This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


SCATTERING FOR THE RADIAL FOCUSING INLS EQUATION IN HIGHER DIMENSIONS

LUIZ GUSTAVO FARAH AND CARLOS M. GUZMÁN LUIZ G. FARAH Department of Mathematics, Federal University of Minas Gerais, BRAZIL lgfarah@gmail.com CARLOS M. GUZMÁN Department of Mathematics, Federal University of Minas Gerais, BRAZIL carlos.guz.j@gmail.com
Abstract.

We consider the inhomogeneous nonlinear Schrödinger equation

iut+Δu+|x|b|u|αu=0,iu_{t}+\Delta u+|x|^{-b}|u|^{\alpha}u=0,

where 42bN<α<42bN2\frac{4-2b}{N}<\alpha<\frac{4-2b}{N-2} (when N=2N=2, 42bN<α<\frac{4-2b}{N}<\alpha<\infty) and 0<b<min{N/3,1}0<b<\min\{N/3,1\}. For a radial initial data u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) under a certain smallness condition we prove that the corresponding solution is global and scatters. The smallness condition is related to the ground state solution of Q+ΔQ+|x|b|Q|αQ=0-Q+\Delta Q+|x|^{-b}|Q|^{\alpha}Q=0 and the critical Sobolev index sc=N22bαs_{c}=\frac{N}{2}-\frac{2-b}{\alpha}. This is an extension of the recent work [10] by the same authors, where they consider the case N=3N=3 and α=2\alpha=2. The proof is inspired by the concentration-compactness/rigidity method developed by Kenig-Merle [22] to study H1(N)H^{1}(\mathbb{R}^{N})-critical problem and also Holmer-Roudenko [18] in the case of H1(N)H^{1}(\mathbb{R}^{N})-subcritical equations.

1. Introduction

This paper is concerned with the initial value problem (IVP) for the focusing inhomogenous nonlinear Schrödinger (INLS) equation

{itu+Δu+|x|b|u|αu=0,t,xN,u(0,x)=u0(x),\left\{\begin{array}[]{cl}i\partial_{t}u+\Delta u+|x|^{-b}|u|^{\alpha}u=0,&\;\;\;t\in\mathbb{R},\;x\in\mathbb{R}^{N},\\ u(0,x)=u_{0}(x),&\end{array}\right. (1.1)

where u=u(t,x)u=u(t,x) is a complex-valued function in space-time ×N\mathbb{R}\times\mathbb{R}^{N} and b>0b>0.

Note that when b=0b=0 the above equation is the classical nonlinear Schrödinger equation (NLS) which appears in the description of nonlinear waves for various physical phenomena. On the other hand, in the end of the last century, it was suggested that in some situations laser beam propagation can be modeled by the inhomogeneous nonlinear Schrödinger equation in the following form

itu+Δu+V(x)|u|αu=0.i\partial_{t}u+\Delta u+V(x)|u|^{\alpha}u=0. (1.2)

We refer the reader to Gill [15] and Liu-Tripathi [25] for more physical details. From the mathematical point of view, the INLS model (1.2) has been investigated by several authors over the last two decades. For instance, Merle [26] and Raphaël-Szeftel [27], assuming k1<V(x)<k2k_{1}<V(x)<k_{2} with k1,k2>0k_{1},k_{2}>0, study the problem of existence/nonexistence of minimal mass blow-up solutions. Fibich-Wang [11], for V(ϵ|x|)V(\epsilon|x|) with ϵ\epsilon small and VC4(N)L(N)V\in C^{4}(\mathbb{R}^{N})\cap L^{\infty}(\mathbb{R}^{N}), consider the stability of solitary waves. We should point out that in all these works the authors assume that V(x)V(x) is a bounded function, so the well-posedness theory for the NLS equation can be directly applied also in this case. However, such assumption does not hold for the INLS equation (1.1) and several challenging technical difficulties arise in its study.

We briefly review some existence results available in the literature. Let us first introduce the following number:

2:={42bN2N3,N=2.2^{*}:=\left\{\begin{array}[]{cl}\frac{4-2b}{N-2}&\;\;\;\;N\geq 3,\\ \infty&\;\;\;\;\;N=2.\end{array}\right. (1.3)

Genoud and Stuart [12]-[13], using the abstract theory developed by Cazenave [3], showed that (1.1) is locally well-posed in H1(N)H^{1}(\mathbb{R}^{N}) if 0<α<20<\alpha<2^{*} and globally if 42bN<α<2\frac{4-2b}{N}<\alpha<2^{\ast} for small initial data. Recently, the second author in [17] gave an alternative proof of these results, using the contraction mapping principle based on the Strichartz estimates satisfied by the linear flow. This new approach will be very important to carry out the analysis in the present study. For other recent works about the INLS model we refer the reader to Hong [19], Killip-Murphy-Visan-Zheng [23] and Combet-Genoud[4].

We focus on the L2L^{2}-supercritical and H1H^{1}-subcritical case. Let us briefly explain this terminology. For a fixed δ>0\delta>0, the rescaled function uδ(t,x)=δ2bαu(δ2t,δx)u_{\delta}(t,x)=\delta^{\frac{2-b}{\alpha}}u(\delta^{2}t,\delta x) is solution of (1.1) if only if u(t,x)u(t,x) is. This scaling property gives rise to a scale-invariant norm. Indeed, computing the homogeneus Sobolev norm of uδ(0,x)u_{\delta}(0,x) we have

uδ(0,.)Hs˙=δsN2+2bαu0Hs˙.\|u_{\delta}(0,.)\|_{\dot{H^{s}}}=\delta^{s-\frac{N}{2}+\frac{2-b}{\alpha}}\|u_{0}\|_{\dot{H^{s}}}.

Thus, the Sobolev space Hsc(N)H^{s_{c}}(\mathbb{R}^{N}), with sc=N22bαs_{c}=\frac{N}{2}-\frac{2-b}{\alpha}, is invariant under the above scaling. The number scs_{c} is commonly referred as the critical Sobolev index. Now, L2L^{2}-supercritical and H1H^{1}-subcritical equations refer to the case where 0<sc<10<s_{c}<1. A simple computation shows that the last relation is equivalent to 42bN<α<2\frac{4-2b}{N}<\alpha<2^{*}.

It is well-known that the INLS equation (1.1) has the following conserved quantities

M[u(t)]=N|u(t,x)|2𝑑xM[u(t)]=\int_{\mathbb{R}^{N}}|u(t,x)|^{2}dx (1.4)

and

E[u(t)]=12N|u(t,x)|2𝑑x1α+2|x|b|u|α+2Lx1,E[u(t)]=\frac{1}{2}\int_{\mathbb{R}^{N}}|\nabla u(t,x)|^{2}dx-\frac{1}{\alpha+2}\left\||x|^{-b}|u|^{\alpha+2}\right\|_{L^{1}_{x}}, (1.5)

which are called Mass and Energy, respectively. Furthermore, since

uδLx2=δscuLx2,uδLx2=δ1scuLx2\|u_{\delta}\|_{L^{2}_{x}}=\delta^{-s_{c}}\|u\|_{L^{2}_{x}},\;\;\;\;\|\nabla u_{\delta}\|_{L^{2}_{x}}=\delta^{1-s_{c}}\|\nabla u\|_{L^{2}_{x}} (1.6)

and

|x|b|uδ|α+2Lx1=δ2(1sc)|x|b|u|α+2Lx1,\left\||x|^{-b}|u_{\delta}|^{\alpha+2}\right\|_{L^{1}_{x}}=\delta^{2(1-s_{c})}\left\||x|^{-b}|u|^{\alpha+2}\right\|_{L^{1}_{x}},

it is easy to see that the following quantities are scale invariant

E[uδ]scM[uδ]1sc=E[u]scM[u]1sc,uδLx2scuδLx21sc=uLx2scuLx21sc.E[u_{\delta}]^{s_{c}}M[u_{\delta}]^{1-s_{c}}=E[u]^{s_{c}}M[u]^{1-s_{c}},\;\;\|\nabla u_{\delta}\|^{s_{c}}_{L^{2}_{x}}\|u_{\delta}\|^{1-s_{c}}_{L^{2}_{x}}=\|\nabla u\|^{s_{c}}_{L^{2}_{x}}\|u\|^{1-s_{c}}_{L^{2}_{x}}. (1.7)

These quantities were introduced in Holmer-Roudenko [18] (see also Duyckaerts-Holmer-Roudenko [7]) in order to describe the dichotomy between blowup/global regularity for the 3D3D cubic nonlinear Schrödinger equation (NLS). Here, these quantities also play an important role in our analysis.

The main goal is to extend our result in [10] to general dimensions N2N\geq 2. More precisely, we want to obtain sufficient conditions on the initial data u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) such that the corresponding solution is global and scatters according to the next definition.

Definition 1.1.

A global solution u(t)u(t) to the Cauchy problem (1.1) scatters forward in time in H1(N)H^{1}(\mathbb{R}^{N}), if there exists ϕ+H1(N)\phi^{+}\in H^{1}(\mathbb{R}^{N}) such that

limt+u(t)U(t)ϕ+H1=0.\lim_{t\rightarrow+\infty}\|u(t)-U(t)\phi^{+}\|_{H^{1}}=0.

Also, we say that u(t)u(t) scatters backward in time if there exists ϕH1(N)\phi^{-}\in H^{1}(\mathbb{R}^{N}) such that

limtu(t)U(t)ϕH1=0.\lim_{t\rightarrow-\infty}\|u(t)-U(t)\phi^{-}\|_{H^{1}}=0.

Here, U(t)U(t) denotes unitary group associated with the linear equation itu+Δu=0i\partial_{t}u+\Delta u=0, with initial data u0u_{0}.

The global theory for the L2L^{2}-supercritical and H1H^{1}-subcritical INLS equation (1.1) was already investigated by the first author in [9], where he proved the following result.

Theorem 1.2.

Let 42bN<α<2\frac{4-2b}{N}<\alpha<2^{*} (or equivaly 0<sc<10<s_{c}<1) and 0<b<min{2,N}0<b<\min\{2,N\}. Suppose that u(t)u(t) is the solution of (1.1) with initial data u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) satisfying

E[u0]scM[u0]1sc<E[Q]scM[Q]1scE[u_{0}]^{s_{c}}M[u_{0}]^{1-s_{c}}<E[Q]^{s_{c}}M[Q]^{1-s_{c}} (1.8)

and

u0L2scu0L21sc<QL2scQL21sc,\|\nabla u_{0}\|_{L^{2}}^{s_{c}}\|u_{0}\|_{L^{2}}^{1-s_{c}}<\|\nabla Q\|_{L^{2}}^{s_{c}}\|Q\|_{L^{2}}^{1-s_{c}}, (1.9)

then u(t)u(t) is a global solution in H1(N)H^{1}(\mathbb{R}^{N}). Furthermore, for any tt\in\mathbb{R} we have

u(t)L2scu(t)L21sc<QL2scQL21sc,\|\nabla u(t)\|_{L^{2}}^{s_{c}}\|u(t)\|_{L^{2}}^{1-s_{c}}<\|\nabla Q\|_{L^{2}}^{s_{c}}\|Q\|_{L^{2}}^{1-s_{c}}, (1.10)

where QQ is unique positive solution of the elliptic equation

Q+ΔQ+|x|b|Q|αQ=0.-Q+\Delta Q+|x|^{-b}|Q|^{\alpha}Q=0. (1.11)

In this work we prove, for radial initial data, that the global solution obtained in the above theorem also scatters, under some extra restrictions on the parameters bb and α\alpha. These restrictions are probably technical and are direct consequence of the approach used to estimate the nonlinear part |x|b|u|αu|x|^{-b}|u|^{\alpha}u (see Lemmas 4.4, 4.5, 4.7 and Proposition 6.1). The method of the proof is based on the concentration-compactness and rigidity technique developed by Kenig-Merle [22] and Holmer-Roudenko [18] (see also Fang-Xie-Cazenave [8] and Guevara [16]) for the NLS equation. Our main theorem reads as follows.

Theorem 1.3.

Let

2:={42bN2N4,32bN=3,N=2.2_{*}:=\left\{\begin{array}[]{cl}\frac{4-2b}{N-2}&\;\;\;\;N\geq 4,\\ 3-2b&\;\;\;\;N=3,\\ \infty&\;\;\;\;\;N=2.\end{array}\right. (1.12)

Assume that 42bN<α<2\frac{4-2b}{N}<\alpha<2_{*} and 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\}. If u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) is radial and (1.8)-(1.9) are satisfied, then the corresponding solution u(t)u(t) of (1.1) is global in H1(N)H^{1}(\mathbb{R}^{N}) and scatters both forward and backward in time.

For N=3N=3, we impose an extra assumption namely 42b3<α<32b\frac{4-2b}{3}<\alpha<3-2b. So in 3D it is still an open problem to prove scattering for the global solutions given by Theorem 1.2, when 32bα<42b3-2b\leq\alpha<4-2b. However, the cubic INLS equation in 3D (α=2\alpha=2 and N=3N=3) is included in the assumptions of Theorem 1.3 and this is exactly the case considered by the authors in [10]. So, the present article can be viewed as an extension of this study to all spacial dimensions N2N\geq 2. In particular, when N=2N=2 or N4N\geq 4 the above theorem asserts scattering for all range of L2L^{2}-supercritical and H1H^{1}-subcritical INLS equations (1.1) (recall (1.3)), assuming that the initial data is radial and satisfies the assumptions (1.8)-(1.9).

Similarly as in the NLS model (also 3D3D cubic INLS), to establish scattering we use the following criteria111The proof will be given after Proposition 4.10..

Proposition 1.4.

(H1H^{1} scattering) Let u(t)u(t) be a global solution of (1.1) with initial data u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}). If uS(H˙sc)<+\|u\|_{S(\dot{H}^{s_{c}})}<+\infty and suptu(t)Hx1B\sup\limits_{t\in\mathbb{R}}\|u(t)\|_{H^{1}_{x}}\leq B. Then u(t)u(t) scatters in H1(N)H^{1}(\mathbb{R}^{N}) as t±t\rightarrow\pm\infty.

Our paper is organized as follows. In the next section we introduce some notation and estimates. In Section 33, we outline the proof of our main result (Theorem 1.3), assuming all the technical points. In Section 44, we recall some properties of the ground state and we collect many preliminary results of the Cauchy problem (1.1). Next in Section 55, we establish a profile decomposition result and an Energy Pythagorean expansion for such a decomposition. In Section 66, we construct a critical solution denoted by ucu_{c} and we show some of its properties. Finally, Section 77 is devoted to a rigidity theorem.

2. Notation and preliminares

In this section, we introduce some general notations and give basic results that will be used along the work.

2.1. Some notation

Given a set ANA\subset\mathbb{R}^{N} then AC=N\AA^{C}=\mathbb{R}^{N}\backslash A denotes the complement of AA. We use cc to denote various constants that may vary line by line. Given any positive numbers aa and bb, the notation aba\lesssim b means that there exists a positive constant cc that acba\leq cb. Cp,qC_{p,q} denotes a constant depending on pp and qq. Given x,yNx,y\in\mathbb{R}^{N} then xyx\cdot y denotes the inner product of xx and yy on N\mathbb{R}^{N}. We denote by a±=a±εa^{\pm}=a\pm\varepsilon with ε>0\varepsilon>0 small enough.

For ss\in\mathbb{R}, JsJ^{s} and DsD^{s} denote the Bessel and the Riesz potentials of order ss, given via Fourier transform by the formulas

Jsf^=(1+|y|2)s2f^andDsf^=|y|sf^,\widehat{J^{s}f}=(1+|y|^{2})^{\frac{s}{2}}\widehat{f}\;\;\;\textnormal{and}\;\;\;\;\widehat{D^{s}f}=|y|^{s}\widehat{f},

where the Fourier transform of f(x)f(x) is given by

f^(y)=Neix.yf(x)𝑑x.\widehat{f}(y)=\int_{\mathbb{R}^{N}}e^{ix.y}f(x)dx.

We also denote the support of a function ff, by

supp(f)={f:N:f(x)0}¯.supp(f)=\overline{\{f:\mathbb{R}^{N}\rightarrow\mathbb{C}:f(x)\neq 0\}}.

2.2. Functional spaces

We start with C0(N)C^{\infty}_{0}(\mathbb{R}^{N}) denoting the space of functions with continuous derivatives of all orders and compact support in N\mathbb{R}^{N}.

We use .Lp\|.\|_{L^{p}} to denote the Lp(N)L^{p}(\mathbb{R}^{N}) norm with p1p\geq 1. If necessary, we use subscript to inform which variable we are concerned with. The mixed norms in the spaces LtqLxrL^{q}_{t}L^{r}_{x} and LTqLxrL^{q}_{T}L^{r}_{x} of f(x,t)f(x,t) are defined, respectively, as

fLtqLxr=(f(t,.)Lxrqdt)1q\|f\|_{L^{q}_{t}L^{r}_{x}}=\left(\int_{\mathbb{R}}\|f(t,.)\|^{q}_{L^{r}_{x}}dt\right)^{\frac{1}{q}}

and

fLTqLxr=(Tf(t,.)Lxrqdt)1q\|f\|_{L^{q}_{T}L^{r}_{x}}=\left(\int_{T}^{\infty}\|f(t,.)\|^{q}_{L^{r}_{x}}dt\right)^{\frac{1}{q}}

with the usual modifications when q=q=\infty or r=r=\infty.

We also define the norm of the Sobolev spaces Hs,r(N)H^{s,r}(\mathbb{R}^{N}) and H˙s,r(N)\dot{H}^{s,r}(\mathbb{R}^{N}), respectively, by

fHs,r:=JsfLrandfH˙s,r:=DsfLr.\|f\|_{H^{s,r}}:=\|J^{s}f\|_{L^{r}}\;\;\;\;\textnormal{and}\;\;\;\;\|f\|_{\dot{H}^{s,r}}:=\|D^{s}f\|_{L^{r}}.

If r=2r=2 we denote Hs,2=HsH^{s,2}=H^{s} and H˙s,2=H˙s\dot{H}^{s,2}=\dot{H}^{s}.

Next we recall some Strichartz norms. We begin with the following definitions:

Definition 2.1.

The pair (q,r)(q,r) is called L2L^{2}-admissible if it satisfies the condition

2q=N2Nr,\frac{2}{q}=\frac{N}{2}-\frac{N}{r},

where

{2r2NN2ifN3,2r<+ifN=2,2r+ifN=1.\left\{\begin{array}[]{cl}2\leq&r\leq\frac{2N}{N-2}\hskip 14.22636pt\textnormal{if}\;\;\;N\geq 3,\\ 2\leq&r<+\infty\;\hskip 14.22636pt\textnormal{if}\;\;\;N=2,\\ 2\leq&r\leq+\infty\;\hskip 14.22636pt\textnormal{if}\;\;\;N=1.\end{array}\right. (2.1)
Remark 2.2.

We included in the above definition the improvement, due to M. Keel and T. Tao [21], to the limiting case for Strichartz’s inequalities.

Definition 2.3.

We say the pair (q,r)(q,r) is H˙s\dot{H}^{s}-admissible if222It is worth mentioning that the pair (,2NN2s)\left(\infty,\frac{2N}{N-2s}\right) also satisfies the relation (2.2), however, in our work we will not make use of this pair when we estimate the nonlinearity |x|b|u|αu|x|^{-b}|u|^{\alpha}u.

2q=N2Nrs,\frac{2}{q}=\frac{N}{2}-\frac{N}{r}-s, (2.2)

where

{2NN2s<r(2NN2)ifN3,21s<r((21s)+)ifN=2,212s<r+ifN=1.\left\{\begin{array}[]{cl}\frac{2N}{N-2s}<&r\leq\left(\frac{2N}{N-2}\right)^{-}\;\;\hskip 11.38092pt\textnormal{if}\;\;N\geq 3,\\ \frac{2}{1-s}<&r\leq\left((\frac{2}{1-s})^{+}\right)^{\prime}\;\hskip 5.69046pt\textnormal{if}\;\;\;N=2,\\ \frac{2}{1-2s}<&r\leq+\infty\;\;\hskip 34.14322pt\textnormal{if}\;\;\;N=1.\end{array}\right. (2.3)

Moreover, (a+)(a^{+})^{\prime} is the number such that

1a=1(a+)+1a+,\frac{1}{a}=\frac{1}{(a^{+})^{\prime}}+\frac{1}{a^{+}}, (2.4)

that is (a+):=a+.aa+a(a^{+})^{\prime}:=\frac{a^{+}.a}{a^{+}-a}. Finally we say that (q,r)(q,r) is H˙s\dot{H}^{-s}-admissible if

2q=N2Nr+s,\frac{2}{q}=\frac{N}{2}-\frac{N}{r}+s,

where

{(2NN2s)+r(2NN2)ifN3,(21s)+r((21+s)+)ifN=2,(212s)+r+ifN=1.\left\{\begin{array}[]{cl}\left(\frac{2N}{N-2s}\right)^{+}\leq&r\leq\left(\frac{2N}{N-2}\right)^{-}\;\;\hskip 11.38092pt\textnormal{if}\;\;N\geq 3,\\ \left(\frac{2}{1-s}\right)^{+}\leq&r\leq\left((\frac{2}{1+s})^{+}\right)^{\prime}\;\hskip 5.69046pt\textnormal{if}\;\;\;N=2,\\ \left(\frac{2}{1-2s}\right)^{+}\leq&r\leq+\infty\;\;\hskip 34.14322pt\textnormal{if}\;\;\;N=1.\end{array}\right. (2.5)

Given ss\in\mathbb{R}, let 𝒜s={(q,r);(q,r)isH˙sadmissible}\mathcal{A}_{s}=\{(q,r);\;(q,r)\;\textnormal{is}\;\dot{H}^{s}-\textnormal{admissible}\} and (q,r)(q^{\prime},r^{\prime}) is such that 1q+1q=1\frac{1}{q}+\frac{1}{q^{\prime}}=1 and 1r+1r=1\frac{1}{r}+\frac{1}{r^{\prime}}=1 for (q,r)𝒜s(q,r)\in\mathcal{A}_{s}. We define the following Strichartz norm

uS(H˙s)=sup(q,r)𝒜suLtqLxr\|u\|_{S(\dot{H}^{s})}=\sup_{(q,r)\in\mathcal{A}_{s}}\|u\|_{L^{q}_{t}L^{r}_{x}}

and the dual Strichartz norm

uS(H˙s)=inf(q,r)𝒜suLtqLxr.\|u\|_{S^{\prime}(\dot{H}^{-s})}=\inf_{(q,r)\in\mathcal{A}_{-s}}\|u\|_{L^{q^{\prime}}_{t}L^{r^{\prime}}_{x}}.
Remark 2.4.

Note that, if s=0s=0 then 𝒜0\mathcal{A}_{0} is the set of all L2L^{2}-admissible pairs. Moreover, if s=0s=0, S(H˙0)=S(L2)S(\dot{H}^{0})=S(L^{2}) and S(H˙0)=S(L2)S^{\prime}(\dot{H}^{0})=S^{\prime}(L^{2}). We just write S(H˙s)S(\dot{H}^{s}) or S(H˙s)S^{\prime}(\dot{H}^{-s}) if the mixed norm is evaluated over ×N\mathbb{R}\times\mathbb{R}^{N}. To indicate a restriction to a time interval I(,)I\subset(-\infty,\infty) and a subset AA of N\mathbb{R}^{N}, we will consider the notations S(H˙s(A);I)S(\dot{H}^{s}(A);I) and S(H˙s(A);I)S^{\prime}(\dot{H}^{-s}(A);I).

2.3. Basic estimates

We start with two important remarks (the second one provides a condition for the integrability of |x|b|x|^{-b} on BB and BCB^{C}).

Remark 2.5.

Let B=B(0,1)={xN;|x|1}B=B(0,1)=\{x\in\mathbb{R}^{N};|x|\leq 1\} and b>0b>0. If xBCx\in B^{C} then |x|b<1|x|^{-b}<1 and so

|x|bfLxrfLxr(BC)+|x|bfLxr(B).\left\||x|^{-b}f\right\|_{L^{r}_{x}}\leq\|f\|_{L_{x}^{r}(B^{C})}+\left\||x|^{-b}f\right\|_{L_{x}^{r}(B)}.
Remark 2.6.

Note that if Nγb>0\frac{N}{\gamma}-b>0 then |x|bLγ(B)<+\||x|^{-b}\|_{L^{\gamma}(B)}<+\infty. Indeed

B|x|γb𝑑x=c01rγbrN1𝑑r=c1rNγb|01<+ifNγb>0.\int_{B}|x|^{-\gamma b}dx=c\int_{0}^{1}r^{-\gamma b}r^{N-1}dr=c_{1}\left.r^{N-\gamma b}\right|_{0}^{1}<+\infty\;\;\textnormal{if}\;\;\frac{N}{\gamma}-b>0.

Similarly, we have that |x|bLγ(BC)\||x|^{-b}\|_{L^{\gamma}(B^{C})} is finite if Nγb<0\frac{N}{\gamma}-b<0.

Now, we list (without proving) some well known estimates associated to the linear Schrödinger operator.

Lemma 2.7.

If t0t\neq 0, 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1 and p[1,2]p^{\prime}\in[1,2], then U(t):Lp(N)Lp(N)U(t):L^{p^{\prime}}(\mathbb{R}^{N})\rightarrow L^{p}(\mathbb{R}^{N}) is continuous and

U(t)fLxp|t|N2(1p1p)fLp.\|U(t)f\|_{L^{p}_{x}}\lesssim|t|^{-\frac{N}{2}(\frac{1}{p^{\prime}}-\frac{1}{p})}\|f\|_{L^{p^{\prime}}}.
Proof.

See Linares-Ponce [24, Lemma 4.14.1]. ∎

Lemma 2.8.

The following statements hold.

  • (i)

    (Linear estimates).

    U(t)fS(L2)cfL2,\|U(t)f\|_{S(L^{2})}\leq c\|f\|_{L^{2}}, (2.6)
    U(t)fS(H˙s)cfH˙s.\|U(t)f\|_{S(\dot{H}^{s})}\leq c\|f\|_{\dot{H}^{s}}. (2.7)
  • (ii)

    (Inhomogeneous estimates).

    U(tt)g(.,t)dtS(L2)+0tU(tt)g(.,t)dtS(L2)cgS(L2),\left\|\int_{\mathbb{R}}U(t-t^{\prime})g(.,t^{\prime})dt^{\prime}\right\|_{S(L^{2})}\;+\;\left\|\int_{0}^{t}U(t-t^{\prime})g(.,t^{\prime})dt^{\prime}\right\|_{S(L^{2})}\leq c\|g\|_{S^{\prime}(L^{2})}, (2.8)
    0tU(tt)g(.,t)dtS(H˙s)cgS(H˙s).\left\|\int_{0}^{t}U(t-t^{\prime})g(.,t^{\prime})dt^{\prime}\right\|_{S(\dot{H}^{s})}\leq c\|g\|_{S^{\prime}(\dot{H}^{-s})}. (2.9)

The inequalities of Lemma 2.8 are the well known Strichartz estimates. The relations (2.8) and (2.9) will be very useful to perform estimates on the nonlinearity |x|b|u|αu|x|^{-b}|u|^{\alpha}u. We refer the reader to Linares-Ponce [24] and Kato [20] (see also Holmer-Roudenko [18] and Guevara [16]).

We end this section by recalling the Sobolev inequalities and giving a useful remark.

Lemma 2.9.

Let s(0,+)s\in(0,+\infty) and 1p<+1\leq p<+\infty.

  • (i)

    If s(0,Np)s\in\left(0,\frac{N}{p}\right) then Hs,p(N)H^{s,p}(\mathbb{R}^{N}) is continuously embedded in Lr(N)L^{r}(\mathbb{R}^{N}) where s=NpNrs=\frac{N}{p}-\frac{N}{r}. Moreover,

    fLrcDsfLp.\|f\|_{L^{r}}\leq c\|D^{s}f\|_{L^{p}}. (2.10)
  • (ii)

    If s=N2s=\frac{N}{2} then Hs(N)Lr(N)H^{s}(\mathbb{R}^{N})\subset L^{r}(\mathbb{R}^{N}) for all r[2,+)r\in[2,+\infty). Furthermore,

    fLrcfHs.\|f\|_{L^{r}}\leq c\|f\|_{H^{s}}. (2.11)
Proof.

See Bergh-Löfström [1, Theorem 6.5.16.5.1] (see also Linares-Ponce [24, Theorem 3.33.3] and Demenguel-Demenguel [6, Proposition 4.18]). ∎

As a consequence of Lemma 2.9 (i)(i) (particular case: p=2p=2 and s(0,N2)s\in(0,\frac{N}{2})) we have that Hs(N)H^{s}(\mathbb{R}^{N}) is continuously embedded in Lr(N)L^{r}(\mathbb{R}^{N}) and

fLrcfHs,\|f\|_{L^{r}}\leq c\|f\|_{H^{s}}, (2.12)

where r[2,2NN2s]r\in[2,\frac{2N}{N-2s}].

Remark 2.10.

Let F(x,z)=|x|b|z|αzF(x,z)=|x|^{-b}|z|^{\alpha}z, and f(z)=|z|αzf(z)=|z|^{\alpha}z. The complex derivative of ff is

fz(z)=α+22|z|αandfz¯(z)=α2|z|α2z2.f_{z}(z)=\frac{\alpha+2}{2}|z|^{\alpha}\;\;\;\;\;\textnormal{and}\;\;\;\;f_{\bar{z}}(z)=\frac{\alpha}{2}|z|^{\alpha-2}z^{2}.

For z,wz,w\in\mathbb{C}, we get

f(z)f(w)=01[fz(w+θ(zw))(zw)+fz¯(w+θ(zw))(zw)¯]𝑑θ.f(z)-f(w)=\int_{0}^{1}\left[f_{z}(w+\theta(z-w))(z-w)+f_{\bar{z}}(w+\theta(z-w))\overline{(z-w)}\right]d\theta.

Hence,

|F(x,z)F(x,w)||x|b(|z|α+|w|α)|zw|.|F(x,z)-F(x,w)|\lesssim|x|^{-b}\left(|z|^{\alpha}+|w|^{\alpha}\right)|z-w|. (2.13)

Our interest now is to estimate (F(x,z)F(x,w))\nabla\left(F(x,z)-F(x,w)\right). A simple computation gives

F(x,z)=(|x|b)f(z)+|x|bf(z)\nabla F(x,z)=\nabla(|x|^{-b})f(z)+|x|^{-b}\nabla f(z) (2.14)

where f(z)=f(z)z=fz(z)z+fz¯(z)z¯f(z)=f^{\prime}(z)\nabla z=f_{z}(z)\nabla z+f_{\bar{z}}(z)\overline{\nabla z}.
We first estimate |(f(z)f(w))||\nabla(f(z)-f(w))|. Observe that

(f(z)f(w))=f(z)(zw)+(f(z)f(w))w.\nabla(f(z)-f(w))=f^{\prime}(z)(\nabla z-\nabla w)+(f^{\prime}(z)-f^{\prime}(w))\nabla w. (2.15)

So, since (the proof of the following estimate can be found in Cazenave-Fang-Han [2, Remark 2.32.3])

|fz(z)fz(w)|{(|z|α1+|w|α1)|zw|ifα>1,|zw|αif 0<α1|f_{z}(z)-f_{z}(w)|\lesssim\left\{\begin{array}[]{cl}(|z|^{\alpha-1}+|w|^{\alpha-1})|z-w|&\textnormal{if}\;\alpha>1,\\ |z-w|^{\alpha}&\textnormal{if}\;0<\alpha\leq 1\end{array}\right.

and

|fz¯(z)fz¯(w)|{(|z|α1+|w|α1)|zw|ifα>1,|zw|αif 0<α1,|f_{\bar{z}}(z)-f_{\bar{z}}(w)|\lesssim\left\{\begin{array}[]{cl}(|z|^{\alpha-1}+|w|^{\alpha-1})|z-w|&\textnormal{if}\;\alpha>1,\\ |z-w|^{\alpha}&\textnormal{if}\;0<\alpha\leq 1,\end{array}\right.

we get that

|(f(z)f(w))||z|α|(zw)|+(|z|α1+|w|α1)|w||zw|ifα>1|\nabla(f(z)-f(w))|\lesssim|z|^{\alpha}|\nabla(z-w)|+(|z|^{\alpha-1}+|w|^{\alpha-1})|\nabla w||z-w|\;\;\textnormal{if}\;\alpha>1

and

|(f(z)f(w))||z|α|(zw)|+|zw|α|w|if  0<α1,|\nabla(f(z)-f(w))|\lesssim|z|^{\alpha}|\nabla(z-w)|+|z-w|^{\alpha}|\nabla w|\;\;\;\textnormal{if}\;\;0<\alpha\leq 1,

where we have used (2.15). Therefore, by (2.14), (2.13) and the two last inequalities we obtain

|(F(x,z)F(x,w))||x|b1(|z|α+|w|α)|zw|+|x|b|z|α|(zw)|+E,\left|\nabla\left(F(x,z)-F(x,w)\right)\right|\lesssim|x|^{-b-1}(|z|^{\alpha}+|w|^{\alpha})|z-w|+|x|^{-b}|z|^{\alpha}|\nabla(z-w)|+E, (2.16)

where

E\displaystyle E \displaystyle\lesssim {|x|b(|z|α1+|w|α1)|w||zw|ifα>1|x|b|w||zw|αif   0<α1.\displaystyle\left\{\begin{array}[]{cl}|x|^{-b}\left(|z|^{\alpha-1}+|w|^{\alpha-1}\right)|\nabla w||z-w|&\textnormal{if}\;\;\;\alpha>1\vskip 5.69046pt\\ |x|^{-b}|\nabla w||z-w|^{\alpha}&\textnormal{if}\;\;\;0<\alpha\leq 1.\end{array}\right.

3. Outline of the proof of Theorem 1.3

In this short section, we give the proof of Theorem 1.3, assuming all preliminary results. We start with the following definition.

