This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Robust photon-mediated entangling gates between quantum dot spin qubits

Ada Warren Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA    Utkan Güngördü Current address: Laboratory for Physical Sciences, College Park, Maryland 20740, USA Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA    J. P. Kestner Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA    Edwin Barnes    Sophia E. Economou Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
Abstract

Significant experimental advances in single-electron silicon spin qubits have opened the possibility of realizing long-range entangling gates mediated by microwave photons. Recently proposed iSWAP gates, however, require tuning qubit energies into resonance and have limited fidelity due to charge noise. We present a novel photon-mediated cross-resonance gate that is consistent with realistic experimental capabilities and requires no resonant tuning. Furthermore, we propose gate sequences capable of suppressing errors due to quasistatic noise for both the cross-resonance and iSWAP gates.

I Introduction

Advanced semiconductor fabrication techniques, long coherence times [1], and high-fidelity single [2, 3, 4] and two-qubit [5, 6, 7] gates have positioned solid-state electronic spin qubits as one of the most favorable candidates for quantum information processing [8, 9, 10, 11, 12, 13, 14]. Recent breakthrough experimental work has demonstrated a coherent interface between individual electron spins in double quantum dots (DQDs) and photons in superconducting microwave resonators [15, 16, 17, 18]. By electrically coupling a plunger gate above one dot to a probe in the resonator, and coupling the spin and position degrees of freedom with a nearby micromagnet, Refs. [15, 16, 17, 18] were able to realize a spin-charge hybridized qubit which inherits a long coherence time from its spin-like character and strong coupling to the resonator mediated by the position degree of freedom [19, 20, 16]. Building on this, recent theoretical work has investigated the use of this spin-photon interface to realize long-range spin-spin entangling gates mediated by resonator photons [21, 22]. This opens the possibility for large, scalable quantum information processors based on DQD electronic spins. The iSWAP proposed in Refs. [21, 22], however, requires qubits to be tuned into resonance, which can be challenging in some architectures [23] and may be impractical for collections of many spins coupled to a common resonator. Additionally, spin-charge hybridization results in susceptibility of the qubit to charge noise, limiting achievable gate fidelities [16, 21, 22].

In this paper, we present a protocol for a novel entangling gate in systems of DQDs coupled by microwave resonators: a cross-resonance gate that is locally equivalent to a CNOT and similar to gates used in superconducting transmon qubit systems [24, 25]. We also propose two protocols for suppressing charge noise, including a nested gate sequence based on fast, dynamically corrected single-qubit gates [26] which is also able to suppress errors due to quasistatic charge noise for the previously introduced resonant iSWAP. We find that these gate sequences substantially reduce gate infidelity due to quasistatic charge noise.

The paper is organized as follows. In Sec. II, we introduce the resonator-DQD Hamiltonian and define notation. Our cross-resonance gate protocol is presented in Sec. III. We include quasistatic charge noise in our model and present dynamically corrected iSWAP and cross-resonance gates in Sec. IV. We conclude in Sec. V.

II Hamiltonian

As in Refs. [21, 22], we consider a system of several gate-defined DQDs, each tuned to the single-electron regime and capacitively coupled with coupling constant giACg_{i}^{AC} to a common microwave resonator mode with frequency ωr\omega_{r}. The inter-dot tunneling constants tcit_{ci} and detunings ϵi\epsilon_{i} of each DQD are independently electrically tunable, and we explicitly include microwave-frequency electric drive of the detunings with drive frequencies ωid\omega_{i}^{d} and envelopes Ω~i(t)\tilde{\Omega}_{i}(t). Micromagnets near each DQD, along with an external magnetic field, create an inhomogeneous magnetic field in the vicinity of each DQD. At each DQD, the longitudinal average magnetic field gives rise to a Zeeman splitting ωiz\omega_{i}^{z} between the DQD electron spin states, while the magnetic field gradients, which for simplicity we take to be transverse, couple the spin and position degrees of freedom of the electrons with coupling strengths gixg_{i}^{x}. The system can then be described with the Hamiltonian (=1\hbar=1)

H~(t)\displaystyle\tilde{H}(t) =H~0+H~I+H~dr(t),\displaystyle=\tilde{H}_{0}+\tilde{H}_{I}+\tilde{H}_{dr}(t), (1)
H~0\displaystyle\tilde{H}_{0} =ωraa+i(12ϵiτ~iz+tciτ~ix+12ωizσ~iz+gixσ~ixτ~iz),\displaystyle=\omega_{r}a^{\dagger}a+\sum_{i}\quantity(\frac{1}{2}\epsilon_{i}\tilde{\tau}_{i}^{z}+t_{ci}\tilde{\tau}_{i}^{x}+\frac{1}{2}\omega_{i}^{z}\tilde{\sigma}_{i}^{z}+g_{i}^{x}\tilde{\sigma}_{i}^{x}\tilde{\tau}_{i}^{z}),
H~I\displaystyle\tilde{H}_{I} =igiAC(a+a)τ~iz,\displaystyle=\sum_{i}g_{i}^{AC}\quantity(a^{\dagger}+a)\tilde{\tau}_{i}^{z},
H~dr(t)\displaystyle\tilde{H}_{dr}(t) =iΩ~i(t)cos(ωidt)τ~iz,\displaystyle=\sum_{i}\tilde{\Omega}_{i}(t)\cos(\omega_{i}^{d}t)\tilde{\tau}_{i}^{z},

where σ~ik\tilde{\sigma}_{i}^{k} and τ~ik\tilde{\tau}_{i}^{k} for k{x,y,z}k\in\quantity{x,y,z} are the spin and position Pauli matrices of the iith DQD electron.

To proceed, we transform to the spin-orbit hybridized eigenbasis of H~0\tilde{H}_{0}, in which

H~0=ωraa+i(12ωiττiz+12ωiσσiz),\tilde{H}_{0}=\omega_{r}a^{\dagger}a+\sum_{i}\quantity(\frac{1}{2}\omega_{i}^{\tau}\tau_{i}^{z}+\frac{1}{2}\omega_{i}^{\sigma}\sigma_{i}^{z}),

where τik,σik\tau_{i}^{k},\sigma_{i}^{k} are the transformed Pauli matrices in the new basis and ωiτ>ωiσ\omega_{i}^{\tau}>\omega_{i}^{\sigma}. We assume 2tci>ωiz2t_{ci}>\omega_{i}^{z} so that the low-energy τiz=1\expectationvalue{\tau_{i}^{z}}=-1 subspace of each DQD constitutes a qubit which is largely spin-like in character.

