This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Schreier’s Formula for some Free Probability Invariants

Aldo Garcia Guinto Department of Mathematics, Michigan State University garci575@msu.edu
Abstract.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra. Suppose that AMA\subset M is a finitely generated unital *-subalgebra which is globally invariant under α\alpha. We give a formula relating the von Neumann dimension of the space of derivations on AA valued on its coarse bimodule to the von Neumann dimension of the space of derivations on AαGA\rtimes_{\alpha}G valued on its coarse bimodule, which is reminiscent of Schreier’s formula for finite index subgroups of free groups. This formula induces a formula for the free Stein dimension (defined by Charlesworth and Nelson) dimDerc(A,τ)\dim\text{Der}_{c}(A,\tau) (defined by Shlyakhtenko) and Δ\Delta (defined by Connes and Shlyakhtenko). The latter is done by establishing that Δ\Delta is equal to the von Neumann dimension of a certain subspace of the derivation space of AA, similar to that of the free Stein dimension, and assuming that GG is abelian group. Using the formula for Δ\Delta, we recover recent results of Shlyakhtenko on the microstates free entropy dimension.

Introduction

Let X=(x1,,xn)X=(x_{1},\ldots,x_{n}) be a tuple of operators in a tracial von Neumann algebra (M,τ)(M,\tau). Some of the quantitative free probability numerical invariants associated with the distribution of XX with respect to τ\tau are the free entropy dimensions δ(X),δ0(X),δ(X),\delta(X),\delta_{0}(X),\delta^{*}(X), and δ(X)\delta^{\star}(X) (see [Voi94, Voi96, CS05]); the free Fisher information Φ(X)\Phi^{*}(X) (see [Voi98]); etc. The following free probability numerical invariants are the invariants that we study in this paper. In [CN22], Charlesworth and Nelson defined an invariant called the free Stein dimension σ(X,τ)\sigma(X,\tau), which comes from taking a von Neumann dimension of a particular subspace of derivations (see Section 1.3). In [CS05], Connes and Shlyakhtenko defined an invariant denoted by Δ(X,τ)\Delta(X,\tau), which comes from taking a von Neumann dimension of a closed subspace of Hilbert-Schmidt operators. Theses quantities are invariants of the *-algebra generated by XX, say A=XA=\mathbb{C}\langle X\rangle, and we denote these quantities by σ(A,τ)\sigma(A,\tau) and Δ(A,τ)\Delta(A,\tau). Similar to the free Stein dimension, Δ\Delta can be computed by taking the von Neumann dimension of a certain subspace of derivation on AA valued on L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) (see Lemma 5.2). In [MSY20, Theorem 1.1] the authors showed that Δ\Delta being maximal (Δ(A,τ)=n\Delta(A,\tau)=n) implies that there is an absence of rational relations, that is any nontrivial rational function evaluates to an affiliated rational operator of the tuple. In this paper, we also investigate a certain subspace Derc(A,τ)\text{Der}_{c}(A,\tau) of the derivation space defined by Shlyakhtenko in [Shl09].

From group theory, the Nielsen–Schreier theorem states that any subgroup HH of a free group FF is a free group and if F𝔽nF\cong\mathbb{F}_{n} for nn\in\mathbb{N} and [F:H]<[F:H]<\infty, then H𝔽kH\cong\mathbb{F}_{k}, where

k=1+[F:H](n1).k=1+[F:H](n-1).

The formula above is called Schreier’s formula. Since there exists a generating set XX for L(𝔽n)L(\mathbb{F}_{n}) such that the non-microstate free entropy dimension δ(X)=n\delta^{\star}(X)=n (see [Voi98, CS05]), one expects that given a finite index of subfactors M0M1M_{0}\subset M_{1}, and a finite generating set S0S_{0} of M0M_{0}, there exists a generating set S1S_{1} for M1M_{1} such that

δ(S1)1=[M1:M0]1(δ(S0)1).\delta^{\star}(S_{1})-1=[M_{1}:M_{0}]^{-1}(\delta^{\star}(S_{0})-1).

In [Shl22], Shlyakhtenko shows that for subfactors of the form M0M1=M0GM_{0}\subset M_{1}=M_{0}\rtimes G with GG a finite abelian group, one has for a given ε>0\varepsilon>0 the existence of a generating sets S0S_{0} for M0M_{0} and S1S_{1} for M1M_{1} for which

δ(S1)1[M1:M0]1(δ(S0)1)+ε.\delta^{*}(S_{1})-1\leq[M_{1}:M_{0}]^{-1}(\delta^{*}(S_{0})-1)+\varepsilon.

This is motivated by a conjecture that has the potential to resolve the free group factor isomorphism problem (see [Shl22] Conjecture 1 and discussion following it). We remark that Example 5.10 is what one would expect if Shlyakhtenko’s conjecture has a positive resolution. This paper motivated us to consider how σ\sigma, Δ\Delta behave under such crossed products. Consider a *-algebra AA that is globally invariant under α\alpha, we define AαGA\rtimes_{\alpha}G to be the *-algebra generated by AA and the unitaries {ug:gG}\{u_{g}:g\in G\} implementing α\alpha (see Section 1.2). We were able to obtain an analog of Schreier’s formula for the quantities above with AA and AαGA\rtimes_{\alpha}G:

Theorem A (Theorem 3.1).

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Then

σ([G]AαG,τ)=1|G|σ(A,τ).\sigma(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)=\frac{1}{|G|}\sigma(A,\tau).

Furthermore, we have

σ(AαG,τ)1=1|G|(σ(A,τ)1).\sigma(A\rtimes_{\alpha}G,\tau)-1=\frac{1}{|G|}(\sigma(A,\tau)-1).
Theorem B (Theorem 4.1).

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Then

dimDerc([G]AαG,τ)¯((AαG)(AαG))′′=1|G|dimDerc(A,τ)¯(AA)′′.\dim\overline{\emph{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}=\frac{1}{|G|}\dim\overline{\emph{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}.

Furthermore, we have

dimDerc(AαG,τ)¯((AαG)(AαG))′′1=1|G|(dimDerc(A,τ)¯(AA)′′1).\dim\overline{\emph{Der}_{c}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1=\frac{1}{|G|}(\dim\overline{\emph{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1).
Theorem C (Theorem 5.7).

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Then

Δ([G]AαG,τ)=1|G|Δ(A,τ).\Delta(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)=\frac{1}{|G|}\Delta(A,\tau).

Furthermore, we have

Δ(AαG,τ)1=1|G|(Δ(A,τ)1).\Delta(A\rtimes_{\alpha}G,\tau)-1=\frac{1}{|G|}(\Delta(A,\tau)-1).

To prove the above theorems, we first decompose the derivation space of AαGA\rtimes_{\alpha}G that vanishes on [G]\mathbb{C}[G] into a finite direct sum of twisted copies of the derivation space of AA. Since each derivation on AαGA\rtimes_{\alpha}G can be decomposed into a derivation on [G]\mathbb{C}[G] and a derivation on AαGA\rtimes_{\alpha}G that vanishes on [G]\mathbb{C}[G], this gives a formula relating the von Neumann dimensions of the derivation space of AA and von Neumann dimension of the derivation space of AαGA\rtimes_{\alpha}G. Furthermore, we show that both decompositions can be restricted to the subspace Derc(A,τ)\text{Der}_{c}(A,\tau) and the subspaces corresponding to σ\sigma and Δ\Delta, and that the derivations on [G]\mathbb{C}[G] are equal to the closure of the restricted subspace on [G]\mathbb{C}[G]. This yields the formulas in the above theorems. Using the known inequality, δ0Δ\delta_{0}\leq\Delta (see [CS05, Corollary 4.6]), we can obtain a sharper bound on the microstates free entropy dimension which is independent of the choice set of generators on AαGA\rtimes_{\alpha}G.

In Section 1 after some preliminaries, we state a generalized version of [CN22, Theorem 2.1](see Lemma 1.2), which uses the same proof. In Section 2 we show how one can extend a derivation on AA to a derivation on AαGA\rtimes_{\alpha}G that vanishes on [G]\mathbb{C}[G] and restrict a derivation on AαGA\rtimes_{\alpha}G that vanishes on [G]\mathbb{C}[G] to a derivation on AA. From this we decompose the derivation space of AαGA\rtimes_{\alpha}G that vanishes on [G]\mathbb{C}[G] to a finite direct sum of the derivation space of AA as (AA)′′(A\otimes A^{\circ})^{\prime\prime}-modules. In Section 3 we state and prove Theorem A. In Section 4 we state and prove Theorem B. In Section 5 we state and prove Theorem C. We relate Δ\Delta with a subspace of Der(A,τ)\text{Der}(A,\tau) coming from defining a locally convex structure to Der(A,τ)\text{Der}(A,\tau). We recover results in [Shl22] and obtain a sharper bound on microstates free entropy dimension δ0\delta_{0}.

Acknowledgement

I would like to thank my advisor, Prof. Brent Nelson for the initial idea of this paper, and many helpful suggestions and discussions. I would like to thank Rolando de Santiago and Krishnendu Khan for pointing out Corollary 2.8. I would like to thank Srivatsav Kunnawalkam Elayavalli for referring me to the result of Higman, Neumann and Neumann.

1.  Preliminaries

1.1  Notation

Throughout, a tracial von Neumann algebra is a pair (M,τ)(M,\tau) consisting of a finite von Neumann algebra MM with a choice of a faithful normal tracial state τ\tau. We denote by L2(M,τ)L^{2}(M,\tau) the GNS Hilbert space corresponding to τ\tau and identify MM with its representation on this space. We let M={x:xM}M^{\circ}=\{x^{\circ}:x\in M\} denote the opposite von Neumann algebra, represented on L2(M,τ)L^{2}(M^{\circ},\tau^{\circ}) which can be identified with the conjugate Hilbert space of L2(M,τ)L^{2}(M,\tau). We let M¯MM\bar{\otimes}M^{\circ} denote the von Neumann algebra tensor product, which is equipped with the tensor product trace ττ\tau\otimes\tau^{\circ} and represented on L2(M¯M,ττ)L^{2}(M\bar{\otimes}M^{\circ},\tau\otimes\tau^{\circ}).

Let GαMG\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}M be a trace-preserving action of a finite group GG. Recall that the crossed product MαGM\rtimes_{\alpha}G is the von Neumann algebra generated by MM and [G]=span{ug:gG}\mathbb{C}[G]=\text{span}\{u_{g}:g\in G\} with the relations αg(m)=ugmug\alpha_{g}(m)=u_{g}mu_{g}^{*} for mMm\in M. For each bMαGb\in M\rtimes_{\alpha}G, we have the unique representation

b=gGagug,b=\sum_{g\in G}a_{g}u_{g},

where agMa_{g}\in M, and the trace on MM extends to a trace on MαGM\rtimes_{\alpha}G via

τ(b)=τ(gGagug)=τ(ae).\tau(b)=\tau\left(\sum_{g\in G}a_{g}u_{g}\right)=\tau(a_{e}).

