This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Retrieving maximum information of symmetric states from their corrupted copies

Zhao-Yi Zhou Department of Physics, Shandong University, Jinan 250100, China    Da-Jian Zhang zdj@sdu.edu.cn Department of Physics, Shandong University, Jinan 250100, China
Abstract

Using quantum measurements to extract information from states is a matter of routine in quantum science and technologies. A recent work [Phys. Rev. Lett. 133, 040202 (2024)] reported the finding that the symmetric structures of a state can be harnessed to dramatically reduce the sample complexity in extracting information from the state. However, due to the presence of noise, the actual state at hand is often corrupted, making its symmetric structures distorted before the execution of quantum measurements. Here, using the methodology of quantum metrology, we identify the optimal measurement that can retrieve maximum information of a symmetric state from its corrupted copies. We show that this measurement can be found by solving a semidefinite program in generic cases and can be explicitly determined for a large class of noise models covariant under the symmetry group in question. The results of this study nicely complement the recent work by providing a method to optimally utilize the distorted symmetric structures of corrupted states for information retrieval.

I Introduction

Using quantum measurements to extract information from quantum states is an indispensable ingredient of quantum information processing, underpinning numerous applications across quantum science and technologies. One primary example is to extract the expectation value X¯:=tr(ρX)\overline{X}:=\mathrm{tr}(\rho X) of an observable XX in a state ρ\rho from the quantum measurements performed on ρ\rho. A long-standing pursuit in this line of research is to devise efficient methods to reduce sample complexity in quantum measurements, which has led to the proposals of compressed sensing [1, 2], adaptive tomography [3, 4], self-guided tomography [5, 6], and classical shadows [7, 8, 9].

The recent work [10] explored leveraging symmetric structures of states to reduce the sample complexity in measuring expectation values of observables. The state ρ\rho is said to be symmetric under a group GG if it satisfies

UgρUg=ρforgG,U_{g}\rho U_{g}^{\dagger}=\rho~{}~{}\textrm{for}~{}~{}g\in G, (1)

where UgU_{g} denotes a unitary representation of GG. This equation defines the symmetric structures of ρ\rho, which are pervasive in quantum physics and frequently encountered in diverse contexts. A salient example showcasing the emergence of symmetric structures arises in condensed-matter physics, where the states of interest commonly exhibit translational symmetries [11]. Another well-known example is in multipartite experiments [12, 13, 14, 15, 16, 17, 18], where the states under consideration often remain invariant under permutations [19, 20, 21]. Notable instances of permutation-invariant states include the Werner states [22], the Dicke states [23], and the Greenberger-Horne-Zeilinger (GHZ) states [24], which are useful resources in quantum information processing tasks [25, 26, 27].

The main finding of Ref. [10] is that, when the state ρ\rho in question exhibits some symmetric structures, the optimal measurement for obtaining X¯\overline{X} is the projective measurement of another observable YY rather than XX itself. Here,

Y=𝒫(X),Y=\mathcal{P}\left(X\right), (2)

where 𝒫\mathcal{P} is the so-called GG-twirling operation, defined as 𝒫(X)=gUgXUg/|G|\mathcal{P}\left(X\right)=\sum_{g}{U_{g}XU_{g}^{\dagger}}/\left|G\right| for a finite group GG, with |G|\left|G\right| the cardinality of GG. When GG is a compact Lie group, 𝒫(X)=G𝑑μ(g)UgXUg\mathcal{P}\left(X\right)=\int_{G}{d\mu\left(g\right)U_{g}XU_{g}^{\dagger}}, where μ(g)\mu(g) is the normalized Haar measure [28, 29]. Two key properties of YY are that

Y¯=X¯,\displaystyle\overline{Y}=\overline{X}, (3)

but

(ΔY)2(ΔX)2,\displaystyle(\Delta Y)^{2}\leq(\Delta X)^{2}, (4)

where (ΔX)2:=tr(ρX2)(trρX)2(\Delta X)^{2}:=\tr(\rho X^{2})-(\tr\rho X)^{2} is the quantum uncertainty of XX and (ΔY)2(\Delta Y)^{2} is defined in a similar way. Physically, the equality (3) means that the projective measurement of YY can be an alternative to the projective measurement of XX for obtaining X¯\overline{X}. The inequality (4) implies that the former generally consumes fewer samples than the latter for reaching the same measurement precision.

The purpose of the present study is to complement the recent work [10] by taking into account noise, which can be, without loss of generality, modeled by a completely positive and trace-preserving map \mathcal{E}. As a persistent topic in quantum information science [30, 31], the state ρ\rho may be corrupted by noise before the execution of quantum measurements [32, 33]. This leads to the fact that the actual state available in the presence of noise is the corrupted state (ρ)\mathcal{E}(\rho) rather than ρ\rho itself (see Fig. 1 for a schematic illustration). A natural question then arises: How can we optimally measure the expectation value X¯=tr(ρX)\overline{X}=\tr(\rho X) of XX in ρ\rho when the actual state at hand is (ρ)\mathcal{E}(\rho)? This question is highly nontrivial as the symmetric structures described by Eq. (1) are distorted in (ρ)\mathcal{E}(\rho).

Refer to caption
Figure 1: Schematic illustration of the setting under consideration. Consider the symmetric structures described by the group G={𝟙,σz}G=\{\mathbb{1},\sigma_{z}\}, where 𝟙\mathbb{1} denotes the identity matrix and σz\sigma_{z} denotes the Pauli-ZZ matrix. A state ρ\rho exhibits these symmetric structures if and only if it can be parametrized as ρ=diag(θ,1θ)\rho=\textrm{diag}(\theta,1-\theta), which corresponds to a point located on the vertical red (solid) line in the Bloch sphere. The presence of noise corrupts the state ρ\rho, transforming it to be (ρ)\mathcal{E}\left(\rho\right). For example, when (ρ)=ρ/2+HρH/2\mathcal{E}(\rho)=\rho/2+H\rho H/2 with HH the Hadamard gate, (ρ)\mathcal{E}(\rho) is represented by a point located on the blue oblique (dashed) line in the Bloch sphere. The shift in the location indicates the distortion of the symmetric structures in question. Our purpose is to find the optimal measurement that is performed on (ρ)\mathcal{E}(\rho) and can take advantage of the distorted symmetric structures in (ρ)\mathcal{E}(\rho) to extract the information about ρ\rho.

In this study we answer this question. The information content we use is the quantum Fisher information (QFI) [Braunstein1994PRL, Zhang2020PRR], the inverse of which characterizes the optimal sample complexity in quantum measurements according to the celebrated quantum Cramér-Rao bound [10]. Moreover, it makes sense to say that the QFI is the maximal information extractable via a quantum measurement, as the classical Fisher information naturally characterizes the information extracted from a measurement and the QFI, by definition, is the maximal classical Fisher information over all measurements. To identify the optimal measurement capable of extracting the QFI, we resort to the geometric formulation of parameter estimation theory [TAD20], which is well suited for dealing with the estimation of a parameter that can be expressed as a function of ρ\rho, such as the expectation value of an observable, the fidelity to a given pure state, and the von Neumann entropy. Resorting to this theory, we show that the optimal measurement can be found by solving a semidefinite program (SDP) whenever the noise model \mathcal{E} is invertible.111As a linear map on the space of Hermitian operators, \mathcal{E} can be described by a matrix if we choose a basis for this space. By saying that \mathcal{E} is invertible, we mean that the matrix associated with \mathcal{E} is invertible. Intuitively speaking, a non-invertible \mathcal{E} arises in the situation that the information about the initial state ρ\rho is lost and cannot be retrieved [ZJZ24]. As the aim of this paper is to retrieve information from corrupted copies of ρ\rho, we focus on the setting that \mathcal{E} is invertible. However, it turns out that this measurement may depend on ρ\rho, due to which a refined knowledge of ρ\rho may be required in order to implement it in practice. We clarify that such an unpleasant dependence issue is a common feature in quantum metrology rather than being exclusive to the present study.

To release the requirement on the knowledge of ρ\rho, we further specialize our discussions to a large class of noise models that are covariant under the symmetry group GG. The studies on covariant quantum operations have been extensive and garnered significant interest because of their relevance in various physical contexts. For example, the absence of a quantum reference frame such as a phase or Cartesian reference frame imposes constraints on a party’s ability to prepare states and perform quantum operations. This has sparked a line of development known as quantum reference frames [BRS07], where covariant quantum operations are those that can be executed without access to a reference frame. Another example is the presence of superselection rules [WWW52, BW03], which restricts the permissible quantum operations on a quantum system to be covariant ones. More generally, the presence of symmetries in a system generally imposes restrictions on the manipulation of the system, which results in nontrivial limitations on the implementation of quantum operations [MS14, PCB16, ZYHT17]. This has led to the proposal of the resource theory of asymmetry [GS08, CG19], where covariant quantum operations are the free operations that do not consume or increase the asymmetry resource of states. We show that the optimal measurement can be explicitly determined for covariant models, thereby eliminating the dependence issue mentioned above.

Finally, we apply our results to an experimentally relevant scenario, demonstrating how to optimally take advantage of the distorted symmetric structures in (ρ)\mathcal{E}(\rho) to reduce the sample complexity in information retrieval.

