This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Riemann-Hilbert approach and soliton solutions for the higher-order dispersive nonlinear Schrödinger equation with nonzero boundary conditions 111Corresponding author.
  E-mail addresses: sftian@cumt.edu.cn, shoufu2006@126.com (S. F. Tian)

Zhi-Qiang Li, Shou-Fu Tian222Corresponding author.
  E-mail addresses: sftian@cumt.edu.cn, shoufu2006@126.com (S. F. Tian)
, Jin-Jie Yang
School of Mathematics and Institute of Mathematical Physics, China University of Mining and Technology,
Xuzhou 221116, People’s Republic of China
Abstract

In this work, the higher-order dispersive nonlinear Schrödinger equation with non-zero boundary conditions at infinity is investigated including the simple and double zeros of the scattering coefficients. We introduce a appropriate Riemann surface and uniformization variable in order to deal with the double-valued functions occurring in the process of direct scattering. Then, the direct scattering problem is analyzed involving the analyticity, symmetries and asymptotic behaviors. Moreover, for the cases of simple and double poles, we study the discrete spectrum and residual conditions, trace foumulae and theta conditions and the inverse scattering problem which is solved via the Riemann-Hilbert method. Finally, for the both cases, we construct the soliton and breather solutions under the condition of reflection-less potentials. Some interesting phenomena of the soliton and breather solutions are analyzed graphically by considering the influences of each parameters.

keywords:
The higher-order dispersive nonlinear Schrödinger equations , Nonzero boundary conditions , Riemann-Hilbert method.
journal: Journal of  Templates

1 Introduction

Nonlinear Schrödinger (NLS) equation reads

iut+uxx+2|u|2u=0iu_{t}+u_{xx}+2|u|^{2}u=0 (1.1)

is a very important soliton equation. As basic physical models, the NLS equation and its extensions play an important role in various fields of nonlinear science such as deep water waves[1], plasma physics[2, 3], nonlinear optical fibers[4, 5], magneto-static spin waves[6], etc. Since many NLS equations are completely integrable infinite-dimensional Hamiltonian systems, they have rich mathematical structure. Therefore, various research on NLS equations are still popular. In particular, the studies on the exact solutions of the NLS equations have gradually become an important branch. There are three well-known derivative NLS equations, including the Kaup-Newell equation [7], the Chen-Lee-Liu equation [8] and the Gerdjikov-Ivanov equation [9, 10]. It is known that these three equations may be transformed into each other by implicit gauge transformations, and the method of gauge transformation can also be applied to some generalized cases [11]. In this respect, there are a lot of research for the extended NLS equations [12]-[19].

In this work, we investigate the higher-order dispersive nonlinear Schrödinger (HDNLS) equation[20, 21] with nonzero boundary conditions (NZBCs) at infinity which have extensive applications in physical fields. The HDNLS equation takes the form

iut+uxx+2|u|2u+τ(uxxxx+8|u|2uxx+2u2uxx+4u|ux|2+6uux2+6|u|4u)=0,\displaystyle iu_{t}+u_{xx}+2|u|^{2}u+\tau(u_{xxxx}+8|u|^{2}u_{xx}+2u^{2}u^{*}_{xx}+4u|u_{x}|^{2}+6u^{*}u_{x}^{2}+6|u|^{4}u)=0,
limx±u(x,t)=u±,u±=u00,\displaystyle\lim_{x\rightarrow\pm\infty}u(x,t)=u_{\pm},\qquad\mid u_{\pm}\mid=u_{0}\neq 0, (1.2)

where uu is complex function of variables xx, tt and represents the slowly changing envelope of the wave and τ=ϵ212\tau=\frac{\epsilon^{2}}{12} is a small dimensionless parameter. The HDNLS equation plays a dominant role in controlling the ultrashort optical pulse propagation in a long-distance, high-speed fiber transmission systems, with the higher-order nonlinear effects such as fourth-order dispersion[22]-[24]. Meanwhile, this equation can be used to describe the nonlinear spin excitations in the one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole-dipole interaction[25, 26]. To study the HDNLS equation, experts and scholars have used many methods such as Darboux transformation method, modified Darboux transformation method[27, 28]. However, what we will study is inverse scattering transform (IST) for the HDNLS equation with nonzero boundary conditions. To the best of our knowledge, for this equation, the research using this method has not been reported yet.

The IST is first presented in order to solve exactly the famous Korteweg-de Vries equation [29]. Then, Zakharov and Shabat[3] show that the method can be applied to physically significant nonlinear evolution equation, namely, the nonlinear Schrödinger equation. After this, the study on the NLS equations using the IST is more and more popular. Recently, the IST is extended to study the NLS equations with NZBCs [30]-[52].

Two goals will be achieved in this work. On one hand, according to the lax pairs of the equation (1.2) and through the direct scattering transform and inverse scattering transform, some results are given, involving the analyticity, symmetries and asymptotic behaviors of the scattering coefficients, the establishment of a generalized Riemann-Hilbert problem and the construction of the discrete spectrum and residual conditions. On the other hand, based on the above results, the solutions of the HDNLS equation with NZBCs will be derived for the simple and double poles. In view of the complexity of the HDNLS equation and its lax pairs, some computational skills are used and a lot of calculations are made during the analysis to achieve that two goals.

The outline of this work is as follows. In section 2, we explore the simple poles of the HDNLS equation with NZBCs involving the direct scattering problem and inverse scattering problem. Meanwhile, the soliton solutions under the reflection-less potential condition are given. In section 3, we derive the inverse scattering problem of the HDNLS equation with NZBCs and double poles. In addition, the soliton solutions are presented for some special cases. In section 4, we make a comparison with the results of other experts and scholars. In section 5, some conclusions and discussions are given.

2 The HDNLS equation with NZBCs: simple poles

In this section, we consider the simple poles case of the HDNLS equation with NZBCs. Firstly, we seek for an appropriate transformation to simplify the boundary conditions and make the analysis process easier.

The Lax pair of the equation (1.2) reads

Ψx=XΨ,Ψt=TΨ,\displaystyle\Psi_{x}=X\Psi,\qquad\Psi_{t}=T\Psi,
Ψ=(Ψ1,Ψ2)T,\displaystyle\Psi=(\Psi_{1},\Psi_{2})^{T}, (2.1)

where Ψi,(i=1,2)\Psi_{i},(i=1,2) are eigenfunctions, and

X=ikσ3+U,\displaystyle X=-ik\sigma_{3}+U,
T=[3iτ|u|4+i|u|2+iτ(uuxx+uuxx|ux|2)+8iτk4+2kτ(uuxuxu)\displaystyle T=[3i\tau|u|^{4}+i|u|^{2}+i\tau(u^{*}u_{xx}+uu^{*}_{xx}-|u_{x}|^{2})+8i\tau k^{4}+2k\tau(uu^{*}_{x}-u_{x}u^{*})
2ik2(2τ|u|2+1)]σ38τk3U4iτk2σ3Ux+6iτU2Uxσ3\displaystyle-2ik^{2}(2\tau|u|^{2}+1)]\sigma_{3}-8\tau k^{3}U-4i\tau k^{2}\sigma_{3}U_{x}+6i\tau U^{2}U_{x}\sigma_{3}
+iσ3Ux+iτσ3Uxxx+2k(U+τUxx2τU3),\displaystyle+i\sigma_{3}U_{x}+i\tau\sigma_{3}U_{xxx}+2k(U+\tau U_{xx}-2\tau U^{3}), (2.2)

with

U=(0u(x,t)u(x,t)0),σ3=(1001).U=\left(\begin{array}[]{cc}0&u(x,t)\\ -u^{*}(x,t)&0\\ \end{array}\right),\qquad\sigma_{3}=\left(\begin{array}[]{cc}1&0\\ 0&-1\\ \end{array}\right).

It is not hard to check that X,TX,T satisfy the zero curvature equation XtTx+[X,T]=0X_{t}-T_{x}+[X,T]=0, which is the compatibility condition of (1.2).

Theorem 2.1 Under the transformation

u=qe2i(3τq04+q02)t,Ψ=ϕe(3τq04+q02)σ3,\displaystyle\begin{split}&u=qe^{2i(3\tau q_{0}^{4}+q_{0}^{2})t},\\ &\Psi=\phi e^{(3\tau q_{0}^{4}+q_{0}^{2})\sigma_{3}},\end{split}

then the equation (1.2) changes to

iqt+qxx+2(|q|23τq04q02)q+τ(qxxxx+8|q|2qxx\displaystyle iq_{t}+q_{xx}+2(|q|^{2}-3\tau q_{0}^{4}-q_{0}^{2})q+\tau(q_{xxxx}+8|q|^{2}q_{xx}
+2q2qxx+4q|qx|2+6qqx2+6|q|4q)=0,\displaystyle+2q^{2}q^{*}_{xx}+4q|q_{x}|^{2}+6q^{*}q_{x}^{2}+6|q|^{4}q)=0,
limx±q(x,t)=q±,q±=q00,\displaystyle\lim_{x\rightarrow\pm\infty}q(x,t)=q_{\pm},\qquad\mid q_{\pm}\mid=q_{0}\neq 0, (2.3)

and the equation (2.1) changes to

ϕx=Xϕ,ϕt=Tϕ,\displaystyle\phi_{x}=X\phi,\qquad\phi_{t}=T\phi,
ϕ=(ϕ1,ϕ2)T,\displaystyle\phi=(\phi_{1},\phi_{2})^{T}, (2.4)

where ϕi,(i=1,2)\phi_{i},(i=1,2) are eigenfunctions, and

X=ikσ3+Q,\displaystyle X=-ik\sigma_{3}+Q,
T=[3iτ|q|43iτ|q0|4+i|q|2i|q0|2+τ(uuxx+uuxx|ux|2)+8iτk4\displaystyle T=[3i\tau|q|^{4}-3i\tau|q_{0}|^{4}+i|q|^{2}-i|q_{0}|^{2}+\tau(u^{*}u_{xx}+uu^{*}_{xx}-|u_{x}|^{2})+8i\tau k^{4}
+2kτ(uuxuxu)2ik2(2τ|u|2+1)]σ38τk3U4iτk2σ3Ux\displaystyle+2k\tau(uu^{*}_{x}-u_{x}u^{*})-2ik^{2}(2\tau|u|^{2}+1)]\sigma_{3}-8\tau k^{3}U-4i\tau k^{2}\sigma_{3}U_{x}
+6iτU2Uxσ3+iσ3Ux+iτσ3Uxxx+2k(U+τUxx2τU3),\displaystyle+6i\tau U^{2}U_{x}\sigma_{3}+i\sigma_{3}U_{x}+i\tau\sigma_{3}U_{xxx}+2k(U+\tau U_{xx}-2\tau U^{3}),

with

Q=(0q(x,t)q(x,t)0),σ3=(1001).Q=\left(\begin{array}[]{cc}0&q(x,t)\\ -q^{*}(x,t)&0\\ \end{array}\right),\qquad\sigma_{3}=\left(\begin{array}[]{cc}1&0\\ 0&-1\\ \end{array}\right).

2.1 Direct scattering problem with NZBCs

In this section, the direct scattering problem will be studied. In the direct scattering process, the analyticity and asymptotic of the eigenfunction, asymptotic and symmetries of the scattering matrix, discrete spectrum, and residue conditions will be given. Meanwhile, the emergence of multi-valued functions will complicate the problem during the analysis process. So we introduce the two-sheeted Riemann surface to simplify the analysis process.

2.1.1 Riemann surface and uniformization coordinate

Letting x±x\rightarrow\pm\infty, the following asymptotic scattering problem

{ψx=X±ψ,X±=limx±X=ikσ3+Q±,ψt=T±ψ,T±=limx±T=(8τk3+2k+4τkq02)X±,\displaystyle\left\{\begin{aligned} &\psi_{x}=X_{\pm}\psi,\quad X_{\pm}=\lim_{x\rightarrow\pm\infty}X=-ik\sigma_{3}+Q_{\pm},\\ &\psi_{t}=T_{\pm}\psi,\quad T_{\pm}=\lim_{x\rightarrow\pm\infty}T=(-8\tau k^{3}+2k+4\tau kq^{2}_{0})X_{\pm},\end{aligned}\right. (2.5)

can be obtained from the Theorem 2.1, where Q±=limx±Q=(0q±q±0).Q_{\pm}=\lim_{x\rightarrow\pm\infty}Q=\left(\begin{array}[]{cc}0&q_{\pm}\\ -q^{*}_{\pm}&0\\ \end{array}\right). It is easy to calculate that the eigenvalues of X±X_{\pm} is ±ik2+q02\pm i\sqrt{k^{2}+q_{0}^{2}}. Obviously, the eigenvalues are doubly branched. So we introduce the two-sheeted Riemann surface defined by

λ2=k2+q02\displaystyle\lambda^{2}=k^{2}+q_{0}^{2} (2.6)

to simplify the problem. From the definition, we know that the branch points k=±iq0k=\pm iq_{0} can be obtained when k2+q02=0\sqrt{k^{2}+q_{0}^{2}}=0. Therefore, the two-sheeted Riemann surface completed by gluing together two copies of extended complex kk-plane S1S_{1} and S2S_{2} along the cut iq0[1,1]iq_{0}[-1,1] between the branch points k=±iq0k=\pm iq_{0}. And the λ(k)\lambda(k) is a single-value function. Here, we introduce the local polar coordinates

k+iq0=r1eiθ1,kiq0=r2eiθ2,π2<θ1,θ2<3π2,\displaystyle k+iq_{0}=r_{1}e^{i\theta_{1}},\quad k-iq_{0}=r_{2}e^{i\theta_{2}},\quad-\frac{\pi}{2}<\theta_{1},\theta_{2}<\frac{3\pi}{2},

then, we obtain a single-valued analytical function on the Riemann surface

λ(k)=\displaystyle\lambda(k)= {(r1r2)12eθ1+θ22,onS1,(r1r2)12eθ1+θ22,onS2.\displaystyle\left\{\begin{aligned} &(r_{1}r_{2})^{\frac{1}{2}}e^{\frac{{\theta_{1}+\theta_{2}}}{2}},\quad&on\quad S_{1},\\ -&(r_{1}r_{2})^{\frac{1}{2}}e^{\frac{{\theta_{1}+\theta_{2}}}{2}},\quad&on\quad S_{2}.\end{aligned}\right.

It is easy to get the relations between λ\lambda and kk as

{Imk>0ofsheetS1andImk<0ofsheetS2aremappedintoImλ>0,Imk<0ofsheetS1andImk>0ofsheetS2aremappedintoImλ<0,\displaystyle\left\{\begin{aligned} &Imk>0~of~sheet~S_{1}~and~Imk<0~of~sheet~S_{2}~are~mapped~into~Im\lambda>0,\\ &Imk<0~of~sheet~S_{1}~and~Imk>0~of~sheet~S_{2}~are~mapped~into~Im\lambda<0,\end{aligned}\right.

by considering the imaginary part of λ(k)\lambda(k). Conveniently, define the uniformization variable zz [53]

z=k+λ,\displaystyle z=k+\lambda,

and compare with the equation (2.6), we obtain the following two single-value functions

λ(z)=12(z+q02z),k(z)=12(zq02z).\displaystyle\lambda(z)=\frac{1}{2}(z+\frac{q_{0}^{2}}{z}),\quad k(z)=\frac{1}{2}(z-\frac{q_{0}^{2}}{z}). (2.7)

We consider the imaginary part of the Joukowsky transformation

λ=z(|z|2q02)+2q02Rez2|z|2\displaystyle\lambda=\frac{z(|z|^{2}-q_{0}^{2})+2q_{0}^{2}Rez}{2|z|^{2}} (2.8)

which comes from equation (2.7), and obtain that the upper half of the λ\lambda-plane maps to the upper half of the zz-plane except for the inner part of the circle with q0q_{0} as the radius and 0 as the center of the circle and the lower half of the zz-plane except for the outer part of the circle with q0q_{0} as the radius and 0 as the center of the circle. Consistently, the lower half of the λ\lambda-plane maps to the lower half of the zz-plane except for the inner part of the circle with q0q_{0} as the radius and 0 as the center of the circle and the upper half of the zz-plane except for the outer part of the circle with q0q_{0} as the radius and 0 as the center of the circle. To sum up, the Imλ0Im\lambda\gtrless 0, respectively, maps to D+D_{+} and DD_{-} where

D+={z:(|z|2q02)Imz>0},D={z:(|z|2q02)Imz<0}.\displaystyle D_{+}=\left\{z\in\mathbb{C}:\left(|z|^{2}-q_{0}^{2}\right)Imz>0\right\},\quad D_{-}=\left\{z\in\mathbb{C}:\left(|z|^{2}-q_{0}^{2}\right)Imz<0\right\}.