In the dispersive regime 1giAC/|ωrωiσ|giAC/|ωiτωr|1\gg g_{i}^{AC}/\absolutevalue{\omega_{r}-\omega_{i}^{\sigma}}\gg g_{i}^{AC}/\absolutevalue{\omega_{i}^{\tau}-\omega_{r}}, we can use a Schrieffer-Wolff transformation to remove the couplings between the DQDs and the resonator to leading order [27]. Next, we take the empty-cavity limit and assume the microwave drives are weak and well-detuned from both the resonator frequency ωr\omega_{r} and the larger DQD transition frequencies ωiτ\omega_{i}^{\tau} so that we can neglect transitions out of the aa=0,τiz=1\expectationvalue{a^{\dagger}a}=0,\expectationvalue{\tau_{i}^{z}}=-1 subspace. Projecting onto this subspace, we obtain an effective Hamiltonian describing the dynamics of our low-energy qubits [28], in which we see the appearance of long-range qubit-qubit interactions mediated by the resonator mode:

H(t)\displaystyle H(t) =i(12ωiσiz+cos(ωidt)(Ωiz(t)σiz+Ωix(t)σix))\displaystyle=\sum_{i}\quantity(\frac{1}{2}\omega_{i}\sigma_{i}^{z}+\cos(\omega_{i}^{d}t)\quantity(\Omega_{i}^{z}(t)\sigma_{i}^{z}+\Omega_{i}^{x}(t)\sigma_{i}^{x}))
i<jJijσixσjx.\displaystyle\hskip 7.11317pt-\sum_{i<j}J_{ij}\sigma_{i}^{x}\sigma_{j}^{x}.

III Cross-resonance gate

To arrive at the cross-resonance gate, we focus on a system of two DQD qubits coupled via a resonator. Here, qubit 2 acts as the target and remains undriven, while the control, qubit 1, is driven. For simplicity, we assume a square-envelope microwave pulse, although higher gate performance can be achieved with pulse shaping techniques [29]. During the pulse, the effective 2-qubit lab-frame Hamiltonian takes the form

H(t)=12ω1σ1z+cos(ω1dt)(Ω1zσ1z+Ω1xσ1x)+12ω2σ2zJσ1xσ2x.H(t)=\frac{1}{2}\omega_{1}\sigma_{1}^{z}+\cos(\omega_{1}^{d}t)\quantity(\Omega_{1}^{z}\sigma_{1}^{z}+\Omega_{1}^{x}\sigma_{1}^{x})+\frac{1}{2}\omega_{2}\sigma_{2}^{z}-J\sigma_{1}^{x}\sigma_{2}^{x}.

We proceed following Ref. [24], moving into the doubly-rotating frame defined by the transformation Ua=exp[itω1d(σ1z+σ2z)/2]U_{a}=\exp[-it\omega_{1}^{d}\quantity(\sigma_{1}^{z}+\sigma_{2}^{z})/2]. Then, after making the rotating wave approximation (RWA) to eliminate single-qubit terms oscillating at multiples of ω1d\omega_{1}^{d}, we diagonalize the remaining single-qubit terms with the time-independent transformation Ub=exp[iχσ1y/2]U_{b}=\exp[-i\chi\sigma_{1}^{y}/2], where χ=arctan(Ω1x/δ1)\chi=\arctan(\Omega_{1}^{x}/\delta_{1}) and δi=ωiω1d\delta_{i}=\omega_{i}-\omega_{1}^{d}. In this diagonalized doubly-rotating frame (DDF), the Hamiltonian becomes

HDDF\displaystyle H_{DDF} =12ησ1z+12δ2σ1zJ(cos(ω1dt)σ2xsin(ω1dt)σ2y)\displaystyle=\frac{1}{2}\eta\sigma_{1}^{z}+\frac{1}{2}\delta_{2}\sigma_{1}^{z}-J\quantity(\cos(\omega_{1}^{d}t)\sigma_{2}^{x}-\sin(\omega_{1}^{d}t)\sigma_{2}^{y})
×(cos(ω1dt)(sin(χ)σ1z+cos(χ)σ1x)sin(ω1dt)σ1y),\displaystyle\hskip 7.11317pt\times\quantity(\cos(\omega_{1}^{d}t)(\sin(\chi)\sigma_{1}^{z}+\cos(\chi)\sigma_{1}^{x})-\sin(\omega_{1}^{d}t)\sigma_{1}^{y}),

where η=δ12+(Ω1x)2\eta=\sqrt{\delta_{1}^{2}+\quantity(\Omega_{1}^{x})^{2}}. Next, we eliminate single-qubit terms with another time-dependent transformation Uc=exp[it(ησ1z+δ2σ2z)/2]U_{c}=\exp[-it\quantity(\eta\sigma_{1}^{z}+\delta_{2}\sigma_{2}^{z})/2]. In this quadruply-rotating frame, we get the Hamiltonian

HQF\displaystyle H_{QF} =J[cos(ω2t)σ2xsin(ω2t)σ2y]×[cos(ω1dt)(sin(χ)σ1z\displaystyle=-J[\cos(\omega_{2}t)\sigma_{2}^{x}-\sin(\omega_{2}t)\sigma_{2}^{y}]\times[\cos(\omega_{1}^{d}t)(\sin(\chi)\sigma_{1}^{z}
+cos(χ)(cos(ηt)σ1xsin(ηt)σ1y))\displaystyle\hskip 8.53581pt+\cos(\chi)\quantity(\cos(\eta t)\sigma_{1}^{x}-\sin(\eta t)\sigma_{1}^{y}))
sin(ω1dt)(cos(ηt)σ1y+sin(ηt)σ1x)].\displaystyle\hskip 8.53581pt-\sin(\omega_{1}^{d}t)\quantity(\cos(\eta t)\sigma_{1}^{y}+\sin(\eta t)\sigma_{1}^{x})].

Generically, all terms in this frame oscillate rapidly. However, by choosing a microwave pulse resonant with our target qubit so that ω1d=ω2\omega_{1}^{d}=\omega_{2}, and assuming ηJ\eta\gg J so that we can again make the RWA and neglect remaining oscillating terms, we arrive at the time-independent Hamiltonian

HQF12J~σ1zσ2x,H_{QF}\approx-\frac{1}{2}\tilde{J}\sigma_{1}^{z}\sigma_{2}^{x},

where we have defined J~=Jsin(χ)=JΩ1x/η\tilde{J}=J\sin(\chi)=J\Omega_{1}^{x}/\eta. Up to local operations, then, this microwave pulse produces a controlled xx-rotation of the target qubit. In particular, when J~t=π/2\tilde{J}t=\pi/2, we get a local CNOT equivalent [24].

Notably, for a given effective coupling JJ, this cross-resonance CNOT is always slower than the previously-introduced resonant iSWAP by a factor of Ω1x/η\Omega_{1}^{x}/\eta. This factor is small when the qubit-qubit detuning Δ=ω1ω2\Delta=\omega_{1}-\omega_{2} is large compared to accessible drive strengths. Unlike the iSWAP, however, there is no need for Δ\Delta to be made small relative to JJ. Additionally, since qubits never need to be tuned into or out of resonance, the DQDs can remain at the ϵi=0\epsilon_{i}=0 sweet spot, allowing for decreased sensitivity to electrical fluctuations [20].