This paper is organized as follows. In Sec. II, we set the stage of our analysis. In Sec. III, we show how to find the optimal measurement whenever the noise model \mathcal{E} is invertible. In Sec. IV, we specialize our discussion to the noise models that are covariant under the group GG. We apply our results to an experimentally relevant scenario in Sec. V and conclude this paper in Sec. VI.

II Stage of our analysis

We are interested in the QFI about X¯\overline{X} given (ρ)\mathcal{E}(\rho) [10], denoted as 𝒥[X¯;(ρ)]\mathcal{J}[\overline{X};\mathcal{E}(\rho)], which represents the maximal information about X¯\overline{X} that we can extract from (ρ)\mathcal{E}(\rho) via a quantum measurement [Hel76, Hol11]. To specify the form of 𝒥[X¯;(ρ)]\mathcal{J}[\overline{X};\mathcal{E}(\rho)], we recall that the ρ\rho satisfying Eq. (1) can be parametrized using the representation theory of groups [10]. That is, ρ\rho can be expressed as ρ(𝜽)\rho(\bm{\theta}) for some parameters 𝜽=(θ1,,θq)\bm{\theta}=(\theta_{1},\cdots,\theta_{q}), where qq denotes an integer. For example, a qubit state respecting the symmetry group G={𝟙,σz}G=\{\mathbb{1},\sigma_{z}\} can be expressed as ρ=diag(θ,1θ)\rho=\textrm{diag}(\theta,1-\theta), where σα\sigma_{\alpha}, α=x,y,z\alpha=x,y,z, denote the Pauli matrices. The explicit form of ρ(𝜽)\rho(\bm{\theta}) in general can be found in Supplemental Material of Ref. [10] and is presented in Appendix A of the present study, too. Apparently, (ρ)\mathcal{E}(\rho) also depends on 𝜽\bm{\theta} and X¯=tr(ρX)\overline{X}=\tr(\rho X) can be regarded as a function of 𝜽\bm{\theta}. We can express 𝒥[X¯;(ρ)]\mathcal{J}[\overline{X};\mathcal{E}(\rho)] as [10]

𝒥[X¯;(ρ)]=1/(X¯TH1X¯),\displaystyle\mathcal{J}[\overline{X};\mathcal{E}(\rho)]=1\bigg{/}\left(\partial\overline{X}^{T}H^{-1}\partial\overline{X}\right), (5)

where X¯:=(X¯θ1,,X¯θq)T\partial\overline{X}:=(\frac{\partial\overline{X}}{\partial\theta_{1}},\cdots,\frac{\partial\overline{X}}{\partial\theta_{q}})^{T} is a qq-dimensional vector, and HH denotes the QFI matrix whose ijij element is given by

Hij=tr[(ρ)SiSj+SjSi2].\displaystyle H_{ij}=\tr[\mathcal{E}(\rho)\frac{S_{i}S_{j}+S_{j}S_{i}}{2}]. (6)

Here SiS_{i} is known as symmetric logarithmic derivative (SLD) [Hel76, Hol11], defined as the Hermitian operator that satisfies

def]SLDθi(ρ)=12[(ρ)Si+Si(ρ)].\displaystyle def]{SLD}\frac{\partial}{\partial\theta_{i}}\mathcal{E}(\rho)=\frac{1}{2}\left[\mathcal{E}(\rho)S_{i}+S_{i}\mathcal{E}(\rho)\right]. (7)

Below, we find a convenient formula for calculating 𝒥[X¯;(ρ)]\mathcal{J}[\overline{X};\mathcal{E}(\rho)]. We do this by following the theory in Ref. [TAD20].

Throughout this study, we only consider Hermitian operators unless otherwise specified. We define a weighted inner product222Strictly speaking, this definition represents a pre-inner product as the positive-definiteness requirement may not be met when (ρ)\mathcal{E}(\rho) is singular. between two operators h1h_{1} and h2h_{2} as

h1,h2(ρ)tr[(ρ)h1h2+h2h12],\displaystyle\langle h_{1},h_{2}\rangle_{\mathcal{E}(\rho)}\coloneqq\mathrm{tr}\left[\mathcal{E}(\rho)\frac{h_{1}h_{2}+h_{2}h_{1}}{2}\right], (8)

where the subscript (ρ)\mathcal{E}(\rho) is used to indicate the dependence of this definition on (ρ)\mathcal{E}(\rho). Equation (8) induces a norm

h(ρ)=h,h(ρ),\displaystyle\norm{h}_{\mathcal{E}(\rho)}=\sqrt{\langle h,h\rangle_{\mathcal{E}(\rho)}}, (9)

which inherits the dependence on (ρ)\mathcal{E}(\rho) from the inner product.

We introduce a linear space of zero-mean operators as

𝒵(ρ)={h:tr[(ρ)h]=0}.\displaystyle\mathcal{Z}_{\mathcal{E}(\rho)}=\{h:\tr[\mathcal{E}(\rho)h]=0\}. (10)

It is easy to see that all the SLDs defined by Eq. (LABEL:SLD) belong to 𝒵(ρ)\mathcal{Z}_{\mathcal{E}(\rho)}. Therefore, the linear span of these SLDs

𝒯(ρ)=span{S1,S2,,Sq}\mathcal{T}_{\mathcal{E}(\rho)}=\mathrm{span}_{\mathbb{R}}\left\{S_{1},S_{2},\cdots,S_{q}\right\} (11)

is a subspace of 𝒵(ρ)\mathcal{Z}_{\mathcal{E}(\rho)}. 𝒯(ρ)\mathcal{T}_{\mathcal{E}(\rho)} is known as the tangent space in the estimation theory in Ref. [TAD20]. We also introduce

𝒯(ρ)={h𝒵(ρ):h,Si(ρ)=0,i=1,,q},\displaystyle\mathcal{T}_{\mathcal{E}(\rho)}^{\bot}=\{h\in\mathcal{Z}_{\mathcal{E}(\rho)}:\langle h,S_{i}\rangle_{\mathcal{E}(\rho)}=0,~{}~{}i=1,\cdots,q\}, (12)

which is the orthogonal complement of 𝒯(ρ)\mathcal{T}_{\mathcal{E}(\rho)} in the space 𝒵(ρ)\mathcal{Z}_{\mathcal{E}(\rho)}.

Refer to caption
Figure 2: Schematic of the introduced concepts. The space 𝒵(ρ)\mathcal{Z}_{\mathcal{E}(\rho)} is the direct sum of the tangent space 𝒯(ρ)\mathcal{T}_{\mathcal{E}(\rho)} and its orthogonal complement 𝒯(ρ)\mathcal{T}_{\mathcal{E}(\rho)}^{\bot}. Accordingly, the influence operator δ\delta can be decomposed as δ=(δh)+h\delta=(\delta-h)+h, where hh is required to belong to 𝒯(ρ)\mathcal{T}_{\mathcal{E}(\rho)}^{\bot}. Such decompositions are not unique. The inverse of the quantum Fisher information 𝒥[X¯;(ρ)]\mathcal{J}[\overline{X};\mathcal{E}(\rho)] corresponds to the minimal length of (δh)(\delta-h) over all such decompositions.

A useful notion in the theory [TAD20] is the so-called influence operator, defined as an operator δ\delta in 𝒵(ρ)\mathcal{Z}_{\mathcal{E}(\rho)} that satisfies

Si,δ(ρ)=θiX¯,\langle S_{i},\delta\rangle_{\mathcal{E}(\rho)}=\frac{\partial}{\partial\theta_{i}}\overline{X}, (13)

for i=1,,qi=1,...,q. Such an operator may not be unique. We choose

δ=1(X)X¯𝟙,\delta=\mathcal{E}^{*-1}\left(X\right)-\overline{X}\mathbb{1}, (14)

with 𝟙\mathbb{1} denoting the identity matrix. Here we have assumed that \mathcal{E} is invertible. \mathcal{E}^{*} denotes the dual map333Let (ρ)=iKiρKi\mathcal{E}(\rho)=\sum_{i}K_{i}\rho K_{i}^{\dagger} be the Kraus representation of \mathcal{E}, where KiK_{i}’s are Kraus operators. Then the dual map \mathcal{E}^{*} can be expressed as (h)=iKihKi\mathcal{E}^{*}(h)=\sum_{i}K_{i}^{\dagger}hK_{i}. of \mathcal{E} [Zhang2016PRA]; that is, \mathcal{E} and \mathcal{E}^{*} satisfy the relation tr[h1(h2)]=tr[(h1)h2]\tr[h_{1}\mathcal{E}(h_{2})]=\tr[\mathcal{E}^{*}(h_{1})h_{2}]. It is a general property that \mathcal{E}^{*} is invertible if and only if \mathcal{E} is invertible. 1\mathcal{E}^{*-1} denotes the inverse of \mathcal{E}^{*}. We prove in Appendix B that δ\delta defined in Eq. (14) is indeed a legitimate influence operator.