Based on the above analysis, we can summarize the following illustrations.

RekRekImkImkiq0iq_{0}iq0-iq_{0}0znz^{*}_{n}znz_{n}RezRezImzImz0iq0iq_{0}iq0-iq_{0}znz^{*}_{n}znz_{n}q02zn-\frac{q^{2}_{0}}{z^{*}_{n}}q02zn-\frac{q^{2}_{0}}{z_{n}}

Figure 1. (Color online) The left one , the first sheet of Riemann surface, shows the discrete spectrums and the two regions with Imk>0Imk>0 (green) and Imk<0Imk<0 (white). The right one, the complex zz-plane, shows the discrete spectrums of the scattering problem i.e. the zeros of s11(z)s_{11}(z) (black) and the zeros of s22(z)s_{22}(z) (red), the regions D+D_{+} and DD_{-} where Imλ>0Im\lambda>0 (green) and Imλ<0Im\lambda<0 (white), respectively, and the orientation of the contours about the Riemann Hilbert problem .

Finally, we talk about the asymptotic relationship between two planes kk and zz. When kS1k\in S_{1}, we have

z\displaystyle z =k+k2+q02\displaystyle=k+\sqrt{k^{2}+q_{0}^{2}}
=k+k(1+q02k2+)1/22k+o(k1),k.\displaystyle=k+k(1+\frac{q_{0}^{2}}{k^{2}}+\cdots)^{1/2}\sim 2k+o(k^{-1}),\quad k\rightarrow\infty.

That means zz\rightarrow\infty as kk\rightarrow\infty (kS1)(k\in S_{1}). Similarly, the other case, z0z\rightarrow 0 as kk\rightarrow\infty (kS2)(k\in S_{2}), can be obtained.

2.1.2 Jost function

According to the asymptotic Lax pair (2.5), we calculate that the matrix X±X_{\pm} has two eigenvalues i.e., ±iλ\pm i\lambda. Therefore, based on the relationship between X±X_{\pm} and T±T_{\pm} in (2.5) and the property of the matrix, the matrix T±T_{\pm} has two eigenvalues i.e. ±(8τk3+2k+4τkq02)iλ\pm(-8\tau k^{3}+2k+4\tau kq^{2}_{0})i\lambda. Then, X±X_{\pm} and T±T_{\pm} can be transformed to diagonal matrix i.e.,

X±(x,t;z)=Y±(z)(iλσ3)Y±1(z),T±(x,t;z)=Y±(z)[iλ(8τk3+2k+4τkq02)σ3]Y±1(z),\displaystyle\begin{split}X_{\pm}(x,t;z)&=Y_{\pm}(z)(-i\lambda\sigma_{3})Y_{\pm}^{-1}(z),\\ T_{\pm}(x,t;z)&=Y_{\pm}(z)[-i\lambda(-8\tau k^{3}+2k+4\tau kq^{2}_{0})\sigma_{3}]Y_{\pm}^{-1}(z),\end{split}

where

Y±(z)=(1iq±ziq±z1)=𝕀(i/z)σ3Q±.\displaystyle Y_{\pm}(z)=\left(\begin{array}[]{cc}1&-\frac{iq_{\pm}}{z}\\ -\frac{iq_{\pm}^{*}}{z}&1\\ \end{array}\right)=\mathbb{I}-(i/z)\sigma_{3}Q_{\pm}. (2.11)

We know that all the values of k(onS1,S2)k(on~S_{1},S_{2}) , included in the continuous spectrum Σk\Sigma_{k}, meet λ(k)\lambda(k)\in\mathbb{R} which means Σk=i[q0,q0]\Sigma_{k}=\mathbb{R}\cup i[-q_{0},q_{0}]. After the introduction of the uniformization variable, the Σk\Sigma_{k} is transformed into the Σz=C0\Sigma_{z}=\mathbb{R}\cup C_{0}. The subscript zz indicates that the set is in complex zz-plane and C0C_{0} is a circle with 0 as the center and q0q_{0} as the radius. For the simplicity of the following analysis, we omit the subscript i.e., ΣzΣ\Sigma_{z}\rightarrow\Sigma. Then, according to the Lax pair (2.5), the Jost solutions can be constructed and satisfy that

ϕ±(x,t;z)ψ±(x,t;z)=Y±(z)eiθ(x,t;z)σ3,x±\displaystyle\phi_{\pm}(x,t;z)\thicksim\psi_{\pm}(x,t;z)=Y_{\pm}(z)e^{-i\theta(x,t;z)\sigma_{3}},\quad x\rightarrow\pm\infty

where θ(x,t;z)=λ(z)[x+(8τk3+2k+4τkq02)t]\theta(x,t;z)=\lambda(z)[x+(-8\tau k^{3}+2k+4\tau kq^{2}_{0})t]. Introducing the μ(x,t;z)\mu(x,t;z) which satisfies that

μ±(x,t;z)=ϕ±(x,t;z)eiθ(x,t;z)σ3Y±(z),x±,\displaystyle\mu_{\pm}(x,t;z)=\phi_{\pm}(x,t;z)e^{i\theta(x,t;z)\sigma_{3}}\sim Y_{\pm}(z),\quad x\rightarrow\pm\infty, (2.12)

the equivalent Lax pair can be obtained as

(Y±1(z)μ±(z))xiλ[Y±1(z)μ±(z),σ3]=Y±1(z)ΔQ±(z)μ±(z),\displaystyle(Y_{\pm}^{-1}(z)\mu_{\pm}(z))_{x}-i\lambda[Y_{\pm}^{-1}(z)\mu_{\pm}(z),\sigma_{3}]=Y_{\pm}^{-1}(z)\Delta Q_{\pm}(z)\mu_{\pm}(z),
(Y±1(z)μ±(z))tiλ(8τk3+2k+4τkq02)[Y±1(z)μ±(z),σ3]=Y±1(z)ΔT±(z)μ±(z),\displaystyle(Y_{\pm}^{-1}(z)\mu_{\pm}(z))_{t}-i\lambda(-8\tau k^{3}+2k+4\tau kq^{2}_{0})[Y_{\pm}^{-1}(z)\mu_{\pm}(z),\sigma_{3}]=Y_{\pm}^{-1}(z)\Delta T_{\pm}(z)\mu_{\pm}(z), (2.13)

where ΔQ±(z)=QQ±\Delta Q_{\pm}(z)=Q-Q_{\pm} and ΔT±(z)=TT±\Delta T_{\pm}(z)=T-T_{\pm}. Through calculations, Lax pair (2.1.2) can be written in full derivative form. Therefore, based on the properties of the differential, we can select two special integration paths i.e., (,t)(x,t)(-\infty,t)\rightarrow(x,t) and (+,t)(x,t)(+\infty,t)\rightarrow(x,t). Then, we get the following linear integral equations

μ(x,t;z)=Y+xYeiλ(xy)σ^3[Y1ΔQ(y,t)μ(y,t;z)]𝑑y,μ+(x,t;z)=Y+xY+eiλ(xy)σ^3[Y+1ΔQ+(y,t)μ+(y,t;z)]𝑑y.\displaystyle\begin{matrix}\mu_{-}(x,t;z)=Y_{-}+\int_{-\infty}^{x}Y_{-}e^{-i\lambda(x-y)\hat{\sigma}_{3}}[Y_{-}^{-1}\Delta Q_{-}(y,t)\mu_{-}(y,t;z)]\,dy,\\ \mu_{+}(x,t;z)=Y_{+}-\int_{x}^{\infty}Y_{+}e^{-i\lambda(x-y)\hat{\sigma}_{3}}[Y_{+}^{-1}\Delta Q_{+}(y,t)\mu_{+}(y,t;z)]\,dy.\end{matrix} (2.14)

Therefore, the analyticity of the function μ±\mu_{\pm} can be derived.

Theorem 2.2 The functions μ,1,μ+,2\mu_{-,1},\mu_{+,2} are analytic in D+D_{+} and μ,2,μ+,1\mu_{-,2},\mu_{+,1} are analytic in DD_{-} and they can be recorded as μ,1+,μ+,2+,μ,2,μ+,1\mu^{+}_{-,1},\mu^{+}_{+,2},\mu^{-}_{-,2},\mu^{-}_{+,1}, respectively. The functions μ±,j(j=1,2)\mu_{\pm,j}(j=1,2) is the jj-th column of μ±\mu_{\pm}. For conveniently, μ+\mu_{+} and μ\mu_{-} can be rewritten as

μ+=(μ+,1,μ+,2+),μ=(μ,1+,μ,2).\displaystyle\mu_{+}=(\mu^{-}_{+,1},\mu^{+}_{+,2}),\quad\mu_{-}=(\mu^{+}_{-,1},\mu^{-}_{-,2}).
Proof.

By simple calculations, we can get that

Y1μ,1(y,t;z)=(10)+xG0(xy,z)ΔQ(y)μ,1(y,t;z)𝑑y\displaystyle Y^{-1}_{-}\mu_{-,1}(y,t;z)=\left(\begin{array}[]{c}1\\ 0\\ \end{array}\right)+\int_{-\infty}^{x}G_{0}(x-y,z)\Delta Q_{-}(y)\mu_{-,1}(y,t;z)\,dy (2.17)

where G0(xy,z)=1γ(1iqziqze2iλ(xy)e2iλ(xy))G_{0}(x-y,z)=\frac{1}{\gamma}\left(\begin{array}[]{cc}1&\frac{iq_{-}}{z}\\ \frac{iq^{*}_{-}}{z}e^{2i\lambda(x-y)}&e^{2i\lambda(x-y)}\\ \end{array}\right) with γ=det(Y±)=1+q02z\gamma=det(Y_{\pm})=1+\frac{q^{2}_{0}}{z}. Considering the e2iλ(xy)=e2i(xy)Reλe2(xy)Imλe^{2i\lambda\left(x-y\right)}=e^{2i\left(x-y\right)Re\lambda}e^{-2\left(x-y\right)Im\lambda} , we can make the conclusion that xy>0x-y>0, so μ,1\mu_{-,1} is analytic in D+D_{+} when Imλ>0Im\lambda>0. Then, μ,1\mu_{-,1} can be recorded as μ,1+\mu^{+}_{-,1} which means the first column of μ\mu_{-} is analytic in D+D_{+}. Similar to the above analysis, the analyticity of μ,2,μ+,1,μ+,2\mu_{-,2},\mu_{+,1},\mu_{+,2} can be obtained. Now we finish the proof. ∎

2.1.3 Scattering matrix

In this section, the scattering matrix will be discussed. Before the discussion, we, firstly, introduce a lemma.

Lemma 1.

If A(x)A(x), Y(x)Y(x) are nn-order matrix matrices, satisfying Yx=AYY_{x}=AY, then (detY)x=tr(A)detY(\det Y)_{x}=tr(A)\det Y and detY(x)=[detY(x0)]ex0xtr[A(y)]𝑑y\det Y(x)=[\det Y(x_{0})]e^{\int_{x_{0}}^{x}tr[A(y)]\,dy}.

Proof.

Introduce

A=(a11a12a1na21a22a2nan1an2ann),Y=(Y1Y2Yn),\displaystyle A=\left(\begin{array}[]{cccc}a_{11}&a_{12}&\cdot\cdot\cdot&a_{1n}\\ a_{21}&a_{22}&\cdot\cdot\cdot&a_{2n}\\ \cdot\cdot\cdot&\cdot\cdot\cdot&\cdot\cdot\cdot&\cdot\cdot\cdot\\ a_{n1}&a_{n2}&\cdot\cdot\cdot&a_{nn}\\ \end{array}\right),\qquad Y=\left(\begin{array}[]{c}Y_{1}\\ Y_{2}\\ \cdot\cdot\cdot\\ Y_{n}\\ \end{array}\right), (2.26)

where Yi(i=1,2,,n)Y_{i}(i=1,2,\cdot\cdot\cdot,n) is the ii-th row of matrix YY. From Yx=AYY_{x}=AY, we obtain

Yi,x=ai1Y1+ai2Y2++ainYn,i=1,2,,n.\displaystyle Y_{i,x}=a_{i1}Y_{1}+a_{i2}Y_{2}+\cdot\cdot\cdot+a_{in}Y_{n},\qquad i=1,2,\cdot\cdot\cdot,n.

Then, we denote

(detY)x=i=1ndet(Y1Yi,xYn)=i=1ndet(Y1ai1Y1++aiiYi++ainYnYn)\displaystyle\left(\det Y\right)_{x}=\sum_{i=1}^{n}\det\left(\begin{array}[]{c}Y_{1}\\ \cdot\cdot\cdot\\ Y_{i,x}\\ \cdot\cdot\cdot\\ Y_{n}\\ \end{array}\right)=\sum_{i=1}^{n}\det\left(\begin{array}[]{c}Y_{1}\\ \cdot\cdot\cdot\\ a_{i1}Y_{1}+\cdot\cdot\cdot+a_{ii}Y_{i}+\cdot\cdot\cdot+a_{in}Y_{n}\\ \cdot\cdot\cdot\\ Y_{n}\\ \end{array}\right) (2.37)

which means

(detY)x=i=1naiidetY=tr(A)detY.\displaystyle\left(\det Y\right)_{x}=\sum_{i=1}^{n}a_{ii}\det Y=tr(A)\det Y.

Furthermore, through integral, we can obtain

(detY)=Cex0xtr[A(y)]𝑑y.\displaystyle\left(\det Y\right)=Ce^{\int_{x_{0}}^{x}tr[A(y)]\,dy}.

Selecting x=x0x=x_{0}, we can calculate that C=(detY)x0C=\left(\det Y\right)_{x_{0}}. So, we have

(detY)=(detY)x0ex0xtr[A(y)]𝑑y.\displaystyle\left(\det Y\right)=\left(\det Y\right)_{x_{0}}e^{\int_{x_{0}}^{x}tr[A(y)]\,dy}.

Now, we finish the proof. ∎

According to the 𝐋𝐞𝐦𝐦𝐚𝟏\mathbf{Lemma1} and tr(X)=tr(T)=0tr(X)=tr(T)=0 in equation (2.4), we denote that (detϕ)x=(detϕ)t=0(\det\phi)_{x}=(\det\phi)_{t}=0. So, for any zΣz\in\Sigma, we obtain that detϕ±(x,t;z)=detY±(z)=γ(z)\det\phi_{\pm}(x,t;z)=\det Y_{\pm}(z)=\gamma(z). Meanwhile, for any zΣ0z\in\Sigma_{0} defined as Σ0:=Σ±iq0\Sigma_{0}:=\Sigma\setminus{\pm iq_{0}}, ϕ±\phi_{\pm} are two fundamental matrix solutions of scattering problem. Then, we can denote the relationship between the ϕ+\phi_{+} and ϕ\phi_{-} as follows

ϕ+(x,t;z)=ϕ(x,t;z)S(z),\displaystyle\phi_{+}(x,t;z)=\phi_{-}(x,t;z)S(z), (2.38)

where S(z)=(sij)2×2S(z)=(s_{ij})_{2\times 2} is a constant matrix and is independent of the variable xx and tt. In addition, based on the equation (2.38), we can get the following relation

s11(z)=Wr(ϕ+,1,ϕ,2)γ,s22(z)=Wr(ϕ,1,ϕ+,2)γ,\displaystyle s_{11}(z)=\frac{Wr\left(\phi_{+,1},\phi_{-,2}\right)}{\gamma},\quad s_{22}(z)=\frac{Wr\left(\phi_{-,1},\phi_{+,2}\right)}{\gamma}, (2.39)
s12(z)=Wr(ϕ+,2,ϕ,2)γ,s21(z)=Wr(ϕ,1,ϕ+,1)γ,\displaystyle s_{12}(z)=\frac{Wr\left(\phi_{+,2},\phi_{-,2}\right)}{\gamma},\quad s_{21}(z)=\frac{Wr\left(\phi_{-,1},\phi_{+,1}\right)}{\gamma}, (2.40)

where the subscript of ϕ±,j\phi_{\pm,j} mean the jj-column of ϕ±\phi_{\pm} and γ=1+q02z\gamma=1+\frac{q^{2}_{0}}{z}. Then, we discuss the analytical properties of the scattering matrix S(z)S(z).

