This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: Corresponding author: diwang0214@nju.edu.cnthanks: Corresponding author: xgwan@nju.edu.cn

Revealing Spin and Spatial Symmetry Decoupling: New Insights into Magnetic Systems with Dzyaloshinskii-Moriya Interaction

Yuxuan Mu National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China International Quantum Academy, Shenzhen 518048, China    Di Wang National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China    Xiangang Wan National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China Hefei National Laboratory, Hefei 230088, China Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China
(August 16, 2025)
Abstract

It is widely accepted that spin-orbit coupling (SOC) generally locks spin and spatial degrees of freedom, as a result, the spin, despite being an axial vector, is fixed and cannot rotate independently, and the magnetic system should be described by magnetic space groups (MSGs). While as a new type of group, spin space groups (SSGs) have been introduced to approximately describe the symmetry of magnetic systems with negligible SOC, and received significant attention recently. In this work, we prove that in two cases of coplanar spin configurations, there are spin-only operations that strictly hold even with considerable Dzyaloshinskii-Moriya interaction (DMI), and the symmetry of their spin models could be described by the spin-coplanar SSG. In addition, we also find that for spin-collinear cases, regardless the strength of DMI, the magnon systems within the framework of linear spin wave theory (LSWT) also preserve the decoupled spin and spatial rotations, but the symmetry does not belong to the conventional definitions of collinear spin groups. We discuss the potential realization of these novel symmetries in rod, layer, and three-dimensional (3D) space groups. Our work extends the applicability of SSGs to magnetic materials with heavy elements, and reveals that the coexistence of DMI and SSG symmetries provides new opportunity for exploring novel magnon transport phenomena, and potential material realization had also been discussed.

Symmetry, as formulated by group theory, is fundamental to the laws of nature. In condensed-matter physics, symmetry has long been central, as it dictates the physical properties, phase transitions, and behavior of various materials[1]. It governs the conservation laws [2], determines selection rules [3], and plays a particularly crucial role in fields of Landau theory of phase transition [4], topological phases [5, 6, 7, 8, 9] and quasiparticle excitations [10, 11, 12]. The symmetries of three-dimensional (3D) solids are comprehensively described by crystallographic group theory, with spatial operations, including rotations, reflections, translations, and their combinations, forming the 32 point groups (PGs) and 230 space groups (SGs) for nonmagnetic systems [13]. When spin-orbit coupling (SOC) effect is considered, the double SGs are applicable. On the other hand, for magnetic materials, the SOC generally locks spin and spatial degrees of freedom, preventing spin from rotating independently, and the symmetry of magnetic systems should be described by 122 magnetic point groups (MPGs) and 1651 magnetic space groups (MSGs) [13].

In 1960s, it is found that the Heisenberg model neglecting the Dzyaloshinskii-Moriya interaction (DMI), which is the leading order of SOC effect [14, 15], enjoys higher symmetries than MSGs, and the concept of spin space groups (SSGs) is introduced [16, 17, 18, 19]. It has attracted significant attention in areas such as Landau theory of phase transitions [20, 21], neutron scattering [22], and magnon band topology [23, 24, 25, 26]. Very recently, the full classification of collinear SSGs and the associated magnon band topology for collinear magnets [27] are developed, offering new pathways to exploring exotic phenomena of magnonic systems.

In SSGs, the spin and spatial operations become partially decoupled, giving rise to an expanded set of symmetries expressed as [18, 19, 28],

GSS=GNSS×GSOG_{SS}=G_{NSS}\times G_{SO} (1)

where GSOG_{SO} stands for the spin-only group that only contains spin operations, GNSSG_{NSS} stands for the nontrivial spin space group that contains no pure spin operations [28].

In recent years, SSGs have been extended to electronic systems, and drawn growing attention due to their relevance in the study of magnetic materials with negligible SOC [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. In field of magnetic topological electronic states, the classifications and the irreducible corepresentations of spin groups for coplanar and collinear magnetic structures are derived [28], and the Z2 topological phases [28] and exotic nodal-line or -point semimetals [29, 30] protected by SSG symmetry are predicted. Meanwhile, SSGs are also crucial for understanding the unconventional spin-momentum locking without SOC[31, 32, 33, 34, 35, 36, 37, 38], which was later recognized as a characteristic feature of altermagnetism[39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Very recently, an exhaustive analysis of SSGs symmetries provides a full classification and investigates the enriched features of electronic bands within SSGs framework [52, 53, 54], which paves the way for deeper understanding and further exploration of emergent phenomena in magnetic materials.

The symmetry of SSGs is generally an approximation, holding strictly only when SOC is absent. However, as a relativistic effect, SOC always exists and plays a crucial role in various fields of condensed matter physics, such as permanent magnets [55, 56], spintronics [57], spin-orbitronics [58], and topological physics [59, 60]. The DMI, which has been widely regarded as the “SOC” in spin models and magnon systems [16, 61, 62, 63, 64, 65], is also always present even in the centrosymmetric compound, since not all bond centers are inversion centers. In topological magnons, DMI generates the Berry curvature and plays a central role in the study of magnon band topology [66, 67, 68, 69, 70, 68, 71]. Meanwhile, in the field of magnon transport, DMI is essential in many phenomena such as the magnon Hall effect[61, 72, 73, 74, 75, 76, 77, 78] and the magnon spin Nernst effect[63, 62, 79, 80, 81, 82], where DMI takes on a role analogous to that of SOC in the spin Hall effect.

The DMI and SSG symmetries have both played significant roles in the exploration of exotic phenomena in magnetic materials. However, as mentioned above, they are inherently in conflict. Could there be scenarios where SSG symmetries remain strictly applicable even when huge DMI is taken into account? The coexistence of DMI and SSG symmetries in one magnetic system will undoubtedly provide new avenues for study novel physical phenomena. In this work, we prove that the inclusion of DMI does not necessarily lead to a complete locking of spin and spatial rotations, and identify a novel symmetry to describe the spin model and magnon system with even considerable DMIs.