According to Theorem 1 in Ref. [TAD20], the QFI 𝒥[X¯;(ρ)]\mathcal{J}[\overline{X};\mathcal{E}(\rho)] can be evaluated using the influence operator:

1/𝒥[X¯;(ρ)]=minh𝒯(ρ)δh(ρ)2,\displaystyle 1\big{/}\mathcal{J}[\overline{X};\mathcal{E}(\rho)]=\min_{h\in\mathcal{T}_{\mathcal{E}(\rho)}^{\bot}}\norm{\delta-h}_{\mathcal{E}(\rho)}^{2}, (15)

which is the convenient formula we seek. We schematically show the concepts introduced above in Fig. 2.

III Optimal measurement

To find the optimal measurement, we now convert formula (15) into an SDP. We do this in the following three steps.

III.1 Step 1

We introduce an auxiliary subspace of Hermitian operators

𝒜{h:tr(ρh)=0,tr(ρθih)=0,i=1,,q}.\mathcal{A}\coloneqq\left\{h:\mathrm{tr}\left(\rho h\right)=0,~{}~{}\mathrm{tr}\left(\frac{\partial\rho}{\partial\theta_{i}}h\right)=0,~{}~{}i=1,...,q\right\}. (16)

A useful result is that 𝒜\mathcal{A} can be explicitly characterized as

𝒜={𝒬(h):his Hermitian},\mathcal{A}=\left\{\mathcal{Q}\left(h\right):h~{}~{}\textrm{is Hermitian}\right\}, (17)

with 𝒬:=id𝒫\mathcal{Q}:=\mathrm{id}-\mathcal{P}. Here id\mathrm{id} denotes the identity map and 𝒫\mathcal{P} is defined below Eq. (2). Let us prove the above result. To show that 𝒬(h)\mathcal{Q}(h) satisfies the two equalities in Eq. (16) for any Hermitian operator hh, we resort to the equality

𝒫(ρ)=ρ,\displaystyle\mathcal{P}(\rho)=\rho, (18)

which follows from Eq. (1) and the definition of 𝒫\mathcal{P}. We have

tr[ρ𝒬(h)]=tr(ρh)tr[ρ𝒫(h)]=0,\mathrm{tr}\left[\rho\mathcal{Q}\left(h\right)\right]=\mathrm{tr}\left(\rho h\right)-\mathrm{tr}\left[\rho\mathcal{P}\left(h\right)\right]=0, (19)

where we have used the fact that tr[ρ𝒫(h)]=tr[𝒫(ρ)h]\mathrm{tr}\left[\rho\mathcal{P}\left(h\right)\right]=\mathrm{tr}\left[\mathcal{P}\left(\rho\right)h\right]. An immediate consequence of Eq. (19) is that

tr[ρθi𝒬(h)]=θitr[ρ𝒬(h)]=0,\displaystyle\mathrm{tr}\left[\frac{\partial\rho}{\partial\theta_{i}}\mathcal{Q}\left(h\right)\right]=\frac{\partial}{\partial\theta_{i}}\mathrm{tr}\left[\rho\mathcal{Q}\left(h\right)\right]=0, (20)

that is, 𝒬(h)\mathcal{Q}(h) also satisfies the second equality in Eq. (16). On the other hand, given an operator hh satisfying the two equalities in Eq. (16), we can decompose it as

h=𝒫(h)+𝒬(h).\displaystyle h=\mathcal{P}\left(h\right)+\mathcal{Q}\left(h\right). (21)

Note that 𝒬(h)\mathcal{Q}(h) satisfies the two equalities in Eq. (16), as just proved. We have that 𝒫(h)=h𝒬(h)\mathcal{P}\left(h\right)=h-\mathcal{Q}\left(h\right), which is a linear combination of hh and 𝒬(h)\mathcal{Q}(h), also satisfies these two equalities. It follows that (see Appendix C for the proof)

𝒫(h)=0.\displaystyle\mathcal{P}(h)=0. (22)

Therefore,

h=𝒬(h),\displaystyle h=\mathcal{Q}(h), (23)

implying that the hh belongs to the set defined by Eq. (17).

III.2 Step 2

We show that the space 𝒯(ρ)\mathcal{T}_{\mathcal{E}\left(\rho\right)}^{\bot} can be characterized as

𝒯(ρ)={1(h):h𝒜}.\mathcal{T}_{\mathcal{E}\left(\rho\right)}^{\bot}=\{\mathcal{E}^{*-1}\left(h\right):h\in\mathcal{A}\}. (24)

Let h𝒜h\in\mathcal{A}, i.e., hh satisfies the two equalities in Eq. (16). We have

tr[(ρ)1(h)]=tr[ρ(1(h))]=tr(ρh)=0,\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\mathcal{E}^{*-1}\left(h\right)\right]=\mathrm{tr}\left[\rho\mathcal{E}^{*}\left(\mathcal{E}^{*-1}\left(h\right)\right)\right]=\mathrm{tr}\left(\rho h\right)=0, (25)

indicating that 1(h)𝒵(ρ)\mathcal{E}^{*-1}\left(h\right)\in\mathcal{Z}_{\mathcal{E}\left(\rho\right)}. Besides, simple algebra shows

1(h),Si(ρ)=tr[Si(ρ)+(ρ)Si21(h)],\langle\mathcal{E}^{*-1}\left(h\right),S_{i}\rangle_{\mathcal{E}\left(\rho\right)}=\mathrm{tr}\left[\frac{S_{i}\mathcal{E}\left(\rho\right)+\mathcal{E}\left(\rho\right)S_{i}}{2}\mathcal{E}^{*-1}\left(h\right)\right], (26)

which, in conjunction with Eq. (LABEL:SLD), leads to

1(h),Si(ρ)=tr[θi(ρ)1(h)].\langle\mathcal{E}^{*-1}\left(h\right),S_{i}\rangle_{\mathcal{E}\left(\rho\right)}=\mathrm{tr}\left[\frac{\partial}{\partial\theta_{i}}\mathcal{E}\left(\rho\right)\mathcal{E}^{*-1}\left(h\right)\right]. (27)

Using θi(ρ)=(ρθi)\frac{\partial}{\partial\theta_{i}}\mathcal{E}\left(\rho\right)=\mathcal{E}(\frac{\partial\rho}{\partial\theta_{i}}), we can rewrite the right-hand side of Eq. (27) as

tr[θi(ρ)1(h)]=tr(ρθih).\displaystyle\mathrm{tr}\left[\frac{\partial}{\partial\theta_{i}}\mathcal{E}\left(\rho\right)\mathcal{E}^{*-1}\left(h\right)\right]=\mathrm{tr}\left(\frac{\partial\rho}{\partial\theta_{i}}h\right). (28)

Further, from the second equality in Eq. (16), it follows that

1(h),Si(ρ)=0.\displaystyle\langle\mathcal{E}^{*-1}\left(h\right),S_{i}\rangle_{\mathcal{E}\left(\rho\right)}=0. (29)

So 1(h)\mathcal{E}^{*-1}\left(h\right) belongs to 𝒯(ρ)\mathcal{T}_{\mathcal{E}\left(\rho\right)}^{\bot} for any h𝒜h\in\mathcal{A}. It remains to show that for any h~𝒯(ρ)\tilde{h}\in\mathcal{T}_{\mathcal{E}\left(\rho\right)}^{\bot}, there exists a h𝒜h\in\mathcal{A} such that

h~=1(h).\displaystyle\tilde{h}=\mathcal{E}^{*-1}(h). (30)

Recall that h~\tilde{h} satisfies two equalities [see Eqs. (10) and (12)]

tr[(ρ)h~]=0,\displaystyle\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\tilde{h}\right]=0, (31)

and

h~,Si(ρ)=0.\displaystyle\langle\tilde{h},S_{i}\rangle_{\mathcal{E}(\rho)}=0. (32)

Resorting to the same reasoning as in the derivations of Eqs. (25) and (27), we can respectively rewrite Eqs. (31) and (32) as

tr[ρ(h~)]=0,\displaystyle\tr\left[\rho\mathcal{E}^{*}(\tilde{h})\right]=0, (33)

and

tr[ρθi(h~)]=0.\mathrm{tr}\left[\frac{\partial\rho}{\partial\theta_{i}}\mathcal{E}^{*}\left(\tilde{h}\right)\right]=0. (34)

Comparing Eqs. (33) and (34) with the two equalities in Eq. (16), we see that (h~)\mathcal{E}^{*}\left(\tilde{h}\right) belongs to 𝒜\mathcal{A}. That is, (h~)=h\mathcal{E}^{*}\left(\tilde{h}\right)=h for some h𝒜h\in\mathcal{A}, which is equivalent to Eq. (30).