Theorem 2.3 The function s11s_{11} is analytic in DD_{-} and s22s_{22} is analytic in D+D_{+}. However, the functions s12s_{12} and s21s_{21} are nowhere analytic.

Proof.

With the equation (2.12), we can derive that

μ+=μeiθ(z)σ^3S(z)\displaystyle\mu_{+}=\mu_{-}e^{-i\theta(z)\hat{\sigma}_{3}}S(z) (2.41)

and

(detμ±)x=(detϕ±)x=0.\displaystyle(\det\mu_{\pm})_{x}=(\det\phi_{\pm})_{x}=0. (2.42)

The equation (2.42) implies that detμ±\det\mu_{\pm} are independent of variable xx. Thus, we have

detμ±=det(limx±μ±=detY±)x=γ0,\displaystyle\det\mu_{\pm}=\det(\lim_{x\rightarrow\pm\infty}\mu_{\pm}=\det Y_{\pm})_{x}=\gamma\neq 0,

which means μ±\mu_{\pm} is reversible. Then, equation (2.41) can be transformed into eiθ(z)σ^3S(z)=μ1μ+e^{-i\theta(z)\hat{\sigma}_{3}}S(z)=\mu_{-}^{-1}\mu_{+}. Then, based on the Theorem 2.2 and the expression of S(z)S(z), the corresponding analytical properties of the s(z)ij(i,j=1,2)s(z)_{ij}(i,j=1,2) can be derived. ∎

Here, we introduce the reflection coefficients

ρ(z)=s21(z)/s11(z),ρ~(z)=s12(z)/s22(z),zΣ.\displaystyle\rho(z)=s_{21}(z)/s_{11}(z),\quad\tilde{\rho}(z)=s_{12}(z)/s_{22}(z),\quad\forall z\in\Sigma. (2.43)

which will be important in the reverse problem.

2.1.4 Symmetries

Here, the symmetry of the scattering matrix will be analyzed. This property will play an important role in the following analysis and make the analysis process more elegant. Different from the case of zero boundary conditions(ZBCs), we have to deal with not only the map kkk\rightarrow k^{*} but also the sheets of the Riemann surface. On one hand, zzz\rightarrow z^{*}(\in zz-plane) implies (k,λ)(k,λ)(k,\lambda)\rightarrow(k^{*},\lambda^{*})(\in kk-plane), on the other hand, zq02/zz\rightarrow-q_{0}^{2}/z(\in zz-plane) implies (k,λ)(k,λ)(k,\lambda)\rightarrow(k,-\lambda)(\in kk-plane). The corresponding symmetries of the scattering problem are these two transformations. Then, we discuss the symmetries of the scattering problem.

Firstly, the symmetries of μ±(x,t;z)\mu_{\pm}(x,t;z) which correspond to the Jost solutions ϕ±(x,t;z)\phi_{\pm}(x,t;z) are given as follows.

Theorem 2.4 The two symmetries:

μ±(x,t;z)\displaystyle\mu_{\pm}(x,t;z) =σμ±(x,t;z)σ,\displaystyle=-\sigma\mu_{\pm}^{*}(x,t;z^{*})\sigma, (2.44)
μ±(x,t;z)\displaystyle\mu_{\pm}(x,t;z) =izμ±(x,t;q02z)σ3Q±,\displaystyle=-\frac{i}{z}\mu_{\pm}(x,t;-\frac{q_{0}^{2}}{z})\sigma_{3}Q_{\pm}, (2.45)

where σ=(0110)\sigma=\left(\begin{array}[]{cc}0&1\\ -1&0\\ \end{array}\right). Furthermore, the (2.44) and (2.45) can be written as the form of the components of each column as follows

μ±,1(x,t;z)\displaystyle\mu_{\pm,1}(x,t;z) =σμ±,2(x,t;z),μ±,2(x,t;z)=σμ±,1(x,t;z),\displaystyle=\sigma\mu_{\pm,2}^{*}(x,t;z^{*}),\quad\qquad\mu_{\pm,2}(x,t;z)=-\sigma\mu_{\pm,1}^{*}(x,t;z^{*}), (2.46)
μ±,1(x,t;z)\displaystyle\mu_{\pm,1}(x,t;z) =(iq±z)μ±,2(x,t;q02z),μ±,2(x,t;z)=(iq±z)μ±,1(x,t;q02z).\displaystyle=(-\frac{iq_{\pm}^{*}}{z})\mu_{\pm,2}(x,t;-\frac{q_{0}^{2}}{z}),\quad\mu_{\pm,2}(x,t;z)=(-\frac{iq_{\pm}}{z})\mu_{\pm,1}(x,t;-\frac{q_{0}^{2}}{z}). (2.47)
Proof.

Let ω(x,t;z)=σμ±(x,t;z)\omega(x,t;z)=\sigma\mu_{\pm}^{*}(x,t;z^{*}). Notice that σσ=I\sigma\sigma=-I, σσ3σ=σ3\sigma\sigma_{3}\sigma=\sigma_{3}, σY±(z)σ=Y±1(z)\sigma Y_{\pm}^{*}(z^{*})\sigma=-Y_{\pm}^{-1}(z) and σΔQ±σ=ΔQ±\sigma\Delta Q_{\pm}^{*}\sigma=\Delta Q_{\pm}, then, it is not hard to calculate that ω\omega is the solution of the equation (2.14) when the μ±(x,t;z)\mu_{\pm}(x,t;z) is the solution of the equation (2.14). Based on the equation (2.1.2), we can obtain that

ω±(x,t;z)σ=(Y±(z)+o(1))\displaystyle\omega_{\pm}(x,t;z)\sigma=-(Y_{\pm}(z)+o(1))

as x±x\rightarrow\pm\infty. Since the solution of the scattering problem with given boundary conditions is unique, the ω±σ=μ±\omega_{\pm}\sigma=\mu_{\pm} is obtained. So, the (2.44) is proved.
Equation (2.45) can be proved similarly. ∎

Then, we discuss the symmetry of the scattering matrix S(z)S(z).

Theorem 2.5 The symmetries of the scattering matrix S(z)S(z) are expressed as follows

S(z)\displaystyle S(z) =σS(z)σ,\displaystyle=-\sigma S^{*}(z^{*})\sigma, (2.48)
S(z)\displaystyle S(z) =(σ3Q)1S(q02z)σ3Q+.\displaystyle=(\sigma_{3}Q_{-})^{-1}S(-\frac{q_{0}^{2}}{z})\sigma_{3}Q_{+}. (2.49)

Furthermore, according to (2.48) and (2.49), the relationship among the elements of S(z)S(z) can be denoted as follows

s22(z)=s11(z),s12(z)=s21(z),\displaystyle s_{22}(z)=s^{*}_{11}(z^{*}),~s_{12}(z)=-s^{*}_{21}(z^{*}), (2.50)
s11(z)=(q+/q)s22(q02/z),\displaystyle s_{11}(z)=(q_{+}^{*}/q_{-}^{*})s_{22}(-q_{0}^{2}/z), (2.51)
s12(z)=(q+/q)s21(q02/z).\displaystyle s_{12}(z)=(q_{+}/q_{-}^{*})s_{21}(-q_{0}^{2}/z). (2.52)
Proof.

Based on the Theorem 2.4 and S(z)=eiθ(z)σ^3μ1(x,t;z)μ+(x,t;z)S(z)=e^{i\theta(z)\hat{\sigma}_{3}}\mu_{-}^{-1}(x,t;z)\mu_{+}(x,t;z), we can obtain that

σS(z)σ\displaystyle-\sigma S^{*}(z^{*})\sigma =σeiθ(z)σ3σσ(μ1)(x,t;z)σσμ+(x,t;z)σσeiθ(z)σ3σ,\displaystyle=\sigma e^{-i\theta(z)\sigma_{3}}\sigma\sigma(\mu_{-}^{-1})^{*}(x,t;z^{*})\sigma\sigma\mu^{*}_{+}(x,t;z^{*})\sigma\sigma e^{i\theta(z)\sigma_{3}}\sigma,
=eiθ(z)σ^3μ1(x,t;z)μ+(x,t;z)=S(z).\displaystyle=e^{i\theta(z)\hat{\sigma}_{3}}\mu_{-}^{-1}(x,t;z)\mu_{+}(x,t;z)=S(z).

So, the (2.48) is proved. Equation (2.49) can be proved similarly. ∎

In addition, the relationship between the reflection coefficients can be denoted as

ρ(z)=ρ~(z)=(q/q)ρ~(q02/z).\displaystyle\rho(z)=-\tilde{\rho}^{*}(z^{*})=(q^{*}_{-}/q_{-})\tilde{\rho}(-q_{0}^{2}/z).

2.1.5 Discrete spectrum and residue condition

The discrete spectrum of the scattering problem is set that contains all values zΣz\in\mathbb{C}\setminus\Sigma which make the eigenfunctions exist in L2()L^{2}(\mathbb{R}). These discrete spectrum are the values zDz\in D_{-} and zD+z\in D_{+} such that s11(z)=0s_{11}(z)=0 and s22(z)=0s_{22}(z)=0, respectively. Here, we assume that zn(D{z:Imz<0},n=1,2,,N)z_{n}(\in D_{-}\cap\{z\in\mathbb{C}:Imz<0\},n=1,2,...,N) are the simple poles of s11(z)s_{11}(z) i.e. s11(zn)=0s_{11}(z_{n})=0 but s11(zn)0s^{\prime}_{11}(z_{n})\neq 0, n=1,2,,Nn=1,2,...,N. Then, based on the Theorem 2.5 , we can acquire that

s22(zn)=s22(q02/zn)=s11(q02/zn)=0.\displaystyle s_{22}(z_{n}^{*})=s_{22}(-q_{0}^{2}/z_{n})=s_{11}(-q_{0}^{2}/z_{n}^{*})=0.

So, the set of the discrete spectrum can be obtained as follows

={zn,q02zn,zn,q02zn},s11(zn)=0,n=1,2,,N.\displaystyle\mathbb{Z}=\left\{z_{n},-\frac{q_{0}^{2}}{z_{n}^{*}},z_{n}^{*},-\frac{q_{0}^{2}}{z_{n}}\right\},\quad s_{11}(z_{n})=0,\quad n=1,2,...,N.

Then, we pay attention to the residue condition that will be useful in the inverse problem. According to the equation (2.39) and the nature of the determinant, the following relation can be derived as

ϕ+,1(zn)=bn(zn)ϕ,2(zn),\displaystyle\phi_{+,1}(z_{n})=b_{n}(z_{n})\phi_{-,2}(z_{n}), (2.53)

where bnb_{n} is a constant. Contacting the equation (2.12), we can get

μ+,1(zn)=bn(zn)e2iθ(zn)μ,2(zn).\displaystyle\mu_{+,1}(z_{n})=b_{n}(z_{n})e^{2i\theta(z_{n})}\mu_{-,2}(z_{n}). (2.54)

Therefore, we have

Resz=zn[μ+,1(z)s11(z)]=μ+,1(zn)s11(zn)=bn(zn)s11(zn)e2iθ(zn)μ,2(zn).\displaystyle\mathop{Res}_{z=z_{n}}\left[\frac{\mu_{+,1}(z)}{s_{11}(z)}\right]=\frac{\mu_{+,1}(z_{n})}{s^{\prime}_{11}(z_{n})}=\frac{b_{n}(z_{n})}{s^{\prime}_{11}(z_{n})}e^{2i\theta(z_{n})}\mu_{-,2}(z_{n}). (2.55)

Through a similar analysis process, we derive that

Resz=zn[μ+,2(z)s22(z)]=μ+,2(zn)s22(zn)=dn(zn)s22(zn)e2iθ(zn)μ,1(zn),\displaystyle\mathop{Res}_{z=z_{n}^{*}}\left[\frac{\mu_{+,2}(z)}{s_{22}(z)}\right]=\frac{\mu_{+,2}(z_{n}^{*})}{s^{\prime}_{22}(z_{n}^{*})}=\frac{d_{n}(z_{n}^{*})}{s^{\prime}_{22}(z_{n}^{*})}e^{-2i\theta(z_{n}^{*})}\mu_{-,1}(z_{n}^{*}), (2.56)

where dnd_{n} is a constant and satisfies ϕ+,2(zn)=dn(zn)ϕ,1(zn)\phi_{+,2}(z_{n}^{*})=d_{n}(z_{n}^{*})\phi_{-,1}(z_{n}^{*}) which can be denoted as

μ+,2(zn)=dn(zn)e2iθ(zn)μ,1(zn).\displaystyle\mu_{+,2}(z_{n}^{*})=d_{n}(z_{n}^{*})e^{-2i\theta(z_{n}^{*})}\mu_{-,1}(z_{n}^{*}). (2.57)

According to the symmetries, the constants bnb_{n} and dnd_{n} have a fixed relationship. By applying the Theorem 2.4 to (2.54) and comparing with (2.57), it is easy to acquire that

bn(zn)=dn(zn).\displaystyle-b_{n}^{*}(z_{n})=d_{n}(z_{n}^{*}). (2.58)

For the following analysis more convenient, we use the following transformation

Cn[zn]=bn(zn)s11(zn),C~n[zn]=dn(zn)s22(zn).\displaystyle C_{n}[z_{n}]=\frac{b_{n}(z_{n})}{s^{\prime}_{11}(z_{n})},\quad\tilde{C}_{n}[z_{n}]=\frac{d_{n}(z_{n}^{*})}{s^{\prime}_{22}(z_{n}^{*})}.

Thus, the relationship between Cn[zn]C_{n}[z_{n}] and C~n[zn]\tilde{C}_{n}[z_{n}] is that

Cn[zn]=C~n[zn].\displaystyle-C^{*}_{n}[z_{n}]=\tilde{C}_{n}[z_{n}^{*}]. (2.59)

Finally, with the similar analysis, we can acquire the residue of the remaining two points of the eigenvalue quartet as follows

Resz=q02zn[μ+,1(z)s11(z)]\displaystyle\mathop{Res}_{z=-\frac{q_{0}^{2}}{z^{*}_{n}}}\left[\frac{\mu_{+,1}(z)}{s_{11}(z)}\right] =CN+ne2iθ(q02zn)μ,2(q02zn),\displaystyle=C_{N+n}e^{2i\theta(-\frac{q_{0}^{2}}{z^{*}_{n}})}\mu_{-,2}(-\frac{q_{0}^{2}}{z^{*}_{n}}),
Resz=q02zn[μ+,2(z)s22(z)]\displaystyle\mathop{Res}_{z=-\frac{q_{0}^{2}}{z_{n}}}\left[\frac{\mu_{+,2}(z)}{s_{22}(z)}\right] =C~N+ne2iθ(q02zn)μ,1(q02zn),\displaystyle=\tilde{C}_{N+n}e^{-2i\theta(-\frac{q_{0}^{2}}{z_{n}})}\mu_{-,1}(-\frac{q_{0}^{2}}{z_{n}}),

where CN+n=qdn(zn)q+s11(q02/zn)C_{N+n}=\frac{q_{-}^{*}d_{n}(z_{n}^{*})}{q_{+}s^{\prime}_{11}(-q_{0}^{2}/z^{*}_{n})} and C~N+n=qbn(zn)q+s22(q02/zn)\tilde{C}_{N+n}=\frac{q_{-}b_{n}(z_{n})}{q^{*}_{+}s^{\prime}_{22}(-q_{0}^{2}/z_{n})}.

2.1.6 Analysis of asymptotic behavior

In this subsection, we will analyse the asymptotic behaviors of the eigenfunction and the scattering matrix which will make an important impact on the construction of the Riemann Hilbert problem in inverse problem.

From the above analysis, we can see that when the limit kk\rightarrow\infty, there are two cases corresponding to it, namely, zz\rightarrow\infty and z0z\rightarrow 0. Then, the asymptotic properties of the Jost function are given.

Theorem 2.6 The asymptotic properties are given as

u±(x,t;z)={I+izσ3Q+O(z2),z,izσ3Q±+O(1),z0.\displaystyle u_{\pm}(x,t;z)=\left\{\begin{aligned} &I+\frac{i}{z}\sigma_{3}Q+O(z^{-2}),\quad\quad&z\rightarrow\infty,\\ &-\frac{i}{z}\sigma_{3}Q_{\pm}+O(1),\quad&z\rightarrow 0.\end{aligned}\right. (2.60)
Proof.

