This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Robust Distance-Based Formation Control of Multiple Rigid Bodies with Orientation Alignment

Alexandros Nikou    Christos K. Verginis    Dimos V. Dimarogonas ACCESS Linnaeus Center, School of Electrical Engineering and KTH Center for Autonomous Systems, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
E-mail: {anikou, cverginis, dimos}@kth.se
Abstract

This paper addresses the problem of distance- and orientation-based formation control of a class of second-order nonlinear multi-agent systems in 33D space, under static and undirected communication topologies. More specifically, we design a decentralized model-free control protocol in the sense that each agent uses only local information from its neighbors to calculate its own control signal, without incorporating any knowledge of the model nonlinearities and exogenous disturbances. Moreover, the transient and steady state response is solely determined by certain designer-specified performance functions and is fully decoupled by the agents’ dynamic model, the control gain selection, the underlying graph topology as well as the initial conditions. Additionally, by introducing certain inter-agent distance constraints, we guarantee collision avoidance and connectivity maintenance between neighboring agents. Finally, simulation results verify the performance of the proposed controllers.

keywords:
Multi-agent systems, Cooperative systems, Distributed nonlinear control, Nonlinear cooperative control, Robust control.
thanks: This work was supported by the H2020 ERC Starting Grand BUCOPHSYS, the Swedish Research Council (VR), the Knut och Alice Wallenberg Foundation and the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement No. 644128 (AEROWORKS).

1 Introduction

During the last decades, decentralized control of networked multi-agent systems has gained a significant amount of attention due to the great variety of its applications, including multi-robot systems, transportation, multi-point surveillance and biological systems. The main focus of multi-agent systems is the design of distributed control protocols in order to achieve global tasks, such as consensus (Ren and Beard, 2005; Olfati-Saber and Murray, 2004; Jadbabaie et al., 2003; Tanner et al., 2007), and at the same time fulfill certain properties, e.g., network connectivity (Egerstedt and Hu, 2001; Zavlanos and Pappas, 2008).

A particular multi-agent problem that has been considered in the literature is the formation control problem, where the agents represent robots that aim to form a prescribed geometrical shape, specified by a certain set of desired relative configurations between the agents. The main categories of formation control that have been studied in the related literature are ((Oh et al., 2015)) position-based control, displacement-based control, distance-based control and orientation-based control. Distance- and orientation-based control constitute the topics in this work.

In distance-based formation control, inter-agent distances are actively controlled to achieve a desired formation, dictated by desired inter-agent distances. Each agent is assumed to be able to sense the relative positions of its neighboring agents, without the need of orientation alignment of the local coordinate systems. When orientation alignment is considered as a control design goal, the problem is known as orientation-based (or bearing-based) formation control. The desired formation is then defined by relative inter-agent orientations. The orientation-based control steers the agents to configurations that achieve desired relative orientation angles. In this work, we aim to design a decentralized control protocol such that both distance- and orientation-based formation is achieved.

The literature in distance-based formation control is rich, and is traditionally categorized in single or double integrator agent dynamics and directed or undirected communication topologies (see e.g. (Olfati-Saber and Murray, 2002; Smith et al., 2006; Hendrickx et al., 2007; Anderson et al., 2007, 2008; Dimarogonas and Johansson, 2008; Cao et al., 2008; Yu et al., 2009; Krick et al., 2009; Dorfler and Francis, 2010; Oh and Ahn, 2011; Cao et al., 2011; Summers et al., 2011; Park et al., 2012; Belabbas et al., 2012; Oh and Ahn, 2014))

Orientation-based formation control has been addressed in (Basiri et al., 2010; Eren, 2012; Trinh et al., 2014; Zhao and Zelazo, 2016), whereas the authors in (Trinh et al., 2014; Bishop et al., 2015; Fathian et al., 2016) have considered the combination of distance- and orientation-based formation.

In most of the aforementioned works in formation control, the two-dimensional case with simple dynamics and point-mass agents has been dominantly considered. In real applications, however, the engineering systems have nonlinear second order dynamics and are usually subject to exogenous disturbances and modeling errors. Another important issue concerns the connectivity maintenance, the collision avoidance between the neighboring agents and the transient and steady state response of the closed loop system, which have not been taken into account in the majority of related woks. Thus, taking all the above into consideration, the design of robust distributed control schemes for the multi-agent formation control problem becomes a challenging task.

Motivated by this, we aim to address here the distance-based formation control problem with orientation alignment for a team of rigid bodies operating in 3D space, with unknown second-order nonlinear dynamics and external disturbances. We propose a purely decentralized control protocol that guarantees distance formation, orientation alignment as well as collision avoidance and connectivity maintenance between neighboring agents and in parallel ensures the satisfaction of prescribed transient and steady state performance. The prescribed performance control framework has been incorporated in multi-agent systems in (Karayiannidis et al., 2012; Bechlioulis and Kyriakopoulos, 2014), where first order dynamics have been considered. Furthermore, the first one only addresses the consensus problem, whereas the latter solves the position based formation control problem, instead of the distance- and orientation-based problem treated here.

The remainder of the paper is structured as follows. In Section 2 notation and preliminary background is given. Section 3 provides the system dynamics and the formal problem statement. Section 4 discusses the technical details of the solution and Section 5 is devoted to a simulation example. Finally, the conclusion and future work directions are discussed in Section 6.

2 Notation and Preliminaries

2.1 Notation

The set of positive integers is denoted as \mathbb{N}. The real nn-coordinate space, with nn\in\mathbb{N}, is denoted as n\mathbb{R}^{n}; 0n\mathbb{R}^{n}_{\geq 0} and >0n\mathbb{R}^{n}_{>0} are the sets of real nn-vectors with all elements nonnegative and positive, respectively. Given a set SS, we denote as |S|\lvert S\lvert its cardinality. The notation x\|x\| is used for the Euclidean norm of a vector xnx\in\mathbb{R}^{n}. Given a symmetric matrix A,λmin(A)=min{|λ|:λσ(A)}A,\lambda_{\text{min}}(A)=\min\{|\lambda|:\lambda\in\sigma(A)\} denotes the minimum eigenvalue of AA, respectively, where σ(A)\sigma(A) is the set of all the eigenvalues of AA and rank(A)rank(A) is its rank; ABA\otimes B denotes the Kronecker product of matrices A,Bm×nA,B\in\mathbb{R}^{m\times n}, as was introduced in (Horn and Johnson, 2012). Define by 𝟙nn,Inn×n,0m×nm×n\mathbbm{1}_{n}\in\mathbb{R}^{n},I_{n}\in\mathbb{R}^{n\times n},0_{m\times n}\in\mathbb{R}^{m\times n} the column vector with all entries 11, the unit matrix and the m×nm\times n matrix with all entries zeros, respectively; (c,r)={x3:xcr}\mathcal{B}(c,r)=\{x\in\mathbb{R}^{3}:\|x-c\|\leq r\} is the 33D sphere of radius r0r\geq 0 and center c3c\in\mathbb{R}^{3}. The vector connecting the origins of coordinate frames {A}\{A\} and {B\{B} expressed in frame {C}\{C\} coordinates in 33D space is denoted as pB/AC3p^{\scriptscriptstyle C}_{{\scriptscriptstyle B/A}}\in{\mathbb{R}}^{3}. Given a3a\in\mathbb{R}^{3}, S(a)S(a) is the skew-symmetric matrix defined according to S(a)b=a×bS(a)b=a\times b. We further denote as qB/A𝕋3q_{\scriptscriptstyle B/A}\in\mathbb{T}^{3} the Euler angles representing the orientation of frame {B}\{B\} with respect to frame {A}\{A\}, where 𝕋3\mathbb{T}^{3} is the 33D torus. The angular velocity of frame {B}\{B\} with respect to {A}\{A\}, expressed in frame {C}\{C\} coordinates, is denoted as ωB/AC3\omega^{\scriptscriptstyle C}_{\scriptscriptstyle B/A}\in\mathbb{R}^{3}. We also use the notation 𝕄=3×𝕋3\mathbb{M}=\mathbb{R}^{3}\times\mathbb{T}^{3}. For notational brevity, when a coordinate frame corresponds to an inertial frame of reference {0}\{0\}, we will omit its explicit notation (e.g., pB=pB/00,ωB=ωB/00p_{\scriptscriptstyle B}=p^{\scriptscriptstyle 0}_{\scriptscriptstyle B/0},\omega_{\scriptscriptstyle B}=\omega^{\scriptscriptstyle 0}_{\scriptscriptstyle B/0} etc.). All vector and matrix differentiations are derived with respect to an inertial frame {0}\{0\}, unless otherwise stated.

2.2 Prescribed Performance Control

Prescribed Performance control, originally proposed in (Bechlioulis and Rovithakis, 2008), describes the behavior where a tracking error e(t):0e(t):\mathbb{R}_{\geq 0}\to\mathbb{R} evolves strictly within a predefined region that is bounded by certain functions of time, achieving prescribed transient and steady state performance. The mathematical expression of prescribed performance is given by the following inequalities:

ρL(t)<e(t)<ρU(t),t0,-\rho_{L}(t)<e(t)<\rho_{U}(t),\ \ \forall t\in\mathbb{R}_{\geq 0},

where ρL(t),ρU(t)\rho_{L}(t),\rho_{U}(t) are smooth and bounded decaying functions of time, satisfying limtρL(t)>0\lim\limits_{t\to\infty}\rho_{L}(t)>0 and limtρU(t)>0\lim\limits_{t\to\infty}\rho_{U}(t)>0, called performance functions (see Fig. 1). Specifically, for the exponential performance functions ρi(t)=(ρi0ρi)elit+ρi\rho_{i}(t)=(\rho_{i0}-\rho_{i\infty})e^{-l_{i}t}+\rho_{i\infty}, with ρi0,ρi,li>0,i{U,L}\rho_{i0},\rho_{i\infty},l_{i}\in\mathbb{R}_{>0},i\in\{U,L\}, appropriately chosen constants, ρL0=ρL(0),ρU0=ρU(0)\rho_{L0}=\rho_{L}(0),\rho_{U0}=\rho_{U}(0) are selected such that ρU0>e(0)>ρL0\rho_{U0}>e(0)>\rho_{L0} and the constants ρL=limtρL(t)<ρL0,ρU=limtρU(t)<ρU0\rho_{L\infty}=\lim\limits_{t\to\infty}\rho_{L}(t)<\rho_{L0},\rho_{U\infty}=\lim\limits_{t\to\infty}\rho_{U}(t)<\rho_{U0} represent the maximum allowable size of the tracking error e(t)e(t) at steady state, which may be set arbitrarily small to a value reflecting the resolution of the measurement device, thus achieving practical convergence of e(t)e(t) to zero. Moreover, the decreasing rate of ρL(t),ρU(t)\rho_{L}(t),\rho_{U}(t), which is affected by the constants lL,lUl_{L},l_{U} in this case, introduces a lower bound on the required speed of convergence of e(t)e(t). Therefore, the appropriate selection of the performance functions ρL(t),ρU(t)\rho_{L}(t),\rho_{U}(t) imposes performance characteristics on the tracking error e(t)e(t).

Refer to caption
Figure 1: Graphical illustration of the prescribed performance definition.

2.3 Dynamical Systems

Consider the initial value problem:

ψ˙=H(t,ψ),ψ(0)=ψ0Ωψ,\dot{\psi}=H(t,\psi),\psi(0)=\psi^{0}\in\Omega_{\psi}, (1)

with H:0×ΩψnH:\mathbb{R}_{\geq 0}\times\Omega_{\psi}\to\mathbb{R}^{n}, where Ωψn\Omega_{\psi}\subseteq\mathbb{R}^{n} is a non-empty open set.

Definition 1

((Sontag, 2013)) A solution ψ(t)\psi(t) of the initial value problem (1) is maximal if it has no proper right extension that is also a solution of (1).

Theorem 1

((Sontag, 2013)) Consider the initial value problem (1). Assume that H(t,ψ)H(t,\psi) is: a) locally Lipschitz in ψ\psi for almost all t0t\in\mathbb{R}_{\geq 0}, b) piecewise continuous in tt for each fixed ψΩψ\psi\in\Omega_{\psi} and c) locally integrable in tt for each fixed ψΩψ\psi\in\Omega_{\psi}. Then, there exists a maximal solution ψ(t)\psi(t) of (1) on the time interval [0,τmax)[0,\tau_{\max}), with τmax>0\tau_{\max}\in\mathbb{R}_{>0} such that ψ(t)Ωψ,t[0,τmax)\psi(t)\in\Omega_{\psi},\forall t\in[0,\tau_{\max}).

Proposition 2.1

((Sontag, 2013)) Assume that the hypotheses of Theorem 1 hold. For a maximal solution ψ(t)\psi(t) on the time interval [0,τmax)[0,\tau_{\max}) with τmax<\tau_{\max}<\infty and for any compact set ΩψΩψ\Omega^{\prime}_{\psi}\subseteq\Omega_{\psi}, there exists a time instant t[0,τmax)t^{\prime}\in[0,\tau_{\max}) such that ψ(t)Ωψ\psi(t^{\prime})\notin\Omega^{\prime}_{\psi}.

2.4 Graph Theory

An undirected graph 𝒢\mathcal{G} is a pair (𝒱,)(\mathcal{V},\mathcal{E}), where 𝒱\mathcal{V} is a finite set of nodes, representing a team of agents, and {{i,j}:i,j𝒱,ij}\mathcal{E}\subseteq\{\{i,j\}:i,j\in\mathcal{V},i\neq j\}, with M=||M=|\mathcal{E}|, is the set of edges that model the communication capability between neighboring agents. For each agent, its neighbors’ set 𝒩i\mathcal{N}_{i} is defined as 𝒩i={j1,,jNi}={j𝒱 s.t. {i,j}}\mathcal{N}_{i}=\{j_{1},\ldots,j_{N_{i}}\}=\{j\in\mathcal{V}\text{ s.t. }\{i,j\}\in\mathcal{E}\}, where Ni=|𝒩i|N_{i}=|\mathcal{N}_{i}|.

If there is an edge {i,j}\{i,j\}\in\mathcal{E}, then i,ji,j are called adjacent. A path of length rr from vertex ii to vertex jj is a sequence of r+1r+1 distinct vertices, starting with ii and ending with jj, such that consecutive vertices are adjacent. For i=ji=j, the path is called a cycle. If there is a path between any two vertices of the graph 𝒢\mathcal{G}, then 𝒢\mathcal{G} is called connected. A connected graph is called a tree if it contains no cycles.