It follows that L2(MαG,τ)=gGL2(M,τ)ugL^{2}(M\rtimes_{\alpha}G,\tau)=\bigoplus_{g\in G}L^{2}(M,\tau)u_{g}. We denote by JτJ_{\tau} and JττJ_{\tau\otimes\tau^{\circ}} the Tomita conjugation operators on L2(MαG,τ)L^{2}(M\rtimes_{\alpha}G,\tau) and L2((MαG)(MαG),ττ)L^{2}((M\rtimes_{\alpha}G)\otimes(M\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}) respectively. These are determined by Jτ(x)=xJ_{\tau}(x)=x^{*} and Jττ(ab)=abJ_{\tau\otimes\tau^{\circ}}(a\otimes b)=a^{*}\otimes b^{*} for x,a,bMαGx,a,b\in M\rtimes_{\alpha}G. For SL2(MαG,τ)S\subset L^{2}(M\rtimes_{\alpha}G,\tau), we denote by [S][S] the projection onto the closed span of SS.

Additionally, we have that L2(M¯M,ττ)L^{2}(M\bar{\otimes}M^{\circ},\tau\otimes\tau^{\circ}) is a MM-MM bimodule with the actions define as follows

x(ab)y=(xa)(by)=(xy)(ab),x\cdot(a\otimes b^{\circ})\cdot y=(xa)\otimes(by)^{\circ}=(x\otimes y^{\circ})(a\otimes b^{\circ}), (1)

where a,b,x,yMa,b,x,y\in M. Notice that these actions commute with the right action implemented by M¯M.M\bar{\otimes}M^{\circ}. For a unital *-subalgebra BMB\subset M, we let LB2(MM,ττ)L^{2}_{B}(M\otimes M^{\circ},\tau\otimes\tau^{\circ}) denote the subspace of BB-central vectors.

1.2  Finitely Generated *-Algebra

Our primary interest will be finitely generated unital *-subalgebras AMA\subset M that are globally invariant under α\alpha. That is, there exists a finite self adjoint subset XMX\subset M such that A=XA=\mathbb{C}\langle X\rangle, where X\mathbb{C}\langle X\rangle is the unital *-algebra generated by XX, and αg(A)A\alpha_{g}(A)\subset A for all gGg\in G. Hence, if we define AαG:=A,{ug:gG}A\rtimes_{\alpha}G:=\mathbb{C}\langle A,\{u_{g}:g\in G\}\rangle, then every bAαGb\in A\rtimes_{\alpha}G has the form gGagug\sum_{g\in G}a_{g}u_{g} where agAa_{g}\in A. The von Neumann algebras generated by AαGA\rtimes_{\alpha}G and (AαG)(AαG)(A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ} will be denoted by (AαG)′′(A\rtimes_{\alpha}G)^{\prime\prime} and ((AαG)(AαG))′′((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime} respectively. Their L2L^{2}-closures will be denoted by L2(AαG,τ)L2(MαG,τ)L^{2}(A\rtimes_{\alpha}G,\tau)\subset L^{2}(M\rtimes_{\alpha}G,\tau) and L2((AαG)(AαG),ττ)L2((MαG)(MαG),ττ)L^{2}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ})\subset L^{2}((M\rtimes_{\alpha}G)\otimes(M\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}) respectively. By the decomposition on L2(AαG)L^{2}(A\rtimes_{\alpha}G) we have,

L2((AαG)(AαG),ττ)=g,hGL2(A)ug(L2(A)uh)=g,hGL2(AA)(uguh).L^{2}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ})=\bigoplus_{g,h\in G}L^{2}(A)u_{g}\otimes(L^{2}(A)u_{h})^{\circ}=\bigoplus_{g,h\in G}L^{2}(A\otimes A^{\circ})(u_{g}\otimes u_{h}^{\circ}).
Remark 1.1.

We note that we can always restrict to AA being globally invariant. Let AMA\subset M be a finitely generated unital *-subalgebra. We claim that gGαg(A)\bigvee_{g\in G}\alpha_{g}(A) is a finitely generated unital *-subalgebra that is globally invariant, where gGαg(A)\bigvee_{g\in G}\alpha_{g}(A) is the *-algebra generated by αg(A)\alpha_{g}(A) for all gGg\in G. Since GG is finite, it suffices to show that for AMA\subset M a finitely generated unital *-subalgebra, one has that αg(A)\alpha_{g}(A) is also a finitely generated unital *-subalgebra for all gGg\in G. This is true, since αg(X)=αg(X)\alpha_{g}(\mathbb{C}\langle X\rangle)=\mathbb{C}\langle\alpha_{g}(X)\rangle. In particular, if AA is globally invariant with A=XA=\mathbb{C}\langle X\rangle, then αg(X)=A\mathbb{C}\langle\alpha_{g}(X)\rangle=A.

1.3  Derivation Spaces

Let AMA\subset M be a finitely generated unital *-subalgebra. We denote by Der(A,τ)\text{Der}(A,\tau) the vector space of all derivations d:AL2(AA,ττ)d:A\to L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}). Consider the following subspaces:

  1. a)

    Der11(A,τ):={dDer(A,τ):11dom(d)},\text{Der}_{1\otimes 1}(A,\tau):=\{d\in\text{Der}(A,\tau):1\otimes 1^{\circ}\in\text{dom}(d^{*})\}, where dd is viewed as a densely defined operator
    L2(A,τ)L2(AA,ττ)L^{2}(A,\tau)\to L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}),

  2. b)

    Der(BA,τ):={dDer(A,τ):d|B0}\text{Der}(B\subset A,\tau):=\{d\in\text{Der}(A,\tau):d|_{B}\equiv 0\}, where BB is a unital *-subalgebra of AA;

  3. c

    InnDer(A,τ):={dDer(A,τ):d=[,ξ]:ξL2(AA,ττ)}\text{InnDer}(A,\tau):=\{d\in\text{Der}(A,\tau):d=[\,\cdot\,,\xi]:\xi\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})\}, where [,][\,\,,\,] is the commutator.

Note that for dDer11(A,τ)d\in\text{Der}_{1\otimes 1}(A,\tau), the condition 11dom(d)1\otimes 1^{\circ}\in\text{dom}(d^{*}) implies AAdom(d)A\otimes A^{\circ}\subset\text{dom}(d^{*}), by the proof in Proposition 4.1 in[Voi98]. Since AAA\otimes A^{\circ} is dense in L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}), one has that dd^{*} is densely defined. Thus, dd is a closable derivation.

The right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-action on L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}), coming from (1), induces a right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-action on Der(A,τ)\text{Der}(A,\tau) defined as

(dm)(x)=d(x)m,(d\cdot m)(x)=d(x)m,

where dDer(A,τ)d\in\text{Der}(A,\tau) and m(AA)′′m\in(A\otimes A^{\circ})^{\prime\prime}. Thus Der(A,τ)\text{Der}(A,\tau) is a (AA)′′(A\otimes A^{\circ})^{\prime\prime}-module. We have that both Der(BA,τ)\text{Der}(B\subset A,\tau) and InnDer(A,τ)\text{InnDer}(A,\tau) are (AA)′′(A\otimes A^{\circ})^{\prime\prime}-submodules, while Der11(A,τ)\text{Der}_{1\otimes 1}(A,\tau) is only (AA)(A\otimes A^{\circ})-submodule. Then we have that Der11(A,τ)¯\overline{\text{Der}_{1\otimes 1}(A,\tau)} is (AA)′′(A\otimes A)^{\prime\prime}-submodule.

For any closed (AA)′′(A\otimes A^{\circ})^{\prime\prime}-invariant subspace Der(BA,τ)\mathcal{H}\leq\text{Der}(B\subset A,\tau), ϕX()\phi_{X}(\mathcal{H}) is a right Hilbert (AA)′′(A\otimes A^{\circ})^{\prime\prime}-submodule of L2(AA,ττ)XL^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{X}, since ϕX\phi_{X} is a right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear. So one can compute its von Neumann dimension and by Lemma 1.2 in [CN22], this is independent of the generating set XX. In [CN22], Charlesworth and Nelson defined the free Stein dimension of AA with respect to τ\tau as

σ(A,τ):=dimDer11(A,τ)¯(AA)′′.\sigma(A,\tau):=\dim\overline{\text{Der}_{1\otimes 1}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}.

They defined the following map

ϕX:Der(A,τ)\displaystyle\phi_{X}:\text{Der}(A,\tau) L2(AA,ττ)X,\displaystyle\to L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{X},
d\displaystyle d (d(x))xX,\displaystyle\mapsto(d(x))_{x\in X},

where A=XA=\mathbb{C}\langle X\rangle. They showed that the map was an injective, right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear and the image is closed in L2(AA,ττ)XL^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{X} (see [CN22, Lemma 1.1]). This allows us to define an inner product on Der(A,τ)\text{Der}(A,\tau), given by

d1,d2X:=xXd1(x),d2(x).\langle d_{1},d_{2}\rangle_{X}:=\sum_{x\in X}\langle d_{1}(x),d_{2}(x)\rangle.

Then Der(A,τ)\text{Der}(A,\tau) with the above inner product is a Hilbert space. The topology coming from this inner product is simply pointwise convergence. Notice that the inner product depends on the choice of generators, that is, if one changes the generating set, then one also changes the inner product. However, for two distinct generating sets XX and XX^{\prime} of AA, we have that X\|\cdot\|_{X} is norm equivalent to X\|\cdot\|_{X^{\prime}}.

The following lemma is a generalization of Theorem 2.1 in [CN22].

Lemma 1.2.

Let \mathcal{H} be a (AA)′′{(A\otimes A^{\circ})^{\prime\prime}}-invariant subspace of Der(A,τ)\emph{Der}(A,\tau) containing InnDer(A,τ)\emph{InnDer}(A,\tau). For a finite dimensional BAB\subset A, we have

dim¯(AA)′′=dimDer(B,τ)(BB)′′+dim[Der(BA,τ)¯](AA)′′.\dim\overline{\mathcal{H}}_{(A\otimes A^{\circ})^{\prime\prime}}=\dim\emph{Der}(B,\tau)_{(B\otimes B^{\circ})^{\prime\prime}}+\dim[\overline{\mathcal{H}\cap\emph{Der}(B\subset A,\tau)}]_{(A\otimes A^{\circ})^{\prime\prime}}.
Proof.