Firstly, we verify the case zz\rightarrow\infty. According to the Lax pair (2.1.2), we let

Y±1μ±=χ±(0)+χ±(1)/z+o(1/z)=Y±1(μ±(0)+μ±(1)/z+o(1/z)),z.\displaystyle Y^{-1}_{\pm}\mu_{\pm}=\chi_{\pm}^{(0)}+\chi_{\pm}^{(1)}/z+o(1/z)=Y^{-1}_{\pm}(\mu_{\pm}^{(0)}+\mu_{\pm}^{(1)}/z+o(1/z)),\quad z\rightarrow\infty. (2.61)

We know that Y±(z)=𝕀(i/z)σ3Q±Y_{\pm}(z)=\mathbb{I}-(i/z)\sigma_{3}Q_{\pm}. It is easy to calculate that Y±1(z)=11+q02/z2(𝕀+(i/z)σ3Q±)Y^{-1}_{\pm}(z)=\frac{1}{1+q_{0}^{2}/z^{2}}(\mathbb{I}+(i/z)\sigma_{3}Q_{\pm}). Then, from (2.61), the relationship between χ±(i)\chi_{\pm}^{(i)} and μ±(i)\mu_{\pm}^{(i)} (i=0,1,2)(i=0,1,2) can be obtained. Furthermore, substituting (2.61) into the Lax pair (2.1.2), comparing the same power coefficients of zz, and combining with (2.12) and the relationship between χ±(i)\chi_{\pm}^{(i)} and μ±(i)\mu_{\pm}^{(i)}, it is not hard to calculate that μ±(0)=𝕀\mu_{\pm}^{(0)}=\mathbb{I} and μ±(1)=iσ3Q\mu_{\pm}^{(1)}=i\sigma_{3}Q. So, the asymptotic behavior of μ±\mu_{\pm} is obtained, i.e., u±(x,t;z)=I+izσ3Q+O(z2)u_{\pm}(x,t;z)=I+\frac{i}{z}\sigma_{3}Q+O(z^{-2}) as zz\rightarrow\infty.
The other case z0z\rightarrow 0 can be proved similarly. ∎

Meanwhile, the asymptotic behavior of scattering matrix is also needed in the following analysis.

Theorem 2.7 The asymptotic properties of the scattering matrix are given as

S(z)={I+O(1/z),z,diag(q/q+,q+/q)+O(z),z0.\displaystyle S(z)=\left\{\begin{aligned} &I+O(1/z),\quad\quad\quad\quad&z\rightarrow\infty,\\ &diag(q_{-}/q_{+},q_{+}/q_{-})+O(z),\quad&z\rightarrow 0.\end{aligned}\right. (2.62)
Proof.

Based on the (2.41) and Theorem 2.6, the conclusion of Theorem 2.7 can be proved easily. ∎

2.2 Inverse scattering problem

2.2.1 Generalized Riemann-Hilbert problem

In this subsection, we are going to construct a generalized Riemann-Hilbert problem(RHP). From the above analysis and (2.38), we know the relationship between eigenfunctions which are analytic in D+D_{+} and analytic in DD_{-}. Based on the (2.41), we can calculate that

μ+,1(z)\displaystyle\mu_{+,1}(z) =s11(z)μ,1(z)+s21(z)e2iθ(z)μ,2(z),\displaystyle=s_{11}(z)\mu_{-,1}(z)+s_{21}(z)e^{2i\theta(z)}\mu_{-,2}(z), (2.63)
μ+,2(z)\displaystyle\mu_{+,2}(z) =s12(z)e2iθ(z)μ,1(z)+s22(z)μ,2(z).\displaystyle=s_{12}(z)e^{-2i\theta(z)}\mu_{-,1}(z)+s_{22}(z)\mu_{-,2}(z). (2.64)

According to the analytical properties of μ±\mu_{\pm} and scattering matrix, we introduce the sectionally meromorphic matrices

M(x,t;z)={M+(x,t;z)=(μ,1(x,t;z),μ+,2(x,t;z)s22(z)),zD+,M(x,t;z)=(μ+,1(x,t;z)s11(z),μ,2(x,t;z)),zD.\displaystyle M(x,t;z)=\left\{\begin{aligned} &M^{+}(x,t;z)=\left(\mu_{-,1}(x,t;z),\frac{\mu_{+,2}(x,t;z)}{s_{22}(z)}\right),\quad z\in D^{+},\\ &M^{-}(x,t;z)=\left(\frac{\mu_{+,1}(x,t;z)}{s_{11}(z)},\mu_{-,2}(x,t;z)\right),\quad z\in D^{-}.\end{aligned}\right. (2.65)

Here the superscripts ±\pm mean analyticity in D+D_{+} and DD_{-}, respectively. From (2.63), we can obtain the relationship between M+M^{+} and MM^{-} as follows

M+(x,t;z)=M(x,t;z)(𝕀G(x,t;z)),\displaystyle M^{+}(x,t;z)=M^{-}(x,t;z)(\mathbb{I}-G(x,t;z)), (2.66)

where the jump matrix is

G(x,t;z)=eiθ(z)σ^3(0ρ~(z)ρ(z)ρ(z)ρ~(z)).\displaystyle G(x,t;z)=e^{i\theta(z)\hat{\sigma}_{3}}\left(\begin{array}[]{ccc}0&-\tilde{\rho}(z)\\ \rho(z)&\rho(z)\tilde{\rho}(z)\end{array}\right).

Based on the Theorem 2.6 and Theorem 2.7, the asymptotic behavior of M±M^{\pm} can be obtained easily, i.e.,

M±(x,t;z)={𝕀+O(1/z),z,izσ3Q+O(1),z0.\displaystyle M^{\pm}(x,t;z)=\left\{\begin{aligned} \mathbb{I}+O(1/z),\quad z\rightarrow\infty,\\ -\frac{i}{z}\sigma_{3}Q_{-}+O(1),z\rightarrow 0.\end{aligned}\right. (2.67)

From the above analysis and (2.55) and (2.56), we obtain a generalized RHP.

Theorem 2.8 The generalized Riemann-Hilbert problem

  • 1.

    M(x,t;z)M(x,t;z) is meromorphic in CΣC\setminus\Sigma;

  • 2.

    M+(x,t;z)=M(x,t;z)(𝕀G(x,t;z))M^{+}(x,t;z)=M^{-}(x,t;z)(\mathbb{I}-G(x,t;z)),   zΣz\in\Sigma;

  • 3.

    M(x,t;z)M(x,t;z) satisfies residue conditions at zero points {z|s11(z)=s22(z)=0}\{z|s_{11}(z)=s_{22}(z)=0\};

  • 4.

    M±(x,t;z)𝕀+O(1/z)M^{\pm}(x,t;z)\thicksim\mathbb{I}+O(1/z),   zz\rightarrow\infty;

  • 5.

    M±(x,t;z)izσ3Q+O(1)M^{\pm}(x,t;z)\thicksim-\frac{i}{z}\sigma_{3}Q_{-}+O(1),  z0z\rightarrow 0.

Here, we introduce a transformation to make the following analysis more convenient. The transformation are that

ξn=zn,ξN+n=q02zn,ξn=zn,ξN+n=q02zn.\displaystyle\xi_{n}=z_{n},\quad\xi_{N+n}=-\frac{q_{0}^{2}}{z^{*}_{n}},\xi^{*}_{n}=z^{*}_{n},\quad\xi^{*}_{N+n}=-\frac{q_{0}^{2}}{z_{n}}. (2.68)

So, the ξn,(n=1,2,,2N)\xi_{n},(n=1,2,\cdots,2N) are the poles in DD_{-} and ξn,(n=1,2,,2N)\xi^{*}_{n},(n=1,2,\cdots,2N) are the poles in D+D_{+}. Then, the residue conditions can be translated into

Resz=ξn[μ+,1(z)s11(z)]\displaystyle\mathop{Res}_{z=\xi_{n}}\left[\frac{\mu_{+,1}(z)}{s_{11}(z)}\right] =μ+,1(ξn)s11(ξn)=Cn[ξn]e2iθ(ξn)μ,2(ξn),\displaystyle=\frac{\mu_{+,1}(\xi_{n})}{s^{\prime}_{11}(\xi_{n})}=C_{n}[\xi_{n}]e^{2i\theta(\xi_{n})}\mu_{-,2}(\xi_{n}), (2.69)
Resz=ξn[μ+,2(z)s22(z)]\displaystyle\mathop{Res}_{z=\xi^{*}_{n}}\left[\frac{\mu_{+,2}(z)}{s_{22}(z)}\right] =μ+,2(ξn)s22(ξn)=C~n[ξn]e2iθ(ξn)μ,1(ξn).\displaystyle=\frac{\mu_{+,2}(\xi^{*}_{n})}{s^{\prime}_{22}(\xi^{*}_{n})}=\tilde{C}_{n}[\xi^{*}_{n}]e^{-2i\theta(\xi^{*}_{n})}\mu_{-,1}(\xi^{*}_{n}). (2.70)

Furthermore, we have

Resz=ξnM+=(0,C~n[ξn]e2iθ(ξn)μ,1(ξn)),n=1,2,,2N,\displaystyle\mathop{Res}_{z=\xi^{*}_{n}}M^{+}=(0,\tilde{C}_{n}[\xi^{*}_{n}]e^{-2i\theta(\xi^{*}_{n})}\mu_{-,1}(\xi^{*}_{n})),\quad n=1,2,\cdots,2N,
Resz=ξnM=(Cn[ξn]e2iθ(ξn)μ,2(ξn),0),n=1,2,,2N.\displaystyle\mathop{Res}_{z=\xi_{n}}M^{-}=(C_{n}[\xi_{n}]e^{2i\theta(\xi_{n})}\mu_{-,2}(\xi_{n}),0),\quad n=1,2,\cdots,2N. (2.71)

Now, we need to solve the the Riemann-Hilbert problem. Firstly, via subtracting out the asymptotic behavior and the pole contributions, we obtain a regular RHP. Then, we have

M+(x,t;z)𝕀+izσ3Qn=12NResz=ξnM+(z)zξnn=12NResz=ξnM(z)zξn=M(x,t;z)𝕀+izσ3Qn=12NResz=ξnM+(z)zξnn=12NResz=ξnM(z)zξnM(z)G(z).\displaystyle\begin{split}&M^{+}(x,t;z)-\mathbb{I}+\frac{i}{z}\sigma_{3}Q_{-}-\sum_{n=1}^{2N}\frac{\mathop{Res}_{z=\xi^{*}_{n}}M^{+}(z)}{z-\xi^{*}_{n}}-\sum_{n=1}^{2N}\frac{\mathop{Res}_{z=\xi_{n}}M^{-}(z)}{z-\xi_{n}}\\ =&M^{-}(x,t;z)-\mathbb{I}+\frac{i}{z}\sigma_{3}Q_{-}-\sum_{n=1}^{2N}\frac{\mathop{Res}_{z=\xi^{*}_{n}}M^{+}(z)}{z-\xi^{*}_{n}}-\sum_{n=1}^{2N}\frac{\mathop{Res}_{z=\xi_{n}}M^{-}(z)}{z-\xi_{n}}-M^{-}(z)G(z).\end{split} (2.72)

From the above analysis, it is easy to know that the left side of (2.72) is analytic in D+D_{+} and the right side of (2.72), apart from the item M(z)G(z)M^{-}(z)G(z), is analytic in DD_{-}. Meanwhile, both sides of the equation (2.72) have the asymptotic behavior that are O(1/z)(z)O(1/z)(z\rightarrow\infty) and O(1)(z0)O(1)(z\rightarrow 0). From the Theorem 2.7, we can obtain the asymptotic behavior of G(x,t;s)G(x,t;s), i.e., O(1/z)(z)O(1/z)(z\rightarrow\infty) and O(1)(z0)O(1)(z\rightarrow 0). Then, we introduce the Cauchy projectors P±P_{\pm} over Σ\Sigma by

P±[f](z)=12iπΣf(ζ)ζ(z±i0)𝑑ζ,\displaystyle P_{\pm}[f](z)=\frac{1}{2i\pi}\int_{\Sigma}\frac{f(\zeta)}{\zeta-(z\pm i0)}\,d\zeta, (2.73)

where the Σ\int_{\Sigma} implies the integral along the oriented contour shown in Fig. 1 and the z±i0z\pm i0 mean the limit is taken from the left/right of z(zΣ)z(z\in\Sigma). Using this Cauchy projectors, then, we can obtain the solution of the RHP as follows

M(x,t;z)=𝕀izσ3Q+n=12NResz=ξnM+(z)zξn+n=12NResz=ξnM(z)zξn+12iπΣM(x,t;s)G(x,t;s)sz𝑑s,zΣ,\displaystyle\begin{split}M(x,t;z)=&\mathbb{I}-\frac{i}{z}\sigma_{3}Q_{-}+\sum_{n=1}^{2N}\frac{\mathop{Res}_{z=\xi^{*}_{n}}M^{+}(z)}{z-\xi^{*}_{n}}+\sum_{n=1}^{2N}\frac{\mathop{Res}_{z=\xi_{n}}M^{-}(z)}{z-\xi_{n}}\\ &+\frac{1}{2i\pi}\int_{\Sigma}\frac{M(x,t;s)^{-}G(x,t;s)}{s-z}\,ds,\quad z\in\mathbb{C}\setminus\Sigma,\end{split} (2.74)

where the Σ\int_{\Sigma} implies the contour shown in Fig. 1.

2.2.2 Reconstruct the formula for potential

To reduce to an algebraic integral system, the expression of the residue which emerge in (2.74) is needed. Coincidentally, the explicit Resz=ξnM+\mathop{Res}_{z=\xi_{n}}M^{+} and Resz=ξnM\mathop{Res}_{z=\xi^{*}_{n}}M^{-} have been shown in (2.2.1). We, therefore, evaluate the second column of the (2.74) at z=ξnz=\xi_{n} in DD_{-} and get

u,2(x,t;ξn)=(iq/ξn1)+(k=12NResz=ξkM+(z)ξnξk)2+12iπΣ(MG)2(x,t;ξ)sξn𝑑s\displaystyle u_{-,2}(x,t;\xi_{n})=\left(\begin{array}[]{cc}-iq_{-}/\xi_{n}\\ 1\end{array}\right)+\left(\sum_{k=1}^{2N}\frac{\mathop{Res}_{z=\xi^{*}_{k}}M^{+}(z)}{\xi_{n}-\xi^{*}_{k}}\right)_{2}+\frac{1}{2i\pi}\int_{\Sigma}\frac{(M^{-}G)_{2}(x,t;\xi)}{s-\xi_{n}}\,ds (2.77)
=(iq/ξn1)+k=12NC~k[ξk]e2iθ(ξk)ξnξku,1(x,t;ξk)+12iπΣ(MG)2(x,t;ξ)sξn𝑑s,\displaystyle=\left(\begin{array}[]{cc}-iq_{-}/\xi_{n}\\ 1\end{array}\right)+\sum_{k=1}^{2N}\frac{\tilde{C}_{k}[\xi^{*}_{k}]e^{-2i\theta(\xi^{*}_{k})}}{\xi_{n}-\xi^{*}_{k}}u_{-,1}(x,t;\xi^{*}_{k})+\frac{1}{2i\pi}\int_{\Sigma}\frac{(M^{-}G)_{2}(x,t;\xi)}{s-\xi_{n}}\,ds, (2.80)

for n=1,2,,2Nn=1,2,\cdots,2N. Similarly, evaluating the first column of the (2.74) at z=ξnz=\xi^{*}_{n} in D+D_{+} , we have

u,1(x,t;ξn)=(1iq/ξn)+j=12NCj[ξj]e2iθ(ξj)ξnξju,2(x,t;ξj)+12iπΣ(MG)1(x,t;ξ)sξn𝑑s,\displaystyle u_{-,1}(x,t;\xi^{*}_{n})=\left(\begin{array}[]{cc}1\\ -iq^{*}_{-}/\xi^{*}_{n}\end{array}\right)+\sum_{j=1}^{2N}\frac{C_{j}[\xi_{j}]e^{2i\theta(\xi_{j})}}{\xi_{n}^{*}-\xi_{j}}u_{-,2}(x,t;\xi_{j})+\frac{1}{2i\pi}\int_{\Sigma}\frac{(M^{-}G)_{1}(x,t;\xi)}{s-\xi^{*}_{n}}\,ds, (2.83)

for n=1,2,,2Nn=1,2,\cdots,2N. The (MG)j(M^{-}G)_{j} means the jthj-th column of (MG)(M^{-}G). Additionally, a closed algebraic integral system for the solution of the RHP can be obtained by evaluating the MM^{-} through (2.74) with the equation (2.77) and (2.83). Then, considering the (2.74), the asymptotic behavior can be obtained as