The adjacency matrix A(𝒢)=[aij]N×NA(\mathcal{G})=[a_{ij}]\in\mathbb{R}^{N\times N} of graph 𝒢\mathcal{G} is defined by aij=aji=1a_{ij}=a_{ji}=1, if {i,j}\{i,j\}\in\mathcal{E}, and aij=0a_{ij}=0 otherwise. The degree d(i)d(i) of vertex ii is defined as the number of its neighboring vertices, i.e. d(i)=Ni,i𝒱d(i)=N_{i},i\in\mathcal{V}. Let also Δ(𝒢)=diag{[d(i)]i𝒱}N×N\Delta(\mathcal{G})=\text{diag}\{[d(i)]_{i\in\mathcal{V}}\}\in\mathbb{R}^{N\times N} be the degree matrix of the system. Consider an arbitrary orientation of 𝒢\mathcal{G}, which assigns to each edge {i,j}\{i,j\}\in\mathcal{E} precisely one of the ordered pairs (i,j)(i,j) or (j,i)(j,i). When selecting the pair (i,j)(i,j), we say that ii is the tail and jj is the head of the edge {i,j}\{i,j\}. By considering a numbering k={1,,M}k\in\mathcal{M}=\{1,...,M\} of the graph’s edge set, we define the N×MN\times M incidence matrix D(G)D(G) as it was given in (Mesbahi and Egerstedt, 2010). The Laplacian matrix L(𝒢)N×NL(\mathcal{G})\in\mathbb{R}^{N\times N} of the graph 𝒢\mathcal{G} is defined as L(𝒢)=Δ(𝒢)A(𝒢)=D(𝒢)D(𝒢)τL(\mathcal{G})=\Delta(\mathcal{G})-A(\mathcal{G})=D(\mathcal{G})D(\mathcal{G})^{\tau}.

Lemma 2.2

(Dimarogonas and Johansson, 2008, Section III) Assume that the graph 𝒢\mathcal{G} is a tree. Then, Dτ(𝒢)D(𝒢)D^{\tau}(\mathcal{G})D(\mathcal{G}) is positive definite.

3 Problem Formulation

3.1 System Model

Consider a set of NN rigid bodies, with 𝒱={1,2,,N}\mathcal{V}=\{1,2,\ldots,N\}, N2N\geq 2, operating in a workspace W3W\subseteq\mathbb{R}^{3}, with coordinate frames {i},i𝒱\{i\},i\in\mathcal{V}, attached to their centers of mass. We consider that each agent occupies a sphere ri(pi(t))\mathcal{B}_{r_{i}}(p_{i}(t)), where pi:03p_{i}:\mathbb{R}_{\geq 0}\to\mathbb{R}^{3} is the position of the agent’s center of mass and rir_{i} is the agent’s radius (see Fig. 2). We also denote as qi:0𝕋3,i𝒱q_{i}:\mathbb{R}_{\geq 0}\to\mathbb{T}^{3},i\in\mathcal{V}, the Euler angles representing the agents’ orientation with respect to an inertial frame {0}\{0\}, with qi=[ϕi,θi,ψi]τq_{i}=[\phi_{i},\theta_{i},\psi_{i}]^{\tau}. By defining xi:0𝕄,vi:06,x_{i}:\mathbb{R}_{\geq 0}\to\mathbb{M},v_{i}:\mathbb{R}_{\geq 0}\to\mathbb{R}^{6}, with xi=[piτ,qiτ]τ,vi=[p˙iτ,ωiτ]τx_{i}=[p^{\tau}_{i},q^{\tau}_{i}]^{\tau},v_{i}=[\dot{p}^{\tau}_{i},\omega^{\tau}_{i}]^{\tau}, we model each agent’s motion with the 22nd order dynamics:

x˙i(t)=Ji(xi)vi(t),\displaystyle\dot{x}_{i}(t)=J_{i}(x_{i})v_{i}(t), (2a)
Mi(xi)v˙i(t)+Ci(xi,x˙i)vi(t)+gi(xi)\displaystyle M_{i}(x_{i})\dot{v}_{i}(t)+C_{i}(x_{i},\dot{x}_{i})v_{i}(t)+g_{i}(x_{i})
+wi(xi,x˙i,t)=ui,\displaystyle\hskip 122.34685pt+w_{i}(x_{i},\dot{x}_{i},t)=u_{i}, (2b)

where Ji:𝕄6×6J_{i}:\mathbb{M}\to\mathbb{R}^{6\times 6} is a Jacobian matrix that maps the Euler angle rates to viv_{i}, given by

Ji(xi)\displaystyle J_{i}(x_{i}) =[I303×303×3Jq(xi)],\displaystyle=\begin{bmatrix}I_{3}&0_{3\times 3}\\ 0_{3\times 3}&J_{q}(x_{i})\\ \end{bmatrix},
Jq(xi)\displaystyle J_{q}(x_{i}) =[1sin(ϕi)tan(θi)cos(ϕi)tan(θi)0cos(ϕi)sin(ϕi)0sin(ϕi)cos(θi)cos(ϕi)cos(θi)],\displaystyle=\begin{bmatrix}1&\sin(\phi_{i})\tan(\theta_{i})&\cos(\phi_{i})\tan(\theta_{i})\\ 0&\cos(\phi_{i})&-\sin(\phi_{i})\\ 0&\displaystyle\frac{\sin(\phi_{i})}{\cos(\theta_{i})}&\displaystyle\frac{\cos(\phi_{i})}{\cos(\theta_{i})}\end{bmatrix},

for which we make the following assumption:

Assumption 1

The angle θi\theta_{i} satisfies the inequality π2<θi(t)<π2,i𝒱,t0-\frac{\pi}{2}<\theta_{i}(t)<\frac{\pi}{2},\forall i\in\mathcal{V},t\in\mathbb{R}_{\geq 0}.

The aforementioned assumption guarantees that JiJ_{i} is always well-defined and invertible, since det(Ji)=1cosθi\det(J_{i})=\tfrac{1}{\cos\theta_{i}}. Furthermore, Mi:𝕄6×6M_{i}:\mathbb{M}\to\mathbb{R}^{6\times 6} is the positive definite inertia matrix, Ci:𝕄×66×6C_{i}:\mathbb{M}\times\mathbb{R}^{6}\to\mathbb{R}^{6\times 6} is the Coriolis matrix, gi:𝕄6g_{i}:\mathbb{M}\to\mathbb{R}^{6} is the gravity vector, and wi:𝕄×6×06w_{i}:\mathbb{M}\times\mathbb{R}^{6}\times\mathbb{R}_{\geq 0}\to\mathbb{R}^{6} is a bounded vector representing model uncertainties and external disturbances. We consider that the aforementioned vector fields are unknown and continuous. Finally, ui6u_{i}\in\mathbb{R}^{6} is the control input vector representing the 66D generalized force acting on the agent.

The dynamics (2) can be written in vector form as:

x˙(t)=J(x)v(t),\displaystyle\dot{x}(t)=J(x)v(t), (3a)
M¯(x)v˙(t)+C¯(x,x˙)v(t)+g¯(x)+w¯(x,x˙,t)=u,\displaystyle\bar{M}(x)\dot{v}(t)+\bar{C}(x,\dot{x})v(t)+\bar{g}(x)+\bar{w}(x,\dot{x},t)=u, (3b)

where x=[x1τ,,xNτ]τ:0𝕄N,v=[v1τ,,vNτ]τ:06N,u=[u1τ,,uNτ]τ6Nx=[x_{1}^{\tau},\dots,x_{N}^{\tau}]^{\tau}:\mathbb{R}_{\geq 0}\to\mathbb{M}^{N},v=[v_{1}^{\tau},\dots,v_{N}^{\tau}]^{\tau}:\mathbb{R}_{\geq 0}\to\mathbb{R}^{6N},u=[u_{1}^{\tau},\dots,u_{N}^{\tau}]^{\tau}\in\mathbb{R}^{6N}, and

J\displaystyle J =diag{[Ji]i𝒱}6N×6N,\displaystyle=\text{diag}\{[J_{i}]_{i\in\mathcal{V}}\}\in\mathbb{R}^{6N\times 6N},
M¯\displaystyle\bar{M} =diag{[Mi]i𝒱}6N×6N,\displaystyle=\text{diag}\{[M_{i}]_{i\in\mathcal{V}}\}\in\mathbb{R}^{6N\times 6N},
C¯\displaystyle\bar{C} =diag{[Ci]i𝒱}6N×6N,\displaystyle=\text{diag}\{[C_{i}]_{i\in\mathcal{V}}\}\in\mathbb{R}^{6N\times 6N},
g¯\displaystyle\bar{g} =[g1τ,,gNτ]τ6N,\displaystyle=[g_{1}^{\tau},\dots,g^{\tau}_{N}]^{\tau}\in\mathbb{R}^{6N},
w¯\displaystyle\bar{w} =[w1τ,,wNτ]τ6N.\displaystyle=[w_{1}^{\tau},\dots,w^{\tau}_{N}]^{\tau}\in\mathbb{R}^{6N}.
{0}\{0\}{i}\{i\}pip_{i}sis_{i}rir_{i}\bullet{j}\{j\}pjp_{j}sjs_{j}rjr_{j}\bullet
Figure 2: Illustration of two agents i,j𝒱i,j\in\mathcal{V} in the workspace; {0}\{0\} is the inertial frame, {i},{j}\{i\},\{j\} are the frames attached to the agents’ center of mass, pi,pj3p_{i},p_{j}\in\mathbb{R}^{3} are the positions of the center of mass with respect to {0}\{0\}, ri,rjr_{i},r_{j} are the radii of the agents and si>sjs_{i}>s_{j} are their sensing ranges.

It is also further assumed that each agent can measure its own pi,qi,p˙i,vi,i𝒱p_{i},q_{i},\dot{p}_{i},v_{i},i\in\mathcal{V}, and has a limited sensing range of si>max{ri+rj:i,j𝒱}s_{i}>\max\{r_{i}+r_{j}:i,j\in\mathcal{V}\}. Therefore, by defining the neighboring set 𝒩i(t)={j𝒱:pj(t)si(pi(t))}\mathcal{N}_{i}(t)=\{j\in\mathcal{V}:p_{j}(t)\in\mathcal{B}_{s_{i}}(p_{i}(t))\}, agent ii also knows at each time instant tt all pj/ii(t),qj/i(t)p^{i}_{j/i}(t),q_{j/i}(t) and, since it knows its own pi(t),qi(t)p_{i}(t),q_{i}(t), it can compute all pj(t),qj(t),j𝒩i(t),t0p_{j}(t),q_{j}(t),\forall j\in\mathcal{N}_{i}(t),t\in\mathbb{R}_{\geq 0}.

The topology of the multi-agent network is modeled through the graph 𝒢=(𝒱,)\mathcal{G}=(\mathcal{V},\mathcal{E}), with 𝒱={1,,N}\mathcal{V}=\{1,\dots,N\} and ={{i,j}𝒱×𝒱 s.t. j𝒩i(0) and i𝒩j(0)}\mathcal{E}=\{\{i,j\}\in\mathcal{V}\times\mathcal{V}\text{ s.t. }j\in\mathcal{N}_{i}(0)\text{ and }i\in\mathcal{N}_{j}(0)\}. The latter implies that at t=0t=0 the graph is undirected, i.e.,

pk(0)pmk(0)<dk,con,{k,mk},\lVert p_{\ell_{k}}(0)-p_{m_{k}}(0)\rVert<d_{k,\text{con}},\forall\{\ell_{k},m_{k}\}\in\mathcal{E}, (4)

with dk,con=min{sk,smk},k,mk𝒱,kd_{k,\text{con}}=\min\{s_{\ell_{k}},s_{m_{k}}\},\ell_{k},m_{k}\in\mathcal{V},\forall k\in\mathcal{M}. We also consider that 𝒢\mathcal{G} is static in the sense that no edges are added to the graph. We do not exclude, however, edge removal through connectivity loss between initially neighboring agents, which we guarantee to avoid, as presented in the sequel. It is also assumed that at t=0t=0 the neighboring agents are at a collision-free configuration, i.e., dk,col<pk(0)pmk(0),{k,mk}d_{k,\text{col}}<\lVert p_{\ell_{k}}(0)-p_{m_{k}}(0)\rVert,\forall\{\ell_{k},m_{k}\}\in\mathcal{E}, with dk,col=rk+rmkd_{k,\text{col}}=r_{\ell_{k}}+r_{m_{k}}. Hence, we conclude that

dk,col<pk(0)pmk(0)<dk,con,{k,mk}.d_{k,\text{col}}<\lVert p_{\ell_{k}}(0)-p_{m_{k}}(0)\rVert<d_{k,\text{con}},\forall\{\ell_{k},m_{k}\}\in\mathcal{E}. (5)

Moreover, given the desired formation constants dk,desd_{k,\text{des}}, qk,desq_{k,\text{des}} for the edge kk\in\mathcal{M}, the formation configuration is called feasible if the set Φ={x𝕄N:pkpmk=dk,des,qkqmk=qk,des,{k,mk}}{\Phi}=\{x\in\mathbb{M}^{N}:\lVert p_{\ell_{k}}-p_{m_{k}}\rVert=d_{k,\text{des}},q_{\ell_{k}}-q_{m_{k}}=q_{k,\text{des}},\forall\{\ell_{k},m_{k}\}\in\mathcal{E}\}, with k,mk𝒱,k\ell_{k},m_{k}\in\mathcal{V},\forall k\in\mathcal{M}, is nonempty.

3.2 Problem Statement

Due to the fact that the agents are not dimensionless and their communication capabilities are limited, the control protocol, except from achieving a desired inter-agent formation, should also guarantee for all t0t\in\mathbb{R}_{\geq 0} that (i) the neighboring agents avoid collision with each other and (iii) all the initial edges are maintained, i.e., connectivity maintenance. Therefore, all pairs {k,mk}𝒱×𝒱\{\ell_{k},m_{k}\}\in\mathcal{V}\times\mathcal{V} of agents that initially form an edge must remain within distance greater than dk,cold_{k,\text{col}} and less than dk,cond_{k,\text{con}}. We also make the following assumptions that are required on the graph topology:

Assumption 2

The communication graph 𝒢\mathcal{G} is initially a tree.

Formally, the robust formation control problem under the aforementioned constraints is formulated as follows:

Problem 3.1

Given NN agents governed by the dynamics (2), under the Assumptions 1-2 and given the desired inter-agent distances and angles dk,des,qk,desd_{k,\text{des}},q_{k,\text{des}}, with dk,col<dk,des<dk,cond_{k,\text{col}}<d_{k,\text{des}}<d_{k,\text{con}}, {k,mk},k,mk𝒱,k\forall\{\ell_{k},m_{k}\}\in\mathcal{E},\ell_{k},m_{k}\in\mathcal{V},\forall k\in\mathcal{M}, design decentralized control laws ui6,i𝒱u_{i}\in\mathbb{R}^{6},i\in\mathcal{V} such that {k,mk},k\forall\ \{\ell_{k},m_{k}\}\in\mathcal{E},k\in\mathcal{M}, the following hold:

  1. 1.

    limtpk(t)pmk(t)=dk,des\lim\limits_{t\to\infty}\|p_{\ell_{k}}(t)-p_{m_{k}}(t)\|=d_{k,\text{des}},

  2. 2.

    limt[qmk(t)qk(t)qk,des]=03×1\lim\limits_{t\to\infty}\left[q_{m_{k}}(t)-q_{\ell_{k}}(t)-q_{k,\text{des}}\right]=0_{3\times 1},

  3. 3.

    dk,col<pk(t)pmk(t)<dk,con,t0d_{k,\text{col}}<\|p_{\ell_{k}}(t)-p_{m_{k}}(t)\|<d_{k,\text{con}},\forall\ t\in\mathbb{R}_{\geq 0}.