Definition 3.1.

We shall say that SC(u0u_{0}) holds if the solution u(t)u(t) with initial data u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) is global and (3.1) holds.

Let u(t)u(t) be the corresponding H1H^{1} solution for the IVP (1.1) with radial data u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) satisfying (1.8) and (1.9). We already know by Theorem 1.2 that the solution is globally defined and suptu(t)H1<\sup\limits_{t\in\mathbb{R}}\|u(t)\|_{H^{1}}<\infty. Furthermore, if

uS(H˙sc)<+\|u\|_{S(\dot{H}^{s_{c}})}<+\infty (3.1)

then uu scatters in H1(N)H^{1}(\mathbb{R}^{N}) ( see Proposition 1.4). To achieve the scattering property (3.1), we follow the exposition in Holmer-Roudenko [18] and Fang-Xie-Cazenave [8] (see also our work [10]), which was based in the ideas introduced by Kenig-Merle [22]. Indeed, define

Definition 3.2.

For each δ>0\delta>0 define the set AδA_{\delta} to be the collection of all initial data in H1(N)H^{1}(\mathbb{R}^{N}) satisfying

Aδ={u0H1:E[u0]scM[u0]1sc<δandu0L2scu0L21sc<QL2scQL21sc}\displaystyle A_{\delta}=\{u_{0}\in H^{1}:E[u_{0}]^{s_{c}}M[u_{0}]^{1-s_{c}}<\delta\;\textnormal{and}\;\|\nabla u_{0}\|^{s_{c}}_{L^{2}}\|u_{0}\|^{1-s_{c}}_{L^{2}}<\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}}\}

and define

δc=sup{δ>0:u0AδSC(u0)holds}=supδ>0Bδ.\delta_{c}=\sup\{\;\delta>0:\;u_{0}\;\in A_{\delta}\;\Longrightarrow SC(u_{0})\;\textnormal{holds}\}=\sup_{\delta>0}B_{\delta}. (3.2)

Note that there always exists a δ>0\delta>0 such that the above statement is true, i.e., BδB_{\delta}\neq\emptyset (see the proof at the end of this section).

To prove Theorem 1.3 we have two cases to consider. If δcE[Q]scM[Q]1sc\delta_{c}\geq E[Q]^{s_{c}}M[Q]^{1-s_{c}} then we are done. Assume now, by contradiction, that δc<E[Q]scM[Q]1sc\delta_{c}<E[Q]^{s_{c}}M[Q]^{1-s_{c}}. There exists a sequence of radial solutions unu_{n} to (1.1) with H1H^{1} initial data un,0u_{n,0} (rescale all of them to have un,0L2=1\|u_{n,0}\|_{L^{2}}=1 for all nn) such that333We can rescale un,0u_{n,0} such that un,0L2=1\|u_{n,0}\|_{L^{2}}=1. Indeed, if un,0λ(x)=λ2bαun,0(λx)u^{\lambda}_{n,0}(x)=\lambda^{\frac{2-b}{\alpha}}u_{n,0}(\lambda x) then by (1.7) we have E[un,0λ]scM[un,0λ]1sc<E[Q]scM[Q]1scE[u^{\lambda}_{n,0}]^{s_{c}}M[u^{\lambda}_{n,0}]^{1-s_{c}}<E[Q]^{s_{c}}M[Q]^{1-s_{c}} and un,0λL2scun,0λL21sc<QL2scQL21sc\|\nabla u^{\lambda}_{n,0}\|^{s_{c}}_{L^{2}}\|u^{\lambda}_{n,0}\|^{1-s_{c}}_{L^{2}}<\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}}. Moreover, since un,0λL2=λscun,0L2\|u^{\lambda}_{n,0}\|_{L^{2}}=\lambda^{-s_{c}}\|u_{n,0}\|_{L^{2}} by (1.6), setting λsc=un,0L2\lambda^{s_{c}}=\|u_{n,0}\|_{L^{2}} we have un,0λL2=1\|u^{\lambda}_{n,0}\|_{L^{2}}=1.

un,0L2sc<QL2scQL21sc\|\nabla u_{n,0}\|^{s_{c}}_{L^{2}}<\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}} (3.3)

and

E[un]scδcasn+,E[u_{n}]^{s_{c}}\searrow\delta_{c}\;\textnormal{as}\;n\rightarrow+\infty,

for which SC(un,0u_{n,0}) does not hold for any nn\in\mathbb{N}, that is unS(H˙sc)=+\|u_{n}\|_{S(\dot{H}^{s_{c}})}=+\infty, since we get by Theorem 1.2 that unu_{n} is globally defined. Thus using a profile decomposition result (see Proposition 5.1) on the sequence {un,0}n\{u_{n,0}\}_{n\in\mathbb{N}} we can construct a critical solution of (1.1), denoted by ucu_{c}, that lies exactly at the threshold δc\delta_{c}, satisfies (3.3) (it implies that ucu_{c} is globally defined again by Theorem 1.2) and ucS(H˙sc)=+\|u_{c}\|_{S(\dot{H}^{s_{c}})}=+\infty (see Proposition 6.1). Moreover, we show that the critical solution ucu_{c} has the property that K={uc(t):t[0,+)}K=\{u_{c}(t):t\in[0,+\infty)\} is precompact in H1(N)H^{1}(\mathbb{R}^{N}) (see Proposition 6.3). Finally, the rigidity theorem (Theorem 7.3) will imply that ucu_{c} (critical solution) is identically zero, which contradicts the fact that ucS(H˙sc)=+\|u_{c}\|_{S(\dot{H}^{s_{c}})}=+\infty.

To complete the proof it remains to establish BδB_{\delta}\neq\emptyset. Indeed, the Strichartz estimate (2.7), interpolation and Lemma 4.2 (i) imply that

U(t)u0S(H˙sc)\displaystyle\|U(t)u_{0}\|_{S(\dot{H}^{s_{c}})} \displaystyle\leq cu0H˙sccu0L2scu0L21sc\displaystyle c\|u_{0}\|_{\dot{H}^{s_{c}}}\leq c\|\nabla u_{0}\|^{s_{c}}_{L^{2}}\|u_{0}\|^{1-s_{c}}_{L^{2}}
\displaystyle\leq c(Nα+2bαsc)sc2E[u0]sc2M[u0]1sc2.\displaystyle c\left(\frac{N\alpha+2b}{\alpha s_{c}}\right)^{\frac{s_{c}}{2}}E[u_{0}]^{\frac{s_{c}}{2}}M[u_{0}]^{\frac{1-s_{c}}{2}}.

So if u0Aδu_{0}\in A_{\delta} then E[u0]scM[u0]1sc<(αscNα+2b)scδ2,E[u_{0}]^{s_{c}}M[u_{0}]^{1-s_{c}}<\left(\frac{\alpha s_{c}}{N\alpha+2b}\right)^{s_{c}}\delta^{\prime 2}, which implies U(t)u0S(H˙sc)cδ\|U(t)u_{0}\|_{S(\dot{H}^{s_{c}})}\leq c\delta^{\prime}. Therefore, by the small data theory (Proposition 4.10) we obtain that SC(u0)SC(u_{0}) holds for δ>0\delta^{\prime}>0 small enough.

4. Energy bounds and the Cauchy problem

We divide this section in two parts. First, we recall some properties that are related to our problem and we provide important estimates. Subsequently, we show the basic results concerning the IVP (1.1) that will help us in the proof of Theorem 1.3.

We start with the following Gagliardo-Nirenberg inequality (it was obtained by the first author in [9])

|x|b|u|α+2Lx1CGNuLx2Nα+2b2uLx242bα(N2)2,\left\||x|^{-b}|u|^{\alpha+2}\right\|_{L^{1}_{x}}\leq C_{GN}\|\nabla u\|^{\frac{N\alpha+2b}{2}}_{L^{2}_{x}}\|u\|^{\frac{4-2b-\alpha(N-2)}{2}}_{L^{2}_{x}}, (4.1)

with the sharp constant

CGN=2(α+2)Nα+2b(42bα(N2)Nα+2b)αsc/21QL2αC_{GN}=\frac{2(\alpha+2)}{N\alpha+2b}\left(\frac{4-2b-\alpha(N-2)}{N\alpha+2b}\right)^{\alpha s_{c}/2}\frac{1}{\|Q\|^{\alpha}_{L^{2}}} (4.2)

where QQ is the ground state solution of (1.11). Furthermore, QQ satisfies

QL22=Nα+2b42bα(N2)QL22\|\nabla Q\|^{2}_{L^{2}}=\frac{N\alpha+2b}{4-2b-\alpha(N-2)}\|Q\|^{2}_{L^{2}} (4.3)

and

|x|b|Q|α+2L1=2(α+2)Nα+2bQL22.\left\||x|^{-b}|Q|^{\alpha+2}\right\|_{L^{1}}=\frac{2(\alpha+2)}{N\alpha+2b}\|\nabla Q\|^{2}_{L^{2}}. (4.4)

Combining the relations (4.2), (4.3) and (4.4) we deduce (recalling sc=N22bαs_{c}=\frac{N}{2}-\frac{2-b}{\alpha})

CGN=2(α+2)(Nα+2b)QL2αscQL2α(1sc).C_{GN}=\frac{2(\alpha+2)}{(N\alpha+2b)\|\nabla Q\|^{\alpha s_{c}}_{L^{2}}\|Q\|^{\alpha(1-s_{c})}_{L^{2}}}. (4.5)

Also, we get

E[Q]=12QL221α+2|x|b|Q|α+2L1=αscNα+2bQL22.E[Q]=\frac{1}{2}\|\nabla Q\|^{2}_{L^{2}}-\frac{1}{\alpha+2}\left\||x|^{-b}|Q|^{\alpha+2}\right\|_{L^{1}}=\frac{\alpha s_{c}}{N\alpha+2b}\|\nabla Q\|^{2}_{L^{2}}. (4.6)

In the sequel, we show the radial Sobolev Gagliardo-Nirenberg inequality in NN dimension. The proof follows the ideas introduced by Strauss [28].

Lemma 4.1.

Let N2N\geq 2, R>0R>0 and fH1(N)f\in H^{1}(\mathbb{R}^{N}) a radial function. Then the following inequality holds

sup|x|R|f(x)|1RN12fL212fL212.\sup_{|x|\geq R}|f(x)|\leq\frac{1}{R^{\frac{N-1}{2}}}\|f\|^{\frac{1}{2}}_{L^{2}}\|\nabla f\|^{\frac{1}{2}}_{L^{2}}. (4.7)
Proof.

Since ff is radial we deduce

sup|x|R|f(x)|2\displaystyle\sup_{|x|\geq R}|f(x)|^{2} =\displaystyle= sup|x|R12|x|+r(f2)dr\displaystyle\sup_{|x|\geq R}\frac{1}{2}\int_{|x|}^{+\infty}\partial_{r}(f^{2})dr
\displaystyle\leq R+frfdr\displaystyle\int_{R}^{+\infty}f\partial_{r}fdr
\displaystyle\leq (R+|f|2𝑑r)12(R+|rf|2𝑑r)12,\displaystyle\left(\int_{R}^{+\infty}|f|^{2}dr\right)^{\frac{1}{2}}\left(\int_{R}^{+\infty}|\partial_{r}f|^{2}dr\right)^{\frac{1}{2}},

where we have used that ff has to vanish at infinite and the Cauchy-Schwarz inequality. On the other hand, the fact that |x|R|x|\geq R (or rRr\geq R) implies 1rR1\leq\frac{r}{R} so

sup|x|R|f(x)|2\displaystyle\sup_{|x|\geq R}|f(x)|^{2} \displaystyle\leq (R+|f|2(rR)N1)12(R+|rf|2(rR)N1𝑑r)12\displaystyle\left(\int_{R}^{+\infty}|f|^{2}\left(\frac{r}{R}\right)^{N-1}\right)^{\frac{1}{2}}\left(\int_{R}^{+\infty}|\partial_{r}f|^{2}\left(\frac{r}{R}\right)^{N-1}dr\right)^{\frac{1}{2}}
\displaystyle\leq 1RN12(R+|f|2r2(N1))121RN12(R+|rf|2r2(N1)𝑑r)12\displaystyle\frac{1}{R^{\frac{N-1}{2}}}\left(\int_{R}^{+\infty}|f|^{2}r^{2(N-1)}\right)^{\frac{1}{2}}\frac{1}{R^{\frac{N-1}{2}}}\left(\int_{R}^{+\infty}|\partial_{r}f|^{2}r^{2(N-1)}dr\right)^{\frac{1}{2}}
=\displaystyle= 1RN1(R+|f|2𝑑x)12(R+|f|2𝑑x)12\displaystyle\frac{1}{R^{N-1}}\left(\int_{R}^{+\infty}|f|^{2}dx\right)^{\frac{1}{2}}\left(\int_{R}^{+\infty}|\nabla f|^{2}dx\right)^{\frac{1}{2}}
\displaystyle\leq 1RN1fL2fL2,\displaystyle\frac{1}{R^{N-1}}\|f\|_{L^{2}}\|\nabla f\|_{L^{2}},

where in the third line we have used the fact that |rf|=|f||\partial_{r}f|=|\nabla f| for radial functions. We finish the proof taking the square root on both sides. ∎

We now provide some useful energy inequalities.

Lemma 4.2.

Let vH1(N)v\in H^{1}(\mathbb{R}^{N}) such that

E[v]scM[v]1sc<E[Q]scM[Q]1scE[v]^{s_{c}}M[v]^{1-s_{c}}<E[Q]^{s_{c}}M[Q]^{1-s_{c}} (4.8)

and

vL2scvL21scQL2scQL21sc.\|\nabla v\|^{s_{c}}_{L^{2}}\|v\|_{L^{2}}^{1-s_{c}}\leq\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|_{L^{2}}^{1-s_{c}}. (4.9)

Then, the following statements hold

  • (i)

    αscNα+2bvL22E(v)12vL22\frac{\alpha s_{c}}{N\alpha+2b}\|\nabla v\|^{2}_{L^{2}}\leq E(v)\leq\frac{1}{2}\|\nabla v\|^{2}_{L^{2}},

  • (ii)

    vL2scvL21scw12QL2scQL21sc\|\nabla v\|^{s_{c}}_{L^{2}}\|v\|^{1-s_{c}}_{L^{2}}\leq w^{\frac{1}{2}}\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}},

  • (iii)

    16AE[v]8AvL228vL224(Nα+2b)α+2|x|b|v|α+2L116AE[v]\leq 8A\|\nabla v\|_{L^{2}}^{2}\leq 8\|\nabla v\|^{2}_{L^{2}}-\frac{4(N\alpha+2b)}{\alpha+2}\left\||x|^{-b}|v|^{\alpha+2}\right\|_{L^{1}},

where444Note that, the relation (4.8) implies that w<1w<1 and A>0A>0. w=E[v]scM[v]1scE[Q]scM[Q]1scw=\frac{E[v]^{s_{c}}M[v]^{1-s_{c}}}{E[Q]^{s_{c}}M[Q]^{1-s_{c}}} and A=(1wα2)A=(1-w^{\frac{\alpha}{2}}).

Proof.

(i) The definition of Energy (1.5) yields the second inequality. The first one is obtained by observing that (using (4.1), (4.5) and (4.9))

E[v]\displaystyle E[v] \displaystyle\geq 12vL22CGNα+2vL2Nα+2b2vL242bα(N2)2\displaystyle\frac{1}{2}\|\nabla v\|^{2}_{L^{2}}-\frac{C_{GN}}{\alpha+2}\|\nabla v\|^{\frac{N\alpha+2b}{2}}_{L^{2}}\|v\|^{\frac{4-2b-\alpha(N-2)}{2}}_{L^{2}}
=\displaystyle= 12vL22(12CGNα+2vL2αscvL2α(1sc))\displaystyle\frac{1}{2}\|\nabla v\|^{2}_{L^{2}}\left(1-\frac{2C_{GN}}{\alpha+2}\|\nabla v\|^{\alpha s_{c}}_{L^{2}}\|v\|^{\alpha(1-s_{c})}_{L^{2}}\right)
\displaystyle\geq 12vL22(12CGNα+2QL2αscQL2α(1sc))\displaystyle\frac{1}{2}\|\nabla v\|^{2}_{L^{2}}\left(1-\frac{2C_{GN}}{\alpha+2}\|\nabla Q\|^{\alpha s_{c}}_{L^{2}}\|Q\|^{\alpha(1-s_{c})}_{L^{2}}\right)
=\displaystyle= Nα(42b)2(Nα+2b)vL22\displaystyle\frac{N\alpha-(4-2b)}{2(N\alpha+2b)}\|\nabla v\|^{2}_{L^{2}}
=\displaystyle= αscNα+2bvL22.\displaystyle\frac{\alpha s_{c}}{N\alpha+2b}\|\nabla v\|^{2}_{L^{2}}.

(ii) The first inequality in (i) implies vL22Nα+2bαscE(v)\|\nabla v\|^{2}_{L^{2}}\leq\frac{N\alpha+2b}{\alpha s_{c}}E(v), multiplying it by M[v]σ=vL22σM[v]^{\sigma}=\|v\|_{L^{2}}^{2\sigma}, where σ=1scsc\sigma=\frac{1-s_{c}}{s_{c}}, we get

vL22vL22σ\displaystyle\|\nabla v\|^{2}_{L^{2}}\|v\|^{2\sigma}_{L^{2}} \displaystyle\leq Nα+2bαscE[v]M[v]σ\displaystyle\frac{N\alpha+2b}{\alpha s_{c}}E[v]M[v]^{\sigma}
=\displaystyle= Nα+2bαscE[v]M[v]σE[Q]M[Q]σE[Q]M[Q]σ\displaystyle\frac{N\alpha+2b}{\alpha s_{c}}\frac{E[v]M[v]^{\sigma}}{E[Q]M[Q]^{\sigma}}E[Q]M[Q]^{\sigma}
=\displaystyle= wQ2QL22σ,\displaystyle w\|\nabla Q\|^{2}\|Q\|^{2\sigma}_{L^{2}},

where we have used (4.6).

(iii) Let B=8vL224(Nα+2b)α+2|x|b|v|α+2L1B=8\|\nabla v\|^{2}_{L^{2}}-\frac{4(N\alpha+2b)}{\alpha+2}\left\||x|^{-b}|v|^{\alpha+2}\right\|_{L^{1}}. Applying the Gagliardo-Niremberg inequality (4.1) and item (ii) we have

B\displaystyle B \displaystyle\geq 8vL224(Nα+2b)CGNα+2vL2Nα+2b2vL242bα(N2)2\displaystyle 8\|\nabla v\|^{2}_{L^{2}}-\frac{4(N\alpha+2b)C_{GN}}{\alpha+2}\|\nabla v\|^{\frac{N\alpha+2b}{2}}_{L^{2}}\|v\|^{\frac{4-2b-\alpha(N-2)}{2}}_{L^{2}}
\displaystyle\geq vL22(84(Nα+2b)α+2CGNwα2QL2αscQL2α(1sc))\displaystyle\|\nabla v\|^{2}_{L^{2}}\left(8-\frac{4(N\alpha+2b)}{\alpha+2}C_{GN}w^{\frac{\alpha}{2}}\|\nabla Q\|^{\alpha s_{c}}_{L^{2}}\|Q\|^{\alpha(1-s_{c})}_{L^{2}}\right)
=\displaystyle= vL228(1wα2),\displaystyle\|\nabla v\|^{2}_{L^{2}}8(1-w^{\frac{\alpha}{2}}),

where in the last equality, we have used (4.5). Next, the first inequality obviously holds. ∎

We end the first part of this section with a important lemma. Define

p~=2NN2ifN3andp~=ifN=2.\widetilde{p}=\frac{2N}{N-2}\;\;\textnormal{if}\;\;N\geq 3\;\;\textnormal{and}\;\;\widetilde{p}=\infty\;\;\textnormal{if}\;\;N=2. (4.10)
Lemma 4.3.

Let 42bN<α<2\frac{4-2b}{N}<\alpha<2^{*} and 0<b<min{2,N}0<b<\min\{2,N\}. If ff and gH1(N)g\in H^{1}(\mathbb{R}^{N}) then

  • (i)

    |x|b|f|α+1gL1cfLα+2α+1gLα+2+cfLrα+1gLr\left\||x|^{-b}|f|^{\alpha+1}g\right\|_{L^{1}}\leq c\|f\|^{\alpha+1}_{L^{\alpha+2}}\|g\|_{L^{\alpha+2}}+c\|f\|^{\alpha+1}_{L^{r}}\|g\|_{L^{r}}

  • (ii)

    |x|b|f|α+1gL1cfH1α+1gH1\left\||x|^{-b}|f|^{\alpha+1}g\right\|_{L^{1}}\leq c\|f\|^{\alpha+1}_{{H^{1}}}\|g\|_{H^{1}}

  • (iii)

    lim|t|+|x|b|U(t)f|α+1gLx1=0.\lim\limits_{|t|\rightarrow+\infty}\left\||x|^{-b}|U(t)f|^{\alpha+1}g\right\|_{L^{1}_{x}}=0.

where555Since α<p~\alpha<\widetilde{p} we have N(α+2)Nb<p~\frac{N(\alpha+2)}{N-b}<\widetilde{p}, which implies that there exists rr such that N(α+2)Nb<r<p~\frac{N(\alpha+2)}{N-b}<r<\widetilde{p} . 2<N(α+2)Nb<r<p~2<\frac{N(\alpha+2)}{N-b}<r<\widetilde{p}.

Proof.

(i) We divide the estimate in the regions BCB^{C} and BB. Indeed, it follows from Remark 2.5 and the Hölder inequality (since 1=α+1α+2+1α+21=\frac{\alpha+1}{\alpha+2}+\frac{1}{\alpha+2}) that

|x|b|f|α+1gL1\displaystyle\left\||x|^{-b}|f|^{\alpha+1}g\right\|_{L^{1}} \displaystyle\leq |f|α+1gL1(BC)+|x|b|f|α+1gL1(B)\displaystyle\left\||f|^{\alpha+1}g\right\|_{L^{1}(B^{C})}+\left\||x|^{-b}|f|^{\alpha+1}g\right\|_{L^{1}(B)} (4.11)
\displaystyle\leq fLα+2α+1gLα+2+x|b|Lγ(B)fL(α+1)βα+1gLr\displaystyle\|f\|^{\alpha+1}_{L^{\alpha+2}}\|g\|_{L^{\alpha+2}}+\|x|^{-b}|\|_{L^{\gamma}(B)}\|f\|^{\alpha+1}_{L^{(\alpha+1)\beta}}\|g\|_{L^{r}}
=\displaystyle= fLα+2α+1gLα+2+x|b|Lγ(B)fLrα+1gLr,\displaystyle\|f\|^{\alpha+1}_{L^{\alpha+2}}\|g\|_{L^{\alpha+2}}+\|x|^{-b}|\|_{L^{\gamma}(B)}\|f\|^{\alpha+1}_{L^{r}}\|g\|_{L^{r}},

where

1=1γ+1β+1randr=(α+1)β.1=\frac{1}{\gamma}+\frac{1}{\beta}+\frac{1}{r}\;\;\;\;\;\textnormal{and}\;\;\;\;\;\;r=(\alpha+1)\beta. (4.12)

Since r>N(α+2)Nbr>\frac{N(\alpha+2)}{N-b} and using (4.12), we obtain

Nγ=NN(α+2)r>b,\frac{N}{\gamma}=N-\frac{N(\alpha+2)}{r}>b,

which implies that |x|bLγ(B)\||x|^{-b}\|_{L^{\gamma}(B)} is bounded (see Remark 2.6). This completes the proof of item (i).

(ii) Applying the Sobolev inequality (2.11) (for N=2N=2 and s=1s=1) and (2.12) (for N3N\geq 3 and s=1s=1), it is easy to see that H1Lα+2H^{1}\hookrightarrow L^{\alpha+2} and H1LrH^{1}\hookrightarrow L^{r} (where 2<N(α+2)Nb<r<p~2<\frac{N(\alpha+2)}{N-b}<r<\widetilde{p}), then by (4.11) we get (ii).

(iii) We also have (using the same argument as (i) and (ii))

|x|b|U(t)f|α+1gLx1cU(t)fLα+2α+1gH1+cU(t)fLrα+1gH1,\displaystyle\left\||x|^{-b}|U(t)f|^{\alpha+1}g\right\|_{L^{1}_{x}}\leq c\|U(t)f\|^{\alpha+1}_{L^{\alpha+2}}\|g\|_{H^{1}}+c\|U(t)f\|^{\alpha+1}_{L^{r}}\|g\|_{H^{1}}, (4.13)

for 2<N(α+2)Nb<r<p~2<\frac{N(\alpha+2)}{N-b}<r<\widetilde{p}.
To complete the proof we show that U(t)fLxr\|U(t)f\|_{L^{r}_{x}} and U(t)fLxα+2\|U(t)f\|_{L^{\alpha+2}_{x}} 0\rightarrow 0 as |t|+|t|\rightarrow+\infty. Indeed, it suffices to show (since rr and α+2\alpha+2 belong to (2,p~)(2,\widetilde{p}))

lim|t|+U(t)fLxp=0,\lim\limits_{|t|\rightarrow+\infty}\|U(t)f\|_{L^{p}_{x}}=0, (4.14)

where 2<p<p~2<p<\widetilde{p}. Let f~H1Lp\widetilde{f}\in H^{1}\cap L^{p^{\prime}}, the Sobolev embedding (2.11) if N=2N=2 or (2.12) if N3N\geq 3 and Lemma 2.7 yield

U(t)fLxpcff~H1+c|t|N(p2)2pf~Lp.\|U(t)f\|_{L^{p}_{x}}\leq c\|f-\widetilde{f}\|_{{H}^{1}}+c|t|^{-\frac{N(p-2)}{2p}}\|\widetilde{f}\|_{L^{p^{\prime}}}.

Note that the exponent of |t||t| is negative (since p>2p>2), then approximating ff by f~C0\widetilde{f}\in C^{\infty}_{0} in H1H^{1}, we obtain (4.14). ∎

Our interested now is to show a miscellaneous of results for the Cauchy problem (1.1). We begin by recalling the small data global theory in H1H^{1} (it was obtained by the second author in [17]). After that, we prove the H1H^{1} -scattering criterion, the perturbation theory and the existence of wave operators. To this end, the heart of the proof is to establish good estimates on the nonlinearity. The next lemmas provide these estimates.

Lemma 4.4.

Let N2N\geq 2, 42bN<α<2\frac{4-2b}{N}<\alpha<2^{*} and 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\}. Then there exist c>0c>0 and θ(0,α)\theta\in(0,\alpha) sufficiently small such that

|x|b|u|αvS(H˙sc)uLtHx1θuS(H˙sc)αθvS(H˙sc).\left\||x|^{-b}|u|^{\alpha}v\right\|_{S^{\prime}(\dot{H}^{-s_{c}})}\lesssim\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\|v\|_{S(\dot{H}^{s_{c}})}. (4.15)
Proof.

See [17, Lemma 4.14.1, with s=1s=1]. ∎

Lemma 4.5.

Let N2N\geq 2, 42bN<α<2\frac{4-2b}{N}<\alpha<2^{*} and 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\}. Then there exist c>0c>0 and θ(0,α)\theta\in(0,\alpha) sufficiently small such that

|x|b|u|αvS(L2)uLtHx1θuS(H˙sc)αθvS(L2).\left\||x|^{-b}|u|^{\alpha}v\right\|_{S^{\prime}(L^{2})}\lesssim\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\|v\|_{S(L^{2})}. (4.16)
Proof.

See [17, Lemma 4.24.2, with s=1s=1]. ∎

Remark 4.6.

As an immediate consequence of Lemma 4.5, we have following estimate for α>1\alpha>1

|x|b|u|α1vwS(L2)cuLtHx1θuS(H˙sc)α1θvS(H˙sc)wS(L2),\left\||x|^{-b}|u|^{\alpha-1}vw\right\|_{S^{\prime}(L^{2})}\leq c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-1-\theta}_{S(\dot{H}^{s_{c}})}\|v\|_{S(\dot{H}^{s_{c}})}\|w\|_{S(L^{2})},

where θ(0,α1)\theta\in(0,\alpha-1) is a sufficiently small number. Indeed, we can repeat all the computations replacing |u|αv|u|^{\alpha}v by |u|α1vw|u|^{\alpha-1}vw or, to be more precise, replacing |u|αv=|u|θ|u|αθv|u|^{\alpha}v=|u|^{\theta}|u|^{\alpha-\theta}v by |u|α1vw=|u|θ|u|α1θvw|u|^{\alpha-1}vw=|u|^{\theta}|u|^{\alpha-1-\theta}vw.

The last inequality is important in the perturbation theory.

Before stating the next lemma, we define the following numbers:

k=4α(α+1θ)42bαp=6α(α+1θ)(42b)(αθ)+αk=\frac{4\alpha(\alpha+1-\theta)}{4-2b-\alpha}\hskip 42.67912pt\;p=\frac{6\alpha(\alpha+1-\theta)}{(4-2b)(\alpha-\theta)+\alpha} (4.17)

and

l=4α(α+1θ)α(3α2+2b)θ(3α4+2b),l=\frac{4\alpha(\alpha+1-\theta)}{\alpha(3\alpha-2+2b)-\theta(3\alpha-4+2b)}, (4.18)

where θ(0,α)\theta\in(0,\alpha) small enough. It is easy to see that (l,p)(l,p) is L2L^{2}-admissible and (k,p)(k,p) is H˙sc\dot{H}^{s_{c}}-admissible. In Appendix we verify the conditions of admissible pair.

Lemma 4.7.

Let N2N\geq 2, 42bN<α<2\frac{4-2b}{N}<\alpha<2_{*} and 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\}. There exist c>0c>0 such that

(|x|b|u|αu)S(L2)cuLtHx1θuS(H˙sc)αθuS(L2)+cuLtHx11+θuS(H˙sc)αθ,\left\|\nabla(|x|^{-b}|u|^{\alpha}u)\right\|_{S^{\prime}(L^{2})}\leq c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\|\nabla u\|_{S(L^{2})}+c\|u\|^{1+\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})},

where θ(0,α)\theta\in(0,\alpha) sufficiently small.

Proof.

For N4N\geq 4 and N=2N=2, the above inequality was already proved in [17, Lemmas 4.34.3, with s=1s=1] and [17, Lemmas 4.74.7, with s=1s=1], respectively. Now, we only consider the case N=3N=3. We claim that

(|x|b|u|αu)S(L2)cuLtHx1θuS(H˙sc)αθuS(L2).\left\|\nabla(|x|^{-b}|u|^{\alpha}u)\right\|_{S^{\prime}(L^{2})}\leq c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\|\nabla u\|_{S(L^{2})}.

Indeed, in view of (2,6)(2,6) is L2L^{2}-admissible in 3D3D we deduce (dividing in BB e BCB^{C})

(|x|b|u|αu)S(L2)(|x|b|u|αu)Lt2Lx6(B)+(|x|b|u|αu)Lt2Lx6(BC).\left\|\nabla\left(|x|^{-b}|u|^{\alpha}u\right)\right\|_{S^{\prime}(L^{2})}\leq\left\|\nabla\left(|x|^{-b}|u|^{\alpha}u\right)\right\|_{L_{t}^{2^{\prime}}L^{6^{\prime}}_{x}(B)}+\left\|\nabla\left(|x|^{-b}|u|^{\alpha}u\right)\right\|_{L_{t}^{2^{\prime}}L^{6^{\prime}}_{x}(B^{C})}.

Let ANA\subset\mathbb{R}^{N}. The product rule for derivatives and Hölder’s inequality imply that

(|x|b|u|αu)Lx6(A)\displaystyle\left\|\nabla\left(|x|^{-b}|u|^{\alpha}u\right)\right\|_{L^{6^{\prime}}_{x}(A)} \displaystyle\leq |x|b(|u|αu)Lx6(A)+(|x|b)|u|αuLx6(A)\displaystyle\left\||x|^{-b}\nabla\left(|u|^{\alpha}u\right)\right\|_{L^{6^{\prime}}_{x}(A)}+\left\|\nabla\left(|x|^{-b}\right)|u|^{\alpha}u\right\|_{L^{6^{\prime}}_{x}(A)} (4.19)
\displaystyle\leq M1(t,A)+M2(t,A),\displaystyle M_{1}(t,A)+M_{2}(t,A),

where

M1(t,A)=|x|bLγ(A)(|u|αu)LxβM2(t,A)=(|x|b)Ld(A)|u|αuLxeM_{1}(t,A)=\left\||x|^{-b}\right\|_{L^{\gamma}(A)}\left\|\nabla(|u|^{\alpha}u)\right\|_{L^{\beta}_{x}}\;\;\;\;\;\;\;\;M_{2}(t,A)=\left\|\nabla(|x|^{-b})\right\|_{L^{d}(A)}\left\||u|^{\alpha}u\right\|_{L^{e}_{x}}

and

16=1γ+1β=1d+1e.\frac{1}{6^{\prime}}=\frac{1}{\gamma}+\frac{1}{\beta}=\frac{1}{d}+\frac{1}{e}. (4.20)

First, we estimate M1(t,A)M_{1}(t,A). By Hölder’s inequality we deduce

M1(t,A)\displaystyle M_{1}(t,A) \displaystyle\leq |x|bLγ(A)uLxθr1θuLx(αθ)r2αθuLxp\displaystyle\||x|^{-b}\|_{L^{\gamma}(A)}\|u\|^{\theta}_{L^{\theta r_{1}}_{x}}\|u\|^{\alpha-\theta}_{L_{x}^{(\alpha-\theta)r_{2}}}\|\nabla u\|_{L^{p}_{x}} (4.21)
=\displaystyle= |x|bLγ(A)uLxθr1θuLxpαθuLxp,\displaystyle\||x|^{-b}\|_{L^{\gamma}(A)}\|u\|^{\theta}_{L^{\theta r_{1}}_{x}}\|u\|^{\alpha-\theta}_{L_{x}^{p}}\|\nabla u\|_{L^{p}_{x}},

where

1β=1r1+1r2+1pandp=(αθ)r2.\frac{1}{\beta}=\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{p}\;\;\;\;\textnormal{and}\;\;\;\;p=(\alpha-\theta)r_{2}. (4.22)

Combining (4.20) and (4.22) we obtain

3γ=523r13(α+1θ)p,\frac{3}{\gamma}=\frac{5}{2}-\frac{3}{r_{1}}-\frac{3(\alpha+1-\theta)}{p},

which implies, by (4.17)

3γb=θ(2b)α3r1.\frac{3}{\gamma}-b=\frac{\theta(2-b)}{\alpha}-\frac{3}{r_{1}}. (4.23)

In to order to show that |x|bLγ(A)\||x|^{-b}\|_{L^{\gamma}(A)} is finite we need 3γb>0\frac{3}{\gamma}-b>0 if A=BA=B and 3γb<0\frac{3}{\gamma}-b<0 if A=BCA=B^{C}, by Remark 2.6. Indeed if θr1=632s\theta r_{1}=\frac{6}{3-2s}, by (4.23) we have

3γb=θ(ssc)>0\frac{3}{\gamma}-b=\theta(s-s_{c})>0

and if θr1=2\theta r_{1}=2 then

3γb=θsc<0.\frac{3}{\gamma}-b=-\theta s_{c}<0.