M(x,t;z)=\displaystyle M(x,t;z)= 𝕀+1z{iσ3Q+n=12NResz=ξnM+(z)+n=12NResz=ξnM(z)\displaystyle\mathbb{I}+\frac{1}{z}\{-i\sigma_{3}Q_{-}+\sum_{n=1}^{2N}\mathop{Res}_{z=\xi^{*}_{n}}M^{+}(z)+\sum_{n=1}^{2N}\mathop{Res}_{z=\xi_{n}}M^{-}(z)
12iπΣM(x,t;s)G(x,t;s)ds}+O(z2),z.\displaystyle-\frac{1}{2i\pi}\int_{\Sigma}M^{-}(x,t;s)G(x,t;s)\,ds\}+O(z^{-2}),\quad z\rightarrow\infty. (2.84)

Finally, through taking M=MM=M^{-} and combining the 1,21,2 element of (2.2.2) and the Theorem 2.6, the reconstruction formula for the potential can be acquired as

q(x,t)=qin=12NC~n[ξn]e2iθ(x,t;ξn)μ,11(x,t;ξn)+12πΣ(M(x,t;s)G(x,t;s))12𝑑s.\displaystyle q(x,t)=-q_{-}-i\sum_{n=1}^{2N}\tilde{C}_{n}[\xi^{*}_{n}]e^{-2i\theta(x,t;\xi^{*}_{n})}\mu_{-,11}(x,t;\xi^{*}_{n})+\frac{1}{2\pi}\int_{\Sigma}(M^{-}(x,t;s)G(x,t;s))_{12}\,ds. (2.85)

2.2.3 Trace formulate and theta condition

Based on the Theorem 2.3, we know the analytic properties of s11s_{11} and s22s_{22}. The discrete spectrum we have analysed in the subsection 2.1.5 are that zn,q02zn,zn,q02zn,n=1,2,,N.z_{n},-\frac{q_{0}^{2}}{z_{n}^{*}},z_{n}^{*},-\frac{q_{0}^{2}}{z_{n}},n=1,2,\cdots,N. Now, we construct the following function

ζ1(z)=s11(z)n=1N(zzn)(z+q02/zn)(zzn)(z+q02/zn),\displaystyle\zeta^{-}_{1}(z)=s_{11}(z)\prod_{n=1}^{N}\frac{(z-z_{n}^{*})(z+q_{0}^{2}/z_{n})}{(z-z_{n})(z+q_{0}^{2}/z_{n}^{*})},
ζ1+(z)=s22(z)n=1N(zzn)(z+q02/zn)(zzn)(z+q02/zn).\displaystyle\zeta^{+}_{1}(z)=s_{22}(z)\prod_{n=1}^{N}\frac{(z-z_{n})(z+q_{0}^{2}/z_{n}^{*})}{(z-z_{n}^{*})(z+q_{0}^{2}/z_{n})}. (2.86)

Therefore, the ζ1\zeta^{-}_{1} and ζ1+\zeta^{+}_{1} are analytic in DD_{\mp} corresponding to the analytic properties of s11s_{11} and s22s_{22} and have no zeros. Meanwhile, according to the asymptotic behavior of S(z)S(z) in Theorem 2.7, we obtain that ζ1(z)1\zeta^{\mp}_{1}(z)\rightarrow 1 as zz\rightarrow\infty. Then, considering that detS(z)=1\det S(z)=1 and the expression of the reflection coefficients, we obtain that

ζ1(z)ζ1+(z)=11ρ(z)ρ~(z),zΣ.\displaystyle\zeta^{-}_{1}(z)\zeta_{1}^{+}(z)=\frac{1}{1-\rho(z)\tilde{\rho}(z)},\quad z\in\Sigma. (2.87)

Furthermore, via taking the logarithm of the above formula and applying the Plemelj’s formulae and Cauchy projectors, we obtain that

logζ1(z)=±12πiΣlog[1ρ(s)ρ~(s)]sz𝑑s,zD.\displaystyle\log\zeta^{\mp}_{1}(z)=\pm\frac{1}{2\pi i}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s-z}\,ds,\quad z\in D_{\mp}. (2.88)

Then, the trace formula can be obtained by substituting the (2.88) into (2.2.3) as

s11(z)\displaystyle s_{11}(z) =exp(12πiΣlog[1ρ(s)ρ~(s)]sz𝑑s)n=1N(zzn)(z+q02/zn)(zzn)(z+q02/zn),\displaystyle=exp\left(\frac{1}{2\pi i}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s-z}\,ds\right)\prod_{n=1}^{N}\frac{(z-z_{n})(z+q_{0}^{2}/z_{n}^{*})}{(z-z_{n}^{*})(z+q_{0}^{2}/z_{n})}, (2.89)
s22(z)\displaystyle s_{22}(z) =exp(12πiΣlog[1ρ(s)ρ~(s)]sz𝑑s)n=1N(zzn)(z+q02/zn)(zzn)(z+q02/zn).\displaystyle=exp\left(-\frac{1}{2\pi i}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s-z}\,ds\right)\prod_{n=1}^{N}\frac{(z-z_{n}^{*})(z+q_{0}^{2}/z_{n})}{(z-z_{n})(z+q_{0}^{2}/z_{n}^{*})}. (2.90)

Based on the Theorem 2.7, we know that s11(z)q/q+s_{11}(z)\rightarrow q_{-}/q_{+} as z0z\rightarrow 0. At the same time, since

n=1N(zzn)(z+q02/zn)(zzn)(z+q02/zn)1,asz0,\displaystyle\prod_{n=1}^{N}\frac{(z-z_{n}^{*})(z+q_{0}^{2}/z_{n})}{(z-z_{n})(z+q_{0}^{2}/z_{n}^{*})}\rightarrow 1,\quad as\quad z\rightarrow 0,

we have the theta condition

argqq+=12πΣlog[1ρ(s)ρ~(s)]s𝑑s+4n=1Nargzn.\displaystyle\arg\frac{q_{-}}{q_{+}}=\frac{1}{2\pi}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s}\,ds+4\sum_{n=1}^{N}\arg z_{n}. (2.91)

2.2.4 Reflection-less potentials

In this subsection, it is interesting to study a type solutions which are that the reflection coefficients ρ(z)\rho(z) and ρ~(z)\tilde{\rho}(z) disappear. So, the jump matrix from MM^{-} to M+M^{+} also vanishes i.e., G(x,t;z)=0G(x,t;z)=0. Under this conditions, we can acquire that

u,12(x,t;ξj)=iqξj+k=12NC~k[ξk]e2iθ(ξk)ξjξku,11(x,t;ξk),\displaystyle u_{-,12}(x,t;\xi_{j})=-\frac{iq_{-}}{\xi_{j}}+\sum_{k=1}^{2N}\frac{\tilde{C}_{k}[\xi^{*}_{k}]e^{-2i\theta(\xi^{*}_{k})}}{\xi_{j}-\xi^{*}_{k}}u_{-,11}(x,t;\xi^{*}_{k}),
u,11(x,t;ξn)=1+j=12NCj[ξj]e2iθ(ξj)ξnξju,12(x,t;ξj).\displaystyle u_{-,11}(x,t;\xi^{*}_{n})=1+\sum_{j=1}^{2N}\frac{C_{j}[\xi_{j}]e^{2i\theta(\xi_{j})}}{\xi_{n}^{*}-\xi_{j}}u_{-,12}(x,t;\xi_{j}). (2.92)

from the (2.77) and (2.83). For convenience, we introduce a transformation

cj(x,t;z)=Cj[ξj]e2iθ(ξj)zξj,j=1,2,,2N.\displaystyle c_{j}(x,t;z)=\frac{C_{j}[\xi_{j}]e^{2i\theta(\xi_{j})}}{z-\xi_{j}},\quad j=1,2,\cdots,2N. (2.93)

Then, comprehensive (2.2.4) and (2.93), we can get the following formula

u,11(x,t;ξn)=1iqj=12Ncj(ξn)ξjj=12Nk=12Ncj(ξn)ck(ξj)μ,11(x,t;ξk).\displaystyle u_{-,11}(x,t;\xi^{*}_{n})=1-iq_{-}\sum_{j=1}^{2N}\frac{c_{j}(\xi^{*}_{n})}{\xi_{j}}-\sum_{j=1}^{2N}\sum_{k=1}^{2N}c_{j}(\xi_{n}^{*})c_{k}^{*}(\xi_{j}^{*})\mu_{-,11}(x,t;\xi_{k}^{*}). (2.94)

In order to better express the solution, we introduce that

Xn=μ,11(x,t;ξn),X=(X1,,X2N)T,\displaystyle X_{n}=\mu_{-,11}(x,t;\xi_{n}),\quad X=(X_{1},\cdots,X_{2N})^{T},
Un=1iq+j=12Ncj(ξn)ξj,U=(U1,,U2N)T,\displaystyle U_{n}=1-iq_{+}\sum_{j=1}^{2N}\frac{c_{j}(\xi^{*}_{n})}{\xi_{j}},\quad U=(U_{1},\cdots,U_{2N})^{T},
P=(Pn,k)2N×2N,Pn,k=j=12Ncj(ξn)ck(ξj),\displaystyle P=(P_{n,k})_{2N\times 2N},\quad P_{n,k}=\sum_{j=1}^{2N}c_{j}(\xi_{n}^{*})c_{k}^{*}(\xi_{j}^{*}),
n,k=1,2,,2N,\displaystyle n,k=1,2,\cdots,2N,

where the superscript TT implies transposition. Then, letting M=𝕀+PM=\mathbb{I}+P, we have MX=UMX=U. So, the solution for the potential can be expressed as

q(x,t)=q+idetMdetM,\displaystyle q(x,t)=-q_{-}+i\frac{\det M^{\sharp}}{\det M}, (2.95)

where detM=(0ΥUM)\det M^{\sharp}=\left(\begin{array}[]{cc}0&\Upsilon\\ U&M\end{array}\right), Υ=(Υ1,,Υ2N)\Upsilon=(\Upsilon_{1},\cdots,\Upsilon_{2N}) and Υn=C~n[ξn]e2iθ(x,t;ξn)\Upsilon_{n}=\tilde{C}_{n}[\xi^{*}_{n}]e^{-2i\theta(x,t;\xi^{*}_{n})} (n=1,2,,2N)(n=1,2,\cdots,2N).

2.3 Soliton solutions

In this section, for further studying the dynamic behavior of the soliton solutions, we make a graphical analysis. Based on the equation (2.95) and selecting appropriate parameters, some figures are illustrated. Firstly, we consider the case that the dimensionless parameter ϵ\epsilon is zero. Therefore, the HDNLS equation is reduced to the classical nonlinear Schrödinger equation. Then, when N=1N=1, we apply the appropriate parameters and get the following images.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)(b)(c)\qquad~~~~~~~~~(\textbf{a})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{b})\qquad\qquad\qquad\qquad\qquad~(\textbf{c})
Figure 2. (Color online) Plots of the breather solution of the equation with the parameters ϵ=0\epsilon=0, q=1q_{-}=1, ξ1=2.5i\xi_{1}=-2.5i and b1=e2+ib_{1}=e^{2+i}. (a): the breather solution , (b): the density plot , (c): the contour line of the breather solution.

From the illustrations, it is easy to find that the propagation of the solution is parallel to the time axis. This solution is called the stationary breather solution. Then, we change the parameter ξ\xi and obtain the following graphs.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)(b)(c)\qquad~~~~~~~~~(\textbf{a})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{b})\qquad\qquad\qquad\qquad\qquad~(\textbf{c})
Figure 3. (Color online) Plots of the breather solution of the equation with the parameters ϵ=0\epsilon=0, q=1q_{-}=1, ξ1=12.5i\xi_{1}=1-2.5i and b1=e2+ib_{1}=e^{2+i}. (a): the breather solution, (b): the density plot , (c): the contour line of the breather solution.

It is obvious that the propagation of the solution is parallel to neither the xx-axis nor the time axis. This solution can be called the non-stationary breather soliton solution. By comparing Figure 2. and Figure 3, we can find that when the discrete spectrum ξn\xi_{n} are pure imaginary, the stationary breather solution can be obtained. While, when the discrete spectrum ξn\xi_{n} have real parts, the non-stationary breather soliton solution is generated.

Furthermore, we change the boundary value qq_{-} and get the following graphs.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)(b)(c)\qquad~~~~~~~~~(\textbf{a})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{b})\qquad\qquad\qquad\qquad\qquad~(\textbf{c})

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(d)(e)(f)\qquad~~~~~~~~~(\textbf{d})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{e})\qquad\qquad\qquad\qquad\qquad~(\textbf{f})
Figure 4. (Color online) Plots of the soliton solution of the equation with the parameters ϵ=0\epsilon=0, ξ1=2.5i\xi_{1}=-2.5i and b1=e2+ib_{1}=e^{2+i}. (a): the soliton solution with q=0.1q_{-}=0.1, (b): the density plot corresponding to (a)(a), (c): the contour line corresponding to (a)(a), (d): the soliton solution with q=0.01q_{-}=0.01, (e): the density plot corresponding to (d)(d), (f): the contour line corresponding to (d)(d).

Figure 4. reveals that when the boundary value qq_{-} becomes smaller and smaller, the stationary breather solution is getting closer a bell soliton solution. Of course, it just looks like a a bell soliton solution and some properties might be different, but it is really an interesting phenomenon.

Now, we consider the case that the dimensionless parameter ϵ\epsilon is non-zero. Similarly, the following images can be obtained by selecting appropriate parameters and changing ϵ\epsilon.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)(b)(c)\qquad~~~~~~~~~(\textbf{a})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{b})\qquad\qquad\qquad\qquad\qquad~(\textbf{c})

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(d)(e)(f)\qquad~~~~~~~~~(\textbf{d})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{e})\qquad\qquad\qquad\qquad\qquad~(\textbf{f})

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(g)(h)(i)\qquad~~~~~~~~~(\textbf{g})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{h})\qquad\qquad\qquad\qquad\qquad~(\textbf{i})
Figure 5. (Color online) Plots of the soliton solution of the equation with the parameters q=1q_{-}=1, ξ1=2.5i\xi_{1}=-2.5i and b1=e2+ib_{1}=e^{2+i}. (a): the soliton solution with ϵ=1\epsilon=1, (b): the density plot corresponding to (a)(a), (c): the contour line of the soliton solution corresponding to (a)(a), (d): the soliton solution with ϵ=2\epsilon=2, (e): the density plot corresponding to (d)(d), (f): the contour line of the soliton solution corresponding to (d)(d), (g): the soliton solution with ϵ=3\epsilon=3, (h): the density plot corresponding to (g)(g), (i): the contour line of the soliton solution corresponding to (g)(g).

From the Figure 5. and comparing it with Figure 1, it is obvious that when the dimensionless parameter ϵ\epsilon becomes larger, the soliton solutions are more closely arranged. We can learn it more clearly from the density maps. Thus, compared to the classical Schrödinger equation, the addition of ϵ\epsilon will change the shape of the solution but will not change the structure of the solution.

The above analysis reveals the dynamic behavior of the soliton solutions and shows various interesting phenomena by selecting appropriate parameters and change some parameters. It is hoped that these results can contribute to the physical field.

3 The HDNLS equation with NZBCs: double poles

The case of single zeros of the analytic scattering coefficients has been investigated. In this section, we, then, study the double zeros of the analytic scattering coefficients.

3.1 Discrete spectrum with double poles and residue conditions

From the above analysis, we know that the discrete spectrum of the scattering problem is set that contains all values zΣz\in\mathbb{C}\setminus\Sigma which make the eigenfunctions exist in L2()L^{2}(\mathbb{R}). We assume that zn(D{z:Imz<0},n=1,2,,N)z_{n}(\in D_{-}\cap\{z\in\mathbb{C}:Imz<0\},n=1,2,...,N) are the double zeros of s11(z)s_{11}(z) i.e. s11(zn)=s11(zn)=0s_{11}(z_{n})=s^{\prime}_{11}(z_{n})=0 but s11′′(zn)0s^{\prime\prime}_{11}(z_{n})\neq 0, n=1,2,,Nn=1,2,\cdots,N. Then, based on the Theorem 2.5 , the discrete spectrum of the scattering problem can be acquired as

{zn,q02zn,zn,q02zn},n=1,2,,N.\displaystyle\left\{z_{n},-\frac{q_{0}^{2}}{z_{n}^{*}},z_{n}^{*},-\frac{q_{0}^{2}}{z_{n}}\right\},\quad n=1,2,...,N.

