This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Ribaucour-type surfaces

Milton Javier Cardenas Mendez
Instituto de Matemática e Estatística
Universidade Federal de Goiás, 74001-970 Goiânia, GO, Brazil
miltonjcardenas@ufg.br
   Armardo Mauro Vasquez Corro
Instituto de Matemática e Estatística
Universidade Federal de Goiás, 74001-970 Goiânia, GO, Brazil
corro@ufg.br
(August 10, 2025)
Abstract

In this work we define the Ribaucour-type surfaces (in short, RT-surfaces). These surfaces satisfy a relationship similar to the Ribaucour surfaces that are related to the Élie Cartan problem. This class furnishes what seems to be the first examples of pairs of noncongruent surfaces in Euclidean space such that, under a diffeomorphism, lines of curvatures are preserved and principal curvatures are switched. We show that every compact and connected RT-surface is a sphere with center at the origin. We obtain present a Weierstrass type representation for RT-surfaces with prescribed Gauss map which depends on two holomorphic functions. We give explicit examples of RT-surfaces. Also, we use this representation to classify the RT-surfaces of rotation.

Keywords.

Ribaucour surfaces, generalized Weingarten surfaces, prescribed normal Gauss map, Weierstrass type representation.

Introduction: An oriented surface Σ3\Sigma\subseteq\mathbb{R}^{3} is called a Weingarten surface if it exists a differentiable relation WW between the mean curvatures HH and Gaussian curvatures KK of Σ\Sigma, such that W(H,K)=0W(H,K)=0, when function WW is linear, that is, a+bH+cK=0a+bH+cK=0 for a,ba,b and cc constants, the surfaces are called linear Weingarten surfaces.

Examples of linear Weingarten surfaces are constant Gaussian curvature surfaces (c0c\neq 0 and b=0b=0) and constant mean curvature surfaces (b0b\neq 0 and c=0c=0). Several authors have studied these classes of surfaces, see [1], [6] and [2], among others.

Let Σ3\Sigma\subset\mathbb{R}^{3} be an oriented surface with normal Gauss map NN, functions Ψ,Λ:Σ3\Psi,\Lambda:\Sigma\rightarrow\mathbb{R}^{3} given by Ψ(p)=p,N(p)\Psi(p)=\langle p,N(p)\rangle and Λ(p)=p,p\Lambda(p)=\langle p,p\rangle, pΣp\in\Sigma, where ,\langle,\rangle denotes the Euclidean scalar product in 3\mathbb{R}^{3}, are called support function and quadratic distance function, respectively. Geometrically, Ψ(p)\Psi(p) measures the signed distance from the origin to TpMT_{p}M and Λ(p)\Lambda(p) measures the squared distance from the origin to pp. Let pΣp\in\Sigma, a sphere with center p+H(p)K(p)N(p)p+\frac{H(p)}{K(p)}N(p) and radius H(p)K(p)\frac{H(p)}{K(p)} is called the middle sphere.

In 1888, Appell [5] studied a class of surfaces oriented in 3\mathbb{R}^{3} associated with area-preserving sphere transformations. Later, Ferreira and Roitman [3] showed that these surfaces satisfy the Weingarten relation, H+ΨK=0H+\Psi K=0.

In 1907, Tzitzeica [8] studied hyperbolic surfaces oriented so that there is a nonzero constant cc\in\mathbb{R} for which K+c2Ψ4=0K+c^{2}\Psi^{4}=0.

In [1], the authors motivated by the works [5] and [8] defined generalized Weingarten surfaces as surfaces that satisfy a relation of the form A+BH+CK=0A+BH+CK=0, where A,B,C:ΣA,B,C:\Sigma\rightarrow\mathbb{R} are differentiable functions that do not depend on the parameterization of Σ\Sigma. In particular, they studied the class of surfaces that satisfy the relation 2ΨH+ΛK=02\Psi H+\Lambda K=0. Called Special Generalized Weingartem Surfaces depending on the support function and the distance function (in short, EDSGW-surfaces), these surfaces have the geometric property that all medium spheres pass through the origin. The authors obtained a Weierstrass-like representation of EDSGW-surfaces depending on two homomorphic functions. In [6], the authors classified isothermic EDSGW-surfaces in relation to the third fundamental shape parameterized by plane curvature lines. Also in [4], it is shown that EDSGW-surfaces are in correspondence with the surface class in 𝕊2×\mathbb{S}^{2}\times\mathbb{R} where the Gaussian curvature KK and the extrinsic curvature KEK_{E} satisfy K=2KEK=2K_{E}.