Therefore, the inequality (4.21) and the Sobolev embedding (2.12) yield

M1(t,A)cuHx1θuLxpαθuLxp.M_{1}(t,A)\leq c\|u\|^{\theta}_{H^{1}_{x}}\|u\|^{\alpha-\theta}_{L_{x}^{p}}\|\nabla u\|_{L^{p}_{x}}. (4.24)

To estimate M2(t,A)M_{2}(t,A) we use the pairs (a¯,r¯)=(4(α2θ),6α(α2θ)α(32b)2θ(42b))(\bar{a},\bar{r})=\left(4(\alpha-2\theta),\frac{6\alpha(\alpha-2\theta)}{\alpha(3-2b)-2\theta(4-2b)}\right) H˙sc\dot{H}^{s_{c}}-admissible and (q,r)=(4(α2θ)α3θ,6(α2θ)2α3θ)(q,r)=\left(\frac{4(\alpha-2\theta)}{\alpha-3\theta},\frac{6(\alpha-2\theta)}{2\alpha-3\theta}\right) L2L^{2}-admissible. Applying the Hölder inequality and the Sobolev embedding (2.10) we get

M2(t,A)\displaystyle M_{2}(t,A) \displaystyle\leq |x|b1Ld(A)uLxθr1θuLx(αθ)r2αθuLxr3\displaystyle\||x|^{-b-1}\|_{L^{d}(A)}\|u\|^{\theta}_{L^{\theta r_{1}}_{x}}\|u\|^{\alpha-\theta}_{L_{x}^{(\alpha-\theta)r_{2}}}\|u\|_{L_{x}^{r_{3}}} (4.25)
\displaystyle\leq |x|b1Ld(A)uLxθr1θuLxr¯αθuLxr\displaystyle\||x|^{-b-1}\|_{L^{d}(A)}\|u\|^{\theta}_{L^{\theta r_{1}}_{x}}\|u\|^{\alpha-\theta}_{L_{x}^{\bar{r}}}\|\nabla u\|_{L_{x}^{r}}

if

{1e=1r1+1r2+1r31=3r3r3r¯=(αθ)r2.\left\{\begin{array}[]{cl}\frac{1}{e}=&\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\\ 1=&\frac{3}{r}-\frac{3}{r_{3}}\\ \bar{r}=&(\alpha-\theta)r_{2}.\end{array}\right.

Note that the second equation is valid since r<3r<3. Similarly as before, in order to show that |x|b1Ld(A)\||x|^{-b-1}\|_{L^{d}(A)} is bounded, we need 3db1>0\frac{3}{d}-b-1>0 when AA is the ball BB and 3db1<0\frac{3}{d}-b-1<0 when A=BCA=B^{C}, by Remark 2.6. In fact, it follows from (4.20), the previous system and the values of qq, rr, q¯\bar{q} and r¯\bar{r} defined above that

3db1\displaystyle\frac{3}{d}-b-1 =\displaystyle= 52b3r13(αθ)r¯3r\displaystyle\frac{5}{2}-b-\frac{3}{r_{1}}-\frac{3(\alpha-\theta)}{\bar{r}}-\frac{3}{r} (4.26)
=\displaystyle= θ(2b)α3r1.\displaystyle\frac{\theta(2-b)}{\alpha}-\frac{3}{r_{1}}.

Choosing r1r_{1} such that

θr1>3α2b when A=Bandθr1<3α2b when A=BC,\theta r_{1}>\frac{3\alpha}{2-b}\textrm{ when }A=B\quad\textrm{and}\quad\theta r_{1}<\frac{3\alpha}{2-b}\textrm{ when }A=B^{C},

we obtain 3db1>0\frac{3}{d}-b-1>0 and 3db1<0\frac{3}{d}-b-1<0, respectively, that is |x|b1Ld(A)|x|^{-b-1}\in L^{d}(A). In addition, by the Sobolev embedding (2.12) (since 2<3α2b<62<\frac{3\alpha}{2-b}<6) and (4.25), it follows that

M2(t,A)cuHx1θuLxr¯αθuLxr.M_{2}(t,A)\leq c\|u\|^{\theta}_{H^{1}_{x}}\|u\|^{\alpha-\theta}_{L^{\bar{r}}_{x}}\|\nabla u\|_{L_{x}^{r}}.

Therefore, combining (4.19), (4.24) and the last inequality we obtain

(|x|b|u|αu)Lx6cuHx1θuLxpαθuLxp+cuHx1θuLxr¯αθuLxr.\left\|\nabla\left(|x|^{-b}|u|^{\alpha}u\right)\right\|_{L^{6^{\prime}}_{x}}\leq c\|u\|^{\theta}_{H^{1}_{x}}\|u\|^{\alpha-\theta}_{L_{x}^{p}}\|\nabla u\|_{L^{p}_{x}}+c\|u\|^{\theta}_{H^{1}_{x}}\|u\|^{\alpha-\theta}_{L^{\bar{r}}_{x}}\|\nabla u\|_{L_{x}^{r}}.

Finally, using the Hölder inequality in the time variable (since 12=αθk+1l=αθa¯+1q)\frac{1}{2^{\prime}}=\frac{\alpha-\theta}{k}+\frac{1}{l}=\frac{\alpha-\theta}{\bar{a}}+\frac{1}{q}), we conclude

(|x|b|u|αu)Lt2Lx6\displaystyle\left\|\nabla\left(|x|^{-b}|u|^{\alpha}u\right)\right\|_{L^{2^{\prime}}_{t}L_{x}^{6^{\prime}}} \displaystyle\leq cuLtHx1θuLtkLxpαθuLtlLxp+uLtHx1θuLta¯Lxr¯αθuLtqLxr.\displaystyle c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{L^{k}_{t}L_{x}^{p}}\|\nabla u\|_{L^{l}_{t}L^{p}_{x}}+\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{L^{\bar{a}}_{t}L^{\bar{r}}_{x}}\|\nabla u\|_{L^{q}_{t}L_{x}^{r}}.

The proof is completed recalling that (q,r)(q,r) and (l,p)(l,p) are L2L^{2}-admissible as well as (k,p)(k,p) and (a¯,r¯)(\bar{a},\bar{r}) are H˙sc\dot{H}^{s_{c}}-admissible. ∎

Remark 4.8.

Note that, in the previous lemma we need the assumption α<32b\alpha<3-2b. Indeed, to verify that (a¯,r¯\bar{a},\bar{r}) satisfies the condition of admissible pair (condition (2.3) with N=3N=3), we have to show 3α2b=632sc<r¯<6\frac{3\alpha}{2-b}=\frac{6}{3-2s_{c}}<\bar{r}<6. Note that r¯>3α2b\bar{r}>\frac{3\alpha}{2-b} is equivalent to 2(α2θ)(2b)>α(32b)2θ(42b)α>02(\alpha-2\theta)(2-b)>\alpha(3-2b)-2\theta(4-2b)\Leftrightarrow\alpha>0. Also, r¯<62θ(42bα)<α(32bα)\bar{r}<6\Leftrightarrow 2\theta(4-2b-\alpha)<\alpha(3-2b-\alpha), which is true if α<32b\alpha<3-2b (since θ>0\theta>0 is a small number).

Remark 4.9.

We also have the following estimate (a consequence of the previous lemma)

|x|b1|u|αvS(L2)uLtHx1θuS(H˙sc)αθ(vS(L2)+vLtHx1).\left\||x|^{-b-1}|u|^{\alpha}v\right\|_{S^{\prime}(L^{2})}\lesssim\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\left(\|\nabla v\|_{S(L^{2})}+\|v\|_{L^{\infty}_{t}H^{1}_{x}}\right).

We now state our first result concerning the Cauchy problem (1.1).

Proposition 4.10.

(Small data global theory in H1H^{1}) Let N2N\geq 2, 42bN<α<2\frac{4-2b}{N}<\alpha<2_{*} with 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\} and u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}). Suppose u0H1A\|u_{0}\|_{H^{1}}\leq A. There exists δ=δ(A)>0\delta=\delta(A)>0 such that if U(t)u0S(H˙sc)<δ\|U(t)u_{0}\|_{S(\dot{H}^{s_{c}})}<\delta, then there exists a unique global solution uu of (1.1) such that

uS(H˙sc)2U(t)u0S(H˙sc)\|u\|_{S(\dot{H}^{s_{c}})}\leq 2\|U(t)u_{0}\|_{S(\dot{H}^{s_{c}})}

and

uS(L2)+uS(L2)2cu0H1.\|u\|_{S\left(L^{2}\right)}+\|\nabla u\|_{S\left(L^{2}\right)}\leq 2c\|u_{0}\|_{H^{1}}.
Proof.

See [17, Theorem 1.91.9, with s=1s=1]. ∎

Remark 4.11.

It is worth mentioning that the previous results were proved in [17] under the condition 0<b<2~0<b<\widetilde{2} (see definition (4.27)). Consequently, it is easy to see that they also hold for 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\}.

2~:={N3N=1,2,3,2N4.\widetilde{2}:=\left\{\begin{array}[]{cl}\frac{N}{3}&\;\;N=1,2,3,\\ 2&\;\;N\geq 4.\end{array}\right. (4.27)

As mentioned in the introduction, Proposition 1.4 gives us the criterion to establish scattering. We prove it in the sequel.

Proof of Proposition 1.4.

Note that

uS(L2)+uS(L2)<+.\|u\|_{S(L^{2})}+\|\nabla u\|_{S(L^{2})}<+\infty. (4.28)

Indeed, using the fact that uS(H˙sc)<+\|u\|_{S(\dot{H}^{s_{c}})}<+\infty, given δ>0\delta>0 we can decompose [0,)[0,\infty) into nn intervals Ij=[tj,tj+1)I_{j}=[t_{j},t_{j+1}) such that uS(H˙sc;Ij)<δ\|u\|_{S(\dot{H}^{s_{c}};I_{j})}<\delta for all j=1,,nj=1,...,n. Let the integral equation on the time interval IjI_{j}

u(t)=U(ttj)u(tj)+itjtj+1U(ts)(|x|b|u|αu)(s)𝑑s.u(t)=U(t-t_{j})u(t_{j})+i\int_{t_{j}}^{t_{j+1}}U(t-s)(|x|^{-b}|u|^{\alpha}u)(s)ds.

Applying the Strichartz estimates (2.6) and (2.8), we obtain

uS(L2;Ij)cu(tj)Lx2+c|x|b|u|αuS(L2;Ij)\|u\|_{S(L^{2};I_{j})}\leq c\|u(t_{j})\|_{L^{2}_{x}}+c\left\||x|^{-b}|u|^{\alpha}u\right\|_{S^{\prime}(L^{2};I_{j})} (4.29)

and

uS(L2;Ij)cu(tj)Lx2+c(|x|b|u|αu)S(L2;Ij).\|\nabla u\|_{S(L^{2};I_{j})}\leq c\|\nabla u(t_{j})\|_{L^{2}_{x}}+c\left\|\nabla(|x|^{-b}|u|^{\alpha}u)\right\|_{S^{\prime}(L^{2};I_{j})}. (4.30)

From Lemmas 4.5 and 4.7 we have

|x|b|u|αuS(L2;Ij)\displaystyle\left\||x|^{-b}|u|^{\alpha}u\right\|_{S^{\prime}(L^{2};I_{j})} \displaystyle\leq cuLIjHx1θuS(H˙sc;Ij)αθuS(L2;Ij),\displaystyle c\|u\|^{\theta}_{L^{\infty}_{I_{j}}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{j})}\|u\|_{S(L^{2};I_{j})},
(|x|b|u|αu)S(L2;Ij)cuLIjHx1θuS(H˙sc;Ij)αθ(uS(L2;Ij)+uLIjHx1).\|\nabla(|x|^{-b}|u|^{\alpha}u)\|_{S^{\prime}(L^{2};I_{j})}\leq c\|u\|^{\theta}_{L^{\infty}_{I_{j}}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{j})}\left(\|\nabla u\|_{S(L^{2};I_{j})}+\|u\|_{L^{\infty}_{I_{j}}H^{1}_{x}}\right).

Hence, the relations (4.29), (4.30) and the two last estimates imply

uS(L2;Ij)cB+cBθδαθuS(L2;Ij)\|u\|_{S(L^{2};I_{j})}\leq cB+cB^{\theta}\delta^{\alpha-\theta}\|u\|_{S(L^{2};I_{j})}

and

uS(L2;Ij)cB+cBθ+1δαθ+cBθδαθuS(L2;Ij),\|\nabla u\|_{S(L^{2};I_{j})}\leq cB+cB^{\theta+1}\delta^{\alpha-\theta}+cB^{\theta}\delta^{\alpha-\theta}\|\nabla u\|_{S(L^{2};I_{j})}, (4.31)

where we have used the assumption suptu(t)H1B\sup\limits_{t\in\mathbb{R}}\|u(t)\|_{H^{1}}\leq B.
Taking δ>0\delta>0 such that cBθδαθ<12cB^{\theta}\delta^{\alpha-\theta}<\frac{1}{2} we deduce

uS(L2;Ij)+uS(L2;Ij)cB,\|u\|_{S(L^{2};I_{j})}+\|\nabla u\|_{S(L^{2};I_{j})}\leq cB,

and by summing over the nn intervals, we conclude the proof of (4.28).

Returning to the proof of the proposition, let

ϕ+=u0+i0+U(s)|x|b(|u|αu)(s)𝑑s.\phi^{+}=u_{0}+i\int\limits_{0}^{+\infty}U(-s)|x|^{-b}(|u|^{\alpha}u)(s)ds.

It is easy to see that ϕ+H1(N)\phi^{+}\in H^{1}(\mathbb{R}^{N}). Indeed, by the same arguments as before, we have that

ϕ+L2cu0L2+cuLtHx1θuS(H˙sc)αθuS(L2)\|\phi^{+}\|_{L^{2}}\leq c\|u_{0}\|_{L^{2}}+c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\|u\|_{S(L^{2})}

and

ϕ+L2\displaystyle\|\nabla\phi^{+}\|_{L^{2}} \displaystyle\leq cu0L2+cuLtHx1θuS(H˙sc)αθ(uS(L2)+uLtHx1).\displaystyle c\|\nabla u_{0}\|_{L^{2}}+c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\left(\|\nabla u\|_{S(L^{2})}+\|u\|_{L^{\infty}_{t}H^{1}_{x}}\right).

Therefore, (4.28) yields ϕ+H1<+\|\phi^{+}\|_{H^{1}}<+\infty.

On the other hand, since uu is a solution of (1.1) we get

u(t)U(t)ϕ+=it+U(ts)|x|b(|u|αu)(s)𝑑s.u(t)-U(t)\phi^{+}=-i\int\limits_{t}^{+\infty}U(t-s)|x|^{-b}(|u|^{\alpha}u)(s)ds.

Moreover, we deduce (again as before)

u(t)U(t)ϕ+Lx2cuLtHx1θuS(H˙sc;[t,))αθuS(L2)\|u(t)-U(t)\phi^{+}\|_{L^{2}_{x}}\leq c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};[t,\infty))}\|u\|_{S(L^{2})}

and

(u(t)U(t)ϕ+)Lx2\displaystyle\|\nabla(u(t)-U(t)\phi^{+})\|_{L^{2}_{x}} \displaystyle\leq cuLtHx1θuS(H˙sc;[t,))αθ(uS(L2)+uLtHx1).\displaystyle c\|u\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|u\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};[t,\infty))}\left(\|\nabla u\|_{S(L^{2})}+\|u\|_{L^{\infty}_{t}H^{1}_{x}}\right).

Since uS(H˙sc;[t,))0\|u\|_{S(\dot{H}^{s_{c}};[t,\infty))}\rightarrow 0 as t+t\rightarrow+\infty and using (4.28), we conclude that

u(t)U(t)ϕ+Hx10ast+.\|u(t)-U(t)\phi^{+}\|_{H^{1}_{x}}\rightarrow 0\,\,\textnormal{as}\,\,t\rightarrow+\infty.

In the same way we define

ϕ=u0+i0U(s)|x|b(|u|αu)(s)𝑑s,\phi^{-}=u_{0}+i\int_{0}^{-\infty}U(-s)|x|^{-b}(|u|^{\alpha}u)(s)ds,

so that we obtain ϕH1\phi^{-}\in H^{1} and

u(t)U(t)ϕ=itU(ts)|x|b(|u|αu)(s)𝑑s,u(t)-U(t)\phi^{-}=i\int\limits_{-\infty}^{t}U(t-s)|x|^{-b}(|u|^{\alpha}u)(s)ds,

which also satisfies (using the same argument as before)

u(t)U(t)ϕHx10ast.\|u(t)-U(t)\phi^{-}\|_{H^{1}_{x}}\rightarrow 0\,\,\textnormal{as}\,\,t\rightarrow-\infty.

Now, the purpose is to study the perturbation theory for (1.1). We begin proving the short-time perturbation result.

Proposition 4.12.

(Short-time perturbation). Let II\subseteq\mathbb{R} be a time interval containing zero and let u~\widetilde{u} defined on I×NI\times\mathbb{R}^{N} be a solution to

itu~+Δu~+|x|b|u~|αu~=e,i\partial_{t}\widetilde{u}+\Delta\widetilde{u}+|x|^{-b}|\widetilde{u}|^{\alpha}\widetilde{u}=e,

with initial data u~0H1(N)\widetilde{u}_{0}\in H^{1}(\mathbb{R}^{N}), satisfying

suptIu~(t)Hx1Mandu~S(H˙sc;I)ε,\sup_{t\in I}\|\widetilde{u}(t)\|_{H^{1}_{x}}\leq M\;\;\textnormal{and}\;\;\|\widetilde{u}\|_{S(\dot{H}^{s_{c}};I)}\leq\varepsilon, (4.32)

for some positive constant MM and some small ε>0\varepsilon>0.

Let u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) such that

u0u~0H1MandU(t)(u0u~0)S(H˙sc;I)ε,for M>0.\|u_{0}-\widetilde{u}_{0}\|_{H^{1}}\leq M^{\prime}\;\;\textnormal{and}\;\;\|U(t)(u_{0}-\widetilde{u}_{0})\|_{S(\dot{H}^{s_{c}};I)}\leq\varepsilon,\;\;\textnormal{for }\;M^{\prime}>0. (4.33)

Assume also the following conditions

eS(L2;I)+eS(L2;I)+eS(H˙sc;I)ε.\|e\|_{S^{\prime}(L^{2};I)}+\|\nabla e\|_{S^{\prime}(L^{2};I)}+\|e\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}\leq\varepsilon. (4.34)

There exists ε0(M,M)>0\varepsilon_{0}(M,M^{\prime})>0 such that if ε<ε0\varepsilon<\varepsilon_{0}, then there is a unique solution uu to (1.1) on I×NI\times\mathbb{R}^{N} with initial data u0u_{0}, at the time t=0t=0, satisfying

uS(H˙sc;I)ε\|u\|_{S(\dot{H}^{s_{c}};I)}\lesssim\varepsilon (4.35)

and

uS(L2;I)+uS(L2;I)c(M,M).\|u\|_{S(L^{2};I)}+\|\nabla u\|_{S(L^{2};I)}\lesssim c(M,M^{\prime}). (4.36)
Proof.

First, we claim (we will show it later): if u~S(H˙sc;I)ε0\|\widetilde{u}\|_{S(\dot{H}^{s_{c}};I)}\leq\varepsilon_{0}, for some ε0>0\varepsilon_{0}>0 enough small, then

u~S(L2;I)Mandu~S(L2;I)M.\|\widetilde{u}\|_{S(L^{2};I)}\lesssim M\;\;\;\textnormal{and}\;\;\;\;\|\nabla\widetilde{u}\|_{S(L^{2};I)}\lesssim M. (4.37)

Assume, without loss of generality, that 0=infI0=\inf I. First, we prove the existence of a solution ww for the following Cauchy problem

{itw+Δw+H(x,u~,w)+e=0,w(0,x)=u0(x)u~0(x),\left\{\begin{array}[]{cl}i\partial_{t}w+\Delta w+H(x,\widetilde{u},w)+e=0,&\\ w(0,x)=u_{0}(x)-\widetilde{u}_{0}(x),&\end{array}\right. (4.38)

where H(x,u~,w)=|x|b(|u~+w|α(u~+w)|u~|αu~)H(x,\widetilde{u},w)=|x|^{-b}\left(|\widetilde{u}+w|^{\alpha}(\widetilde{u}+w)-|\widetilde{u}|^{\alpha}\widetilde{u}\right).

Indeed, let

G(w)(t):=U(t)w0+i0tU(ts)(H(x,u~,w)+e)(s)𝑑sG(w)(t):=U(t)w_{0}+i\int_{0}^{t}U(t-s)(H(x,\widetilde{u},w)+e)(s)ds (4.39)

and define

Bρ,K={wC(I;H1(N)):wS(H˙sc;I)ρandwS(L2;I)+wS(L2;I)K}.B_{\rho,K}=\{w\in C(I;H^{1}(\mathbb{R}^{N})):\;\|w\|_{S(\dot{H}^{s_{c}};I)}\leq\rho\;\textnormal{and}\;\|w\|_{S(L^{2};I)}+\|\nabla w\|_{S(L^{2};I)}\leq K\}.

We need to show (for a suitable choice of the parameters ρ>0\rho>0 and K>0K>0) that GG in (4.39) defines a contraction on Bρ,KB_{\rho,K}. Indeed, we deduce by the Strichartz inequalities (2.6), (2.7), (2.8) and (2.9) that

G(w)S(H˙sc;I)U(t)w0S(H˙sc;I)+H(,u~,w)S(H˙sc;I)+eS(H˙sc;I)\|G(w)\|_{S(\dot{H}^{s_{c}};I)}\lesssim\|U(t)w_{0}\|_{S(\dot{H}^{s_{c}};I)}+\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}+\|e\|_{S^{\prime}(\dot{H}^{-s_{c}};I)} (4.40)
G(w)S(L2;I)w0L2+H(,u~,w)S(L2;I)+eS(L2;I)\|G(w)\|_{S(L^{2};I)}\lesssim\|w_{0}\|_{L^{2}}+\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}+\|e\|_{S^{\prime}(L^{2};I)} (4.41)

and

G(w)S(L2;I)w0L2+H(,u~,w)S(L2;I)+eS(L2;I).\|\nabla G(w)\|_{S(L^{2};I)}\lesssim\|\nabla w_{0}\|_{L^{2}}+\|\nabla H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}+\|\nabla e\|_{S^{\prime}(L^{2};I)}. (4.42)

On the other hand, since

||u~+w|α(u~+w)|u~|αu~||u~|α|w|+|w|α+1\left||\widetilde{u}+w|^{\alpha}(\widetilde{u}+w)-|\widetilde{u}|^{\alpha}\widetilde{u}\right|\lesssim|\widetilde{u}|^{\alpha}|w|+|w|^{\alpha+1} (4.43)

we obtain (using (2.13))

H(,u~,w)S(H˙sc;I)|x|b|u~|αwS(H˙sc;I)+|x|b|w|αwS(H˙sc;I),\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}\leq\||x|^{-b}|\widetilde{u}|^{\alpha}w\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}+\||x|^{-b}|w|^{\alpha}w\|_{S^{\prime}(\dot{H}^{-s_{c}};I)},

which implies by Lemma 4.4 that

H(,u~,w)S(H˙sc;I)(u~LtHx1θu~S(H˙sc;I)αθ+wLtHx1θwS(H˙sc;I)αθ)wS(H˙sc;I).\displaystyle\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}\lesssim\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|w\|_{S(\dot{H}^{s_{c}};I)}. (4.44)

Using Lemma 4.5 we also have

H(,u~,w)S(L2;I)(u~LtHx1θu~S(H˙sc;I)αθ+wLtHx1θwS(H˙sc;I)αθ)wS(L2;I).\displaystyle\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}\lesssim\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|w\|_{S(L^{2};I)}. (4.45)

Now we are interested in estimating H(,u~,w)S(L2;I)\|\nabla H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}. The relations (2.16) and (4.43) imply that

|H(x,u~,w)||x|b1(|u~|α+|w|α)|w|+|x|b(|u~|α+|w|α)|w|+E,|\nabla H(x,\widetilde{u},w)|\lesssim|x|^{-b-1}(|\widetilde{u}|^{\alpha}+|w|^{\alpha})|w|+|x|^{-b}(|\widetilde{u}|^{\alpha}+|w|^{\alpha})|\nabla w|+E,

where

E\displaystyle E \displaystyle\lesssim {|x|b(|u~|α1+|w|α1)|w||u~|ifα>1|x|b|u~||w|αifα1.\displaystyle\left\{\begin{array}[]{cl}|x|^{-b}\left(|\widetilde{u}|^{\alpha-1}+|w|^{\alpha-1}\right)|w||\nabla\widetilde{u}|&\textnormal{if}\;\;\;\alpha>1\vskip 5.69046pt\\ |x|^{-b}|\nabla\widetilde{u}||w|^{\alpha}&\textnormal{if}\;\;\;\alpha\leq 1.\end{array}\right.

Thus, Lemma 4.5 and Remark 4.9 lead to

H(,u~,w)S(L2;I)(u~LtHx1θu~S(H˙sc;I)αθ+wLtHx1θwS(H˙sc;I)αθ)wS(L2;I)\|\nabla H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}\lesssim\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|\nabla w\|_{S(L^{2};I)}
+(u~LtHx1θu~S(H˙sc;I)αθ+wLtHx1θwS(H˙sc;I)αθ)wLtHx1\hskip 56.9055pt+\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|w\|_{L^{\infty}_{t}H^{1}_{x}}
+(u~LtHx1θu~S(H˙sc;I)αθ+wLtHx1θwS(H˙sc;I)αθ)wS(L2;I)+E1\hskip 68.28644pt+\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|\nabla w\|_{S(L^{2};I)}+E_{1}
(u~LtHx1θu~S(H˙sc;I)αθ+wLtHx1θwS(H˙sc;I)αθ)wS(L2;I)\hskip 91.04872pt\lesssim\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|\nabla w\|_{S(L^{2};I)}
+(u~LtHx1θu~S(H˙sc;I)αθ+wLtHx1θwS(H˙sc;I)αθ)wLtHx1+E1,\hskip 79.6678pt+\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|w\|_{L^{\infty}_{t}H^{1}_{x}}+E_{1}, (4.47)

where (using Remark 4.6)

E1\displaystyle E_{1}\lesssim {(u~LtHx1θu~S(H˙sc;I)α1θ+wLtHx1θwS(H˙sc;I)α1θ)wS(H˙sc;I)u~S(L2;I),α>1wLtHx1θwS(H˙sc;I)αθu~S(L2;I),α1.\displaystyle\left\{\begin{array}[]{cl}\left(\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-1-\theta}_{S(\dot{H}^{s_{c}};I)}+\|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-1-\theta}_{S(\dot{H}^{s_{c}};I)}\right)\|w\|_{S(\dot{H}^{s_{c}};I)}\|\nabla\widetilde{u}\|_{S(L^{2};I)},&\alpha>1\vskip 5.69046pt\\ \|w\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\|\nabla\widetilde{u}\|_{S(L^{2};I)}\;,\;\;\;\;\;\;\;\;\;\;\alpha\leq 1.\end{array}\right.

Next, combining (4.44), (4.45) and if uB(ρ,K)u\in B(\rho,K), we get

H(,u~,w)S(H˙sc;I)(Mθεαθ+Kθραθ)ρ\displaystyle\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}\lesssim\left(M^{\theta}\varepsilon^{\alpha-\theta}+K^{\theta}\rho^{\alpha-\theta}\right)\rho (4.48)

and

H(,u~,w)S(L2;I)(Mθεαθ+Kθραθ)K.\displaystyle\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}\lesssim\left(M^{\theta}\varepsilon^{\alpha-\theta}+K^{\theta}\rho^{\alpha-\theta}\right)K. (4.49)

In addition, (4.47) and (4.37) imply

H(,u~,w)S(L2;I)(Mθεαθ+Kθραθ)K+E1\displaystyle\|\nabla H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}\lesssim\left(M^{\theta}\varepsilon^{\alpha-\theta}+K^{\theta}\rho^{\alpha-\theta}\right)K+E_{1} (4.50)

where

E1\displaystyle E_{1} \displaystyle\lesssim {(Mθεα1θ+Kθρα1θ)ρMifα>1,KθραθMifα1.\displaystyle\left\{\begin{array}[]{cl}\left(M^{\theta}\varepsilon^{\alpha-1-\theta}+K^{\theta}\rho^{\alpha-1-\theta}\right)\rho M&\textnormal{if}\;\;\alpha>1,\vskip 5.69046pt\\ K^{\theta}\rho^{\alpha-\theta}M\;\;\;\;\;\;\textnormal{if}\;\;\;\;\;\alpha\leq 1.\end{array}\right.

Hence, it follows from (4.40)-(4.41) together with (4.48)- (4.49) that

G(w)S(H˙sc;I)cε+cAρ\|G(w)\|_{S(\dot{H}^{s_{c}};I)}\leq c\varepsilon+cA\rho

and

G(w)S(L2;I)cM+cε+cAK,\|G(w)\|_{S(L^{2};I)}\leq cM^{\prime}+c\varepsilon+cAK,

where we also used the hypothesis (4.33)-(4.34) and A=Mθεαθ+KθραθA=M^{\theta}\varepsilon^{\alpha-\theta}+K^{\theta}\rho^{\alpha-\theta}. We also get, using (4.42), (4.50), that if α>1\alpha>1

G(w)S(L2;I)cM+cε+cAK+cBρM,\|\nabla G(w)\|_{S(L^{2};I)}\leq cM^{\prime}+c\varepsilon+cAK+cB\rho M,

where B=Mθεα1θ+Kθρα1θB=M^{\theta}\varepsilon^{\alpha-1-\theta}+K^{\theta}\rho^{\alpha-1-\theta}, and if α1\alpha\leq 1

G(w)S(L2;I)cM+cε+cAK+KθραθM.\|\nabla G(w)\|_{S(L^{2};I)}\leq cM^{\prime}+c\varepsilon+cAK+K^{\theta}\rho^{\alpha-\theta}M.

Choosing ρ=2cε\rho=2c\varepsilon, K=3cMK=3cM^{\prime} and ε0\varepsilon_{0} sufficiently small such that

cA<13andc(ε+BρM+KθραθM)<K3,cA<\frac{1}{3}\;\;\;\;\textnormal{and}\;\;\;c(\varepsilon+B\rho M+K^{\theta}\rho^{\alpha-\theta}M)<\frac{K}{3},

we have

G(w)S(H˙sc;I)ρandG(w)S(L2;I)+G(w)S(L2;I)K.\|G(w)\|_{S(\dot{H}^{s_{c}};I)}\leq\rho\;\;\;\textnormal{and}\;\;\;\|G(w)\|_{S(L^{2};I)}+\|\nabla G(w)\|_{S(L^{2};I)}\leq K.

Therefore, GG is well defined on B(ρ,K)B(\rho,K). The contraction property can be obtained by similar arguments. Thus, applying the Banach Fixed Point Theorem we obtain a unique solution ww on I×NI\times\mathbb{R}^{N} such that

wS(H˙sc;I)εandwS(L2;I)+wS(L2;I)M.\|w\|_{S(\dot{H}^{s_{c}};I)}\lesssim\varepsilon\;\;\;\textnormal{and}\;\;\;\|w\|_{S(L^{2};I)}+\|w\|_{S(L^{2};I)}\lesssim M^{\prime}.

Finally, it is easy to see that u=u~+wu=\widetilde{u}+w is a solution to (1.1) satisfying (4.35) and (4.36).

The proof is completed after showing (4.37). Indeed, we first show that

u~S(L2;I)M.\|\nabla\widetilde{u}\|_{S(L^{2};I)}\lesssim M. (4.52)

We get using the same arguments as before

u~S(L2;I)u~0L2+(|x|b|u~|αu~)S(L2;I)+eS(L2;I).\|\nabla\widetilde{u}\|_{S(L^{2};I)}\lesssim\|\nabla\widetilde{u}_{0}\|_{L^{2}}+\left\|\nabla(|x|^{-b}|\widetilde{u}|^{\alpha}\widetilde{u})\right\|_{S^{\prime}(L^{2};I)}+\|\nabla e\|_{S^{\prime}(L^{2};I)}.