For convenience, we use the transformation that z^n=q02zn\hat{z}_{n}=-\frac{q^{2}_{0}}{z_{n}} and zˇn=q02zn\check{z}_{n}=-\frac{q^{2}_{0}}{z^{*}_{n}}. Then, according to the (2.12) and (2.39) we have the following theorem.

Theorem 3.1 When zn(D{z:Imz<0},n=1,2,,N)z_{n}(\in D_{-}\cap\{z\in\mathbb{C}:Imz<0\},n=1,2,...,N) are the double zeros of s11(z)s_{11}(z) , the

μ+,1(x,t;zn)=ene2iθ(x,t;zn)μ,2(x,t;zn)\displaystyle\mu_{+,1}(x,t;z_{n})=e_{n}e^{2i\theta(x,t;z_{n})}\mu_{-,2}(x,t;z_{n}) (3.1)

and

μ+,1(x,t;zn)=e2iθ(x,t;zn)[(hn+2ienθ(x,t;zn))μ,2(x,t;zn)+enμ,2(x,t;zn)],\displaystyle\mu^{\prime}_{+,1}(x,t;z_{n})=e^{2i\theta(x,t;z_{n})}[(h_{n}+2ie_{n}\theta^{\prime}(x,t;z_{n}))\mu_{-,2}(x,t;z_{n})+e_{n}\mu^{\prime}_{-,2}(x,t;z_{n})], (3.2)

where ene_{n} and hnh_{n} are constants and independent of xx and tt.

Proof.

Based on the (2.39) and znz_{n} are the double zeros of s11(z)s_{11}(z), we can derive that

ϕ+,1(zn)=enϕ,2(zn).\displaystyle\phi_{+,1}(z_{n})=e_{n}\phi_{-,2}(z_{n}). (3.3)

Then, using the (2.12), we have the (3.1). Considering that s11(zn)=0s^{\prime}_{11}(z_{n})=0, we can derive that

Wr(ϕ+,1(zn)enϕ,2(zn),ϕ,2(zn))=0.\displaystyle Wr\left(\phi^{\prime}_{+,1}(z_{n})-e_{n}\phi^{\prime}_{-,2}(z_{n}),\phi_{-,2}(z_{n})\right)=0.

So, we calculate that

ϕ+,1(zn)=enϕ,2(zn)+hnϕ,2(zn).\displaystyle\phi^{\prime}_{+,1}(z_{n})=e_{n}\phi^{\prime}_{-,2}(z_{n})+h_{n}\phi_{-,2}(z_{n}). (3.4)

The ene_{n} and hnh_{n} in (3.3) and (3.4), respectively, are constant and independent of xx and tt. Therefore, based on the (2.12), we can derive the (3.2). ∎

Similar to the Theorem 3.1, we have the following relationship.

μ+,1(x,t;zˇn)=eˇne2iθ(x,t;zˇn)μ,2(x,t;zˇn),\displaystyle\mu_{+,1}(x,t;\check{z}_{n})=\check{e}_{n}e^{2i\theta(x,t;\check{z}_{n})}\mu_{-,2}(x,t;\check{z}_{n}), (3.5a)
μ+,1(x,t;zˇn)=e2iθ(x,t;zˇn)[(hˇn+2ieˇnθ(x,t;zˇn))μ,2(x,t;zˇn)+eˇnμ,2(x,t;zˇn)];\displaystyle\mu^{\prime}_{+,1}(x,t;\check{z}_{n})=e^{2i\theta(x,t;\check{z}_{n})}[(\check{h}_{n}+2i\check{e}_{n}\theta^{\prime}(x,t;\check{z}_{n}))\mu_{-,2}(x,t;\check{z}_{n})+\check{e}_{n}\mu^{\prime}_{-,2}(x,t;\check{z}_{n})]; (3.5b)
μ+,2(x,t;zn)=e~ne2iθ(x,t;zn)μ,1(x,t;zn),\displaystyle\mu_{+,2}(x,t;z^{*}_{n})=\tilde{e}_{n}e^{-2i\theta(x,t;z^{*}_{n})}\mu_{-,1}(x,t;z^{*}_{n}), (3.5c)
μ+,2(x,t;zn)=e2iθ(x,t;zn)[(h~n2ie~nθ(x,t;zn))μ,1(x,t;zn)+e~nμ,1(x,t;zn)];\displaystyle\mu^{\prime}_{+,2}(x,t;z^{*}_{n})=e^{-2i\theta(x,t;z^{*}_{n})}[(\tilde{h}_{n}-2i\tilde{e}_{n}\theta^{\prime}(x,t;z^{*}_{n}))\mu_{-,1}(x,t;z^{*}_{n})+\tilde{e}_{n}\mu^{\prime}_{-,1}(x,t;z^{*}_{n})]; (3.5d)
μ+,2(x,t;z^n)=e^ne2iθ(x,t;z^n)μ,1(x,t;z^n),\displaystyle\mu_{+,2}(x,t;\hat{z}_{n})=\hat{e}_{n}e^{-2i\theta(x,t;\hat{z}_{n})}\mu_{-,1}(x,t;\hat{z}_{n}), (3.5e)
μ+,2(x,t;z^n)=e2iθ(x,t;z^n)[(h^n2ie^nθ(x,t;z^n))μ,1(x,t;z^n)+e^nμ,1(x,t;z^n)];\displaystyle\mu^{\prime}_{+,2}(x,t;\hat{z}_{n})=e^{-2i\theta(x,t;\hat{z}_{n})}[(\hat{h}_{n}-2i\hat{e}_{n}\theta^{\prime}(x,t;\hat{z}_{n}))\mu_{-,1}(x,t;\hat{z}_{n})+\hat{e}_{n}\mu^{\prime}_{-,1}(x,t;\hat{z}_{n})]; (3.5f)

where the eˇn\check{e}_{n}, hˇn\check{h}_{n}, e~n\tilde{e}_{n}, h~n\tilde{h}_{n}, e^n\hat{e}_{n}, and h^n\hat{h}_{n} are constants and independent of xx and tt. Furthermore, the constants have the fixed relationship.

Theorem 3.2 The relationship among the constants are that

e~n=en,e^n=enqq+,eˇn=e^n,\displaystyle\tilde{e}_{n}=-e^{*}_{n},\quad\hat{e}_{n}=e_{n}\frac{q_{-}}{q^{*}_{+}},\quad\check{e}_{n}=-\hat{e}^{*}_{n},
h~n=hn,h^n=hnqzn2q+q02,hˇn=h^n.\displaystyle\tilde{h}_{n}=-h^{*}_{n},\quad\hat{h}_{n}=h_{n}\frac{q_{-}z^{2}_{n}}{q^{*}_{+}q^{2}_{0}},\quad\check{h}_{n}=-\hat{h}^{*}_{n}.
Proof.

According to the (2.46), (3.5c) and (3.5d), we have that

σμ+,1(x,t;zn)=e~ne2iθ(x,t;zn)σμ,2(x,t;zn).\displaystyle-\sigma\mu^{*}_{+,1}(x,t;z_{n})=\tilde{e}_{n}e^{-2i\theta(x,t;z^{*}_{n})}\sigma\mu^{*}_{-,2}(x,t;z_{n}). (3.6)

Applying θ(x,t;zn)=θ(x,t;zn)\theta(x,t;z^{*}_{n})=\theta^{*}(x,t;z_{n}), multiplying σ\sigma to both ends of equation (3.6) and taking the complex conjugate, we obtain that

μ+,1(x,t;zn)=e~ne2iθ(x,t;zn)μ,2(x,t;zn).\displaystyle\mu_{+,1}(x,t;z_{n})=-\tilde{e}^{*}_{n}e^{2i\theta(x,t;z_{n})}\mu_{-,2}(x,t;z_{n}). (3.7)

Therefore, the e~n=en\tilde{e}_{n}=-e^{*}_{n} has been proved.
The other relationships among the constants can be proved similarly. ∎

Then, we pay attention to the residue condition that will be useful in the inverse problem.

Proposition 1. If the functions ff and gg are analytic in a complex region Ω\Omega\in\mathbb{C} , gg has a double poles at z0Ωz_{0}\in\Omega i.e. g(z0)=g(z0)=0g(z_{0})=g^{\prime}(z_{0})=0, g′′(z0)0g^{\prime\prime}(z_{0})\neq 0, and f(z0)0f(z_{0})\neq 0. Thus the residue of f/gf/g can be calculated by the Laurent expansion at z=z0z=z_{0}, namely

Resz=z0[fg]=2f(z0)g′′(z0)2f(z0)g′′′(z0)3(g′′(z0))2,P2z=z0[fg]=2f(z0)g′′(z0).\displaystyle\mathop{Res}_{z=z_{0}}\left[\frac{f}{g}\right]=\frac{2f^{\prime}(z_{0})}{g^{\prime\prime}(z_{0})}-\frac{2f(z_{0})g^{\prime\prime\prime}(z_{0})}{3(g^{\prime\prime}(z_{0}))^{2}},\quad\mathop{P_{-2}}_{z=z_{0}}\left[\frac{f}{g}\right]=\frac{2f(z_{0})}{g^{\prime\prime}(z_{0})}. (3.8)

According to the Theorem 3.1 and the formulae (3.8), we can derive the residue of the u+,1(x,t;z)/s11(z)u_{+,1}(x,t;z)/s_{11}(z) as

P2z=zn[μ+,1(x,t;z)s11(z)]=2μ+,1(x,t;zn)s11′′(zn)=2ens11′′(zn)e2iθ(x,t;zn)μ,2(x,t;zn),\displaystyle\mathop{P_{-2}}_{z=z_{n}}\left[\frac{\mu_{+,1}(x,t;z)}{s_{11}(z)}\right]=\frac{2\mu_{+,1}(x,t;z_{n})}{s^{\prime\prime}_{11}(z_{n})}=\frac{2e_{n}}{s^{\prime\prime}_{11}(z_{n})}e^{2i\theta(x,t;z_{n})}\mu_{-,2}(x,t;z_{n}), (3.9a)
Resz=zn[μ+,1(x,t;z)s11(z)]=2μ+,1(x,t;zn)s11′′(zn)2μ+,1(x,t;zn)a11′′′(zn)3(s11′′(zn))2\displaystyle\mathop{Res}_{z=z_{n}}\left[\frac{\mu_{+,1}(x,t;z)}{s_{11}(z)}\right]=\frac{2\mu^{\prime}_{+,1}(x,t;z_{n})}{s^{\prime\prime}_{11}(z_{n})}-\frac{2\mu_{+,1}(x,t;z_{n})a^{\prime\prime\prime}_{11}(z_{n})}{3(s^{\prime\prime}_{11}(z_{n}))^{2}}
=2ens11′′(zn)e2iθ(x,t;zn)[μ,2(x,t;zn)+(hnen+2iθ(x,t;zn)s11′′′(zn)3s11′′(zn))μ,2(x,t;zn)].\displaystyle=\frac{2e_{n}}{s^{\prime\prime}_{11}(z_{n})}e^{2i\theta(x,t;z_{n})}\left[\mu^{\prime}_{-,2}(x,t;z_{n})+\left(\frac{h_{n}}{e_{n}}+2i\theta^{\prime}(x,t;z_{n})-\frac{s^{\prime\prime\prime}_{11}(z_{n})}{3s^{\prime\prime}_{11}(z_{n})}\right)\mu_{-,2}(x,t;z_{n})\right]. (3.9b)

In order to make the analysis more convenient, we introduce the following representation

En=2ens11′′(zn),Hn=hnens11′′′(zn)3s11′′(zn).\displaystyle E_{n}=\frac{2e_{n}}{s^{\prime\prime}_{11}(z_{n})},\quad H_{n}=\frac{h_{n}}{e_{n}}-\frac{s^{\prime\prime\prime}_{11}(z_{n})}{3s^{\prime\prime}_{11}(z_{n})}.

Then, the (3.9a) and (3.9b) can be transformed into

P2z=zn[μ+,1(x,t;z)s11(z)]=Ene2iθ(x,t;zn)μ,2(x,t;zn),\displaystyle\mathop{P_{-2}}_{z=z_{n}}\left[\frac{\mu_{+,1}(x,t;z)}{s_{11}(z)}\right]=E_{n}e^{2i\theta(x,t;z_{n})}\mu_{-,2}(x,t;z_{n}), (3.10a)
Resz=zn[μ+,1(x,t;z)s11(z)]=Ene2iθ(x,t;zn)[μ,2(x,t;zn)+(Hn+2iθ(x,t;zn))μ,2(x,t;zn)].\displaystyle\mathop{Res}_{z=z_{n}}\left[\frac{\mu_{+,1}(x,t;z)}{s_{11}(z)}\right]=E_{n}e^{2i\theta(x,t;z_{n})}\left[\mu^{\prime}_{-,2}(x,t;z_{n})+\left(H_{n}+2i\theta^{\prime}(x,t;z_{n})\right)\mu_{-,2}(x,t;z_{n})\right]. (3.10b)

From the above analysis, we know that z=zˇnz=\check{z}_{n} are also the double zeros of s11s_{11} and z=zn,z=z^nz=z_{n}^{*},z=\hat{z}_{n} are the double zeros of s22s_{22}. Similar to the (3.9a), (3.9b), (3.10a) and (3.10b), we can derive that

P2z=zˇn[μ+,1(z)s11(z)]=Eˇne2iθ(zˇn)μ,2(zˇn),\displaystyle\mathop{P_{-2}}_{z=\check{z}_{n}}\left[\frac{\mu_{+,1}(z)}{s_{11}(z)}\right]=\check{E}_{n}e^{2i\theta(\check{z}_{n})}\mu_{-,2}(\check{z}_{n}), (3.11a)
Resz=zˇn[μ+,1(z)s11(z)]=Eˇne2iθ(zˇn)[μ,2(zˇn)+(Hˇn+2iθ(zˇn))μ,2(zˇn)];\displaystyle\mathop{Res}_{z=\check{z}_{n}}\left[\frac{\mu_{+,1}(z)}{s_{11}(z)}\right]=\check{E}_{n}e^{2i\theta(\check{z}_{n})}\left[\mu^{\prime}_{-,2}(\check{z}_{n})+\left(\check{H}_{n}+2i\theta^{\prime}(\check{z}_{n})\right)\mu_{-,2}(\check{z}_{n})\right]; (3.11b)
P2z=zn[μ+,2(z)s22(z)]=E~ne2iθ(zn)μ,1(zn),\displaystyle\mathop{P_{-2}}_{z=z^{*}_{n}}\left[\frac{\mu_{+,2}(z)}{s_{22}(z)}\right]=\tilde{E}_{n}e^{-2i\theta(z^{*}_{n})}\mu_{-,1}(z^{*}_{n}), (3.11c)
Resz=zn[μ+,2(z)s22(z)]=E~ne2iθ(zn)[μ,1(zn)+(Hn2iθ(zn))μ,1(zn)];\displaystyle\mathop{Res}_{z=z^{*}_{n}}\left[\frac{\mu_{+,2}(z)}{s_{22}(z)}\right]=\tilde{E}_{n}e^{-2i\theta(z^{*}_{n})}\left[\mu^{\prime}_{-,1}(z^{*}_{n})+\left(H_{n}-2i\theta^{\prime}(z^{*}_{n})\right)\mu_{-,1}(z^{*}_{n})\right]; (3.11d)
P2z=z^n[μ+,2(z)s22(z)]=E^ne2iθ(z^n)μ,1(z^n),\displaystyle\mathop{P_{-2}}_{z=\hat{z}_{n}}\left[\frac{\mu_{+,2}(z)}{s_{22}(z)}\right]=\hat{E}_{n}e^{-2i\theta(\hat{z}_{n})}\mu_{-,1}(\hat{z}_{n}), (3.11e)
Resz=z^n[μ+,2(z)s22(z)]=E^ne2iθ(z^n)[μ,1(z^n)+(H^n2iθ(z^n))μ,1(z^n)];\displaystyle\mathop{Res}_{z=\hat{z}_{n}}\left[\frac{\mu_{+,2}(z)}{s_{22}(z)}\right]=\hat{E}_{n}e^{-2i\theta(\hat{z}_{n})}\left[\mu^{\prime}_{-,1}(\hat{z}_{n})+\left(\hat{H}_{n}-2i\theta^{\prime}(\hat{z}_{n})\right)\mu_{-,1}(\hat{z}_{n})\right]; (3.11f)

where Eˇn\check{E}_{n}, Hˇn\check{H}_{n}, E~n\tilde{E}_{n}, H~n\tilde{H}_{n}, E^n\hat{E}_{n} and H^n\hat{H}_{n} are the transformations corresponding to the constants eˇn\check{e}_{n}, hˇn\check{h}_{n}, e~n\tilde{e}_{n}, h~n\tilde{h}_{n}, e^n\hat{e}_{n}, and h^n\hat{h}_{n}, respectively.