Martínez and Roitman, in [2] showed what appears to be the first example found for the second case of the problem posed by Élie Cartan in his classic book about external differential systems and their applications to Differential Geometry. Such examples are given by a class of Weingarten surfaces that satisfy the relation 2ΨH+(1+Λ)K=02\Psi H+(1+\Lambda)K=0, Ribaucour surface calls, these surfaces have the geometric property that all the medial spheres intercept a fixed sphere along a large circle.

In [9], the authors define a surface class called Ribaucour surface of harmonic type (in short, HR-surface) if it satisfies 2ΨH+(ce2μ+Λ)K=02\Psi H+(ce^{2\mu}+\Lambda)K=0, where cc is a nonzero real constant, μ\mu a harmonic function with respect to the third fundamental form. These surfaces generalize Ribaucour surfaces studied in [2].

Motivated by [1],[6], [2] and [3], we define Ribaucour-type surfaces (RT-surfaces) which have the geometric property for every pΣp\in\Sigma a sphere of center p+(H(p)K(p)+Ψ(p)2)N(p)p+(\frac{H(p)}{K(p)}+\frac{\Psi(p)}{2})N(p) e radius H(p)K(p)+Ψ(p)2\frac{H(p)}{K(p)}+\frac{\Psi(p)}{2} passes through the origin, in this case 2ΨH+(Λ+Ψ2)K=02\Psi H+(\Lambda+\Psi^{2})K=0 is satisfied. We obtain a Weierstrass-type representation for RT-surfaces with prescribed normal Gaussian application depending on two holomorphic functions. Using this representation we classify rotating RT-surfaces. Furthermore, we show that a compact and connected RT-surface is a sphere.

1 Preliminaries

In this section we fix the notation used in this work, Σ\Sigma a surface on 3\mathbb{R}^{3}, NN its normal Gaussian map, and UU an open subset of 2\mathbb{R}^{2}.

Let X:U2ΣX:U\subset\mathbb{R}^{2}\rightarrow\Sigma, a parameterization of a surface Σ\Sigma and N:U23N:U\subset\mathbb{R}^{2}\rightarrow\mathbb{R}^{3}, normal Gaussian map. Considering {X,1,X,2,N}\{X_{,1},X_{,2},N\} as a base of 3\mathbb{R}^{3}, where X,i(q)=Xui(q)X_{,i}(q)=\frac{\partial X}{\partial u_{i}}(q), 1i,j21\leq i,j\leq 2 further we can write vector X,ijX_{,ij}, 1i,j21\leq i,j\leq 2, as

X,ij=k=12Γ~ijkX,k+bijNX_{,ij}=\sum_{k=1}^{2}\widetilde{\Gamma}_{ij}^{k}X_{,k}+b_{ij}N

The Γ~ijk\widetilde{\Gamma}_{ij}^{k} coefficients are called Christoffel symbols.

Definition 1.1.

Let XX be a local parameterization of Σ\Sigma with map of Gauss NN, matrix W=(Wij)W=(W_{ij}), such that

N,i=j=12WijXj,1i2N_{,i}=\sum_{j=1}^{2}W_{ij}X_{j},\hskip 8.5359pt1\leq i\leq 2

is called the Weingarten matrix of Σ\Sigma.

Lemma 1.2.

Let NN be the normal Gaussian map given by (4) such that the metric Lij=N,i,N,jL_{ij}=\langle N_{,i},N_{,j}\rangle is Euclidean conformal. Christoffel’s symbols for metric LijL_{ij} are given by

Γijk=0,Γiii=Lii,i2Lii,Γiji=Lii,j2Lii,Γiii=Lii,j2Ljj\Gamma_{ij}^{k}=0,\hskip 8.5359pt\Gamma_{ii}^{i}=\frac{L_{ii,i}}{2L_{ii}},\hskip 8.5359pt\Gamma_{ij}^{i}=\frac{L_{ii,j}}{2L_{ii}},\hskip 8.5359pt\Gamma_{ii}^{i}=\frac{-L_{ii,j}}{2L_{jj}}

For i,ji,j e kk different.

The next result was obtained by Roitman and Ferreira [3].

Theorem 1.3.

Let Σn+1\Sigma\subset\mathbb{R}^{n+1} be an orientable hypersurface and N:Σ𝕊nN:\Sigma\rightarrow\mathbb{S}^{n} normal Gauss application with non-zero Gauss-kroncker curvature in every point.  Let UΣU\subset\Sigma be a neighborhood of p0p_{0} such that N:UN(U)=V𝕊nN:U\rightarrow N(U)=V\subset\mathbb{S}^{n} invertible and h(q)=q,N1(q),qVh(q)=\langle q,N^{-1}(q)\rangle,q\in V, then

X(q)=Lh(q)+h(q)N(q)X(q)=\nabla_{L}h(q)+h(q)N(q)
Remark.