Group Theory Analysis

First we consider the coplanar spin configurations with the spin moments lying in the xyxy plane. The symmetry of spin-coplanar SSGs could be written as Eq. (1), where the spin-only group for spin-coplanar SSGs has the expresssion as [18, 19, 28],

GSO={E,TUz(π)}G_{SO}=\{E,TU_{z}(\pi)\} (2)

where TT and Uz(π)U_{z}(\pi) represent time-reversal symmetry and the two-fold spin rotation operation along the z-axis, respectively.

In the spin Hamiltonian, the antisymmetric DMI is expressed as HDMI=i,j𝑫𝒊𝒋(𝑺𝒊×𝑺𝒋)H_{DMI}=\sum_{i,j}\bm{D_{ij}}\cdot(\bm{S_{i}}\times\bm{S_{j}}) [14, 15], where 𝑺𝒊\bm{S_{i}} and 𝑺𝒋\bm{S_{j}} are the spin operators at the lattice sites ii and jj, while 𝑫𝒊𝒋\bm{D_{ij}} is a vector arising from SOC and satisfies the antisymmetry condition 𝑫𝒊𝒋=𝑫𝒋𝒊\bm{D_{ij}}=-\bm{D_{ji}}. The spin Hamiltonian may also contain other spin interactions like anisotropic exchange or dipole-dipole couplings, but these are typically orders of magnitude weaker than the DM interaction [14, 15, 83] and thus are not considered in this work. In general, the inclusion of DMI locks spin and spatial rotations, and reduces the Hamiltonian symmetry to MSGs. However, we find that under two following cases of magnetic configurations, the spin and spatial rotations are still partially decoupled:

(i) The first case occurs in 2D systems, when the magnetic atoms lie within the xyxy plane, which possesses horizontal mirror symmetry σh\sigma_{h}. In this case, only the component of DMI perpendicular to the mirror plane, i.e. DzD^{z}, is left [15], which makes that the spin Hamiltonian retains the symmetry {TUz(π)||E}\{TU_{z}(\pi)||E\}. Therefore, the spin-only group GSO={E,TUz(π)}G_{SO}=\{E,TU_{z}(\pi)\} in spin-coplanar SSG is strictly preserved. Below we provide a criterion to determine whether the operations in GNSSG_{NSS} are preserved:

An operation RGNSSR\in G_{NSS} in 2D systems could be written as R={A||B}R=\{A||B\}, where AA and BB represents the spin and spatial operations, respectively. The generators for the spin operation AA include Uz(2πn)U_{z}(\frac{2\pi}{n}) and Ux(π)U_{x}(\pi),where n=1,2,3,4,6n=1,2,3,4,6[28], while the generators for the spatial operation BB include CnzC_{nz}, C2xC_{2x}, S4S_{4}, PP, σh\sigma_{h} and σv\sigma_{v}[84], where S4S_{4} presents the four-fold rotation inversion operation and PP presents inversion operation, while σh\sigma_{h} and σv\sigma_{v} correspond to mirror operactions along the horizontal and vertical planes, respectively.

The DMI with only DzD^{z} can be expressed as HDMI=i,jDijz(SixSjySiySjx)H_{DMI}=\sum_{i,j}D_{ij}^{z}(S_{i}^{x}S_{j}^{y}-S_{i}^{y}S_{j}^{x}). By applying the generators to the DMI term, the spatial operations BB act on the site ii and jj, while the spin operations AA act on the directions of spin operations SxS^{x} and SyS^{y}, respectively. The spin Hamiltonian is constrained by the space group symmetry and should remain invariant under the space group operation [15]. Note that in the spin group framework, this symmetry operation of space group is expressed as RSG={B||B}R_{SG}=\{B^{\prime}||B\}, where BB^{\prime} denotes the proper rotation part of the spatial operation BB. Therefore, whether a coplanar SSG R={A||B}R=\{A||B\} remains valid depends on whether the two spin-space rotations AA and BB^{\prime} alter the sign of SixSjySiySjxS_{i}^{x}S_{j}^{y}-S_{i}^{y}S_{j}^{x} in a consistent manner. Considering the influence of spin part on the DMI term, we categorize these generators into two types: SixSjySiySjxS_{i}^{x}S_{j}^{y}-S_{i}^{y}S_{j}^{x} changes sign under Ux(π)U_{x}(\pi) (the corresponding spatial operations BB being C2xC_{2x} and σv\sigma_{v}), while Uz(2πn)U_{z}(\frac{2\pi}{n}) leaves SixSjySiySjxS_{i}^{x}S_{j}^{y}-S_{i}^{y}S_{j}^{x} invariant (the corresponding spatial operactions BB are CnzC_{nz}, S4S_{4}, PP and σh\sigma_{h}). For a given operation R={A||B}R=\{A||B\}, when the operations AA and BB belong to the same type described above, the operation RR is preserved even in the presence of DMI. Otherwise, the operation RR would be broken.

(ii) The second case arises in 1D systems, when the magnetic atoms are aligned along zz-axis chain, and the chain has double rotational symmetry C2zC_{2z}, which also constrain the direction of the DMI to zz direction[15]. Therefore, the DMI with only zz-components DzD_{z} ensures that the SSG symmetry {TUz(π)||E}\{TU_{z}(\pi)||E\} is preserved. Analogous to case (i), the symmetry of spin Hamiltonian maintain the form of spin-coplanar SSG with the spin-only group GSO={E,TUz(π)}G_{SO}=\{E,TU_{z}(\pi)\}. For any given SSG operation R={A||B}R=\{A||B\}, one can also determine whether it remains valid using the criterion discussed in case (i).