To verify our effective model, we simulate the unitary time evolution of the full 2-DQD system, including orbital degrees of freedom and a single resonator mode truncated to 10 photonic states. We focus on systems with realistic static parameters taken from Ref. [16]. To ensure suppression of entangling interactions in the absence of microwave driving, we choose Zeeman splittings ωiz\omega_{i}^{z} such that the qubits are well-detuned from one another. We choose drive amplitudes consistent with reported EDSR Rabi frequencies in single-electron silicon quantum dots [3, 30], and drive frequencies such that ω1d=ω2\omega_{1}^{d}=\omega_{2}, following our analytical expressions.

0.60.60.650.650.70.70.750.750.80.80.850.850.90.90.950.95110100100200200300300400400500500600600700700Refer to caption

Average Gate Fidelity

t(ns)t~($\mathrm{ns}$)
Figure 1: Average fidelity of the cross-resonance CNOT gate, maximized at each time step over local rotations. Here, we have chosen ωr=6 GHz\omega_{r}=$6\text{\,}\mathrm{GHz}$, ω1z=5.96 GHz\omega_{1}^{z}=$5.96\text{\,}\mathrm{GHz}$, ω2z=5.94 GHz\omega_{2}^{z}=$5.94\text{\,}\mathrm{GHz}$, ϵ1=ϵ2=0\epsilon_{1}=\epsilon_{2}=0, 2tc1=2tc2=7 GHz2t_{c1}=2t_{c2}=$7\text{\,}\mathrm{GHz}$, g1AC=g2AC=40 MHzg_{1}^{AC}=g_{2}^{AC}=$40\text{\,}\mathrm{MHz}$, and g1x=g2x=200 MHzg_{1}^{x}=g_{2}^{x}=$200\text{\,}\mathrm{MHz}$. Starting at time t=0t=0, qubit 1 is subject to a microwave drive with Ω~1\tilde{\Omega}_{1} chosen so that Ω1x=15 MHz\Omega_{1}^{x}=$15\text{\,}\mathrm{MHz}$ and with drive frequency ω1d=5.9059 GHz\omega_{1}^{d}=$5.9059\text{\,}\mathrm{GHz}$. At time t=590 nst=$590\text{\,}\mathrm{ns}$, the microwave drive is stopped. The final gate fidelity is between 98%98\% and 99%99\%, with remaining infidelity primarily due to leakage to excited resonator states.

We numerically solve the Schrödinger equation with the Hamiltonian in Eq. (1) in the eigenbasis of H~0\tilde{H}_{0}. At each time step, we use the evolved states to compute density operators of the full system, and then trace out the higher-energy DQD and resonator degrees of freedom to obtain reduced density operators describing the qubit evolution. We then compute state-averaged gate fidelities according to the formula in Ref. [31]: F¯(,U)=15+180j,k=𝟙,x,y,ztr(Uσ1jσ2kU(σ1jσ2k))\bar{F}(\mathcal{E},U)=\frac{1}{5}+\frac{1}{80}\sum_{j,k=\mathbbm{1},x,y,z}\tr(U\sigma_{1}^{j}\sigma_{2}^{k}U^{\dagger}\mathcal{E}(\sigma_{1}^{j}\sigma_{2}^{k})) where UU is our target gate and (ρ)\mathcal{E}(\rho) is the quantum process describing the noisy time evolution of the qubits. We plot average gate fidelities relative to a perfect CNOT in Fig. 1. We find that with realistic parameters, we are able to realize a local CNOT equivalent with 99%99\% fidelity in 590 ns590\text{\,}\mathrm{ns}, with remaining infidelity largely due to leakage to excited resonator states.

IV Dynamically corrected gates

IV.1 Corrected cross-resonance gate

We can model the effects of quasistatic charge noise on our cross-resonance gate by substituting ϵiϵi+δϵi\epsilon_{i}\to\epsilon_{i}+\delta\epsilon_{i} and tcitci+δtcit_{ci}\to t_{ci}+\delta t_{ci} for the detunings and tunnel couplings respectively, where δϵi\delta\epsilon_{i} and δtci\delta t_{ci} are Gaussian-distributed random variables with standard deviations σϵ\sigma_{\epsilon} and σt\sigma_{t}, respectively. In terms of the low-energy dynamics, the effect of these substitutions is random shifts in the qubit splittings ωi\omega_{i}, drive strengths Ωix\Omega_{i}^{x}, and effective qubit-qubit interaction JJ. The noisy lab-frame Hamiltonian is

H(t)\displaystyle H(t) =12(ω1+δω1)σ1z+12(ω2+δω2)σ2z(J+δJ)σ1xσ2x\displaystyle=\frac{1}{2}\quantity(\omega_{1}+\delta\omega_{1})\sigma_{1}^{z}+\frac{1}{2}\quantity(\omega_{2}+\delta\omega_{2})\sigma_{2}^{z}-\quantity(J+\delta J)\sigma_{1}^{x}\sigma_{2}^{x}
+cos(ω2t)((Ω1z+δΩ1z)σ1z+(Ω1x+δΩ1x)σ1x).\displaystyle\hskip 8.53581pt+\cos(\omega_{2}t)\quantity(\quantity(\Omega_{1}^{z}+\delta\Omega_{1}^{z})\sigma_{1}^{z}+\quantity(\Omega_{1}^{x}+\delta\Omega_{1}^{x})\sigma_{1}^{x}).

As in the noiseless case, we move into the frame rotating with the drive and diagonalize single-qubit terms. Then, discarding all of the same rapidly-oscillating terms as before, we arrive at the noisy DDF Hamiltonian

HDDF=12(η+δη)σ1z+12δω2σ2z12(J~δJ~)σ1zσ2x.H_{DDF}=\frac{1}{2}\quantity(\eta+\delta\eta)\sigma_{1}^{z}+\frac{1}{2}\delta\omega_{2}\sigma_{2}^{z}-\frac{1}{2}\quantity(\tilde{J}-\delta\tilde{J})\sigma_{1}^{z}\sigma_{2}^{x}. (2)

Note that, because of variations δω1\delta\omega_{1} and δΩx\delta\Omega_{x}, this is actually not the same DDF as in the noiseless case, but is related to it by an additional σ1y\sigma_{1}^{y} rotation of angle δχ\delta\chi.

