_{\bm{\xi}_{2}}}{\zeta_{\bm{\Sigma}}\left(\zeta_{\bm{\Sigma}}+\delta_{\bm{\xi}_{2}}\right)}\right\rvert (29)
|δ𝝃1ζ𝚺+δ𝝃2𝝁~(1ζ𝚺ζ𝚺+δ𝝃2)|\displaystyle\leq\left\lvert\frac{\delta_{\bm{\xi}_{1}}}{\zeta_{\bm{\Sigma}}+\delta_{\bm{\xi}_{2}}}-\tilde{\bm{\mu}}(1-\frac{\zeta_{\bm{\Sigma}}}{\zeta_{\bm{\Sigma}}+\delta_{\bm{\xi}_{2}}})\right\rvert
ηδ1(σn2+σf2)1+ηδ2(σn2+σf2)+|ηδ2(σn2+σf2)1ηδ2(σn2+σf2)|𝝁~\displaystyle\leq\frac{\eta\delta_{1}(\sigma_{n}^{2}+\sigma_{f}^{2})}{1+\eta\delta_{2}(\sigma_{n}^{2}+\sigma_{f}^{2})}+\left\lvert\frac{\eta\delta_{2}(\sigma_{n}^{2}+\sigma_{f}^{2})}{1-\eta\delta_{2}(\sigma_{n}^{2}+\sigma_{f}^{2})}\right\rvert\cdot\tilde{\bm{\mu}}

Furthermore, if there is a constant h>0h>0, Δ𝐫i,t+1=𝟎\Delta\mathbf{r}_{i,t+1}=\mathbf{0} for any time t>ht>h holds, according to the Corollary 3.1 in [27], δ𝝃1\delta_{\bm{\xi}_{1}} and δ𝝃2\delta_{\bm{\xi}_{2}} will converge to zero. Then, we have 𝝁i,t[D](𝐱)𝝁~(𝐱),iV,𝐱𝒳\bm{\mu}_{i,t}^{[D]}(\mathbf{x}^{*})\rightarrow\tilde{\bm{\mu}}(\mathbf{x}^{*}),~{}\forall i\in V,~{}\mathbf{x}^{*}\in\mathcal{X} as time tt\rightarrow\infty.