Furthermore, for collinear spin configuration within the framework of the linear spin wave theory (LSWT), we also find interesting symmetries here. The spin-only group GSOG_{SO} for the collinear spin configurations could be written as [18, 19, 28],

GSO={E,TUn(π)}Uz(ϕ)G_{SO}=\{E,TU_{n}(\pi)\}\ltimes U_{z}(\phi) (3)

where the direction of spin moments is defined along the zz-direction, and Uz(ϕ),U_{z}(\phi), ϕ[0,2π)\phi\in[0,2\pi) means full spin rotation along zz-axis, {E,TUn(π)}\{E,TU_{n}(\pi)\} contains the identity operation as well as the combined operation of time reversal TT and two-fold spin rotation about nn-axis perpendicular to the spin zz-axis. Within the framework of LSWT, the Holstein-Primakoff (HP) transformation results in that only DijzD_{ij}^{z} term contains quadratic contribution of magnons. Through symmetry analysis, we demonstrate that the DijzD_{ij}^{z} term preserves {Uz(ϕ)||E}\{U_{z}(\phi)||E\} symmetry but breaking the operation {TUn(π)||E}\{TU_{n}(\pi)||E\}. Therefore, the magnons in spin-collinear systems has the novel symmetry expressed as GSS=GNSS×GSOG_{SS}=G_{NSS}\times G_{SO}^{\prime}, where the spin-only group could be written as

GSO=Uz(ϕ)G_{SO}^{\prime}=U_{z}(\phi) (4)

while the nontrivial spin space group GNSSG_{NSS} is a subgroup of the one for original SSG without DMI. It should be noted that, the above expression of the spin group GSSG_{SS} has spin-only symmetry beyond MSG, but does not belong to the conventional definitions of collinear or coplanar spin groups, whose spin-only groups are given by Eq. (2) and (3) respectively.


The coexistence of DMI interactions with SSG symmetries directly gives rise to emergent physical phenomena. In the following we present a concrete application in magnon transport. In magnon spintronics, the ability to generate a pure transverse spin current without a thermal current is of great interest [62, 63]. Generally, the DM interactions play an important role in the magnon spin Hall effect [61, 62, 63, 72, 73, 74, 75], thus researchers typically employ MSG symmetries to analyze/discuss the system with magnon spin Hall but without magnon thermal Hall. For example, in Refs [62, 63], the suppression of the magnon thermal Hall effect is achieved in collinear antiferromagnets via PTPT symmetry, where PP and TT represent the inversion and time-reversal symmetry. The using of MSG significantly narrows the range of materials capable of generating pure magnon spin currents.

In contrast, in the two spin-coplanar cases we proposed, the SSG symmetry {TUz(π)||E}\{TU_{z}(\pi)||E\} could ensure that the magnon Berry curvature is an odd function with respect to the quasimomentum 𝒌\bm{k}, Ωn(𝒌)=Ωn(𝒌)\Omega_{n}(\bm{k})=-\Omega_{n}(-\bm{k}), thereby completely suppressing the magnon thermal Hall response. Notably, the DMI of DzD^{z} in these cases induces the magnon spin conductivity σαβz\sigma^{z}_{\alpha\beta}, where the in-plane indices α\alpha and β\beta denote the directions of the magnon spin current and the temperature gradient, respectively. Thus, the pure magnon spin current driven by a temperature gradient can be achieved in systems with the coexistence of DMI interactions and SSG symmetries. This is different from previous theoretical frameworks [62, 63]. In the following, we would also present the potential material realization.

Table 1: We list all 17 layer groups with mirror symmetry σh\sigma_{h}, if the magnetic atoms of 2D materials occupy the given Wyckoff positions (i.e. zz=0) and their spins lie within the xy plane, the spin Hamiltonian including DMI maintain the symmetry of spin-coplanar SSG, written as Eq. (1) and Eq. (2).
Layer Group Wyckoff Positions
p11mp11m 1a
p112/mp112/m 1a,1b,1c,1d,2i
pm2mpm2m 1a,1b,2e
pb21mpb2_{1}m 2a
cm2mcm2m 2a,4c
pmmmpmmm 1a,1b,1c,1d,2e,2f,2g,2h,4q
pmampmam 2a,2b,2c,4f
pbampbam 2a,2b,4e
cmmmcmmm 2a,2b,4c,4d,4e,8k
p4/mp4/m 1a,1b,2c,4g
p4/mmmp4/mmm 1a,1b,2c,4g,4h,4i,8j
p4/mbmp4/mbm 2a,2b,4e,8f
p6p-6 1a,1b,1c,3g
p6/mp6/m 1a,2b,3d,6g
p6m2p-6m2 1a,1b,1c,3g,6h
p62mp-62m 1a,2b,3d,6g
p6/mmmp6/mmm 1a,2b,3d,6g,6h,12k
Table 2: The selected 2D candidate materials from C2DB [85, 86], with magnetic atoms occupying given Wyckoff positions in TABLE 1 and exhibiting in-plane spin configurations.
Layer Group Materials
pm2mpm2m NiCl2N2H4C6\mathrm{NiCl_{2}N_{2}H_{4}C_{6}},MoV3Se8\mathrm{MoV_{3}Se_{8}},
WV3Se8\mathrm{WV_{3}Se_{8}},MoV3Te8\mathrm{MoV_{3}Te_{8}},
WV3Te8\mathrm{WV_{3}Te_{8}},OVBr2\mathrm{OVBr_{2}},
OVCl2\mathrm{OVCl_{2}},OVF2\mathrm{OVF_{2}},
OVI2\mathrm{OVI_{2}},Mo2V2Se8\mathrm{Mo_{2}V_{2}Se_{8}},
Mo2V2Te8\mathrm{Mo_{2}V_{2}Te_{8}},V2W2Te8\mathrm{V_{2}W_{2}Te_{8}}
cm2mcm2m FeOBr2\mathrm{FeOBr_{2}}
pmmmpmmm CrOF2\mathrm{CrOF_{2}}
cmmmcmmm OsVO2Br4\mathrm{OsVO_{2}Br_{4}}
p4/mmmp4/mmm Co2S2\mathrm{Co_{2}S_{2}},Ni2S2\mathrm{Ni_{2}S_{2}}
p6m2p-6m2 VS2\mathrm{VS_{2}},VSe2\mathrm{VSe_{2}},VTe2\mathrm{VTe_{2}},
YBr2\mathrm{YBr_{2}},YI2\mathrm{YI_{2}},FeBr2\mathrm{FeBr_{2}},
FeI2\mathrm{FeI_{2}},MnTe2\mathrm{MnTe_{2}},NbTe2\mathrm{NbTe_{2}},
ScBr2\mathrm{ScBr_{2}},ScCl2\mathrm{ScCl_{2}},ScI2\mathrm{ScI_{2}},
ScSe2\mathrm{ScSe_{2}},CrAs2\mathrm{CrAs_{2}},CrBi2\mathrm{CrBi_{2}}
p62mp-62m Ti2I6\mathrm{Ti_{2}I_{6}}