Furthermore, Lemma 4.7 implies that

u~S(L2;I)\displaystyle\|\nabla\widetilde{u}\|_{S(L^{2};I)} \displaystyle\lesssim M+u~LtHx1θu~S(H˙sc;I)αθ(u~S(L2;I)+u~LtHx1)+ε\displaystyle M+\|\widetilde{u}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I)}\left(\|\nabla\widetilde{u}\|_{S(L^{2};I)}+\|\widetilde{u}\|_{L^{\infty}_{t}H^{1}_{x}}\right)+\varepsilon
\displaystyle\lesssim M+ε+Mθ+1ε0αθ+Mθε0αθu~S(L2;I).\displaystyle M+\varepsilon+M^{\theta+1}\varepsilon_{0}^{\alpha-\theta}+M^{\theta}\varepsilon_{0}^{\alpha-\theta}\|\nabla\widetilde{u}\|_{S(L^{2};I)}.

Therefore, choosing ε0\varepsilon_{0} sufficiently small the linear term Mθε0αθu~S(L2;I)M^{\theta}\varepsilon_{0}^{\alpha-\theta}\|\nabla\widetilde{u}\|_{S(L^{2};I)} may be absorbed by the left-hand term and we conclude the proof of (4.52). Similar estimates also imply u~S(L2;I)M\|\widetilde{u}\|_{S(L^{2};I)}\lesssim M. ∎

Remark 4.13.

In view of Proposition 4.12, we also obtain the following estimates:

H(,u~,w)S(H˙sc;I)C(M,M)ε\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}\leq C(M,M^{\prime})\varepsilon (4.53)

and

H(,u~,w)S(L2;I)+H(,u~,w)S(L2;I)C(M,M)εαθ,\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}+\|\nabla H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}\leq C(M,M^{\prime})\varepsilon^{\alpha-\theta}, (4.54)

with θ>0\theta>0 sufficiently small.

Indeed, it follows from (4.48), (4.49) and (4.50) that

H(,u~,w)S(H˙sc;I)(Mθεαθ+Kθραθ)ρ,\displaystyle\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}\lesssim\left(M^{\theta}\varepsilon^{\alpha-\theta}+K^{\theta}\rho^{\alpha-\theta}\right)\rho,
H(,u~,w)S(L2;I)(Mθεαθ+Kθραθ)K\displaystyle\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}\lesssim\left(M^{\theta}\varepsilon^{\alpha-\theta}+K^{\theta}\rho^{\alpha-\theta}\right)K

and

H(,u~,w)S(L2;I)E1+(Mθεαθ+Kθραθ)K,\displaystyle\|\nabla H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};I)}\lesssim E_{1}+\left(M^{\theta}\varepsilon^{\alpha-\theta}+K^{\theta}\rho^{\alpha-\theta}\right)K,

where

E1\displaystyle E_{1}\lesssim {(Mθεα1θ+Kθρα1θ)ρMifα>1,KθραθMifα1.\displaystyle\left\{\begin{array}[]{cl}\left(M^{\theta}\varepsilon^{\alpha-1-\theta}+K^{\theta}\rho^{\alpha-1-\theta}\right)\rho M&\textnormal{if}\;\;\alpha>1,\vskip 5.69046pt\\ K^{\theta}\rho^{\alpha-\theta}M\;\;\;\;\;\;\textnormal{if}\;\;\;\;\;\alpha\leq 1.\end{array}\right.

Therefore, the choice ρ=2cε\rho=2c\varepsilon and K=3cMK=3cM^{\prime} in Proposition 4.12 yield (4.53) and (4.54).

Next, using the previous proposition we show the long-time perturbation result. This will be necessary in the construction of the critical solution below.

Proposition 4.14.

(Long-time perturbation) Let II\subseteq\mathbb{R} be a time interval containing zero and let u~\widetilde{u} defined on I×NI\times\mathbb{R}^{N} be a solution to

itu~+Δu~+|x|b|u~|αu~=e,i\partial_{t}\widetilde{u}+\Delta\widetilde{u}+|x|^{-b}|\widetilde{u}|^{\alpha}\widetilde{u}=e,

with initial data u~0H1(N)\widetilde{u}_{0}\in H^{1}(\mathbb{R}^{N}), satisfying (for some positive constants M,LM,L)

suptIu~Hx1Mandu~S(H˙sc;I)L.\sup_{t\in I}\|\widetilde{u}\|_{H^{1}_{x}}\leq M\;\;\textnormal{and}\;\;\|\widetilde{u}\|_{S(\dot{H}^{s_{c}};I)}\leq L. (4.56)

Let u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) such that

u0u~0H1MandU(t)(u0u~0)S(H˙sc;I)ε,\|u_{0}-\widetilde{u}_{0}\|_{H^{1}}\leq M^{\prime}\;\;\textnormal{and}\;\;\|U(t)(u_{0}-\widetilde{u}_{0})\|_{S(\dot{H}^{s_{c}};I)}\leq\varepsilon, (4.57)

for some positive constant MM^{\prime} and some 0<ε<ε1=ε1(M,M,L)0<\varepsilon<\varepsilon_{1}=\varepsilon_{1}(M,M^{\prime},L). In addition, assume also the following conditions

eS(L2;I)+eS(L2;I)+eS(H˙sc;I)ε.\|e\|_{S^{\prime}(L^{2};I)}+\|\nabla e\|_{S^{\prime}(L^{2};I)}+\|e\|_{S^{\prime}(\dot{H}^{-s_{c}};I)}\leq\varepsilon.

Then, there exists a unique solution uu to (1.1) on I×NI\times\mathbb{R}^{N} with initial data u0u_{0} at the time t=0t=0 satisfying

uu~S(H˙sc;I)C(M,M,L)εand\|u-\widetilde{u}\|_{S(\dot{H}^{s_{c}};I)}\leq C(M,M^{\prime},L)\varepsilon\;\;\;\;\;\;\;\textnormal{and} (4.58)
uS(H˙sc;I)+uS(L2;I)+uS(L2;I)C(M,M,L).\|u\|_{S(\dot{H}^{s_{c}};I)}+\|u\|_{S(L^{2};I)}+\|\nabla u\|_{S(L^{2};I)}\leq C(M,M^{\prime},L). (4.59)
Proof.

Since u~S(H˙sc;I)L\|\widetilde{u}\|_{S(\dot{H}^{s_{c}};I)}\leq L, given666ε0\varepsilon_{0} is given by the previous result and ε\varepsilon to be determined later. ε<ε0(M,2M)\varepsilon<\varepsilon_{0}(M,2M^{\prime}) we can partition II into n=n(L,ε)n=n(L,\varepsilon) intervals Ij=[tj,tj+1)I_{j}=[t_{j},t_{j+1}) such that u~S(H˙sc;Ij)ε\|\widetilde{u}\|_{S(\dot{H}^{s_{c}};I_{j})}\leq\varepsilon, for each jj. Observe that MM^{\prime} is being replaced by 2M2M^{\prime}, as the H1H^{1}-norm of the difference of two different initial data may increase in each iteration.

Similarly as before, we can assume 0=infI0=\inf I. Let ww be defined by u=u~+wu=\widetilde{u}+w, then ww solves IVP (4.38) with initial time tjt_{j}. Thus, the integral equation in the interval Ij=[tj,tj+1)I_{j}=[t_{j},t_{j+1}) reads as follows

w(t)=U(ttj)w(tj)+itjtU(ts)(H(x,u~,w)+e)(s)𝑑s,w(t)=U(t-t_{j})w(t_{j})+i\int_{t_{j}}^{t}U(t-s)(H(x,\widetilde{u},w)+e)(s)ds,

where H(x,u~,w)=|x|b(|u~+w|α(u~+w)|u~|αu~)H(x,\widetilde{u},w)=|x|^{-b}\left(|\widetilde{u}+w|^{\alpha}(\widetilde{u}+w)-|\widetilde{u}|^{\alpha}\widetilde{u}\right).

Choosing ε1\varepsilon_{1} sufficiently small (depending on nn, MM, and MM^{\prime}), we may apply Proposition 4.12 to obtain for each 0j<n0\leq j<n and all ε<ε1\varepsilon<\varepsilon_{1},

uu~S(H˙sc;Ij)C(M,M,j)ε\|u-\widetilde{u}\|_{S(\dot{H}^{s_{c}};I_{j})}\leq C(M,M^{\prime},j)\varepsilon (4.60)

and

wS(H˙sc;Ij)+wS(L2;Ij)+wS(L2;Ij)C(M,M,j)\|w\|_{S(\dot{H}^{s_{c}};I_{j})}+\|w\|_{S^{\prime}(L^{2};I_{j})}+\|\nabla w\|_{S^{\prime}(L^{2};I_{j})}\leq C(M,M^{\prime},j) (4.61)

provided we can prove (for each 0j<n0\leq j<n)

U(ttj)(u(tj)u~(tj))S(H˙sc;Ij)C(M,M,j)εε0\|U(t-t_{j})(u(t_{j})-\widetilde{u}(t_{j}))\|_{S(\dot{H}^{s_{c}};I_{j})}\leq C(M,M^{\prime},j)\varepsilon\leq\varepsilon_{0} (4.62)

and

u(tj)u~(tj)Hx12M.\|u(t_{j})-\widetilde{u}(t_{j})\|_{H^{1}_{x}}\leq 2M^{\prime}. (4.63)

Indeed, it follows from Strichartz estimates (2.7) and (2.9) that

U(ttj)w(tj)S(H˙sc;Ij)\displaystyle\|U(t-t_{j})w(t_{j})\|_{S(\dot{H}^{s_{c}};I_{j})} \displaystyle\lesssim U(t)w0S(H˙sc;I)+H(,u~,w)S(H˙sc;[0,tj])\displaystyle\|U(t)w_{0}\|_{S(\dot{H}^{s_{c}};I)}+\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(\dot{H}^{-s_{c}};[0,t_{j}])}
+eS(H˙sc;I),\displaystyle+\|e\|_{S^{\prime}(\dot{H}^{-s_{c}};I)},

which implies by (4.53) that

U(ttj)(u(tj)u~(tj))S(H˙sc;Ij)ε+k=0j1C(k,M,M)ε.\|U(t-t_{j})(u(t_{j})-\widetilde{u}(t_{j}))\|_{S(\dot{H}^{s_{c}};I_{j})}\lesssim\varepsilon+\sum_{k=0}^{j-1}C(k,M,M^{\prime})\varepsilon.

In the same way, applying the Strichartz estimates (2.6), (2.8) and (4.54) we get

u(tj)u~(tj)Hx1\displaystyle\|u(t_{j})-\widetilde{u}(t_{j})\|_{H^{1}_{x}} \displaystyle\lesssim u0u~0H1+eS(L2;I)+eS(L2;I)\displaystyle\|u_{0}-\widetilde{u}_{0}\|_{H^{1}}+\|e\|_{S^{\prime}(L^{2};I)}+\|\nabla e\|_{S^{\prime}(L^{2};I)}
+H(,u~,w)S(L2;[0,tj])+H(,u~,w)S(L2;[0,tj])\displaystyle+\|H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};[0,t_{j}])}+\|\nabla H(\cdot,\widetilde{u},w)\|_{S^{\prime}(L^{2};[0,t_{j}])}
\displaystyle\lesssim M+ε+k=0j1C(k,M,M)εαθ.\displaystyle M^{\prime}+\varepsilon+\sum_{k=0}^{j-1}C(k,M,M^{\prime})\varepsilon^{\alpha-\theta}.

Taking ε1=ε(n,M,M)\varepsilon_{1}=\varepsilon(n,M,M^{\prime}) sufficiently small, we see that (4.62) and (4.63) hold and so, it implies (4.60) and (4.61).

We complete the proof summing this over all subintervals IjI_{j}, that is

uu~S(H˙sc;I)C(M,M,L)ε\|u-\widetilde{u}\|_{S(\dot{H}^{s_{c}};I)}\leq C(M,M^{\prime},L)\varepsilon

and

wS(H˙sc;I)+wS(L2;I)+wS(L2;I)C(M,M,L).\|w\|_{S(\dot{H}^{s_{c}};I)}+\|w\|_{S^{\prime}(L^{2};I)}+\|\nabla w\|_{S^{\prime}(L^{2};I)}\leq C(M,M^{\prime},L).

Finally, we show the existence of the Wave Operator. The proof follows the ideas introduced by Côte [5] for the KdV equation (see also our paper [10]).

Proposition 4.15.

(Existence of Wave Operator) Assume ϕH1(N)\phi\in H^{1}(\mathbb{R}^{N}) and

ϕL22scϕL22(1sc)<λ2(Nα+2bαsc)scE[Q]scM[Q]1sc,\|\nabla\phi\|^{2s_{c}}_{L^{2}}\|\phi\|^{2(1-s_{c})}_{L^{2}}<\lambda^{2}\left(\frac{N\alpha+2b}{\alpha s_{c}}\right)^{s_{c}}E[Q]^{s_{c}}M[Q]^{1-s_{c}}, (4.64)

for some777Note that (2αscNα+2b)sc2<1(\frac{2\alpha s_{c}}{N\alpha+2b})^{\frac{s_{c}}{2}}<1. 0<λ(2αscNα+2b)sc20<\lambda\leq(\frac{2\alpha s_{c}}{N\alpha+2b})^{\frac{s_{c}}{2}}. Then, there exists u0+H1(N)u^{+}_{0}\in H^{1}(\mathbb{R}^{N}) such that uu solving (1.1) with initial data u0+u^{+}_{0} is global in H1(N)H^{1}(\mathbb{R}^{N}) with

  • (i)

    M[u]=M[ϕ]M[u]=M[\phi],

  • (ii)

    E[u]=12ϕL22E[u]=\frac{1}{2}\|\nabla\phi\|^{2}_{L^{2}},

  • (iii)

    limt+u(t)U(t)ϕH1=0\lim\limits_{t\rightarrow+\infty}\|u(t)-U(t)\phi\|_{H^{1}}=0,

  • (iv)

    u(t)L2scu(t)L21scλQL2scQL21sc\|\nabla u(t)\|^{s_{c}}_{L^{2}}\|u(t)\|^{1-s_{c}}_{L^{2}}\leq\lambda\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}}.

Proof.

First, we construct the wave operator for large time. Indeed, let IT=[T,+)I_{T}=[T,+\infty) for T1T\gg 1 and define

G(w)(t)=it+U(ts)(|x|b|w+U(t)ϕ|α(w+U(t)ϕ)(s)ds,tITG(w)(t)=-i\int_{t}^{+\infty}U(t-s)(|x|^{-b}|w+U(t)\phi|^{\alpha}(w+U(t)\phi)(s)ds,\;\;t\in I_{T}

and

B(T,ρ)={wC(IT;H1(N)):wTρ},B(T,\rho)=\{w\in C\left(I_{T};H^{1}(\mathbb{R}^{N})\right):\|w\|_{T}\leq\rho\},

where

wT=wS(H˙sc;IT)+wS(L2;IT)+wS(L2;IT).\|w\|_{T}=\|w\|_{S(\dot{H}^{s_{c}};I_{T})}+\|w\|_{S(L^{2};I_{T})}+\|\nabla w\|_{S(L^{2};I_{T})}.

We show a fixed point for GG on B(T,ρ)B(T,\rho).

The Strichartz estimates (2.8) (2.9) and Lemmas 4.4-4.5-4.7 imply that

G(w)S(H˙sc;IT)\displaystyle\|G(w)\|_{S(\dot{H}^{s_{c}};I_{T})}\lesssim w+U(t)ϕLTHx1θw+U(t)ϕS(H˙sc;IT)αθw+U(t)ϕS(H˙sc;IT)\displaystyle\|w+U(t)\phi\|^{\theta}_{L^{\infty}_{T}H^{1}_{x}}\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}\|w+U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})} (4.65)
G(w)S(L2;IT)\displaystyle\|G(w)\|_{S(L^{2};I_{T})}\lesssim w+U(t)ϕLTHx1θw+U(t)ϕS(H˙sc;IT)αθw+U(t)ϕS(L2;IT)\displaystyle\|w+U(t)\phi\|^{\theta}_{L^{\infty}_{T}H^{1}_{x}}\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}\|w+U(t)\phi\|_{S(L^{2};I_{T})} (4.66)

and

G(w)S(L2;IT)\displaystyle\|\nabla G(w)\|_{S(L^{2};I_{T})}\lesssim w+U(t)ϕLTHx1θw+U(t)ϕS(H˙sc;IT)αθ(w+U(t)ϕ)S(L2;IT)\displaystyle\|w+U(t)\phi\|^{\theta}_{L^{\infty}_{T}H^{1}_{x}}\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}\|\nabla(w+U(t)\phi)\|_{S(L^{2};I_{T})}
+w+U(t)ϕLTHx11+θw+U(t)ϕS(H˙sc;IT)αθ.\displaystyle+\|w+U(t)\phi\|^{1+\theta}_{L^{\infty}_{T}H^{1}_{x}}\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}. (4.67)

Hence,

G(w)T\displaystyle\|G(w)\|_{T} \displaystyle\lesssim w+U(t)ϕLTHx1θw+U(t)ϕS(H˙sc;IT)αθw+U(t)ϕT\displaystyle\|w+U(t)\phi\|^{\theta}_{L^{\infty}_{T}H^{1}_{x}}\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}\|w+U(t)\phi\|_{T}
+w+U(t)ϕS(H˙sc;IT)αθw+U(t)ϕTθ+1.\displaystyle+\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}\|w+U(t)\phi\|^{\theta+1}_{T}.

Since888Observe that (4.68) is possible not true using the norm LITLx2NN2scL^{\infty}_{I_{T}}L^{\frac{2N}{N-2s_{c}}}_{x} and for this reason we remove the pair (,2NN2sc)\left(\infty,\frac{2N}{N-2s_{c}}\right) in the Definition 2.3.

U(t)ϕS(H˙sc;IT)0\|U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})}\rightarrow 0 (4.68)

as T+T\rightarrow+\infty, we can find T0>0T_{0}>0 large enough and ρ>0\rho>0 small enough such that GG is well defined on B(T0,ρ)B(T_{0},\rho). The same computations show that GG is a contraction on B(T0,ρ)B(T_{0},\rho). Therefore, GG has a unique fixed point, that is G(w)=wG(w)=w.

Next, using (4.65) and since

w+U(t)ϕLTHx1wH1+ϕH1<+,\|w+U(t)\phi\|_{L^{\infty}_{T}H^{1}_{x}}\leq\|w\|_{H^{1}}+\|\phi\|_{H^{1}}<+\infty,

we have

wS(H˙sc;IT)\displaystyle\|w\|_{S(\dot{H}^{s_{c}};I_{T})} \displaystyle\lesssim w+U(t)ϕS(H˙sc;IT)αθw+U(t)ϕS(H˙sc;IT)\displaystyle\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}\|w+U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})}
\displaystyle\lesssim AwS(H˙sc;IT)+AU(t)ϕS(H˙sc;IT)\displaystyle A\|w\|_{S(\dot{H}^{s_{c}};I_{T})}+A\|U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})}

where A=w+U(t)ϕS(H˙sc;IT)αθA=\|w+U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}. Moreover, if ρ\rho has been chosen small enough and since U(t)ϕS(H˙sc;IT)\|U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})} is also sufficiently small for TT large, we deduce

AcwS(H˙sc;IT)αθ+cU(t)ϕS(H˙sc;IT)αθ<12,A\leq c\|w\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}+c\|U(t)\phi\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}};I_{T})}<\frac{1}{2},

and so

12wS(H˙sc;IT)AU(t)ϕS(H˙sc;IT),\frac{1}{2}\|w\|_{S(\dot{H}^{s_{c}};I_{T})}\lesssim A\|U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})},

which implies,

wS(H˙sc;IT)0asT+.\|w\|_{S(\dot{H}^{s_{c}};I_{T})}\rightarrow 0\;\;\;\;\textnormal{as}\;\;\;\;T\rightarrow+\infty. (4.69)

The relations (4.66), (4.15) and (4.69)\eqref{EWO5} also imply that999Note that w+U(t)ϕS(H˙sc;IT)wS(H˙sc;IT)+U(t)ϕS(H˙sc;IT)0\|w+U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})}\leq\|w\|_{S(\dot{H}^{s_{c}};I_{T})}+\|U(t)\phi\|_{S(\dot{H}^{s_{c}};I_{T})}\rightarrow 0 as T+T\rightarrow+\infty by (4.69) and w+U(t)ϕLTHx1θ,w+U(t)ϕS(L2;IT),(w+U(t)ϕ)S(L2;IT)<\|w+U(t)\phi\|^{\theta}_{L^{\infty}_{T}H^{1}_{x}},\|w+U(t)\phi\|_{S(L^{2};I_{T})},\|\nabla(w+U(t)\phi)\|_{S(L^{2};I_{T})}<\infty since wB(T,ρ)w\in B(T,\rho) and ϕH1(N)\phi\in H^{1}(\mathbb{R}^{N}).

wS(L2;IT),wS(L2;IT)0asT+,\|w\|_{S(L^{2};I_{T})}\;,\,\|\nabla w\|_{S(L^{2};I_{T})}\rightarrow 0\;\;\;\;\textnormal{as}\;\;\;\;T\rightarrow+\infty,

and finally

wT0asT+.\|w\|_{T}\rightarrow 0\;\;\textnormal{as}\;\;T\rightarrow+\infty. (4.70)

On the other hand, we claim that u(t)=U(t)ϕ+w(t)u(t)=U(t)\phi+w(t) satisfies (1.1) in the time interval [T0,)[T_{0},\infty). To do this, we need to show that

u(t)=U(tT0)u(T0)+iT0tU(ts)(|x|b|u|αu)s𝑑s,u(t)=U(t-T_{0})u(T_{0})+i\int_{T_{0}}^{t}U(t-s)(|x|^{-b}|u|^{\alpha}u)sds, (4.71)

for all t[T0,)t\in[T_{0},\infty). Indeed, since

w(t)=itU(ts)|x|b|w+U(t)ϕ|α(w+U(t)ϕ)(s)𝑑s,w(t)=-i\int_{t}^{\infty}U(t-s)|x|^{-b}|w+U(t)\phi|^{\alpha}(w+U(t)\phi)(s)ds,

we deduce

U(T0t)w(t)\displaystyle U(T_{0}-t)w(t) =\displaystyle= itU(T0s)|x|b|w+U(t)ϕ|α(w+U(t)ϕ)(s)𝑑s\displaystyle-i\int_{t}^{\infty}U(T_{0}-s)|x|^{-b}|w+U(t)\phi|^{\alpha}(w+U(t)\phi)(s)ds
=\displaystyle= iT0tU(T0s)|x|b|w+U(t)ϕ|α(w+U(t)ϕ)(s)𝑑s+w(T0),\displaystyle i\int_{T_{0}}^{t}U(T_{0}-s)|x|^{-b}|w+U(t)\phi|^{\alpha}(w+U(t)\phi)(s)ds+w(T_{0}),

and so applying U(tT0)U(t-T_{0}) on both sides, we obtain

w(t)=U(tT0)w(T0)+iT0tU(ts)|x|b|w+U(t)ϕ|α(w+U(t)ϕ)(s)𝑑s.w(t)=U(t-T_{0})w(T_{0})+i\int_{T_{0}}^{t}U(t-s)|x|^{-b}|w+U(t)\phi|^{\alpha}(w+U(t)\phi)(s)ds.

Finally, adding U(t)ϕU(t)\phi in both sides of the last equation, we deduce (4.71).

Our goal now is to show relations (i)-(iv). Since u(t)=U(t)ϕ+wu(t)=U(t)\phi+w then

u(t)U(t)ϕLTHx1=wLTHx1cwS(L2;IT)+cwS(L2;IT)cwT,\displaystyle\|u(t)-U(t)\phi\|_{L^{\infty}_{T}H^{1}_{x}}=\|w\|_{L^{\infty}_{T}H^{1}_{x}}\leq c\|w\|_{S(L^{2};I_{T})}+c\|\nabla w\|_{S(L^{2};I_{T})}\leq c\|w\|_{T}, (4.72)

which implies (iii) (using (4.66)\eqref{EWO2}). Moreover, it is easy to see, by (4.72)

limtu(t)Lx2=ϕL2.\lim_{t\rightarrow\infty}\|u(t)\|_{L^{2}_{x}}=\|\phi\|_{L^{2}}. (4.73)

and

limtu(t)Lx2=ϕL2.\lim_{t\rightarrow\infty}\|\nabla u(t)\|_{L^{2}_{x}}=\|\nabla\phi\|_{L^{2}}. (4.74)

The mass conservation (1.4) yields u(t)L2=u(T0)L2\|u(t)\|_{L^{2}}=\|u(T_{0})\|_{L^{2}} for all tt, so from (4.73) we deduce u(T0)L2=ϕL2\|u(T_{0})\|_{L^{2}}=\|\phi\|_{L^{2}}, i.e., item (i) holds. On the other hand, applying Lemma 4.3 (ii) we deduce

|x|b|u(t)|α+2Lx1\displaystyle\left\||x|^{-b}|u(t)|^{\alpha+2}\right\|_{L^{1}_{x}} \displaystyle\leq c|x|b|u(t)U(t)ϕ|α+2Lx1+c|x|b|U(t)ϕ|α+2Lx1\displaystyle c\left\||x|^{-b}|u(t)-U(t)\phi|^{\alpha+2}\right\|_{L^{1}_{x}}+c\left\||x|^{-b}|U(t)\phi|^{\alpha+2}\right\|_{L^{1}_{x}}
\displaystyle\leq cu(t)U(t)ϕ|Hx1α+2+c|x|b|U(t)ϕ|α+2Lx1,\displaystyle c\left\|u(t)-U(t)\phi|\right\|^{\alpha+2}_{H^{1}_{x}}+c\left\||x|^{-b}|U(t)\phi|^{\alpha+2}\right\|_{L^{1}_{x}},

which goes to zero as t+t\rightarrow+\infty, by item (iii) and Lemma 4.3 (iii), i.e.

limt|x|b|u(t)|α+2Lx1=0.\lim_{t\rightarrow\infty}\left\||x|^{-b}|u(t)|^{\alpha+2}\right\|_{L^{1}_{x}}=0. (4.75)

We have (ii) combining (4.74) and (4.75).

In view of (4.64), (i) and (ii) it follows that

E[u]scM[u]1sc=12scϕL22scϕL22(1sc)<λ2(Nα+2b2αsc)scE[Q]scM[Q]1scE[u]^{s_{c}}M[u]^{1-s_{c}}=\frac{1}{2^{s_{c}}}\|\nabla\phi\|^{2s_{c}}_{L^{2}}\|\phi\|^{2(1-s_{c})}_{L^{2}}<\lambda^{2}\left(\frac{N\alpha+2b}{2\alpha s_{c}}\right)^{s_{c}}E[Q]^{s_{c}}M[Q]^{1-s_{c}}

and by our choice of λ\lambda we conclude

E[u]scM[u]1sc<E[Q]scM[Q]1sc.E[u]^{s_{c}}M[u]^{1-s_{c}}<E[Q]^{s_{c}}M[Q]^{1-s_{c}}.

Furthermore, from (4.73), (4.74) and (4.64)

limtu(t)Lx22scu(t)Lx22(1sc)\displaystyle\lim_{t\rightarrow\infty}\|\nabla u(t)\|^{2s_{c}}_{L^{2}_{x}}\|u(t)\|^{2(1-s_{c})}_{L^{2}_{x}} =\displaystyle= ϕL22scϕL22(1sc)\displaystyle\|\nabla\phi\|^{2s_{c}}_{L^{2}}\|\phi\|^{2(1-s_{c})}_{L^{2}}
<\displaystyle< λ2(Nα+2bαsc)scE[Q]scM[Q]1sc\displaystyle\lambda^{2}\left(\frac{N\alpha+2b}{\alpha s_{c}}\right)^{s_{c}}E[Q]^{s_{c}}M[Q]^{1-s_{c}}
=\displaystyle= λ2QL22scQL22(1sc)\displaystyle\lambda^{2}\|\nabla Q\|^{2s_{c}}_{L^{2}}\|Q\|^{2(1-s_{c})}_{L^{2}}

where we have used (4.6). Thus, one can take T1>0T_{1}>0 sufficiently large such that

u(T1)Lx2scu(T1)Lx21sc<λQL2scQL21sc.\|\nabla u(T_{1})\|^{s_{c}}_{L^{2}_{x}}\|u(T_{1})\|^{1-s_{c}}_{L^{2}_{x}}<\lambda\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}}.

Therefore, since λ<1\lambda<1, we deduce that relations (1.8) and (1.9) hold with u0=u(T1)u_{0}=u(T_{1}) and so, by Theorem 1.2, we have in fact that u(t)u(t) constructed above is a global solution of (1.1). ∎

Remark 4.16.

A similar Wave Operator construction also holds when the time limit is taken as tt\rightarrow-\infty.

5. Profile and energy decomposition

We start by recalling some elementary inequalities (see Gérard [14] inequality (1.10) and Guevara [16] page 217). Let (zj)M(z_{j})\subset\mathbb{C}^{M} with M2M\geq 2. For all q>1q>1 there exists Cq,M>0C_{q,M}>0 such that

||j=1Mzj|qj=1M|zj|q|Cq,MjkM|zj||zk|q1,\left|\;\left|\sum_{j=1}^{M}z_{j}\right|^{q}-\sum_{j=1}^{M}|z_{j}|^{q}\right|\leq C_{q,M}\sum_{j\neq k}^{M}|z_{j}||z_{k}|^{q-1}, (5.1)

and for β>0\beta>0 there exists a constant Cβ,M>0C_{\beta,M}>0 such that

||j=1Mzj|βj=1Mzjj=1M|zj|βzj|Cβ,Mj=1M1jkM|zj|β|zk|.\left|\left|\sum_{j=1}^{M}z_{j}\right|^{\beta}\sum_{j=1}^{M}z_{j}-\sum_{j=1}^{M}|z_{j}|^{\beta}z_{j}\right|\leq C_{\beta,M}\sum_{j=1}^{M}\sum_{1\leq j\neq k\leq M}|z_{j}|^{\beta}|z_{k}|. (5.2)

Our goal in this section is to establish a profile decomposition result and an Energy Pythagorean expansion for such a decomposition. To this end, we use similar arguments as in our work [10], with (N,α)=(3,2)(N,\alpha)=(3,2), and for the sake of completeness, we provide the details here.

Proposition 5.1.

(Profile decomposition)Let ϕn(x)\phi_{n}(x) be a radial uniformly bounded sequence in H1(N)H^{1}(\mathbb{R}^{N}). Then for each MM\in\mathbb{N} there exists a subsequence of ϕn\phi_{n} (also denoted by ϕn\phi_{n}), such that, for each 1jM1\leq j\leq M, there exist a profile ψj\psi^{j} in H1(N)H^{1}(\mathbb{R}^{N}), a sequence tnjt_{n}^{j} of time shifts and a sequence WnMW_{n}^{M} of remainders in H1(N)H^{1}(\mathbb{R}^{N}), such that

ϕn(x)=j=1MU(tnj)ψj(x)+WnM(x)\phi_{n}(x)=\sum_{j=1}^{M}U(-t_{n}^{j})\psi^{j}(x)+W_{n}^{M}(x) (5.3)

with the following properties:

  • Pairwise divergence for the time sequences. For 1kjM1\leq k\neq j\leq M,

    limn+|tnjtnk|=+.\lim\limits_{n\rightarrow+\infty}|t_{n}^{j}-t_{n}^{k}|=+\infty. (5.4)
  • Asymptotic smallness for the remainder sequence (recalling sc=N22bαs_{c}=\frac{N}{2}-\frac{2-b}{\alpha})

    limM+(limn+U(t)WnMS(H˙sc))=0.\lim\limits_{M\rightarrow+\infty}\left(\lim\limits_{n\rightarrow+\infty}\|U(t)W_{n}^{M}\|_{S(\dot{H}^{s_{c}})}\right)=0. (5.5)
  • Asymptotic Pythagoream expansion. For fixed MM\in\mathbb{N} and any s[0,1]s\in[0,1], we have

    ϕnH˙s2=j=1MψjH˙s2+WnMH˙s2+on(1)\|\phi_{n}\|^{2}_{\dot{H}^{s}}=\sum_{j=1}^{M}\|\psi^{j}\|^{2}_{\dot{H}^{s}}+\|W_{n}^{M}\|^{2}_{\dot{H}^{s}}+o_{n}(1) (5.6)

    where on(1)0o_{n}(1)\rightarrow 0 as n+n\rightarrow+\infty.

Proof.

Consider ϕnH1C1\|\phi_{n}\|_{H^{1}}\leq C_{1}, for some C1>0C_{1}>0. Let (a,r)(a,r) H˙sc\dot{H}^{s_{c}}-admissible and define r1=2rr_{1}=2r, a1=4rr(N2sc)Na_{1}=\frac{4r}{r(N-2s_{c})-N}. It is easy to see that (a1,r1)(a_{1},r_{1}) is also H˙sc\dot{H}^{s_{c}}-admissible, thus combining the interpolation inequality with η=Nr(N2sc)N(0,1)\eta=\frac{N}{r(N-2s_{c})-N}\in(0,1) and the Strichartz estimate (2.7), we deduce

U(t)WnMLtaLxr\displaystyle\|U(t)W_{n}^{M}\|_{L_{t}^{a}L^{r}_{x}} \displaystyle\leq U(t)WnMLta1Lxr11ηU(t)WnMLtLx2NN2scη\displaystyle\|U(t)W_{n}^{M}\|^{1-\eta}_{L_{t}^{a_{1}}L^{r_{1}}_{x}}\|U(t)W_{n}^{M}\|^{\eta}_{L_{t}^{\infty}L^{\frac{2N}{N-2s_{c}}}_{x}} (5.7)
\displaystyle\leq WnMH˙sc1ηU(t)WnMLtLx2NN2scη.\displaystyle\|W_{n}^{M}\|^{1-\eta}_{\dot{H}^{s_{c}}}\|U(t)W_{n}^{M}\|^{\eta}_{L_{t}^{\infty}L^{\frac{2N}{N-2s_{c}}}_{x}}.