Fix a finite self adjoint subset XAX\subset A satisfying A=XA=\mathbb{C}\langle X\rangle. Since BAB\subset A is finite dimensional, we have

(B,τ)=(i=1dMni(),i=1dαitrni)(B,\tau)=\left(\sum^{d}_{i=1}M_{n_{i}}(\mathbb{C}),\sum^{d}_{i=1}\alpha_{i}\text{tr}_{n_{i}}\right)

for some n1,,ndn_{1},\ldots,n_{d}\in\mathbb{N} and α1,,αd>0\alpha_{1},\ldots,\alpha_{d}>0 satisfying i=1dαi=1\sum^{d}_{i=1}\alpha_{i}=1. Let

E:={ej,k(i):1id,1j,kni}E:=\{e_{j,k}^{(i)}:1\leq i\leq d,1\leq j,k\leq n_{i}\}

be a family of multi-matrix units for BB. Then

p:=i=1d1nij,k=1niej,k(i)(ek,j(i))p:=\sum^{d}_{i=1}\frac{1}{n_{i}}\sum^{n_{i}}_{j,k=1}e^{(i)}_{j,k}\otimes(e^{(i)}_{k,j})^{\circ}

is the projection from L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) onto the BB-central vectors LB2(AA,ττ).L^{2}_{B}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}).

Now, set Y:={exe:xX,e,eE}AY:=\{exe^{\prime}:x\in X,e,e^{\prime}\in E\}\subset A. Since 1span(E)1\in\text{span}(E), one has that Y=A\mathbb{C}\langle Y\rangle=A. For dDer(BA,τ)d\in\mathcal{H}\cap\text{Der}(B\subset A,\tau),

yYyd(y)\displaystyle\sum_{y\in Y}y^{*}d(y) =xXe,eE((e)xe)d(exe)\displaystyle=\sum_{\begin{subarray}{c}x\in X\\ e,e^{\prime}\in E\end{subarray}}((e^{\prime})^{*}x^{*}e^{*})\cdot d(exe^{\prime})
=xXe,eE((e)xee)d(x)e\displaystyle=\sum_{\begin{subarray}{c}x\in X\\ e,e^{\prime}\in E\end{subarray}}((e^{\prime})^{*}x^{*}e^{*}e)\cdot d(x)\cdot e^{\prime}
=eE((e)(e))xXeE(xee)d(x)\displaystyle=\sum_{e^{\prime}\in E}((e^{\prime})^{*}\otimes(e^{\prime})^{\circ})\sum_{\begin{subarray}{c}x\in X\\ e\in E\end{subarray}}(x^{*}e^{*}e)\cdot d(x)
=i=1dj,k=1ni(ej,k(i)(ek,j(i)))xXeE(xee)d(x).\displaystyle=\sum_{i=1}^{d}\sum_{j,k=1}^{n_{i}}(e^{(i)}_{j,k}\otimes(e^{(i)}_{k,j})^{\circ})\sum_{\begin{subarray}{c}x\in X\\ e\in E\end{subarray}}(x^{*}e^{*}e)\cdot d(x).

Thus yYyd(y)\sum_{y\in Y}y^{*}d(y) is BB-central, when dDer(BA,τ)d\in\mathcal{H}\cap\text{Der}(B\subset A,\tau). Similarly yYd(y)y\sum_{y\in Y}d(y)y^{*} is BB-central. For any ξL2(AA,ττ)\xi\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) and dDer(BA,τ)d\in\mathcal{H}\cap\text{Der}(B\subset A,\tau) we have,

[,ξ],dY\displaystyle\langle[\,\cdot\,,\xi],d\rangle_{Y} =yY[y,ξ],d(y)\displaystyle=\sum_{y\in Y}\langle[y,\xi],d(y)\rangle
=yYξ,[y,d(y)]\displaystyle=\sum_{y\in Y}\langle\xi,[y^{*},d(y)]\rangle
=yYpξ,[y,d(y)]\displaystyle=\sum_{y\in Y}\langle p\xi,[y^{*},d(y)]\rangle
=[,pξ],dY.\displaystyle=\langle[\,\cdot\,,p\xi],d\rangle_{Y}.

Hence, [,pξ][\,\cdot\,,p\xi] is the projection of [,ξ][\,\cdot\,,\xi] onto Der(BA,τ)\mathcal{H}\cap\text{Der}(B\subset A,\tau).

Since BB is finite dimensional, for each dd\in\mathcal{H} there exists ξL2(AA,ττ)\xi\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) with d|B=[,ξ]=[,(1p)ξ]|Bd|_{B}=[\,\cdot\,,\xi]=[\,\cdot\,,(1-p)\xi]|_{B} (see [Pet09, Theorem 2.2]). Then

d=(d[,(1p)ξ])+[,(1p)ξ]d=(d-[\,\cdot\,,(1-p)\xi])+[\,\cdot\,,(1-p)\xi]

is an orthogonal decomposition with respect to ,Y\langle\cdot,\cdot\rangle_{Y}. Since InnDer(A,τ)\text{InnDer}(A,\tau)\subset\mathcal{H}, the first term is in \mathcal{H}. It follows that

=Der(BA,τ){[,ξ]:ξLB2(AA,ττ)}.\mathcal{H}=\mathcal{H}\cap\text{Der}(B\subset A,\tau)\oplus\{[\,\cdot\,,\xi]:\xi\in L^{2}_{B}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{\perp}\}.

Since LB2(AA,ττ)LA2(AA,ττ)L^{2}_{B}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{\perp}\leq L^{2}_{A}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{\perp}, taking the von Neumann dimensions of their closure in the above orthogonal decomposition and using Lemma 1.4 in [CN22], one has

dim¯(AA)′′=dim[Der(BA,τ)¯](AA)′′+dimLB2(AA,ττ)(AA)′′.\dim\overline{\mathcal{H}}_{(A\otimes A^{\circ})^{\prime\prime}}=\dim[\overline{\mathcal{H}\cap\text{Der}(B\subset A,\tau)}]_{(A\otimes A^{\circ})^{\prime\prime}}+\dim L^{2}_{B}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{\perp}_{(A\otimes A^{\circ})^{\prime\prime}}.

Lastly, we have

dimLB2(AA,ττ)(AA)′′=ττ(1p)=1i=1dαi2ni2=dimDer(B,τ)(AA)′′.\dim L^{2}_{B}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{\perp}_{(A\otimes A^{\circ})^{\prime\prime}}=\tau\otimes\tau^{\circ}(1-p)=1-\sum^{d}_{i=1}\frac{\alpha^{2}_{i}}{n^{2}_{i}}=\dim\text{Der}(B,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.\qed

2.  Decomposing Derivations

In this section, we will show that the derivation space of AαGA\rtimes_{\alpha}G that vanishes on [G]\mathbb{C}[G] can be decomposed to a finite direct sum of the derivation space of AA. To do so, we need to consider how to extend a derivation on AA to a derivation on AαGA\rtimes_{\alpha}G, and how to restrict a derivation on AαGA\rtimes_{\alpha}G to a derivation on AA. First, set pg,h:=[L2(AA,ττ)(uguh)]p_{g,h}:=[L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{g}\otimes u_{h}^{\circ})] for g,hGg,h\in G, which gives us the pairwise orthogonal family of projections {ph,g}g,hG\{p_{h,g}\}_{g,h\in G}. Since for each g,hGg,h\in G, L2(AA,ττ)(uguh)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{g}\otimes u_{h}^{\circ}) is invariant under AAA\otimes A^{\circ}, it follows that pg,h(AA)p_{g,h}\in(A\otimes A^{\circ})^{\prime} for all g,hGg,h\in G.

Lemma 2.1.

Let pg,hp_{g,h} be as above. For g,h,k,Gg,h,k,\ell\in G:

  1. (1)

    pg,h(uku)=(uku)pk1g,h1p_{g,h}(u_{k}\otimes u_{\ell}^{\circ})=(u_{k}\otimes u_{\ell}^{\circ})p_{k^{-1}g,h\ell^{-1}},

  2. (2)

    Jττpg,h=pg1,h1JττJ_{\tau\otimes\tau^{\circ}}p_{g,h}=p_{g^{-1},h^{-1}}J_{\tau\otimes\tau^{\circ}}.

Proof.
  1. (1)

    Let s,rGs,r\in G and x,yAx,y\in A, then

    pg,h(uku)(xus(yur))\displaystyle p_{g,h}(u_{k}\otimes u_{\ell}^{\circ})(xu_{s}\otimes(yu_{r})^{\circ}) =pg,h(αk(x)uks(yur))\displaystyle=p_{g,h}(\alpha_{k}(x)u_{ks}\otimes(yu_{r\ell})^{\circ})
    =δg=ksδh=rαk(x)uks(yur)\displaystyle=\delta_{g=ks}\delta_{h=r\ell}\alpha_{k}(x)u_{ks}\otimes(yu_{r\ell})^{\circ}
    =(uku)δg=ksδh=r(xus(yur))\displaystyle=(u_{k}\otimes u_{\ell}^{\circ})\delta_{g=ks}\delta_{h=r\ell}(xu_{s}\otimes(yu_{r})^{\circ})
    =(uku)pk1g,h1(xus(yur)).\displaystyle=(u_{k}\otimes u_{\ell}^{\circ})p_{k^{-1}g,h\ell^{-1}}(xu_{s}\otimes(yu_{r})^{\circ}).
  2. (2)

    Let s,rGs,r\in G and x,yAx,y\in A, then

    pg,hJττ(xus(yur))\displaystyle p_{g,h}J_{\tau\otimes\tau^{\circ}}(xu_{s}\otimes(yu_{r})^{\circ}) =pg,h(αs1(x)us(αr(y)ur))\displaystyle=p_{g,h}(\alpha_{s^{-1}}(x^{*})u_{s}^{*}\otimes(\alpha_{r}(y)^{*}u_{r}^{*})^{\circ})
    =δg=s1δh=r1(αs1(x)us(αr(y)ur))\displaystyle=\delta_{g=s^{-1}}\delta_{h=r^{-1}}(\alpha_{s^{-1}}(x^{*})u_{s}^{*}\otimes(\alpha_{r}(y)^{*}u_{r}^{*})^{\circ})
    =Jττδg=s1δh=r1(xus(yur))\displaystyle=J_{\tau\otimes\tau^{\circ}}\delta_{g=s^{-1}}\delta_{h=r^{-1}}(xu_{s}\otimes(yu_{r})^{\circ})
    =Jττpg1,h1(xus(yur)).\displaystyle=J_{\tau\otimes\tau^{\circ}}p_{g^{-1},h^{-1}}(xu_{s}\otimes(yu_{r})^{\circ}).\qed

The following lemma characterizes derivations on AαGA\rtimes_{\alpha}G that vanish on [G]\mathbb{C}[G] as derivations that satisfy a type of covariant condition.