Candidate Materials

Based on the above symmtry analysis, we will extract the criteria to identify the magnetic materials whether the spin and spatial operations are still partially decoupled even with large DMI. The 2D systems are described by wallpaper groups or layer groups [87]. In the case of wallpaper groups, only the xyxy-direction is defined, thus the xyxy-plane is inherently mirror symmetric. For all the 17 wallpaper groups, when the spins lie in the xyxy-plane, the spin-only group GSOG_{SO} in spin-coplanar SSG is preserved.

Table 3: We provide the symmetry criteria applicable to 3D magnetic systems by mapping 2D layer groups to 3D space groups as discussed in the main text. In these space groups, when magnetic atoms occupy given Wyckoff positions with coplanar magnetic moments, and the interlayer distance is relatively large, the huge DMI does not degrade the spin Hamiltonian symmetry to MSGs, but preserve the expression of SSG symmetry with spin-only group as Eq. (2).
Layer Group Space Group Wyckoff Positions(Space Group)
p11mp11m PmPm 1a,1b
p112/mp112/m P2/mP2/m 1a-1h,2m,2n
pm2mpm2m Pmm2Pmm2 1a-1d,2e-2f
pb21mpb2_{1}m Pmc21Pmc2_{1} 2a,2b
cm2mcm2m Amm2Amm2 2a,2b,4d,4e
pmmmpmmm PmmmPmmm 1a-1h,2i-2p,4y,4z
pmampmam PmmaPmma 2a-2f,4i,4j
pbampbam PbamPbam 2a-2d,4g,4h
cmmmcmmm CmmmCmmm 2a-2d,4e-4j,8p,8q
p4/mp4/m P4/mP4/m 1a-1d,2e,2f,4j,4k
p4/mmmp4/mmm P4/mmmP4/mmm 1a-1d,2e,2f,4j-4o,8p,8q
p4/mbmp4/mbm P4/mbmP4/mbm 2a-2d,4g,4h,8i,8j
p6p-6 P6P-6 1a-1f,3j,3k
p6/mp6/m P6/mP6/m 1a,1b,2c,2d,3f,3g,6j,6k
p6m2p-6m2 P6m2P-6m2 1a-1f,3j,3k,6l,6m
p62mp-62m P62mP-62m 1a,1b,2c,2d,3f,3g,6j,6k
p6/mmmp6/mmm P6/mmmP6/mmm 1a,1b,2c,2d,3f,3g,6j-6m,12p,12q
Table 4: We list the 1D rod groups with twofold rotational symmetry C2zC_{2z} along the zz-axis. With spins lying in the xyxy plane, the magnetic materials that meet the symmetry criteria outlined in the table will exhibit additional SSG symmetry.
Rod Group Wyckoff Positions Rod Group Wyckoff Positions
p112p112 1a p42mp-42m 1a,1b,2c
p112/mp112/m 1a,1b,2c p42cp-42c 2a,2b,4e
p222p222 1a,1b, 2g p4/mmmp4/mmm 1a,1b,2c
pmm2pmm2 1a p4/mccp4/mcc 2a,2b,4c
pcc2pcc2 2a p42/mmcp4_{2}/mmc 2a,2b,4c
pmmmpmmm 1a,1b,2g p6p6 1a
pccmpccm 2a,2b,4e p62p6_{2} 3a
p4p4 1a p64p6_{4} 3a
p42p4_{2} 2a p6/mp6/m 1a,1b,2c
p4p-4 1a,1b,2c p622p622 1a,1b,2c
p4/mp4/m 1a,1b,2c p6222p6_{2}22 3a,3b,6c
p42/mp4_{2}/m 2a,2b,4c p6422p6_{4}22 3a,3b,6c
p422p422 1a,1b,2c p6mmp6mm 1a
p4222p4_{2}22 2a,2b,4c p6ccp6cc 2a
p4mmp4mm 1a p6/mmmp6/mmm 1a,1b,2c
p42cmp4_{2}cm 2a p6/mccp6/mcc 2a,2b,4c
p4ccp4cc 2a

On the other hand, since most 2D materials typically consist of multiple atomic layers or have finite extension in the zz-direction, the layer group usually provides a more appropriate description [87]. There are 17 layer groups having the mirror symmetry σh\sigma_{h}, which are summarized in TABLE 1. If a magnetic material belongs to the layer groups in TABLE 1, and its magnetic atoms are also located at the given Wyckoff positions in TABLE 1, i.e. z=0z=0, while their spins lie in the xyxy-plane, the presence of DMI does not degrade the spin Hamiltonian symmetry to MSGs, but instead preserves the spin-coplanar SSGs symmetries. We predict that the coexistence of DMI and SSG symmetries exists in 17 out of 80 layer groups (21%21\%), demonstrating that this phenomenon is not limited to isolated cases but rather occurs widely across diverse magnetic systems.