4 Problem Solution

4.1 Error Derivation

Let p=[p1τ,,pNτ]τ:03N,q=[q1τ,,qNτ]τ:0𝕋3Np=[p_{1}^{\tau},\dots,p_{N}^{\tau}]^{\tau}:\mathbb{R}_{\geq 0}\to\mathbb{R}^{3N},q=[q_{1}^{\tau},\dots,q_{N}^{\tau}]^{\tau}:\mathbb{R}_{\geq 0}\to\mathbb{T}^{3N} be the stacked vectors of all the agent positions and Euler angles. We denote by p~,q~:03M\tilde{p},\tilde{q}:\mathbb{R}_{\geq 0}\to\mathbb{R}^{3M} the stack column vector of pk,mk(t)=pk(t)pmk(t)p_{\ell_{k},m_{k}}(t)=p_{\ell_{k}}(t)-p_{m_{k}}(t) and qk,mk(t)=qk(t)qmk(t)q_{\ell_{k},m_{k}}(t)=q_{\ell_{k}}(t)-q_{m_{k}}(t), respectively, {k,mk}\forall\{\ell_{k},m_{k}\}\in\mathcal{E}, with the edges ordered as in the case of the incidence matrix D(𝒢)D(\mathcal{G}). Thus, the following holds:

p~(t)\displaystyle\tilde{p}(t) =[p1,m1(t)pM,mM(t)]=[p1(t)pm1(t)pM(t)pmM(t)]\displaystyle=\begin{bmatrix}p_{\ell_{1},m_{1}}(t)\\ \vdots\\ p_{\ell_{M},m_{M}}(t)\\ \end{bmatrix}=\begin{bmatrix}p_{\ell_{1}}(t)-p_{m_{1}}(t)\\ \vdots\\ p_{\ell_{M}}(t)-p_{m_{M}}(t)\end{bmatrix}
=(Dτ(𝒢)I3)p(t),\displaystyle=\left(D^{\tau}(\mathcal{G})\otimes I_{3}\right)p(t), (6a)
q~(t)\displaystyle\tilde{q}(t) =[q1(t)qm1(t)qM(t)qmM(t)]=(Dτ(𝒢)I3)q(t).\displaystyle=\begin{bmatrix}q_{\ell_{1}}(t)-q_{m_{1}}(t)\\ \vdots\\ q_{\ell_{M}}(t)-q_{m_{M}}(t)\end{bmatrix}=\left(D^{\tau}(\mathcal{G})\otimes I_{3}\right)q(t). (6b)

Next, let us introduce the errors ekp:0,ekq=[ek1q,ek2q,ek3q]τ:0𝕋3e^{p}_{k}:\mathbb{R}_{\geq 0}\to\mathbb{R},e^{q}_{k}=[e^{q}_{k_{1}},e^{q}_{k_{2}},e^{q}_{k_{3}}]^{\tau}:\mathbb{R}_{\geq 0}\to\mathbb{T}^{3}:

ekp(t)\displaystyle e^{p}_{k}(t) =pk,mk(t)2dk,des2,\displaystyle=\left\|p_{\ell_{k},m_{k}}(t)\right\|^{2}-d_{k,\text{des}}^{2},
ekq(t)\displaystyle e^{q}_{k}(t) =qmk(t)qk(t)qk,des,\displaystyle=q_{m_{k}}(t)-q_{\ell_{k}}(t)-q_{k,\text{des}},

for all distinct edges {k,mk},k\{\ell_{k},m_{k}\}\in\mathcal{E},k\in\mathcal{M}, in the numbered order they appear in the edge set \mathcal{E}.

By taking the time derivative of the aforementioned errors, the following is obtained:

e˙kp(t)=2pk,mkτ(t)p˙k,mk(t),\displaystyle\hskip-8.53581pt\dot{e}^{p}_{k}(t)=2p^{\tau}_{\ell_{k},m_{k}}(t)\dot{p}_{\ell_{k},m_{k}}(t), (7a)
e˙kq(t)=q˙mk(t)q˙k(t).\displaystyle\hskip-8.53581pt\dot{e}^{q}_{k}(t)=\dot{q}_{m_{k}}(t)-\dot{q}_{\ell_{k}}(t). (7b)

Also, by defining the vectors ep(t)=[e1p(t),,eMp(t)]τM,eq(t)=[(e1q(t))τ,,(eMq(t))τ]τ𝕋3Me^{p}(t)=[e^{p}_{1}(t),\dots,e^{p}_{M}(t)]^{\tau}\in\mathbb{R}^{M},e^{q}(t)=[(e^{q}_{1}(t))^{\tau},\dots,(e^{q}_{M}(t))^{\tau}]^{\tau}\in\mathbb{T}^{3M} and employing (6), (7a) and (7b) can be written in vector form as:

e˙p(t)\displaystyle\dot{e}^{p}(t) =[e˙1p(t)e˙Mp(t)]=[2p1,m1τ(t)p˙1,m1(t)2pM,mMτ(t)p˙M,mM(t)]\displaystyle=\begin{bmatrix}\dot{e}^{p}_{1}(t)\\ \vdots\\ \dot{e}^{p}_{M}(t)\end{bmatrix}=\begin{bmatrix}2p^{\tau}_{\ell_{1},m_{1}}(t)\dot{p}_{\ell_{1},m_{1}}(t)\\ \vdots\\ 2p^{\tau}_{\ell_{M},m_{M}}(t)\dot{p}_{\ell_{M},m_{M}}(t)\end{bmatrix}
=2[p1,m1τ(t)01×301×3pM,mMτ(t)][p˙1,m1(t)p˙M,mM(t)]\displaystyle=2\begin{bmatrix}p^{\tau}_{\ell_{1},m_{1}}(t)&\dots&0_{1\times 3}\\ \vdots&\ddots&\vdots\\ 0_{1\times 3}&\dots&p^{\tau}_{\ell_{M},m_{M}}(t)\\ \end{bmatrix}\begin{bmatrix}\dot{p}_{\ell_{1},m_{1}}(t)\\ \vdots\\ \dot{p}_{\ell_{M},m_{M}}(t)\end{bmatrix}
=𝔽p(x)(Dτ(𝒢)I3)p˙,\displaystyle=\mathbb{F}_{p}(x)\left(D^{\tau}(\mathcal{G})\otimes I_{3}\right)\dot{p}, (8a)
e˙q(t)=[e˙1q(t)e˙Mq(t)]=[q˙1q˙m1q˙Mq˙mM]=(Dτ(𝒢)I3)q˙,\displaystyle\dot{e}^{q}(t)=\begin{bmatrix}\dot{e}^{q}_{1}(t)\\ \vdots\\ \dot{e}^{q}_{M}(t)\end{bmatrix}=\begin{bmatrix}\dot{q}_{\ell_{1}}-\dot{q}_{m_{1}}\\ \vdots\\ \dot{q}_{\ell_{M}}-\dot{q}_{m_{M}}\end{bmatrix}=\left(D^{\tau}(\mathcal{G})\otimes I_{3}\right)\dot{q}, (8b)

where 𝔽p:𝕄NM×3M\mathbb{F}_{p}:\mathbb{M}^{N}\to\mathbb{R}^{M\times 3M}, with

𝔽p(x)=2[p1,m1τ(t)01×301×3pM,mMτ(t)].\mathbb{F}_{p}(x)=2\begin{bmatrix}p^{\tau}_{\ell_{1},m_{1}}(t)&\dots&0_{1\times 3}\\ \vdots&\ddots&\vdots\\ 0_{1\times 3}&\dots&p^{\tau}_{\ell_{M},m_{M}}(t)\end{bmatrix}.

By introducing the stack error vector e(t)=[(ep(t))τ,(eq(t))τ]τ4Me(t)=[(e^{p}(t))^{\tau},\\ (e^{q}(t))^{\tau}]^{\tau}\in\mathbb{R}^{4M}, (8) can be written as:

e˙(t)=𝔽¯p(x)D¯τ(𝒢)[p˙q˙],\displaystyle\dot{e}(t)=\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\begin{bmatrix}\dot{p}\\ \dot{q}\\ \end{bmatrix}, (9)

where

𝔽¯p(x)\displaystyle\bar{\mathbb{F}}_{p}(x) =[𝔽p(x)0M×3M03M×3MI3M]4M×6M,\displaystyle=\begin{bmatrix}\mathbb{F}_{p}(x)&0_{M\times 3M}\\ 0_{3M\times 3M}&I_{3M}\\ \end{bmatrix}\in\mathbb{R}^{4M\times 6M}, (10a)
D¯(𝒢)\displaystyle\bar{D}(\mathcal{G}) =[D(𝒢)I303N×3M03N×3MD(𝒢)I3]6N×6M.\displaystyle=\begin{bmatrix}D(\mathcal{G})\otimes I_{3}&0_{3N\times 3M}\\ 0_{3N\times 3M}&D(\mathcal{G})\otimes I_{3}\end{bmatrix}\in\mathbb{R}^{6N\times 6M}. (10b)

Finally, we obtain from (3a):

[p˙q˙]\displaystyle\begin{bmatrix}\dot{p}\\ \dot{q}\\ \end{bmatrix} =[I303×303×303×303×3I303×303×303×303×3Jq(x1)03×303×303×303×3Jq(xN)]J¯(x)[p˙1p˙Nω1ωN]v¯(t)\displaystyle=\underbrace{\left[\begin{array}[]{c c c|c c c}I_{3}&\dots&0_{3\times 3}&0_{3\times 3}&\dots&0_{3\times 3}\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ 0_{3\times 3}&\dots&I_{3}&0_{3\times 3}&\dots&0_{3\times 3}\\ \hline\cr 0_{3\times 3}&\dots&0_{3\times 3}&J_{q}(x_{1})&\dots&0_{3\times 3}\\ \vdots&\ddots&\vdots&\vdots&\ddots&\vdots\\ 0_{3\times 3}&\dots&0_{3\times 3}&0_{3\times 3}&\dots&J_{q}(x_{N})\\ \end{array}\right]}_{\underline{J}(x)}\underbrace{\begin{bmatrix}\dot{p}_{1}\\ \vdots\\ \dot{p}_{N}\\ \omega_{1}\\ \vdots\\ \omega_{N}\\ \end{bmatrix}}_{\underline{v}(t)} (17)
=J¯(x)v¯(t),\displaystyle=\underline{J}(x)\underline{v}(t), (18)

and thus, (9) can be written as:

e˙(t)=𝔽¯p(x)D¯τ(𝒢)J¯(x)v¯(t).\dot{e}(t)=\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\underline{J}(x)\underline{v}(t). (19)

4.2 Performance Functions

The concepts and techniques of prescribed performance control (see Section 2.2) are adapted in this work in order to: a) achieve predefined transient and steady state response for the distance and orientation errors ekp,ekq,ke^{p}_{k},e^{q}_{k},\forall k\in\mathcal{M} as well as ii) avoid the violation of the collision and connectivity constraints between neighboring agents, as presented in Section 3. The mathematical expressions of prescribed performance are given by the inequality objectives:

Ck,colρkp(t)\displaystyle-C_{k,\text{col}}\rho^{p}_{k}(t) <ekp(t)<Ck,conρkp(t),\displaystyle<e^{p}_{k}(t)<C_{k,\text{con}}\rho^{p}_{k}(t), (20a)
ρkq(t)\displaystyle-\rho^{q}_{k}(t) <eknq(t)<ρkq(t),\displaystyle<e^{q}_{k_{n}}(t)<\rho^{q}_{k}(t), (20b)

k,n{1,2,3}\forall k\in\mathcal{M},n\in\{1,2,3\}, where

ρkp(t)\displaystyle\rho^{p}_{k}(t) =(1ρk,pmax{Ck,con,Ck,col})elkpt\displaystyle=(1-\dfrac{\rho^{p}_{k,\infty}}{\max\{C_{k,\text{con}},C_{k,\text{col}}\}})e^{-l^{p}_{k}t}
+ρk,pmax{Ck,con,Ck,col},\displaystyle\hskip 85.35826pt+\dfrac{\rho^{p}_{k,\infty}}{\max\{C_{k,\text{con}},C_{k,\text{col}}\}},
ρkq(t)\displaystyle\rho^{q}_{k}(t) =(ρk,0qρk,q)elkqt+ρk,q,\displaystyle=(\rho^{q}_{k,0}-\rho^{q}_{k,\infty})e^{-l^{q}_{k}t}+\rho^{q}_{k,\infty},

are designer-specified, smooth, bounded, and decreasing functions of time, where lkp,lkq,ρk,p,ρk,q>0,kl^{p}_{k},l^{q}_{k},\rho^{p}_{k,\infty},\rho^{q}_{k,\infty}\in\mathbb{R}_{>0},\forall k\in\mathcal{M}, incorporate the desired transient and steady state performance specifications respectively, as presented in Section 2.2, and Ck,colC_{k,\text{col}}, Ck,con>0,kC_{k,\text{con}}\in\mathbb{R}_{>0},\forall k\in\mathcal{M}, are associated with the collision and connectivity constraints. In particular, we select

Ck,col\displaystyle C_{k,\text{col}} =dk2dk,col2,\displaystyle=d^{2}_{k}-d^{2}_{k,\text{col}}, (21a)
Ck,con\displaystyle C_{k,\text{con}} =dk,con2dk2,\displaystyle=d^{2}_{k,\text{con}}-d^{2}_{k}, (21b)

k\forall k\in\mathcal{M}, which, since the desired formation is compatible with the collision and connectivity constraints (i.e., dk,col<dk,des<dk,con,kd_{k,\text{col}}<d_{k,\text{des}}<d_{k,\text{con}},\forall k\in\mathcal{M}), ensures that Ck,col,Ck,con>0,kC_{k,\text{col}},C_{k,\text{con}}\in\mathbb{R}_{>0},\forall k\in\mathcal{M} and consequently, in view of (5), that:

Ck,colρkp(0)<ekp(0)<ρkp(0)Ck,con,\displaystyle-C_{k,\text{col}}\rho^{p}_{k}(0)<e^{p}_{k}(0)<\rho^{p}_{k}(0)C_{k,\text{con}}, (22a)
k\forall k\in\mathcal{M}. Moreover, by choosing
ρk,0q=ρkq(0)>maxn{1,2,3}|eknq(0)|,\rho^{q}_{k,0}=\rho^{q}_{k}(0)>\max\limits_{n\in\{1,2,3\}}\lvert e^{q}_{k_{n}}(0)\rvert, (22b)
it is also guaranteed that:
ρkq(0)<eknq(0)<ρkq(0),\displaystyle-\rho^{q}_{k}(0)<e^{q}_{k_{n}}(0)<\rho^{q}_{k}(0), (22c)

k,n{1,2,3}\forall k\in\mathcal{M},n\in\{1,2,3\}. Hence, if we guarantee prescribed performance via (20), by employing the decreasing property of ρkp(t),ρkq(t),k\rho^{p}_{k}(t),\rho^{q}_{k}(t),\forall k\in\mathcal{M}, we obtain:

Ck,col\displaystyle-C_{k,\text{col}} <ekp(t)<Ck,con,\displaystyle<e^{p}_{k}(t)<C_{k,\text{con}},
ρkq(t)\displaystyle-\rho^{q}_{k}(t) <eknq(t)<ρkq(t),\displaystyle<e^{q}_{k_{n}}(t)<\rho^{q}_{k}(t),

and, consequently, owing to (21):

dk,col<pk(t)pmk(t)<dk,con,\displaystyle d_{k,\text{col}}<\lVert p_{\ell_{k}}(t)-p_{m_{k}}(t)\rVert<d_{k,\text{con}},

k,t0\forall k\in\mathcal{M},t\in\mathbb{R}_{\geq 0}, providing, therefore, a solution to problem 3.1.