So it will be suffice to conclude (since WnMH˙scC1\|W_{n}^{M}\|_{\dot{H}^{s_{c}}}\leq C_{1})

limM+(lim supn+U(t)WnMLtLx2NN2sc)=0.\lim\limits_{M\rightarrow+\infty}\left(\limsup\limits_{n\rightarrow+\infty}\|U(t)W_{n}^{M}\|_{L_{t}^{\infty}L^{\frac{2N}{N-2s_{c}}}_{x}}\right)=0. (5.8)

Indeed, we start by constructing ψn1\psi^{1}_{n}, tn1t_{n}^{1} and Wn1W_{n}^{1}. Let

A1=lim supn+U(t)ϕnLtLx2NN2sc.A_{1}=\limsup\limits_{n\rightarrow+\infty}\|U(t)\phi_{n}\|_{L_{t}^{\infty}L^{\frac{2N}{N-2s_{c}}}_{x}}.

If A1=0A_{1}=0, we take ψj=0\psi^{j}=0 for all j=1,,Mj=1,\dots,M and the proof is complete. Suppose A1>0A_{1}>0. Passing to a subsequence, we may consider A1=limn+U(t)ϕnLtLx2NN2scA_{1}=\lim\limits_{n\rightarrow+\infty}\|U(t)\phi_{n}\|_{L_{t}^{\infty}L^{\frac{2N}{N-2s_{c}}}_{x}}. We claim that there exist a time sequence tn1t_{n}^{1} and ψ1\psi^{1} such that U(tn1)ϕnψ1U(t_{n}^{1})\phi_{n}\rightharpoonup\psi^{1} and

βC1N2sc2sc(1sc)ψ1H˙scA1N2sc22sc(1sc),\beta C_{1}^{\frac{N-2s_{c}}{2s_{c}(1-s_{c})}}\|\psi^{1}\|_{\dot{H}^{s_{c}}}\geq A_{1}^{\frac{N-2s_{c}^{2}}{2s_{c}(1-s_{c})}}, (5.9)

where β>0\beta>0 is independent of C1C_{1}, A1A_{1} and ϕn\phi_{n}. Indeed, let ζC0(N)\zeta\in C^{\infty}_{0}(\mathbb{R}^{N}) a real-valued and radially symmetric function such that 0ζ10\leq\zeta\leq 1, ζ(ξ)=1\zeta(\xi)=1 for |ξ|1|\xi|\leq 1 and ζ(ξ)=0\zeta(\xi)=0 for |ξ|2|\xi|\geq 2. Given r>0r>0, define χr\chi_{r} by χr^(ξ)=ζ(ξr)\widehat{\chi_{r}}(\xi)=\zeta(\frac{\xi}{r}). It follows from Sobolev embedding (2.10) and since the operator U(t)U(t) is an isometry in HscH^{s_{c}} that101010Recalling 0<sc<10<s_{c}<1.

U(t)ϕnχrU(t)ϕnLtLx2NN2sc2\displaystyle\|U(t)\phi_{n}-\chi_{r}*U(t)\phi_{n}\|^{2}_{L^{\infty}_{t}L_{x}^{\frac{2N}{N-2s_{c}}}} cU(t)ϕnχrU(t)ϕnLtHxsc2\displaystyle\leq c\|U(t)\phi_{n}-\chi_{r}*U(t)\phi_{n}\|^{2}_{L^{\infty}_{t}H_{x}^{s_{c}}}
c|ξ|2sc|(1χr^)2|ϕ^n(ξ)|2dξ\displaystyle\leq c\int|\xi|^{2s_{c}}|(1-\widehat{\chi_{r}})^{2}|\widehat{\phi}_{n}(\xi)|^{2}d\xi
cr2(1sc)ϕH˙12cr2(1sc)C12.\displaystyle\leq cr^{-2(1-s_{c})}\|\phi\|^{2}_{\dot{H}^{1}}\leq cr^{-2(1-s_{c})}C_{1}^{2}.

Taking

r=(4cC1A1)11scr=\left(\frac{4\sqrt{c}C_{1}}{A_{1}}\right)^{\frac{1}{1-s_{c}}} (5.10)

and for nn large enough we obtain

χrU(t)ϕnLtLx2NN2scA12.\|\chi_{r}*U(t)\phi_{n}\|_{L^{\infty}_{t}L_{x}^{\frac{2N}{N-2s_{c}}}}\geq\frac{A_{1}}{2}. (5.11)

Observe that, from the standard interpolation in Lebesgue spaces

χrU(t)ϕnLtLx2NN2scN\displaystyle\|\chi_{r}*U(t)\phi_{n}\|^{N}_{L^{\infty}_{t}L_{x}^{\frac{2N}{N-2s_{c}}}} \displaystyle\leq χrU(t)ϕnLtLx2N2scχrU(t)ϕnLtLx2sc\displaystyle\|\chi_{r}*U(t)\phi_{n}\|^{N-2s_{c}}_{L^{\infty}_{t}L_{x}^{2}}\|\chi_{r}*U(t)\phi_{n}\|^{2s_{c}}_{L^{\infty}_{t}L_{x}^{\infty}} (5.12)
\displaystyle\leq C1N2scχrU(t)ϕnLtLx2sc,\displaystyle C_{1}^{N-2s_{c}}\|\chi_{r}*U(t)\phi_{n}\|^{2s_{c}}_{L^{\infty}_{t}L_{x}^{\infty}},

thus (using (5.11) and (5.12)) χrU(t)ϕnLtLx(A12C1N2scN)N2sc\|\chi_{r}*U(t)\phi_{n}\|_{L^{\infty}_{t}L_{x}^{\infty}}\geq\left(\frac{A_{1}}{2C_{1}^{\frac{N-2s_{c}}{N}}}\right)^{\frac{N}{2s_{c}}}. Since all ϕn\phi_{n} are radial functions and so are χrU(t)ϕn\chi_{r}*U(t)\phi_{n}, the radial Sobolev Gagliardo-Nirenberg inequality (4.7) leads to

χrU(t)ϕnLtLx(|x|R)\displaystyle\|\chi_{r}*U(t)\phi_{n}\|_{L^{\infty}_{t}L_{x}^{\infty}(|x|\geq R)} \displaystyle\leq 1RN12χrU(t)ϕnLx212(χrU(t)ϕn)Lx212\displaystyle\frac{1}{R^{\frac{N-1}{2}}}\|\chi_{r}*U(t)\phi_{n}\|^{\frac{1}{2}}_{L^{2}_{x}}\|\nabla(\chi_{r}*U(t)\phi_{n})\|^{\frac{1}{2}}_{L^{2}_{x}}
\displaystyle\leq C1RN12.\displaystyle\frac{C_{1}}{R^{\frac{N-1}{2}}}.

Combining these last inequalities we obtain for R>0R>0 large

χrU(t)ϕnLtLx(|x|R)12(A12C1N2scN)N2sc.\|\chi_{r}*U(t)\phi_{n}\|_{L^{\infty}_{t}L_{x}^{\infty}(|x|\leq R)}\geq\frac{1}{2}\left(\frac{A_{1}}{2C_{1}^{\frac{N-2s_{c}}{N}}}\right)^{\frac{N}{2s_{c}}}.

Let tn1t_{n}^{1} and xn1x_{n}^{1}, with |xn1|R|x_{n}^{1}|\leq R, be sequences such that for each nn\in\mathbb{N}

|χrU(tn1)ϕn(xn1)|14(A12C1N2scN)N2sc\left|\chi_{r}*U(t_{n}^{1})\phi_{n}(x_{n}^{1})\right|\geq\frac{1}{4}\left(\frac{A_{1}}{2C_{1}^{\frac{N-2s_{c}}{N}}}\right)^{\frac{N}{2s_{c}}}

or

14(A12C1N2scN)N2sc|χr(xn1y)U(tn1)ϕn(y)𝑑y|.\frac{1}{4}\left(\frac{A_{1}}{2C_{1}^{\frac{N-2s_{c}}{N}}}\right)^{\frac{N}{2s_{c}}}\leq\left|\int\chi_{r}(x_{n}^{1}-y)U(t_{n}^{1})\phi_{n}(y)dy\right|. (5.13)

Since U(tn1)ϕnH1=ϕnH1C1\|U(t_{n}^{1})\phi_{n}\|_{H^{1}}=\|\phi_{n}\|_{H^{1}}\leq C_{1} then U(tn1)ϕnU(t^{1}_{n})\phi_{n} converges weakly in H1H^{1} (U(tn1)ϕnU(t_{n}^{1})\phi_{n}, that is there exists ψ1\psi^{1} a radial function such that U(tn1)ϕnψ1U(t_{n}^{1})\phi_{n}\rightharpoonup\psi^{1} in H1H^{1} and ψ1H1lim supn+ϕnH1C1\|\psi^{1}\|_{H^{1}}\leq\limsup\limits_{n\rightarrow+\infty}\|\phi_{n}\|_{H^{1}}\leq C_{1}. Moreover, xn1x1x_{n}^{1}\rightarrow x^{1} since xn1x_{n}^{1} is bounded. Thus, the inequality (5.13), the Plancherel formula and the Cauchy-Schwarz inequality imply

18(A12C1N2scN)N2sc|χr(x1y)ψ1(y)𝑑y|χrH˙scψ1H˙sc,\frac{1}{8}\left(\frac{A_{1}}{2C_{1}^{\frac{N-2s_{c}}{N}}}\right)^{\frac{N}{2s_{c}}}\leq\left|\int\chi_{r}(x^{1}-y)\psi^{1}(y)dy\right|\leq\|\chi_{r}\|_{\dot{H}^{-s_{c}}}\|\psi^{1}\|_{\dot{H}^{s_{c}}},

which implies (using χrH˙scc(02rρ2scρN1𝑑ρ)12crN2sc2\|\chi_{r}\|_{\dot{H}^{-s_{c}}}\leq c\left(\int_{0}^{2r}\rho^{-2s_{c}}\rho^{N-1}d\rho\right)^{\frac{1}{2}}\leq cr^{\frac{N-2s_{c}}{2}})

18(A12C1N2scN)N2sccrN2sc2ψ1H˙sc.\frac{1}{8}\left(\frac{A_{1}}{2C_{1}^{\frac{N-2s_{c}}{N}}}\right)^{\frac{N}{2s_{c}}}\leq cr^{\frac{N-2s_{c}}{2}}\|\psi^{1}\|_{\dot{H}^{s_{c}}}.

Therefore in view of our choice of rr (see (5.10)) we deduce (5.9), concluding the claim.

Define Wn1=ϕnU(tn1)ψ1W^{1}_{n}=\phi_{n}-U(-t_{n}^{1})\psi^{1}. Given any 0s10\leq s\leq 1, it follows that

  • U(tn1)Wn10U(t_{n}^{1})W^{1}_{n}\rightharpoonup 0 in H1H^{1} (since U(tn1)ϕnψ1U(t_{n}^{1})\phi_{n}\rightharpoonup\psi^{1}),

  • ϕn,U(tn1)ψ1H˙s=U(tn1)ϕn,ψ1H˙sψ1H˙s2\langle\phi_{n},U(-t^{1}_{n})\psi^{1}\rangle_{\dot{H}^{s}}=\langle U(t^{1}_{n})\phi_{n},\psi^{1}\rangle_{\dot{H}^{s}}\rightarrow\|\psi^{1}\|^{2}_{\dot{H}^{s}},

  • Wn1H˙s2=ϕnH˙s2ψ1H˙s2+on(1)\|W_{n}^{1}\|^{2}_{\dot{H}^{s}}=\|\phi_{n}\|^{2}_{\dot{H}^{s}}-\|\psi^{1}\|^{2}_{\dot{H}^{s}}+o_{n}(1).

The last item, with s=0s=0 and s=1s=1, implies Wn1H1C1\|W_{n}^{1}\|_{H^{1}}\leq C_{1}.

Next, let A2=lim supn+U(t)Wn1LtLx2NN2sA_{2}=\limsup\limits_{n\rightarrow+\infty}\|U(t)W_{n}^{1}\|_{L_{t}^{\infty}L^{\frac{2N}{N-2s}}_{x}}. If A2=0A_{2}=0, there is nothing to prove. Again the only case we need to consider is A2>0A_{2}>0. Repeating the above procedure, with ϕn\phi_{n} replaced by Wn1W_{n}^{1} we obtain a sequence tn2t_{n}^{2} and a function ψ2\psi^{2} such that U(tn2)Wn1ψ2U(t_{n}^{2})W_{n}^{1}\rightharpoonup\psi^{2} in H1H^{1} and

βC1N2sc2sc(1sc)ψ2H˙scA2N2sc22sc(1sc).\beta C_{1}^{\frac{N-2s_{c}}{2s_{c}(1-s_{c})}}\|\psi^{2}\|_{\dot{H}^{s_{c}}}\geq A_{2}^{\frac{N-2s_{c}^{2}}{2s_{c}(1-s_{c})}}.

We now show that |tn2tn1|+|t_{n}^{2}-t_{n}^{1}|\rightarrow+\infty. We suppose that tn2tn1tt_{n}^{2}-t_{n}^{1}\rightarrow t^{*} finite, then

U(tn2tn1)(U(tn1)ϕnψ1)=U(tn2)(ϕnU(tn1)ψ1)=U(tn2)Wn1ψ2.U(t_{n}^{2}-t_{n}^{1})\left(U(t_{n}^{1})\phi_{n}-\psi^{1}\right)=U(t_{n}^{2})\left(\phi_{n}-U(-t_{n}^{1})\psi^{1}\right)=U(t_{n}^{2})W_{n}^{1}\rightharpoonup\psi^{2}.

On the other hand, since U(tn1)ϕnψ1U(t_{n}^{1})\phi_{n}\rightharpoonup\psi^{1}, the left side of the above expression converges weakly to 0, and thus ψ2=0\psi^{2}=0, a contradiction. Let Wn2=Wn1U(tn2)ψ2W_{n}^{2}=W_{n}^{1}-U(-t_{n}^{2})\psi^{2}. We get for any 0s10\leq s\leq 1 (using the fact that |tn1tn2|+|t_{n}^{1}-t_{n}^{2}|\rightarrow+\infty)

ϕn,U(tn2)ψ2H˙s\displaystyle\langle\phi_{n},U(-t_{n}^{2})\psi^{2}\rangle_{\dot{H}^{s}} =\displaystyle= U(tn2)ϕn,ψ2H˙s\displaystyle\langle U(t_{n}^{2})\phi_{n},\psi^{2}\rangle_{\dot{H}^{s}}
=\displaystyle= U(tn2)Wn1,ψ2H˙s+U(tn2tn1)ψ1,ψ2H˙s\displaystyle\langle U(t_{n}^{2})W_{n}^{1},\psi^{2}\rangle_{\dot{H}^{s}}+\langle U(t_{n}^{2}-t_{n}^{1})\psi^{1},\psi^{2}\rangle_{\dot{H}^{s}}
\displaystyle\rightarrow ψ2H˙s2.\displaystyle\|\psi^{2}\|^{2}_{\dot{H}^{s}}.

The definition of Wn2W_{n}^{2} also yields that

Wn2H˙s2=Wn1H˙sc2ψ2H˙s2+on(1)andWn2H1C1\|W_{n}^{2}\|^{2}_{\dot{H}^{s}}=\|W_{n}^{1}\|^{2}_{\dot{H}^{s_{c}}}-\|\psi^{2}\|^{2}_{\dot{H}^{s}}+o_{n}(1)\;\;\;\textnormal{and}\;\;\;\|W_{n}^{2}\|_{H^{1}}\leq C_{1}

By induction we can construct ψM\psi^{M}, tnMt_{n}^{M} and WnMW_{n}^{M} such that U(tnM)WnM1ψMU(t_{n}^{M})W_{n}^{M-1}\rightharpoonup\psi^{M} in H1H^{1} and

βC1N2sc2sc(1sc)ψMH˙scAMN2sc22sc(1sc),\beta C_{1}^{\frac{N-2s_{c}}{2s_{c}(1-s_{c})}}\|\psi^{M}\|_{\dot{H}^{s_{c}}}\geq A_{M}^{\frac{N-2s_{c}^{2}}{2s_{c}(1-s_{c})}}, (5.14)

where AM=limn+U(t)WnM1LtLx2NN2scA_{M}=\lim\limits_{n\rightarrow+\infty}\|U(t)W_{n}^{M-1}\|_{L_{t}^{\infty}L^{\frac{2N}{N-2s_{c}}}_{x}}.

Next, we prove (5.4). Assume 1j<M1\leq j<M, we show that |tnMtnj|+|t^{M}_{n}-t_{n}^{j}|\rightarrow+\infty by induction assuming |tnMtnk|+|t^{M}_{n}-t_{n}^{k}|\rightarrow+\infty for k=j+1,,M1k=j+1,\dots,M-1. Indeed, let tnMtnjt0t^{M}_{n}-t_{n}^{j}\rightarrow t_{0} finite then

U(tnMtnj)(U(tnj)Wnj1ψj)U(tnMtnj+1)ψj+1U(tnMtnM1)ψM1U(t_{n}^{M}-t_{n}^{j})\left(U(t_{n}^{j})W_{n}^{j-1}-\psi^{j}\right)-U(t_{n}^{M}-t_{n}^{j+1})\psi^{j+1}-...-U(t_{n}^{M}-t_{n}^{M-1})\psi^{M-1}
=U(tnM)WnM1ψM.=U(t_{n}^{M})W_{n}^{M-1}\rightharpoonup\psi^{M}.

Since the left side converges weakly to 0, we have ψM=0\psi^{M}=0, a contradiction.

We now consider WnM=ϕnU(tn1)ψ1U(tn2)ψ2U(tnM)ψMW_{n}^{M}=\phi_{n}-U(-t_{n}^{1})\psi^{1}-U(-t_{n}^{2})\psi^{2}-...-U(-t_{n}^{M})\psi^{M}. As before, by (5.4) we get

ϕn,U(tnM)ψMH˙s=U(tnM)WnM1,ψMH˙s+on(1),\langle\phi_{n},U(-t_{n}^{M})\psi^{M}\rangle_{\dot{H}^{s}}=\langle U(t_{n}^{M})W_{n}^{M-1},\psi^{M}\rangle_{\dot{H}^{s}}+o_{n}(1),

and ϕn,U(tnM)ψMH˙sψMH˙s2\langle\phi_{n},U(-t_{n}^{M})\psi^{M}\rangle_{\dot{H}^{s}}\rightarrow\|\psi^{M}\|^{2}_{\dot{H}^{s}}. Hence expanding WnMH˙s2\|W_{n}^{M}\|^{2}_{\dot{H}^{s}} we conclude that (5.6) also holds.

The relations (5.14) and (5.6) yield M1(AMN2sc2sc(1sc)β2C1N2scsc(1sc))limn+ϕnH˙sc2<+,\sum_{M\geq 1}\left(\frac{A_{M}^{\frac{N-2s_{c}^{2}}{s_{c}(1-s_{c})}}}{\beta^{2}C_{1}^{\frac{N-2s_{c}}{s_{c}(1-s_{c})}}}\right)\leq\lim\limits_{n\rightarrow+\infty}\|\phi_{n}\|^{2}_{\dot{H}^{s_{c}}}<+\infty, which implies that AM0A_{M}\rightarrow 0 as M+M\rightarrow+\infty i.e., (5.8) holds. Therefore, we get (5.5) by (5.7). This completes the proof. ∎

The next proposition contains an energy Pythagoream expansion. To this end, we use the following remark.

Remark 5.2.

It follows from the proof of Proposition 5.1 that

limM,nWnMLp=0,\lim\limits_{M,n\rightarrow\infty}\|W_{n}^{M}\|_{L^{p}}=0, (5.15)

where111111Recalling p~\widetilde{p} is defined in (4.10). 2<p<p~2<p<\widetilde{p}. Indeed, it is easy to see that

limM+(limn+U(t)WnMLtLxp)=0.\lim\limits_{M\rightarrow+\infty}\left(\lim\limits_{n\rightarrow+\infty}\|U(t)W_{n}^{M}\|_{L_{t}^{\infty}L^{p}_{x}}\right)=0. (5.16)

We have H˙sLp\dot{H}^{s}\hookrightarrow L^{p}, where s=N2Nps=\frac{N}{2}-\frac{N}{p} (see inequality (2.10)). Since 2<p<p~2<p<\widetilde{p} then 0<s<10<s<1, thus repeating the argument used for showing (5.8) with 2NN2sc\frac{2N}{N-2s_{c}} replaced by pp and scs_{c} by ss, we get (5.16). In addition, (5.15) follows directly from (5.16) and the inequality

WnMLxpU(t)WnMLtLxp,\|W_{n}^{M}\|_{L_{x}^{p}}\leq\|U(t)W_{n}^{M}\|_{L^{\infty}_{t}L_{x}^{p}},

since WnM=U(0)WnMW_{n}^{M}=U(0)W_{n}^{M}.

Proposition 5.3.

(Energy Pythagoream Expansion) Under the hypothesis of Proposition 5.1 we obtain

E[ϕn]=j=1ME[U(tnj)ψj]+E[WnM]+on(1).E[\phi_{n}]=\sum_{j=1}^{M}E[U(-t_{n}^{j})\psi^{j}]+E[W_{n}^{M}]+o_{n}(1). (5.17)
Proof.

We get (using (5.6) with s=1s=1)

E[ϕn]j=1ME[U(tnj)ψj]E[WnM]=Anα+2+on(1),E[\phi_{n}]-\sum_{j=1}^{M}E[U(-t_{n}^{j})\psi^{j}]-E[W_{n}^{M}]=-\frac{A_{n}}{\alpha+2}+o_{n}(1),

where

An=|x|b|ϕn|α+2L1j=1M|x|b|U(tnj)ψj|α+2Lx1|x|b|WnM|α+2L1.A_{n}=\left\||x|^{-b}|\phi_{n}|^{\alpha+2}\right\|_{L^{1}}-\sum_{j=1}^{M}\left\||x|^{-b}|U(-t_{n}^{j})\psi^{j}|^{\alpha+2}\right\|_{L_{x}^{1}}-\left\||x|^{-b}|W_{n}^{M}|^{\alpha+2}\right\|_{L^{1}}.

For a fixed MM\in\mathbb{N}, if An0A_{n}\rightarrow 0 as n+n\rightarrow+\infty then (5.17) holds. Indeed, pick M1MM_{1}\geq M and rewrite the last expression as

An\displaystyle A_{n} =\displaystyle= (|x|b|ϕn|α+2j=1M|x|b|U(tnj)ψj|α+2|x|b|WnM|α+2)𝑑x\displaystyle\int\left(|x|^{-b}|\phi_{n}|^{\alpha+2}-\sum_{j=1}^{M}|x|^{-b}|U(-t_{n}^{j})\psi^{j}|^{\alpha+2}-|x|^{-b}|W_{n}^{M}|^{\alpha+2}\right)dx
=\displaystyle= In1+In2+In3,\displaystyle I^{1}_{n}+I^{2}_{n}+I^{3}_{n},

where

In1\displaystyle I^{1}_{n} =\displaystyle= |x|b[|ϕn|α+2|ϕnWnM1|α+2]𝑑x\displaystyle\int|x|^{-b}\left[|\phi_{n}|^{\alpha+2}-|\phi_{n}-W_{n}^{M_{1}}|^{\alpha+2}\right]dx
In2\displaystyle I^{2}_{n} =\displaystyle= |x|b[|WnM1WnM|α+2|WnM|α+2]𝑑x\displaystyle\int|x|^{-b}\left[|W_{n}^{M_{1}}-W_{n}^{M}|^{\alpha+2}-|W_{n}^{M}|^{\alpha+2}\right]dx
In3\displaystyle I^{3}_{n} =\displaystyle= |x|b[|ϕnWnM1|α+2j=1M|U(tnj)ψj|α+2|WnM1WnM|α+2]𝑑x.\displaystyle\int|x|^{-b}\left[|\phi_{n}-W_{n}^{M_{1}}|^{\alpha+2}-\sum_{j=1}^{M}|U(-t_{n}^{j})\psi^{j}|^{\alpha+2}-|W_{n}^{M_{1}}-W_{n}^{M}|^{\alpha+2}\right]dx.

We start by estimating In1I^{1}_{n}. Lemma 4.3 (i)-(ii) and (5.1) imply that

|In1|\displaystyle|I^{1}_{n}| \displaystyle\lesssim |x|b(|ϕn|α+1|WnM1|+|ϕn||WnM1|α+1+|WnM1|α+2)𝑑x\displaystyle\int|x|^{-b}\left(|\phi_{n}|^{\alpha+1}|W_{n}^{M_{1}}|+|\phi_{n}||W_{n}^{M_{1}}|^{\alpha+1}+|W_{n}^{M_{1}}|^{\alpha+2}\right)dx
\displaystyle\lesssim (ϕnLrα+1WnM1Lr+ϕnLrWnM1Lrα+1+WnM1Lrα+2)+\displaystyle\left(\|\phi_{n}\|^{\alpha+1}_{L^{r}}\|W_{n}^{M_{1}}\|_{L^{r}}+\|\phi_{n}\|_{L^{r}}\|W_{n}^{M_{1}}\|^{\alpha+1}_{L^{r}}+\|W_{n}^{M_{1}}\|^{\alpha+2}_{L^{r}}\right)+
(ϕnLα+2α+1WnM1Lα+2+ϕnLα+2WnM1Lα+2α+1+WnM1Lα+2α+2)\displaystyle\left(\|\phi_{n}\|^{\alpha+1}_{L^{\alpha+2}}\|W_{n}^{M_{1}}\|_{L^{\alpha+2}}+\|\phi_{n}\|_{L^{\alpha+2}}\|W_{n}^{M_{1}}\|^{\alpha+1}_{L^{\alpha+2}}+\|W_{n}^{M_{1}}\|^{\alpha+2}_{{L^{\alpha+2}}}\right)
\displaystyle\lesssim ϕnH1α+1WnM1Lr+ϕnH1WnM1Lrα+1+WnM1Lrα+2+\displaystyle\|\phi_{n}\|^{\alpha+1}_{H^{1}}\|W_{n}^{M_{1}}\|_{L^{r}}+\|\phi_{n}\|_{H^{1}}\|W_{n}^{M_{1}}\|^{\alpha+1}_{L^{r}}+\|W_{n}^{M_{1}}\|^{\alpha+2}_{L^{r}}+
ϕnH1α+1WnM1Lα+2+ϕnH1WnM1Lα+2α+1+WnM1Lα+2α+2,\displaystyle\|\phi_{n}\|^{\alpha+1}_{H^{1}}\|W_{n}^{M_{1}}\|_{L^{\alpha+2}}+\|\phi_{n}\|_{H^{1}}\|W_{n}^{M_{1}}\|^{\alpha+1}_{L^{\alpha+2}}+\|W_{n}^{M_{1}}\|^{\alpha+2}_{L^{\alpha+2}},

where N(α+2)Nb<r<p~\frac{N(\alpha+2)}{N-b}<r<\widetilde{p} (recall that p~\widetilde{p} is defined in (4.10)). Using (5.15)(we can apply Remark 5.2 since rr and α+2(2,p~)\alpha+2\in(2,\widetilde{p})) and since {ϕn}\{\phi_{n}\} is uniformly bounded in H1H^{1}, we obtain

In1+asn,M1+.I^{1}_{n}\rightarrow+\infty\;\;\textnormal{as}\;\;n,M_{1}\rightarrow+\infty.

In the same way (replacing ϕn\phi_{n} by WnMW_{n}^{M}) we also get

In2+asn,M1+.I^{2}_{n}\rightarrow+\infty\;\;\textnormal{as}\;\;n,M_{1}\rightarrow+\infty.

Finally we consider the term In3I^{3}_{n}. Since,

ϕnWnM1=j=1M1U(tnj)ψjandWnMWnM1=j=M+1M1U(tnj)ψj,\phi_{n}-W_{n}^{M_{1}}=\sum\limits_{j=1}^{M_{1}}U(-t_{n}^{j})\psi^{j}\;\;\textnormal{and}\;\;W_{n}^{M}-W_{n}^{M_{1}}=\sum\limits_{j=M+1}^{M_{1}}U(-t_{n}^{j})\psi^{j},

we can rewrite In3I^{3}_{n} as

In3=|x|b(|j=1M1U(tnj)ψj|α+2j=1M1|U(tnj)ψj|α+2)𝑑x\displaystyle I^{3}_{n}=\int|x|^{-b}\left(\left|\sum\limits_{j=1}^{M_{1}}U(-t_{n}^{j})\psi^{j}\right|^{\alpha+2}-\sum\limits_{j=1}^{M_{1}}|U(-t_{n}^{j})\psi^{j}|^{\alpha+2}\right)dx
|x|b(|j=M+1M1U(tnj)ψj|α+2j=M+1M1|U(tnj)ψj|α+2)𝑑x.-\int|x|^{-b}\left(\left|\sum\limits_{j=M+1}^{M_{1}}U(-t_{n}^{j})\psi^{j}\right|^{\alpha+2}-\sum\limits_{j=M+1}^{M_{1}}|U(-t_{n}^{j})\psi^{j}|^{\alpha+2}\right)dx.

To complete the proof we make use of the following claim.

Claim. For a fixed M1M_{1}\in\mathbb{N} and for some j0j_{0}\in\mathbb{N} (j0<M1j_{0}<M_{1}), we get

Dn=|x|b|j=j0M1U(tnj)ψ|α+2Lx1j=j0M1|x|b|U(tnj)ψj|α+2Lx10,D_{n}=\left\||x|^{-b}\left|\sum_{j=j_{0}}^{M_{1}}U(-t_{n}^{j})\psi\right|^{\alpha+2}\right\|_{L^{1}_{x}}-\sum_{j=j_{0}}^{M_{1}}\left\||x|^{-b}|U(-t_{n}^{j})\psi^{j}|^{\alpha+2}\right\|_{L^{1}_{x}}\rightarrow 0,

as n+n\rightarrow+\infty.

Indeed, it is clear that the last limit implies that In30asn+I^{3}_{n}\rightarrow 0\;\textnormal{as}\;n\rightarrow+\infty completing the proof of relation (5.17).

We now show the claim. Observe that (5.1) implies

DnjkM1|x|b|U(tnj)ψj||U(tnk)ψk|α+1𝑑x.D_{n}\leq\sum_{j\neq k}^{M_{1}}\int|x|^{-b}|U(-t_{n}^{j})\psi^{j}||U(-t_{n}^{k})\psi^{k}|^{\alpha+1}dx.

Setting Enj,k=|x|b|U(tnj)ψj||U(tnk)ψk|α+1𝑑xE^{j,k}_{n}=\int|x|^{-b}|U(-t_{n}^{j})\psi^{j}||U(-t_{n}^{k})\psi^{k}|^{\alpha+1}dx and using Lemma 4.3 (i), we deduce

Enj,kcU(tnk)ψkLxα+2α+1U(tnj)ψjLxα+2+cU(tnk)ψkLxrα+1U(tnj)ψjLxr,E^{j,k}_{n}\leq c\|U(-t_{n}^{k})\psi^{k}\|^{\alpha+1}_{L^{\alpha+2}_{x}}\|U(-t_{n}^{j})\psi^{j}\|_{L^{\alpha+2}_{x}}+c\|U(-t_{n}^{k})\psi^{k}\|^{\alpha+1}_{L^{r}_{x}}\|U(-t_{n}^{j})\psi^{j}\|_{L^{r}_{x}},

where 2<N(α+2)Nb<r<p~2<\frac{N(\alpha+2)}{N-b}<r<\widetilde{p}. Since (5.4) we can consider that tnkt_{n}^{k}, tnjt_{n}^{j} or both go to infinity as nn goes to infinity. If tnj+t_{n}^{j}\rightarrow+\infty as n+n\rightarrow+\infty then

Enj,k\displaystyle E^{j,k}_{n} \displaystyle\leq cψkH1α+1U(tnj)ψjLxα+2+cψkH1α+1U(tnj)ψjLxr\displaystyle c\|\psi^{k}\|^{\alpha+1}_{H^{1}}\|U(-t_{n}^{j})\psi^{j}\|_{L^{\alpha+2}_{x}}+c\|\psi^{k}\|^{\alpha+1}_{H^{1}}\|U(-t_{n}^{j})\psi^{j}\|_{L^{r}_{x}}
\displaystyle\leq cU(tnj)ψjLxα+2+cU(tnj)ψjLxr,\displaystyle c\|U(-t_{n}^{j})\psi^{j}\|_{L^{\alpha+2}_{x}}+c\|U(-t_{n}^{j})\psi^{j}\|_{L^{r}_{x}},

where in the last inequality we have used that (ψk)k(\psi^{k})_{k\in\mathbb{N}} is a uniformly bounded sequence in H1H^{1}. Thus, if n+n\rightarrow+\infty we have tnj+t_{n}^{j}\rightarrow+\infty and by (4.14) with t=tnjt=t_{n}^{j} and f=ψjf=\psi^{j} we conclude that Enj,k0E^{j,k}_{n}\rightarrow 0 as n+n\rightarrow+\infty. Similarly, for the case tnk+t^{k}_{n}\rightarrow+\infty as n+n\rightarrow+\infty, we have Enj,k0E^{j,k}_{n}\rightarrow 0. Finally, in view of DnD_{n} is a finite sum of terms in the form of Ej,kE^{j,k}, we conclude that Dn0D_{n}\rightarrow 0 as n+n\rightarrow+\infty. ∎

6. Critical solution

In this section, we study a critical solution of (1.1) (denoted by ucu_{c}). First, assuming that δc<E[u]scM[u]1sc\delta_{c}<E[u]^{s_{c}}M[u]^{1-s_{c}} (see (3.2)), we construct ucu_{c} of (1.1) with infinite Strichartz norm S(H˙sc)\|\cdot\|_{S(\dot{H}^{s_{c}})} satisfying

E[uc]scM[uc]1sc=δc.E[u_{c}]^{s_{c}}M[u_{c}]^{1-s_{c}}=\delta_{c}.

After that, we show that the flow associated to this critical solution is precompact in H1(N)H^{1}(\mathbb{R}^{N}). The key ingredients here are the results of the previous section and the long time perturbation theory (Proposition 4.14).