For any 2D magnetic material, one can easily identify their symmetries using our TABLE 1. To illustrate the result, we apply our theory to a popular database Computational 2D Materials Database (C2DB)[85, 86] and identify 33 materials as summarized in TABLE 2. The spin Hamiltonian for these materials would maintain the SSG symmetry even with large DMI. As an illustrative example, we consider the layered material VSe2\mathrm{VSe_{2}} in TABLE 2, whose layer group is p6m2p-6m2, with magnetic V atoms residing on the mirror plane. It was suggested that VSe2\mathrm{VSe_{2}} adopts an in-plane collinear ferromagnetic ground state [88]. Due to the strong SOC in selenium [89], this material would exhibit significant DM interactions. Conventionally, such materials should be described by MSG theory, thus naively one will expect both magnon thermal Hall and the magnon spin conductivity. However, our symmetry analysis above reveals that the DMI and the SSG symmetry {TUz(π)||E}\{TU_{z}(\pi)||E\} in this compound induces magnon spin Hall and forbids the magnon thermal Hall, respectively. Thus, the coexistence of DMI and SSG symmetry results in the pure magnon spin current (σαβz\sigma^{z}_{\alpha\beta}) in this material.

In addition to the classifications in 2D groups in TABLE 1, we can also expand it to 3D systems through the corresponding mappings from layer groups to 3D space groups [84]. Each layer group is isomorphic to the factor group G/T(1)G/T(1), where GG represent a 3D space group, and T(1)T(1) is a 1D translation subgroup of GG. It allows each layer group to correspond to a specific 3D space group, which represents the structure obtained when the layer group is extended along the zz direction. The corresponding space groups and required Wyckoff positions of the magnetic atoms for 3D materials are summarized in TABLE 3. For 3D materials with sufficiently large spacing between their mirror planes, where interlayer anisotropic interactions can be neglected as an additional approximation, one can also determine whether they possess decoupled spin and spatial symmetry using TABLE 3.

For 1D materials, their symmetry is typically described using rod groups, which possess translational symmetry along a single axis (marked as zz-direction) with 3D space[87]. Based on the symmetry analysis above, we provide the TABLE 4, when magnetic materials belongs to the given rod groups and the magnetic atoms occupy the required Wyckoff positions, while their magnetic moments lie in the xyxy plane, these materials could preserve spin-coplanar SSG symmetries described by Eq. (1) and Eq. (2). The TABLE 4 can also be expanded to identify the quasi-1D magnetic candidate materials. Since many magnetic materials exhibit quasi-1D characteristics, such as Sr3MIrO6(M = Li, Na, Zn, Cd) [90], thereby the exploration of SSG symmetry in these materials is worthy of further investigation.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants No. 12188101, No. 12334007, and No. 12474233), the National Key R&D Program of China (Grant No. 2022YFA1403601), Innovation Program for Quantum Science and Technology (Grant No.2021ZD0301902, and No. 2024ZD0300101), Natural Science Foundation of Jiangsu Province (No. BK20233001, BK20243011).