Lemma 2.2.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra with a finitely generated unital *-subalgebra AMA\subset M. Let α\alpha be a trace-preserving action of a finite group GG on (M,τ)(M,\tau) such that AA is globally invariant under α\alpha. Suppose DDer(AαG,τ)D\in\emph{Der}(A\rtimes_{\alpha}G,\tau). Then DDer([G]AαG,τ)D\in\emph{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) if and only if DD satisfies D(ugbug)=ugD(b)ugD(u_{g}bu_{g}^{*})=u_{g}\cdot D(b)\cdot u_{g}^{*} for all gGg\in G, bAαGb\in A\rtimes_{\alpha}G.

Proof.

Suppose that DDer([G]AαG,τ)D\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). Then by the Leibniz rule, we have the conclusion. Conversely, suppose DD satisfies the covariant condition above. Since [G]\mathbb{C}[G] is a finite dimensional, we have D|[G]D|_{\mathbb{C}[G]} is bounded and hence inner (see [Pet09, Theorem 2.2]), say implemented by ξL2((AαG)(AαG),ττ)\xi\in L^{2}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}). Then for x[G]x\in\mathbb{C}[G] and gGg\in G,

[x,ξugξug]\displaystyle[x,\xi-u_{g}^{*}\xi u_{g}] =[x,ξ][x,ugξug]\displaystyle=[x,\xi]-[x,u_{g}^{*}\xi u_{g}]
=[x,ξ]xugξugugξugx\displaystyle=[x,\xi]-xu_{g}^{*}\xi u_{g}-u_{g}^{*}\xi u_{g}x
=[x,ξ]ug(ugxugξξugxug)ug\displaystyle=[x,\xi]-u_{g}^{*}(u_{g}xu_{g}^{*}\xi-\xi u_{g}xu_{g}^{*})u_{g}
=[x,ξ]ug[ugxug,ξ]ug\displaystyle=[x,\xi]-u_{g}^{*}[u_{g}xu_{g}^{*},\xi]u_{g}
=0.\displaystyle=0.

The last equality comes from D|[G]D|_{\mathbb{C}[G]} being covariant. It follows that ξugξugL[G]2((AαG)(AαG),ττ)\xi-u_{g}^{*}\xi u_{g}\in L^{2}_{\mathbb{C}[G]}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}) for all gG.g\in G. Since

ξ1|G|gGugξug=1|G|gG(ξugξug)L[G]2((AαG)(AαG),ττ)\xi-\frac{1}{|G|}\sum_{g\in G}u_{g}^{*}\xi u_{g}=\frac{1}{|G|}\sum_{g\in G}(\xi-u_{g}^{*}\xi u_{g})\in L^{2}_{\mathbb{C}[G]}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ})

and ugξugL[G]2((AαG)(AαG),ττ)\sum u_{g}\xi u_{g}^{*}\in L^{2}_{\mathbb{C}[G]}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}), one has ξL[G]2((AαG)(AαG),ττ).\xi\in L^{2}_{\mathbb{C}[G]}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}). Hence, D|[G]=0D|_{\mathbb{C}[G]}=0. ∎

For dDer(A,τ)d\in\text{Der}(A,\tau), we view dd as valued in L2(AA,ττ)(ueue)L2((AαG)(AαG),ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{e}\otimes u_{e}^{\circ})\leq L^{2}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}). One may hope to extend dd simply by setting d(ug)=0d(u_{g})=0 for all gGg\in G. The issue is that this extension may fail to be a derivation on AαGA\rtimes_{\alpha}G. Indeed, if it were, then by the Leibniz rule we would get

d(αg(x))=d(ugxug)=ugd(x)ug,d(\alpha_{g}(x))=d(u_{g}xu_{g}^{*})=u_{g}d(x)u_{g}^{*},

for xAx\in A, but this is never true since d(ag(x)),d(x)L2(AA,ττ)(ueue).d(a_{g}(x)),d(x)\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{e}\otimes u_{e}^{\circ}). We correct this by averaging over ugd(αg(x))ugu_{g}^{*}d(\alpha_{g}(x))u_{g}.

Lemma 2.3.

For dDer(A,τ)d\in\emph{Der}(A,\tau) and hGh\in G, we define dh:AαGL2((AαG)(AαG),ττ)d^{h}:A\rtimes_{\alpha}G\to L^{2}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ},\tau\otimes\tau^{\circ}) by

dh(kGakuk):=Jττ(ue(uh))JττkGgGugd(αg(ak))(uguk),d^{h}\left(\sum_{k\in G}a_{k}u_{k}\right):=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{k\in G}\sum_{g\in G}u_{g}^{*}\cdot d(\alpha_{g}(a_{k}))\cdot(u_{g}u_{k}),

where akAa_{k}\in A for all kGk\in G. Then dhDer([G]AαG,τ)d^{h}\in\emph{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). Furthermore, {dh}hG\{d^{h}\}_{h\in G} are orthogonal with respect to the inner product coming from any generating set YY of AαGA\rtimes_{\alpha}G with the form Y=X{ug:gG}Y=X\cup\{u_{g}:g\in G\}, where A=XA=\mathbb{C}\langle X\rangle.

Proof.

First we will show that dhd^{h} is a derivation on AαGA\rtimes_{\alpha}G for dDer(A,τ)d\in\text{Der}(A,\tau) and hGh\in G. Using linearity of dhd^{h}, we can take x,yAαGx,y\in A\rtimes_{\alpha}G such that x=aurx=au_{r} and y=busy=bu_{s}, where a,bAa,b\in A and r,sGr,s\in G. So,

dh(xy)=dh(aαr(b)urs)=Jττ(ue(uh))JττgG(ug(ugrs))d(αg(a)αgr(b)).d^{h}(xy)=d^{h}(a\alpha_{r}(b)u_{rs})=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}(u_{g}^{*}\otimes(u_{grs})^{\circ})d(\alpha_{g}(a)\alpha_{gr}(b)).

Then,

dh(xy)\displaystyle d^{h}(xy) =Jττ(ue(uh))JττgG(ug(ugrs))[αg(a)d(αgr(b))+d(αg(a))αgr(b)]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}(u_{g}^{*}\otimes(u_{grs})^{\circ})[\alpha_{g}(a)\cdot d(\alpha_{gr}(b))+d(\alpha_{g}(a))\cdot\alpha_{gr}(b)]
=Jττ(ue(uh))JττgG[(aug(ugrs))d(αgr(b))+(ug(ugrbus))d(αg(a))]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}[(au_{g}^{*}\otimes(u_{grs})^{\circ})d(\alpha_{gr}(b))+(u_{g}^{*}\otimes(u_{gr}bu_{s})^{\circ})d(\alpha_{g}(a))]
=Jττ(ue(uh))JττgG[(augr1(ugs))d(αg(b))]+gG[(ug(ugrbus))d(αg(a))]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}[(au_{gr^{-1}}^{*}\otimes(u_{gs})^{\circ})d(\alpha_{g}(b))]+\sum_{g\in G}[(u_{g}^{*}\otimes(u_{gr}bu_{s})^{\circ})d(\alpha_{g}(a))]
=Jττ(ue(uh))JττgG[(xug(ugs))d(αg(b))+(ug(ugury))d(αg(a))],\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}[(xu_{g}^{*}\otimes(u_{gs})^{\circ})d(\alpha_{g}(b))+(u_{g}^{*}\otimes(u_{g}u_{r}y)^{\circ})d(\alpha_{g}(a))],

and from Jττ(ue(uh))Jττ((AαG)(AαG))J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}\in((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime}, we get

dh(xy)\displaystyle d^{h}(xy) =(x(us))dh(b)+(ue(ury))dh(a)\displaystyle=(x\otimes(u_{s})^{\circ})d^{h}(b)+(u_{e}\otimes(u_{r}y)^{\circ})d^{h}(a)
=xdh(b)us+dh(a)(ury)\displaystyle=x\cdot d^{h}(b)\cdot u_{s}+d^{h}(a)\cdot(u_{r}y)
=xdh(y)+dh(x)y.\displaystyle=x\cdot d^{h}(y)+d^{h}(x)\cdot y.

The last equality comes from δh(aus)=δh(a)us\delta^{h}(au_{s})=\delta^{h}(a)\cdot u_{s}. Thus dhDer([G]AαG,τ)d^{h}\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), since d(1)=0d(1)=0.

Lastly, we want to show that {dh:hG}\{d^{h}:h\in G\} are orthogonal with respect to the inner product coming from any generating set YY of the form Y=X{ug:gG}Y=X\cup\{u_{g}:g\in G\} satisfying A=XA=\mathbb{C}\langle X\rangle. For h,hGh,h^{\prime}\in G with hhh\neq h^{\prime}, we use that dhd^{h} vanishes on [G]\mathbb{C}[G] and {pg,h}g,hG\{p_{g,h}\}_{g,h\in G} is a pairwise orthogonal family, one has

dh,dhY\displaystyle\langle d^{h},d^{h^{\prime}}\rangle_{Y} =yYdh(y),dh(y)\displaystyle=\sum_{y\in Y}\langle d^{h}(y),d^{h^{\prime}}(y)\rangle
=xXdh(x),dh(x)\displaystyle=\sum_{x\in X}\langle d^{h}(x),d^{h^{\prime}}(x)\rangle
=xXg,kGpg1,hgdh(x),pk1,hkdh(x)\displaystyle=\sum_{x\in X}\sum_{g,k\in G}\langle p_{g^{-1},hg}d^{h}(x),p_{k^{-1},h^{\prime}k}d^{h^{\prime}}(x)\rangle
=xXgGpg1,hgdh(x),pg1,hgdh(x)\displaystyle=\sum_{x\in X}\sum_{g\in G}\langle p_{g^{-1},hg}d^{h}(x),p_{g^{-1},h^{\prime}g}d^{h^{\prime}}(x)\rangle
=0.\displaystyle=0.\qed

Next, for DDer(AαG,τ)D\in\text{Der}(A\rtimes_{\alpha}G,\tau), we are interested in obtaining a derivation on AA using DD. Define

Dg,h:=Jττ(uguh)Jττpg,hD|A,D_{g,h}:=J_{\tau\otimes\tau^{\circ}}(u_{g}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{g,h}D|_{A},

and if g=eg=e, we write Dh:=De,hD_{h}:=D_{e,h}. By identifying L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) with L2(AA,ττ)(ueue)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{e}\otimes u_{e}^{\circ}), we view the map above as valued in L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}). The following lemma shows that Dg,hD_{g,h} is a derivation on AA.