In the sequel, we propose a decentralized control protocol that does not incorporate any information on the agents’ dynamic model and guarantees (20) for all t0t\in\mathbb{R}_{\geq 0}.

4.3 Control Design

Given the errors ep(t),eq(t)e^{p}(t),e^{q}(t) defined in Section 4.1:

Step I-a: Select the corresponding functions ρkp(t),ρkq(t)\rho^{p}_{k}(t),\rho^{q}_{k}(t) and positive parameters Ck,con,Ck,col,kC_{k,\text{con}},C_{k,\text{col}},k\in\mathcal{M}, following (20), (22b), and (21), respectively, in order to incorporate the desired transient and steady state performance specifications as well as the collision and connectivity constraints, and define the normalized errors ξkp:0,ξkq=[ξk1q,ξk2q,ξk3q]τ:03\xi_{k}^{p}:\mathbb{R}_{\geq 0}\to\mathbb{R},\xi^{q}_{k}=[\xi_{k_{1}}^{q},\xi^{q}_{k_{2}},\xi_{k_{3}}^{q}]^{\tau}:\mathbb{R}_{\geq 0}\to\mathbb{R}^{3}:

ξkp(t)=(ρkp(t))1ekp(t)\displaystyle\hskip-5.69054pt\xi^{p}_{k}(t)=(\rho^{p}_{k}(t))^{-1}e^{p}_{k}(t) (23a)
ξkq(t)=(ρkq(t))1ekq(t),\displaystyle\hskip-5.69054pt\xi^{q}_{k}(t)=(\rho^{q}_{k}(t))^{-1}e^{q}_{k}(t), (23b)

k\forall k\in\mathcal{M}, as well as the stack vector forms

ξp(t)\displaystyle\xi^{p}(t) =[ξ1p(t),,ξMp(t)]τ=(ρp(t))1ep(t),\displaystyle=[\xi^{p}_{1}(t),\dots,\xi^{p}_{M}(t)]^{\tau}=(\rho^{p}(t))^{-1}e^{p}(t),
ξq(t)\displaystyle\xi^{q}(t) =[(ξ1q(t))τ,,(ξMq(t))τ]τ=(ρq(t))1eq(t),\displaystyle=[(\xi^{q}_{1}(t))^{\tau},\dots,(\xi^{q}_{M}(t))^{\tau}]^{\tau}=(\rho^{q}(t))^{-1}e^{q}(t),
ξ(t)\displaystyle\xi(t) =[(ξp(t))τ,(ξq(t))τ]τ=(ρ(t))1e(t)4M,\displaystyle=[(\xi^{p}(t))^{\tau},(\xi^{q}(t))^{\tau}]^{\tau}=(\rho(t))^{-1}e(t)\in\mathbb{R}^{4M}, (24)

where

ρp(t)\displaystyle\rho^{p}(t) =diag{[ρkp(t)]k}M×M,\displaystyle=\text{diag}\{[\rho^{p}_{k}(t)]_{k\in\mathcal{M}}\}\in\mathbb{R}^{M\times M},
ρq(t)\displaystyle\rho^{q}(t) =diag{[ρkq(t)I3]k}3M×3M,\displaystyle=\text{diag}\{[\rho^{q}_{k}(t)I_{3}]_{k\in\mathcal{M}}\}\in\mathbb{R}^{3M\times 3M},
ρ(t)\displaystyle\rho(t) =diag{ρp(t),ρq(t)}4M×4M.\displaystyle=\text{diag}\{\rho^{p}(t),\rho^{q}(t)\}\in\mathbb{R}^{4M\times 4M}.

Step I-b: Define the transformed errors εkp:,εkq:33\varepsilon^{p}_{k}:\mathbb{R}\to\mathbb{R},\varepsilon^{q}_{k}:\mathbb{R}^{3}\to\mathbb{R}^{3} and the signals rkp:,rkq:33×3r^{p}_{k}:\mathbb{R}\to\mathbb{R},r^{q}_{k}:\mathbb{R}^{3}\to\mathbb{R}^{3\times 3} as

εkp(ξkp)\displaystyle\varepsilon^{p}_{k}(\xi_{k}^{p}) =ln((1+ξkpCk,col)(1ξkpCk,con)1),\displaystyle=\ln\left(\left(1+\dfrac{\xi^{p}_{k}}{C_{k,\text{col}}}\right)\left(1-\dfrac{\xi^{p}_{k}}{C_{k,\text{con}}}\right)^{-1}\right), (25a)
εkq(ξkq)\displaystyle\varepsilon^{q}_{k}(\xi_{k}^{q}) =[ln(1+ξk1q1ξk1q),ln(1+ξk2q1ξk2q),ln(1+ξk3q1ξk3q)]τ,\displaystyle=\left[\ln\left(\dfrac{1+\xi^{q}_{k_{1}}}{1-\xi^{q}_{k_{1}}}\right),\ln\left(\dfrac{1+\xi^{q}_{k_{2}}}{1-\xi^{q}_{k_{2}}}\right),\ln\left(\dfrac{1+\xi^{q}_{k_{3}}}{1-\xi^{q}_{k_{3}}}\right)\right]^{\tau}, (25b)
rkp(ξkp)=εkp(ξkp)ξkp=Ck,col+Ck,con(Ck,col+ξkp)(Ck,conξkp),\displaystyle\hskip-45.5244ptr^{p}_{k}(\xi^{p}_{k})=\dfrac{\partial\varepsilon^{p}_{k}(\xi_{k}^{p})}{\partial\xi_{k}^{p}}=\dfrac{C_{k,\text{col}}+C_{k,\text{con}}}{(C_{k,\text{col}}+\xi_{k}^{p})(C_{k,\text{con}}-\xi_{k}^{p})},
rkq(ξkq)=εkq(ξkq)ξkq=diag{[rknq(ξknq)]n{1,2,3}}\displaystyle\hskip-45.5244ptr^{q}_{k}(\xi^{q}_{k})=\dfrac{\partial\varepsilon^{q}_{k}(\xi_{k}^{q})}{\partial\xi_{k}^{q}}=\text{diag}\left\{\left[r^{q}_{k_{n}}(\xi^{q}_{k_{n}})\right]_{n\in\{1,2,3\}}\right\}
=diag{[21(ξknq)2]n{1,2,3}},\displaystyle\hskip-19.91692pt=\text{diag}\left\{\left[\dfrac{2}{1-(\xi_{k_{n}}^{q})^{2}}\right]_{n\in\{1,2,3\}}\right\},

and design the decentralized reference velocity vector for each agent vi,des=[p˙i,desτ,ωi,desτ]τ:4M×06v_{i,\text{des}}=[\dot{p}^{\tau}_{i,\text{des}},\omega^{\tau}_{i,\text{des}}]^{\tau}:\mathbb{R}^{4M}\times\mathbb{R}_{\geq 0}\to\mathbb{R}^{6} as:

vi,des(ξ,t)\displaystyle v_{i,\text{des}}(\xi,t) =\displaystyle=
Ji1(xi)[j𝒩i(0)(ρkijp(t))1rkijp(ξkijp)εkijp(ξkijp)pi,j(t)j𝒩i(0)(ρkijq(t))1rkijq(ξkijq)εkijq(ξkijq)]\displaystyle\hskip-39.83385pt-J^{-1}_{i}(x_{i})\begin{bmatrix}\sum\limits_{j\in\mathcal{N}_{i}(0)}(\rho^{p}_{k_{ij}}(t))^{-1}r^{p}_{k_{ij}}(\xi^{p}_{k_{ij}})\varepsilon^{p}_{k_{ij}}(\xi^{p}_{k_{ij}})p_{i,j}(t)\\ \sum\limits_{j\in\mathcal{N}_{i}(0)}(\rho^{q}_{k_{ij}}(t))^{-1}r^{q}_{k_{ij}}(\xi^{q}_{k_{ij}})\varepsilon^{q}_{k_{ij}}(\xi^{q}_{k_{ij}})\end{bmatrix} (26)

where kijk_{ij}\in\mathcal{M} is the edge of agents i,j𝒩i(0)i,j\in\mathcal{N}_{i}(0), i.e., {kij,mkij}\{\ell_{k_{ij}},m_{k_{ij}}\}\in\mathcal{E} and kij=i,mkij=j\ell_{k_{ij}}=i,m_{k_{ij}}=j. The desired velocities (26) can be written in vector form:

v¯des(ξ,t)\displaystyle\underline{v}_{\text{des}}(\xi,t) =[p˙des(ξp,t)ωdes(ξq,t)]\displaystyle=\begin{bmatrix}\dot{p}_{\text{des}}(\xi^{p},t)\\ \omega_{\text{des}}(\xi^{q},t)\end{bmatrix}
=J¯1(x)D¯(𝒢)𝔽¯pτ(x)r(ξ)(ρ(t))1ε(ξ),\displaystyle=-\underline{J}^{-1}(x)\bar{D}(\mathcal{G})\bar{\mathbb{F}}^{\tau}_{p}(x)r(\xi)(\rho(t))^{-1}\varepsilon(\xi), (27)

where p˙des=[p˙1,desτ,,p˙N,desτ]τ,ωdes=[ω1,desτ,,ωN,desτ]τ3N,ε=[(εp)τ,(εq)τ]τ=[ε1p,,εMp,(ε1q)τ,,(εMq)τ]τ4M\dot{p}_{\text{des}}=[\dot{p}^{\tau}_{1,\text{des}},\dots,\dot{p}^{\tau}_{N,\text{des}}]^{\tau},\omega_{\text{des}}=[\omega^{\tau}_{1,\text{des}},\dots,\\ \omega^{\tau}_{N,\text{des}}]^{\tau}\in\mathbb{R}^{3N},\varepsilon=[(\varepsilon^{p})^{\tau},(\varepsilon^{q})^{\tau}]^{\tau}=[\varepsilon^{p}_{1},\dots,\varepsilon^{p}_{M},(\varepsilon^{q}_{1})^{\tau},\\ \dots,(\varepsilon^{q}_{M})^{\tau}]^{\tau}\in\mathbb{R}^{4M} and J¯(x),D¯(𝒢),𝔽¯p\underline{J}(x),\bar{D}(\mathcal{G}),\bar{\mathbb{F}}_{p} as they were defined in (10) and (18), respectively. Moreover,

r=[rp0M×3M03M×Mrq]4M×4M,r=\begin{bmatrix}r^{p}&0_{M\times 3M}\\ 0_{3M\times M}&r^{q}\end{bmatrix}\in\mathbb{R}^{4M\times 4M},

rp=diag{[rkp]k}M×Mr^{p}=\text{diag}\{[r^{p}_{k}]_{k\in\mathcal{M}}\}\in\mathbb{R}^{M\times M} and rq=diag{[rkq]k}3M×3Mr^{q}=\text{diag}\{[r^{q}_{k}]_{k\in\mathcal{M}}\}\in\mathbb{R}^{3M\times 3M}. It should be noted that J¯1(x)\underline{J}^{-1}(x) is always well-defined due to Assumption 1.

Step II-a: Define the velocity errors ev:4M×06Ne^{v}:\mathbb{R}^{4M}\times\mathbb{R}_{\geq 0}\to\mathbb{R}^{6N}, with ev(ξ,t)=[(e1v)τ(ξ,t),,(eNv)τ(ξ,t)]τ=v(t)vdes(ξ,t)e^{v}(\xi,t)=[(e^{v}_{1})^{\tau}(\xi,t),\dots,(e^{v}_{N})^{\tau}(\xi,t)]^{\tau}=v(t)-v_{\text{des}}(\xi,t)111Notice the difference between v¯des=[p˙desτ,ωdesτ]τ\underline{v}_{\text{des}}=[\dot{p}^{\tau}_{\text{des}},\omega^{\tau}_{\text{des}}]^{\tau} and vdes=[p˙1,desτ,ω1,desτ,,p˙N,desτ,ωN,desτ]τv_{\text{des}}=[\dot{p}^{\tau}_{1,\text{des}},\omega^{\tau}_{1,\text{des}},\dots,\dot{p}^{\tau}_{N,\text{des}},\omega^{\tau}_{N,\text{des}}]^{\tau}., where eiv(ξ,t)=[ei1v(ξ,t),,ei6v(ξ,t)]τ=[p˙iτ(t)p˙i,desτ(ξp,t),ωiτ(t)ωi,desτ(ξq,t)]τ=vi(t)vi,des(ξ,t),i𝒱e^{v}_{i}(\xi,t)=[e^{v}_{i_{1}}(\xi,t),\dots,e^{v}_{i_{6}}(\xi,t)]^{\tau}=[\dot{p}^{\tau}_{i}(t)-\dot{p}^{\tau}_{i,\text{des}}(\xi^{p},t),\omega_{i}^{\tau}(t)-\omega^{\tau}_{i,\text{des}}(\xi^{q},t)]^{\tau}=v_{i}(t)-v_{i,\text{des}}(\xi,t),i\in\mathcal{V}, and select the corresponding performance functions ρimv:0>0\rho^{v}_{i_{m}}:\mathbb{R}_{\geq 0}\to\mathbb{R}_{>0}, with ρimv(t)=(ρim,0vρim,v)elimvt+ρim,v\rho^{v}_{i_{m}}(t)=(\rho^{v}_{i_{m},0}-\rho^{v}_{i_{m},\infty})e^{-l^{v}_{i_{m}}t}+\rho^{v}_{i_{m},\infty} and ρim,0v=ρimv(0)>|eimv(0)|,limv,ρim,v>0,ρim,v<ρim,0v,i𝒱,m{1,,6}\rho^{v}_{i_{m},0}=\rho^{v}_{i_{m}}(0)>\lvert e^{v}_{i_{m}}(0)\rvert,l^{v}_{i_{m}},\rho^{v}_{i_{m},\infty}\in\mathbb{R}_{>0},\rho^{v}_{i_{m},\infty}<\rho^{v}_{i_{m},0},\forall i\in\mathcal{V},m\in\{1,\dots,6\}. Moreover, define the normalized velocity errors ξiv=[ξi1v,,ξi6v]τ:4M×06\xi_{i}^{v}=[\xi_{i_{1}}^{v},\dots,\xi_{i_{6}}^{v}]^{\tau}:\mathbb{R}^{4M}\times\mathbb{R}_{\geq 0}\to\mathbb{R}^{6}:

ξiv(ξ,t)=(ρiv(t))1eiv(ξ,t),\xi_{i}^{v}(\xi,t)=(\rho^{v}_{i}(t))^{-1}e^{v}_{i}(\xi,t),\\

with ρiv(t)=diag{[ρimv(t)]m{1,,6}}6×6\rho^{v}_{i}(t)=\text{diag}\{[\rho^{v}_{i_{m}}(t)]_{m\in\{1,\dots,6\}}\}\in\mathbb{R}^{6\times 6}, which is written in vector form as:

ξv(ξ,t)\displaystyle\xi^{v}(\xi,t) =[(ξ1v(ξ,t))τ,,(ξNv(ξ,t))τ]τ\displaystyle=[(\xi_{1}^{v}(\xi,t))^{\tau},\dots,(\xi_{N}^{v}(\xi,t))^{\tau}]^{\tau}
=(ρv(t))1ev(ξ,t)6N,\displaystyle=(\rho^{v}(t))^{-1}e^{v}(\xi,t)\in\mathbb{R}^{6N}, (28)

with ρv(t)=diag{[ρiv(t)]i𝒱}6N×6N\rho^{v}(t)=\text{diag}\left\{\left[\rho^{v}_{i}(t)\right]_{i\in\mathcal{V}}\right\}\in\mathbb{R}^{6N\times 6N}.

Step II-b: Define the transformed velocity errors εiv:66\varepsilon_{i}^{v}:\mathbb{R}^{6}\to\mathbb{R}^{6} and the signals riv:66×6r^{v}_{i}:\mathbb{R}^{6}\to\mathbb{R}^{6\times 6} as:

εiv(ξiv)=[ln(1+ξi1v1ξi1v),,ln(1+ξi6v1ξi6v)]τ,\displaystyle\varepsilon_{i}^{v}(\xi_{i}^{v})=\left[\ln\left(\dfrac{1+\xi^{v}_{i_{1}}}{1-\xi^{v}_{i_{1}}}\right),\cdots,\ln\left(\dfrac{1+\xi^{v}_{i_{6}}}{1-\xi^{v}_{i_{6}}}\right)\right]^{\tau}, (29a)
riv(ξiv)=εiv(ξiv)ξiv=diag{[rimv(ξimv)]m{1,,6}}\displaystyle r^{v}_{i}(\xi_{i}^{v})=\dfrac{\partial\varepsilon_{i}^{v}(\xi_{i}^{v})}{\partial\xi_{i}^{v}}=\text{diag}\{\left[r^{v}_{i_{m}}(\xi^{v}_{i_{m}})\right]_{m\in\{1,\dots,6\}}\}
=diag{[2(1(ξimv)2)]m{1,,6}},\displaystyle\hskip 27.0301pt=\text{diag}\left\{\left[\dfrac{2}{(1-(\xi^{v}_{i_{m}})^{2})}\right]_{m\in\{1,\dots,6\}}\right\}, (29b)

and design the decentralized control protocol for each agent i𝒱i\in\mathcal{V} as ui:6×06u_{i}:\mathbb{R}^{6}\times\mathbb{R}_{\geq 0}\to\mathbb{R}^{6}:

ui(ξiv,t)=γi(ρiv(t))1riv(ξiv)εiv(ξiv),u_{i}(\xi_{i}^{v},t)=-\gamma_{i}(\rho_{i}^{v}(t))^{-1}r_{i}^{v}(\xi_{i}^{v})\varepsilon_{i}^{v}(\xi_{i}^{v}), (30)

with γi>0,i𝒱\gamma_{i}\in\mathbb{R}_{>0},\forall i\in\mathcal{V}, which can be written in vector form as:

u(ξv,t)=Γ(ρv(t))1rv(ξv)εv(ξv),u(\xi^{v},t)=-\Gamma(\rho^{v}(t))^{-1}r^{v}(\xi^{v})\varepsilon^{v}(\xi^{v}), (31)

where Γ=diag{[γiI6]i𝒱}6N×6N\Gamma=\text{diag}\{[\gamma_{i}I_{6}]_{i\in\mathcal{V}}\}\in\mathbb{R}^{6N\times 6N}, εv=[(ε1v)τ,,(εNv)τ]τ6N\varepsilon^{v}=[(\varepsilon_{1}^{v})^{\tau},\dots,\\ (\varepsilon_{N}^{v})^{\tau}]^{\tau}\in\mathbb{R}^{6N} and rv=diag{[riv]i𝒱}6N×6Nr^{v}=\text{diag}\{[r_{i}^{v}]_{i\in\mathcal{V}}\}\in\mathbb{R}^{6N\times 6N}.

Remark 4.1

Note that the selection of Ck,col,Ck,conC_{k,\text{col}},C_{k,\text{con}} according to (21) and of ρkq(t),ρimv(t)\rho^{q}_{k}(t),\rho^{v}_{i_{m}}(t) such that ρk,0q=ρkq(0)>maxn{1,2,3}|eknq(0)|,ρim,0v=ρimv(0)>|eimv(0)|\rho^{q}_{k,0}=\rho^{q}_{k}(0)>\max\limits_{n\in\{1,2,3\}}\lvert e^{q}_{k_{n}}(0)\rvert,\rho^{v}_{i_{m},0}=\rho^{v}_{i_{m}}(0)>\lvert e^{v}_{i_{m}}(0)\rvert along with (5), guarantee that ξkp(0)(Ck,col,Ck,con)\xi^{p}_{k}(0)\in(C_{k,\text{col}},C_{k,\text{con}}), ξknq(0)(1,1)\xi^{q}_{k_{n}}(0)\in(-1,1), ξimv(ξ(0),0)(1,1)\xi^{v}_{i_{m}}(\xi(0),0)\in(-1,1), k,n{1,2,3},m{1,,6},i𝒱\forall k\in\mathcal{M},n\in\{1,2,3\},m\in\{1,\dots,6\},i\in\mathcal{V}. The prescribed performance control technique enforces these normalized errors ξkp(t),ξknq(t)\xi^{p}_{k}(t),\xi^{q}_{k_{n}}(t) and ξimv(t)\xi^{v}_{i_{m}}(t) to remain strictly within the sets (Ck,col,Ck,con),(1,1)(-C_{k,\text{col}},C_{k,\text{con}}),(-1,1), and (1,1)(-1,1), respectively, k,n{1,2,3},m{1,,6},i𝒱,t0\forall k\in\mathcal{M},n\in\{1,2,3\},m\in\{1,\dots,6\},i\in\mathcal{V},t\geq 0, guaranteeing thus a solution to Problem 3.1. It can be verified that this can be achieved by maintaining the boundedness of the modulated errors εp(ξp(t)),εq(ξq(t))\varepsilon^{p}(\xi^{p}(t)),\varepsilon^{q}(\xi^{q}(t)) and εv(ξv(t),t0\varepsilon^{v}(\xi^{v}(t),\forall t\geq 0.

Remark 4.2

Notice by (26) and (30) that the proposed control protocols are distributed in the sense that each agent uses only local information to calculate its own signal. In that respect, regarding every edge kijk_{ij}, with {kij,mkij}={i,j}\{\ell_{k_{ij}},m_{k_{ij}}\}=\{i,j\}, the parameters ρkij,p,ρkij,q,lkijp,lkijq\rho^{p}_{k_{ij},\infty},\rho^{q}_{k_{ij},\infty},l^{p}_{k_{ij}},l^{q}_{k_{ij}}, as well as the sensing radii sj,j𝒩i(0)s_{j},\forall j\in\mathcal{N}_{i}(0), which are needed for the calculation of the performance functions ρkijp,ρkijq\rho^{p}_{k_{ij}},\rho^{q}_{k_{ij}}, can be transmitted off-line to each agent i𝒱i\in\mathcal{V}. It should also be noted that the proposed control protocol (30) depends exclusively on the velocity of each agent and not on the velocity of its neighbors. Moreover, the proposed control law does not incorporate any prior knowledge of the model nonlinearities/disturbances, enhancing thus its robustness. Furthermore, the proposed methodology results in a low complexity. Notice that no hard calculations (neither analytic nor numerical) are required to output the proposed control signal.

Remark 4.3

Regarding the construction of the performance functions, we stress that the desired performance specifications concerning the transient and steady state response as well as the collision and connectivity constraints are introduced in the proposed control schemes via ρkp(t),ρkq(t)\rho^{p}_{k}(t),\rho^{q}_{k}(t) and Ck,col,Ck,conC_{k,\text{col}},C_{k,\text{con}}, kk\in\mathcal{M}. In addition, the velocity performance functions ρimv(t)\rho^{v}_{i_{m}}(t), impose prescribed performance on the velocity errors eiv=vivi,dese^{v}_{i}=v_{i}-v_{i,\text{des}}, i𝒱i\in\mathcal{V}. In this respect, notice that vi,desv_{i,\text{des}} acts as a reference signal for the corresponding velocities viv_{i}, i𝒱i\in\mathcal{V}. However, it should be stressed that although such performance specifications are not required (only the neighborhood position and orientation errors need to satisfy predefined transient and steady state performance specifications), their selection affects both the evolution of the errors within the corresponding performance envelopes as well as the control input characteristics (magnitude and rate). Nevertheless, the only hard constraint attached to their definition is related to their initial values. Specifically, ρk,0q=ρkq(0)>maxn{1,2,3}|eknq(0)|,ρim,0v=ρimv(0)>|eimv(0)|\rho^{q}_{k,0}=\rho^{q}_{k}(0)>\max\limits_{n\in\{1,2,3\}}\lvert e^{q}_{k_{n}}(0)\rvert,\rho^{v}_{i_{m},0}=\rho^{v}_{i_{m}}(0)>\lvert e^{v}_{i_{m}}(0)\rvert, k,n{1,2,3},m{1,,6},i𝒱\forall k\in\mathcal{M},n\in\{1,2,3\},m\in\{1,\dots,6\},i\in\mathcal{V}.

4.4 Stability Analysis

The main results of this work are summarized in the following theorem.

Theorem 2

Consider a system of NN rigid bodies aiming at establishing a formation described by the desired distances dk,desd_{k,\text{des}} and orientation angles qk,des,kq_{k,\text{des}},k\in\mathcal{M}, while satisfying the collision and connectivity constraints between neighboring agents, represented by dk,cold_{k,\text{col}} and dk,cond_{k,\text{con}}, respectively, with dk,col<dk,des<dk,con,kd_{k,\text{col}}<d_{k,\text{des}}<d_{k,\text{con}},k\in\mathcal{M}. Then, under Assumptions 1, 2, the decentralized control protocol (23)-(31) guarantees:

Ck,colρkp(t)\displaystyle-C_{k,\text{col}}\rho^{p}_{k}(t) <ekp(t)<Ck,conρkp(t),\displaystyle<e^{p}_{k}(t)<C_{k,\text{con}}\rho^{p}_{k}(t),
ρkq(t)\displaystyle-\rho^{q}_{k}(t) <eknq(t)<ρkq(t),\displaystyle<e^{q}_{k_{n}}(t)<\rho^{q}_{k}(t),

k,n{1,2,3},t0\forall k\in\mathcal{M},n\in\{1,2,3\},t\geq 0, as well as the boundedness of all closed loop signals.

{pf}

By differentiating (24) and (28) with respect to time, we obtain:

ξ˙(ξ,t)\displaystyle\dot{\xi}(\xi,t) =(ρ(t))1[e˙(t)ρ˙(t)ξ],\displaystyle=(\rho(t))^{-1}\left[\dot{e}(t)-\dot{\rho}(t)\xi\right],
ξ˙v(ξ,ξv,t)\displaystyle\dot{\xi}^{v}(\xi,\xi^{v},t) =(ρv(t))1[e˙v(ξ,t)ρ˙v(t)ξv],\displaystyle=(\rho^{v}(t))^{-1}\left[\dot{e}^{v}(\xi,t)-\dot{\rho}^{v}(t)\xi^{v}\right],

which, by substituting (19) and (2), becomes:

ξ˙(ξ,t)=(ρ(t))1[𝔽¯p(x)D¯τ(𝒢)J¯(x)v¯(t)ρ˙(t)ξ],\displaystyle\hskip-5.69054pt\dot{\xi}(\xi,t)=(\rho(t))^{-1}\left[\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\underline{J}(x)\underline{v}(t)-\dot{\rho}(t)\xi\right],
ξ˙v(ξ,ξv,t)=(ρv(t))1{M¯1(x)[uC¯(x,x˙)vg¯(x)\displaystyle\hskip-5.69054pt\dot{\xi}^{v}(\xi,\xi^{v},t)=(\rho^{v}(t))^{-1}\left\{\bar{M}^{-1}(x)\left[u-\bar{C}(x,\dot{x})v-\bar{g}(x)\right.\right.
w¯(x,x˙,t)]v˙des(ξ,t)ρ˙v(t)ξv}.\displaystyle\left.\left.\hskip 51.21495pt-\bar{w}(x,\dot{x},t)\right]-\dot{v}_{\text{des}}(\xi,t)-\dot{\rho}^{v}(t)\xi^{v}\right\}.