III.3 Step 3

We specify the SDP for finding the optimal measurement. Inserting Eqs. 17 and 24 into Eq. (15) gives

1/𝒥[X¯;(ρ)]=minhδ1[𝒬(h)](ρ)2.\displaystyle 1/\mathcal{J}\left[\overline{X};\mathcal{E}\left(\rho\right)\right]=\min_{h}\left\|\delta-\mathcal{E}^{*-1}\left[\mathcal{Q}\left(h\right)\right]\right\|_{\mathcal{E}(\rho)}^{2}. (35)

We introduce the observable

Yh1[X𝒬(h)],Y_{h}\coloneqq\mathcal{E}^{*-1}\left[X-\mathcal{Q}\left(h\right)\right], (36)

which satisfies

tr[(ρ)Yh]=tr[ρ(Yh)]=tr(ρX)tr[ρ𝒬(h)]=X¯.\mathrm{tr}\left[\mathcal{E}\left(\rho\right)Y_{h}\right]=\mathrm{tr}\left[\rho\mathcal{E}^{*}\left(Y_{h}\right)\right]=\mathrm{tr}\left(\rho X\right)-\mathrm{tr}\left[\rho\mathcal{Q}\left(h\right)\right]=\overline{X}. (37)

That is, the expectation value of YhY_{h} in the corrupted state (ρ)\mathcal{E}(\rho) is equal to the expectation value of XX in ρ\rho. Noting that δ=1(X)X¯𝟙\delta=\mathcal{E}^{*-1}\left(X\right)-\overline{X}\mathbb{1} [see Eq. (14)], we can rewrite Eq. 35 as

1/𝒥[X¯;(ρ)]=mintr[(ρ)(YhX¯𝟙)2].1/\mathcal{J}\left[\overline{X};\mathcal{E}\left(\rho\right)\right]=\underset{h}{\min}\,\,\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\left(Y_{h}-\overline{X}\mathbb{1}\right)^{2}\right]. (38)

It is important to notice that the term tr[(ρ)(YhX¯𝟙)2]\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\left(Y_{h}-\overline{X}\mathbb{1}\right)^{2}\right] appearing in Eq. (38) is simply the quantum uncertainty of YhY_{h} in the state (ρ)\mathcal{E}(\rho); that is,

1/𝒥[X¯;(ρ)]=minh(ΔYh)(ρ)2,\displaystyle 1/\mathcal{J}\left[\overline{X};\mathcal{E}\left(\rho\right)\right]=\min_{h}\left(\Delta Y_{h}\right)_{\mathcal{E}(\rho)}^{2}, (39)

where we use (ΔYh)(ρ)2\left(\Delta Y_{h}\right)_{\mathcal{E}(\rho)}^{2} to denote the quantum uncertainty of YhY_{h} in (ρ)\mathcal{E}(\rho). Lastly, we reformulate Eq. (38) as the SDP:

1/𝒥[X¯;(ρ)]=minΛ,h\displaystyle 1/\mathcal{J}\left[\overline{X};\mathcal{E}\left(\rho\right)\right]=\underset{\Lambda,\,\,h}{\min}\quad tr[(ρ)Λ]\displaystyle\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\Lambda\right] (40a)
s.t.\displaystyle\mathrm{s}.\mathrm{t}.\quad [ΛYhX¯𝟙YhX¯𝟙𝟙]0.\displaystyle\left[\begin{matrix}\Lambda&Y_{h}-\overline{X}\mathbb{1}\\ Y_{h}-\overline{X}\mathbb{1}&\mathbb{1}\\ \end{matrix}\right]\geq 0. (40b)

The correctness of this reformulation can be verified by noting that the constraint in Eq. 40 can equivalently be expressed as Λ(YhX¯𝟙)2\Lambda\geq\left(Y_{h}-\overline{X}\mathbb{1}\right)^{2} according to the Schur complement condition for positive semidefiniteness [HJ12]. We cast Eq. (40) in the canonical form of an SDP in Appendix D.

We now summarize the results obtained so far as a theorem.

Theorem 1.

Let the symmetric structures of ρ\rho be described by a finite or compact Lie group GG. The optimal measurement to retrieve the information about X¯=tr(ρX)\overline{X}=\tr(\rho X) from the corrupted state (ρ)\mathcal{E}(\rho) is the projective measurement of the observable Yh0Y_{h_{0}} defined in Eq. 36, where h0h_{0} minimizes the SDP in Eq. 40. The expectation value of Yh0Y_{h_{0}} in (ρ)\mathcal{E}(\rho) equals to the expectation value of XX in ρ\rho. Moreover, the inverse of the QFI 𝒥[X¯;(ρ)]\mathcal{J}\left[\overline{X};\mathcal{E}\left(\rho\right)\right] equals to the quantum uncertainty of Yh0Y_{h_{0}} in (ρ)\mathcal{E}(\rho).

We clarify that the optimal solution h0h_{0} may depend on the state ρ\rho in general. Physically, this means that a refined knowledge of ρ\rho may be required in order to implement the projective measurement of Yh0Y_{h_{0}} in practice. It should be mentioned that such an unpleasant dependence is a common feature of quantum metrological protocols [PAR09] rather than being exclusive to our study. Below, we eliminate the dependence of h0h_{0} on ρ\rho by focusing on the noise models that are covariant under GG.

IV Covariant noise models

Let us now consider the setting that \mathcal{E} is covariant under the group GG, which is of relevance in a plethora of physical contexts as mentioned in the introduction [BRS07, WWW52, BW03, MS14, PCB16, ZYHT17, GS08, CG19]. Formally, \mathcal{E} is said to be covariant with respect to GG if

(UghUg)=Ug(h)Ug,\mathcal{E}\left(U_{g}hU_{g}^{\dagger}\right)=U_{g}\mathcal{E}\left(h\right)U_{g}^{\dagger}, (41)

for all gGg\in G and Hermitian operators hh [MS14, PCB16, ZYHT17]. In what follows, we show how to explicitly determine the optimal measurement of Yh0Y_{h_{0}} for these covariant noise models.

We first show that 𝒫\mathcal{P} and 1\mathcal{E}^{*-1} are exchangeable, that is,

1(𝒫(h))=𝒫(1(h)),\displaystyle\mathcal{E}^{*-1}(\mathcal{P}(h))=\mathcal{P}(\mathcal{E}^{*-1}(h)), (42)

for any hh. To see why Eq. (42) holds, we can sum both sides of Eq. 41 over the group elements gg in GG, and obtain

[𝒫(h)]=𝒫[(h)],\mathcal{E}\left[\mathcal{P}\left(h\right)\right]=\mathcal{P}\left[\mathcal{E}\left(h\right)\right], (43)

for all hh. That is, the two maps 𝒫\mathcal{P} and \mathcal{E} are exchangeable. This implies that 𝒫\mathcal{P} and 1\mathcal{E}^{*-1} are exchangeable, which can be verified by resorting to the matrix representation of \mathcal{E}, 𝒫\mathcal{P}, and 1\mathcal{E}^{*-1}. Indeed, let {Hi}\left\{H_{i}\right\} denote a Hermitian basis. In this basis, the linear map \mathcal{E} can be represented by the matrix AA_{\mathcal{E}} whose ijijth element is given by

A,ij=tr[Hi(Hj)].\displaystyle A_{\mathcal{E},ij}=\mathrm{tr}\left[H_{i}\mathcal{E}\left(H_{j}\right)\right]. (44)

Then, by the cyclic property of the trace, we have that

A,ij=tr[Hi(Hj)]=tr[(Hi)Hj]=A,ji,\displaystyle A_{\mathcal{E},ij}=\mathrm{tr}\left[H_{i}\mathcal{E}\left(H_{j}\right)\right]=\mathrm{tr}\left[\mathcal{E}^{*}\left(H_{i}\right)H_{j}\right]=A_{\mathcal{E}^{*},ji}, (45)

which implies that AT=AA_{\mathcal{E}}^{T}=A_{\mathcal{E}^{*}}. Additionally, A𝒫A_{\mathcal{P}} is symmetric since

A𝒫,ij=tr[Hi𝒫(Hj)]=tr[𝒫(Hi)Hj]=A𝒫,ji.\displaystyle A_{\mathcal{P},ij}=\mathrm{tr}\left[H_{i}\mathcal{P}\left(H_{j}\right)\right]=\mathrm{tr}\left[\mathcal{P}\left(H_{i}\right)H_{j}\right]=A_{\mathcal{P},ji}. (46)

Combining these facts, we have that the commutativity [A𝒫,A]=0\left[A_{\mathcal{P}},A_{\mathcal{E}}\right]=0, which follows from Eq. (43), implies that [A𝒫T,AT]=[A𝒫,A]=0\left[A_{\mathcal{P}}^{T},A_{\mathcal{E}}^{T}\right]=\left[A_{\mathcal{P}},A_{\mathcal{E}^{*}}\right]=0. Furthermore, using the identity A1=A1A_{\mathcal{E}^{*-1}}=A_{\mathcal{E}^{*}}^{-1}, we conclude that [A𝒫,A1]=0\left[A_{\mathcal{P}},A_{\mathcal{E}^{*-1}}\right]=0 as well, that is, 𝒫\mathcal{P} and 1\mathcal{E}^{*-1} are exchangeable. Noting that

𝒬=id𝒫,\displaystyle\mathcal{Q}=\textrm{id}-\mathcal{P}, (47)

we deduce from Eq. (42) that 𝒬\mathcal{Q} and 1\mathcal{E}^{*-1} are exchangeable, too.