Lemma 2.4.

For DDer(AαG,τ)D\in\emph{Der}(A\rtimes_{\alpha}G,\tau) and g,hGg,h\in G, let Dg,hD_{g,h} be defined as above. Then Dg,hDer(A,τ)D_{g,h}\in\emph{Der}(A,\tau).

Proof.

For DDer(AαG,τ)D\in\text{Der}(A\rtimes_{\alpha}G,\tau) and a,bAa,b\in A, we have

Dg,h(ab)=Jττ(uguh)Jττpg,hD(ab)=Jττ(uguh)Jττpg,h[(ue(bue))D(a)+(aueue)D(b)],D_{g,h}(ab)=J_{\tau\otimes\tau^{\circ}}(u_{g}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{g,h}D(ab)=J_{\tau\otimes\tau^{\circ}}(u_{g}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{g,h}[(u_{e}\otimes(bu_{e})^{\circ})D(a)+(au_{e}\otimes u_{e}^{\circ})D(b)],

and by pg,h,Jττ(uguh)Jττ(AA)p_{g,h},J_{\tau\otimes\tau^{\circ}}(u_{g}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}\in(A\otimes A^{\circ})^{\prime}, it follows that

Dg,h(ab)\displaystyle D_{g,h}(ab) =(ue(bue))Jττ(uguh)Jττpg,hD(a)+(aueue)Jττ(uguh)Jττpg,hD(b)]\displaystyle=(u_{e}\otimes(bu_{e})^{\circ})J_{\tau\otimes\tau^{\circ}}(u_{g}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{g,h}D(a)+(au_{e}\otimes u_{e}^{\circ})J_{\tau\otimes\tau^{\circ}}(u_{g}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{g,h}D(b)]
=Dg,h(a)b+aDg,h(b).\displaystyle=D_{g,h}(a)\cdot b+a\cdot D_{g,h}(b).

Hence, Dg,hDer(A,τ)D_{g,h}\in\text{Der}(A,\tau). ∎

Given dDer(A,τ)d\in\text{Der}(A,\tau) and m(AA)′′m\in(A\otimes A^{\circ})^{\prime\prime}, one has (dm)h=dh(1αh)(m)(d\cdot m)^{h}=d^{h}\cdot(1\otimes\alpha_{h})(m). This occurs since Jττ(ue(uh))JττJ_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h})^{\circ})J_{\tau\otimes\tau^{\circ}} interacts with the right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-action. To accommodate this, we define (Der(A,τ))1αh(\text{Der}(A,\tau))_{1\otimes\alpha_{h}} to be the same module as Der(A,τ)\text{Der}(A,\tau) but with a right action by (AA)′′(A\otimes A^{\circ})^{\prime\prime} defined as

dhm=d(1αh)(m),d\cdot_{h}m=d\cdot(1\otimes\alpha_{h})(m),

where dDer(A,τ)d\in\text{Der}(A,\tau), m(AA)′′m\in(A\otimes A^{\circ})^{\prime\prime} and the right hand side is the usual (AA)′′(A\otimes A^{\circ})^{\prime\prime}-action on Der(A,τ)\text{Der}(A,\tau).

Theorem 2.5.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra with a finitely generated unital *-subalgebra AMA\subset M. Let α\alpha be a trace-preserving action of a finite group GG on (M,τ)(M,\tau) such that AA is globally invariant under α\alpha. Then

  1. (1)

    The map (Der(A,τ))1αh1Der([G]AαG,τ)(\emph{Der}(A,\tau))_{1\otimes\alpha_{h^{-1}}}\to\emph{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) defined ddhd\mapsto d^{h} is an injective, right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear bounded map, for all hGh\in G.

  2. (2)

    The map Der([G]AαG,τ)(Der(A,τ))1αh\emph{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)\to(\emph{Der}(A,\tau))_{1\otimes\alpha_{h}} defined DDhD\mapsto D_{h} is a surjective, right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear bounded map, for all hGh\in G.

  3. (3)

    The map gG(Der(A,τ))1αg1Der([G]AαG,τ)\bigoplus_{g\in G}(\emph{Der}(A,\tau))_{1\otimes\alpha_{g^{-1}}}\to\emph{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) defined (dg)gGgG(dg)g(d_{g})_{g\in G}\to\sum_{g\in G}(d_{g})^{g} is an invertible, right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear bounded map, with the inverse being D(Dg)gGD\mapsto(D_{g})_{g\in G}. Furthermore, we obtain

    dimDer([G]AαG,τ)(AA)′′=|G|dimDer(A,τ)(AA)′′.\dim\emph{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}=|G|\dim\emph{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.
Proof.
  1. (1)

    For dDer(A,τ)1αhd\in\text{Der}(A,\tau)_{1\otimes\alpha_{h}} with hGh\in G, we have by Lemma 2.3 that dhDer([G]AαG,τ)d^{h}\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) and so the map has the correct range. Then, for m(AA)′′m\in(A\otimes A^{\circ})^{\prime\prime} and xAαGx\in A\rtimes_{\alpha}G, one has

    [dh1m]h(x)\displaystyle[d\cdot_{h^{-1}}m]^{h}(x) =Jττ(ue(uh))Jττ[gG(ugug)[dh1m](αg(x))]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\left[\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})[d\cdot_{h^{-1}}m](\alpha_{g}(x))\right]
    =Jττ(ue(uh))Jττ[gG(ugug)Jττ[(1αh1)(m)]Jττd(αg(x))],\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\left[\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})J_{\tau\otimes\tau^{\circ}}[(1\otimes\alpha_{h^{-1}})(m^{*})]J_{\tau\otimes\tau^{\circ}}d(\alpha_{g}(x))\right],

    and by Jττ[(1αh1)(m)]Jττ((AαG)(AαG))J_{\tau\otimes\tau^{\circ}}[(1\otimes\alpha_{h^{-1}})(m^{*})]J_{\tau\otimes\tau^{\circ}}\in((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime}, we can further compute

    [dh1m]h(x)\displaystyle[d\cdot_{h^{-1}}m]^{h}(x) =JττmJττ[Jττ(ue(uh))JττgG(ugug)d(αg(x))]\displaystyle=J_{\tau\otimes\tau^{\circ}}m^{*}J_{\tau\otimes\tau^{\circ}}\left[J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})d(\alpha_{g}(x))\right]
    =JττmJττdh(x)\displaystyle=J_{\tau\otimes\tau^{\circ}}m^{*}J_{\tau\otimes\tau^{\circ}}d^{h}(x)
    =(dhm)(x).\displaystyle=(d^{h}\cdot m)(x).

    Hence, the map ddhd\mapsto d^{h} is right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear.

    Next, let Y=X[G]Y=X\cup\mathbb{C}[G], where X=A\mathbb{C}\langle X\rangle=A and so since dh|[G]0d^{h}|_{\mathbb{C}[G]}\equiv 0, we have

    dhY2=yYdh(y),dh(y)=xXg,rG(ugug)d(αg(x)),(urur)d(αr(x)),\left\|d^{h}\right\|_{Y}^{2}=\sum_{y\in Y}\langle d^{h}(y),d^{h}(y)\rangle=\sum_{x\in X}\sum_{g,r\in G}\langle(u_{g}^{*}\otimes u_{g}^{\circ})d(\alpha_{g}(x)),(u_{r}^{*}\otimes u_{r}^{\circ})d(\alpha_{r}(x))\rangle,

    and since d(a)L2(AA,ττ)(ueue)d(a)\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{e}\otimes u_{e}^{\circ}) for all aAa\in A, the computation above becomes

    dhY2\displaystyle\left\|d^{h}\right\|_{Y}^{2} =xXg,rGδg=rd(αg(x)),d(αr(x))\displaystyle=\sum_{x\in X}\sum_{g,r\in G}\delta_{g=r}\langle d(\alpha_{g}(x)),d(\alpha_{r}(x))\rangle
    =xXgGd(αg(x)),d(αg(x))\displaystyle=\sum_{x\in X}\sum_{g\in G}\langle d(\alpha_{g}(x)),d(\alpha_{g}(x))\rangle
    =gGdαg(X)2\displaystyle=\sum_{g\in G}\|d\|^{2}_{\alpha_{g}(X)}
    CdX2.\displaystyle\leq C\|d\|^{2}_{X}.

    The inequality follows from X\|\cdot\|_{X} is norm equivalent to αg(X)\|\cdot\|_{\alpha_{g}(X)}. Thus the map in ddhd\mapsto d^{h} is bounded.

    Lastly, since d(αg(x))L2(AA,ττ)(ue(ue))d(\alpha_{g}(x))\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{e}\otimes(u_{e})^{\circ}) for all gGg\in G and xAx\in A, one has

    (dh)h(x)\displaystyle(d^{h})_{h}(x) =Jττ(ueuh)Jττpe,h[Jττ(ue(uh))JττgG(ugd(αg(x))ug)]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}\left[J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}(u_{g}^{*}\cdot d(\alpha_{g}(x))\cdot u_{g})\right]
    =Jττ(ueuh)Jττ[Jττ(ue(uh))Jττd(x)]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}\left[J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}d(x)\right] (2)
    =d(x).\displaystyle=d(x).

    Thus if dh=0d^{h}=0, it follows that d=0d=0. Hence, the map ddhd\mapsto d^{h} is injective.

  2. (2)

    For DDer([G]AαG,τ)D\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), we have by Lemma 2.4 that Dh(Der(A,τ))1αhD_{h}\in(\text{Der}(A,\tau))_{1\otimes\alpha_{h}}, where hGh\in G. For m(AA)′′m\in(A\otimes A^{\circ})^{\prime\prime} and xAx\in A, one has

    (Dhm)h(x)\displaystyle(D\cdot_{h}m)_{h}(x) =Jττ(ueuh)Jττ[pe,h(Dhm)(x)]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}[p_{e,h}(D\cdot_{h}m)(x)]
    =Jττ(ueuh)Jττpe,hJττ[(1αh)(m)]JττD(x),\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}J_{\tau\otimes\tau^{\circ}}[(1\otimes\alpha_{h})(m^{*})]J_{\tau\otimes\tau^{\circ}}D(x),

    and using Lemma 2.1(2), following the above computation we have

    (Dhm)h(x)\displaystyle(D\cdot_{h}m)_{h}(x) =Jττ(ueuh)JττJττ[(1αh)(m)]Jττpe,hD(x)\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}J_{\tau\otimes\tau^{\circ}}[(1\otimes\alpha_{h})(m^{*})]J_{\tau\otimes\tau^{\circ}}p_{e,h}D(x)
    =(JττmJττ)[Jττ(ueuh)Jττpe,hD(x)]\displaystyle=(J_{\tau\otimes\tau^{\circ}}m^{*}J_{\tau\otimes\tau^{\circ}})[J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}D(x)]
    =(JττmJττ)[Dh(x)]\displaystyle=(J_{\tau\otimes\tau^{\circ}}m^{*}J_{\tau\otimes\tau^{\circ}})[D_{h}(x)]
    =(Dhm)(x).\displaystyle=(D_{h}\cdot m)(x).