We can compute the average fidelity F¯\bar{F} of the noisy gate Uϕ(1)=𝒯exp(i0ϕ/J~HDDF(t)dt)U^{(1)}_{\phi}=\mathcal{T}\exp(-i\int_{0}^{\phi/\tilde{J}}H_{DDF}(t^{\prime})\differential{t^{\prime}}) relative to the noiseless gate. Expanding to lowest order in each of the shifted parameters, the average gate fidelity for a cross-resonance CNOT (ϕ=π/2\phi=\pi/2) is

F¯1π220(δηJ~)225(δω2J~)2π220(δJ~J~)225δχ2.\bar{F}\approx 1-\frac{\pi^{2}}{20}\quantity(\frac{\delta\eta}{\tilde{J}})^{2}-\frac{2}{5}\quantity(\frac{\delta\omega_{2}}{\tilde{J}})^{2}-\frac{\pi^{2}}{20}\quantity(\frac{\delta\tilde{J}}{\tilde{J}})^{2}-\frac{2}{5}\delta\chi^{2}.
022446688101012121414(a)022446688101012126.577.588.59(b)Refer to caption

Sensitivity (ns)($\mathrm{ns}$)

J~/J~\partial\tilde{J}/\tilde{J}η/J~\partial\eta/\tilde{J}ω2/J~\partial\omega_{2}/\tilde{J}χ\partial\chi

Sensitivity (ns)($\mathrm{ns}$)

2tc/h(GHz)2t_{c}/h~($\mathrm{GHz}$)J/J\partial J/Jω1/J\partial\omega_{1}/Jω2/J\partial\omega_{2}/J
Figure 2: The sensitivities (x=i|xtci|)\quantity(\partial x=\sum_{i}\absolutevalue{\partialderivative{x}{t_{ci}}}) of various system parameters at the charge degeneracy sweet spot (ϵ1=ϵ2=0)\quantity(\epsilon_{1}=\epsilon_{2}=0) [20] with ωr=6 GHz\omega_{r}=$6\text{\,}\mathrm{GHz}$, tc1=tc2=tct_{c1}=t_{c2}=t_{c}, g1AC=g2AC=40 MHzg_{1}^{AC}=g_{2}^{AC}=$40\text{\,}\mathrm{MHz}$, and g1x=g2x=200 MHzg_{1}^{x}=g_{2}^{x}=$200\text{\,}\mathrm{MHz}$ (a) for a cross-resonance CNOT with ω1=5.96 GHz,ω2=5.94 GHz\omega_{1}=$5.96\text{\,}\mathrm{GHz}$,\omega_{2}=$5.94\text{\,}\mathrm{GHz}$, and Ω1x=20 MHz\Omega_{1}^{x}=$20\text{\,}\mathrm{MHz}$. (b) for a resonant iSWAP with ω1=ω2=5.95 GHz\omega_{1}=\omega_{2}=$5.95\text{\,}\mathrm{GHz}$.

The sensitivities of various cross-resonance gate parameters to charge noise are plotted in Fig. 2a for some realistic system parameters. In this regime, we see that η\eta and ω2\omega_{2} are much more sensitive to electrical fluctuations than χ\chi or J~\tilde{J}. For this reason, we neglect errors due to δJ~\delta\tilde{J} and δχ\delta\chi, and focus our efforts instead on correcting the larger errors. Notably, there is a sweet spot at which η\eta is first-order insensitive to charge noise fluctuations. This can be understood from competing effects of δω1\delta\omega_{1} and δΩ1x\delta\Omega_{1}^{x}. For 2tc1>ω1z2t_{c1}>\omega_{1}^{z}, spin-charge hybridization decreases ω1\omega_{1}. Thus, when fluctuations increase spin-charge hybridization, δω1<0\delta\omega_{1}<0. Meanwhile, the drive strength felt by the qubit increases, so Ω1xδΩ1x>0\Omega_{1}^{x}\delta\Omega_{1}^{x}>0. By choosing Δ>0\Delta>0 and using an appropriate drive amplitude, then, we can engineer a situation in which δη1η(Δδω1+Ω1xδΩ1x)=0\delta\eta\approx\frac{1}{\eta}\quantity(\Delta\delta\omega_{1}+\Omega_{1}^{x}\delta\Omega_{1}^{x})=0.

The noisy 2-qubit Hamiltonian in Eq. (2) belongs to an 𝔰𝔲(2)𝔲(1)\mathfrak{su}(2)\oplus\mathfrak{u}(1) subalgebra of 𝔰𝔲(4)\mathfrak{su}(4), with 𝔰𝔲(2)\mathfrak{su}(2) generators {σ1zσ2x,σ1zσ2y,σ2z}\{\sigma_{1}^{z}\sigma_{2}^{x},\sigma_{1}^{z}\sigma_{2}^{y},\sigma_{2}^{z}\}, all of which commute with the 𝔲(1)\mathfrak{u}(1) generator σ1z\sigma_{1}^{z}. While the δη\delta\eta error commutes with the σ1zσ2x\sigma_{1}^{z}\sigma_{2}^{x} generator and can be eliminated with a simple π\pi-pulse (as we discuss below), the δω2\delta\omega_{2} error anticommutes with it, and requires more nontrivial error correction.

One option for suppressing the δω2\delta\omega_{2} error, inspired by techniques used in superconducting qubits [32, 33], is the addition of a microwave-frequency drive applied to the target qubit concurrently with the cross-resonance drive applied to the control qubit (Fig. 3a). By driving the target qubit at its own transition frequency and in-phase with the cross-resonance drive, we introduce a large (Ω2x+δΩ2x)σ2x(\Omega_{2}^{x}+\delta\Omega_{2}^{x})\sigma_{2}^{x} term to the noisy HDDFH_{DDF}. As this new term commutes with our desired σ1zσ2x\sigma_{1}^{z}\sigma_{2}^{x} generator, but anticommutes with σ2z\sigma_{2}^{z}, this additional driving actively suppresses the δω2\delta\omega_{2} error without interfering with entanglement generation. This comes at the expense of introducing a new δΩ2x\delta\Omega_{2}^{x} error. However, this can be eliminated, along with the δη\delta\eta error, by a π\pi rotation about the σiy\sigma_{i}^{y} axis on each qubit. The entire gate sequence, with simultaneous drive on both qubits and single-qubit echo pulses, we refer to as “2Qecho,” and is shown in Fig. 3b. For Ω2xJ~\Omega_{2}^{x}\gg\tilde{J}, the average gate fidelity to lowest order in the presence of this cancellation pulse is

F¯2Qecho125(δω2Ω2x)2π220(δJ~J~)225δχ2.\bar{F}_{\text{2Qecho}}\approx 1-\frac{2}{5}\quantity(\frac{\delta\omega_{2}}{\Omega_{2}^{x}})^{2}-\frac{\pi^{2}}{20}\quantity(\frac{\delta\tilde{J}}{\tilde{J}})^{2}-\frac{2}{5}\delta\chi^{2}.

Below in Sec. IV.3, we test the efficacy of this approach using full numerical simulations. Before we examine these results, however, we first introduce alternative approaches to suppressing noise errors.