We then show that 𝒫\mathcal{P} is idempotent and Hermitian with respect to the inner product in Eq. (8), that is, 𝒫\mathcal{P} satisfies

𝒫(𝒫(h1))=𝒫(h1),\mathcal{P}\left(\mathcal{P}(h_{1})\right)=\mathcal{P}(h_{1}), (48)

and

𝒫(h1),h2(ρ)=h1,𝒫(h2)(ρ),\displaystyle\langle\mathcal{P}(h_{1}),h_{2}\rangle_{\mathcal{E}(\rho)}=\langle h_{1},\mathcal{P}(h_{2})\rangle_{\mathcal{E}(\rho)}, (49)

for any operators h1h_{1} and h2h_{2}. Equation (48) follows directly from the fact that 𝒫(h1)\mathcal{P}(h_{1}) is invariant under the action of UgU_{g}, i.e., Ug𝒫(h1)Ug=𝒫(h1)U_{g}\mathcal{P}(h_{1})U_{g}^{\dagger}=\mathcal{P}(h_{1}). To verify Eq. (49), we note that

tr[(ρ)𝒫(h1)h2]=1|G|gGtr[Ug(ρ)Ugh1Ugh2Ug],\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\mathcal{P}\left(h_{1}\right)h_{2}\right]=\frac{1}{\absolutevalue{G}}\sum_{g\in G}\mathrm{tr}\left[U_{g}^{\dagger}\mathcal{E}\left(\rho\right)U_{g}h_{1}U_{g}^{\dagger}h_{2}U_{g}\right], (50)

which leads to

tr[(ρ)𝒫(h1)h2]=tr[(ρ)h1𝒫(h2)],\displaystyle\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\mathcal{P}\left(h_{1}\right)h_{2}\right]=\mathrm{tr}\left[\mathcal{E}\left(\rho\right)h_{1}\mathcal{P}\left(h_{2}\right)\right], (51)

as \mathcal{E} is covariant under GG and ρ\rho is symmetric. Analogously, we have

tr[(ρ)h2𝒫(h1)]=tr[(ρ)𝒫(h2)h1].\mathrm{tr}\left[\mathcal{E}\left(\rho\right)h_{2}\mathcal{P}\left(h_{1}\right)\right]=\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\mathcal{P}\left(h_{2}\right)h_{1}\right]. (52)

Then Eq. (49) follows from summing the two sides of Eqs. 51 and 52. A direct consequence of Eqs. (48) and (49) is

𝒫(h1),𝒬(h2)(ρ)=0,\displaystyle\langle\mathcal{P}(h_{1}),\mathcal{Q}(h_{2})\rangle_{\mathcal{E}(\rho)}=0, (53)

which can be verified by noting that 𝒫(𝒬(h))=𝒫(h)𝒫(𝒫(h))=0\mathcal{P}(\mathcal{Q}(h))=\mathcal{P}(h)-\mathcal{P}(\mathcal{P}(h))=0.

Let us now determine Yh0Y_{h_{0}}. To do this, we use the equality

tr[(ρ)(YhX¯𝟙)2]=tr[(ρ)Yh2]X¯2\displaystyle\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\left(Y_{h}-\overline{X}\mathbb{1}\right)^{2}\right]=\tr\left[\mathcal{E}(\rho)Y_{h}^{2}\right]-\overline{X}^{2} (54)

to rewrite Eq. (38) as

1/𝒥[X¯;(ρ)]=minhtr[(ρ)Yh2]X¯2.1/\mathcal{J}\left[\overline{X};\mathcal{E}\left(\rho\right)\right]=\min_{h}\tr\left[\mathcal{E}(\rho)Y_{h}^{2}\right]-\overline{X}^{2}. (55)

Note that YhY_{h} can be expressed as

Yh=1(𝒫(X))+1(𝒬(Xh)).\displaystyle Y_{h}=\mathcal{E}^{*-1}(\mathcal{P}(X))+\mathcal{E}^{*-1}(\mathcal{Q}(X-h)). (56)

Exchanging 1\mathcal{E}^{*-1} with 𝒫\mathcal{P} and 𝒬\mathcal{Q} in Eq. (56), we have that

Yh=𝒫(1(X))+𝒬(1(Xh)).\displaystyle Y_{h}=\mathcal{P}(\mathcal{E}^{*-1}(X))+\mathcal{Q}(\mathcal{E}^{*-1}(X-h)). (57)

Inserting Eq. (57) into Eq. (55) and using Eq. (53), we obtain

1/𝒥[X¯;(ρ)]\displaystyle 1/\mathcal{J}\left[\overline{X};\mathcal{E}\left(\rho\right)\right] =\displaystyle= min𝒬(1(Xh))(ρ)2\displaystyle\underset{h}{\min}\left\|\mathcal{Q}\left(\mathcal{E}^{*-1}\left(X-h\right)\right)\right\|_{\mathcal{E}\left(\rho\right)}^{2} (58)
+\displaystyle+ 𝒫(1(X))(ρ)2X¯2.\displaystyle\left\|\mathcal{P}\left(\mathcal{E}^{*-1}\left(X\right)\right)\right\|_{\mathcal{E}\left(\rho\right)}^{2}-\overline{X}^{2}.

Apparently, h=Xh=X attains the minimum and Yh0=𝒫(1(X))=1(𝒫(X))Y_{h_{0}}=\mathcal{P}(\mathcal{E}^{*-1}(X))=\mathcal{E}^{*-1}(\mathcal{P}(X)). We therefore arrive at the following theorem:

Theorem 2.

The observable Yh0Y_{h_{0}} is 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right) or equivalently 𝒫(1(X))\mathcal{P}\left(\mathcal{E}^{*-1}\left(X\right)\right) when the noise model \mathcal{E} is covariant under GG.

We see that the observable 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right) is independent of ρ\rho, which means that the aforementioned dependence issue is eliminated in Theorem 2. We clarify that Theorem 2 holds for any covariant quantum operation \mathcal{E} and any choice of XX. It is worth noting that a special covariant quantum operation is =id\mathcal{E}=\textrm{id}, which corresponds to the noiseless situation considered in Ref. [10]. We easily deduce from Theorem 2 that Yh0=𝒫(X)Y_{h_{0}}=\mathcal{P}(X) in this situation, which is one of the key findings of Ref. [10]. Besides, to better digest the result in Theorem 2, we provide an intuitive understanding of this result in Appendix E.

V Illustrative application

To demonstrate the usefulness of our results, we now consider the setting that ρ\rho is an nn-qubit state whose symmetric structures are described by G={Pπ,πSn}G=\{P_{\pi},\pi\in S_{n}\}. Here π\pi labels the permutations in the symmetric group SnS_{n} and PπP_{\pi} is the unitary representation of π\pi, defined by

Pπ|ψ1|ψn=|ψπ1(1)|ψπ1(n),P_{\pi}|\psi_{1}\rangle\otimes\cdots\otimes|\psi_{n}\rangle=|\psi_{\pi^{-1}\left(1\right)}\rangle\otimes\cdots\otimes|\psi_{\pi^{-1}\left(n\right)}\rangle, (59)

with |ψi2|\psi_{i}\rangle\in\mathbb{C}^{2}. Such states naturally arise in multipartite experiments [12, 13, 14, 15, 16, 17, 18]. A well-known example is the Dicke states

|Dn(l)=(nl)1/2x{0,1}n,wt(x)=l|x,|D_{n}^{\left(l\right)}\rangle=\left(\begin{array}[]{c}n\\ l\\ \end{array}\right)^{-1/2}\sum_{x\in\{0,1\}^{n},~{}\textrm{wt}(x)=l}\ket{x}, (60)

where wt(x)\textrm{wt}(x) is the number of ones in xx, e.g., wt(x)=1\textrm{wt}(x)=1 when x=010x=010.

Motivated by the fact that dephasing is one of the dominant types of noise encountered in experiments [PRG19, ZBH19, ZZW22], we set \mathcal{E} to be the dephasing noise acting independently on the nn qubits. Specifically, the dephasing noise acting on a single qubit is described by the channel

p(ρ)=(1p2)ρ+p2σzρσz,\mathcal{E}_{p}\left(\rho\right)=\left(1-\frac{p}{2}\right)\rho+\frac{p}{2}\sigma_{z}\rho\sigma_{z}, (61)

where pp quantifies the noise strength. Here we assume that 0p<10\leq p<1, since the dephasing channel is not invertible at p=1p=1. The noise model \mathcal{E} can be described as

=pn.\mathcal{E}=\mathcal{E}_{p}^{\otimes n}. (62)

A direct calculation shows that the map 1\mathcal{E}^{*-1} reads

1=p/(p1)n.\mathcal{E}^{*-1}=\mathcal{E}_{p/\left(p-1\right)}^{\otimes n}. (63)

Notably, \mathcal{E} is covariant under GG, which implies that Theorem 2 can be applied in the setting under consideration.

Refer to caption
Figure 3: Illustration of the quantum uncertainties associated with (a) the optimal measurement identified in the present work and (b) the customary measurement studied in Ref. [WSU10]. Here, ρ\rho is set to be the four-qubit Dicke state |D4(2)\ket{D_{4}^{(2)}}. The observables under consideration are the Pauli observables Xk1,k2,k3,k4X_{k_{1},k_{2},k_{3},k_{4}} in Eq. (66). The height of the bins represents the quantum uncertainties of (a) 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right) and (b) 1(X)\mathcal{E}^{*-1}\left(X\right) in (ρ)\mathcal{E}(\rho).