References

  • Dresselhaus et al. [2007] M. S. Dresselhaus, G. Dresselhaus,  and A. Jorio, Group theory: application to the physics of condensed matter (Springer Science & Business Media, 2007).
  • Baym and Kadanoff [1961] G. Baym and L. P. Kadanoff, “Conservation laws and correlation functions,” Phys. Rev. 124, 287 (1961).
  • Moskovits [1982] M. Moskovits, “Surface selection rules,” J. Chem. Phys. 77, 4408 (1982).
  • Landau and Lifshitz [2013] L. D. Landau and E. M. Lifshitz, Course of theoretical physics (Elsevier, 2013).
  • Chiu et al. [2016] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder,  and S. Ryu, “Classification of topological quantum matter with symmetries,” Rev. Mod. Phys. 88, 035005 (2016).
  • Fu [2011] L. Fu, “Topological crystalline insulators,” Phys. Rev. Lett. 106, 106802 (2011).
  • Zhang et al. [2019] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng,  and C. Fang, “Catalogue of topological electronic materials,” Nature 566, 475 (2019).
  • Vergniory et al. [2019] M. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig,  and Z. Wang, “A complete catalogue of high-quality topological materials,” Nature 566, 480 (2019).
  • Tang et al. [2019] F. Tang, H. C. Po, A. Vishwanath,  and X. Wan, “Comprehensive search for topological materials using symmetry indicators,” Nature 566, 486 (2019).
  • Bradlyn et al. [2016] B. Bradlyn, J. Cano, Z. Wang, M. Vergniory, C. Felser, R. J. Cava,  and B. A. Bernevig, “Beyond dirac and weyl fermions: Unconventional quasiparticles in conventional crystals,” Science 353, aaf5037 (2016).
  • Yu et al. [2022] Z.-M. Yu, Z. Zhang, G.-B. Liu, W. Wu, X.-P. Li, R.-W. Zhang, S. A. Yang,  and Y. Yao, “Encyclopedia of emergent particles in three-dimensional crystals,” Sci. Bull. 67, 375 (2022).
  • Tang and Wan [2021] F. Tang and X. Wan, “Exhaustive construction of effective models in 1651 magnetic space groups,” Phys. Rev. B 104, 085137 (2021).
  • Bradley and Cracknell [2009] C. Bradley and A. Cracknell, The mathematical theory of symmetry in solids: representation theory for point groups and space groups (Oxford University Press, 2009).
  • Dzyaloshinsky [1958] I. Dzyaloshinsky, “A thermodynamic theory of “weak“ ferromagnetism of antiferromagnetics,” J Phys Chem Solids 4, 241 (1958).
  • Moriya [1960] T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, 91 (1960).
  • Brinkman and Elliott [1966a] W. Brinkman and R. J. Elliott, “Theory of spin-space groups,” Proc. R. Soc. A 294, 343 (1966a).
  • Brinkman and Elliott [1966b] W. Brinkman and R. J. Elliott, “Space Group Theory for Spin Waves,” J. Appl. Phys 37, 1457 (1966b).
  • Litvin and Opechowski [1974] D. Litvin and W. Opechowski, “Spin groups,” Physica 76, 538 (1974).
  • Litvin [1977] D. B. Litvin, “Spin point groups,” Acta Crystallogr. Sect. A 33, 279 (1977).
  • Litvin et al. [1982] D. B. Litvin, J. N. Kotzev,  and J. L. Birman, “Physical applications of crystallographic color groups: Landau theory of phase transitions,” Phys. Rev. B 26, 6947 (1982).
  • Izyumov and Syromyatnikov [2012] Y. A. Izyumov and V. N. Syromyatnikov, Phase transitions and crystal symmetry, Vol. 38 (Springer Science & Business Media, 2012).
  • Elliott and Thorpe [1967] R. Elliott and M. Thorpe, “Group theoretical selection rules in inelastic neutron scattering,” Proceedings of the Physical Society 91, 903 (1967).
  • Chisnell et al. [2015] R. Chisnell, J. S. Helton, D. E. Freedman, D. K. Singh, R. I. Bewley, D. G. Nocera,  and Y. S. Lee, “Topological magnon bands in a kagome lattice ferromagnet,” Phys. Rev. Lett. 115, 147201 (2015).
  • Li et al. [2017] K. Li, C. Li, J. Hu, Y. Li,  and C. Fang, “Dirac and nodal line magnons in three-dimensional antiferromagnets,” Phys. Rev. Lett. 119, 247202 (2017).
  • Corticelli et al. [2022] A. Corticelli, R. Moessner,  and P. A. McClarty, “Spin-space groups and magnon band topology,” Phys. Rev. B 105, 064430 (2022).
  • Corticelli et al. [2023] A. Corticelli, R. Moessner,  and P. A. McClarty, “Identifying and constructing complex magnon band topology,” Phys. Rev. Lett. 130, 206702 (2023).
  • Chen et al. [2023] X. Chen, J. Ren, J. Li, Y. Liu,  and Q. Liu, “Spin space group theory and unconventional magnons in collinear magnets,” arXiv  (2023), 10.48550/arXiv.2307.12366.
  • Liu et al. [2022] P. Liu, J. Li, J. Han, X. Wan,  and Q. Liu, “Spin-group symmetry in magnetic materials with negligible spin-orbit coupling,” Phys. Rev. X 12, 021016 (2022).
  • Yang et al. [2024] J. Yang, Z.-X. Liu,  and C. Fang, “Symmetry invariants and classes of quasiparticles in magnetically ordered systems having weak spin-orbit coupling,” Nature Communications 15, 10203 (2024).
  • Guo et al. [2021] P.-J. Guo, Y.-W. Wei, K. Liu, Z.-X. Liu,  and Z.-Y. Lu, “Eightfold degenerate fermions in two dimensions,” Phys. Rev. Lett. 127, 176401 (2021).
  • González-Hernández et al. [2021] R. González-Hernández, L. Šmejkal, K. Výborný, Y. Yahagi, J. Sinova, T. c. v. Jungwirth,  and J. Železný, “Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism,” Phys. Rev. Lett. 126, 127701 (2021).
  • Bai et al. [2022] H. Bai, L. Han, X. Y. Feng, Y. J. Zhou, R. X. Su, Q. Wang, L. Y. Liao, W. X. Zhu, X. Z. Chen, F. Pan, X. L. Fan,  and C. Song, “Observation of spin splitting torque in a collinear antiferromagnet ruo2{\mathrm{ruo}}_{2},” Phys. Rev. Lett. 128, 197202 (2022).