While driving the target qubit concurrently with the cross-resonance drive is an effective strategy for suppressing the δω2\delta\omega_{2} error, it requires simultaneous microwave drive of both the target and control qubits, which may be impractical for some devices. As an alternative, we can use the isomorphism that exists between the 𝔰𝔲(2)\mathfrak{su}(2) subalgebra of our Hamiltonian and the ordinary 𝔰𝔲(2)\mathfrak{su}(2) algebra for single-qubit operations to adapt to our purposes the fastest pulse sequence that can eliminate a single-qubit drift error [26]. While Ref. [26] assumed the ability to directly change the sign of the desired generator term, we can achieve the same effect by applying π\pi rotations about the σ1z\sigma_{1}^{z} axis on the control qubit. Defining ψ(ϕ)arccos(cos(ϕ/2)/2)\psi(\phi)\equiv\arccos(\cos(\phi/2)/2), we can correct the δω2\delta\omega_{2} error to lowest order for arbitrary ϕ\phi with the gate sequence

Uϕ1Qpartial\displaystyle U_{\phi}^{\text{1Qpartial}} =Uψ(ϕ)ϕ/2(1)σ2zU2ψ(ϕ)+π(1)σ2zUψ(ϕ)ϕ/2(1)\displaystyle=U_{\psi(\phi)-\phi/2}^{(1)}\sigma_{2}^{z}U_{2\psi(\phi)+\pi}^{(1)}\sigma_{2}^{z}U_{\psi(\phi)-\phi/2}^{(1)}
eiζ(ϕ)2σ1zeiϕ+π2σ1zσ2x\displaystyle\approx e^{-i\frac{\zeta(\phi)}{2}\sigma_{1}^{z}}e^{-i\frac{\phi+\pi}{2}\sigma_{1}^{z}\sigma_{2}^{x}}
+𝒪((δω2J~)2)+𝒪(δJ~J~)+𝒪(δχ)\displaystyle\hskip 7.11317pt+\mathcal{O}\quantity(\quantity(\frac{\delta\omega_{2}}{\tilde{J}})^{2})+\mathcal{O}\quantity(\frac{\delta\tilde{J}}{\tilde{J}})+\mathcal{O}\quantity(\delta\chi)

where ζ(ϕ)=(4ψ(ϕ)+πϕ)(η+δη)/J~\zeta(\phi)=\quantity(4\psi(\phi)+\pi-\phi)(\eta+\delta\eta)/\tilde{J}. If we stop here and set ϕ=π/2\phi=\pi/2, we get a CNOT equivalent which is first-order insensitive to δω2\delta\omega_{2} errors and which never requires simultaneous drive of both qubits. In fact, using virtual gates, it should be possible to realize this gate sequence without applying any drive at all to the target qubit. This sequence, which we call “1Qpartial,” is shown in Fig. 3c. The average gate fidelity relative to the noiseless case, to lowest order, is

F¯1Qpartial\displaystyle\bar{F}_{\text{1Qpartial}} 18.21(δηJ~)29π220(δJ~J~)2\displaystyle\approx 1-8.21\quantity(\frac{\delta\eta}{\tilde{J}})^{2}-\frac{9\pi^{2}}{20}\quantity(\frac{\delta\tilde{J}}{\tilde{J}})^{2}
25δχ25.99(δω2J~)2δJ~J~2.02(δω2J~)4.\displaystyle\hskip 7.11317pt-\frac{2}{5}\delta\chi^{2}-5.99\quantity(\frac{\delta\omega_{2}}{\tilde{J}})^{2}\frac{\delta\tilde{J}}{\tilde{J}}-2.02\quantity(\frac{\delta\omega_{2}}{\tilde{J}})^{4}.

Neglecting single-qubit gate times, which are small relative to the two-qubit gates, this gate sequence increases the total gate time by a factor of 8πψ(π/2)+14.08\frac{8}{\pi}\psi(\pi/2)+1\approx 4.08 compared to the uncorrected CNOT.

(a) Q1Q_{1}ω2\omega_{2}microwaveQ2Q_{2}ω2\omega_{2}JJQ1Q_{1}ω2\omega_{2}Q2Q_{2}JJRefer to caption

\makebox(0.0,0.0)[]{{}}

Uϕ(12)U_{\phi}^{(12)}Uϕ(1)U_{\phi}^{(1)}

Figure 3: (a) Diagram for the different drive schemes used to generate a cross-resonance CNOT. In either case, we have two qubits coupled via a microwave resonator with coupling strength JJ. For the gate Uϕ(12)U_{\phi}^{(12)}, which is used in 2Qecho, both the control and target qubit are driven at the target qubit transition frequency. For the gate Uϕ(1)U_{\phi}^{(1)}, which is used in 1Qpartial and 1Qfull, only the control qubit is driven. (b) Circuit diagram for the 2Qecho corrected CNOT. (c) Circuit diagram for the 1Qpartial corrected CNOT or iSWAP, which corrects only the non-commuting errors. (d) Circuit diagram for the 1Qfull corrected CNOT or iSWAP, which corrects both the commuting and non-commuting errors.

Just as in 2Qecho, the remaining δη\delta\eta error can be completely eliminated using π\pi rotations about the σiy\sigma_{i}^{y} axis on each qubit:

Uϕ1Qfull\displaystyle U_{\phi}^{\text{1Qfull}} =Uϕ/21Qpartialσ1yσ2yUϕ/21Qpartialσ1yσ2y\displaystyle=U_{\phi/2}^{\text{1Qpartial}}\sigma_{1}^{y}\sigma_{2}^{y}U_{\phi/2}^{\text{1Qpartial}}\sigma_{1}^{y}\sigma_{2}^{y}
eiϕ2σ1zσ2x+𝒪((δω2J~)2)+𝒪(δJ~J~)+𝒪(δχ).\displaystyle\approx e^{-i\frac{\phi}{2}\sigma_{1}^{z}\sigma_{2}^{x}}+\mathcal{O}\quantity(\quantity(\frac{\delta\omega_{2}}{\tilde{J}})^{2})+\mathcal{O}\quantity(\frac{\delta\tilde{J}}{\tilde{J}})+\mathcal{O}\quantity(\delta\chi).

The full nested gate sequence, which we call “1Qfull,” is shown in Fig. 3d. Although 1Qfull does require driving both qubits to realize single-qubit gates, it still does not require driving both qubits simultaneously at any point. Note that, because they commute with σ1y\sigma_{1}^{y}, all single-qubit gates can be applied in the doubly-rotating frame using EDSR regardless of the χ\chi rotation. In principle, single-qubit EDSR gates will also suffer some gate infidelity as a result of charge noise, reducing the fidelity of the corrected gate sequence. However, single-qubit π\pi-pulse EDSR gate fidelities exceeding 99.9%99.9\% have been reported for single-electron DQD qubits [3], so we choose here to neglect this additional error source.