Using the above equation we have functions

Λ(q)=X(q),X(q)=|Lh(q)|2+h(q)2\Lambda(q)=\langle X(q),X(q)\rangle=|\nabla_{L}h(q)|^{2}+h(q)^{2} (1)
Ψ(q)=X(q),N(q)=h(q)\Psi(q)=\langle X(q),N(q)\rangle=h(q) (2)

called quadratic distance function and support function, respectively.

Remark.

Let the inner product be defined by ,:×,f,g=f1g1+f2g2\langle,\rangle:\mathbb{C}\times\mathbb{C}\rightarrow\mathbb{R},\langle f,g\rangle=f_{1}g_{1}+f_{2}g_{2}, where f=f1+if2f=f_{1}+if_{2} and g=g1+ig2g=g_{1}+ig_{2} are holomorphic functions. If f,g,h:Uf,g,h:U\subset\mathbb{C}\rightarrow\mathbb{C} are holomorphic functions, then

f,g,1=f,g+f,gf,g,2=if,g+f,igfh,g=f,h¯gf=1,g+ii,fg,1=g,g,2=ig\begin{split}&\langle f,g\rangle_{,1}=\langle f^{\prime},g\rangle+\langle f,g^{\prime}\rangle\\ &\langle f,g\rangle_{,2}=\langle if^{\prime},g\rangle+\langle f,ig^{\prime}\rangle\\ &\langle fh,g\rangle=\langle f,\overline{h}g\rangle\\ &f=\langle 1,g\rangle+i\langle i,f\rangle\\ &g_{,1}=g^{\prime},g_{,2}=ig^{\prime}\\ \end{split} (3)

where f,g,1=f(z),g(z)u1\langle f,g\rangle_{,1}=\frac{\partial\langle f(z),g(z)\rangle}{\partial u_{1}}

2 RT-surfaces

Motivated by the works [1],[6], [2] and [3], we will begin the study of Ribaucour-type surfaces and will call them RT-surfaces. In addition to presenting some examples, will provide a Weierstrass representation depending on two holomorphic functions for surfaces in this class and characterize the case where such surfaces are of rotation.

Theorem 2.1.

Let Σ3\Sigma\subset\mathbb{R}^{3}, an orientable surface with non-zero Gauss-Kronecker curvature. Then there is a differentiable function h:Uh:U\rightarrow\mathbb{R} and gg a holomorphic function such that normal Gauss map is given by

N=(2g(u),1|g(u)|2)1+|g(u)|2N=\frac{(2g(u),1-|g(u)|^{2})}{1+|g(u)|^{2}} (4)

the coefficients of the IIIIII fundamental form are

Lij=4|g|2δij(1+|g|2)2L_{ij}=\frac{4|g^{\prime}|^{2}\delta_{ij}}{(1+|g|^{2})^{2}} (5)

Σ\Sigma is locally parameterized by

X(u)=j=12h(u),jLjjN(u),j+h(u)N(u)X(u)=\sum_{j=1}^{2}\frac{h(u)_{,j}}{L_{jj}}N(u)_{,j}+h(u)N(u) (6)

In this case h(u)=X(u),N(u)h(u)=\langle X(u),N(u)\rangle is the support function. Furthermore, the Weingarten matrix is given by W=V1W=V^{-1} where

Vij=1Lij(h,ijknh,kΓijk+hLijδij)V_{ij}=\frac{1}{L_{ij}}\left(h_{,ij}-\sum_{k}^{n}h_{,k}\Gamma_{ij}^{k}+hL_{ij}\delta_{ij}\right) (7)

where Γijk\Gamma_{ij}^{k} are Christoffel’s symbols of NN and the fundamental forms II and IIII of XX, in local coordinates, are given by

I=X,i,X,j=k=1nVikVjkLkk,II=X,i,N,j=VijLjj.I=\langle X_{,i},X_{,j}\rangle=\sum_{k=1}^{n}V_{ik}V_{jk}L_{kk},\quad II=\langle X_{,i},N_{,j}\rangle=V_{ij}L_{jj}.
Proof.