  • Šmejkal et al. [2022a] L. Šmejkal, A. B. Hellenes, R. González-Hernández, J. Sinova,  and T. Jungwirth, “Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling,” Phys. Rev. X 12, 011028 (2022a).
  • Ahn et al. [2019] K.-H. Ahn, A. Hariki, K.-W. Lee,  and J. Kuneš, “Antiferromagnetism in ruo2{\mathrm{ruo}}_{2} as dd-wave pomeranchuk instability,” Phys. Rev. B 99, 184432 (2019).
  • Hayami et al. [2020] S. Hayami, Y. Yanagi,  and H. Kusunose, “Bottom-up design of spin-split and reshaped electronic band structures in antiferromagnets without spin-orbit coupling: Procedure on the basis of augmented multipoles,” Phys. Rev. B 102, 144441 (2020).
  • Yuan et al. [2021] L.-D. Yuan, Z. Wang, J.-W. Luo,  and A. Zunger, “Prediction of low-z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling,” Phys. Rev. Mater. 5, 014409 (2021).
  • Šmejkal et al. [2020] L. Šmejkal, R. González-Hernández, T. Jungwirth,  and J. Sinova, “Crystal time-reversal symmetry breaking and spontaneous hall effect in collinear antiferromagnets,” Sci. Adv 6, eaaz8809 (2020).
  • Yuan et al. [2020] L.-D. Yuan, Z. Wang, J.-W. Luo, E. I. Rashba,  and A. Zunger, “Giant momentum-dependent spin splitting in centrosymmetric low-zz antiferromagnets,” Phys. Rev. B 102, 014422 (2020).
  • Šmejkal et al. [2022b] L. Šmejkal, J. Sinova,  and T. Jungwirth, “Emerging research landscape of altermagnetism,” Phys. Rev. X 12, 040501 (2022b).
  • Šmejkal et al. [2022c] L. Šmejkal, J. Sinova,  and T. Jungwirth, “Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry,” Phys. Rev. X 12, 031042 (2022c).
  • Zhou et al. [2024] X. Zhou, W. Feng, R.-W. Zhang, L. Šmejkal, J. Sinova, Y. Mokrousov,  and Y. Yao, “Crystal thermal transport in altermagnetic ruo2{\mathrm{ruo}}_{2},” Phys. Rev. Lett. 132, 056701 (2024).
  • Lee et al. [2024] S. Lee, S. Lee, S. Jung, J. Jung, D. Kim, Y. Lee, B. Seok, J. Kim, B. G. Park, L. Šmejkal, C.-J. Kang,  and C. Kim, “Broken kramers degeneracy in altermagnetic mnte,” Phys. Rev. Lett. 132, 036702 (2024).
  • Gomonay et al. [2024] O. Gomonay, V. Kravchuk, R. Jaeschke-Ubiergo, K. Yershov, T. Jungwirth, L. Šmejkal, J. v. d. Brink,  and J. Sinova, “Structure, control, and dynamics of altermagnetic textures,” npj Spintronics 2, 35 (2024).
  • Liao et al. [2024] C.-T. Liao, Y.-C. Wang, Y.-C. Tien, S.-Y. Huang,  and D. Qu, “Separation of inverse altermagnetic spin-splitting effect from inverse spin hall effect in ruo2{\mathrm{ruo}}_{2},” Phys. Rev. Lett. 133, 056701 (2024).
  • Bose et al. [2022] A. Bose, N. J. Schreiber, R. Jain, D.-F. Shao, H. P. Nair, J. Sun, X. S. Zhang, D. A. Muller, E. Y. Tsymbal, D. G. Schlom, et al., “Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide,” Nat. Electron. 5, 267 (2022).
  • Zhu et al. [2024] Y.-P. Zhu, X. Chen, X.-R. Liu, Y. Liu, P. Liu, H. Zha, G. Qu, C. Hong, J. Li, Z. Jiang, et al., “Observation of plaid-like spin splitting in a noncoplanar antiferromagnet,” Nature 626, 523 (2024).
  • Krempaskỳ et al. [2024] J. Krempaskỳ, L. Šmejkal, S. D’souza, M. Hajlaoui, G. Springholz, K. Uhlířová, F. Alarab, P. Constantinou, V. Strocov, D. Usanov, et al., “Altermagnetic lifting of kramers spin degeneracy,” Nature 626, 517 (2024).
  • Autieri [2024] C. Autieri, “New type of magnetism splits from convention,” Nature 626, 482 (2024).
  • Duan et al. [2025] X. Duan, J. Zhang, Z. Zhu, Y. Liu, Z. Zhang, I. Žutić,  and T. Zhou, “Antiferroelectric altermagnets: Antiferroelectricity alters magnets,” Phys. Rev. Lett. 134, 106801 (2025).
  • Gu et al. [2025] M. Gu, Y. Liu, H. Zhu, K. Yananose, X. Chen, Y. Hu, A. Stroppa,  and Q. Liu, “Ferroelectric switchable altermagnetism,” Phys. Rev. Lett. 134, 106802 (2025).
  • Zhou et al. [2025] Z. Zhou, X. Cheng, M. Hu, R. Chu, H. Bai, L. Han, J. Liu, F. Pan,  and C. Song, “Manipulation of the altermagnetic order in crsb via crystal symmetry,” Nature 638, 645 (2025).
  • Xiao et al. [2024] Z. Xiao, J. Zhao, Y. Li, R. Shindou,  and Z.-D. Song, “Spin space groups: Full classification and applications,” Phys. Rev. X 14, 031037 (2024).
  • Jiang et al. [2024] Y. Jiang, Z. Song, T. Zhu, Z. Fang, H. Weng, Z.-X. Liu, J. Yang,  and C. Fang, “Enumeration of spin-space groups: Toward a complete description of symmetries of magnetic orders,” Phys. Rev. X 14, 031039 (2024).
  • Chen et al. [2024] X. Chen, J. Ren, Y. Zhu, Y. Yu, A. Zhang, P. Liu, J. Li, Y. Liu, C. Li,  and Q. Liu, “Enumeration and representation theory of spin space groups,” Phys. Rev. X 14, 031038 (2024).
  • Campbell [1996] P. Campbell, Permanent magnet materials and their application (Cambridge University Press, 1996).
  • Skomski and Coey [2019] R. Skomski and J. M. D. Coey, Permanent magnetism (Routledge, 2019).
  • Bader and Parkin [2010] S. Bader and S. Parkin, “Spintronics,” Annu. Rev. Condens. Matter Phys. 1, 71 (2010).
  • Manchon et al. [2015] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov,  and R. A. Duine, “New perspectives for rashba spin–orbit coupling,” Nat. Mater. 14, 871 (2015).
  • Hasan and Kane [2010] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
  • Qi and Zhang [2011] X.-L. Qi and S.-C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057 (2011).
  • Onose et al. [2010] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa,  and Y. Tokura, “Observation of the magnon hall effect,” Science 329, 297 (2010).