    Hence, the map in DDhD\mapsto D_{h} is right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear.

    Next, let Y=X[G]Y=X\cup\mathbb{C}[G] satisfying X=A\mathbb{C}\langle X\rangle=A and so we have

    DhX2\displaystyle\left\|D_{h}\right\|^{2}_{X} =xXDh(x),Dh(x)\displaystyle=\sum_{x\in X}\langle D_{h}(x),D_{h}(x)\rangle
    =xXpe,hD(x),pe,hD(x)\displaystyle=\sum_{x\in X}\langle p_{e,h}D(x),p_{e,h}D(x)\rangle
    pe,hxXD(x),D(x)\displaystyle\leq\|p_{e,h}\|\sum_{x\in X}\langle D(x),D(x)\rangle
    =DY2.\displaystyle=\|D\|_{Y}^{2}.

    Note that the last equality comes from D(ug)=0D(u_{g})=0 for all gGg\in G. Hence the map in DDhD\mapsto D_{h} is a bounded map.

    Lastly, lets show that the map DDhD\mapsto D_{h} is surjective. By Lemma 2.3, we have dhDer([G]AαG,τ)d^{h}\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), whenever d(Der(A,τ))1αhd\in(\text{Der}(A,\tau))_{1\otimes\alpha_{h}}. By equation ((1)) above, it follows that (dh)h=d(d^{h})_{h}=d.

  3. (3)

    We want to show that D=hG(Dh)hD=\sum_{h\in G}(D_{h})^{h} whenever DDer([G]AαG,τ)D\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). For aAa\in A, one has

    hG(Dh)h(a)=hGJττ(ue(uh))JττgG(ugug)[Jττ(ueuh)Jττpe,hD(αg(a))],\sum_{h\in G}(D_{h})^{h}(a)=\sum_{h\in G}J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})[J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}D(\alpha_{g}(a))],

    and by Jττ(ue(uh))Jττ((AαG)(AαG))J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}\in((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime} and DDer([G]AαG,τ),D\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), the above computation becomes

    hG(Dh)h(a)=hGgG(ugug)pe,hD(αg(a))=hGgG(ugug)pe,h(ug(ug))D(a).\sum_{h\in G}(D_{h})^{h}(a)=\sum_{h\in G}\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})p_{e,h}D(\alpha_{g}(a))=\sum_{h\in G}\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})p_{e,h}(u_{g}\otimes(u_{g}^{*})^{\circ})D(a).

    By Lemma 2.1, we futher compute to get

    hG(Dh)h(a)\displaystyle\sum_{h\in G}(D_{h})^{h}(a) =hGgG(ugug)(ug(ug))pg1,hgD(a)\displaystyle=\sum_{h\in G}\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})(u_{g}\otimes(u_{g}^{*})^{\circ})p_{g^{-1},hg}D(a)
    =hGgGpg1,hgD(a)\displaystyle=\sum_{h\in G}\sum_{g\in G}p_{g^{-1},hg}D(a)
    =D(a).\displaystyle=D(a).

    For b=kGakukb=\sum_{k\in G}a_{k}u_{k}, where akAa_{k}\in A, we use that DD and gG(Dg)g\sum_{g\in G}(D_{g})^{g} are both vanishing on [G]\mathbb{C}[G] to get

    D(b)=kGD(ak)uk=kGgG(Dg)g(ak)uk=gG(Dg)g(b).D(b)=\sum_{k\in G}D(a_{k})u_{k}=\sum_{k\in G}\sum_{g\in G}(D_{g})^{g}(a_{k})u_{k}=\sum_{g\in G}(D_{g})^{g}(b).

    Next, we show that given (dg)gGgG(Der(A,τ))1αg(d_{g})_{g\in G}\in\bigoplus_{g\in G}(\text{Der}(A,\tau))_{1\otimes\alpha_{g}}, one has (gG(dg)g)h=dh\left(\sum_{g\in G}(d_{g})^{g}\right)_{h}=d_{h}. For aAa\in A, one gets

    (gG(dg)g)h(a)\displaystyle\left(\sum_{g\in G}(d_{g})^{g}\right)_{h}(a) =Jττ(ueuh)Jττpe,h[gGJττ(ue(ug))JττkG(ukuk)dg(αk(a))]\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}\left[\sum_{g\in G}J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{g}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{k\in G}(u^{*}_{k}\otimes u_{k}^{\circ})d_{g}(\alpha_{k}(a))\right]
    =(Jττ(ueuh)Jττ)pe,h[gGkG(uk(uguk))(1αg)dg(αk(a))],\displaystyle=(J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}})p_{e,h}\left[\sum_{g\in G}\sum_{k\in G}(u^{*}_{k}\otimes(u_{g}u_{k})^{\circ})(1\otimes\alpha_{g})d_{g}(\alpha_{k}(a))\right],

    and using dg(a)L2(AA)(ueue)d_{g}(a)\in L^{2}(A\otimes A^{\circ})(u_{e}\otimes u_{e}^{\circ}) for all gGg\in G, the computation above becomes

    (gG(dg)g)h(a)=(Jττ(ueuh)Jττ)(ueuh)(1αh)dh(a)=dh(a).\left(\sum_{g\in G}(d_{g})^{g}\right)_{h}(a)=(J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}})(u_{e}\otimes u_{h}^{\circ})(1\otimes\alpha_{h})d_{h}(a)=d_{h}(a).

    Thus, we have the following right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-module isomorphism

    Der([G]AαG,τ)gG(Der(A,τ))1αg,\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)\cong\bigoplus_{g\in G}(\text{Der}(A,\tau))_{1\otimes\alpha_{g}},

    where the direct sum is with respect to the ,Y\langle\cdot,\cdot\rangle_{Y}, where Y=X[G]Y=X\cup\mathbb{C}[G] satisfying A=XA=\mathbb{C}\langle X\rangle. Taking the dimension, one have

    dim(Der([G]AαG,τ))(AA)′′\displaystyle\dim(\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau))_{(A\otimes A^{\circ})^{\prime\prime}} =dim(gG(Der(A,τ))1αg)(AA)′′\displaystyle=\dim\left(\bigoplus_{g\in G}(\text{Der}(A,\tau))_{1\otimes\alpha_{g}}\right)_{(A\otimes A^{\circ})^{\prime\prime}}
    =gGdim((Der(A,τ))1αg)(AA)′′\displaystyle=\sum_{g\in G}\dim((\text{Der}(A,\tau))_{1\otimes\alpha_{g}})_{(A\otimes A^{\circ})^{\prime\prime}}
    =|G|dimDer(A,τ)(AA)′′.\displaystyle=|G|\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.

    The last equality comes from 1αg1\otimes\alpha_{g} being a trace-preserving automorphism on (AA)′′(A\otimes A^{\circ})^{\prime\prime}. ∎

Using the formula obtained in Theorem 2.5, we are able relate the dimension of the derivation space of AαGA\rtimes_{\alpha}G as a ((AαG)(AαG))′′((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}-module with the dimension of the derivation space of AA as a (AA)′′(A\otimes A^{\circ})^{\prime\prime}-module. To do so, we decompose the derivation space of AαGA\rtimes_{\alpha}G using Lemma 1.2 with the finite dimensional subalgebra [G]\mathbb{C}[G]. The following lemma computes the dimension of the derivation space of [G]\mathbb{C}[G].

Lemma 2.6.

For GG a finite group, we have that

dimDer([G],τ)L(G)L(G)=11|G|,\dim\emph{Der}(\mathbb{C}[G],\tau)_{L(G)\otimes L(G)^{\circ}}=1-\frac{1}{|G|},

where L(G)=[G]L(G)=\mathbb{C}[G] is the group von Neumann algebra of GG.

Proof.

Since [G]\mathbb{C}[G] is a finite dimensional, we have that any derivation dd is bounded and hence inner, so Der([G],τ)=InnDer([G],τ)\text{Der}(\mathbb{C}[G],\tau)=\text{InnDer}(\mathbb{C}[G],\tau). From [CN22, Lemma 1.4], we have

dimDer([G],τ)L(G)L(G)=1dimL[G]2([G][G],ττ).\dim\text{Der}(\mathbb{C}[G],\tau)_{L(G)\otimes L(G)^{\circ}}=1-\dim L^{2}_{\mathbb{C}[G]}(\mathbb{C}[G]\otimes\mathbb{C}[G]^{\circ},\tau\otimes\tau^{\circ}).

Let the left regular representation be denoted by λ\lambda and {δg:gG}\{\delta_{g}:g\in G\} be the usual basis for L2([G],τ)L^{2}(\mathbb{C}[G],\tau). We claim that

L[G]2([G][G],ττ)=span{kGδkhδk1:hG}.L^{2}_{\mathbb{C}[G]}(\mathbb{C}[G]\otimes\mathbb{C}[G]^{\circ},\tau\otimes\tau^{\circ})=\text{span}\left\{\sum_{k\in G}\delta_{kh}\otimes\delta_{k^{-1}}^{\circ}:h\in G\right\}.

Indeed, for g,hGg,h\in G

λ(g)(kGδkhδk1)\displaystyle\lambda(g)\cdot\left(\sum_{k\in G}\delta_{kh}\otimes\delta_{k^{-1}}^{\circ}\right) =kGδgkhδk1\displaystyle=\sum_{k\in G}\delta_{gkh}\otimes\delta_{k^{-1}}^{\circ}
=kGδkhδk1g\displaystyle=\sum_{k\in G}\delta_{kh}\otimes\delta_{k^{-1}g}^{\circ}
=(gGδhkδk1)λ(g).\displaystyle=\left(\sum_{g\in G}\delta_{hk}\otimes\delta_{k^{-1}}^{\circ}\right)\cdot\lambda(g).