In theorem (1.3) we can choose a local parameterization of the sphere given by (4) with a metric given by (5) and Σ\Sigma is locally parameterized by (6), calculating their derivatives we get

X,i=(h,iiLiij=1nh,jLiiΓiij+h)N,i+j=1jin(h,ijLjjh,jLjjΓijjh,iLjjΓiji)N,jX_{,i}=\left(\frac{h_{,ii}}{L_{ii}}-\sum_{j=1}^{n}\frac{h_{,j}}{L_{ii}}\Gamma_{ii}^{j}+h\right)N_{,i}+\sum_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{n}\left(\frac{h_{,ij}}{L_{jj}}-\frac{h_{,j}}{L_{jj}}\Gamma_{ij}^{j}-\frac{h_{,i}}{L_{jj}}\Gamma_{ij}^{i}\right)N_{,j}

Considering matrix V=(Vij),1i,jnV=(V_{ij}),\hskip 8.5359pt1\leq i,j\leq n, given by (7)(\ref{2}), therefore

X,i=j=1nVijN,jX_{,i}=\sum_{j=1}^{n}V_{ij}N_{,j} (8)

In search of the Weingarten matrix we have to N,i=j=1nVij1X,jN_{,i}=\sum_{j=1}^{n}V^{-1}_{ij}X_{,j}, by definition 1.1 we have to W=V1W=V^{-1}. To obtain the coefficients of the fundamental forms, we use (8), therefore

I=X,i,X,j=k=1nVikN,k,m=1nVjmN,m=k,m=1nVikVjmN,kN,m=k=1nVikVjkLkkI=\langle X_{,i},X_{,j}\rangle=\langle\sum_{k=1}^{n}V_{ik}N_{,k},\sum_{m=1}^{n}V_{jm}N_{,m}\rangle=\sum_{k,m=1}^{n}V_{ik}V_{jm}\langle N_{,k}N_{,m}\rangle=\sum_{k=1}^{n}V_{ik}V_{jk}L_{kk}
II=X,i,N,j=k=1nVikN,k,N,j=k=1nVikN,k,N,j=VijLjjII=\langle X_{,i},N_{,j}\rangle=\langle\sum_{k=1}^{n}V_{ik}N_{,k},N_{,j}\rangle=\sum_{k=1}^{n}V_{ik}\langle N_{,k},N_{,j}\rangle=V_{ij}L_{jj}
Definition 2.2.

A Σ\Sigma surface is called Ribaucour-type surfaces (RT-surface) such that for each pΣp\in\Sigma the center sphere p+(H(p)K(p)+Ψ(p)2)N(p)p+(\frac{H(p)}{K(p)}+\frac{\Psi(p)}{2})N(p) and radius H(p)K(p)+Ψ(p)2\frac{H(p)}{K(p)}+\frac{\Psi(p)}{2} go through the origin, in this case Σ\Sigma satisfies the following generalized Weingarten relation

2ΨH+(Λ+Ψ2)K=02\Psi H+(\Lambda+\Psi^{2})K=0

for all pΣp\in\Sigma.

Lemma 2.3.

Let Σ\Sigma be a Riemann surface and X:Σ3X:\Sigma\rightarrow\mathbb{R}^{3} an immersion such that the Gauss-kronecker curvature is non-zero, under the conditions of the theorem 2.1 then X(Σ)X(\Sigma) is a SS-surface if and only if

hh|h|2=0h\triangle h-|\nabla h|^{2}=0 (9)
Proof.

By theorem (2.1), we have W=V1W=V^{-1}, let σi\sigma_{i} be the eigenvalues of VV and λi\lambda_{i} the eigenvalues of WW, then σi=1λi\sigma_{i}=\frac{1}{\lambda_{i}}. Using this fact and the expressions in lemma 1.2, (5), (6) and (7), we get

hL11+2h=V11+V22=2HK\frac{\triangle h}{L_{11}}+2h=V_{11}+V_{22}=\frac{-2H}{K}

using equations (1) and (2), then

(hh|h|2L11)K+2HΨ+(Λ+Ψ2)K=0,pΣ\left(\frac{h\triangle h-|\nabla h|^{2}}{L_{11}}\right)K+2H\Psi+(\Lambda+\Psi^{2})K=0,\quad\forall p\in\Sigma

and the result follows. ∎

For RT-surfaces with Gaussian curvature K0K\neq 0 we will present a complete characterization through pairs of holomorphic functions. This representation will allow to classify all RT-surfaces of rotation. Before that, we will need the following lemma.

Lemma 2.4.