3.2 RH problem and reconstruction formula for the potential

In the analysis of simple poles, we have constructed a generalized RHP and obtained the asymptotic behavior of the M±M^{\pm} and the jump matrix GG. Then, for convenience, we introduce a substitution

ξn:=zn,ξN+n:=zˇn,ξ^n:=z^n,ξ^N+n:=zn.\displaystyle\xi_{n}:=z_{n},\quad\xi_{N+n}:=\check{z}_{n},\quad\hat{\xi}_{n}:=\hat{z}_{n},\quad\hat{\xi}_{N+n}:=z_{n}^{*}. (3.12)

So, the ξn,n=1,2,,2N\xi_{n},n=1,2,\cdots,2N are the double poles in DD_{-} and ξn,n=1,2,,2N\xi^{*}_{n},n=1,2,\cdots,2N are the double poles in D+D_{+}. Via subtracting out the asymptotic behavior and the double poles contributions, we obtain a regular RHP. Then, we have

M+𝕀+izσ3Qn=12N{Resz=ξ^nM+zξ^n+P2z=ξ^n2M+(zξ^n)2+Resz=ξnMzξn+P2z=ξn2M(zξn)2}=M𝕀+izσ3Qn=12N{Resz=ξ^nM+zξ^n+P2z=ξ^n2M+(zξ^n)2+Resz=ξnMzξn+P2z=ξn2M(zξn)2}MG.\displaystyle\begin{split}M^{+}-&\mathbb{I}+\frac{i}{z}\sigma_{3}Q_{-}-\sum_{n=1}^{2N}\left\{\frac{\mathop{Res}\limits_{z=\hat{\xi}_{n}}M^{+}}{z-\hat{\xi}_{n}}+\frac{\mathop{P_{-2}}\limits_{z=\hat{\xi}_{n}}M^{+}}{(z-\hat{\xi}_{n})^{2}}+\frac{\mathop{Res}\limits_{z=\xi_{n}}M^{-}}{z-\xi_{n}}+\frac{\mathop{P_{-2}}\limits_{z=\xi_{n}}M^{-}}{(z-\xi_{n})^{2}}\right\}\\ &=M^{-}-\mathbb{I}+\frac{i}{z}\sigma_{3}Q_{-}-\sum_{n=1}^{2N}\left\{\frac{\mathop{Res}\limits_{z=\hat{\xi}_{n}}M^{+}}{z-\hat{\xi}_{n}}+\frac{\mathop{P_{-2}}\limits_{z=\hat{\xi}_{n}}M^{+}}{(z-\hat{\xi}_{n})^{2}}+\frac{\mathop{Res}\limits_{z=\xi_{n}}M^{-}}{z-\xi_{n}}+\frac{\mathop{P_{-2}}\limits_{z=\xi_{n}}M^{-}}{(z-\xi_{n})^{2}}\right\}-M^{-}G.\end{split} (3.13)

According to the (2.65), we acquire that

Resz=ξn[M]=(Resz=ξn[μ+,1(x,t;z)s11(z)],0),P2z=ξnM=(P2z=ξn[μ+,1(x,t;z)s11(z)],0),\displaystyle\mathop{Res}_{z=\xi_{n}}[M^{-}]=(\mathop{Res}_{z=\xi_{n}}\left[\frac{\mu_{+,1}(x,t;z)}{s_{11}(z)}\right],0),\quad\mathop{P_{-2}}_{z=\xi_{n}}M^{-}=(\mathop{P_{-2}}_{z=\xi_{n}}\left[\frac{\mu_{+,1}(x,t;z)}{s_{11}(z)}\right],0),
Resz=ξ^n[M+]=(0,Resz=ξ^n[μ+,2(x,t;z)s22(z)]),P2z=ξ^nM+=(0,P2z=ξ^n[μ+,2(x,t;z)s22(z)]).\displaystyle\mathop{Res}_{z=\hat{\xi}_{n}}[M^{+}]=(0,\mathop{Res}_{z=\hat{\xi}_{n}}\left[\frac{\mu_{+,2}(x,t;z)}{s_{22}(z)}\right]),\quad\mathop{P_{-2}}_{z=\hat{\xi}_{n}}M^{+}=(0,\mathop{P_{-2}}_{z=\hat{\xi}_{n}}\left[\frac{\mu_{+,2}(x,t;z)}{s_{22}(z)}\right]).

It is easy to verify that the left side of (3.13) is analytic in D+D_{+} and the right side of (3.13), apart from the item M(z)G(z)M^{-}(z)G(z), is analytic in DD_{-}. Meanwhile, both sides of the equation (3.13) have the asymptotic behavior that are O(1/z)(z)O(1/z)(z\rightarrow\infty) and O(1)(z0)O(1)(z\rightarrow 0). We also have the asymptotic behavior of G(x,t;s)G(x,t;s), i.e., O(1/z)(z)O(1/z)(z\rightarrow\infty) and O(1)(z0)O(1)(z\rightarrow 0). Therefore, applying the cauchy projectors (2.73), the solution of the RHP can be obtained as

M(x,t;z)=\displaystyle M(x,t;z)= 𝕀izσ3Q+n=12N{Resz=ξ^nM+zξ^n+P2z=ξ^n2M+(zξ^n)2+Resz=ξnMzξn+P2z=ξn2M(zξn)2}\displaystyle\mathbb{I}-\frac{i}{z}\sigma_{3}Q_{-}+\sum_{n=1}^{2N}\left\{\frac{\mathop{Res}\limits_{z=\hat{\xi}_{n}}M^{+}}{z-\hat{\xi}_{n}}+\frac{\mathop{P_{-2}}\limits_{z=\hat{\xi}_{n}}M^{+}}{(z-\hat{\xi}_{n})^{2}}+\frac{\mathop{Res}\limits_{z=\xi_{n}}M^{-}}{z-\xi_{n}}+\frac{\mathop{P_{-2}}\limits_{z=\xi_{n}}M^{-}}{(z-\xi_{n})^{2}}\right\}
+12iπΣM(x,t;s)G(x,t;s)sz𝑑s,zΣ.\displaystyle+\frac{1}{2i\pi}\int_{\Sigma}\frac{M^{-}(x,t;s)G(x,t;s)}{s-z}\,ds,\quad z\in\mathbb{C}\setminus\Sigma. (3.14)

To obtain a closed algebraic integral system, the expression of the residue which emerge in (3.2) is necessary. We have shown this in the above analysis. We, therefore, evaluate the second column of the (3.2) at z=ξkz=\xi_{k} in DD_{-}. Before this, we introduce the notation E^N+n:=E~n\hat{E}_{N+n}:=\tilde{E}_{n} and H^N+n:=H~n\hat{H}_{N+n}:=\tilde{H}_{n}, and define that

Cn(x,t;z)=E^nzξ^ne2iθ(x,t;ξ^n),Dn(x,t)=H^n2iθ(x,t;ξ^n).\displaystyle C_{n}(x,t;z)=\frac{\hat{E}_{n}}{z-\hat{\xi}_{n}}e^{-2i\theta(x,t;\hat{\xi}_{n})},\quad D_{n}(x,t)=\hat{H}_{n}-2i\theta^{\prime}(x,t;\hat{\xi}_{n}).

It can be derived that Cn(x,t;z)=Cn(x,t;z)zξ^nC^{\prime}_{n}(x,t;z)=-\frac{C_{n}(x,t;z)}{z-\hat{\xi}_{n}}. Then, we have

u,2(x,t;ξk)=\displaystyle u_{-,2}(x,t;\xi_{k})= (iqξk1)+12iπΣ(MG)2(s)sξk𝑑s\displaystyle\left(\begin{array}[]{cc}-\frac{iq_{-}}{\xi_{k}}\\ 1\end{array}\right)+\frac{1}{2i\pi}\int_{\Sigma}\frac{(M^{-}G)_{2}(s)}{s-\xi_{k}}\,ds (3.17)
+n=12NCn(ξk)[μ,1(x,t;ξ^n)+(Dn(x,t)+1ξkξ^n)μ,1(x,t;ξ^n)].\displaystyle+\sum_{n=1}^{2N}C_{n}(\xi_{k})\left[\mu^{\prime}_{-,1}(x,t;\hat{\xi}_{n})+\left(D_{n}(x,t)+\frac{1}{\xi_{k}-\hat{\xi}_{n}}\right)\mu_{-,1}(x,t;\hat{\xi}_{n})\right]. (3.18)

Based on the (2.47), we have μ,2(x,t;ξk)=iqξkμ,1(x,t;ξ^k)\mu_{-,2}(x,t;\xi_{k})=-\frac{iq_{-}}{\xi_{k}}\mu_{-,1}(x,t;\hat{\xi}_{k}) and substitute it into the (3.17). The following formulae,

n=12N(Cn(ξk)μ,1(x,t;ξ^n)+[Cn(ξk)(Dn(x,t)+1ξkξ^n)+iqξkδkn]μ,1(x,t;ξ^n))\displaystyle\sum_{n=1}^{2N}\left(C_{n}(\xi_{k})\mu^{\prime}_{-,1}(x,t;\hat{\xi}_{n})+\left[C_{n}(\xi_{k})\left(D_{n}(x,t)+\frac{1}{\xi_{k}-\hat{\xi}_{n}}\right)+\frac{iq_{-}}{\xi_{k}}\delta_{kn}\right]\mu_{-,1}(x,t;\hat{\xi}_{n})\right)
+(iqξk1)+12iπΣ(MG)2(s)sξk𝑑s=0,\displaystyle+\left(\begin{array}[]{cc}-\frac{iq_{-}}{\xi_{k}}\\ 1\end{array}\right)+\frac{1}{2i\pi}\int_{\Sigma}\frac{(M^{-}G)_{2}(s)}{s-\xi_{k}}\,ds=0, (3.21)

can be obtained. Here, the δij\delta_{ij} is Kronecker delta. Then, by taking the first-order derivative of μ,2(x,t;z)\mu_{-,2}(x,t;z) and (2.47) with respect to zz, and evaluating at z=ξkz=\xi_{k}, we can obtain that

n=12N([Cn(ξk)ξkξ^niqq02ξk3δkn]μ,1(ξ^n)+[Cn(ξk)ξkξ^n(Dn(x,t)+2ξkξ^n)+iqξk2δkn]μ,1(ξ^n))\displaystyle\sum_{n=1}^{2N}\left(\left[\frac{C_{n}(\xi_{k})}{\xi_{k}-\hat{\xi}_{n}}-\frac{iq_{-}q_{0}^{2}}{\xi_{k}^{3}}\delta_{kn}\right]\mu^{\prime}_{-,1}(\hat{\xi}_{n})+\left[\frac{C_{n}(\xi_{k})}{\xi_{k}-\hat{\xi}_{n}}\left(D_{n}(x,t)+\frac{2}{\xi_{k}-\hat{\xi}_{n}}\right)+\frac{iq_{-}}{\xi_{k}^{2}}\delta_{kn}\right]\mu_{-,1}(\hat{\xi}_{n})\right)
+(iqξk20)12iπΣ(MG)2(s)(sξk)2𝑑s=0.\displaystyle+\left(\begin{array}[]{cc}-\frac{iq_{-}}{\xi_{k}^{2}}\\ 0\end{array}\right)-\frac{1}{2i\pi}\int_{\Sigma}\frac{(M^{-}G)_{2}(s)}{(s-\xi_{k})^{2}}\,ds=0. (3.24)

Finally, considering the asymptotic behavior of the (3.2), we obtain that

M(x,t;z)=𝕀\displaystyle M(x,t;z)=\mathbb{I} +1z{iσ3Q+n=12N[Resz=ξ^nM++Resz=ξnM]\displaystyle+\frac{1}{z}\{-i\sigma_{3}Q_{-}+\sum_{n=1}^{2N}\left[\mathop{Res}_{z=\hat{\xi}_{n}}M^{+}+\mathop{Res}_{z=\xi_{n}}M^{-}\right]
12iπΣM(x,t;s)G(x,t;s)ds}+O(z2),z.\displaystyle-\frac{1}{2i\pi}\int_{\Sigma}M^{-}(x,t;s)G(x,t;s)\,ds\}+O(z^{-2}),\quad z\rightarrow\infty. (3.25)

Through taking M=MM=M^{-} and combining the 1,21,2 element of (3.2) and the Theorem 2.6, the reconstruction formula for the potential can be acquired as

q(x,t)=\displaystyle q(x,t)= q+12πΣ(M(x,t;s)G(x,t;s))12𝑑s\displaystyle-q_{-}+\frac{1}{2\pi}\int_{\Sigma}(M^{-}(x,t;s)G(x,t;s))_{12}\,ds
in=12NE^ne2iθ(x,t;ξ^n)[μ,11(x,t;ξ^n)+μ,11(x,t;ξ^n)Dn(x,t)].\displaystyle-i\sum_{n=1}^{2N}\hat{E}_{n}e^{-2i\theta(x,t;\hat{\xi}_{n})}[\mu^{\prime}_{-,11}(x,t;\hat{\xi}_{n})+\mu_{-,11}(x,t;\hat{\xi}_{n})D_{n}(x,t)]. (3.26)

3.3 Trace formulate and theta condition

Here, we will deduce the trace formulate and theta condition for the double poles case. According to the above analysis, we know that the zn,q02zn(n=1,2,,N)z_{n},-\frac{q_{0}^{2}}{z_{n}^{*}}(n=1,2,\cdots,N) are the double zeros of s11s_{11} and the zn,q02zn(n=1,2,,N)z_{n}^{*},-\frac{q_{0}^{2}}{z_{n}}(n=1,2,\cdots,N) are the double zeros of s22s_{22}. Then, we construct the following function

ζ2(z)=s11(z)n=1N(zzn)2(z+q02/zn)2(zzn)2(z+q02/zn)2,\displaystyle\zeta^{-}_{2}(z)=s_{11}(z)\prod_{n=1}^{N}\frac{(z-z_{n}^{*})^{2}(z+q_{0}^{2}/z_{n})^{2}}{(z-z_{n})^{2}(z+q_{0}^{2}/z_{n}^{*})^{2}},
ζ2+(z)=s22(z)n=1N(zzn)2(z+q02/zn)2(zzn)2(z+q02/zn)2.\displaystyle\zeta^{+}_{2}(z)=s_{22}(z)\prod_{n=1}^{N}\frac{(z-z_{n})^{2}(z+q_{0}^{2}/z_{n}^{*})^{2}}{(z-z_{n}^{*})^{2}(z+q_{0}^{2}/z_{n})^{2}}. (3.27)

The analytic properties of the ζ2\zeta^{-}_{2} and ζ2+\zeta^{+}_{2} correspond to the s11s_{11} and s22s_{22}. However, they have no zeros. Furthermore, considering the detS(z)=1\det S(z)=1 and applying the expression of the reflection coefficients, i.e. ρ(z)=s21(z)/s11(z),ρ~(z)=s12(z)/s22(z)\rho(z)=s_{21}(z)/s_{11}(z),\tilde{\rho}(z)=s_{12}(z)/s_{22}(z), we obtain that

ζ2(z)ζ2+(z)=11ρ(z)ρ~(z),zΣ.\displaystyle\zeta^{-}_{2}(z)\zeta_{2}^{+}(z)=\frac{1}{1-\rho(z)\tilde{\rho}(z)},\quad z\in\Sigma. (3.28)

Based on the asymptotic behavior of S(z)S(z) which we have given in Theorem 2.7, we can obtain that ζ2(z)1\zeta^{\mp}_{2}(z)\rightarrow 1 as zz\rightarrow\infty. Then, via taking the logarithm of the (3.28) and applying the Plemelj’s formulae and Cauchy projectors, we obtain that

logζ2(z)=12πiΣlog[1ρ(s)ρ~(s)]s(z±i0)𝑑s,zD.\displaystyle\log\zeta^{\mp}_{2}(z)=-\frac{1}{2\pi i}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s-(z\pm i0)}\,ds,\quad z\in D_{\mp}. (3.29)