By employing (27), (31) as well as the fact that v(t)=ev(ξ,t)+vdes(ξ,t)=ρv(t)ξv(ξ,t)+vdes(ξ,t)v(t)=e^{v}(\xi,t)+v_{\text{des}}(\xi,t)=\rho^{v}(t)\xi^{v}(\xi,t)+v_{\text{des}}(\xi,t) from (28), the following is obtained:

ξ˙=h(ξ,t)\displaystyle\hskip-5.69054pt\dot{\xi}=h(\xi,t)
=(ρ(t))1P(x)r(ξ)(ρ(t))1ε(ξ)(ρ(t))1ρ˙(t)ξ\displaystyle\hskip-5.69054pt=-(\rho(t))^{-1}P(x)r(\xi)(\rho(t))^{-1}\varepsilon(\xi)-(\rho(t))^{-1}\dot{\rho}(t)\xi
+(ρ(t))1𝔽¯p(x)D¯τ(𝒢)J¯(x)ρv(t)ξv(ξ,t),\displaystyle\hskip 5.69054pt+(\rho(t))^{-1}\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\underline{J}(x)\rho^{v}(t)\xi^{v}(\xi,t), (32a)
ξ˙v=hv(ξ,ξv,t)\displaystyle\hskip-5.69054pt\dot{\xi}^{v}=h^{v}(\xi,\xi^{v},t)
=(ρv(t))1M¯1(x)Γ(ρv(t))1rv(ξv)εv(ξv)\displaystyle\hskip-5.69054pt=-(\rho^{v}(t))^{-1}\bar{M}^{-1}(x)\Gamma(\rho^{v}(t))^{-1}r^{v}(\xi^{v})\varepsilon^{v}(\xi^{v})
(ρ(t))1{M¯1(x)[C¯(x,x˙)(ρv(t)ξv(ξ,t)+vdes(ξ,t))\displaystyle\hskip-5.69054pt-(\rho(t))^{-1}\left\{\bar{M}^{-1}(x)\left[\bar{C}(x,\dot{x})(\rho^{v}(t)\xi^{v}(\xi,t)+v_{\text{des}}(\xi,t))\right.\right.
+g¯(x)+w¯(x,x˙,t)]+v˙des(ξ,t)+ρ˙v(t)ξv},\displaystyle\hskip-5.69054pt\left.\left.+\bar{g}(x)+\bar{w}(x,\dot{x},t)\right]+\dot{v}_{\text{des}}(\xi,t)+\dot{\rho}^{v}(t)\xi^{v}\right\}, (32b)

where P(x)=𝔽¯p(x)D¯τ(𝒢)D¯(𝒢)𝔽¯pτ(x)P(x)=\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\bar{D}(\mathcal{G})\bar{\mathbb{F}}^{\tau}_{p}(x).

By defining ξ¯=[ξτ,(ξv)τ]τ4M+6N\bar{\xi}=[\xi^{\tau},(\xi^{v})^{\tau}]^{\tau}\in\mathbb{R}^{4M+6N}, the closed loop system of (32) can be written in compact form as:

ξ¯˙=h¯(t,ξ¯)=[h(ξ,t)hv(ξ,ξv,t)].\dot{\bar{\xi}}=\bar{h}(t,\bar{\xi})=\begin{bmatrix}h(\xi,t)\\ h^{v}(\xi,\xi^{v},t)\end{bmatrix}. (33)

Let us also define the open set Ωξ¯=Ωξp×Ωξq×Ωξv\Omega_{\bar{\xi}}=\Omega_{\xi^{p}}\times\Omega_{\xi^{q}}\times\Omega_{\xi^{v}}, with

Ωξp\displaystyle\Omega_{\xi^{p}} =(C1,col,C1,con)××(CM,col,CM,con),\displaystyle=(-C_{1,\text{col}},C_{1,\text{con}})\times\cdots\times(-C_{M,\text{col}},C_{M,\text{con}}),
Ωξq\displaystyle\Omega_{\xi^{q}} =(1,1)3M,\displaystyle=(-1,1)^{3M},
Ωξv\displaystyle\Omega_{\xi^{v}} =(1,1)6N.\displaystyle=(-1,1)^{6N}.

In what follows, we proceed in two phases. First, the existence of a unique maximal solution ξ¯(t)\bar{\xi}(t) of (33) over the set Ωξ¯\Omega_{\bar{\xi}} for a time interval [0,τmax)[0,\tau_{\max}) is ensured (i.e., ξ¯(t)Ωξ¯,t[0,τmax)\bar{\xi}(t)\in\Omega_{\bar{\xi}},\forall t\in[0,\tau_{\max})). Then, we prove that the proposed control scheme (27) and (31) guarantees, for all t[0,τmax)t\in[0,\tau_{\max}), the boundedness of all closed loop signals, as well as that ξ¯(t)\bar{\xi}(t) remains strictly within a compact subset of Ωξ¯\Omega_{\bar{\xi}}, which leads by contradiction to τmax=+\tau_{\max}=+\infty.

4.4.1 Phase A:

By selecting the parameters Ck,col,Ck,con,kC_{k,\text{col}},C_{k,\text{con}},k\in\mathcal{M}, according to (21), we guarantee that the set Ωξ¯\Omega_{\bar{\xi}} is nonempty and open. Moreover, as shown in (22), we guarantee that ξp(0)Ωξp\xi^{p}(0)\in\Omega_{\xi^{p}} and ξq(0)Ωξq\xi^{q}(0)\in\Omega_{\xi^{q}}. In addition, by selecting ρimv(0)>|eimv(0)|,i𝒱,m{1,,6}\rho^{v}_{i_{m}}(0)>\lvert e^{v}_{i_{m}}(0)\rvert,\forall i\in\mathcal{V},m\in\{1,\dots,6\}, we also guarantee that ξv(0)Ωξv\xi^{v}(0)\in\Omega_{\xi^{v}}. Hence, ξ¯(0)Ωξ¯\bar{\xi}(0)\in\Omega_{\bar{\xi}}. Furthermore, h¯\bar{h} is continuous on tt and locally Lipschitz on ξ¯\bar{\xi} over the set Ωξ¯\Omega_{\bar{\xi}}. Therefore, according to Theorem 1 in Section 2.3, there exists a maximal solution ξ¯(t)\bar{\xi}(t) of (33) on the time interval [0,τmax)[0,\tau_{\max}) such that ξ¯(t)Ωξ¯,t[0,τmax)\bar{\xi}(t)\in\Omega_{\bar{\xi}},\forall t\in[0,\tau_{\max}).

4.4.2 Phase B:

We have proven in Phase A that ξ¯(t)Ωξ¯,t[0,τmax)\bar{\xi}(t)\in\Omega_{\bar{\xi}},\forall t\in[0,\tau_{\max}) and more specifically, that

ξkp(t)\displaystyle\xi^{p}_{k}(t) =ekp(t)ρkp(t)(Ck,col,Ck,con),\displaystyle=\dfrac{e^{p}_{k}(t)}{\rho^{p}_{k}(t)}\in(-C_{k,\text{col}},C_{k,\text{con}}), (34a)
ξknq(t)\displaystyle\xi^{q}_{k_{n}}(t) =eknq(t)ρkp(t)(1,1),\displaystyle=\dfrac{e^{q}_{k_{n}}(t)}{\rho^{p}_{k}(t)}\in(-1,1), (34b)
ξimv(t)\displaystyle\xi^{v}_{i_{m}}(t) =eimv(t)ρiv(t)(1,1),\displaystyle=\dfrac{e^{v}_{i_{m}}(t)}{\rho^{v}_{i}(t)}\in(-1,1), (34c)

k,n{1,2,3},m{1,,6},i𝒱\forall k\in\mathcal{M},n\in\{1,2,3\},m\in\{1,\dots,6\},i\in\mathcal{V}, from which we conclude that ekp(t),eknq(t)e^{p}_{k}(t),e^{q}_{k_{n}}(t) and eimv(t)e^{v}_{i_{m}}(t) are bounded by max{Ck,col,Ck,con},ρkq(t)\max\{C_{k,\text{col}},C_{k,\text{con}}\},\rho^{q}_{k}(t) and ρimv(t)\rho^{v}_{i_{m}}(t), respectively, t[0,τmax)\forall t\in[0,\tau_{\max}). Furthermore, the error vector ε(ξ)\varepsilon(\xi), as given in (27), is well defined t[0,τmax)\forall t\in[0,\tau_{\max}). Therefore, consider the positive definite and radially unbounded function V1:4M0V_{1}:\mathbb{R}^{4M}\to\mathbb{R}_{\geq 0}, with V1(ε)=12ετεV_{1}(\varepsilon)=\tfrac{1}{2}\varepsilon^{\tau}\varepsilon. Time differentiation of V1V_{1} yields V˙1=ετr(ξ)ξ˙\dot{V}_{1}=\varepsilon^{\tau}r(\xi)\dot{\xi}, which, after substituting (32a), becomes

V˙1=ετr(ξ)(ρ(t))1P(x)r(ξ)(ρ(t))1ε\displaystyle\hskip-8.53581pt\dot{V}_{1}=-\varepsilon^{\tau}r(\xi)(\rho(t))^{-1}P(x)r(\xi)(\rho(t))^{-1}\varepsilon
ετr(ξ)(ρ(t))1[ρ˙(t)ξ𝔽¯p(x)D¯τ(𝒢)J¯(x)ρv(t)ξv].\displaystyle\hskip-8.53581pt-\varepsilon^{\tau}r(\xi)(\rho(t))^{-1}\left[\dot{\rho}(t)\xi-\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\underline{J}(x)\rho^{v}(t)\xi^{v}\right].

Note that: 1) ρ˙(t),ρv(t),D¯(𝒢)\dot{\rho}(t),\rho^{v}(t),\bar{D}(\mathcal{G}) are bounded by construction, 2) J¯\underline{J} and ξv,p,q\xi^{v},p,q are bounded t[0,τmax)\forall t\in[0,\tau_{\max}) owing to Assumption 1 and (34), respectively, and hence 𝔽¯p(x)\bar{\mathbb{F}}_{p}(x) is also bounded t[0,τmax)\forall t\in[0,\tau_{\max}) due to its continuity. Therefore, by also exploiting the fact that ρ(t),r(ξ)\rho(t),r(\xi) are diagonal, V˙1\dot{V}_{1} becomes

V˙1\displaystyle\dot{V}_{1} ((ρ(t))1r(ξ)ε)τP(x)(r(ξ)(ρ(t))1ε)\displaystyle\leq-((\rho(t))^{-1}r(\xi)\varepsilon)^{\tau}P(x)(r(\xi)(\rho(t))^{-1}\varepsilon)
+(ρ(t))1r(ξ)εB¯1,\displaystyle\hskip 113.81102pt+\lVert(\rho(t))^{-1}r(\xi)\varepsilon\rVert\bar{B}_{1},

where B¯1\bar{B}_{1} is a positive constant, independent of τmax\tau_{\max}, satisfying

ρ˙(t)ξ𝔽¯p(x)D¯τ(𝒢)J¯(x)ρv(t)ξvB¯1,\lVert\dot{\rho}(t)\xi-\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\underline{J}(x)\rho^{v}(t)\xi^{v}\rVert\leq\bar{B}_{1}, (35)

By invoking Lemma A.1 from Appendix A, V˙1\dot{V}_{1} becomes

V˙1λmin(P)(ρ(t))1r(ξ)ε)2+(ρ(t))1r(ξ)εB¯1\displaystyle\dot{V}_{1}\leq-\lambda_{\min}(P)\lVert(\rho(t))^{-1}r(\xi)\varepsilon)\rVert^{2}+\lVert(\rho(t))^{-1}r(\xi)\varepsilon\rVert\bar{B}_{1}
(ρ(t))1r(ξ)ε)[λmin(P)(ρ(t))1r(ξ)ε)B¯1],\displaystyle\leq-\lVert(\rho(t))^{-1}r(\xi)\varepsilon)\rVert\left[\lambda_{\min}(P)\lVert(\rho(t))^{-1}r(\xi)\varepsilon)\rVert-\bar{B}_{1}\right],

with λmin(P)>0\lambda_{\min}(P)>0. Therefore, V˙1<0\dot{V}_{1}<0 when (ρ(t))1r(ξ)ε)>B¯1λmin(P)\lVert(\rho(t))^{-1}r(\xi)\varepsilon)\rVert\\ >\dfrac{\bar{B}_{1}}{\lambda_{\min}(P)}. By using the definitions of r(ξ)r(\xi) and ρ(t)\rho(t) as well as their positive definiteness t[0,τmax)\forall t\in[0,\tau_{\max}), the last inequality can be shown to be equivalent to ε>B¯1r~λmin(P)\lVert\varepsilon\rVert>\dfrac{\bar{B}_{1}\tilde{r}}{\lambda_{\min}(P)}, where r~=max{maxk{Ck,col+Ck,con},maxk{ρk,0q}}\tilde{r}=\max\{\max\limits_{k\in\mathcal{M}}\{C_{k,\text{col}}+C_{k,\text{con}}\},\max\limits_{k\in\mathcal{M}}\{\rho^{q}_{k,0}\}\}. Therefore, we conclude that

ε(ξ(t))ε¯=max{ε(ξ(0)),B¯1r~λmin(P)},\lVert\varepsilon(\xi(t))\rVert\leq\bar{\varepsilon}=\max\left\{\varepsilon(\xi(0)),\dfrac{\bar{B}_{1}\tilde{r}}{\lambda_{\min}(P)}\right\}, (36)

t[0,τmax)\forall t\in[0,\tau_{\max}). Furthermore, from (25), by taking the inverse logarithm function, we obtain:

Ck,col<eε¯1eε¯+1Ck,col=ξk,minpξkp(t)ξk,maxp\displaystyle\hskip-9.95845pt-C_{k,\text{col}}<\dfrac{e^{-\bar{\varepsilon}}-1}{e^{-\bar{\varepsilon}}+1}C_{k,\text{col}}=\xi^{p}_{k,\min}\leq\xi^{p}_{k}(t)\leq\xi^{p}_{k,\max}
=eε¯1eε¯+1Ck,con<Ck,con,\displaystyle\hskip 99.58464pt=\dfrac{e^{\bar{\varepsilon}}-1}{e^{\bar{\varepsilon}}+1}C_{k,\text{con}}<C_{k,\text{con}}, (37a)
1<eε¯1eε¯+1=ξminqξknq(t)ξmaxq=eε¯1eε¯+1<1,\displaystyle\hskip-11.09654pt-1<\dfrac{e^{-\bar{\varepsilon}}-1}{e^{-\bar{\varepsilon}}+1}=\xi^{q}_{\min}\leq\xi^{q}_{k_{n}}(t)\leq\xi^{q}_{\max}=\dfrac{e^{\bar{\varepsilon}}-1}{e^{\bar{\varepsilon}}+1}<1, (37b)

t[0,τmax),k,n{1,2,3}\forall t\in[0,\tau_{\max}),k\in\mathcal{M},n\in\{1,2,3\}. Thus, the reference velocity vector v¯des(ξ,t)\underline{v}_{\text{des}}(\xi,t), as designed in (27), remains bounded t[0,τmax)\forall t\in[0,\tau_{\max}). Moreover, since v(t)=ρv(t)ξv(ξ,t)+vdes(ξ,t)v(t)=\rho^{v}(t)\xi^{v}(\xi,t)+v_{\text{des}}(\xi,t), we also conclude the boundedness of v(t),t[0,τmax)v(t),\forall t\in[0,\tau_{\max}). Finally, differentiating vdesv_{\text{des}} with respect to time, substituting (32a) and using (37), the boundedness of v˙des,t[0,τmax)\dot{v}_{\text{des}},\forall t\in[0,\tau_{\max}), is deduced as well.