Consider holomorphic functions f,g:Uf,g:U\subset\mathbb{C}\rightarrow\mathbb{C}, with g0g^{\prime}\neq 0. Taking local parameters z=u1+iu2z=u_{1}+iu_{2}\in\mathbb{C} and h=e1,fh=e^{\langle 1,f\rangle}. So elements of the matrix VV given by (7) in terms of ff and gg are given by

V11=T2h4|g|2[1,f21,ξ]+hV12=V21=T2h4|g|2i,ξf22V22=T2h4|g|2[1,if2+1,ξ]+h\begin{split}&V_{11}=\frac{T^{2}h}{4|g^{\prime}|^{2}}[\langle 1,f^{\prime}\rangle^{2}-\langle 1,\xi\rangle]+h\\ &V_{12}=V_{21}=\frac{T^{2}h}{4|g^{\prime}|^{2}}\langle i,\xi-\frac{f^{\prime 2}}{2}\rangle\\ &V_{22}=\frac{T^{2}h}{4|g^{\prime}|^{2}}[\langle 1,if^{\prime}\rangle^{2}+\langle 1,\xi\rangle]+h\end{split} (10)

where T=1+|g|2T=1+|g|^{2} and ξ=f(g′′g2Tgg¯)f′′\xi=f^{\prime}\left(\frac{g^{\prime\prime}}{g^{\prime}}-\frac{2}{T}g^{\prime}\overline{g}\right)-f^{\prime\prime}. Furthermore,

detV=h2T416|g|4ξ,f2ξ+h2T2|f|24|g|2+h2detV=\frac{h^{2}T^{4}}{16|g^{\prime}|^{4}}\langle\xi,f^{\prime 2}-\xi\rangle+\frac{h^{2}T^{2}|f^{\prime}|^{2}}{4|g^{\prime}|^{2}}+h^{2} (11)
Proof.

With h=e1,fh=e^{\langle 1,f\rangle}, deriving and using (3) we get

h,1=e1,f1,f,h,11=e1,f(1,f2+1,f′′),h,2=e1,f1,if,h,22=e1,f(1,if21,f′′),h,12=e1,f(1,if1,f+1,if′′).\begin{split}&h_{,1}=e^{\langle 1,f\rangle}\langle 1,f^{\prime}\rangle,\quad h_{,11}=e^{\langle 1,f\rangle}(\langle 1,f^{\prime}\rangle^{2}+\langle 1,f^{\prime\prime}\rangle),\quad h_{,2}=e^{\langle 1,f\rangle}\langle 1,if^{\prime}\rangle,\\ &h_{,22}=e^{\langle 1,f\rangle}(\langle 1,if^{\prime}\rangle^{2}-\langle 1,f^{\prime\prime}\rangle),\qquad h_{,12}=e^{\langle 1,f\rangle}(\langle 1,if^{\prime}\rangle\langle 1,f^{\prime}\rangle+\langle 1,if^{\prime\prime}\rangle).\end{split} (12)

Since T=1+|g|2T=1+|g|^{2}, by lemma 1.2 and (5), we obtain

Γ111=Tg,g′′2|g|2g,gT|g|2=Γ122,Γ222=Tg,ig′′2|g|2g,igT|g|2=Γ211\Gamma_{11}^{1}=\frac{T\langle g^{\prime},g^{\prime\prime}\rangle-2|g^{\prime}|^{2}\langle g,g^{\prime}\rangle}{T|g^{\prime}|^{2}}=\Gamma_{12}^{2},\quad\Gamma_{22}^{2}=\frac{T\langle g^{\prime},ig^{\prime\prime}\rangle-2|g^{\prime}|^{2}\langle g,ig^{\prime}\rangle}{T|g^{\prime}|^{2}}=\Gamma_{21}^{1}
Γ112=2|g|2g,igTg,ig′′T|g|2,Γ221=2|g|2g,gTg,g′′T|g|2.\Gamma_{11}^{2}=\frac{2|g^{\prime}|^{2}\langle g,ig^{\prime}\rangle-T\langle g^{\prime},ig^{\prime\prime}\rangle}{T|g^{\prime}|^{2}},\quad\Gamma_{22}^{1}=\frac{2|g^{\prime}|^{2}\langle g,g^{\prime}\rangle-T\langle g^{\prime},g^{\prime\prime}\rangle}{T|g^{\prime}|^{2}}.

Using the above expressions, (7) and (12), we obtain (10), so we have

detV=(hT24|g|2[1,f21,ξ]+h)(hT24|g|2[1,if2+1,ξ]+h)(hT24|g|2[1,if1,f+i,ξ])2\begin{split}detV&=\left(\frac{hT^{2}}{4|g^{\prime}|^{2}}[\langle 1,f^{\prime}\rangle^{2}-\langle 1,\xi\rangle]+h\right)\left(\frac{hT^{2}}{4|g^{\prime}|^{2}}[\langle 1,if^{\prime}\rangle^{2}+\langle 1,\xi\rangle]+h\right)\\ &-\left(\frac{hT^{2}}{4|g^{\prime}|^{2}}[\langle 1,if^{\prime}\rangle\langle 1,f^{\prime}\rangle+\langle i,\xi\rangle]\right)^{2}\end{split}

therefore we obtain(11).