Proposition 6.1.

(Existence of ucu_{c}) Let N2N\geq 2, 42bN<α<2\frac{4-2b}{N}<\alpha<2_{*} and 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\}. If

δc<E[Q]scM[Q]1sc,\delta_{c}<E[Q]^{s_{c}}M[Q]^{1-s_{c}},

then there exists a radial function uc,0H1(N)u_{c,0}\in H^{1}(\mathbb{R}^{N}) such that the corresponding solution ucu_{c} of the IVP (1.1) is global in H1(N)H^{1}(\mathbb{R}^{N}). Moreover the following properties hold

  • (i)

    M[uc]=1M[u_{c}]=1,

  • (ii)

    E[uc]sc=δcE[u_{c}]^{s_{c}}=\delta_{c},

  • (iii)

    uc,0L2scuc,0L21sc<QL2scQL21sc\|\nabla u_{c,0}\|_{L^{2}}^{s_{c}}\|u_{c,0}\|_{L^{2}}^{1-s_{c}}<\|\nabla Q\|_{L^{2}}^{s_{c}}\|Q\|_{L^{2}}^{1-s_{c}},

  • (iv)

    ucS(H˙sc)=+\|u_{c}\|_{S(\dot{H}^{s_{c}})}=+\infty.

Proof.

There exists a sequence of solutions unu_{n} to (1.1) with H1H^{1} initial data un,0u_{n,0}, with unL2=1\|u_{n}\|_{L^{2}}=1 for all nn\in\mathbb{N}, such that (see section 3)

un,0L2sc<QL2scQL21sc\|\nabla u_{n,0}\|^{s_{c}}_{L^{2}}<\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}} (6.1)

and

E[un]δc1scasn+.E[u_{n}]\searrow\delta_{c}^{\frac{1}{s_{c}}}\;\;\textnormal{as}\;\;n\rightarrow+\infty.

Also

unS(H˙sc)=+\|u_{n}\|_{S(\dot{H}^{s_{c}})}=+\infty (6.2)

for every nn\in\mathbb{N}. Since δc<E[Q]scM[Q]1sc\delta_{c}<E[Q]^{s_{c}}M[Q]^{1-s_{c}}, there exists a(0,1)a\in(0,1) such that

E[un]aE[Q]M[Q]σ,E[u_{n}]\leq aE[Q]M[Q]^{\sigma}, (6.3)

where σ=1scsc\sigma=\frac{1-s_{c}}{s_{c}}. Moreover, Lemma 4.2 (ii) and (6.1) yield

un,0L22w1scQL22QL22σ,\|\nabla u_{n,0}\|^{2}_{L^{2}}\leq w^{\frac{1}{s_{c}}}\|\nabla Q\|^{2}_{L^{2}}\|Q\|^{2\sigma}_{L^{2}},

where w=E[un]scM[un]1scE[Q]scM[Q]1scw=\frac{E[u_{n}]^{s_{c}}M[u_{n}]^{1-s_{c}}}{E[Q]^{s_{c}}M[Q]^{1-s_{c}}}, thus we deduce from (6.3) and unL2=1\|u_{n}\|_{L^{2}}=1 that w1scaw^{\frac{1}{s_{c}}}\leq a which implies

un,0L22aQL22QL22σ.\|\nabla u_{n,0}\|^{2}_{L^{2}}\leq a\|\nabla Q\|^{2}_{L^{2}}\|Q\|^{2\sigma}_{L^{2}}. (6.4)

On the other hand, we have using the linear profile decomposition (Proposition 5.1) applied to un,0u_{n,0}, which is uniformly bounded in H1(N)H^{1}(\mathbb{R}^{N}) by (6.4) that

un,0(x)=j=1MU(tnj)ψj(x)+WnM(x),u_{n,0}(x)=\sum_{j=1}^{M}U(-t_{n}^{j})\psi^{j}(x)+W_{n}^{M}(x), (6.5)

where MM will be taken large later. By the Pythagorean expansion (5.6), with s=0s=0, that for all MM\in\mathbb{N} we deduce

j=1MψjL22+limn+WnML22limn+un,0L22=1,\sum_{j=1}^{M}\|\psi^{j}\|^{2}_{L^{2}}+\lim_{n\rightarrow+\infty}\|W_{n}^{M}\|^{2}_{L^{2}}\leq\lim_{n\rightarrow+\infty}\|u_{n,0}\|^{2}_{L^{2}}=1, (6.6)

which implies

j=1MψjL221.\sum_{j=1}^{M}\|\psi^{j}\|^{2}_{L^{2}}\leq 1. (6.7)

Another application of (5.6), with s=1s=1, and (6.4) lead to

j=1MψjL22+limn+WnML22limn+un,0L22aQL22QL22σ,\sum_{j=1}^{M}\|\nabla\psi^{j}\|^{2}_{L^{2}}+\lim_{n\rightarrow+\infty}\|\nabla W_{n}^{M}\|^{2}_{L^{2}}\leq\lim_{n\rightarrow+\infty}\|\nabla u_{n,0}\|^{2}_{L^{2}}\leq a\|\nabla Q\|^{2}_{L^{2}}\|Q\|^{2\sigma}_{L^{2}}, (6.8)

and so

ψjL2scasc2QL2scQL21sc,j=1,,M.\|\nabla\psi^{j}\|^{s_{c}}_{L^{2}}\leq a^{\frac{s_{c}}{2}}\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}},\;\;j=1,\dots,M. (6.9)

Let {tnj}n\{t^{j}_{n}\}_{n\in\mathbb{N}} be the sequence given by Proposition 5.1. Combining (6.7) and (6.9) we obtain121212Recalling that U(t)U(t) is an isometry in L2(N)L^{2}(\mathbb{R}^{N}) and H˙1(N)\dot{H}^{1}(\mathbb{R}^{N}).

U(tnj)ψjLx21scU(tnj)ψjLx2scasc2QL2scQL21sc.\|U(-t_{n}^{j})\psi^{j}\|^{1-s_{c}}_{L^{2}_{x}}\|\nabla U(-t_{n}^{j})\psi^{j}\|^{s_{c}}_{L^{2}_{x}}\leq a^{\frac{s_{c}}{2}}\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}}.

Also, we have by Lemma 4.2 (i)

E[U(tnj)ψj]c(N,b,α)ψjL20.E[U(-t_{n}^{j})\psi^{j}]\geq c(N,b,\alpha)\|\nabla\psi^{j}\|_{L^{2}}\geq 0. (6.10)

Similarly as before, for all MM\in\mathbb{N} we also get

limn+WnML221,\lim_{n\rightarrow+\infty}\|W_{n}^{M}\|^{2}_{L^{2}}\leq 1,
limn+WnML2scasc2QL2scQL21sc,\lim_{n\rightarrow+\infty}\|\nabla W_{n}^{M}\|^{s_{c}}_{L^{2}}\leq a^{\frac{s_{c}}{2}}\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}},

and for nn large

E[WnM]0.E[W_{n}^{M}]\geq 0. (6.11)

The energy Pythagorean expansion (Proposition 5.3) allows us to deduce that

j=1Mlimn+E[U(tnj)ψj]+limn+E[WnM]=limn+E[un,0]=δc1sc,\sum_{j=1}^{M}\lim_{n\rightarrow+\infty}E[U(-t_{n}^{j})\psi^{j}]+\lim_{n\rightarrow+\infty}E[W_{n}^{M}]=\lim_{n\rightarrow+\infty}E[u_{n,0}]=\delta_{c}^{\frac{1}{s_{c}}},

which implies (using (6.10) and (6.11)) that

limnE[U(tnj)ψj]δc1sc,for allj=1,,M.\lim_{n\rightarrow\infty}E[U(-t_{n}^{j})\psi^{j}]\leq\delta_{c}^{\frac{1}{s_{c}}},\;\textnormal{for all}\;\;j=1,...,M. (6.12)

We now analyze two cases: if more than one ψj0\psi^{j}\neq 0 and only one profile is nonzero.

If more than one ψj0\psi^{j}\neq 0, we prove a contradiction. Indeed, by (6.6) we must have M[ψj]<1M[\psi^{j}]<1 for each jj. Passing to a subsequence, if necessary, again we have two cases to consider.

Case 11. tnjtt^{j}_{n}\rightarrow t^{*} finite.131313Note that, at most only one such jj exists by (5.4)). By the continuity of the linear flow in H1(N)H^{1}(\mathbb{R}^{N})

U(tnj)ψjU(t)ψjstrongly inH1.U(-t_{n}^{j})\psi^{j}\rightarrow U(-t^{*})\psi^{j}\;\;\;\;\textnormal{strongly in}\;H^{1}. (6.13)

We denote the solution of (1.1) with initial data ψ\psi by INLS(t)ψ(t)\psi. Set ψ~j=INLS(t)(U(t)ψj)\widetilde{\psi}^{j}=\textnormal{INLS}(t^{*})(U(-t^{*})\psi^{j}) so that INLS(t)ψ~j=U(t)ψj\mbox{INLS}(-t^{*})\widetilde{\psi}^{j}=U(-t^{*})\psi^{j}. In view of the set

𝒦:={u0H1(N):relations(1.8)and(1.9)hold}\mathcal{K}:=\left\{u_{0}\in H^{1}(\mathbb{R}^{N}):\;\textrm{relations}\;\eqref{EMC}\;\textrm{and}\;\eqref{GFC}\;\textrm{hold}\;\right\}

is closed in H1(N)H^{1}(\mathbb{R}^{N}) then ψ~j𝒦\widetilde{\psi}^{j}\in\mathcal{K}, that is, INLS(t)ψ~j(t)\widetilde{\psi}^{j} is a global solution by Theorem 1.2. In addition, the relations (6.1), (6.12) and M[ψj]<1M[\psi^{j}]<1 implies that

ψ~jLx21scψ~jLx2scQL2scQL21scandE[ψ~j]scM[ψ~j]1sc<δc.\|\widetilde{\psi}^{j}\|^{1-s_{c}}_{L^{2}_{x}}\|\nabla\widetilde{\psi}^{j}\|^{s_{c}}_{L^{2}_{x}}\leq\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}}\;\;\textnormal{and}\;\;E[\widetilde{\psi}^{j}]^{s_{c}}M[\widetilde{\psi}^{j}]^{1-s_{c}}<\delta_{c}.

So, using the definition of δc\delta_{c} (see (3.2)) we have

INLS(t)ψ~jS(H˙sc)<+.\|\textnormal{INLS}(t)\widetilde{\psi}^{j}\|_{S(\dot{H}^{s_{c}})}<+\infty. (6.14)

Finally, it is easy to see by (6.13)

limn+INLS(tnj)ψ~jU(tnj)ψjHx1=0.\lim_{n\rightarrow+\infty}\|\textnormal{INLS}(-t_{n}^{j})\widetilde{\psi}^{j}-U(-t_{n}^{j})\psi^{j}\|_{H^{1}_{x}}=0. (6.15)

Case 22. If |tnj|+|t^{j}_{n}|\rightarrow+\infty then by Lemma 4.3 (iii)

|x|b|U(tnj)ψj|α+2Lx10,\left\||x|^{-b}|U(-t_{n}^{j})\psi^{j}|^{\alpha+2}\right\|_{L^{1}_{x}}\rightarrow 0,

and thus, using the fact that U(t)U(t) is an isometry in H˙1(N)\dot{H}^{1}(\mathbb{R}^{N}) and (6.12)

(12ψjL22)sc=limnE[U(tnj)ψj]scδc<E[Q]scM[Q]1sc,\left(\frac{1}{2}\|\nabla\psi^{j}\|^{2}_{L^{2}}\right)^{s_{c}}=\lim_{n\rightarrow\infty}E[U(-t_{n}^{j})\psi^{j}]^{s_{c}}\leq\delta_{c}<E[Q]^{s_{c}}M[Q]^{1-s_{c}}, (6.16)

Therefore, by the existence of wave operator, Proposition 4.15 with λ=(2αscNα+2b)sc2<1\lambda=(\frac{2\alpha s_{c}}{N\alpha+2b})^{\frac{s_{c}}{2}}<1, there exists ψ~jH1(N)\widetilde{\psi}^{j}\in H^{1}(\mathbb{R}^{N}) such that

M[ψ~j]=M[ψj] and E[ψ~j]=12ψjL22,M[\widetilde{\psi}^{j}]=M[\psi^{j}]\;\;\;\textrm{ and }\;\;\;\;E[\widetilde{\psi}^{j}]=\frac{1}{2}\|\nabla\psi^{j}\|^{2}_{L^{2}}, (6.17)
INLS(t)ψ~jLx2scψ~jL21sc<QL2scQL21sc\|\nabla\textnormal{INLS}(t)\widetilde{\psi}^{j}\|^{s_{c}}_{L^{2}_{x}}\|\widetilde{\psi}^{j}\|^{1-s_{c}}_{L^{2}}<\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}} (6.18)

and (6.15) also holds in this case.

Since M[ψj]<1M[{\psi}^{j}]<1 and using (6.16)-(6.17), we get E[ψ~j]scM[ψ~j]1sc<δcE[\widetilde{\psi}^{j}]^{s_{c}}M[\widetilde{\psi}^{j}]^{1-s_{c}}<\delta_{c}. Thus, the definition of δc\delta_{c} together with (6.18) also imply (6.14).

In either case, we have a new profile ψ~j\widetilde{\psi}^{j} for the given ψj\psi^{j} such that (6.15) (6.14) hold.

We now define

un(t)=INLS(t)un,0,u_{n}(t)=\textnormal{INLS}(t)u_{n,0},
vj(t)=INLS(t)ψ~j,v^{j}(t)=\textnormal{INLS}(t)\widetilde{\psi}^{j},
u~n(t)=j=1Mvj(ttnj),\widetilde{u}_{n}(t)=\sum_{j=1}^{M}v^{j}(t-t_{n}^{j}),
W~nM=j=1M[U(tnj)ψjINLS(tnj)ψ~j]+WnM.\widetilde{W}_{n}^{M}=\sum_{j=1}^{M}\left[U(-t_{n}^{j})\psi^{j}-\textnormal{INLS}(-t_{n}^{j})\widetilde{\psi}^{j}\right]+W_{n}^{M}. (6.19)

Then u~n(t)\widetilde{u}_{n}(t) solves the following equation

itu~n+Δu~n+|x|b|u~n|αu~n=enM,i\partial_{t}\widetilde{u}_{n}+\Delta\widetilde{u}_{n}+|x|^{-b}|\widetilde{u}_{n}|^{\alpha}\widetilde{u}_{n}=e_{n}^{M}, (6.20)

where

enM=|x|b(|u~n|αu~nj=1M|vj(ttnj)|αvj(ttnj)).e_{n}^{M}=|x|^{-b}\left(|\widetilde{u}_{n}|^{\alpha}\widetilde{u}_{n}-\sum_{j=1}^{M}|v^{j}(t-t_{n}^{j})|^{\alpha}v^{j}(t-t_{n}^{j})\right). (6.21)

By definition of W~nM\widetilde{W}_{n}^{M} in (6.19) and (6.5)we can write

un,0=j=1MINLS(tnj)ψ~j+W~nM,u_{n,0}=\sum_{j=1}^{M}\textnormal{INLS}(-t_{n}^{j})\widetilde{\psi}^{j}+\widetilde{W}_{n}^{M},

so un,0u~n(0)=W~nMu_{n,0}-\widetilde{u}_{n}(0)=\widetilde{W}_{n}^{M}. Combining (6.19) together with the Strichartz inequality (2.7), we estimate

U(t)W~nMS(H˙sc)cj=1MINLS(tnj)ψ~jU(tnj)ψjH1+U(t)WnMS(H˙sc),\|U(t)\widetilde{W}_{n}^{M}\|_{S(\dot{H}^{s_{c}})}\leq c\sum_{j=1}^{M}\|\textnormal{INLS}(-t_{n}^{j})\widetilde{\psi}^{j}-U(-t_{n}^{j})\psi^{j}\|_{H^{1}}+\|U(t)W_{n}^{M}\|_{S(\dot{H}^{s_{c}})},

which implies (using (5.5) and (6.15))

limM+[limn+U(t)(un,0u~n,0)S(H˙sc)]=0,\lim_{M\rightarrow+\infty}\left[\lim_{n\rightarrow+\infty}\|U(t)(u_{n,0}-\widetilde{u}_{n,0})\|_{S(\dot{H}^{s_{c}})}\right]=0, (6.22)

Next we approximate unu_{n} by u~n\widetilde{u}_{n}. Then, it follow from the long time perturbation theory (Proposition 4.14) and (6.14) that

unS(H˙sc)<+,\|u_{n}\|_{S(\dot{H}^{s_{c}})}<+\infty,

for nn large enough, which is a contradiction with (6.2). Indeed, assume the following two claims141414These claims will be proved in the next subsection. to conclude the proof.
Claim 11. For each MM and ε>0\varepsilon>0, there exists n0=n0(M,ε)n_{0}=n_{0}(M,\varepsilon) such that

n>n0enMS(H˙sc)+enMS(L2)+enMS(L2)ε.n>n_{0}\;\;\Rightarrow\;\;\|e_{n}^{M}\|_{S^{\prime}(\dot{H}^{-s_{c}})}+\|e_{n}^{M}\|_{S^{\prime}(L^{2})}+\|\nabla e_{n}^{M}\|_{S^{\prime}(L^{2})}\leq\varepsilon. (6.23)

Claim 22. There exist L>0L>0 and S>0S>0 independent of MM such that for any MM, there exists n1=n1(M)n_{1}=n_{1}(M) such that

n>n1u~nS(H˙sc)Landu~nLtHx1S.n>n_{1}\;\;\Rightarrow\;\;\|\widetilde{u}_{n}\|_{S(\dot{H}^{s_{c}})}\leq L\;\;\textnormal{and}\;\;\|\widetilde{u}_{n}\|_{L^{\infty}_{t}H^{1}_{x}}\leq S. (6.24)

By (6.22), there exists M1=M1(ε)M_{1}=M_{1}(\varepsilon) such that for each M>M1M>M_{1} there exists n2=n2(M)n_{2}=n_{2}(M) such that

n>n2U(t)(un,0u~n,0)S(H˙sc)ε,n>n_{2}\;\;\Rightarrow\;\;\|U(t)(u_{n,0}-\widetilde{u}_{n,0})\|_{S(\dot{H}^{s_{c}})}\leq\varepsilon,

with ε<ε1\varepsilon<\varepsilon_{1} as in Proposition 4.14. Hence, if the two claims hold true, using Proposition 4.14, for MM large enough and n>max{n0,n1,n2}n>\max\{n_{0},n_{1},n_{2}\}, we conclude unS(H˙sc)<+\|u_{n}\|_{S(\dot{H}^{s_{c}})}<+\infty, reaching the desired contradiction.

Up to now, we have reduced the profile expansion to the case where ψ10\psi^{1}\neq 0 and ψj=0\psi^{j}=0 for all j2j\geq 2. We begin to show the existence of a critical solution. Using the same arguments as before, we can find ψ~1\widetilde{\psi}^{1} such that

un,0=INLS(tn1)ψ~1+W~nM,u_{n,0}=\textnormal{INLS}(-t_{n}^{1})\widetilde{\psi}^{1}+\widetilde{W}_{n}^{M},

with

M[ψ~1]=M[ψ1]1M[\widetilde{\psi}^{1}]=M[\psi^{1}]\leq 1 (6.25)
E[ψ~1]sc=(12ψ1L22)scδcE[\widetilde{\psi}^{1}]^{s_{c}}=\left(\frac{1}{2}\|\nabla\psi^{1}\|^{2}_{L^{2}}\right)^{s_{c}}\leq\delta_{c} (6.26)
INLS(t)ψ~1Lx2scψ~1L21sc<QL2scQL21sc\|\nabla\textnormal{INLS}(t)\widetilde{\psi}^{1}\|^{s_{c}}_{L^{2}_{x}}\|\widetilde{\psi}^{1}\|^{1-s_{c}}_{L^{2}}<\|\nabla Q\|^{s_{c}}_{L^{2}}\|Q\|^{1-s_{c}}_{L^{2}} (6.27)
limn+U(t)(un,0u~n,0)S(H˙sc)=limn+U(t)W~nMS(H˙sc)=0.\lim_{n\rightarrow+\infty}\|U(t)(u_{n,0}-\widetilde{u}_{n,0})\|_{S(\dot{H}^{s_{c}})}=\lim_{n\rightarrow+\infty}\|U(t)\widetilde{W}_{n}^{M}\|_{S(\dot{H}^{s_{c}})}=0. (6.28)

Set ψ~1=uc,0\widetilde{\psi}^{1}=u_{c,0} and ucu_{c} be the global solution151515The global solution is guaranteed by Theorem 1.2 and inequalities (6.25)-(6.27). to (1.1) with initial data ψ~1\widetilde{\psi}^{1}, that is, uc(t)=INLS(t)ψ~1u_{c}(t)=\textnormal{INLS}(t)\widetilde{\psi}^{1}. We claim that

ucS(H˙sc)=+.\|u_{c}\|_{S(\dot{H}^{s_{c}})}=+\infty. (6.29)

Assume, by contradiction, that ucS(H˙sc)<+\|u_{c}\|_{S(\dot{H}^{s_{c}})}<+\infty. Let u~n(t)=INLS(ttnj)ψ~1,\widetilde{u}_{n}(t)=\textnormal{INLS}(t-t_{n}^{j})\widetilde{\psi}^{1}, then u~n(t)S(H˙sc)=INLS(ttnj)ψ~1S(H˙sc)=ucS(H˙sc)<+\|\widetilde{u}_{n}(t)\|_{S(\dot{H}^{s_{c}})}=\|\textnormal{INLS}(t-t_{n}^{j})\widetilde{\psi}^{1}\|_{S(\dot{H}^{s_{c}})}=\|u_{c}\|_{S(\dot{H}^{s_{c}})}<+\infty. Also, it follows from (6.25)-(6.28) that

suptu~nHx1=suptucHx1<+andU(t)(un,0u~n,0)S(H˙sc)ε,\sup_{t\in\mathbb{R}}\|\widetilde{u}_{n}\|_{H^{1}_{x}}=\sup_{t\in\mathbb{R}}\|u_{c}\|_{H^{1}_{x}}<+\infty\;\;\;\textnormal{and}\;\;\;\|U(t)(u_{n,0}-\widetilde{u}_{n,0})\|_{S(\dot{H}^{s_{c}})}\leq\varepsilon,

for nn large enough. Therefore, using the long time perturbation theory (Proposition 4.14) with e=0e=0, we deduce unS(H˙sc)<+\|u_{n}\|_{S(\dot{H}^{s_{c}})}<+\infty, which is a contradiction with (6.2).

On the other hand, the relation (6.29) yields E[uc]scM[uc]1sc=δcE[u_{c}]^{s_{c}}M[u_{c}]^{1-s_{c}}=\delta_{c} (see (3.2)). Thus, we conclude from (6.25) and (6.26) that

M[uc]=1andE[uc]sc=δc.M[u_{c}]=1\;\;\;\;\textnormal{and}\;\;\;\;E[u_{c}]^{s_{c}}=\delta_{c}.

Also note that (6.27) implies (iii) in the statement of the Proposition 6.1.

6.1. Proof of Claim 1 and 2

In this subsection we complete the proof of Proposition 6.1. We show Claims 11 and 22 (see (6.24) and (6.23)). To this end, we use the same admissible pairs used by the second author in [17] to prove global well-posedness.

q^=4α(α+2θ)α(Nα+2b)θ(Nα4+2b),r^=Nα(α+2θ)α(Nb)θ(2b),\widehat{q}=\frac{4\alpha(\alpha+2-\theta)}{\alpha(N\alpha+2b)-\theta(N\alpha-4+2b)},\;\;\;\widehat{r}\;=\;\frac{N\alpha(\alpha+2-\theta)}{\alpha(N-b)-\theta(2-b)}, (6.30)

and

a~=2α(α+2θ)α[N(α+1θ)2+2b](42b)(1θ),a^=2α(α+2θ)42b(N2)α.\widetilde{a}\;=\;\frac{2\alpha(\alpha+2-\theta)}{\alpha[N(\alpha+1-\theta)-2+2b]-(4-2b)(1-\theta)},\;\;\;\widehat{a}=\frac{2\alpha(\alpha+2-\theta)}{4-2b-(N-2)\alpha}. (6.31)

We have that (q^,r^)(\widehat{q},\widehat{r}) is L2L^{2}-admissible, (a^,r^)(\widehat{a},\widehat{r}) is H˙sc\dot{H}^{s_{c}}-admissible and (a~,r^)(\widetilde{a},\widehat{r}) is H˙sc\dot{H}^{-s_{c}}-admissible (for more details see [17, Subsection 4.24.2]).

Proof of Claim 11. First, we prove that for each MM and ε>0\varepsilon>0, there exists n0=n0(M,ε)n_{0}=n_{0}(M,\varepsilon) such that enMS(H˙sc)<ε3\|e_{n}^{M}\|_{S^{\prime}(\dot{H}^{-s_{c}})}<\frac{\varepsilon}{3}. It follows from (6.21) and (5.2) that

enMS(H˙sc)Cα,Mj=1M1jkM|x|b|vk|α|vj|Lta~Lxr^.\|e_{n}^{M}\|_{S^{\prime}(\dot{H}^{-s_{c}})}\leq C_{\alpha,M}\sum_{j=1}^{M}\sum_{1\leq j\neq k\leq M}\left\||x|^{-b}|v^{k}|^{\alpha}|v^{j}|\right\|_{L^{\widetilde{a}^{\prime}}_{t}L^{\widehat{r}^{\prime}}_{x}}. (6.32)

We claim that the norm in the right hand side of (6.32) goes to 0 as n+n\rightarrow+\infty. Indeed, using the relation (4.13)(4.13) of [17], with s=1s=1, we get

|x|b|vk|α|vj|Lta~Lxr^\displaystyle\left\||x|^{-b}|v^{k}|^{\alpha}|v^{j}|\right\|_{L^{\widetilde{a}^{\prime}}_{t}L^{\widehat{r}^{\prime}}_{x}}\leq cvkLtHx1θvk(ttnk)Lxr^αθvj(ttnj)Lxr^Lta~.\displaystyle c\|v^{k}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\left\|\|v^{k}(t-t_{n}^{k})\|^{\alpha-\theta}_{L_{x}^{\widehat{r}}}\|v^{j}(t-t_{n}^{j})\|_{L^{\widehat{r}}_{x}}\right\|_{L^{\widetilde{a}^{\prime}}_{t}}. (6.33)

Fix 1jkM1\leq j\neq k\leq M. Combining (6.17) and (6.18) we deduce vkHx1<+\|v^{k}\|_{H^{1}_{x}}<+\infty and by (6.14) vjv^{j}, vkS(Hsc˙)v^{k}\in S(\dot{H^{s_{c}}}), thus we can approximate vjv^{j} by functions of C0(N+1)C_{0}^{\infty}(\mathbb{R}^{N+1}). Define gn(t)=vk(t)Lxr^αθvj(t(tnjtnk))Lxr^g_{n}(t)=\|v^{k}(t)\|^{\alpha-\theta}_{L_{x}^{\widehat{r}}}\|v^{j}(t-(t_{n}^{j}-t_{n}^{k}))\|_{L^{\widehat{r}}_{x}}, we have gnLta~g_{n}\in L^{\widetilde{a}^{\prime}}_{t}. Indeed, it follows from Hölder inequality (since 1a~=αθa^+1a^\frac{1}{\widetilde{a}^{\prime}}=\frac{\alpha-\theta}{\widehat{a}}+\frac{1}{\widehat{a}}) that

gnLta~vkLta^Lxr^αθvjLta^Lxr^vkS(H˙sc)αθvjS(H˙sc)<+.\|g_{n}\|_{L^{\widetilde{a}^{\prime}}_{t}}\leq\|v^{k}\|^{\alpha-\theta}_{L^{\widehat{a}}_{t}L_{x}^{\widehat{r}}}\|v^{j}\|_{L^{\widehat{a}}_{t}L^{\widehat{r}}_{x}}\leq\|v^{k}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\|v^{j}\|_{S(\dot{H}^{s_{c}})}<+\infty.

Moreover, by (5.4) we obtain gn(t)0g_{n}(t)\rightarrow 0 as n+n\rightarrow+\infty. On the other hand, |gn(t)|KIsupp(vj)vk(t)Lxr^αθg(t)|g_{n}(t)|\leq KI_{supp(v^{j})}\|v^{k}(t)\|^{\alpha-\theta}_{L_{x}^{\widehat{r}}}\equiv g(t) for all nn, where K>0K>0 and Isupp(vj)I_{supp(v^{j})} is the characteristic function of supp(vj)supp(v^{j}). Similarly as (i), we get

gLta~vkLta^Lxr^αθIsupp(vj)Lta^Lxr^<+.\|g\|_{L^{\widetilde{a}^{\prime}}_{t}}\leq\|v^{k}\|^{\alpha-\theta}_{L^{\widehat{a}}_{t}L_{x}^{\widehat{r}}}\|I_{supp(v^{j})}\|_{L^{\widehat{a}}_{t}L_{x}^{\widehat{r}}}<+\infty.

That is, gLta~g\in L^{\widetilde{a}^{\prime}}_{t}. Then, the Dominated Convergence Theorem yields gnLta~0\|g_{n}\|_{L^{\widetilde{a}^{\prime}}_{t}}\rightarrow 0 as n+n\rightarrow+\infty, which implies by (6.33) the first estimate.

Next, using the same argument as before, we show enMS(L2)<ε3\|e_{n}^{M}\|_{S^{\prime}(L^{2})}<\frac{\varepsilon}{3}. Indeed, again the elementary inequality (5.2) yields

enMS(L2)Cα,Mj=1M1jkM|x|b|vk|α|vj|Ltq^Lxr^.\|e_{n}^{M}\|_{S^{\prime}(L^{2})}\leq C_{\alpha,M}\sum_{j=1}^{M}\sum_{1\leq j\neq k\leq M}\left\||x|^{-b}|v^{k}|^{\alpha}|v^{j}|\right\|_{L^{\widehat{q}^{\prime}}_{t}L^{\widehat{r}^{\prime}}_{x}}.

We also obtain (see proof of [17, Lemma 4.24.2 with s=1s=1])

|x|b|vk|α|vjLtq^Lxr^\displaystyle\left\||x|^{-b}|v^{k}|^{\alpha}|v^{j}\right\|_{L_{t}^{\widehat{q}^{\prime}}L^{\widehat{r}^{\prime}}_{x}} \displaystyle\leq cvkLtHx1θvk(ttnk)Lxr^αθvj(ttnj)Lxr^Ltq^\displaystyle c\|v^{k}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\left\|\|v^{k}(t-t_{n}^{k})\|^{\alpha-\theta}_{L_{x}^{\widehat{r}}}\|v^{j}(t-t_{n}^{j})\|_{L^{\widehat{r}}_{x}}\right\|_{L_{t}^{\widehat{q}^{\prime}}}
\displaystyle\leq cvkLtHx1θvkLta^Lxr^αθvjLtq^Lxr^\displaystyle c\|v^{k}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|v^{k}\|^{\alpha-\theta}_{L^{\widehat{a}}_{t}L_{x}^{\widehat{r}}}\|v^{j}\|_{L_{t}^{\widehat{q}}L^{\widehat{r}}_{x}}
\displaystyle\leq cvkLtHx1θvkS(H˙sc)αθvjS(L2).\displaystyle c\|v^{k}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|v^{k}\|^{\alpha-\theta}_{S(\dot{H}^{s_{c}})}\|v^{j}\|_{S(L^{2})}.

This implies that the right hand side of the last inequality is finite (since161616Note that, vjS(H˙sc)v^{j}\in S(\dot{H}^{s_{c}}) implies that vjS(L2)\|v^{j}\|_{S(L^{2})} and vjS(L2)<+\|\nabla v^{j}\|_{S(L^{2})}<+\infty, by (4.28). vjS(L2)\|v^{j}\|_{S(L^{2})} and vjS(L2)<+\|\nabla v^{j}\|_{S(L^{2})}<+\infty ) and so

vk(ttnk)Lxr^αθvj(ttnj)Lxr^Ltq^0,\left\|\|v^{k}(t-t_{n}^{k})\|^{\alpha-\theta}_{L_{x}^{\widehat{r}}}\|v^{j}(t-t_{n}^{j})\|_{L^{\widehat{r}}_{x}}\right\|_{L_{t}^{\widehat{q}^{\prime}}}\rightarrow 0,

as n+n\rightarrow+\infty, which lead to |x|b|vk|α|vjLtq^Lxr^0.\left\||x|^{-b}|v^{k}|^{\alpha}|v^{j}\right\|_{L_{t}^{\widehat{q}^{\prime}}L^{\widehat{r}^{\prime}}_{x}}\rightarrow 0.

Finally, we prove enMS(L2)<ε3\|\nabla e_{n}^{M}\|_{S^{\prime}(L^{2})}<\frac{\varepsilon}{3}. Observe that

enM\displaystyle\nabla e_{n}^{M} =\displaystyle= (|x|b)(f(u~n)j=1Mf(vj))+|x|b(f(u~n)j=1Mf(vj))\displaystyle\nabla(|x|^{-b})\left(f(\widetilde{u}_{n})-\sum_{j=1}^{M}f(v^{j})\right)+|x|^{-b}\nabla\left(f(\widetilde{u}_{n})-\sum_{j=1}^{M}f(v^{j})\right) (6.34)
\displaystyle\equiv Rn1+Rn2,\displaystyle R^{1}_{n}+R^{2}_{n},

where f(v)=|v|αvf(v)=|v|^{\alpha}v. We start by considering Rn1R^{1}_{n}. Applying (5.2) we estimate

Rn1S(L2)cCα,Mj=1M1jkM|x|b1|vk|α|vj|S(L2)\|R^{1}_{n}\|_{S^{\prime}(L^{2})}\leq c\;C_{\alpha,M}\sum_{j=1}^{M}\sum_{1\leq j\neq k\leq M}\left\||x|^{-b-1}|v^{k}|^{\alpha}|v^{j}|\right\|_{S^{\prime}(L^{2})}

and by Remark 4.9 we deduce that |x|b1|vk|α|vj|S(L2)\left\||x|^{-b-1}|v^{k}|^{\alpha}|v^{j}|\right\|_{S^{\prime}(L^{2})} is finite, then by the same argument as before we obtain

|x|b1|vk(ttnk)|α|vj(ttnj)|S(L2)0asn+.\left\||x|^{-b-1}|v^{k}(t-t_{n}^{k})|^{\alpha}|v^{j}(t-t_{n}^{j})|\right\|_{S^{\prime}(L^{2})}\rightarrow 0\;\;\textnormal{as}\;\;n\rightarrow+\infty.