Applying the aforementioned line of proof, we consider the positive definite and radially unbounded function V2:6N0V_{2}:\mathbb{R}^{6N}\to\mathbb{R}_{\geq 0}, with V2(εv)=12(εv)τΓεvV_{2}(\varepsilon^{v})=\tfrac{1}{2}(\varepsilon^{v})^{\tau}\Gamma\varepsilon^{v}, since the error vector εv(ξv)\varepsilon^{v}(\xi^{v}) is well defined t[0,τmax)\forall t\in[0,\tau_{\max}), due to (34c). Time differentiation of V2V_{2} yields V˙2=(εv)τΓrv(ξv)ξ˙v\dot{V}_{2}=(\varepsilon^{v})^{\tau}\Gamma r^{v}(\xi^{v})\dot{\xi}^{v}, which, after substituting (32b), becomes

V˙2=(εv)τΓrv(ξv)(ρv(t))1M¯1(x)Γ(ρv(t))1rv(ξv)εv\displaystyle\dot{V}_{2}=-(\varepsilon^{v})^{\tau}\Gamma r^{v}(\xi^{v})(\rho^{v}(t))^{-1}\bar{M}^{-1}(x)\Gamma(\rho^{v}(t))^{-1}r^{v}(\xi^{v})\varepsilon^{v}
(εv)τrv(ξv)(ρv(t))1{M¯1(x)[g¯(x)+w¯(x,x˙,t)+\displaystyle-(\varepsilon^{v})^{\tau}r^{v}(\xi^{v})(\rho^{v}(t))^{-1}\left\{\bar{M}^{-1}(x)\left[\bar{g}(x)+\bar{w}(x,\dot{x},t)+\right.\right.
C¯(x,x˙)(ρv(t)ξv(ξ,t)+vdes(ξ,t))]+v˙des(ξ,t)+ρ˙v(t)ξv}.\displaystyle\left.\left.\bar{C}(x,\dot{x})(\rho^{v}(t)\xi^{v}(\xi,t)+v_{\text{des}}(\xi,t))\right]+\dot{v}_{\text{des}}(\xi,t)+\dot{\rho}^{v}(t)\xi^{v}\right\}.

By exploiting the boundedness of ξv\xi^{v} and the positive definiteness and diagonality of Γ,ρv(t),rv(ξv),t[0,τmax)\Gamma,\rho^{v}(t),r^{v}(\xi^{v}),\forall t\in[0,\tau_{\max}) due to (34c), the boundedness of ρv,ρv˙,vdes,v˙des,w¯(x,x˙,t)\rho^{v},\dot{\rho^{v}},v_{\text{des}},\dot{v}_{\text{des}},\bar{w}(x,\dot{x},t), the continuity of M¯1,C¯,g¯\bar{M}^{-1},\bar{C},\bar{g} and the positive definiteness of M¯1\bar{M}^{-1}, V˙2\dot{V}_{2} becomes

V˙2λmin(ΓM¯1Γ)(ρv(t))1rv(ξv)εv(ξv)2+\displaystyle\dot{V}_{2}\leq-\lambda_{\min}(\Gamma\bar{M}^{-1}\Gamma)\lVert(\rho^{v}(t))^{-1}r^{v}(\xi^{v})\varepsilon^{v}(\xi^{v})\rVert^{2}+
(ρv(t))1rv(ξv)εv(ξv)B¯2,\displaystyle\lVert(\rho^{v}(t))^{-1}r^{v}(\xi^{v})\varepsilon^{v}(\xi^{v})\rVert\bar{B}_{2},

where λmin(ΓM¯1Γ)>0\lambda_{\min}(\Gamma\bar{M}^{-1}\Gamma)>0 and B¯2\bar{B}_{2} is a positive constant, independent of τmax\tau_{\max}, that satisfies

M¯1(x)(g¯(x)+w¯(x,x˙,t)+C¯(x,x˙)(ρv(t)ξv(ξ,t)\displaystyle\lVert\bar{M}^{-1}(x)\left(\bar{g}(x)+\bar{w}(x,\dot{x},t)+\bar{C}(x,\dot{x})(\rho^{v}(t)\xi^{v}(\xi,t)\right.
+vdes(ξ,t)))+v˙des(ξ,t)+ρ˙v(t)ξvB¯2.\displaystyle\left.+v_{\text{des}}(\xi,t))\right)+\dot{v}_{\text{des}}(\xi,t)+\dot{\rho}^{v}(t)\xi^{v}\rVert\leq\bar{B}_{2}.

Therefore, we conclude that V˙2<0\dot{V}_{2}<0 when

(ρv(t))1rv(ξv)εv(ξv)>B¯2λmin(ΓM¯1Γ),\lVert(\rho^{v}(t))^{-1}r^{v}(\xi^{v})\varepsilon^{v}(\xi^{v})\rVert>\dfrac{\bar{B}_{2}}{\lambda_{\min}(\Gamma\bar{M}^{-1}\Gamma)},

which is equivalent to εv>B¯2r~vλmin(ΓM¯1Γ)\lVert\varepsilon^{v}\rVert>\dfrac{\bar{B}_{2}\tilde{r}_{v}}{\lambda_{\min}(\Gamma\bar{M}^{-1}\Gamma)}, with r~v=max{ρim,0v,i𝒱,m{1,,6}}\tilde{r}_{v}=\max\left\{\rho^{v}_{i_{m},0},i\in\mathcal{V},m\in\{1,\dots,6\}\right\}. Hence, we conclude that:

εv(ξv(ξ(t),t))\displaystyle\lVert\varepsilon^{v}(\xi^{v}(\xi(t),t))\rVert ε¯v\displaystyle\leq\bar{\varepsilon}^{v}
=max{εv(ξv(ξ(0),0)),B¯2r~vλmin(ΓM¯1Γ)}\displaystyle\hskip-51.21495pt=\max\left\{\varepsilon^{v}(\xi^{v}(\xi(0),0)),\dfrac{\bar{B}_{2}\tilde{r}_{v}}{\lambda_{\min}(\Gamma\bar{M}^{-1}\Gamma)}\right\}

t[0,τmax)\forall t\in[0,\tau_{\max}). Furthermore, from (29a), we obtain:

1<eε¯v1eε¯v+1=ξminv\displaystyle-1<\dfrac{e^{-\bar{\varepsilon}^{v}}-1}{e^{-\bar{\varepsilon}^{v}}+1}=\xi^{v}_{\min} ξimv(t)\displaystyle\leq\xi^{v}_{i_{m}}(t)
ξmaxv=eε¯v1eε¯v+1<1,\displaystyle\leq\xi^{v}_{\max}=\dfrac{e^{\bar{\varepsilon}^{v}}-1}{e^{\bar{\varepsilon}^{v}}+1}<1, (38)

t[0,τmax),m{1,,6},i𝒱\forall t\in[0,\tau_{\max}),m\in\{1,\dots,6\},i\in\mathcal{V}, which leads to the boundedness of the decentralized control protocol (31).

Up to this point, what remains to be shown is that τmax\tau_{\max} can be extended to \infty. In this direction, notice by (37) and (38) that ξ¯(t)Ωξ¯=Ωξp×Ωξq×Ωξv,t[0,τmax)\bar{\xi}(t)\in\Omega^{\prime}_{\bar{\xi}}=\Omega^{\prime}_{\xi^{p}}\times\Omega^{\prime}_{\xi^{q}}\times\Omega^{\prime}_{\xi^{v}},\forall t\in[0,\tau_{\max}), where:

Ωξp\displaystyle\Omega^{\prime}_{\xi^{p}} =[ξ1,minp,ξ1,maxp]××[ξM,minp,ξM,maxp],\displaystyle=[\xi^{p}_{1,\min},\xi^{p}_{1,\max}]\times\cdots\times[\xi^{p}_{M,\min},\xi^{p}_{M,\max}],
Ωξq\displaystyle\Omega^{\prime}_{\xi^{q}} =[ξminq,ξmaxq]3M,\displaystyle=[\xi^{q}_{\min},\xi^{q}_{\max}]^{3M},
Ωξv\displaystyle\Omega^{\prime}_{\xi^{v}} =[ξminv,ξmaxv]6N,\displaystyle=[\xi^{v}_{\min},\xi^{v}_{\max}]^{6N},

are nonempty and compact subsets of Ωξp,Ωξq\Omega_{\xi^{p}},\Omega_{\xi^{q}} and Ωξv\Omega_{\xi^{v}}, respectively. Hence, assuming that τmax<\tau_{\max}<\infty and since Ωξ¯Ωξ¯\Omega^{\prime}_{\bar{\xi}}\subseteq\Omega_{\bar{\xi}}, Proposition 2.1 in Section 2.3 dictates the existence of a time instant t[0,τmax)t^{\prime}\in[0,\tau_{\max}) such that ξ¯(t)Ωξ¯\bar{\xi}(t^{\prime})\notin\Omega^{\prime}_{\bar{\xi}}, which is a contradiction. Therefore, τmax=\tau_{\max}=\infty. Thus, all closed loop signals remain bounded and moreover ξ¯(t)Ωξ¯Ωξ¯,t0\bar{\xi}(t)\in\Omega^{\prime}_{\bar{\xi}}\subseteq\Omega_{\bar{\xi}},\forall t\in\mathbb{R}_{\geq 0}. Finally, multiplying (37a) and (37b) by ρkp(t)\rho^{p}_{k}(t) and ρkq(t)\rho^{q}_{k}(t), respectively, we also conclude:

Ck,colρkp(t)\displaystyle-C_{k,\text{col}}\rho^{p}_{k}(t) <ekp(t)<Ck,conρkp(t),\displaystyle<e^{p}_{k}(t)<C_{k,\text{con}}\rho^{p}_{k}(t),
ρkq(t)\displaystyle-\rho^{q}_{k}(t) <eknq(t)<ρkq(t),\displaystyle<e^{q}_{k_{n}}(t)<\rho^{q}_{k}(t),

k,n{1,2,3},t0\forall k\in\mathcal{M},n\in\{1,2,3\},t\in\mathbb{R}_{\geq 0}, which leads to the completion of the proof.

Remark 4.4

Notice that (37) and (38) hold no matter how large the finite bounds ε¯\bar{\varepsilon}, ε¯v\bar{\varepsilon}^{v} are. Therefore, there is no need to render ε¯v\bar{\varepsilon}^{v} arbitrarily small by adopting extreme values of the control gains γi\gamma_{i}. In the same spirit, large uncertainties involved in the nonlinear model (2) can be compensated, as they affect only the size of ε¯v\bar{\varepsilon}^{v} through B¯2\bar{B}_{2}, but leave unaltered the achieved stability properties. Hence, the actual performance of the system becomes isolated against model uncertainties, thus enhancing the robustness of the proposed control schemes.

Remark 4.5

The transient and steady state performance of the closed loop system is explicitly and solely determined by appropriately selecting the parameters lkp,lkql^{p}_{k},l^{q}_{k}, ρk,p,ρk,q,ρk,0p\rho^{p}_{k,\infty},\rho^{q}_{k,\infty},\rho^{p}_{k,0} and Ck,colC_{k,\text{col}}, Ck,conC_{k,\text{con}}, kk\in\mathcal{M}. In that respect, the performance attributes of the proposed control protocols are selected a priori, in accordance to the desired transient and steady state performance specifications. In this way, the selection of the control gains γi,i𝒱\gamma_{i},i\in\mathcal{V}, that has been isolated from the actual control performance, is significantly simplified to adopting those values that lead to reasonable control effort. Nonetheless, it should be noted that their selection affects both the quality of evolution of the errors inside the corresponding performance envelopes as well as the control input characteristics. Hence, fine tuning might be needed in real-time scenarios, to retain the required control input signals within the feasible range that can be implemented by real actuators. Similarly, the control input constraints impose an upper bound on the required speed of convergence of ρkp(t)\rho^{p}_{k}(t), and ρkq(t),k\rho^{q}_{k}(t),k\in\mathcal{M}, as obtained by the exponentials elkpt,elkqte^{-l^{p}_{k}t},e^{-l^{q}_{k}t}. Therefore, the selection of the control gains γi\gamma_{i} can have positive influence on the overall closed loop system response. More specifically, notice that (35)-(38) provide bounds on ε,εv\varepsilon,\varepsilon^{v} and r,rvr,r^{v} that depend on the constants B¯1,B¯2\bar{B}_{1},\bar{B}_{2}. Therefore, in the special case that bounds on the model nonlinearities/disturbances are known, we can design the control gains γi\gamma_{i} via (30) such that the control signals uiu_{i} are retained within certain bounds.

Remark 4.6

Regarding Assumption 1, we stress that, by choosing the initial conditions θi(0),i𝒱\theta_{i}(0),\forall i\in\mathcal{V} as well as the desired formation constants θk,des=qk2,des,k\theta_{k,\text{des}}=q_{k_{2},\text{des}},\forall k\in\mathcal{M} close to zero, the condition π2<θi(t)<π2-\tfrac{\pi}{2}<\theta_{i}(t)<\tfrac{\pi}{2} will not be violated, since the agents will be mostly operating near the point θi=0,i𝒱\theta_{i}=0,\forall i\in\mathcal{V}. This is a reasonable assumption for real applications, since the angle θi\theta_{i} represents the pitch angle of agent ii and is desired to be as close to zero as possible (consider, e.g., aerial vehicles).

Furthermore, notice that the proposed control scheme guarantees collision avoidance only for the initially neighboring agents (at t=0t=0), since that’s how the edge set \mathcal{E} is defined. Inter-agent collision avoidance with all possible agent pairs is left as future work by employing time-varying graphs.