Theorem 2.5.

Let Σ\Sigma be a Riemann surface and X:Σ3X:\Sigma\rightarrow\mathbb{R}^{3} an immersion such that the Gauss-kronecker curvature is non-zero.
Then X(Σ)X(\Sigma) is a SS-surface if and only if there are holomorphic functions f,g:Uf,g:U\subset\mathbb{C}\rightarrow\mathbb{C}, where UU is a simply connected open and g0g^{\prime}\neq 0, such that X(Σ)X(\Sigma) is locally parameterized by

X=e1,f2|g|2(Tgf¯2gg,gf,2g,gf)+e1,f(2g,2T)TX=\frac{e^{\langle 1,f\rangle}}{2|g^{\prime}|^{2}}(Tg^{\prime}\bar{f^{\prime}}-2g\langle g^{\prime},gf^{\prime}\rangle,-2\langle g^{\prime},gf^{\prime}\rangle)+e^{\langle 1,f\rangle}\frac{(2g,2-T)}{T} (13)

With normal application of Gauss N given by (4), the regularity condition is given by

T4ξ,f2ξ+4T2|f|2|g|2+16|g|40T^{4}\langle\xi,f^{\prime 2}-\xi\rangle+4T^{2}|f^{\prime}|^{2}|g^{\prime}|^{2}+16|g^{\prime}|^{4}\neq 0

The coefficients of the first and second fundamental forms of XX have the following expressions

E=h2(T24|g|2(A12+i,ξf222)+2A1+4|g|2T2)F=h2(T2|f|24|g|2+2)i,ξf22G=h2(T24|g|2(A22+i,ξf222)+2A2+4|g|2T2)e=hA1+4h|g|2T2,f=hi,ξf22,g=hA2+4h|g|2T2\begin{split}E&=h^{2}\left(\frac{T^{2}}{4|g^{\prime}|^{2}}\left(A_{1}^{2}+\langle i,\xi-\frac{f^{\prime 2}}{2}\rangle^{2}\right)+2A_{1}+\frac{4|g^{\prime}|^{2}}{T^{2}}\right)\\ F&=h^{2}\left(\frac{T^{2}|f^{\prime}|^{2}}{4|g^{\prime}|^{2}}+2\right)\langle i,\xi-\frac{f^{\prime 2}}{2}\rangle\\ G&=h^{2}\left(\frac{T^{2}}{4|g^{\prime}|^{2}}\left(A_{2}^{2}+\langle i,\xi-\frac{f^{\prime 2}}{2}\rangle^{2}\right)+2A_{2}+\frac{4|g^{\prime}|^{2}}{T^{2}}\right)\\ e&=hA_{1}+\frac{4h|g^{\prime}|^{2}}{T^{2}},\quad f=h\langle i,\xi-\frac{f^{\prime 2}}{2}\rangle,\quad g=hA_{2}+\frac{4h|g^{\prime}|^{2}}{T^{2}}\end{split}

Where ξ=f(g′′g2Tgg¯)f′′\xi=f^{\prime}\left(\frac{g^{\prime\prime}}{g^{\prime}}-\frac{2}{T}g^{\prime}\overline{g}\right)-f^{\prime\prime}, A1=1,f21,ξA_{1}=\langle 1,f^{\prime}\rangle^{2}-\langle 1,\xi\rangle e A2=1,if21,ξA_{2}=\langle 1,if^{\prime}\rangle^{2}-\langle 1,\xi\rangle

Proof.

Using (9 ), we can assume without loss of generality h=eμh=e^{\mu} where μ:Σ\mu:\Sigma\rightarrow\mathbb{R} is a differentiable function, in this case,

hh|h|2=e2μμh\triangle h-|\nabla h|^{2}=e^{2\mu}\triangle\mu

Now hh satisfies (9), if and only if h=e1,fh=e^{\langle 1,f\rangle}, where ff is a holomorphic function. As NN is given by (4), deriving we have

N,1=2T2(Tg2gg,g,2g,g)N_{,1}=\frac{2}{T^{2}}(Tg^{\prime}-2g\langle g^{\prime},g\rangle,-2\langle g^{\prime},g\rangle)
N,2=2T2(Tig2gg,ig,2g,ig)N_{,2}=\frac{2}{T^{2}}(Tig^{\prime}-2g\langle g,ig^{\prime}\rangle,-2\langle g,ig^{\prime}\rangle)

using these expressions and (5) in (6),we have (13). Therefore, using (3),(8) and (10) we obtain the coefficients of the first and second fundamental forms given in the statement of the theorem.