Therefore, the last two relations yield Rn1S(L2)0\|R^{1}_{n}\|_{S^{\prime}(L^{2})}\rightarrow 0 as n+n\rightarrow+\infty.

On the other hand, note that

(f(u~n)j=1Mf(vj))\displaystyle\nabla(f(\widetilde{u}_{n})-\sum_{j=1}^{M}f(v^{j})) =\displaystyle= f(u~n)u~nj=1Mf(vj)vj\displaystyle f^{\prime}(\widetilde{u}_{n})\nabla\widetilde{u}_{n}-\sum_{j=1}^{M}f^{\prime}(v^{j})\nabla v^{j} (6.35)
=\displaystyle= j=1M(f(u~n)f(vj))vj.\displaystyle\sum_{j=1}^{M}(f^{\prime}(\widetilde{u}_{n})-f^{\prime}(v^{j}))\nabla v^{j}.

In view of (by Remark 2.10)

|f(u~n)f(vj)|Cα,M1kjM|vk|(|vj|α1+|vk|α1)ifα>1|f^{\prime}(\widetilde{u}_{n})-f^{\prime}(v^{j})|\leq C_{\alpha,M}\sum_{1\leq k\neq j\leq M}|v^{k}|(|v^{j}|^{\alpha-1}+|v^{k}|^{\alpha-1})\;\;\;\textnormal{if}\;\;\;\alpha>1

and

|f(u~n)f(vj)|Cα,M1kjM|vk|αifα1,|f^{\prime}(\widetilde{u}_{n})-f^{\prime}(v^{j})|\leq C_{\alpha,M}\sum_{1\leq k\neq j\leq M}|v^{k}|^{\alpha}\;\;\;\textnormal{if}\;\;\;\alpha\leq 1,

we have using the last two relations together with (6.34) and (6.35)

Rn2S(L2)j=1M1kjM|x|b|vk|(|vj|α1+|vk|α1)|vj|S(L2)ifα>1,\|R_{n}^{2}\|_{S^{\prime}(L^{2})}\lesssim\sum_{j=1}^{M}\sum_{1\leq k\neq j\leq M}\left\||x|^{-b}|v^{k}|(|v^{j}|^{\alpha-1}+|v^{k}|^{\alpha-1})|\nabla v^{j}|\right\|_{S^{\prime}(L^{2})}\;\;\;\textnormal{if}\;\;\;\alpha>1,

and

Rn2S(L2)j=1M1kjM|x|b|vk|α|vj|S(L2)ifα1.\|R_{n}^{2}\|_{S^{\prime}(L^{2})}\lesssim\sum_{j=1}^{M}\sum_{1\leq k\neq j\leq M}\left\||x|^{-b}|v^{k}|^{\alpha}|\nabla v^{j}|\right\|_{S^{\prime}(L^{2})}\;\;\;\textnormal{if}\;\;\;\alpha\leq 1.

Therefore, from Lemma 4.5 (see also Remark 4.6) we have that the right hand side of the last two inequalities are finite quantities and, by an analogous argument as before, we conclude that

Rn2S(L2)0asn+.\|R_{n}^{2}\|_{S^{\prime}(L^{2})}\rightarrow 0\;\;\;\textnormal{as}\;\;\;n\rightarrow+\infty.

This completes the proof of Claim 11.

Proof of Claim 2.2. To this end, we first prove that u~nLtHx1\|\widetilde{u}_{n}\|_{L^{\infty}_{t}H^{1}_{x}} and u~nLtγLxγ\|\widetilde{u}_{n}\|_{L^{\gamma}_{t}L^{\gamma}_{x}} are bounded quantities where γ=2(N+2)N\gamma=\frac{2(N+2)}{N}. Indeed, we already know (see (6.7) and (6.8)) that there exists C0C_{0} such that

j=1ψjHx12C0,\sum_{j=1}^{\infty}\|\psi^{j}\|^{2}_{H^{1}_{x}}\leq C_{0},

then choosing M0M_{0}\in\mathbb{N} large enough such that

j=M0ψjHx12δ2,\sum_{j=M_{0}}^{\infty}\|\psi^{j}\|^{2}_{H^{1}_{x}}\leq\frac{\delta}{2}, (6.36)

where δ>0\delta>0 is a sufficiently small.
Fix MM0M\geq M_{0}. From (6.15), there exists n1(M)n_{1}(M)\in\mathbb{N} where for all n>n1(M)n>n_{1}(M), it follows that (using (6.36))

j=M0MINLS(tnj)ψ~jHx12δ,\sum_{j=M_{0}}^{M}\|\textnormal{INLS}(-t_{n}^{j})\widetilde{\psi}^{j}\|^{2}_{H^{1}_{x}}\leq\delta,

This is equivalent to

j=M0Mvj(tnj)Hx12δ.\sum_{j=M_{0}}^{M}\|v^{j}(-t_{n}^{j})\|^{2}_{H^{1}_{x}}\leq\delta. (6.37)

Then, by the Small Data Theory (Proposition 4.10)

j=M0Mvj(ttnj)LtHx12cδfornn1(M).\sum_{j=M_{0}}^{M}\|v^{j}(t-t_{n}^{j})\|^{2}_{L_{t}^{\infty}H^{1}_{x}}\leq c\delta\;\;\textnormal{for}\;n\geq n_{1}(M).

Observe that,

j=M0Mvj(ttnj)Hx12=j=M0Mvj(ttnj)Hx12+2M0lkMvl(ttnl),vk(ttnk)Hx1,\left\|\sum_{j=M_{0}}^{M}v^{j}(t-t_{n}^{j})\right\|^{2}_{H^{1}_{x}}=\sum_{j=M_{0}}^{M}\|v^{j}(t-t_{n}^{j})\|^{2}_{H_{x}^{1}}+2\sum_{M_{0}\leq l\neq k\leq M}\langle v^{l}(t-t_{n}^{l}),v^{k}(t-t_{n}^{k})\rangle_{H^{1}_{x}},

so, for lkl\neq k we deduce from (5.4)\eqref{PD} that (see [8, Corollary 4.44.4] for more details)

supt|vl(ttnl),vk(ttnk)Hx1|0asn+.\sup_{t\in\mathbb{R}}|\langle v^{l}(t-t_{n}^{l}),v^{k}(t-t_{n}^{k})\rangle_{H^{1}_{x}}|\rightarrow 0\;\;\textnormal{as}\;\;n\rightarrow+\infty.

In view of vjLtHx1\|v^{j}\|_{L^{\infty}_{t}H_{x}^{1}} is bounded (see (6.17) - (6.18)), by definition of u~n\widetilde{u}_{n} there exists S>0S>0 (independent of MM) such that

suptu~nHx12Sforn>n1(M).\sup_{t\in\mathbb{R}}\|\widetilde{u}_{n}\|^{2}_{H^{1}_{x}}\leq S\;\,\textnormal{for}\;\;n>n_{1}(M). (6.38)

We now show u~nLtγLxγL1\|\widetilde{u}_{n}\|_{L^{\gamma}_{t}L^{\gamma}_{x}}\leq L_{1}. Using again (6.37) with δ\delta small enough and the Small Data Theory (noting that (γ,γ)(\gamma,\gamma) is L2L^{2}-admissible and γ>2\gamma>2), we deduce

j=M0Mvj(ttnj)LtγLxγγcj=M0Mvj(tnj)Hx1γcj=M0Mvj(tnj)Hx12cδ,\sum_{j=M_{0}}^{M}\|v^{j}(t-t_{n}^{j})\|^{\gamma}_{L^{\gamma}_{t}L^{\gamma}_{x}}\leq c\sum_{j=M_{0}}^{M}\|v^{j}(-t_{n}^{j})\|^{\gamma}_{H^{1}_{x}}\leq c\sum_{j=M_{0}}^{M}\|v^{j}(-t_{n}^{j})\|^{2}_{H^{1}_{x}}\leq c\delta, (6.39)

for nn1(M)n\geq n_{1}(M).

On the other hand, since (5.1) we have that

j=M0Mvj(ttnj)LtγLxγγj=M0MvjLtγLxγγ+CMM0jkMN+1|vj||vk||vk|γ2\left\|\sum_{j=M_{0}}^{M}v^{j}(t-t_{n}^{j})\right\|^{\gamma}_{L^{\gamma}_{t}L^{\gamma}_{x}}\leq\sum_{j=M_{0}}^{M}\|v^{j}\|^{\gamma}_{L^{\gamma}_{t}L^{\gamma}_{x}}+C_{M}\sum_{M_{0}\leq j\neq k\leq M}\int_{\mathbb{R}^{N+1}}|v^{j}||v^{k}||v^{k}|^{\gamma-2}

for all M>M0M>M_{0}. If for a given jj such that M0jkMM_{0}\leq j\neq k\leq M, it follows from Hölder inequality that

N+1|vj||vk||vk|γ2\displaystyle\int_{\mathbb{R}^{N+1}}|v^{j}||v^{k}||v^{k}|^{\gamma-2} \displaystyle\leq vk(ttnk)LtγLxγ(N+1|vj|γ2|vk|γ2)2γ\displaystyle\|v^{k}(t-t_{n}^{k})\|_{L^{\gamma}_{t}L^{\gamma}_{x}}\left(\int_{\mathbb{R}^{N+1}}|v^{j}|^{\frac{\gamma}{2}}|v^{k}|^{\frac{\gamma}{2}}\right)^{\frac{2}{\gamma}} (6.40)
\displaystyle\leq cvj(tnj)Hx1(N+1|vj|γ2|vk|γ2)2γ.\displaystyle c\|v^{j}(-t_{n}^{j})\|_{H^{1}_{x}}\left(\int_{\mathbb{R}^{N+1}}|v^{j}|^{\frac{\gamma}{2}}|v^{k}|^{\frac{\gamma}{2}}\right)^{\frac{2}{\gamma}}.

In view of vjv^{j} and vkLtγLxγv^{k}\in L^{\gamma}_{t}L^{\gamma}_{x} we get that the right hand side of (6.40) is bounded and so by similar arguments as in the previous claim, we conclude from (5.4) that the integral in the right hand side of the previous inequality goes to 0 as n+n\rightarrow+\infty. This implies that there exists L1L_{1} (independent of MM) such that ((6.39))

u~nLtγLxγj=1M0vjLtγLxγ+j=M0MvjLtγLxγL1fornn1(M).\|\widetilde{u}_{n}\|_{L^{\gamma}_{t}L^{\gamma}_{x}}\leq\sum_{j=1}^{M_{0}}\|v^{j}\|_{L^{\gamma}_{t}L^{\gamma}_{x}}+\left\|\sum_{j=M_{0}}^{M}v^{j}\right\|_{L^{\gamma}_{t}L^{\gamma}_{x}}\leq L_{1}\;\;\;\textnormal{for}\;n\geq n_{1}(M). (6.41)

To complete the proof of the Claim 22 we will prove the following inequalities

|x|b|u~n|αu~nLta¯Lxr¯cu~nLtHx1θu~nLtaLxrαθ+1\left\||x|^{-b}|\widetilde{u}_{n}|^{\alpha}\widetilde{u}_{n}\right\|_{L^{\bar{a}^{\prime}}_{t}L_{x}^{\bar{r}^{\prime}}}\leq c\|\widetilde{u}_{n}\|^{\theta}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}_{n}\|^{\alpha-\theta+1}_{L^{a}_{t}L^{r}_{x}} (6.42)

and

u~nLtaLxru~nLtHx11γau~nLtγLxγγa,\|\widetilde{u}_{n}\|_{L^{a}_{t}L^{r}_{x}}\leq\|\widetilde{u}_{n}\|^{1-\frac{\gamma}{a}}_{L^{\infty}_{t}H^{1}_{x}}\|\widetilde{u}_{n}\|^{\frac{\gamma}{a}}_{L^{\gamma}_{t}L^{\gamma}_{x}}, (6.43)

where θ(0,α)\theta\in(0,\alpha) is a small enough and the pairs (a¯,r¯)(\bar{a},\bar{r}) and (a,r)(a,r) are H˙sc\dot{H}^{-s_{c}}-admissible and H˙sc\dot{H}^{s_{c}}-admissible, respectively.

Observe that, combining (6.38) and (6.41) we deduce from (6.43) that

u~nLtaLxrS1γaL1γa=L2,fornn1(M).\|\widetilde{u}_{n}\|_{L^{a}_{t}L^{r}_{x}}\leq S^{1-\frac{\gamma}{a}}L_{1}^{\frac{\gamma}{a}}=L_{2},\;\;\;\textnormal{for}\;n\geq n_{1}(M).

Then, since u~n\widetilde{u}_{n} satisfies the perturbed equation (6.20) we can apply the Strichartz estimates (Lemma 2.8) and (6.42) to the integral formulation and conclude (using also Claim 11)

u~nS(H˙sc)\displaystyle\|\widetilde{u}_{n}\|_{S(\dot{H}^{s_{c}})} \displaystyle\leq cu~n,0Hx1+c|x|b|u~n|αu~nLta¯Lxr¯+enMS(H˙sc)\displaystyle c\|\widetilde{u}_{n,0}\|_{H^{1}_{x}}+c\left\||x|^{-b}|\widetilde{u}_{n}|^{\alpha}\widetilde{u}_{n}\right\|_{L^{\bar{a}^{\prime}}_{t}L_{x}^{\bar{r}^{\prime}}}+\|e^{M}_{n}\|_{S^{\prime}(\dot{H}^{-s_{c}})}
\displaystyle\leq cS+cL2+ε=L,\displaystyle cS+cL_{2}+\varepsilon=L,

for nn1(M)n\geq n_{1}(M), which completes the proof of the Claim 22.

It remains to prove the inequalities (6.42) and (6.43). Indeed, we divide in two cases: N3N\geq 3 and N=2N=2, since we will make use of the Sobolev embeddings in Lemma 2.9.
Case N3N\geq 3: We use the following numbers:

a=4α(N+2)NDr=2αN(N+2)(42b)(N+2)NDa=\frac{4\alpha(N+2)}{ND}\hskip 42.67912pt\,r=\frac{2\alpha N(N+2)}{(4-2b)(N+2)-ND} (6.44)
a¯=4α(N+2)4α(N+2)(α+1θ)ND\bar{a}=\frac{4\alpha(N+2)}{4\alpha(N+2)-(\alpha+1-\theta)ND}\hskip 5.69046pt\ (6.45)

and

r¯=2αN(N+2)2(N+2)(α(N2)(2b))+ND(α+1θ),\bar{r}=\frac{2\alpha N(N+2)}{2(N+2)\left(\alpha(N-2)-(2-b)\right)+ND(\alpha+1-\theta)}, (6.46)

where D=42bα(N2)D=4-2b-\alpha(N-2) and θ(0,α)\theta\in(0,\alpha) to be chosen below.

It is easy to see that (a,r)(a,r) is H˙sc\dot{H}^{s_{c}}-admissible and (a¯,r¯)(\bar{a},\bar{r}) is H˙sc\dot{H}^{-s_{c}}-admissible. In Appendix, we will verify the conditions of admissible pair.

We first show the inequality (6.43). Indeed, by interpolation we have

u~nLtaLxru~nLtLxp1γau~nLtγLxγγa,\|\widetilde{u}_{n}\|_{L^{a}_{t}L^{r}_{x}}\leq\|\widetilde{u}_{n}\|^{1-\frac{\gamma}{a}}_{L^{\infty}_{t}L^{p}_{x}}\|\widetilde{u}_{n}\|^{\frac{\gamma}{a}}_{L^{\gamma}_{t}L^{\gamma}_{x}},

where

1r=(1γa)(1p)+1a,\frac{1}{r}=\left(1-\frac{\gamma}{a}\right)\left(\frac{1}{p}\right)+\frac{1}{a},

which is equivalent to (recall that γ=2(N+2)N\gamma=\frac{2(N+2)}{N})

(1γa)(1p)\displaystyle\left(1-\frac{\gamma}{a}\right)\left(\frac{1}{p}\right) =\displaystyle= 1r1a\displaystyle\frac{1}{r}-\frac{1}{a}
2αDp\displaystyle\frac{2\alpha-D}{p} =\displaystyle= 2(42b)ND2N\displaystyle\frac{2(4-2b)-ND}{2N}
p\displaystyle p =\displaystyle= 2NN2.\displaystyle\frac{2N}{N-2}.

Hence, since H1L2NN2H^{1}\hookrightarrow L^{\frac{2N}{N-2}} (see inequality (2.12) with s=1s=1) we obtain the desired result.

On the other hand, the proof of inequality (6.42) follows from similar ideas as in Lemma 4.7. We divide the estimate in BB and BCB^{C}. Let ANA\subset\mathbb{R}^{N}. From the Hölder inequality we deduce

|x|b|u~n|αu~nLta¯Lxr¯(A)\displaystyle\left\||x|^{-b}|\widetilde{u}_{n}|^{\alpha}\widetilde{u}_{n}\right\|_{L^{\bar{a}^{\prime}}_{t}L_{x}^{\bar{r}^{\prime}}(A)} \displaystyle\leq |x|bLd(A)u~nLxθr1θu~nLx(α+1θ)r2α+1θLta¯\displaystyle\left\|\||x|^{-b}\|_{L^{d}(A)}\|\widetilde{u}_{n}\|^{\theta}_{L_{x}^{\theta r_{1}}}\|\widetilde{u}_{n}\|^{\alpha+1-\theta}_{L_{x}^{(\alpha+1-\theta)r_{2}}}\right\|_{L^{\bar{a}^{\prime}}_{t}}
\displaystyle\leq |x|bLd(A)u~nLxθr1θu~nLt(α+1θ)a¯Lx(α+1θ)r2α+1θ\displaystyle\||x|^{-b}\|_{L^{d}(A)}\|\widetilde{u}_{n}\|^{\theta}_{L_{x}^{\theta r_{1}}}\|\widetilde{u}_{n}\|^{\alpha+1-\theta}_{L_{t}^{(\alpha+1-\theta)\bar{a}^{\prime}}L_{x}^{(\alpha+1-\theta)r_{2}}}
=\displaystyle= |x|bLd(A)u~nLxθr1θu~nLtaLxrαθ+1,\displaystyle\||x|^{-b}\|_{L^{d}(A)}\|\widetilde{u}_{n}\|^{\theta}_{L_{x}^{\theta r_{1}}}\|\widetilde{u}_{n}\|^{\alpha-\theta+1}_{L^{a}_{t}L^{r}_{x}},

where

1r¯=1d+1r1+1r2r=(α+1θ)r2a=(α+1θ)a¯.\frac{1}{\bar{r}^{\prime}}=\frac{1}{d}+\frac{1}{r_{1}}+\frac{1}{r_{2}}\,\hskip 14.22636pt\,r=(\alpha+1-\theta)r_{2}\,\hskip 14.22636pt\,a=(\alpha+1-\theta)\bar{a}^{\prime}.

Using the values of aa and a¯\bar{a} above defined, it is easy to check a=(α+1θ)a¯a=(\alpha+1-\theta)\bar{a}^{\prime}. Moreover, to show that |x|bLd(A)\||x|^{-b}\|_{L^{d}(A)} is a bounded quantity we need Ndb>0\frac{N}{d}-b>0 if A=BA=B and Ndb<0\frac{N}{d}-b<0 if A=BCA=B^{C}, see Remark 2.6. Indeed, the last relation implies

Ndb\displaystyle\frac{N}{d}-b =\displaystyle= NbNr1Nr¯N(α+1θ)r\displaystyle N-b-\frac{N}{r_{1}}-\frac{N}{\bar{r}}-\frac{N(\alpha+1-\theta)}{r}
=\displaystyle= θ(2b)αNr1.\displaystyle\frac{\theta(2-b)}{\alpha}-\frac{N}{r_{1}}.

Choosing θr1=2\theta r_{1}=2 we have Ndb=θsc<0\frac{N}{d}-b=-\theta s_{c}<0, so |x|bLd(BC)|x|^{-b}\in L^{d}(B^{C}) and if θr1=2NN2\theta r_{1}=\frac{2N}{N-2} then Ndb=θ(1sc)>0\frac{N}{d}-b=\theta(1-s_{c})>0, i.e., |x|bLd(B)|x|^{-b}\in L^{d}(B). Therefore, since in both cases θr1[2,2NN2]\theta r_{1}\in\left[2,\frac{2N}{N-2}\right], by the Sobolev embedding (2.12) we complete the proof of (6.42).
Case N=2N=2. We start by defining the following numbers.

a=2α(α+1θ)2b+εr=2α(α+1θ)(2b)(αθ)εa=\frac{2\alpha(\alpha+1-\theta)}{2-b+\varepsilon}\hskip 42.67912pt\,r=\frac{2\alpha(\alpha+1-\theta)}{(2-b)(\alpha-\theta)-\varepsilon} (6.47)

and

a¯=2α2α(2b)εr¯=2αε,\bar{a}=\frac{2\alpha}{2\alpha-(2-b)-\varepsilon}\hskip 42.67912pt\,\bar{r}=\frac{2\alpha}{\varepsilon}, (6.48)

where θ(0,α)\theta\in(0,\alpha) and ε>0\varepsilon>0 are sufficiently small numbers. A simple computation shows that (a,r)(a,r) is H˙sc\dot{H}^{s_{c}}-admissible and (a¯,r¯)(\bar{a},\bar{r}) is H˙sc\dot{H}^{-s_{c}} admissible.

The interpolation inequality implies that (in this case γ=4\gamma=4)

u~nLtaLxru~nLtLxp1γau~nLtγLxγγa,\|\widetilde{u}_{n}\|_{L^{a}_{t}L^{r}_{x}}\leq\|\widetilde{u}_{n}\|^{1-\frac{\gamma}{a}}_{L^{\infty}_{t}L^{p}_{x}}\|\widetilde{u}_{n}\|^{\frac{\gamma}{a}}_{L^{\gamma}_{t}L^{\gamma}_{x}},

where

1r=(1γa)(1p)+1a.\frac{1}{r}=\left(1-\frac{\gamma}{a}\right)\left(\frac{1}{p}\right)+\frac{1}{a}.

This is equivalent to

(14a)(2p)\displaystyle\left(1-\frac{4}{a}\right)\left(\frac{2}{p}\right) =\displaystyle= 2r2a\displaystyle\frac{2}{r}-\frac{2}{a}
=\displaystyle= 2bα4a\displaystyle\frac{2-b}{\alpha}-\frac{4}{a}
=\displaystyle= (2b)(αθ+1)2(2bε)α(αθ+1).\displaystyle\frac{(2-b)(\alpha-\theta+1)-2(2-b-\varepsilon)}{\alpha(\alpha-\theta+1)}.

Thus

p=2α(αθ+1)2[(2b)ε](2b)(α+1θ)2[(2b)ε].p=2\frac{\alpha(\alpha-\theta+1)-2[(2-b)-\varepsilon]}{(2-b)(\alpha+1-\theta)-2[(2-b)-\varepsilon]}.

Since we are assuming α>2b\alpha>2-b we have p>2p>2, thus by the Sobolev embedding H1LpH^{1}\hookrightarrow L^{p} (see (2.11) with N=2N=2) the inequality (6.43) holds. To show the inequality (6.42) we use the same argument as the previous case, that is

|x|b|u~n|αu~nLta¯Lxr¯(A)\displaystyle\left\||x|^{-b}|\widetilde{u}_{n}|^{\alpha}\widetilde{u}_{n}\right\|_{L^{\bar{a}^{\prime}}_{t}L_{x}^{\bar{r}^{\prime}}(A)} \displaystyle\leq |x|bLd(A)u~nLxθr1θu~nLt(α+1θ)a¯Lx(α+1θ)r2α+1θ\displaystyle\||x|^{-b}\|_{L^{d}(A)}\|\widetilde{u}_{n}\|^{\theta}_{L_{x}^{\theta r_{1}}}\|\widetilde{u}_{n}\|^{\alpha+1-\theta}_{L_{t}^{(\alpha+1-\theta)\bar{a}^{\prime}}L_{x}^{(\alpha+1-\theta)r_{2}}}
=\displaystyle= |x|bLd(A)u~nLxθr1θu~nLtaLxrαθ+1,\displaystyle\||x|^{-b}\|_{L^{d}(A)}\|\widetilde{u}_{n}\|^{\theta}_{L_{x}^{\theta r_{1}}}\|\widetilde{u}_{n}\|^{\alpha-\theta+1}_{L^{a}_{t}L^{r}_{x}},

where A=BA=B or BCB^{C} and

1r¯=1d+1r1+1r2r=(α+1θ)r2a=(α+1θ)a¯.\frac{1}{\bar{r}^{\prime}}=\frac{1}{d}+\frac{1}{r_{1}}+\frac{1}{r_{2}}\,\hskip 14.22636pt\,r=(\alpha+1-\theta)r_{2}\,\hskip 14.22636pt\,a=(\alpha+1-\theta)\bar{a}^{\prime}.

Moreover, we obtain

2db\displaystyle\frac{2}{d}-b =\displaystyle= 2b2r12r¯2(α+1θ)r\displaystyle 2-b-\frac{2}{r_{1}}-\frac{2}{\bar{r}}-\frac{2(\alpha+1-\theta)}{r}
=\displaystyle= θ(2b)α2r1.\displaystyle\frac{\theta(2-b)}{\alpha}-\frac{2}{r_{1}}.

If we choose θr1(2,2α2b)\theta r_{1}\in\left(2,\frac{2\alpha}{2-b}\right) then 2db<0\frac{2}{d}-b<0 (so |x|bLd(BC)|x|^{-b}\in L^{d}(B^{C})) and if θr1(2α2b,+)\theta r_{1}\in\left(\frac{2\alpha}{2-b},+\infty\right) we have 2db<0\frac{2}{d}-b<0 (so |x|bLd(B)|x|^{-b}\in L^{d}(B)). Therefore |x|bLd(A)|x|^{-b}\in L^{d}(A) and so by the Sobolev inequality (2.11) with s=1s=1, we complete the proof of the inequality (6.42). ∎

Remark 6.2.

To show that r¯\bar{r} defined in (6.45) satisfies the condition (2.5), that is 2NN2sc<r¯<2NN2\frac{2N}{N-2s_{c}}<\bar{r}<\frac{2N}{N-2}, we need the assumptions b<min{N3,1}b<\min\{\frac{N}{3},1\} and α<2\alpha<2_{*}. Indeed r¯<2NN2\bar{r}<\frac{2N}{N-2} is equivalent to

α(N+2)(N2)<2(N+2)(α(N2)(2b))+ND(α+1θ)\alpha(N+2)(N-2)<2(N+2)\left(\alpha(N-2)-(2-b)\right)+ND(\alpha+1-\theta)\Leftrightarrow
(N+2)D<ND(α+1θ)N(α+1θ)>N+2αN2θN>0.(N+2)D<ND(\alpha+1-\theta)\Leftrightarrow N(\alpha+1-\theta)>N+2\;\Leftrightarrow\;\alpha N-2-\theta N>0.

Since α>(42b)/N\alpha>(4-2b)/N we have αN2θN>42b2θN=2(1b)θN\alpha N-2-\theta N>4-2b-2-\theta N=2(1-b)-\theta N and this is positive choosing θ<2(1b)N\theta<\frac{2(1-b)}{N} (here we use the condition 0<b<min{N3,1}0<b<\min\{\frac{N}{3},1\} to guarantee that θ\theta can be chosen to be a positive number). Therefore, since αN2θN>0\alpha N-2-\theta N>0 one gets r¯<2NN2\bar{r}<\frac{2N}{N-2}. On the other hand, r¯>2NN2sc=Nα2b\bar{r}>\frac{2N}{N-2s_{c}}=\frac{N\alpha}{2-b} is equivalent to

(N+2)(42b)>2(N+2)(α(N2)(2b))+ND(α+1θ)(N+2)(4-2b)>2(N+2)\left(\alpha(N-2)-(2-b)\right)+ND(\alpha+1-\theta)\Leftrightarrow
2(N+2)D>ND(α+1θ)α<N+4+θNN.2(N+2)D>ND(\alpha+1-\theta)\;\Leftrightarrow\;\alpha<\frac{N+4+\theta N}{N}.

Since α<2\alpha<2_{*} (defined in (1.12)) we need to verify that 42bN2N+4+θNN\frac{4-2b}{N-2}\leq\frac{N+4+\theta N}{N} for N4N\geq 4 and 32b7+3θ33-2b\leq\frac{7+3\theta}{3} for N=3N=3. The first inequality is equivalent to N(42b)(N+4+θN)(N2)N(4-2b)\leq(N+4+\theta N)(N-2) and this is always true since N4N\geq 4. The second case is also true choosing171717In the particular case when N=3N=3, we need to choose θ>0\theta>0 such that max{0,2(13b)3}<θ<2(1b)3\max\left\{0,\frac{2(1-3b)}{3}\right\}<\theta<\frac{2(1-b)}{3}, since also need θ<2(1b)N\theta<\frac{2(1-b)}{N} to obtain r¯<2NN2\bar{r}<\frac{2N}{N-2}. θ>max{0,2(13b)3}\theta>\max\left\{0,\frac{2(1-3b)}{3}\right\}.

In the next proposition, we prove the precompactness of the flow associated to the critical solution ucu_{c}.

Proposition 6.3.

(Precompactness of the flow of the critical solution) Let ucu_{c} be as in Proposition 6.1 and define

K={uc(t):t[0,+)}H1.K=\{u_{c}(t)\;:\;t\in[0,+\infty)\}\subset H^{1}.

Then KK is precompact in H1(N)H^{1}(\mathbb{R}^{N}).

Proof.

The proof is similar to that of Proposition 6.56.5 in [10] (replacing 33 by NN). So, we only give the main steps.

Let {tn}[0,+)\{t_{n}\}\subseteq[0,+\infty) a sequence of times and ϕn=uc(tn)\phi_{n}=u_{c}(t_{n}) be a uniformly bounded sequence in H1(N)H^{1}(\mathbb{R}^{N}). We need to show that uc(tn)u_{c}(t_{n}) has a subsequence converging in H1(N)H^{1}(\mathbb{R}^{N}). The result is clear if {tn}\{t_{n}\} is bounded. Now assume that tn+t_{n}\rightarrow+\infty. The linear profile expansion (Proposition 5.1) and the energy Pythagorean expansion (Proposition 5.3) yield the existence of profiles ψj\psi^{j} and a remainder WnMW_{n}^{M} such that

uc(tn)=j=1MU(tnj)ψj+WnMu_{c}(t_{n})=\sum_{j=1}^{M}U(-t_{n}^{j})\psi^{j}+W_{n}^{M}

and

j=1Mlimn+E[U(tnj)ψj]+limn+E[WnM]=E[uc]=δc,\sum_{j=1}^{M}\lim_{n\rightarrow+\infty}E[U(-t_{n}^{j})\psi^{j}]+\lim_{n\rightarrow+\infty}E[W_{n}^{M}]=E[u_{c}]=\delta_{c}, (6.49)

which implies that181818Since each energy in (6.49) is nonnegative by Lemma 4.2 (i). limn+E[U(tnj)ψj]δcj\lim_{n\rightarrow+\infty}E[U(-t_{n}^{j})\psi^{j}]\leq\delta_{c}\;\;\;\;\forall\;j. Moreover, by (5.6) with s=0s=0 we obtain

j=1MM[ψj]+limn+M[WnM]=M[uc]=1,\sum_{j=1}^{M}M[\psi^{j}]+\lim_{n\rightarrow+\infty}M[W_{n}^{M}]=M[u_{c}]=1, (6.50)

by Proposition 6.1 (i).

If more than one ψj0\psi^{j}\neq 0, similar to the proof in Proposition 6.1, we have a contradiction with the fact that ucS(H˙sc)=+\|u_{c}\|_{S(\dot{H}^{s_{c}})}=+\infty. Thus, we address the case that only ψj=0\psi^{j}=0 for all j2j\geq 2, and so

uc(tn)=U(tn1)ψ1+WnM.u_{c}(t_{n})=U(-t_{n}^{1})\psi^{1}+W_{n}^{M}. (6.51)

Also as in the proof of Proposition 6.1, we have

M[ψ1]=M[uc]=1andlimn+E[U(tn1)ψ1]=δc,M[\psi^{1}]=M[u_{c}]=1\;\;\;\textnormal{and}\;\;\;\lim_{n\rightarrow+\infty}E[U(-t_{n}^{1})\psi^{1}]=\delta_{c}, (6.52)

and using (6.49), (6.50) together with (6.52), we deduce that

limn+M[WnM]=0andlimn+E[WnM]=0.\lim_{n\rightarrow+\infty}M[W_{n}^{M}]=0\;\;\;\textnormal{and}\;\;\;\lim_{n\rightarrow+\infty}E[W_{n}^{M}]=0. (6.53)

By Lemma 4.2 (i) we conclude that

limn+WnMH1=0.\lim_{n\rightarrow+\infty}\|W_{n}^{M}\|_{H^{1}}=0. (6.54)

If tn1t^{1}_{n} converges to some finite tt^{*}, it is easy to see that uc(tn)u_{c}(t_{n}) converges in H1(N)H^{1}(\mathbb{R}^{N}), concluding the proof.