To demonstrate the superiority of the projective measurement of the observable 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right), which is the optimal measurement according to Theorem 2, we would like to compare it with the projective measurement of the observable 1(X)\mathcal{E}^{*-1}(X). The latter measurement, referred to as the customary measurement hereafter, has been studied in Ref. [WSU10]. It is interesting to note that

tr[(ρ)1(X)]=tr(ρX),\displaystyle\tr[\mathcal{E}(\rho)\mathcal{E}^{*-1}(X)]=\tr(\rho X), (64)

that is, the expectation value of 1(X)\mathcal{E}^{*-1}(X) in (ρ)\mathcal{E}(\rho) is equal to X¯\overline{X}. Hence, both the optimal measurement identified here and the customary measurement can be employed to measure X¯\overline{X}. The interesting difference between them is that

[Δ1(𝒫(X))](ρ)2[Δ1(X)](ρ)2,\displaystyle[\Delta\mathcal{E}^{*-1}(\mathcal{P}(X))]_{\mathcal{E}(\rho)}^{2}\leq[\Delta\mathcal{E}^{*-1}(X)]_{\mathcal{E}(\rho)}^{2}, (65)

that is, the quantum uncertainty of 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right) in (ρ)\mathcal{E}(\rho) is generally smaller than the quantum uncertainty of 1(X)\mathcal{E}^{*-1}(X).

Refer to caption
Figure 4: Illustration of the two quantum uncertainties for 256256 randomly generated observables. Here, ρ\rho is set to be the Dicke state |D4(2)\ket{D_{4}^{(2)}}, too. The observables are indexed as Xk,lX_{k,l} with kk and ll ranging from 11 to 1616. The height of the bins represents the quantum uncertainty of (a) 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right) and (b) 1(X)\mathcal{E}^{*-1}\left(X\right) in (ρ)\mathcal{E}(\rho).

To explicitly see the difference, we consider the task of measuring the expectation values of Pauli observables

Xk1,k2,,kn=σk1σk2σkn,X_{k_{1},k_{2},\cdots,k_{n}}=\sigma_{k_{1}}\otimes\sigma_{k_{2}}\otimes\cdots\otimes\sigma_{k_{n}}, (66)

where σki{σx,σy,σz,σI}\sigma_{k_{i}}\in\left\{\sigma_{x},\sigma_{y},\sigma_{z},\sigma_{I}\right\} with σI=𝟙\sigma_{I}=\mathbb{1}. Figure 3 shows the values of the two quantum uncertainties when ρ\rho is the four-qubit Dicke state |D4(2)\ket{D_{4}^{(2)}}. The labels (k1,k2)(k_{1},k_{2}) and (k3,k4)(k_{3},k_{4}), which appear aside the two horizontal axes in Fig. 3, correspond to the observable Xk1,k2,k3,k4X_{k1,k2,k3,k4} in Eq. (66). As can be seen from Fig. 3, [Δ1(𝒫(X))](ρ)2[\Delta\mathcal{E}^{*-1}(\mathcal{P}(X))]_{\mathcal{E}(\rho)}^{2} is significantly smaller than [Δ1(X)](ρ)2[\Delta\mathcal{E}^{*-1}(X)]_{\mathcal{E}(\rho)}^{2} for most of the 256256 Pauli observables. Specifically, we find that the ratio

[Δ1(𝒫(X))](ρ)2/[Δ1(X)](ρ)20.37,\displaystyle[\Delta\mathcal{E}^{*-1}(\mathcal{P}(X))]_{\mathcal{E}(\rho)}^{2}\big{/}[\Delta\mathcal{E}^{*-1}(X)]_{\mathcal{E}(\rho)}^{2}\leq 0.37, (67)

for all the Pauli observables except for the trivial ones, σα4\sigma_{\alpha}^{\otimes 4}, α=I,x,y,z\alpha=I,x,y,z, which are invariant under 𝒫\mathcal{P}, i.e., 𝒫(σα4)=σα4\mathcal{P}(\sigma_{\alpha}^{\otimes 4})=\sigma_{\alpha}^{\otimes 4}. We see from Eq. (67) that the optimal measurement, when used to measure X¯\overline{X} for these observables, requires only 37%37\% of the copies of (ρ)\mathcal{E}(\rho) compared with the customary measurement to achieve the same precision.

To demonstrate that the superiority of our measurement is not exclusive to the 256 Pauli observables considered above, we further randomly generate 256 new observables, Xk,lX_{k,l}, with k,l=1,2,,16k,l=1,2,\cdots,16. Here, each observable is produced by randomly generating a complex matrix CC and then setting XX to be (C+C)/2\left(C+C^{\dagger}\right)/2. Figure 4 shows the two quantum uncertainties for the randomly generated observables, where ρ\rho is set to be the Dicke state |D4(2)\ket{D_{4}^{(2)}}, too. As can be seen from this figure, the quantum uncertainty associated with the optimal measurement is significantly smaller than the customary one for all the observables. Specifically, the ratio reads

0.01[Δ1(𝒫(X))](ρ)2/[Δ1(X)](ρ)20.42,0.01\leq[\Delta\mathcal{E}^{*-1}(\mathcal{P}(X))]_{\mathcal{E}(\rho)}^{2}\big{/}[\Delta\mathcal{E}^{*-1}(X)]_{\mathcal{E}(\rho)}^{2}\leq 0.42, (68)

with an average value of 0.140.14. We have randomly generated multiple sets of 256256 observables and obtained similar results, although the specific numbers appearing in Eq. (68) may be different when different sets are in question.

Refer to caption
Figure 5: The ratio between the quantum uncertainties of 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right) and 1(X)\mathcal{E}^{*-1}\left(X\right) as a function of the noise strength pp.

Besides, we examine the ratio between the two quantum uncertainties as a function of the noise strength pp. As can be seen from Fig. 5, the ratio becomes increasingly small in the course of varying pp from 0.010.01 to 0.990.99. This means that the superiority of our measurement becomes increasingly significant as the noise strength increases. Moreover, we also numerically examine the performance of the projective measurement of XX in the low-noise regime, which may provide an approximately unbiased estimate of X¯\overline{X}. The numerical result is presented in Fig. 6, showing that [Δ1(𝒫(X))](ρ)2\left[\Delta\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right)\right]_{\mathcal{E}\left(\rho\right)}^{2} is also smaller than (ΔX)(ρ)2\left(\Delta X\right)_{\mathcal{E}\left(\rho\right)}^{2} when pp varies from 0.010.01 to 0.10.1.

Refer to caption
Figure 6: Illustration of the quantum uncertainties of 1(𝒫(X))\mathcal{E}^{*-1}\left(\mathcal{P}\left(X\right)\right) (blue dashed line) and XX (red solid line) as functions of the noise strength pp. Here, XX is set to be σyσyσzσz\sigma_{y}\otimes\sigma_{y}\otimes\sigma_{z}\otimes\sigma_{z}.

VI Concluding Remarks

We have identified the measurement capable of retrieving the maximum information about the expectation value X¯\overline{X} of an observable XX in ρ\rho from the corrupted state (ρ)\mathcal{E}(\rho). Our general result, presented in Theorem 1, shows that this measurement is the projective measurement of Yh0Y_{h_{0}}, which can be found by solving the SDP in Eq. (40). As the QFI is employed to quantify the information content, Theorem 1 is of fundamental importance and characterizes the optimal sample complexity in estimating X¯\overline{X} according to the quantum Cramér-Rao bound [10].

To eliminate the dependence of Yh0Y_{h_{0}} on ρ\rho, we have shown that Yh0Y_{h_{0}} can be explicitly determined for covariant noise models, as stated in Theorem 2. This result reduces to one of the key findings in Ref. [10], which can find immediate applications due to the relevance of covariant noise models in various contexts. We have demonstrated the usefulness of our result by applying Theorem 2 to the scenario that involves permutation symmetries.

We clarify that, while the local parameter estimation theory provides powerful tools like the QFI, it also produces the inherent drawback that Yh0Y_{h_{0}} may depend on ρ\rho [PAR09]. To overcome this drawback, one may resort to the global parameter estimation theory, such as the Bayesian and minimax approaches [Per71, GL95, Hay11, MFD14, RD19, DGG20, GDWB20, RD20, SK20, GD22, BLSM24, Rub24], which can single out a globally optimal measurement that is independent of ρ\rho. It is worth noting that a recent study [ZQZ24] has established a link between the local and global parameter estimation theories, which could be a valuable reference for future efforts to fully resolve the dependence issue.

Acknowledgements.
We thank the anonymous referee for sharing with us an intuitive understanding of Theorem 2. This work was supported by the National Natural Science Foundation of China through Grant Nos. 12275155 and 12174224.