References

  • [1] A. Singh, F. Ramos, H. D. Whyte, and W. J. Kaiser, “Modeling and decision making in spatio-temporal processes for environmental surveillance,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), 2010, pp. 5490–5497.
  • [2] J. Hansen and G. Dudek, “Coverage optimization with non-actuated, floating mobile sensors using iterative trajectory planning in marine flow fields,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2018, pp. 1906–1912.
  • [3] B. Zhou, H. Xu, and S. Shen, “Racer: Rapid collaborative exploration with a decentralized multi-uav system,” IEEE Trans. Robot., vol. 39, no. 3, pp. 1816–1835, 2023.
  • [4] A. A. R. Newaz, M. Alsayegh, T. Alam, and L. Bobadilla, “Decentralized multi-robot information gathering from unknown spatial fields,” IEEE Robot. Autom. Lett., vol. 8, no. 5, pp. 3070–3077, 2023.
  • [5] T. X. Lin, S. Al-Abri, S. Coogan, and F. Zhang, “A distributed scalar field mapping strategy for mobile robots,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2020, pp. 11 581–11 586.
  • [6] T. M. C. Sears and J. A. Marshall, “Mapping of spatiotemporal scalar fields by mobile robots using Gaussian process regression,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2022, pp. 6651–6656.
  • [7] L. Jin, J. Rückin, S. H. Kiss, T. Vidal-Calleja, and M. Popović, “Adaptive-resolution field mapping using Gaussian process fusion with integral kernels,” IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 7471–7478, July 2022.
  • [8] X. Lan and M. Schwager, “Learning a dynamical system model for a spatiotemporal field using a mobile sensing robot,” in Proc. American Control Conf. (ACC), 2017, pp. 170–175.
  • [9] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an efficient probabilistic 3D mapping framework based on octrees,” Auton. Robots, vol. 34, no. 3, pp. 189–206, Apr. 2013.
  • [10] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, “When Gaussian process meets big data: A review of scalable gps,” IEEE Trans. Neural Networks Learn. Syst., vol. 31, no. 11, pp. 4405–4423, Nov. 2020.
  • [11] M. Titsias, “Variational learning of inducing variables in sparse Gaussian processes,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 5, 16–18 Apr 2009, pp. 567–574.
  • [12] D. Burt, C. E. Rasmussen, and M. V. D. Wilk, “Rates of convergence for sparse variational Gaussian process regression,” in Int. Conf. Mach. Learn. (ICML), May 2019, pp. 862–871.
  • [13] M. Deisenroth and J. W. Ng, “Distributed Gaussian processes,” in Int. Conf. Mach. Learn. (ICML), 07–09 Jul 2015, pp. 1481–1490.
  • [14] H. Liu, J. Cai, Y. Wang, and Y. S. Ong, “Generalized robust Bayesian committee machine for large-scale Gaussian process regression,” in Int. Conf. Mach. Learn. (ICML), vol. 80, 10–15 Jul 2018, pp. 3131–3140.
  • [15] T. N. Hoang, Q. M. Hoang, and B. K. H. Low, “A distributed variational inference framework for unifying parallel sparse Gaussian process regression models,” in Int. Conf. Mach. Learn. (ICML), vol. 48, 20–22 Jun 2016, pp. 382–391.
  • [16] T. N. Hoang, Q. M. Hoang and B. K. H. Low, “A unifying framework of anytime sparse Gaussian process regression models with stochastic variational inference for big data,” in Int. Conf. Mach. Learn. (ICML), vol. 37, 2015, pp. 569–578.
  • [17] L. Csató and M. Opper, “Sparse on-line Gaussian processes,” Neural Comput., vol. 14, no. 3, pp. 641–668, 2002.
  • [18] T. D. Bui, C. Nguyen, and R. E. Turner, “Streaming sparse Gaussian process approximations,” in Adv. Neural Inf. Proces. Syst. (NeurIPS), vol. 30, 2017.
  • [19] B. Wilcox and M. C. Yip, “SOLAR-GP: Sparse online locally adaptive regression using gaussian processes for bayesian robot model learning and control,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 2832–2839, Apr. 2020.
  • [20] Z. Yuan and M. Zhu, “Communication-aware distributed Gaussian process regression algorithms for real-time machine learning,” in Proc. American Control Conf. (ACC), 2020, pp. 2197–2202.
  • [21] A. Lederer, Z. Yang, J. Jiao, and S. Hirche, “Cooperative control of uncertain multiagent systems via distributed Gaussian processes,” IEEE Trans. Autom. Control, vol. 68, no. 5, pp. 3091–3098, May 2023.
  • [22] G. P. Kontoudis and D. J. Stilwell, “Decentralized nested Gaussian processes for multi-robot systems,” in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), 2021, pp. 8881–8887.
  • [23] D. Jang, J. Yoo, C. Y. Son, D. Kim, and H. J. Kim, “Multi-robot active sensing and environmental model learning with distributed Gaussian process,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5905–5912, Oct. 2020.
  • [24] M. E. Kepler and D. J. Stilwell, “An approach to reduce communication for multi-agent mapping applications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2020, pp. 4814–4820.
  • [25] E. Zobeidi, A. Koppel, and N. Atanasov, “Dense incremental metric-semantic mapping for multiagent systems via sparse gaussian process regression,” IEEE Trans. Robot., vol. 38, no. 5, pp. 3133–3153, Oct. 2022.
  • [26] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.   The MIT Press, 11 2005.
  • [27] M. Zhu and S. Martínez, “Discrete-time dynamic average consensus,” Automatica, vol. 46, no. 2, pp. 322–329, Feb. 2010.
  • [28] K. T. Abou-Moustafa and F. P. Ferrie, “A note on metric properties for some divergence measures: The Gaussian case,” in Proc. Asian Conf. Mach. Learn. (ACML), 2012, pp. 1–15.