Example 2.6.

A sphere of center at the origin and radius r>0r>0 is RT-surface, in fact, using theorem 2.5 and taking h(u)=rh(u)=r, by equations (6) and (9) the result follows.

Theorem 2.7.

Let Σ\Sigma be a compact, connected SS-surface, then Σ\Sigma is a sphere with center at the origin.

Proof.

Let Σ\Sigma be a compact then there is a EE sphere with center at the origin of radius r>0r>0, such that Σ\Sigma is contained in the closed ball with center at the origin and radius rr, B[0,r]B[0,r] and a point pEΣp\in E\cap\Sigma, such that TpE=TpΣT_{p}E=T_{p}\Sigma. Let h:Σh:\Sigma\rightarrow\mathbb{R}, where hh function support of Σ\Sigma. We know that h(q)|q|h(q)\leq|q|, for every qΣq\in\Sigma, then

h(q)|q|rfor allqΣh(q)\leq|q|\leq r\quad\text{for all}\quad q\in\Sigma

Σ\Sigma is a RT-surface and by theorem 2.5 and (6), there is a parameterized locally around pp such that support function h:U2Σh:U\subset\mathbb{R}^{2}\rightarrow\Sigma, given by h(u)=eμ(u)h(u)=e^{\mu(u)} uUu\in U , with μ\mu harmonic then

eμrμln(r)e^{\mu}\leq r\Rightarrow\mu\leq\ln(r)

Since μ\mu is harmonic, by the maximum principle, μ(u)=ln(r)\mu(u)=\ln(r) in UU, later h(u)=rh(u)=r in UU, for an argument of compactness and connectedness of Σ\Sigma, we conclude h(q)=rh(q)=r for all qΣq\in\Sigma, therefore Σ\Sigma is a sphere with center at the origin.

For some holomorphic functions ff and gg we show some examples of (13).

Refer to caption
Refer to caption
Refer to caption
Figure 1: f(z)=g(z)=z=u1+iu2f(z)=g(z)=z=u_{1}+iu_{2}
Refer to caption
Refer to caption
Refer to caption
Figure 2: f(z)=z2,g(z)=zf(z)=z^{2},\hskip 5.69046ptg(z)=z
Refer to caption
Refer to caption
Refer to caption
Figure 3: f(z)=z,g(z)=z2f(z)=z,\hskip 5.69046ptg(z)=z^{2}

The following theorem characterizes the rotating RT-surfaces.

Theorem 2.8.

Let Σ\Sigma be a connected RT-surface. Since Σ\Sigma is of rotation if and only if there are constants a,ba,b\in\mathbb{R}, such that Σ\Sigma can be locally parameterized by

Xa,b(u1,u2)=eau1+b1+e2u1(M(u1)cos(u2),M(u1)sin(u2),N(u1))X_{a,b}(u_{1},u_{2})=\frac{e^{au_{1}+b}}{1+e^{2u_{1}}}\left(M(u_{1})\cos(u_{2}),M(u_{1})\sin(u_{2}),N(u_{1})\right) (14)

where

M(u1)=a(eu1e3u1)+4eu12,N(u1)=1e2u1a(1+e2u1)M(u_{1})=\frac{a(e^{-u_{1}}-e^{3u_{1}})+4e^{u_{1}}}{2},\quad N(u_{1})=1-e^{2u_{1}}-a(1+e^{2u_{1}}) (15)
Proof.

Let Σ\Sigma be locally parameterized by (13) with normal application of Gauss NN given by (4) and where f,gf,g are holomorphic functions. As Σ\Sigma is of rotation if and only if g(w)=wg(w)=w and h(w)=J(|w|2)h(w)=J(|w|^{2}), ww\in\mathbb{C}, for some JJ differentiable function. Changing parameters w=ez,z=u1+iu2w=e^{z},z=u_{1}+iu_{2}\in\mathbb{C}, we have g(z)=ezg(z)=e^{z} and h(z)=J(e2u1)h(z)=J(e^{2u_{1}}). Consequently, h,2=0h,_{2}=0, remembering that h=e1,fh=e^{\langle 1,f\rangle} and h,2=e1,f1,if=0h,_{2}=e^{\langle 1,f\rangle}\langle 1,if^{\prime}\rangle=0, then 1,if=0\langle 1,if^{\prime}\rangle=0, so