Appendix A Parametrization of ρ\rho

According to the representation theory of groups [Sim97], the unitary representation UgU_{g} can be written as a direct sum of irreducible unitary representations in a certain basis as

Ug=α=1s𝟙nαUα(g),U_{g}=\bigoplus_{\alpha=1}^{s}{\mathbb{1}_{n_{\alpha}}\otimes U_{\alpha}\left(g\right)}, (69)

where 𝟙k\mathbb{1}_{k} denotes the kk by kk identity matrix, and α\alpha labels the α\alphath irreducible representation of GG with dimension dαd_{\alpha} and multiplicity nαn_{\alpha}. Consequently, any Hermitian hh commutes with all the UgU_{g} can be expressed in the same basis as

h=α=1sAα𝟙dα,h=\bigoplus_{\alpha=1}^{s}{A_{\alpha}\otimes\mathbb{1}_{d_{\alpha}}}, (70)

where AαA_{\alpha} is an nα×nαn_{\alpha}\times n_{\alpha} Hermitian matrix. Accordingly, since [ρ,Ug]=0[\rho,U_{g}]=0 for all gGg\in G, we can explicitly express ρ\rho as

ρ=α=1s(pα𝟙nαnα+12𝒓α𝝀α)𝟙dαdα,\rho=\bigoplus_{\alpha=1}^{s}{\left(p_{\alpha}\frac{\mathbb{1}_{n_{\alpha}}}{n_{\alpha}}+\frac{1}{2}\bm{r}_{\alpha}\cdot\bm{\lambda}_{\alpha}\right)}\otimes\frac{\mathbb{1}_{d_{\alpha}}}{d_{\alpha}}, (71)

where 𝝀α(λα,1,λα,2,,λα,nα21)\bm{\lambda}_{\alpha}\coloneqq\left(\lambda_{\alpha,1},\lambda_{\alpha,2},\cdots,\lambda_{\alpha,n_{\alpha}^{2}-1}\right) collectively denotes the generators of the Lie algebra 𝔰𝔲(nα)\mathfrak{s}\mathfrak{u}\left(n_{\alpha}\right) that satisfy [Kim03]

λα,i=λα,i,tr(λα,i)=0,tr(λα,iλα,j)=2δij.\lambda_{\alpha,i}^{\dagger}=\lambda_{\alpha,i},~{}~{}\mathrm{tr}\left(\lambda_{\alpha,i}\right)=0,~{}~{}\mathrm{tr}\left(\lambda_{\alpha,i}\lambda_{\alpha,j}\right)=2\delta_{ij}. (72)

Therefore, ρ\rho can be parameterized by the following real parameters

𝜽=(p1,p2,,ps1,𝒓1,,𝒓s)\bm{\theta}=\left(p_{1},p_{2},\cdots,p_{s-1},\bm{r}_{1},\cdots,\bm{r}_{s}\right) (73)

with 𝒓α=(rα,1,,rα,nα21)\bm{r}_{\alpha}=\left(r_{\alpha,1},\cdots,r_{\alpha,n_{\alpha}^{2}-1}\right), and we have set the variable psp_{s} to be ps=1i=1s1pip_{s}=1-\sum_{i=1}^{s-1}p_{i} due to the constraint i=1spi=1\sum_{i=1}^{s}p_{i}=1.

Appendix B The legitimacy of δ\delta in Eq. (14) as an influence operator

To verify that the δ\delta in Eq. (14) belongs to 𝒵(ρ)\mathcal{Z}_{\mathcal{E}(\rho)}, we notice that

tr[(ρ)1(X)]=tr[1((ρ))X]=tr(ρX),\displaystyle\tr[\mathcal{E}(\rho)\mathcal{E}^{*-1}\left(X\right)]=\tr[\mathcal{E}^{-1}(\mathcal{E}(\rho))X]=\tr(\rho X), (74)

leading to

tr[(ρ)δ]=tr[(ρ)1(X)]X¯=0.\displaystyle\tr[\mathcal{E}(\rho)\delta]=\tr[\mathcal{E}(\rho)\mathcal{E}^{*-1}\left(X\right)]-\overline{X}=0. (75)

Further, using the cyclic property of the trace, we have

step]exchangeordertr[(ρ)Siδ+δSi2]=tr[(ρ)Si+Si(ρ)2δ].\displaystyle step]{exchange-order}\tr[\mathcal{E}(\rho)\frac{S_{i}\delta+\delta S_{i}}{2}]=\tr[\frac{\mathcal{E}(\rho)S_{i}+S_{i}\mathcal{E}(\rho)}{2}\delta]. (76)

Substituting Eq. (LABEL:SLD) into Eq. (LABEL:exchange-order) and by definition, we have

step]step1Si,δ(ρ)=tr[(θi(ρ))δ].\displaystyle step]{step1}\langle S_{i},\delta\rangle_{\mathcal{E}(\rho)}=\tr[\left(\frac{\partial}{\partial\theta_{i}}\mathcal{E}(\rho)\right)\delta]. (77)

Inserting the expression of δ\delta into Eq. (LABEL:step1), we obtain that

step]step2Si,δ(ρ)=tr[(θi(ρ))1(X)],\displaystyle step]{step2}\langle S_{i},\delta\rangle_{\mathcal{E}(\rho)}=\tr[\left(\frac{\partial}{\partial\theta_{i}}\mathcal{E}(\rho)\right)\mathcal{E}^{*-1}(X)], (78)

where we have used the equality tr[θi(ρ)]=0\tr[\frac{\partial}{\partial\theta_{i}}\mathcal{E}(\rho)]=0. Noting that tr[(θi(ρ))1(X)]=θitr[(ρ)1(X)]=θitr(ρX)=θiX¯\tr[\left(\frac{\partial}{\partial\theta_{i}}\mathcal{E}(\rho)\right)\mathcal{E}^{*-1}(X)]=\frac{\partial}{\partial\theta_{i}}\tr[\mathcal{E}(\rho)\mathcal{E}^{*-1}(X)]=\frac{\partial}{\partial\theta_{i}}\tr(\rho X)=\frac{\partial}{\partial\theta_{i}}\overline{X}, we deduce from Eq. (LABEL:step2) that the δ\delta in Eq. (14) satisfies Eq. (13).

Appendix C Proof of 𝒫(h)=0\mathcal{P}(h)=0

Since 𝒫(h)\mathcal{P}(h) commutes with all UgU_{g}, we can express 𝒫(h)\mathcal{P}(h) as

𝒫(h)=α=1s(aα𝟙nα+𝒃α𝝀α)𝟙dα,\mathcal{P}\left(h\right)=\bigoplus_{\alpha=1}^{s}{\left(a_{\alpha}\mathbb{1}_{n_{\alpha}}+\bm{b}_{\alpha}\cdot\bm{\lambda}_{\alpha}\right)}\otimes\mathbb{1}_{d_{\alpha}}, (79)

where aαa_{\alpha} and 𝒃α=(bα,1,,bα,nα21)\bm{b}_{\alpha}=\left(b_{\alpha,1},\cdots,b_{\alpha,n_{\alpha}^{2}-1}\right), α=1,,s\alpha=1,...,s, are some real parameters to be determined. Note that 𝒫(h)\mathcal{P}(h) satisfies

tr[ρθi𝒫(h)]=0.\displaystyle\tr\left[\frac{\partial\rho}{\partial\theta_{i}}\mathcal{P}(h)\right]=0. (80)

Inserting Eqs. 71, 73 and 79 into Eq. (80) and utilizing the algebraic properties of λα,i\lambda_{\alpha,i} [see Eq. 72], we have

tr[𝒫(h)(ρ/rα,i)]=bα,i=0\mathrm{tr}\left[\mathcal{P}\left(h\right)\left(\partial\rho/\partial r_{\alpha,i}\right)\right]=b_{\alpha,i}=0 (81)

for α=1,,s\alpha=1,...,s and i=1,,nα21i=1,...,n_{\alpha}^{2}-1, and

tr[𝒫(h)(ρ/pα)]=aαas=0\mathrm{tr}\left[\mathcal{P}\left(h\right)\left(\partial\rho/\partial p_{\alpha}\right)\right]=a_{\alpha}-a_{s}=0 (82)

for α=1,,s1\alpha=1,...,s-1. From Eqs. 81 and 82, it follows that 𝒫(h)\mathcal{P}\left(h\right) is proportional to the identity matrix. Lastly, noting that 𝒫(h)\mathcal{P}(h) satisfies tr[ρ𝒫(h)]=0\mathrm{tr}\left[\rho\mathcal{P}\left(h\right)\right]=0, we have 𝒫(h)=0\mathcal{P}(h)=0.

Appendix D Canonical SDP form of Eq. 40

Let Φ\Phi be a Hermitian-preserving map and 𝖠,𝖡\mathsf{A},\mathsf{B} be Hermitian operators. An SDP is a triple (Φ,𝖠,𝖡)(\Phi,\mathsf{A},\mathsf{B}) with which the following optimization problem is associated [Wat18]

min𝖸\displaystyle\underset{\mathsf{Y}}{\min} tr(𝖡𝖸)\displaystyle\mathrm{tr}\left(\mathsf{BY}\right) (83)
s.t.\displaystyle\mathrm{s}.\mathrm{t}. Φ(𝖸)𝖠,\displaystyle\Phi\left(\mathsf{Y}\right)\geq\mathsf{A},
𝖸=𝖸.\displaystyle\mathsf{Y}=\mathsf{Y}^{\dagger}.