Once again setting ϕ=π/2\phi=\pi/2, we obtain a robust CNOT equivalent with average gate fidelity

F¯1Qfull\displaystyle\bar{F}_{\text{1Qfull}} 15π24(δJ~J~)225δχ2\displaystyle\approx 1-\frac{5\pi^{2}}{4}\quantity(\frac{\delta\tilde{J}}{\tilde{J}})^{2}-\frac{2}{5}\delta\chi^{2}
20.41(δω2J~)2δJ~J~8.44(δω2J~)4.\displaystyle\hskip 7.11317pt-20.41\quantity(\frac{\delta\omega_{2}}{\tilde{J}})^{2}\frac{\delta\tilde{J}}{\tilde{J}}-8.44\quantity(\frac{\delta\omega_{2}}{\tilde{J}})^{4}.

This additional step of correcting δη\delta\eta errors yields a gate which is insensitive to charge noise to lowest order. However, the total time required for 1Qfull is increased by a factor 16πψ(π/4)+38.55\frac{16}{\pi}\psi(\pi/4)+3\approx 8.55 compared to the uncorrected CNOT, neglecting single-qubit gate times, and the effect of the δω2\delta\omega_{2} error has been amplified relative to 1Qpartial. For this reason, especially in the presence of accumulating error due to decoherence, it might be preferable to take advantage of the δη=0\delta\eta=0 sweet spot and only correct the δω2\delta\omega_{2} error. This tradeoff is examined more closely in Sec. IV.3, where we also provide a side-by-side comparison of the 2Qecho, 1Qpartial, and 1Qfull sequences.

IV.2 Corrected iSWAP gate

Much of the same analysis can be applied to the iSWAP gate discussed in Refs. [21, 22]. Starting with the noisy, undriven 2-qubit effective Hamiltonian with ω1=ω2=ω\omega_{1}=\omega_{2}=\omega,

H=12(ω+δω1)σ1z+12(ω+δω2)σ2z(J+δJ)σ1xσ2x,H=\frac{1}{2}\quantity(\omega+\delta\omega_{1})\sigma_{1}^{z}+\frac{1}{2}\quantity(\omega+\delta\omega_{2})\sigma_{2}^{z}-\quantity(J+\delta J)\sigma_{1}^{x}\sigma_{2}^{x},

we move to the rotating frame for both qubits and make the RWA. In the doubly-rotating frame, we have

HDF\displaystyle H_{DF} =12δω1σ1z+12δω2σ2z12(J+δJ)(σ1xσ2x+σ1yσ2y)\displaystyle=\frac{1}{2}\delta\omega_{1}\sigma_{1}^{z}+\frac{1}{2}\delta\omega_{2}\sigma_{2}^{z}-\frac{1}{2}\quantity(J+\delta J)\quantity(\sigma_{1}^{x}\sigma_{2}^{x}+\sigma_{1}^{y}\sigma_{2}^{y})
=12δω+σ1z+σ2z2+12δωσ1zσ2z2\displaystyle=\frac{1}{2}\delta\omega_{+}\frac{\sigma_{1}^{z}+\sigma_{2}^{z}}{2}+\frac{1}{2}\delta\omega_{-}\frac{\sigma_{1}^{z}-\sigma_{2}^{z}}{2}
(J+δJ)σ1xσ2x+σ1yσ2y2,\displaystyle\hskip 7.11317pt-\quantity(J+\delta J)\frac{\sigma_{1}^{x}\sigma_{2}^{x}+\sigma_{1}^{y}\sigma_{2}^{y}}{2},

where δω±=δω1±δω2\delta\omega_{\pm}=\delta\omega_{1}\pm\delta\omega_{2}. The gate generated by this Hamiltonian, Uϕ=exp(iϕ2JHDF)U_{\phi}=\exp(-i\frac{\phi}{2J}H_{DF}), thus implements a noisy iSWAP local equivalent for ϕ=π\phi=\pi. The average gate fidelity relative to a noiseless iSWAP gate is

F¯1π210(δJJ)2110(δωJ)2π240(δω+J)2.\bar{F}\approx 1-\frac{\pi^{2}}{10}\quantity(\frac{\delta J}{J})^{2}-\frac{1}{10}\quantity(\frac{\delta\omega_{-}}{J})^{2}-\frac{\pi^{2}}{40}\quantity(\frac{\delta\omega_{+}}{J})^{2}.

The sensitivities of the iSWAP Hamiltonian parameters to charge noise are shown in Fig. 2b. Similar to the cross-resonance gate, we find that the ωi\omega_{i} are much more sensitive than JJ, so we neglect the δJ\delta J error (though such errors could in principle be corrected with a more complicated gate sequence [34]).

Thus again we have a Hamiltonian in an 𝔰𝔲(2)𝔲(1)\mathfrak{su}(2)\oplus\mathfrak{u}(1) subalgebra of 𝔰𝔲(4)\mathfrak{su}(4), now with 𝔰𝔲(2)\mathfrak{su}(2) generators {(σ1xσ2x+σ1yσ2y)/2,(σ1xσ2yσ1yσ2x)/2,(σ1zσ2z)/2}\{\quantity(\sigma_{1}^{x}\sigma_{2}^{x}+\sigma_{1}^{y}\sigma_{2}^{y})/2,\quantity(\sigma_{1}^{x}\sigma_{2}^{y}-\sigma_{1}^{y}\sigma_{2}^{x})/2,\quantity(\sigma_{1}^{z}-\sigma_{2}^{z})/2\}, all of which commute with the 𝔲(1)\mathfrak{u}(1) generator (σ1z+σ2z)/2\quantity(\sigma_{1}^{z}+\sigma_{2}^{z})/2. And again, we have commuting (δω+\delta\omega_{+}) and non-commuting (δω\delta\omega_{-}) error terms which we would like to eliminate. In fact, we can use the exact same nested gate sequence as for the cross-resonance gate to suppress these errors as well. Simply substituting this new UϕU_{\phi} for Uϕ(1)U_{\phi}^{(1)} in the Uϕ1QfullU_{\phi}^{\text{1Qfull}} gate sequence in Fig. 3d and setting ϕ=π\phi=\pi yields a robust iSWAP gate which has substantially reduced sensitivity to charge noise. The fidelity of this corrected iSWAP, to lowest order, is

F¯1Qfull19π210(δJJ)23.00δJJ(δωJ)20.25(δωJ)4.\bar{F}_{\text{1Qfull}}\approx 1-\frac{9\pi^{2}}{10}\quantity(\frac{\delta J}{J})^{2}-3.00\frac{\delta J}{J}\quantity(\frac{\delta\omega_{-}}{J})^{2}-0.25\quantity(\frac{\delta\omega_{-}}{J})^{4}.