f(z)=az+z0,g(z)=ez,h(z)=eau1+b,z=u1+iu2,z0=b+icf(z)=az+z_{0},\hskip 5.69046ptg(z)=e^{z},\hskip 5.69046pth(z)=e^{au_{1}+b},\hskip 5.69046ptz=u_{1}+iu_{2},z_{0}=b+ic\in\mathbb{C}

using these expressions in (13), we have

X=eau1+b((a(eu1eu1)2+2eu11+e2u1)(cos(u2)+isin(u2)),1e2u11+e2u1a)X=e^{au_{1}+b}\left(\left(\frac{a(e^{-u_{1}}-e^{u_{1}})}{2}+\frac{2e^{u_{1}}}{1+e^{2u_{1}}}\right)(\cos(u_{2})+i\sin(u_{2})),\frac{1-e^{2u_{1}}}{1+e^{2u_{1}}}-a\right)

Therefore Σ\Sigma can be parameterized locally by (14) and (15).

Using theorem 2.5, we have that

EGF2=(ae2u1(e2u14)a)2(ae4u1(a+1)+2e2u1(a2+2)+a(a1))216(e2u1+1)4e4u1(a1)4bEG-F^{2}=\frac{(ae^{2u_{1}}(e^{2u_{1}}-4)-a)^{2}(ae^{4u_{1}}(a+1)+2e^{2u_{1}}(a^{2}+2)+a(a-1))^{2}}{16(e^{2u_{1}}+1)^{4}e^{-4u_{1}(a-1)-4b}}

Thereby, XabX_{ab} is regular if and only if a=0a=0. If a0a\neq 0, the expression from above vanishes for

u1={12ln(2+4+a2a)sea>012ln(24+a2a)sea<012ln((2+a2)+4+5a2a2+a)se0<a<112ln((2+a2)4+5a2a2+a)se1<a<0u_{1}=\left\{\begin{array}[]{lcc}\frac{1}{2}\ln(\frac{2+\sqrt{4+a^{2}}}{a})&se&a>0\\ \\ \frac{1}{2}\ln(\frac{2-\sqrt{4+a^{2}}}{a})&se&a<0\\ \\ \frac{1}{2}\ln(\frac{-(2+a^{2})+\sqrt{4+5a^{2}}}{a^{2}+a})&se&0<a<1\\ \\ \frac{1}{2}\ln(\frac{-(2+a^{2})-\sqrt{4+5a^{2}}}{a^{2}+a})&se&-1<a<0\end{array}\right.

In figures (4), (5) and (6) we present examples of RT-surfaces of rotation. We consider only the case where b=0b=0.

Refer to caption
Figure 4: a=1a=-1
Refer to caption
Figure 5: a=0a=0
Refer to caption
Figure 6: a=12a=\frac{1}{2}

Bibliografía

  • [1] A.V. Corro, D.G. Dias, Classes of generalized Weingarten surfaces in the Euclidean 3-space,Adv.Geom. 2016;16(1)45–55
  • [2] A. Martinez, P. Roitman, A class of surfaces related to a problem posed by Élie Cartan, Ann.Mat. Pura Appl,195,513–527
  • [3] W. Ferreira, P. Roitman, Area preserving transformations in twodimensional space forms and classical differential geometry, Israel J.Mat,190,325–348
  • [4] A.V. Corro, R. Pina, M. Souza, Classes of Weingarten surfaces in 𝕊2×\mathbb{S}^{2}\times\mathbb{R}, HOUSTON JOURNAL OF MATHEMATICS, v. 46, p. 651-664, 2020.
  • [5] P. Appell,, Surfaces telles que lórigine se projette sur chaque normale au milieu des centres de courbure principaux., Amer. J. Math. 10(1888),175–186. MR1505475 JFM 19.0825.01
  • [6] A.V. Corro, C.M. Riveros, D.G. Dias, A class of generalized special Weingarten surfaces, International Journal of Mathematics Vol. 30, No. 14 (2019) 1950075
  • [7] A.V. Corro, K. Tenenblat, Ribaucour transformations revisited., Comm. Anal. Geom. 12(2004), 1055–1082. MR2103311 (2005j:53063) Zbl 1090.53055
  • [8] G. Tzitzéica, Sur une nouvelle classe de surfaces., Rend. Circ. Mat. Palermo 25 (1908), 180–187. JFM 39.0685.05
  • [9] A.V. Corro, C.M. Riveros, K. Fernandes Ribaucour surfaces of harmonic type International Journal of Mathematics Vol. 33, No. 1 (2022) 2250006