For x=g,hGαg,hδgδhL[G]2([G][G],ττ)x=\sum_{g,h\in G}\alpha_{g,h}\delta_{g}\otimes\delta_{h}^{\circ}\in L^{2}_{\mathbb{C}[G]}(\mathbb{C}[G]\otimes\mathbb{C}[G]^{\circ},\tau\otimes\tau^{\circ}), one has

αg,h=x,δgδh=λ(k1)(λ(k)x),δgδh=λ(k1)xλ(k),δgδh,\alpha_{g,h}=\langle x,\delta_{g}\otimes\delta_{h}^{\circ}\rangle=\langle\lambda(k^{-1})\cdot(\lambda(k)\cdot x),\delta_{g}\otimes\delta_{h}^{\circ}\rangle=\langle\lambda(k^{-1})\cdot x\cdot\lambda(k),\delta_{g}\otimes\delta_{h}^{\circ}\rangle,

and using that we have a trace, the computation above becomes

αg,h=x,λ(k)δgδhλ(k1)=x,δkgδhk1=αkg,hk1.\alpha_{g,h}=\langle x,\lambda(k)\cdot\delta_{g}\otimes\delta_{h}^{\circ}\cdot\lambda(k^{-1})\rangle=\langle x,\delta_{kg}\otimes\delta_{hk^{-1}}^{\circ}\rangle=\alpha_{kg,hk^{-1}}.

Hence, we have

L[G]2([G][G],ττ)\displaystyle L^{2}_{\mathbb{C}[G]}(\mathbb{C}[G]\otimes\mathbb{C}[G]^{\circ},\tau\otimes\tau^{\circ}) =span{kGδkgδhk1:g,hG}\displaystyle=\text{span}\left\{\sum_{k\in G}\delta_{kg}\otimes\delta_{hk^{-1}}^{\circ}:g,h\in G\right\}
=span{kGδkgδk1:gG}.\displaystyle=\text{span}\left\{\sum_{k\in G}\delta_{kg}\otimes\delta_{k^{-1}}^{\circ}:g\in G\right\}.

Now set fh:=1|G|1/2kGδkhδk1\displaystyle f_{h}:=\frac{1}{|G|^{1/2}}\sum_{k\in G}\delta_{kh}\otimes\delta_{k^{-1}}^{\circ}, where hGh\in G. This is an orthonormal family, since

fh,fh\displaystyle\langle f_{h},f_{h^{\prime}}\rangle =1|G|kGgGδkhδk1,δghδg1\displaystyle=\frac{1}{|G|}\sum_{k\in G}\sum_{g\in G}\langle\delta_{kh^{\prime}}\otimes\delta_{k^{-1}}^{\circ},\delta_{gh}\otimes\delta_{g^{-1}}^{\circ}\rangle
=1|G|kGδkh,δkh\displaystyle=\frac{1}{|G|}\sum_{k\in G}\langle\delta_{kh},\delta_{kh^{\prime}}\rangle
=δh=h.\displaystyle=\delta_{h=h^{\prime}}.

Thus we have [L[G]2([G][G],ττ)]=hG,fhfhL(G)L(G)[L^{2}_{\mathbb{C}[G]}(\mathbb{C}[G]\otimes\mathbb{C}[G]^{\circ},\tau\otimes\tau^{\circ})]=\sum_{h\in G}\langle\cdot,f_{h}\rangle f_{h}\in L(G)\otimes L(G)^{\circ}. Hence,

dimL[G]2([G][G],ττ)\displaystyle\dim L^{2}_{\mathbb{C}[G]}(\mathbb{C}[G]\otimes\mathbb{C}[G]^{\circ},\tau\otimes\tau^{\circ}) =ττ(hG,fhfh)\displaystyle=\tau\otimes\tau^{\circ}\left(\sum_{h\in G}\langle\cdot,f_{h}\rangle f_{h}\right)
=hG(δeδe,fh)fh,δeδe\displaystyle=\sum_{h\in G}\langle(\langle\delta_{e}\otimes\delta_{e}^{\circ},f_{h}\rangle)f_{h},\delta_{e}\otimes\delta_{e}^{\circ}\rangle
=δeδe,fefe,δeδe\displaystyle=\langle\delta_{e}\otimes\delta_{e}^{\circ},f_{e}\rangle\langle f_{e},\delta_{e}\otimes\delta_{e}^{\circ}\rangle
=1|G|.\displaystyle=\frac{1}{|G|}.\qed
Corollary 2.7.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra with a finitely generated unital *-subalgebra AMA\subset M. Let α\alpha be a trace-preserving action of a finite group GG on (M,τ)(M,\tau) such that AA is globally invariant under α\alpha. Then

dimDer([G]AαG,τ)((AαG)(AαG))′′=1|G|dimDer(A,τ)(AA)′′.\dim\emph{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}=\frac{1}{|G|}\dim\emph{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.

Furthermore, one has

dimDer(AαG,τ)((AαG)(AαG))′′1=1|G|(dimDer(A,τ)(AA)′′1).\dim\emph{Der}(A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1=\frac{1}{|G|}(\dim\emph{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-1).
Proof.

Since [(AαG)(AαG))′′:(AA)′′]=|G|2[(A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}:(A\otimes A^{\circ})^{\prime\prime}]=|G|^{2} and using the formula in Theorem 2.5,

dimDer([G]AαG,τ)((AαG)(AαG))′′\displaystyle\dim\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}} =1|G|2dimDer([G]AαG,τ)(AA)′′\displaystyle=\frac{1}{|G|^{2}}\dim\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}
=1|G|2(|G|dimDer(A,τ)(AA)′′)\displaystyle=\frac{1}{|G|^{2}}(|G|\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}})
=1|G|dimDer(A,τ)(AA)′′.\displaystyle=\frac{1}{|G|}\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.

Thus, using Lemma 1.2, Lemma 2.6 and the above, one has

dimDer(AαG,τ\displaystyle\dim\text{Der}(A\rtimes_{\alpha}G,\tau )((AαG)(AαG))′′\displaystyle)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}
=dimDer([G],τ)[G][G]+dimDer([G]AαG,τ)((AαG)(AαG))′′\displaystyle=\dim\text{Der}(\mathbb{C}[G],\tau)_{\mathbb{C}[G]\otimes\mathbb{C}[G]}+\dim\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}
=(11|G|)+1|G|dimDer(A,τ)(AA)′′\displaystyle=\left(1-\frac{1}{|G|}\right)+\frac{1}{|G|}\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}
=1+1|G|(dimDer(A,τ)(AA)′′1).\displaystyle=1+\frac{1}{|G|}(\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-1).\qed
Corollary 2.8.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra with a finitely generated unital *-subalgebra AMA\subset M. Let α\alpha be a trace-preserving action of a finite group GG on (M,τ)(M,\tau) such that AA is globally invariant under α\alpha. If HGH\subset G is a finite subgroup of GG, then

dimDer(AαG,τ)((AαG)(AαG))′′1=1[G:H](dimDer(AαH,τ)((AαH)(AαH))′′1).\dim\emph{Der}(A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1=\frac{1}{[G:H]}(\dim\emph{Der}(A\rtimes_{\alpha}H,\tau)_{((A\rtimes_{\alpha}H)\otimes(A\rtimes_{\alpha}H)^{\circ})^{\prime\prime}}-1).
Proof.

From Corollary 2.7, we have both

dimDer(AαG,τ)((AαG)(AαG))′′1=1|G|(dimDer(A,τ)(AA)′′1),\dim\text{Der}(A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1=\frac{1}{|G|}(\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-1),

and

dimDer(AαH,τ)((AαH)(AαH))′′1=1|H|(dimDer(A,τ)(AA)′′1).\dim\text{Der}(A\rtimes_{\alpha}H,\tau)_{((A\rtimes_{\alpha}H)\otimes(A\rtimes_{\alpha}H)^{\circ})^{\prime\prime}}-1=\frac{1}{|H|}(\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-1).

Then

dimDer(AαG,τ)((AαG)(AαG))′′1\displaystyle\dim\text{Der}(A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1 =1|G|(dimDer(A,τ)(AA)′′1)\displaystyle=\frac{1}{|G|}(\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-1)
=|H||G|(1|H|(dimDer(A,τ)(AA)′′1))\displaystyle=\frac{|H|}{|G|}\left(\frac{1}{|H|}(\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-1)\right)
=1[G:H](dimDer(AαH,τ)((AαH)(AαH))′′1).\displaystyle=\frac{1}{[G:H]}(\dim\text{Der}(A\rtimes_{\alpha}H,\tau)_{((A\rtimes_{\alpha}H)\otimes(A\rtimes_{\alpha}H)^{\circ})^{\prime\prime}}-1).

The last equality comes from using that [G:H]=|G||H|1[G:H]=|G||H|^{-1}. ∎

Remark 2.9.

From [CN22, Remark 1.6], we know that

β0(2)(A,τ)\displaystyle\beta^{(2)}_{0}(A,\tau) =1dimInnDer(A,τ)(AA)′′,\displaystyle=1-\dim\text{InnDer}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}},
β1(2)(A,τ)\displaystyle\beta^{(2)}_{1}(A,\tau) =dimDer(A,τ)(AA)′′dimInnDer(A,τ)(AA)′′.\displaystyle=\dim\text{Der}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-\dim\text{InnDer}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.

Thus by Corollary 2.7, we have

β1(2)(AαG,τ)β0(2)(AαG,τ)=1|G|(β1(2)(A,τ)β0(2)(A,τ)),\beta_{1}^{(2)}(A\rtimes_{\alpha}G,\tau)-\beta_{0}^{(2)}(A\rtimes_{\alpha}G,\tau)=\frac{1}{|G|}(\beta_{1}^{(2)}(A,\tau)-\beta_{0}^{(2)}(A,\tau)),

where (A,τ)(A,\tau) a tracial *-algebra and GG a finite group that acts on AA.

3.  Schreier’s Formula for Free Stein Dimension

For the reader’s convenience, we state Theorem AA.

Theorem 3.1 (Theorem A ).

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Then

σ([G]AαG,τ)=1|G|σ(A,τ).\sigma(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)=\frac{1}{|G|}\sigma(A,\tau).

Furthermore, we have

σ(AαG,τ)1=1|G|(σ(A,τ)1).\sigma(A\rtimes_{\alpha}G,\tau)-1=\frac{1}{|G|}(\sigma(A,\tau)-1).
Proof.