  • Cheng et al. [2016] R. Cheng, S. Okamoto,  and D. Xiao, “Spin nernst effect of magnons in collinear antiferromagnets,” Phys. Rev. Lett. 117, 217202 (2016).
  • Zyuzin and Kovalev [2016] V. A. Zyuzin and A. A. Kovalev, “Magnon spin nernst effect in antiferromagnets,” Phys. Rev. Lett. 117, 217203 (2016).
  • Chumak et al. [2015] A. V. Chumak, V. I. Vasyuchka, A. A. Serga,  and B. Hillebrands, “Magnon spintronics,” Nature physics 11, 453 (2015).
  • McClarty [2022] P. A. McClarty, “Topological magnons: A review,” Annu. Rev. Condens. Matter Phys. 13, 171 (2022).
  • Zhang et al. [2013] L. Zhang, J. Ren, J.-S. Wang,  and B. Li, “Topological magnon insulator in insulating ferromagnet,” Phys. Rev. B 87, 144101 (2013).
  • Mook et al. [2016] A. Mook, J. Henk,  and I. Mertig, “Tunable magnon weyl points in ferromagnetic pyrochlores,” Phys. Rev. Lett. 117, 157204 (2016).
  • Su et al. [2017] Y. Su, X. S. Wang,  and X. R. Wang, “Magnonic weyl semimetal and chiral anomaly in pyrochlore ferromagnets,” Phys. Rev. B 95, 224403 (2017).
  • Kim et al. [2016] S. K. Kim, H. Ochoa, R. Zarzuela,  and Y. Tserkovnyak, “Realization of the haldane-kane-mele model in a system of localized spins,” Phys. Rev. Lett. 117, 227201 (2016).
  • Wang et al. [2018] X. S. Wang, H. W. Zhang,  and X. R. Wang, “Topological magnonics: A paradigm for spin-wave manipulation and device design,” Phys. Rev. Appl. 9, 024029 (2018).
  • Owerre [2017] S. A. Owerre, “Topological thermal hall effect in frustrated kagome antiferromagnets,” Phys. Rev. B 95, 014422 (2017).
  • Di et al. [2015] K. Di, V. L. Zhang, H. S. Lim, S. C. Ng, M. H. Kuok, J. Yu, J. Yoon, X. Qiu,  and H. Yang, “Direct observation of the dzyaloshinskii-moriya interaction in a pt/co/ni film,” Phys. Rev. Lett. 114, 047201 (2015).
  • Hirschberger et al. [2015] M. Hirschberger, R. Chisnell, Y. S. Lee,  and N. P. Ong, “Thermal hall effect of spin excitations in a kagome magnet,” Phys. Rev. Lett. 115, 106603 (2015).
  • Matsumoto and Murakami [2011] R. Matsumoto and S. Murakami, “Rotational motion of magnons and the thermal hall effect,” Phys. Rev. B 84, 184406 (2011).
  • Doki et al. [2018] H. Doki, M. Akazawa, H.-Y. Lee, J. H. Han, K. Sugii, M. Shimozawa, N. Kawashima, M. Oda, H. Yoshida,  and M. Yamashita, “Spin thermal hall conductivity of a kagome antiferromagnet,” Phys. Rev. Lett. 121, 097203 (2018).
  • Lee et al. [2015] H. Lee, J. H. Han,  and P. A. Lee, “Thermal hall effect of spins in a paramagnet,” Phys. Rev. B 91, 125413 (2015).
  • Mook et al. [2019] A. Mook, J. Henk,  and I. Mertig, “Thermal hall effect in noncollinear coplanar insulating antiferromagnets,” Phys. Rev. B 99, 014427 (2019).
  • Laurell and Fiete [2018] P. Laurell and G. A. Fiete, “Magnon thermal hall effect in kagome antiferromagnets with dzyaloshinskii-moriya interactions,” Phys. Rev. B 98, 094419 (2018).
  • Kovalev and Zyuzin [2016] A. A. Kovalev and V. Zyuzin, “Spin torque and nernst effects in dzyaloshinskii-moriya ferromagnets,” Phys. Rev. B 93, 161106 (2016).
  • Li et al. [2020] B. Li, S. Sandhoefner,  and A. A. Kovalev, “Intrinsic spin nernst effect of magnons in a noncollinear antiferromagnet,” Phys. Rev. Res. 2, 013079 (2020).
  • Zyuzin and Kovalev [2018] V. A. Zyuzin and A. A. Kovalev, “Spin hall and nernst effects of weyl magnons,” Phys. Rev. B 97, 174407 (2018).
  • Chen et al. [2021] X. Chen, S. Shi, G. Shi, X. Fan, C. Song, X. Zhou, H. Bai, L. Liao, Y. Zhou, H. Zhang, et al., “Observation of the antiferromagnetic spin hall effect,” Nat. Mater. 20, 800 (2021).
  • Wang et al. [2023] D. Wang, X. Bo, F. Tang,  and X. Wan, “First-principles study of the spin-orbit coupling contribution to anisotropic magnetic interactions,” Phys. Rev. B 108, 085140 (2023).
  • Litvin and Wike [2012] D. B. Litvin and T. R. Wike, Character Tables and Compatibility Relations of the Eighty Layer Groups and Seventeen Plane Groups (Springer Science & Business Media, 2012).
  • Haastrup et al. [2018] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche, M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen, J. Gath, K. W. Jacobsen, J. J. Mortensen, T. Olsen,  and K. S. Thygesen, “The computational 2d materials database: high-throughput modeling and discovery of atomically thin crystals,” 2D Mater. 5, 042002 (2018).
  • Gjerding et al. [2021] M. N. Gjerding, A. Taghizadeh, A. Rasmussen, S. Ali, F. Bertoldo, T. Deilmann, N. R. Knøsgaard, M. Kruse, A. H. Larsen, S. Manti, T. G. Pedersen, U. Petralanda, T. Skovhus, M. K. Svendsen, J. J. Mortensen, T. Olsen,  and K. S. Thygesen, “Recent progress of the computational 2d materials database (c2db),” 2D Mater. 8, 044002 (2021).
  • Hahn et al. [1983] T. Hahn, U. Shmueli,  and J. W. Arthur, International tables for crystallography, Vol. 1 (Reidel Dordrecht, 1983).
  • Fuh et al. [2016] H.-R. Fuh, C.-R. Chang, Y.-K. Wang, R. F. Evans, R. W. Chantrell,  and H.-T. Jeng, “Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides vx2 (x= s, se and te),” Scientific reports 6, 32625 (2016).
  • Zhang et al. [2009] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang,  and S.-C. Zhang, “Topological insulators in bi2se3, bi2te3 and sb2te3 with a single dirac cone on the surface,” Nat. Phys. 5, 438 (2009).
  • Segal et al. [1996] N. Segal, J. F. Vente, T. S. Bush,  and P. D. Battle, “Structural and magnetic properties of Sr4-xMxIrO6 (M= Ca, Zn, Cd, Li, Na),” Journal of Materials Chemistry 6, 395 (1996).