Here, to distinguish the symbol used in Eq. (44), we have adopted the symbol 𝖠\mathsf{A}. To reformulate Eq. 40 into the canonical SDP form given by Eq. 83, we partition 𝖸\mathsf{Y} as

𝖸=[𝖸11𝖸12𝖸21𝖸22],\mathsf{Y}=\left[\begin{matrix}\mathsf{Y}_{11}&\mathsf{Y}_{12}\\ \mathsf{Y}_{21}&\mathsf{Y}_{22}\\ \end{matrix}\right], (84)

where 𝖸11=Λ\mathsf{Y}_{11}=\Lambda and 𝖸22=h\mathsf{Y}_{22}=h, and 𝖸12\mathsf{Y}_{12} and 𝖸21\mathsf{Y}_{21} are dummy variables. We introduce the Hermitian-preserving map

Φ(𝖸)=[𝖸111(𝒬(𝖸22))1(𝒬(𝖸22))0],\Phi\left(\mathsf{Y}\right)=\left[\begin{matrix}\mathsf{Y}_{11}&-\mathcal{E}^{*-1}\left(\mathcal{Q}\left(\mathsf{Y}_{22}\right)\right)\\ -\mathcal{E}^{*-1}\left(\mathcal{Q}\left(\mathsf{Y}_{22}\right)\right)&0\\ \end{matrix}\right], (85)

and specify 𝖠\mathsf{A} and 𝖡\mathsf{B} to be

𝖠=[0X¯𝟙1(X)X¯𝟙1(X)𝟙],𝖡=[(ρ)000].\mathsf{A}=\left[\begin{matrix}0&\overline{X}\mathbb{1}-\mathcal{E}^{*-1}\left(X\right)\\ \overline{X}\mathbb{1}-\mathcal{E}^{*-1}\left(X\right)&-\mathbb{1}\\ \end{matrix}\right],\quad\mathsf{B}=\left[\begin{matrix}\mathcal{E}\left(\rho\right)&0\\ 0&0\\ \end{matrix}\right]. (86)

Using the above Φ,𝖠\Phi,\mathsf{A} and 𝖡\mathsf{B}, we can straightforwardly verify the equivalence between Eq. 40 and the SDP in Eq. 83.

Appendix E Intuitive understanding of Theorem 2

Theorem 2 may be understood as follows. X¯\overline{X} can be reformulated as

X¯=tr[(ρ)1(X)],\overline{X}=\mathrm{tr}\left[\mathcal{E}\left(\rho\right)\mathcal{E}^{*-1}\left(X\right)\right], (87)

which can be understood as the expectation value of the observable 1(X)\mathcal{E}^{*-1}\left(X\right) in (ρ)\mathcal{E}\left(\rho\right). Besides, when \mathcal{E} is covariant,

Ug(ρ)Ug=(UgρUg)=(ρ),U_{g}\mathcal{E}\left(\rho\right)U_{g}^{\dagger}=\mathcal{E}\left(U_{g}\rho U_{g}^{\dagger}\right)=\mathcal{E}\left(\rho\right), (88)

for all gGg\in G. This implies that (ρ)\mathcal{E}(\rho) is with the symmetric structures described by GG. Then, the result from Ref. [10] [i.e. Eq. (2) therein] suggests that Yh0=𝒫(1(X))Y_{h_{0}}=\mathcal{P}\left(\mathcal{E}^{*-1}\left(X\right)\right).

References

  • Gross et al. [2010] D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, Quantum State Tomography via Compressed Sensing, Phys. Rev. Lett. 105, 150401 (2010).
  • Liu et al. [2012] W.-T. Liu, T. Zhang, J.-Y. Liu, P.-X. Chen, and J.-M. Yuan, Experimental Quantum State Tomography via Compressed Sampling, Phys. Rev. Lett. 108, 170403 (2012).
  • Mahler et al. [2013] D. H. Mahler, L. A. Rozema, A. Darabi, C. Ferrie, R. Blume-Kohout, and A. M. Steinberg, Adaptive Quantum State Tomography Improves Accuracy Quadratically, Phys. Rev. Lett. 111, 183601 (2013).
  • Qi et al. [2017] B. Qi, Z. Hou, Y. Wang, D. Dong, H.-S. Zhong, L. Li, G.-Y. Xiang, H. M. Wiseman, C.-F. Li, and G.-C. Guo, Adaptive quantum state tomography via linear regression estimation: Theory and two-qubit experiment, npj Quantum Inf. 3, 19 (2017).
  • Ferrie [2014] C. Ferrie, Self-Guided Quantum Tomography, Phys. Rev. Lett. 113, 190404 (2014).
  • Rambach et al. [2021] M. Rambach, M. Qaryan, M. Kewming, C. Ferrie, A. G. White, and J. Romero, Robust and Efficient High-Dimensional Quantum State Tomography, Phys. Rev. Lett. 126, 100402 (2021).
  • Aaronson [2018] S. Aaronson, Shadow tomography of quantum states, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (ACM, New York, 2018) pp. 325–338.
  • Huang et al. [2020] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nat. Phys. 16, 1050 (2020).
  • Huang et al. [2021] H.-Y. Huang, R. Kueng, and J. Preskill, Efficient Estimation of Pauli Observables by Derandomization, Phys. Rev. Lett. 127, 030503 (2021).
  • Zhang and Tong [2024] D.-J. Zhang and D. M. Tong, Inferring Physical Properties of Symmetric States from the Fewest Copies, Phys. Rev. Lett. 133, 040202 (2024).
  • Zhou and Zhang [2023] L. Zhou and D.-J. Zhang, Non-Hermitian Floquet Topological Matter—A Review, Entropy 25, 1401 (2023).
  • Kiesel et al. [2007] N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter, Experimental Observation of Four-Photon Entangled Dicke State with High Fidelity, Phys. Rev. Lett. 98, 063604 (2007).
  • Wieczorek et al. [2008] W. Wieczorek, C. Schmid, N. Kiesel, R. Pohlner, O. Gühne, and H. Weinfurter, Experimental Observation of an Entire Family of Four-Photon Entangled States, Phys. Rev. Lett. 101, 010503 (2008).
  • Wieczorek et al. [2009] W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G. Tóth, and H. Weinfurter, Experimental Entanglement of a Six-Photon Symmetric Dicke State, Phys. Rev. Lett. 103, 020504 (2009).
  • Prevedel et al. [2009] R. Prevedel, G. Cronenberg, M. S. Tame, M. Paternostro, P. Walther, M. S. Kim, and A. Zeilinger, Experimental Realization of Dicke States of up to Six Qubits for Multiparty Quantum Networking, Phys. Rev. Lett. 103, 020503 (2009).
  • Krischek et al. [2010] R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, and H. Weinfurter, Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments, Nature Photon. 4, 170 (2010).
  • Erhard et al. [2018] M. Erhard, M. Malik, M. Krenn, and A. Zeilinger, Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits, Nature Photon. 12, 759 (2018).
  • Liu et al. [2021] Z.-H. Liu, J. Zhou, H.-X. Meng, M. Yang, Q. Li, Y. Meng, H.-Y. Su, J.-L. Chen, K. Sun, J.-S. Xu, C.-F. Li, and G.-C. Guo, Experimental test of the Greenberger–Horne–Zeilinger-type paradoxes in and beyond graph states, npj Quantum Inf. 7, 66 (2021).
  • Tóth et al. [2010] G. Tóth, W. Wieczorek, D. Gross, R. Krischek, C. Schwemmer, and H. Weinfurter, Permutationally Invariant Quantum Tomography, Phys. Rev. Lett. 105, 250403 (2010).
  • Moroder et al. [2012] T. Moroder, P. Hyllus, G. Tóth, C. Schwemmer, A. Niggebaum, S. Gaile, O. Gühne, and H. Weinfurter, Permutationally invariant state reconstruction, New J. Phys. 14, 105001 (2012).
  • Gao et al. [2014] T. Gao, F. Yan, and S. van Enk, Permutationally Invariant Part of a Density Matrix and Nonseparability of NN-Qubit States, Phys. Rev. Lett. 112, 180501 (2014).
  • Werner [1989] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989).
  • Dicke [1954] R. H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev. 93, 99 (1954).
  • Greenberger et al. [1989] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academics, Dordrecht, The Netherlands, 1989).
  • Horodecki et al. [2009] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
  • Gühne and Tóth [2009] O. Gühne and G. Tóth, Entanglement detection, Phys. Rep. 474, 1 (2009).
  • Hu et al. [2018] M.-L. Hu, X. Hu, J. Wang, Y. Peng, Y.-R. Zhang, and H. Fan, Quantum coherence and geometric quantum discord, Phys. Rep. 762, 1 (2018).
  • Halmos [1950] P. R. Halmos, Measure Theory (Springer-Verlag, New York, 1950).
  • Mele [2024] A. A. Mele, Introduction to Haar Measure Tools in Quantum Information: A Beginner’s Tutorial, Quantum 8, 1340 (2024).
  • Preskill [2018] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  • Jiao et al. [2023] L. Jiao, W. Wu, S. Bai, and J. An, Quantum Metrology in the Noisy Intermediate-Scale Quantum Era, Adv. Quantum Technol. 2023, 2300218 (2023).
  • Zhang and Tong [2022] D.-J. Zhang and D. M. Tong, Approaching Heisenberg-scalable thermometry with built-in robustness against noise, npj Quantum Inf. 8, 81 (2022).
  • Ullah et al. [2023] A. Ullah, M. T. Naseem, and O. E. Müstecaplioğlu, Low-temperature quantum thermometry boosted by coherence generation,