Therefore, the trace formula can be obtained as

s11(z)\displaystyle s_{11}(z) =exp(12πiΣlog[1ρ(s)ρ~(s)]sz𝑑ζ)n=1N(zzn)2(z+q02/zn)2(zzn)2(z+q02/zn)2,\displaystyle=exp\left(-\frac{1}{2\pi i}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s-z}\,d\zeta\right)\prod_{n=1}^{N}\frac{(z-z_{n})^{2}(z+q_{0}^{2}/z_{n}^{*})^{2}}{(z-z_{n}^{*})^{2}(z+q_{0}^{2}/z_{n})^{2}}, (3.30)
s22(z)\displaystyle s_{22}(z) =exp(12πiΣlog[1ρ(s)ρ~(s)]sz𝑑s)n=1N(zzn)2(z+q02/zn)2(zzn)2(z+q02/zn)2.\displaystyle=exp\left(-\frac{1}{2\pi i}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s-z}\,ds\right)\prod_{n=1}^{N}\frac{(z-z_{n}^{*})^{2}(z+q_{0}^{2}/z_{n})^{2}}{(z-z_{n})^{2}(z+q_{0}^{2}/z_{n}^{*})^{2}}. (3.31)

Finally, based on the asymptotic behavior of s11s_{11}, the theta condition can be obtained as

argqq+=argqargq+=8n=1Nargzn+12πΣlog[1ρ(s)ρ~(s)]s𝑑s.\displaystyle\arg\frac{q_{-}}{q_{+}}=\arg q_{-}-\arg q_{+}=8\sum_{n=1}^{N}\arg z_{n}+\frac{1}{2\pi}\int_{\Sigma}\frac{\log[1-\rho(s)\tilde{\rho}(s)]}{s}\,ds. (3.32)

3.4 Reflection-less potentials

Here, we are interested to investigate a type solutions which are that the reflection coefficients ρ(z)\rho(z) and ρ~(z)\tilde{\rho}(z) disappear. Therefore, the jump matrix from MM^{-} to M+M^{+} also vanishes, i.e. G(x,t;z)=0G(x,t;z)=0. Under this conditions, from the (3.2), we have

q(x,t)=qin=12NE^ne2iθ(x,t;ξ^n)[μ,11(x,t;ξ^n)+μ,11(x,t;ξ^n)Dn(x,t)],\displaystyle q(x,t)=-q_{-}-i\sum_{n=1}^{2N}\hat{E}_{n}e^{-2i\theta(x,t;\hat{\xi}_{n})}[\mu^{\prime}_{-,11}(x,t;\hat{\xi}_{n})+\mu_{-,11}(x,t;\hat{\xi}_{n})D_{n}(x,t)], (3.33)

where the μ,11(x,t;ξ^n)\mu_{-,11}(x,t;\hat{\xi}_{n}) and μ,11(x,t;ξ^n)\mu^{\prime}_{-,11}(x,t;\hat{\xi}_{n}) can be solved by the following equation

MX=V,\displaystyle MX=V, (3.34)

where Xn=μ,11(x,t;ξ^n)X_{n}=\mu_{-,11}(x,t;\hat{\xi}_{n}), X2N+n=μ,11(x,t;ξ^n)X_{2N+n}=\mu^{\prime}_{-,11}(x,t;\hat{\xi}_{n}), Vn=iqξnV_{n}=\frac{iq_{-}}{\xi_{n}}, V2N+n=iqξn2V_{2N+n}=\frac{iq_{-}}{\xi^{2}_{n}} (n=1,2,,2N)(n=1,2,\cdots,2N) and M is a 4N×4N4N\times 4N matrix. The elements can be determined by the equation (3.2) and (3.2) which are under the condition that the reflection coefficients ρ(z)\rho(z) and ρ~(z)\tilde{\rho}(z) disappear.

3.5 Soliton solutions for the double poles case

In this section, the properties of the soliton solutions for the double case will be analysed. Similar to the simple pole case, we first investigate the solution when the dimensionless parameter ϵ\epsilon is zero. When N=1N=1, we apply the appropriate parameters and get the following images.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)(b)(c)\qquad~~~~~~~~~(\textbf{a})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{b})\qquad\qquad\qquad\qquad\qquad~(\textbf{c})
Figure 6. (Color online) Plots of the soliton solution of the equation with the parameters ϵ=0\epsilon=0, q=1q_{-}=1, ξ1=2i\xi_{1}=-2i and e1=h1=e1+ie_{1}=h_{1}=e^{1+i}. (a): the soliton solution , (b): the density plot , (c): the contour line of the soliton solution.

From the Figure 6, the interesting phenomenon that there are two columns of breather solutions are shown. It is worth noting that two columns of breather solutions interact in the process of propagation. Then, we change the boundary value qq_{-} and get the following graphs.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)(b)(c)\qquad~~~~~~~~~(\textbf{a})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{b})\qquad\qquad\qquad\qquad\qquad~(\textbf{c})

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(d)(e)(f)\qquad~~~~~~~~~(\textbf{d})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{e})\qquad\qquad\qquad\qquad\qquad~(\textbf{f})
Figure 7. (Color online) Plots of the soliton solutions of the equation with the parameters ϵ=0\epsilon=0, ξ1=2i\xi_{1}=-2i and e1=h1=e1+ie_{1}=h_{1}=e^{1+i}. (a): the soliton solution with q=0.1q_{-}=0.1, (b): the density plot corresponding to (a)(a), (c): the contour line of the soliton solution corresponding to (a)(a), (d): the soliton solution with q=0.01q_{-}=0.01, (e): the density plot corresponding to (d)(d), (f): the contour line of the soiton solution corresponding to (d)(d).

What we can learn from the Figure 7. are that there is only a sharp soliton exists in the place where the two columns of waves interact during the propagation process as qq_{-} gradually becomes smaller. While, the breathing phenomenon gradually disappears. Furthermore, if we change the dimensionless parameter ϵ\epsilon, more interesting phenomena will be generated. Now, we consider the case that the dimensionless parameter ϵ\epsilon is non-zero.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(a)(b)(c)\qquad~~~~~~~~~(\textbf{a})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{b})\qquad\qquad\qquad\qquad\qquad~(\textbf{c})

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]

(d)(e)(f)\qquad~~~~~~~~~(\textbf{d})\qquad\ \qquad\qquad\qquad\qquad~~~(\textbf{e})\qquad\qquad\qquad\qquad\qquad~(\textbf{f})
Figure 8. (Color online) Plots of the soliton solutions of the equation with the parameters q=1q_{-}=1, ξ1=2i\xi_{1}=-2i and e1=h1=e1+ie_{1}=h_{1}=e^{1+i}. (a): the soliton solution with ϵ=1\epsilon=1, (b): the density plot corresponding to (a)(a), (c): the contour line of the soliton solution corresponding to (a)(a), (d): the soliton solution with ϵ=3\epsilon=3, (e): the density plot corresponding to (d)(d), (f): the contour line of the soliton solution corresponding to (d)(d).

From the Figure 8. and comparing it with Figure 6, it is interesting that the both of the two column breather soliton solutions are more closely arranged as the dimensionless parameter ϵ\epsilon becomes larger. For this phenomenon, the density plot shows more clearly. Similar to the simple pole, we can see that the appearance of ϵ\epsilon will disturb the form of the soliton solution and has no effect on the structure of the soliton solution.

4 Conclusions and discussions

In [21], Yang, et al. have studied the rogue wave solutions and obtained rogue waves dynamics and several new spatial-temporal structures of the HDNLS equation by using the generalized Darboux transformation method. However, we investigated the HDNLS equation (1.2) with non-zero boundary conditions by applying the inverse scattering transform via RH approach which is quite different from the generalized Darboux transformation method. Meanwhile, the specific form of the analytical solution we obtained is different from the results in [21]. In addition, we fully discuss the effects of different boundary conditions, discrete spectral points, and disturbance ϵ\epsilon on the soliton solutions. Also, some interesting phenomena are obtained when the spectrum points tend to singular points by choosing appropriate parameters.

In this work, we studied the HDNLS equation with NBCs at infinity and presented the ISTs. Firstly, we overcome difficulties that the double-valued functions occur in the process of direct scattering through through introducing a appropriate Riemann surface and uniformization variable. After the discussion of the direct scattering problem and the inverse scattering problem, the solutions of the HDNLS equation with NBCs are presented. Meanwhile, special soliton solutions under the condition of reflection-less potentials are given for both of the two case i.e. simple and double poles. In addition, based on the concrete expression of the solution, some graphic analysis are presented via selecting some appropriate parameters.

Acknowledgements

This work was supported by the Postgraduate Research and Practice of Educational Reform for Graduate students in CUMT under Grant No. 2019YJSJG046, the Natural Science Foundation of Jiangsu Province under Grant No. BK20181351, the Six Talent Peaks Project in Jiangsu Province under Grant No. JY-059, the Qinglan Project of Jiangsu Province of China, the National Natural Science Foundation of China under Grant No. 11975306, the Fundamental Research Fund for the Central Universities under the Grant Nos. 2019ZDPY07 and 2019QNA35, and the General Financial Grant from the China Postdoctoral Science Foundation under Grant Nos. 2015M570498 and 2017T100413.

References

  • [1] V. E. Zakharov, Stability of periodicwaves of finite amplitude on the surface of a deep fluid, Sov. Phys. J. Appl. Mech. Tech. Phys. 4 (1968) 190-194.
  • [2] V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP, 35 (1972) 908-914.
  • [3] V. E. Zakharov , A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972) 62-69.
  • [4] G.P. Agrawal, Nonlinear Fiber Optics Academic, San Diego, (1989).
  • [5] A. Hasegawa and Y. Kodama, Solitons in Optical Communications Clarendon, Oxford, 1995.
  • [6] A. K. Zvezdin, A. F.Popkov, Contribution to the nonlinear theory of magnetostaticspin waves, Sov. Phys. JETP, 2 (1983) 350.
  • [7] D.J. Kaup, A.C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19 (1978) 798-801.
  • [8] H. H. Chen, Y. C. Lee, C. S. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method, Phys. Scr., 20 (1979) 490.
  • [9] V. S. Gerdjikov, M. I. Ivanov, The quadratic bundle of general form and the nonlinear evolution equations, Bulg. J. Phys., 10 (1983) 130-143.
  • [10] S.F. Tian and T.T. Zhang, Long-time asymptotic behavior for the Gerdjikov-Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition. Proc. Am. Math. Soc. 146 (2018) 1713-1729.
  • [11] E. G. Fan, A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations, J. Math. Phys., 42 (2001) 4327-4344.
  • [12] S.F. Tian, Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method, J. Differ. Equ. 262 (2017) 506-558.
  • [13] S.F. Tian, The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method, Proc. R. Soc. Lond. A, 472(2195) (2016) 20160588.
  • [14] Z.Y. Yan, An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4×44\times 4 Lax pair on the half-line. Chaos 27(5) (2017) 053117.
  • [15] B. Guo, N. Liu, Y. Wang, A Riemann-Hilbert approach for a new type coupled nonlinear Schrödinger equations, J. Math. Anal. Appl. 459(1) (2018) 145-158.
  • [16] X. Geng, J. Wu, Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation, Wave Motion, 60 (2016) 62-72.
  • [17] W. X. Ma, Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system, J. Geom. Phys. 132 (2018) 45-54.
  • [18] J. Xu, E.G. Fan Long-time asymptotics for the Fokas-Lenells equation with decaying initial value problem: without solitons, J. Differential Equations, 259(3) (2015) 1098-1148.
  • [19] M.J. Ablowitz, Z.H. Musslimani, Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation, Nonlinearity, 29(3) (2016) 915.
  • [20] K. Porsezian, M. Daniel, M. Lakshmanan, On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain, J. Math. Phys., 33(5) (1992) 1807-1816.
  • [21] B. Yang ,W.G. Zhang, H.Q. Zhang, et al. Generalized Darboux transformation and rogue wave solutions for the higher-order dispersive nonlinear Schrödinger equation, Physica Scr., 88(6) (2013) 065004.
  • [22] T.A. Davydova, Y.A. Zaliznyak, Schrödinger ordinary solitons and chirped solitons: fourth-order dispersive effects and cubic-quintic nonlinearity, Phys. D, 156 (2001) 260-282.
  • [23] F. Azzouzi, H. Triki, K. Mezghiche, A.E. Akrmi, Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrödinger equation , Chaos Solitons Fract. 39 (2009) 1304-1307.
  • [24] S.L. Palacios, J. M. Fernández-Díaz, Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion, Opt. Commun. 178 (2000) 457-460.
  • [25] M. Daniel, L. Kavitha, R. Amuda, Soliton spin excitations in an anisotropic Heisenberg ferromagnet with octupole-dipole interaction, Phys. Rev. B, 59 (1999) 13774-13781.
  • [26] K. Porsezian, M. Daniel, M. Lakshmanan, On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain, J. Math. Phys. 33 (1992) 1807-1816.
  • [27] H.Q. Zhang, B. Tian, X.H. Meng, X. Lu, W.J. Liu, Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation, Eur. Phys. J. B, 72 (2009) 233-239.
  • [28] L.H. Wang, K. Porsezian, J.S. He, Breather and rogue wave solutions of generalized nonlinear Schrödinger equation, Phys. Rev. E, 87 (2013) 053202.
  • [29] C.S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967) 1095-1097.
  • [30] B. Prinari, M. J. Ablowitz, G. Biondini, Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions, J. Math. Phys. 47 (2006) 063508.
  • [31] S. F. Tian, Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method, J. Phys. A: Math. Theor. 50(39) (2017) 395204.
  • [32] D. S. Wang, B. Guo, X. Wang, Long-time asymptotics of the focusing Kundu-Eckhaus equation with nonzero boundary conditions, J. Differ. Equ. 266(9) (2019) 5209-5253.
  • [33] J.J. Yang, S.F. Tian, Z.Q. Li, Inverse scattering transform and soliton solutions for the focusing Kundu-Eckhaus equation with nonvanishing boundary conditions, arXiv:1911.00340.
  • [34] J.J. Yang, S.F. Tian, Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions, arXiv preprint arXiv:1909.11263.
  • [35] L. Wen, E. Fan, The Riemann-Hilbert approach to focusing Kundu-Eckhaus equation with nonzero boundary conditions. arXiv:1910.08921, 2019.
  • [36] Y.L. Yang, E.G. Fan, Riemann-Hilbert approach to the modified nonlinear Schröinger equation with non-vanishing asymptotic boundary conditions, arXiv:1910.07720.
  • [37] J.J. Mao, S.F. Tian, Riemann-Hilbert approach for the NLSLab equation with nonzero boundary conditions, arXiv:1911.00683.
  • [38] M. J. Ablowitz, G. Biondini, B. Prinari, Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions, Inverse Prob. 23 (2007) 1711-1758.
  • [39] B. Prinari, G. Biondini, A. D. Trubatch, Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions, Stud. Appl. Math. 126 (2011) 245-302.
  • [40] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions, Stud. Appl. Math. 131 (2013) 1-40.
  • [41] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions, J. Math. Phys. 55 (2014) 101505.
  • [42] G. Zhang, Z. Yan, Inverse scattering transforms and NN-double-pole solutions for the derivative NLS equation with zero/non-zero boundary conditions, arXiv:1812.02387.
  • [43] G. Biondini, G. Kovačič, Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys. 55 (2014) 031506.
  • [44] D. Kraus, G. Biondini, G. Kovačič, The focusing Manakov system with nonzero boundary conditions, Nonlinearity 28 (2015) 3101-3151.
  • [45] B. Prinari, Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition, Cont. Math. 651 (2015) 157-194.
  • [46] G. Biondini, D. Kraus, Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions, SIAM J. Math. Anal. 47 (2015) 706-757.
  • [47] G. Biondini, E. Fagerstrom, B. Prinari, Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions, Phys. D, 333 (2016) 117-136.
  • [48] G. Biondini, D. K. Kraus, B. Prinari, The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions, Commun. Math. Phys. 348 (2016) 475-533.
  • [49] M. Pichler, G. Biondini, On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles, IMA J. Appl. Math. 82 (2017) 131-151.
  • [50] M. J. Ablowitz, X. D. Luo, Z. H. Musslimani, Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions, J. Math. Phys. 59 (2018) 011501.
  • [51] B. Prinari, F. Demontis, S. Li, T. P. Horikis, Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions, Phys. D, 368 (2018) 22-49.
  • [52] G.Q. Zhang, Z.Y. Yan, Inverse scattering transforms for the focusing and defocusing mKdV equations with nonzero boundary conditions, arXiv:1810.12150.
  • [53] L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer, Berlin, 1987).