Unlike the cross-resonance gate, there is no sweet spot at which the commuting error vanishes, nor can we simply suppress the non-commuting error by driving the qubits, so we must use 1Qfull to obtain a gate which corrects the largest charge noise errors. However, because the iSWAP is a π\pi rotation, the gate time penalty is not as severe, with 1Qfull only increasing the total gate time by a factor of 8πψ(π/2)+14.08\frac{8}{\pi}\psi(\pi/2)+1\approx 4.08 compared to the uncorrected noisy iSWAP, neglecting single-qubit gate times.

1e-081e-061e-041e-021e+00(a)1e-081e-061e-041e-021e+000.010.11(b)Refer to caption

Gate Infidelity

uncorrected1Qfull

Gate Infidelity

σϵ/h(GHz)\sigma_{\epsilon}/h~($\mathrm{GHz}$)uncorrected1Qpartial1Qfull2Qecho
Figure 4: Average gate infidelities for various amplitudes of quasistatic charge noise, starting from the noisy doubly-rotating frame Hamiltonian. Here, we set 2σt=σϵ/1002\sigma_{t}=\sigma_{\epsilon}/100 and have again chosen ωr=6 GHz\omega_{r}=$6\text{\,}\mathrm{GHz}$, ϵ1=ϵ2=0\epsilon_{1}=\epsilon_{2}=0, 2tc1=2tc2=7 GHz2t_{c1}=2t_{c2}=$7\text{\,}\mathrm{GHz}$, g1AC=g2AC=40 MHzg_{1}^{AC}=g_{2}^{AC}=$40\text{\,}\mathrm{MHz}$, and g1x=g2x=200 MHzg_{1}^{x}=g_{2}^{x}=$200\text{\,}\mathrm{MHz}$. (a) For the iSWAP, we choose ω1=ω2=5.95 GHz\omega_{1}=\omega_{2}=$5.95\text{\,}\mathrm{GHz}$, and plot infidelity of the uncorrected gate UπU_{\pi} as well as the corrected 1Qfull. (b) For the cross-resonance CNOT, we choose ω1=5.96 GHz\omega_{1}=$5.96\text{\,}\mathrm{GHz}$, ω2=5.94 GHz\omega_{2}=$5.94\text{\,}\mathrm{GHz}$, and Ω1x=28.5 MHz\Omega_{1}^{x}=$28.5\text{\,}\mathrm{MHz}$, which tunes us to the δη=0\delta\eta=0 sweet spot. Here, in addition to the uncorrected gate Uπ/2(1)U_{\pi/2}^{(1)} and 1Qfull, we also plot the infidelity of 1Qpartial, as well as the infidelity of 2Qecho with Ω2x=15 MHz\Omega_{2}^{x}=$15\text{\,}\mathrm{MHz}$.

IV.3 Corrected gate simulations

To investigate the effectiveness of our corrected gate sequences, we numerically compute the average gate fidelity of our corrected iSWAP and cross-resonance sequences at various quasistatic noise amplitudes. For the iSWAP (Fig. 4a), we find that our corrected gate sequence always outperforms the uncorrected gate, at least in the absence of decohering interactions, with the improvement becoming more pronounced at smaller values of charge noise. We can roughly estimate the impact of decoherence by noting that, at short times, gate fidelity goes as exp(t2/T22)\exp(-t^{2}/T_{2}^{2}). As 1Qfull increases gate time by a factor of nearly 4 for the iSWAP, the relative penalty incurred by 1Qfull due to decoherence is then roughly exp(15tiSWAP2/T22)\exp(-15t_{\text{iSWAP}}^{2}/T_{2}^{2}), where tiSWAPt_{\text{iSWAP}} is the duration of the uncorrected iSWAP. This suggests that our gate sequence still retains its advantage if it is feasible to realize tiSWAP/T2102t_{\text{iSWAP}}/T_{2}\lesssim 10^{-2}.

For the cross-resonance CNOT (Fig. 4b), 2Qecho outperforms all other gate sequences at all levels of charge noise. As 2Qecho does not require increasing gate time beyond the addition of relatively short single-qubit gates, it also incurs no additional penalty due to decoherence. Meanwhile, 1Qfull and 1Qpartial do offer substantial fidelity improvements at sufficiently low charge noise, but no meaningful improvement is offered by either at these system parameters for σϵ100 MHz\sigma_{\epsilon}\gtrsim$100\text{\,}\mathrm{MHz}$ or σt1 MHz\sigma_{t}\gtrsim$1\text{\,}\mathrm{MHz}$. Previous experimental work in Si DQDs found detuning noise on the order of 200 MHz200\text{\,}\mathrm{MHz} [35], suggesting that 1Qfull and 1Qpartial may offer a substantial advantage with moderate improvements over current charge noise levels, provided that gate times can be made sufficiently short relative to T2T_{2}. Notably, because we chose our cross-resonance pulse amplitude to tune the system to the δη=0\delta\eta=0 sweet spot, 1Qpartial actually outperforms 1Qfull here. Considering also the additional penalty incurred by 1Qfull due to increased gate time, this demonstrates the considerable advantage of forgoing 1Qfull for 1Qpartial executed at the sweet spot.

V Conclusion

Our cross-resonance gate, with no requirement that qubits be brought into resonance, extends long-range 2-qubit entangling operations to a broader class of quantum dot architectures with a larger range of useful system parameters. With our focus on experimentally realistic parameters, we hope this work will guide efforts to develop solid-state quantum computing technologies. Additionally, our dynamic error correction sequences have the potential to greatly improve robustness to quasistatic charge noise of both our proposed cross-resonance gate as well as previously investigated cavity-mediated entangling gates, improving prospects of fault-tolerant entangling operations in solid state quantum processors.

Acknowledgments

It is a pleasure to acknowledge John Nichol for helpful discussions. This work is supported by the Army Research Office (W911NF-17-0287 and W911NF-15-1-0149).