Assume by contradiction that |tn1|+|t^{1}_{n}|\rightarrow+\infty, then we have two cases to consider. If tn1t^{1}_{n}\rightarrow-\infty, by (6.51)

U(t)uc(tn)S(H˙sc;[0,+))U(ttn1)ψ1S(H˙sc;[0,+))+U(t)WnMS(H˙sc;[0,+)).\|U(t)u_{c}(t_{n})\|_{S(\dot{H}^{s_{c}};[0,+\infty))}\leq\|U(t-t_{n}^{1})\psi^{1}\|_{S(\dot{H}^{s_{c}};[0,+\infty))}+\|U(t)W_{n}^{M}\|_{S(\dot{H}^{s_{c}};[0,+\infty))}.

On the other hand, we also obtain

U(ttn1)ψ1S(H˙sc;[0,+))U(t)ψ1S(H˙sc;[tnj,+))12δ,\|U(t-t_{n}^{1})\psi^{1}\|_{S(\dot{H}^{s_{c}};[0,+\infty))}\leq\|U(t)\psi^{1}\|_{S(\dot{H}^{s_{c}};[-t_{n}^{j},+\infty))}\leq\frac{1}{2}\delta,

and (given δ>0\delta>0 for n,Mn,M large and using (2.7) (6.54)) U(t)WnMS(H˙sc)12δ\|U(t)W_{n}^{M}\|_{S(\dot{H}^{s_{c}})}\leq\frac{1}{2}\delta. So

U(t)uc(tn)S(H˙sc;[0,+))δ.\|U(t)u_{c}(t_{n})\|_{S(\dot{H}^{s_{c}};[0,+\infty))}\leq\delta.

Therefore, choosing δ>0\delta>0 sufficiently small, by the small data theory (Proposition 4.10) we get that ucS(H˙sc)2δ\|u_{c}\|_{S(\dot{H}^{s_{c}})}\leq 2\delta, which is a contradiction with Proposition 6.1(iv).

Similarly, we have a contradiction when tn1t^{1}_{n}\rightarrow-\infty. ∎

7. Rigidity theorem

The goal in this section is a rigidity theorem, which implies that the critical solution ucu_{c} constructed in Section 6 must be identically zero and so reaching a contradiction in view of Proposition 6.1 (iv). To this end, we need the following results.

Proposition 7.1.

Let uu be a solution of (1.1) such that

K={u(t):t[0,+)}K=\{u(t)\;:\;t\in[0,+\infty)\}

is precompact in H1(N)H^{1}(\mathbb{R}^{N}). Then for each ε>0\varepsilon>0, there exists R>0R>0 so that

|x|>R|u(t,x)|2𝑑xε,for all 0t<+.\int_{|x|>R}|\nabla u(t,x)|^{2}dx\leq\varepsilon,\;\textnormal{for all}\;0\leq t<+\infty. (7.1)
Proposition 7.2.

(Virial identity) Let ϕC0(N)\phi\in C^{\infty}_{0}(\mathbb{R}^{N}), ϕ0\phi\geq 0 and T>0T>0. For R>0R>0 and t[0,T]t\in[0,T] define

zR(t)=NR2ϕ(xR)|u(t,x)|2𝑑x,z_{R}(t)=\int_{\mathbb{R}^{N}}R^{2}\phi\left(\frac{x}{R}\right)|u(t,x)|^{2}dx,

where uu is a solution of (1.1). Then we have

zR(t)=2RImNϕ(xR)uu¯dxz^{\prime}_{R}(t)=2RIm\int_{\mathbb{R}^{N}}\nabla\phi\left(\frac{x}{R}\right)\cdot\nabla u\bar{u}dx (7.2)

and

zR′′(t)\displaystyle z^{\prime\prime}_{R}(t) =4j,kReuxku¯xj2ϕxkxj(xR)𝑑x1R2|u|2Δ2ϕ(xR)𝑑x\displaystyle=4\sum_{j,k}Re\int\frac{\partial u}{\partial_{x_{k}}}\frac{\partial\bar{u}}{\partial_{x_{j}}}\frac{\partial^{2}\phi}{\partial x_{k}\partial x_{j}}\left(\frac{x}{R}\right)dx-\frac{1}{R^{2}}\int|u|^{2}\Delta^{2}\phi\left(\frac{x}{R}\right)dx
2αα+2|x|b|u|α+2Δϕ(xR)𝑑x+4Rα+2(|x|b)ϕ(xR)|u|α+2𝑑x.\displaystyle-\frac{2\alpha}{\alpha+2}\int|x|^{-b}|u|^{\alpha+2}\Delta\phi\left(\frac{x}{R}\right)dx+\frac{4R}{\alpha+2}\int\nabla(|x|^{-b})\cdot\nabla\phi\left(\frac{x}{R}\right)|u|^{\alpha+2}dx. (7.3)

The proof of Proposition 7.1 is identical to the one in [18, Lemma 5.65.6], so we omit the details. On the other hand, Proposition 7.2 will proved at end of this section.

Applying the previous results we now show the rigidity theorem.

Theorem 7.3.

(Rigidity) Suppose u0H1(N)u_{0}\in H^{1}(\mathbb{R}^{N}) satisfying

E[u0]scM[u0]1sc<E[Q]scM[Q]1scE[u_{0}]^{s_{c}}M[u_{0}]^{1-s_{c}}<E[Q]^{s_{c}}M[Q]^{1-s_{c}}

and

u0L2scu0L21sc<QL2scQL21sc.\|\nabla u_{0}\|_{L^{2}}^{s_{c}}\|u_{0}\|_{L^{2}}^{1-s_{c}}<\|\nabla Q\|_{L^{2}}^{s_{c}}\|Q\|_{L^{2}}^{1-s_{c}}.

If the global H1(N)H^{1}(\mathbb{R}^{N})-solution uu with initial data u0u_{0} satisfies

K={u(t):t[0,+)}is precompact inH1(N)K=\{u(t)\;:\;t\in[0,+\infty)\}\;\textnormal{is precompact in}\;H^{1}(\mathbb{R}^{N})

then u0u_{0} must vanish, i.e., u0=0u_{0}=0.

Proof.

The proof follows similar ideas as in our paper [10]. It follows from Theorem 1.2 that uu is global in H1(N)H^{1}(\mathbb{R}^{N}) and

u(t)Lx2scu(t)Lx21sc<QL2scQL21sc.\|\nabla u(t)\|_{L^{2}_{x}}^{s_{c}}\|u(t)\|_{L^{2}_{x}}^{1-s_{c}}<\|\nabla Q\|_{L^{2}}^{s_{c}}\|Q\|_{L^{2}}^{1-s_{c}}. (7.4)

Set ϕC0\phi\in C_{0}^{\infty} be radial, with

ϕ(x)={|x|2for|x|10for|x|2.\phi(x)=\left\{\begin{array}[]{cl}|x|^{2}&\textnormal{for}\;|x|\leq 1\\ 0&\textnormal{for}\;|x|\geq 2.\end{array}\right.

The relation (7.2), the Hölder inequality and (7.4) imply that

|zR(t)|\displaystyle|z^{\prime}_{R}(t)| \displaystyle\leq cR|x|<2R|u(t)||u(t)|𝑑xcRu(t)L2u(t)L2cR.\displaystyle cR\int_{|x|<2R}|\nabla u(t)||u(t)|dx\leq cR\|\nabla u(t)\|_{L^{2}}\|u(t)\|_{L^{2}}\lesssim cR.

Thus,

|zR(t)zR(0)|2cR,for all t>0.\displaystyle|z^{\prime}_{R}(t)-z^{\prime}_{R}(0)|\leq 2cR,\;\;\textnormal{for all }\;t>0. (7.5)

The idea now is to get a lower bound for zR′′(t)z^{\prime\prime}_{R}(t) strictly greater than zero and reach a contradiction. Indeed, we deduce (using the local virial identity (7.2))

zR′′(t)\displaystyle z^{\prime\prime}_{R}(t) =4j,kRexkuxju¯2ϕxkxj(xR)dx1R2|u|2Δ2ϕ(xR)𝑑x\displaystyle=4\sum_{j,k}Re\int\partial_{x_{k}}u\partial_{x_{j}}\bar{u}\frac{\partial^{2}\phi}{\partial x_{k}\partial x_{j}}\left(\frac{x}{R}\right)dx-\frac{1}{R^{2}}\int|u|^{2}\Delta^{2}\phi\left(\frac{x}{R}\right)dx
2αα+2|x|b|u|α+2Δϕ(xR)𝑑x+4Rα+2(|x|b)ϕ(xR)|u|α+2𝑑x\displaystyle-\frac{2\alpha}{\alpha+2}\int|x|^{-b}|u|^{\alpha+2}\Delta\phi\left(\frac{x}{R}\right)dx+\frac{4R}{\alpha+2}\int\nabla(|x|^{-b})\cdot\nabla\phi\left(\frac{x}{R}\right)|u|^{\alpha+2}dx
=8uLx224(Nα+2b)α+2|x|b|u|α+2Lx1+R(u(t)),\displaystyle=8\|\nabla u\|^{2}_{L^{2}_{x}}-\frac{4(N\alpha+2b)}{\alpha+2}\left\||x|^{-b}|u|^{\alpha+2}\right\|_{L^{1}_{x}}+R(u(t)), (7.6)

where

R(u(t))\displaystyle R(u(t)) =4jRe(xj2ϕ(xR)2)|xju|2+4jkRe2ϕxkxj(xR)xkuxju¯\displaystyle=4\sum\limits_{j}Re\int\left(\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)-2\right)|\partial_{x_{j}}u|^{2}+4\sum\limits_{j\neq k}Re\int\frac{\partial^{2}\phi}{\partial x_{k}\partial x_{j}}\left(\frac{x}{R}\right)\partial_{x_{k}}u\partial_{x_{j}}\bar{u}
1R2|u|2Δ2ϕ(xR)+4Rα+2(|x|b)ϕ(xR)|u|α+2\displaystyle-\frac{1}{R^{2}}\int|u|^{2}\Delta^{2}\phi\left(\frac{x}{R}\right)+\frac{4R}{\alpha+2}\int\nabla(|x|^{-b})\cdot\nabla\phi\left(\frac{x}{R}\right)|u|^{\alpha+2}
+(2α(Δϕ(xR)2N)+8bα+2)|x|b|u|α+2.\displaystyle+\int\left(\frac{-2\alpha(\Delta\phi\left(\frac{x}{R}\right)-2N)+8b}{\alpha+2}\right)|x|^{-b}|u|^{\alpha+2}.

In view of ϕ(x)\phi(x) is radial and ϕ(x)=|x|2\phi(x)=|x|^{2} if |x|1|x|\leq 1, the sum of all terms in the definition of R(u(t))R(u(t)) integrating over |x|R|x|\leq R is zero. Indeed, by the definition of ϕ(x)\phi(x) it is clear for the first three terms. In the fourth term we have

8α+2|x|R(|x|b)x|u|α+2𝑑x=8α+2|x|Rb|x|b|u|α+2dx,\frac{8}{\alpha+2}\int_{|x|\leq R}\nabla(|x|^{-b})\cdot x|u|^{\alpha+2}dx=\frac{8}{\alpha+2}\int_{|x|\leq R}-b|x|^{-b}|u|^{\alpha+2}dx,

and adding the last term also integrating over |x|R|x|\leq R, we have zero191919Since Δϕ=2N\Delta\phi=2N, if |x|R|x|\leq R.. Hence,

|R(u(t))|\displaystyle|R(u(t))| \displaystyle\leq c|x|>R(|u(t)|2+1R2|u(t)|2+|x|b|u(t)|α+2)𝑑x\displaystyle c\int_{|x|>R}\left(|\nabla u(t)|^{2}+\frac{1}{R^{2}}|u(t)|^{2}+|x|^{-b}|u(t)|^{\alpha+2}\right)dx
\displaystyle\leq c|x|>R(|u(t)|2+1R2|u(t)|2+1Rb|u(t)|α+2)𝑑x,\displaystyle c\int_{|x|>R}\left(|\nabla u(t)|^{2}+\frac{1}{R^{2}}|u(t)|^{2}+\frac{1}{R^{b}}|u(t)|^{\alpha+2}\right)dx, (7.7)

where we have used that all derivatives of ϕ\phi are bounded and |Rxj(|x|b)|c|x|b|R\partial_{x_{j}}(|x|^{-b})|\leq c|x|^{-b} if |x|>R|x|>R.

Using the fact that KK is precompact in H1(N)H^{1}(\mathbb{R}^{N}). By Proposition 7.1, given ε>0\varepsilon>0 there exists R1>0R_{1}>0 such that |x|>R1|u(t)|2ε\int_{|x|>R_{1}}|\nabla u(t)|^{2}\leq\varepsilon. Also, by mass conservation (1.4), there exists R2>0R_{2}>0 such that 1R22|x|>R2|u(t)|2ε\frac{1}{R^{2}_{2}}\int_{|x|>R_{2}}|u(t)|^{2}\leq\varepsilon. Finally, by the Sobolev embedding H1Lα+2H^{1}\hookrightarrow L^{\alpha+2}, there exists R3R_{3} such that 1R3b|x|>R3|u(t)|α+2cε\frac{1}{R_{3}^{b}}\int_{|x|>R_{3}}|u(t)|^{\alpha+2}\leq c\varepsilon.202020Recalling that u(t)Hx1\|u(t)\|_{H^{1}_{x}} is uniformly bounded for all t>0t>0 by (7.4) and Mass conservation (1.4). Taking R=max{R1,R2,R3}R=\max\{R_{1},R_{2},R_{3}\} and by (7.7) we conclude

|R(u(t))|c|x|>R(|u(t)|2+1R2|u(t)|2+1Rb|u(t)|α+2)𝑑xcε.|R(u(t))|\leq c\int_{|x|>R}\left(|\nabla u(t)|^{2}+\frac{1}{R^{2}}|u(t)|^{2}+\frac{1}{R^{b}}|u(t)|^{\alpha+2}\right)dx\leq c\varepsilon. (7.8)

Furthermore, Lemma 4.2 (iii), (7.3) and (7.8) imply that

zR′′(t)16AE[u]|R(u(t))|16AE[u]cε,z^{\prime\prime}_{R}(t)\geq 16AE[u]-|R(u(t))|\geq 16AE[u]-c\varepsilon,

where A=1wα2A=1-w^{\frac{\alpha}{2}} and w=E[v]scM[v]1scE[Q]scM[Q]1scw=\frac{E[v]^{s_{c}}M[v]^{1-s_{c}}}{E[Q]^{s_{c}}M[Q]^{1-s_{c}}}.
Choosing ε=8AcE[u]\varepsilon=\frac{8A}{c}E[u], with cc as in (7.8) we have

zR′′(t)8AE[u].z^{\prime\prime}_{R}(t)\geq 8AE[u].

Thus, integrating the last inequality from 0 to tt it follows that

zR(t)zR(0)8AE[u]t.z^{\prime}_{R}(t)-z^{\prime}_{R}(0)\geq 8AE[u]t. (7.9)

Taking tt large, we obtain a contradiction with (7.5), which can be resolved only if E[u]=0E[u]=0. This implies by Lemma 4.2 (i) that u0u\equiv 0. ∎

We end this section by showing Proposition7.2.

Proof of Proposition 7.2.

Observe that t|u|2=2Re(utu¯)=2Im(iutu¯).\partial_{t}|u|^{2}=2Re(u_{t}\bar{u})=2Im(iu_{t}\bar{u}). Since uu satisfies (1.1) and using integration by parts, we have

zR(t)\displaystyle z^{\prime}_{R}(t) =\displaystyle= 2ImR2ϕ(xR)iutu¯𝑑x\displaystyle 2Im\int R^{2}\phi\left(\frac{x}{R}\right)iu_{t}\bar{u}dx
=\displaystyle= 2ImR2ϕ(xR)(Δuu¯+|x|b|u|α+2)𝑑x\displaystyle-2Im\int R^{2}\phi\left(\frac{x}{R}\right)\left(\Delta u\bar{u}+|x|^{-b}|u|^{\alpha+2}\right)dx
=\displaystyle= 2RImϕ(xR)uu¯dx.\displaystyle 2RIm\int\nabla\phi\left(\frac{x}{R}\right)\cdot\nabla u\bar{u}dx.

Again using integration by parts and the fact that zz¯=2iImzz-\bar{z}=2iImz, it follows that

zR′′(t)\displaystyle z^{\prime\prime}_{R}(t) =\displaystyle= 2RImϕ(xR)(u¯tu+u¯ut)𝑑x\displaystyle 2RIm\int\nabla\phi\left(\frac{x}{R}\right)\cdot\left(\bar{u}_{t}\nabla u+\bar{u}\nabla u_{t}\right)dx
=\displaystyle= 2RIm{ju¯txjuxjϕ(xR)dxutxj(u¯xjϕ(xR))dx}\displaystyle 2RIm\left\{\sum_{j}\int\bar{u}_{t}\partial_{x_{j}}u\partial_{x_{j}}\phi\left(\frac{x}{R}\right)dx-u_{t}\partial_{x_{j}}\left(\bar{u}\partial_{x_{j}}\phi\left(\frac{x}{R}\right)\right)dx\right\}
=\displaystyle= 2RIm{j2iImu¯txjuxjϕ(xR)dx1Rutu¯xj2ϕ(xR)dx}\displaystyle 2RIm\left\{\sum_{j}2iIm\int\bar{u}_{t}\partial_{x_{j}}u\partial_{x_{j}}\phi\left(\frac{x}{R}\right)dx-\int\frac{1}{R}u_{t}\bar{u}\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)dx\right\}
=\displaystyle= 4RI1+2I2,\displaystyle 4RI_{1}+2I_{2},

where

I1=Imju¯txjuxjϕ(xR)andI2=Imjutu¯xj2ϕ(xR)dx.I_{1}=Im\sum_{j}\int\bar{u}_{t}\partial_{x_{j}}u\partial_{x_{j}}\phi\left(\frac{x}{R}\right)\;\;\textnormal{and}\;\;I_{2}=-Im\sum_{j}\int u_{t}\bar{u}\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)dx.

In view of uu is a solution of (1.1), we deduce

I2\displaystyle I_{2} =\displaystyle= Im{j,kixk2uu¯xj2ϕ(xR)dx}j|x|b|u|α+2xj2ϕ(xR)dx\displaystyle-Im\left\{\sum_{j,k}\int i\partial^{2}_{x_{k}}u\bar{u}\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)dx\right\}-\sum_{j}\int|x|^{-b}|u|^{\alpha+2}\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)dx
=\displaystyle= Im{j,ki(|xku|2xj2ϕ(xR)+1Rxkuu¯3ϕxkxj2(xR))𝑑x}\displaystyle Im\left\{\sum_{j,k}\int i\left(|\partial_{x_{k}}u|^{2}\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)+\frac{1}{R}\partial_{x_{k}}u\bar{u}\frac{\partial^{3}\phi}{\partial x_{k}\partial x^{2}_{j}}\left(\frac{x}{R}\right)\right)dx\right\}
|x|b|u|α+2Δϕ(xR)𝑑x\displaystyle-\int|x|^{-b}|u|^{\alpha+2}\Delta\phi\left(\frac{x}{R}\right)dx
=\displaystyle= (|u|2|x|b|u|α+2)Δϕ(xR)𝑑x+1Rj,kRexkuu¯3ϕxkxj2(xR)dx.\displaystyle\int\left(|\nabla u|^{2}-|x|^{-b}|u|^{\alpha+2}\right)\Delta\phi\left(\frac{x}{R}\right)dx+\frac{1}{R}\sum_{j,k}Re\int\partial_{x_{k}}u\bar{u}\frac{\partial^{3}\phi}{\partial x_{k}\partial x^{2}_{j}}\left(\frac{x}{R}\right)dx.

Another integration by parts yields

I2\displaystyle I_{2} =\displaystyle= (|u|2|x|b|u|α+2)Δϕ(xR)𝑑x12R2j,k|u|24ϕxk2xj2(xR)𝑑x\displaystyle\int\left(|\nabla u|^{2}-|x|^{-b}|u|^{\alpha+2}\right)\Delta\phi\left(\frac{x}{R}\right)dx-\frac{1}{2R^{2}}\sum_{j,k}\int|u|^{2}\frac{\partial^{4}\phi}{\partial x^{2}_{k}\partial x^{2}_{j}}\left(\frac{x}{R}\right)dx (7.10)
=\displaystyle= (|u|2|x|b|u|α+2)Δϕ(xR)𝑑x12R2|u|2Δ2ϕ(xR)𝑑x.\displaystyle\int\left(|\nabla u|^{2}-|x|^{-b}|u|^{\alpha+2}\right)\Delta\phi\left(\frac{x}{R}\right)dx-\frac{1}{2R^{2}}\int|u|^{2}\Delta^{2}\phi\left(\frac{x}{R}\right)dx.

We now evaluate I1I_{1}. It follows from the equation (1.1) and Im(z)=Im(z¯)Im(z)=-Im(\bar{z}) that212121using Im(iz)=Re(z)Im(iz)=Re(z) and xj(|u|α+2)=(α+2)|u|αRe(xju¯u)\partial_{x_{j}}(|u|^{\alpha+2})=(\alpha+2)|u|^{\alpha}Re(\partial_{x_{j}}\bar{u}u).

I1\displaystyle I_{1} =Imjutxju¯xjϕ(xR)dx\displaystyle=-Im\sum_{j}u_{t}\partial_{x_{j}}\bar{u}\partial_{x_{j}}\phi\left(\frac{x}{R}\right)dx
=Imij{(Δu+|x|b|u|αu)xju¯xjϕ(xR)dx}\displaystyle=-Imi\sum_{j}\left\{\int\left(\Delta u+|x|^{-b}|u|^{\alpha}u\right)\partial_{x_{j}}\bar{u}\partial_{x_{j}}\phi\left(\frac{x}{R}\right)dx\right\}
=Rej,kxk2uxju¯xjϕ(xR)dxj|x|bxjϕ(xR)|u|αRe(xju¯u)dx\displaystyle=-Re\sum_{j,k}\int\partial^{2}_{x_{k}}u\partial_{x_{j}}\bar{u}\partial_{x_{j}}\phi\left(\frac{x}{R}\right)dx-\sum_{j}\int|x|^{-b}\partial_{x_{j}}\phi\left(\frac{x}{R}\right)|u|^{\alpha}Re(\partial_{x_{j}}\bar{u}u)dx
=Rej,kxk2uxju¯xjϕ(xR)dx1α+2j|x|bxjϕ(xR)xj(|u|α+2)dx\displaystyle=-Re\sum_{j,k}\int\partial^{2}_{x_{k}}u\partial_{x_{j}}\bar{u}\partial_{x_{j}}\phi\left(\frac{x}{R}\right)dx-\frac{1}{\alpha+2}\sum_{j}\int|x|^{-b}\partial_{x_{j}}\phi\left(\frac{x}{R}\right)\partial_{x_{j}}(|u|^{\alpha+2})dx
A+B.\displaystyle\equiv A+B.

Since xj|xku|2=2Re(xku2u¯xkxj)\partial_{x_{j}}|\partial_{x_{k}}u|^{2}=2Re\left(\partial_{x_{k}}u\frac{\partial^{2}\bar{u}}{\partial x_{k}\partial x_{j}}\right) and applying integration by parts twice, we obtain

A\displaystyle A =\displaystyle= Rej,k{(xjϕ(xR)xku2u¯xkxj+1Rxkuxju¯2ϕxjxk(xR))𝑑x}\displaystyle Re\sum_{j,k}\left\{\int\left(\partial_{x_{j}}\phi\left(\frac{x}{R}\right)\partial_{x_{k}}u\frac{\partial^{2}\bar{u}}{\partial x_{k}\partial x_{j}}+\frac{1}{R}\partial_{x_{k}}u\partial_{x_{j}}\bar{u}\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}\left(\frac{x}{R}\right)\right)dx\right\}
=\displaystyle= j,k12R|xku|2xj2ϕ(xR)dx+1Ri,jRexkuxju¯2ϕxjxk(xR)dx\displaystyle-\sum_{j,k}\frac{1}{2R}\int|\partial_{x_{k}}u|^{2}\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)dx+\frac{1}{R}\sum_{i,j}Re\int\partial_{x_{k}}u\partial_{x_{j}}\bar{u}\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}\left(\frac{x}{R}\right)dx
=\displaystyle= 12R|u|2Δϕ(xR)𝑑x+1Ri,jRexkuxju¯2ϕxjxk(xR)dx.\displaystyle-\frac{1}{2R}\int|\nabla u|^{2}\Delta\phi\left(\frac{x}{R}\right)dx+\frac{1}{R}\sum_{i,j}Re\int\partial_{x_{k}}u\partial_{x_{j}}\bar{u}\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}\left(\frac{x}{R}\right)dx.

Similarly, integrating by parts we have

B\displaystyle B =1α+2j(xjϕ(xR)xj(|x|b)|u|α+2dx+1Rxj2ϕ(xR)|x|b|u|α+2dx)\displaystyle=\frac{1}{\alpha+2}\sum_{j}\left(\int\partial_{x_{j}}\phi\left(\frac{x}{R}\right)\partial_{x_{j}}(|x|^{-b})|u|^{\alpha+2}dx+\frac{1}{R}\int\partial^{2}_{x_{j}}\phi\left(\frac{x}{R}\right)|x|^{-b}|u|^{\alpha+2}dx\right)
=1α+2ϕ(xR)(|x|b)|u|α+2dx+1R(α+2)Δϕ(xR)|x|b|u|α+2𝑑x.\displaystyle=\frac{1}{\alpha+2}\int\nabla\phi\left(\frac{x}{R}\right)\cdot\nabla(|x|^{-b})|u|^{\alpha+2}dx+\frac{1}{R(\alpha+2)}\int\Delta\phi\left(\frac{x}{R}\right)|x|^{-b}|u|^{\alpha+2}dx.

Therefore,

I1\displaystyle I_{1} =12R|u|2Δϕ(xR)𝑑x+1Ri,jRexkuxju¯2ϕxjxk(xR)dx\displaystyle=-\frac{1}{2R}\int|\nabla u|^{2}\Delta\phi\left(\frac{x}{R}\right)dx+\frac{1}{R}\sum_{i,j}Re\int\partial_{x_{k}}u\partial_{x_{j}}\bar{u}\frac{\partial^{2}\phi}{\partial x_{j}\partial x_{k}}\left(\frac{x}{R}\right)dx
+1α+2ϕ(xR)(|x|b)|u|α+2dx+1R(α+2)Δϕ(xR)|x|b|u|α+2𝑑x.\displaystyle+\frac{1}{\alpha+2}\int\nabla\phi\left(\frac{x}{R}\right)\cdot\nabla(|x|^{-b})|u|^{\alpha+2}dx+\frac{1}{R(\alpha+2)}\int\Delta\phi\left(\frac{x}{R}\right)|x|^{-b}|u|^{\alpha+2}dx. (7.11)

Combining (7.10) and (7), we deduce (7.2), which completes the proof. ∎

Acknowledgments

L.G.F. was supported by CNPq/Brazil and FAPEMIG/Brazil and C.M.G. was supported by CAPES/Brazil.

Appendix

In this short Appendix we check the conditions of admissible pair used in Section 44 and 66.

A.1. We claim 3α2b=632sc<p<6\frac{3\alpha}{2-b}=\frac{6}{3-2s_{c}}<p<6, i.e., pp (see (4.17)) satisfies the condition (2.3) (and therefore (2.1), since 632sc>2\frac{6}{3-2s_{c}}>2) for N=3N=3. Indeed, 3α2b<p(42b)(αθ)+α<(42b)(α+1θ)α<42b\frac{3\alpha}{2-b}<p\Leftrightarrow(4-2b)(\alpha-\theta)+\alpha<(4-2b)(\alpha+1-\theta)\Leftrightarrow\alpha<4-2b, which is true by hypothesis. Moreover, p<6α(α+1θ)<(42b)(αθ)+αα(αθ)<(42b)(αθ)α<42bp<6\Leftrightarrow\alpha(\alpha+1-\theta)<(4-2b)(\alpha-\theta)+\alpha\Leftrightarrow\alpha(\alpha-\theta)<(4-2b)(\alpha-\theta)\Leftrightarrow\alpha<4-2b.

A.2. We notice that rr defined in (6.44) satisfies (2.3), that is 2NN2sc<r<2NN2\frac{2N}{N-2s_{c}}<r<\frac{2N}{N-2}. Indeed r<2NN2r<\frac{2N}{N-2} is equivalent to α(N24)<2(42b)+αN(N2)α<42bN2.\alpha(N^{2}-4)<2(4-2b)+\alpha N(N-2)\Leftrightarrow\alpha<\frac{4-2b}{N-2}. Moreover, r>2NN2sc=Nα2br>\frac{2N}{N-2s_{c}}=\frac{N\alpha}{2-b} is equivalent to (N+2)(42b)>2(42b)+αN(N2)α<42bN2.(N+2)(4-2b)>2(4-2b)+\alpha N(N-2)\Leftrightarrow\alpha<\frac{4-2b}{N-2}.

A.3. Note that r¯\bar{r} defined in (6.48) satisfies assumption (2.5) with N=2N=2, that is 21sc=2α2b<r¯((21+sc)+)\frac{2}{1-s_{c}}=\frac{2\alpha}{2-b}<\bar{r}\leq\left((\frac{2}{1+s_{c}})^{+}\right)^{\prime}. The first inequality is equivalent to 2αε>2α2b\frac{2\alpha}{\varepsilon}>\frac{2\alpha}{2-b} and this holds since 2bε>02-b-\varepsilon>0. On the other hand by the definition of ((21+sc)+)\left((\frac{2}{1+s_{c}})^{+}\right)^{\prime} (see (2.4)) we conclude r¯=2αε((21+sc)+)\bar{r}=\frac{2\alpha}{\varepsilon}\leq\left((\frac{2}{1+s_{c}})^{+}\right)^{\prime}. Similarly, it easy to see that rr defined in (6.47) satisfies (2.3).

References

  • [1] J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.
  • [2] T. Cazenave, D. Fang, and Z. Han. Continuous dependence for NLS in fractional order spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(1):135–147, 2011.
  • [3] T. Cazenave and F. B. Weissler. Some remarks on the nonlinear Schrödinger equation in the critical case. In Nonlinear semigroups, partial differential equations and attractors, volume 1394 of Lecture Notes in Math., pages 18–29. Springer, Berlin, 1989.
  • [4] V. Combet and F. Genoud. Classification of minimal mass blow-up solutions for an L2L^{2} critical inhomogeneous NLS. J. Evol. Equ., 16(2):483–500, 2016.
  • [5] R. Côte. Large data wave operator for the generalized Korteweg-de Vries equations. Differential Integral Equations, 19(2):163–188, 2006.
  • [6] F. Demengel and G. Demengel. Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012.
  • [7] T. Duyckaerts, J. Holmer, and S. Roudenko. Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett., 15(6):1233–1250, 2008.
  • [8] D. Fang, J. Xie, and T. Cazenave. Scattering for the focusing energy-subcritical nonlinear Schrödinger equation. Sci. China Math., 54(10):2037–2062, 2011.
  • [9] L. G. Farah. Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. J. Evol. Equ., 16(1):193–208, 2016.
  • [10] L. G. Farah and C. M. Guzmán. Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation. J. Differential Equations, 262(8):4175–4231, 2017.
  • [11] G. Fibich and X. P. Wang. Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. Phys. D, 175(1-2):96–108, 2003.
  • [12] F. Genoud. An inhomogeneous, L2L^{2}-critical, nonlinear Schrödinger equation. Z. Anal. Anwend., 31(3):283–290, 2012.
  • [13] F. Genoud and C. A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. Discrete Contin. Dyn. Syst., 21(1):137–186, 2008.
  • [14] P. Gérard. Description du défaut de compacité de l’injection de Sobolev. ESAIM Control Optim. Calc. Var., 3:213–233 (electronic), 1998.
  • [15] T. S. Gill. Optical guiding of laser beam in nonuniform plasma. Pramana J. Phys, 55(5-6):835–842, 2000.
  • [16] C. D. Guevara. Global behavior of finite energy solutions to the dd-dimensional focusing nonlinear Schrödinger equation. Appl. Math. Res. Express. AMRX, 2014(2):177–243, 2014.
  • [17] C. M. Guzmán. On well posedness for the inhomogeneous nonlinear Schrödinger equation. arXiv preprint arXiv:1606.02777. To appear in Nonlinear Analysis: Real World Applications, 2017.
  • [18] J. Holmer and S. Roudenko. A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Comm. Math. Phys., 282(2):435–467, 2008.
  • [19] Y. Hong. Scattering for a nonlinear schrödinger equation with a potential. arXiv preprint arXiv:1403.3944, 2014.
  • [20] T. Kato. On nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor., 46(1):113–129, 1987.
  • [21] M. Keel and T. Tao. Endpoint Strichartz estimates. Amer. J. Math., 120(5):955–980, 1998.
  • [22] C. E. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166(3):645–675, 2006.
  • [23] R. Killip, J. Murphy, M. Visan, and J. Zheng. The focusing cubic nls with inverse-square potential in three space dimensions. arXiv preprint arXiv:1603.08912, 2016.
  • [24] F. Linares and G. Ponce. Introduction to nonlinear dispersive equations. Universitext. Springer, New York, second edition, 2015.
  • [25] C. S. Liu and V. K. Tripathi. Laser guiding in an axially nonuniform plasma channel. Physics of Plasmas, 1(9):3100–3103, 1994.
  • [26] F. Merle. Nonexistence of minimal blow-up solutions of equations iut=Δuk(x)|u|4/Nuiu_{t}=-\Delta u-k(x)|u|^{4/N}u in 𝐑N{\bf R}^{N}. Ann. Inst. H. Poincaré Phys. Théor., 64(1):33–85, 1996.
  • [27] P. Raphaël and J. Szeftel. Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS. J. Amer. Math. Soc., 24(2):471–546, 2011.
  • [28] W. A. Strauss. Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55(2):149–162, 1977.