5 Simulation Results

To demonstrate the efficiency of the proposed control protocol, we considered a simulation example with N=4,𝒱={1,2,3,4}N=4,\mathcal{V}=\{1,2,3,4\} spherical agents of the form (2), with ri=1mr_{i}=1\text{m} and si=4m,i{1,,4}s_{i}=4\text{m},\forall i\in\{1,\dots,4\}. We selected the exogenous disturbances as wi=Aisin(ωc,it)(ai1xiai,2x˙i)w_{i}=A_{i}\sin(\omega_{c,i}t)(a_{i_{1}}x_{i}-a_{i,2}\dot{x}_{i}), where the parameters Ai,ωc,i,ai1,ai2A_{i},\omega_{c,i},a_{i_{1}},a_{i_{2}} as well as the dynamic parameters of the agents were randomly chosen in [0,1][0,1]. The initial conditions were taken as p1(0)=[0,0,0]Tm,p2(0)=[2,2,2]Tm,p3(0)=[2,4,4]Tm,p4(0)=[2,3,2.5]Tm,q1(0)=q2(0)=q3(0)=q4(0)=[0,0,0]Trp_{1}(0)=[0,0,0]^{T}\ \text{m},p_{2}(0)=[2,2,2]^{T}\ \text{m},p_{3}(0)=[2,4,4]^{T}\ \text{m},p_{4}(0)=[2,3,2.5]^{T}\ \text{m},q_{1}(0)=q_{2}(0)=q_{3}(0)=q_{4}(0)=[0,0,0]^{T}\ \text{r}, which imply the initial edge set ={{1,2},{2,3},{2,4}}\mathcal{E}=\{\{1,2\},\{2,3\},\{2,4\}\}. The desired graph formation was defined by the constants dk,des=2.5m,qk,des=[π4,0,π3]Tr,k{1,2,3}d_{k,\text{des}}=2.5\text{m},q_{k,\text{des}}=[\tfrac{\pi}{4},0,\tfrac{\pi}{3}]^{T}\ \text{r},\forall k\in\{1,2,3\}. Invoking (21), we also chose Ck,col=5.25mC_{k,\text{col}}=5.25\text{m} and Ck,con=10.75mC_{k,\text{con}}=10.75\text{m}. Moreover, the parameters of the performance functions were chosen as ρk,p=0.1,ρk,0q=π2>max{ek1q(0),ek2q(0),ek3q(0)}=π3\rho^{p}_{k,\infty}=0.1,\rho^{q}_{k,0}=\tfrac{\pi}{2}>\max\{e^{q}_{k_{1}}(0),e^{q}_{k_{2}}(0),e^{q}_{k_{3}}(0)\}=\tfrac{\pi}{3} and lkp=lkq=1,k{1,2,3}l^{p}_{k}=l^{q}_{k}=1,\forall k\in\{1,2,3\}. In addition, we chose ρim,0v=2|eimv(0)|+0.5,lvim=1\rho^{v}_{i_{m},0}=2|e^{v}_{i_{m}}(0)\rvert+0.5,l^{v}_{i_{m}}=1 and ρim,v=0.1\rho^{v}_{i_{m},\infty}=0.1. Finally, γi\gamma_{i} is set to 55 in order to produce reasonable control signals that can be implemented by real actuators. The simulation results are depicted in Fig. 3-7. In particular, Fig. 3 and 4 show the evolution of ekp(t)e^{p}_{k}(t) and eknq(t)e^{q}_{k_{n}}(t) along with ρkp(t)\rho^{p}_{k}(t) and ρkq(t)\rho^{q}_{k}(t), respectively, k{1,2,3},n{1,2,3}\forall k\in\{1,2,3\},n\in\{1,2,3\}. Furthermore, the distances p1,2,p2,3,p2,4\lVert p_{1,2}\rVert,\lVert p_{2,3}\rVert,\lVert p_{2,4}\rVert along with the collision and connectivity constraints are depicted in Fig. 5. Finally, the velocity errors eimv(t)e^{v}_{i_{m}}(t) along ρimv(t)\rho^{v}_{i_{m}}(t) and the control signals uiu_{i} are illustrated in Figs. 6 and 7, respectively. As it was predicted by the theoretical analysis, the formation control problem with prescribed transient and steady state performance is solved with bounded closed loop signals, despite the unknown agent dynamics and the presence of external disturbances.

Refer to caption
Figure 3: The evolution of the distance errors ekp(t)e^{p}_{k}(t), along with the performance bounds imposed by ρkp(t),k{1,2,3}\rho^{p}_{k}(t),\forall k\in\{1,2,3\}.
Refer to caption
Figure 4: The evolution of the orientation errors eknq(t)e^{q}_{k_{n}}(t), along with the performance bounds imposed by ρkq(t),k,n{1,2,3}\rho^{q}_{k}(t),\forall k,n\in\{1,2,3\}.
Refer to caption
Figure 5: The distance between neighboring agents along with the collision and connectivity constraints.

6 Conclusions and Future Work

In this work we proposed a robust decentralized control protocol for distance- and orientation-based formation control, collision avoidance and connectivity maintenance of multiple rigid bodies with unknown dynamic models. Simulation examples have verified the efficiency of the proposed approach. Future efforts will be devoted towards extending the current results to directed as well as time-varying communication graph topologies.

Refer to caption
Figure 6: The evolution of the velocity errors eimv(t)e^{v}_{i_{m}}(t), along with the performance bounds imposed by ρimv(t),i{1,,4},m{1,,6}\rho^{v}_{i_{m}}(t),\forall i\in\{1,\dots,4\},m\in\{1,\dots,6\}.
Refer to caption
Figure 7: The resulting control input signals ui(t),i{1,,4}u_{i}(t),i\in\{1,\dots,4\}.

References

  • Anderson et al. [2007] Anderson, B., Yu, C., Dasgupta, S., and Morse, S. (2007). Control of a Three-Coleader Formation in the Plane. Systems & Control Letters, 56(9), 573–578.
  • Anderson et al. [2008] Anderson, B., Yu, C., Fidan, B., and Hendrickx, J. (2008). Rigid Graph Control Architectures for Autonomous Formations. IEEE Control Systems, 28, 48–63.
  • Basiri et al. [2010] Basiri, M., Bishop, A., and Jensfelt, P. (2010). Distributed Control of Triangular Formations with Angle-Only Constraints. Systems and Control Letters, 59(2), 147–154.
  • Bechlioulis and Kyriakopoulos [2014] Bechlioulis, C. and Kyriakopoulos, K. (2014). Robust Model-Free Formation Control with Prescribed Performance and Connectivity Maintenance for Nonlinear Multi-Agent Systems. 53rd IEEE Conference on Decision and Control, 4509–4514.
  • Bechlioulis and Rovithakis [2008] Bechlioulis, C. and Rovithakis, G. (2008). Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems with Prescribed Performance. IEEE Transactions on Automatic Control, 53(9), 2090–2099.
  • Belabbas et al. [2012] Belabbas, A., Mou, S., Morse, S., and Anderson, B. (2012). Robustness Issues with Undirected Formations. 51st IEEE Conference on Decision and Control (CDC 2012), 1445–1450.
  • Bishop et al. [2015] Bishop, A.N., Deghat, M., Anderson, B., and Hong, Y. (2015). Distributed Formation Control with Relaxed Motion Requirements. International Journal of Robust and Nonlinear Control, 25(17), 3210–3230.
  • Cao et al. [2008] Cao, M., Anderson, B., Morse, S., and Yu, C. (2008). Control of Acyclic Formations of Mobile Autonomous Agents. 47th IEEE Conference on Decision and Control, CDC 2008., 1187–1192.
  • Cao et al. [2011] Cao, M., Morse, S., Yu, C., Anderson, B., and Dasgupta, S. (2011). Maintaining a Directed, Triangular Formation of Mobile Autonomous Agents. Communications in Information and Systems, 11(1), 1.
  • Dimarogonas and Johansson [2008] Dimarogonas, D. and Johansson, K. (2008). On the Stability of Distance-Based Formation Control. 47th IEEE Conference on Decision and Control, CDC 2008, 1200–1205.
  • Dorfler and Francis [2010] Dorfler, F. and Francis, B. (2010). Geometric Analysis of the Formation Problem for Autonomous Robots. IEEE Transactions on Automatic Control, 55(10), 2379–2384.
  • Egerstedt and Hu [2001] Egerstedt, M. and Hu, X. (2001). Formation Constrained Multi-Agent Control. IEEE Transactions on Robotics and Automation, 17(6), 947–951.
  • Eren [2012] Eren, T. (2012). Formation Shape Control Based on Bearing Rigidity. International Journal of Control, 85(9), 1361–1379.
  • Fathian et al. [2016] Fathian, K., Rachinskii, D., Spong, M., and Gans, N. (2016). Globally Asymptotically Stable Distributed Control for Distance and Bearing Based Multi-Agent Formations. American Control Conference (ACC), 2016, 4642–4648.
  • Hendrickx et al. [2007] Hendrickx, J., Anderson, B., Delvenne, J., and Blondel, V. (2007). Directed Graphs for the Analysis of Rigidity and Persistence in Autonomous Agent Systems. International Journal of Robust and Nonlinear Control, 17(10-11), 960–981.
  • Horn and Johnson [2012] Horn, R. and Johnson, C. (2012). Matrix Analysis. Cambridge university press.
  • Jadbabaie et al. [2003] Jadbabaie, A., Lin, J., and Morse, S. (2003). Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.
  • Karayiannidis et al. [2012] Karayiannidis, Y., Dimarogonas, D., and Kragic, D. (2012). Multi-Agent Average Consensus Control with Prescribed Performance Guarantees. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2219–2225.
  • Krick et al. [2009] Krick, L., Broucke, M., and Francis, B. (2009). Stabilisation of Infinitesimally Rigid Formations of Multi-Robot Networks. International Journal of Control, 82(3), 423–439.
  • Mesbahi and Egerstedt [2010] Mesbahi, M. and Egerstedt, M. (2010). Graph Theoretic Methods in Multiagent Networks. Princeton University Press.
  • Oh and Ahn [2011] Oh, K. and Ahn, H. (2011). Formation Control of Mobile Agents Based on Inter-Agent Distance Dynamics. Automatica, 47(10), 2306–2312.
  • Oh and Ahn [2014] Oh, K. and Ahn, H. (2014). Distance-Based Undirected Formations of Single-Integrator and Double-Integrator Modeled Agents in n-Dimensional Space. International Journal of Robust and Nonlinear Control, 24(12), 1809–1820.
  • Oh et al. [2015] Oh, K., Park, M., and Ahn, H. (2015). A Survey of Multi-Agent Formation Control. Automatica, 53, 424–440.
  • Olfati-Saber and Murray [2002] Olfati-Saber, R. and Murray, R. (2002). Distributed Cooperative Control of Multiple Vehicle Formations using Structural Potential Functions. IFAC World Congress, 15(1), 242–248.
  • Olfati-Saber and Murray [2004] Olfati-Saber, R. and Murray, R. (2004). Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.
  • Park et al. [2012] Park, M., Oh, K., and Ahn, H. (2012). Modified Gradient Control for Acyclic Minimally Persistent Formations to Escape from Collinear Position. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 1423–1427.
  • Ren and Beard [2005] Ren, W. and Beard, R. (2005). Consensus Seeking in Multi-Agent Systems Under Dynamically Changing Interaction Topologies. IEEE Transactions on Automatic Control, 50(5), 655–661.
  • Smith et al. [2006] Smith, S., Broucke, M.E., and Francis, B.A. (2006). Stabilizing a Multi-Agent System to an Equilateral Polygon Formation. 17th International Symposium on Mathematical Theory of Networks and Systems, 2415–2424.
  • Sontag [2013] Sontag, E. (2013). Mathematical Control Theory: Deterministic Finite Dimensional Systems, volume 6. Springer Science & Business Media.
  • Summers et al. [2011] Summers, T., C. Yu, C., Dasgupta, S., and Anderson, B. (2011). Control of Minimally Persistent Leader-Remote-Follower and Coleader Formations in the Plane. IEEE Transactions on Automatic Control, 56(12), 2778–2792.
  • Tanner et al. [2007] Tanner, H., Jadbabaie, A., and Pappas, G. (2007). Flocking in Fixed and Switching Networks. IEEE Transactions on Automatic Control, 52(5), 863–868.
  • Trinh et al. [2014] Trinh, M., Oh, K., and Ahn, H. (2014). Angle-Based Control of Directed Acyclic Formations with Three-Leaders. Proceedings of the 2014 International Conference on Mechatronics and Control, ICMC, 2268–2271.
  • Yu et al. [2009] Yu, C., Anderson, B., Dasgupta, S., and Fidan, B. (2009). Control of Minimally Persistent Formations in the Plane. SIAM Journal on Control and Optimization, 48(1), 206–233.
  • Zavlanos and Pappas [2008] Zavlanos, M. and Pappas, G. (2008). Distributed Connectivity Control of Mobile Networks. IEEE Transactions on Robotics, 24(6), 1416–1428.
  • Zhao and Zelazo [2016] Zhao, S. and Zelazo, D. (2016). Bearing Rigidity and Almost Global Bearing-Only Formation Stabilization. IEEE Transactions on Automatic Control, 61(5), 1255–1268.

Appendix A

Lemma A.1

The matrix P(x)P(x) is positive definite t[0,τmax)\forall t\in[0,\tau_{\max}).

{pf}

Firstly, note that Assumption 2 implies that 𝒢\mathcal{G} is connected at t=0t=0. Hence, in view of (34a), 𝒢\mathcal{G} will stay connected for all t[0,τmax)t\in[0,\tau_{\max}). Moreover, since we do not consider adding edges to the graph, 𝒢\mathcal{G} will also be a tree for all t[0,τmax)t\in[0,\tau_{\max}), and thus, the matrix Dτ(𝒢)D(𝒢)D^{\tau}(\mathcal{G})D(\mathcal{G}) is positive definite for all t[0,τmax)t\in[0,\tau_{\max}), according to Lemma 2.2. Therefore, the matrix

D¯τ(𝒢)D¯(𝒢)=[Dτ(𝒢)D(𝒢)I303M×3M03M×3MDτ(𝒢)D(𝒢)I3],\bar{D}^{\tau}(\mathcal{G})\bar{D}(\mathcal{G})=\begin{bmatrix}D^{\tau}(\mathcal{G})D(\mathcal{G})\otimes I_{3}&0_{3M\times 3M}\\ 0_{3M\times 3M}&D^{\tau}(\mathcal{G})D(\mathcal{G})\otimes I_{3}\end{bmatrix},

is also positive definite. Moreover, (34a) implies that pk(t)pm(t)>dk,col,t[0,τmax)\lVert p_{\ell_{k}}(t)-p_{\ell_{m}}(t)\rVert>d_{k,\text{col}},\forall t\in[0,\tau_{\max}). Hence, there exists at least one w{x,y,z}w\in\{x,y,z\} such that (pk)w(t)(pm(t))w,t[0,τmax)(p_{\ell_{k}})_{w}(t)\neq(p_{\ell_{m}}(t))_{w},\forall t\in[0,\tau_{\max}), where pa=[(pa)x,(pa)y,(pa)z]τ,a{k,m}p_{\ell_{a}}=[(p_{\ell_{a}})_{x},(p_{\ell_{a}})_{y},\\ (p_{\ell_{a}})_{z}]^{\tau},a\in\{k,m\}. Therefore, rank(𝔽p(x))=M\text{rank}(\mathbb{F}_{p}(x))=M and rank(𝔽¯p(x))=4M\text{rank}(\bar{\mathbb{F}}_{p}(x))=4M, which implies the positive definiteness of P=𝔽¯p(x)D¯τ(𝒢)D¯(𝒢)𝔽¯pτ(x)P=\bar{\mathbb{F}}_{p}(x)\bar{D}^{\tau}(\mathcal{G})\bar{D}(\mathcal{G})\bar{\mathbb{F}}^{\tau}_{p}(x) (see Observation 7.1.8, pp. 431 in [Horn and Johnson, 2012]).