References

  • Veldhorst et al. [2014] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, An addressable quantum dot qubit with fault-tolerant control-fidelity, Nature Nanotechnology 9, 981 (2014)arXiv:1407.1950 .
  • Takeda et al. [2016] K. Takeda, J. Kamioka, T. Otsuka, J. Yoneda, T. Nakajima, M. R. Delbecq, S. Amaha, G. Allison, T. Kodera, S. Oda, and S. Tarucha, A fault-tolerant addressable spin qubit in a natural silicon quantum dot, Science Advances 2, e1600694 (2016)arXiv:1602.07833 .
  • Yoneda et al. [2018] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha, A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%, Nature Nanotechnology 13, 102 (2018).
  • Kawakami et al. [2016] E. Kawakami, T. Jullien, P. Scarlino, D. R. Ward, D. E. Savage, M. G. Lagally, V. V. Dobrovitski, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet, Proceedings of the National Academy of Sciences 113, 11738 (2016)arXiv:1602.08334 .
  • Russ et al. [2018] M. Russ, D. M. Zajac, A. J. Sigillito, F. Borjans, J. M. Taylor, J. R. Petta, and G. Burkard, High-fidelity quantum gates in Si/SiGe double quantum dots, Physical Review B 97, 085421 (2018)arXiv:1711.00754 .
  • Zajac et al. [2018] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta, Resonantly driven CNOT gate for electron spins, Science 359, 439 (2018).
  • Sigillito et al. [2019] A. J. Sigillito, M. J. Gullans, L. F. Edge, M. Borselli, and J. R. Petta, Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates, npj Quantum Information 5, 110 (2019).
  • Kloeffel and Loss [2013] C. Kloeffel and D. Loss, Prospects for Spin-Based Quantum Computing in Quantum Dots, Annual Review of Condensed Matter Physics 4, 51 (2013).
  • Hanson et al. [2007] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Spins in few-electron quantum dots, Reviews of Modern Physics 79, 1217 (2007)arXiv:0610433 [cond-mat] .
  • Awschalom et al. [2013] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors, Science 339, 1174 (2013).
  • Srinivasa et al. [2016] V. Srinivasa, J. M. Taylor, and C. Tahan, Entangling distant resonant exchange qubits via circuit quantum electrodynamics, Physical Review B 94, 205421 (2016)arXiv:1603.04829 .
  • Volk et al. [2019] C. Volk, A. M. J. Zwerver, U. Mukhopadhyay, P. T. Eendebak, C. J. van Diepen, J. P. Dehollain, T. Hensgens, T. Fujita, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Loading a quantum-dot based “Qubyte” register, npj Quantum Information 5, 29 (2019)arXiv:1901.00426 .
  • Mortemousque et al. [2020] P.-A. Mortemousque, E. Chanrion, B. Jadot, H. Flentje, A. Ludwig, A. D. Wieck, M. Urdampilleta, C. Bäuerle, and T. Meunier, Coherent control of individual electron spins in a two-dimensional quantum dot array, Nature Nanotechnology 10.1038/s41565-020-00816-w (2020), arXiv:1808.06180 .
  • Mills et al. [2019] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and J. R. Petta, Shuttling a single charge across a one-dimensional array of silicon quantum dots, Nature Communications 10, 1063 (2019)arXiv:1809.03976 .
  • Viennot et al. [2015] J. J. Viennot, M. C. Dartiailh, A. Cottet, and T. Kontos, Coherent coupling of a single spin to microwave cavity photons, Science 349, 408 (2015).
  • Mi et al. [2018a] X. Mi, M. Benito, S. Putz, D. M. Zajac, J. M. Taylor, G. Burkard, and J. R. Petta, A coherent spin–photon interface in silicon, Nature 555, 599 (2018a).
  • Samkharadze et al. [2018] N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen, Strong spin-photon coupling in silicon, Science 359, 1123 (2018)arXiv:1711.02040 .
  • Landig et al. [2018] A. J. Landig, J. V. Koski, P. Scarlino, U. C. Mendes, A. Blais, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin, and T. Ihn, Coherent spin–photon coupling using a resonant exchange qubit, Nature 560, 179 (2018).
  • Beaudoin et al. [2016] F. Beaudoin, D. Lachance-Quirion, W. A. Coish, and M. Pioro-Ladrière, Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings, Nanotechnology 27, 464003 (2016)arXiv:1606.04736 .
  • Benito et al. [2017] M. Benito, X. Mi, J. M. Taylor, J. R. Petta, and G. Burkard, Input-output theory for spin-photon coupling in Si double quantum dots, Physical Review B 96, 235434 (2017)arXiv:1710.02508 .
  • Warren et al. [2019] A. Warren, E. Barnes, and S. E. Economou, Long-distance entangling gates between quantum dot spins mediated by a superconducting resonator, Physical Review B 100, 161303(R) (2019)arXiv:1902.05704 .
  • Benito et al. [2019] M. Benito, J. R. Petta, and G. Burkard, Optimized cavity-mediated dispersive two-qubit gates between spin qubits, Physical Review B 100, 081412(R) (2019)arXiv:1902.07649 .
  • Borjans et al. [2020] F. Borjans, X. Croot, S. Putz, X. Mi, S. M. Quinn, A. Pan, J. Kerckhoff, E. J. Pritchett, C. A. Jackson, L. F. Edge, R. S. Ross, T. D. Ladd, M. G. Borselli, M. F. Gyure, and J. R. Petta, Split-gate cavity coupler for silicon circuit quantum electrodynamics, Applied Physics Letters 116, 234001 (2020)arXiv:arXiv:2003.01088v1 .
  • Rigetti and Devoret [2010] C. Rigetti and M. Devoret, Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies, Physical Review B 81, 134507 (2010).
  • Paraoanu [2006] G. S. Paraoanu, Microwave-induced coupling of superconducting qubits, Physical Review B 74, 140504(R) (2006)arXiv:0801.4541 .
  • Zeng and Barnes [2018] J. Zeng and E. Barnes, Fastest pulses that implement dynamically corrected single-qubit phase gates, Physical Review A 98, 012301 (2018).
  • Schrieffer and Wolff [1966] J. R. Schrieffer and P. A. Wolff, Relation between the Anderson and Kondo Hamiltonians, Physical Review 149, 491 (1966).
  • [28] See Supplemental Material at [URL will be inserted by publisher] for a full derivation of the effective Hamiltonian.
  • Calderon-Vargas et al. [2019] F. A. Calderon-Vargas, G. S. Barron, X. H. Deng, A. J. Sigillito, E. Barnes, and S. E. Economou, Fast high-fidelity entangling gates for spin qubits in Si double quantum dots, Physical Review B 100, 035304 (2019)arXiv:1902.02350 .
  • Neumann and Schreiber [2015] R. Neumann and L. R. Schreiber, Simulation of micro-magnet stray-field dynamics for spin qubit manipulation, Journal of Applied Physics 117, 193903 (2015).
  • Nielsen [2002] M. A. Nielsen, A simple formula for the average gate fidelity of a quantum dynamical operation, Physics Letters A 303, 249 (2002)arXiv:0205035 [quant-ph] .
  • Sheldon et al. [2016] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, Procedure for systematically tuning up cross-talk in the cross-resonance gate, Physical Review A 93, 060302(R) (2016)arXiv:1603.04821 .
  • Sundaresan et al. [2020] N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic, and J. M. Gambetta, Reducing Unitary and Spectator Errors in Cross Resonance with Optimized Rotary Echoes, PRX Quantum 1, 020318 (2020)arXiv:2007.02925 .
  • Güngördü and Kestner [2018] U. Güngördü and J. P. Kestner, Pulse sequence designed for robust C-phase gates in SiMOS and Si/SiGe double quantum dots, Physical Review B 98, 165301 (2018)arXiv:1806.01262 .
  • Mi et al. [2018b] X. Mi, S. Kohler, and J. R. Petta, Landau-Zener interferometry of valley-orbit states in Si/SiGe double quantum dots, Physical Review B 98, 161404(R) (2018b)arXiv:1805.04545 .