First, we show that dhDer11([G]AαG,τ)d^{h}\in\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), whenever dDer11(A,τ)d\in\text{Der}_{1\otimes 1}(A,\tau). For dDer11(A,τ)d\in\text{Der}_{1\otimes 1}(A,\tau), we have dhDer([G]AαG)d^{h}\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G) by Lemma 2.3. Since dDer11(A,τ)d\in\text{Der}_{1\otimes 1}(A,\tau), we have 11dom(d)1\otimes 1^{\circ}\in\text{dom}(d^{*}). For b=kGakukAαGb=\sum_{k\in G}a_{k}u_{k}\in A\rtimes_{\alpha}G, we have

ueue,dh(b)\displaystyle\langle u_{e}\otimes u_{e}^{\circ},d^{h}(b)\rangle =kGueue,dh(akuk)\displaystyle=\sum_{k\in G}\langle u_{e}\otimes u_{e}^{\circ},d^{h}(a_{k}u_{k})\rangle
=k,gGueue,Jττ(ue(uh))Jττ(ug(uguk))d(αg(ak))\displaystyle=\sum_{k,g\in G}\langle u_{e}\otimes u_{e}^{\circ},J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}(u_{g}^{*}\otimes(u_{g}u_{k})^{\circ})d(\alpha_{g}(a_{k}))\rangle
=k,gGug(uh1k1g1),d(αg(ak))\displaystyle=\sum_{k,g\in G}\langle u_{g}\otimes(u_{h^{-1}k^{-1}g^{-1}})^{\circ},d(\alpha_{g}(a_{k}))\rangle
=k,gGδg=eδh1k1g1=eug(uh1k1g1),d(αg(ak))\displaystyle=\sum_{k,g\in G}\delta_{g=e}\delta_{h^{-1}k^{-1}g^{-1}=e}\langle u_{g}\otimes(u_{h^{-1}k^{-1}g^{-1}})^{\circ},d(\alpha_{g}(a_{k}))\rangle
=ueue,d(ah1)\displaystyle=\langle u_{e}\otimes u_{e}^{\circ},d(a_{h^{-1}})\rangle

and by the identification 11=ueueL2(AA,ττ)(ueue)1\otimes 1^{\circ}=u_{e}\otimes u_{e}^{\circ}\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{e}\otimes u_{e}^{\circ}), the above computation becomes

ueue,dh(b)\displaystyle\langle u_{e}\otimes u_{e}^{\circ},d^{h}(b)\rangle =d(11),ah1\displaystyle=\langle d^{*}(1\otimes 1^{\circ}),a_{h^{-1}}\rangle
=d(11)uh1,ah1uh1\displaystyle=\langle d^{*}(1\otimes 1^{\circ})u_{h^{-1}},a_{h^{-1}}u_{h^{-1}}\rangle
=d(11)uh1,b.\displaystyle=\langle d^{*}(1\otimes 1^{\circ})u_{h^{-1}},b\rangle.

Hence, (ueue)dom((dh))(u_{e}\otimes u_{e}^{\circ})\in\text{dom}((d^{h})^{*}) with (dh)(ueue)=d(11)uh(d^{h})^{*}(u_{e}\otimes u_{e}^{\circ})=d^{*}(1\otimes 1^{\circ})u_{h}^{*}, that is dhDer11([G]AαG)d^{h}\in\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G). Thus the map ddhd\mapsto d^{h} in Theorem 2.5 can be restricted to the following subspaces Der11([G]AαG,τ)\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) and Der11(A,τ)\text{Der}_{1\otimes 1}(A,\tau).

Next, we show that DhDer11(A,τ)D_{h}\in\text{Der}_{1\otimes 1}(A,\tau), whenever DDer11([G]AαG,τ)D\in\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). By Lemma 2.4, we have DhDer(A,τ)D_{h}\in\text{Der}(A,\tau), whenever DDer11([G]AαG)D\in\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G). Since DDer11([G]AαG)D\in\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G), then AαG(AαG)dom(D)A\rtimes_{\alpha}G\otimes(A\rtimes_{\alpha}G)^{\circ}\subset\text{dom}(D^{*}). For aAa\in A and using the identification 11=ueueL2(AA,ττ)(ueue),1\otimes 1^{\circ}=u_{e}\otimes u_{e}^{\circ}\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})(u_{e}\otimes u_{e}^{\circ}), it follows that

11,Dh(a)\displaystyle\langle 1\otimes 1^{\circ},D_{h}(a)\rangle =ueue,Dh(a)\displaystyle=\langle u_{e}\otimes u_{e}^{\circ},D_{h}(a)\rangle
=ueue,Jττ(ueuh)Jττpe,hD(a)\displaystyle=\langle u_{e}\otimes u_{e}^{\circ},J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}D(a)\rangle
=ueuh,pe,hD(a)\displaystyle=\langle u_{e}\otimes u_{h}^{\circ},p_{e,h}D(a)\rangle
=D(ueuh),a\displaystyle=\langle D^{*}(u_{e}\otimes u_{h}^{\circ}),a\rangle
=[L2(A,τ)]D(ueuh),a.\displaystyle=\langle[L^{2}(A,\tau)]D^{*}(u_{e}\otimes u_{h}^{\circ}),a\rangle.

Hence we have 11dom(D)h1\otimes 1^{\circ}\in\text{dom}(D^{*})_{h} with (Dh)(11)=[L2(A,τ)]D(ueuh)(D_{h})^{*}(1\otimes 1^{\circ})=[L^{2}(A,\tau)]D^{*}(u_{e}\otimes u_{h}^{\circ}), that is DhDer11(A,τ)D_{h}\in\text{Der}_{1\otimes 1}(A,\tau). Thus the map DDhD\mapsto D_{h} in Theorem 2.5 can be restricted to the following subspaces Der11([G]AαG,τ)\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) and Der11(A,τ)\text{Der}_{1\otimes 1}(A,\tau).

By applying the third map in Theorem 2.5, one has the right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-module isomorphism

Der11([G]AαG,τ)gG(Der11(A,τ))1αg,\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)\cong\bigoplus_{g\in G}(\text{Der}_{1\otimes 1}(A,\tau))_{1\otimes\alpha_{g}},

where the direct sum is with respect to the ,Y\langle\cdot,\cdot\rangle_{Y}, where Y=X[G]Y=X\cup\mathbb{C}[G] satisfying A=XA=\mathbb{C}\langle X\rangle.

Lastly, from Lemma 1.2 and Der11([G],τ)¯=InnDer([G],τ)¯\overline{\text{Der}_{1\otimes 1}(\mathbb{C}[G],\tau)}=\overline{\text{InnDer}(\mathbb{C}[G],\tau)}, we can apply Corollary 2.7 to the following subspaces Der11(AαG,τ))¯Der(AαG,τ)\overline{\text{Der}_{1\otimes 1}(A\rtimes_{\alpha}G,\tau))}\subset\text{Der}(A\rtimes_{\alpha}G,\tau) and Der11(A,τ))¯Der(A,τ)\overline{\text{Der}_{1\otimes 1}(A,\tau))}\subset\text{Der}(A,\tau). Thus we get

σ([G]AαG,τ)\displaystyle\sigma(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) =dimDer11([G]AαG,τ)¯((AαG)(AαG))′′\displaystyle=\dim\overline{\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}
=1|G|dimDer11(A,τ)¯(AA)′′\displaystyle=\frac{1}{|G|}\dim\overline{\text{Der}_{1\otimes 1}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}
=1|G|σ(A,τ),\displaystyle=\frac{1}{|G|}\sigma(A,\tau),

and

σ(AαG,τ)1\displaystyle\sigma(A\rtimes_{\alpha}G,\tau)-1 =dimDer11(AαG,τ)¯((AαG)(AαG))′′1\displaystyle=\dim\overline{\text{Der}_{1\otimes 1}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1
=1|G|(dimDer11(A,τ)¯(AA)′′1)\displaystyle=\frac{1}{|G|}(\dim\overline{\text{Der}_{1\otimes 1}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1)
=1|G|(σ(A,τ)1).\displaystyle=\frac{1}{|G|}(\sigma(A,\tau)-1).\qed

The proof of the following corollary is similar to the proof of Corollary 2.8.

Corollary 3.2.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. If HGH\subset G is a finite subgroup of GG, then

σ(AαG,τ)1=1[G:H](σ(AαH,τ)1).\sigma(A\rtimes_{\alpha}G,\tau)-1=\frac{1}{[G:H]}(\sigma(A\rtimes_{\alpha}H,\tau)-1).
Remark 3.3.

If we take the hypotheses of Theorem 3.1 and additionally the group action is trivial, then we have AαGA[G]A\rtimes_{\alpha}G\cong A\otimes\mathbb{C}[G] and we recover Theorem 2.5 in [CN22].

Even though Theorem 3.1 is limited to finite groups, we can apply it to infinite groups with the assumption that GG has an abundance of subgroups. Such examples of groups exist since by [HNN49, Theorem IV] the authors show that any countable group can be embedded into a group that is generated by two elements. Consequently, one can consider a group GG with two generators such that n/n\bigoplus_{n\in\mathbb{N}}\mathbb{Z}/n\mathbb{Z} is embedded into GG, and such a group satisfies the condition of the corollary below.

Corollary 3.4.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra with a finitely generated unital *-algebra AMA\subset M. Let GG be a finitely generated group such that for all nn\in\mathbb{N}, there exists a subgroup GnG_{n} with n|Gn|<.n\leq|G_{n}|<\infty. Let α\alpha be a trace-preserving action of group GG on (M,τ)(M,\tau) and AA be globally invariant under α\alpha. Then

σ(AαG,τ)β1(2)(G)β0(2)(G)+1.\sigma(A\rtimes_{\alpha}G,\tau)\leq\beta_{1}^{(2)}(G)-\beta_{0}^{(2)}(G)+1.
Proof.

Observe that AαG=(AαGn)[G]A\rtimes_{\alpha}G=(A\rtimes_{\alpha}G_{n})\vee\mathbb{C}[G] and by [CN21, Corollary 2.13], we have

σ([Gn]AαG,τ)σ([Gn]AαGn,τ)+σ([Gn][G],τ).\sigma(\mathbb{C}[G_{n}]\subset A\rtimes_{\alpha}G,\tau)\leq\sigma(\mathbb{C}[G_{n}]\subset A\rtimes_{\alpha}G_{n},\tau)+\sigma(\mathbb{C}[G_{n}]\subset\mathbb{C}[G],\tau).

Then using Lemma 1.2 and the above inequality, the computation becomes

σ(AαG,τ)\displaystyle\sigma(A\rtimes_{\alpha}G,\tau) =σ([Gn]AαG,τ)+σ([Gn],τ)\displaystyle=\sigma(\mathbb{C}[G_{n}]\subset A\rtimes_{\alpha}G,\tau)+\sigma(\mathbb{C}[G_{n}],\tau)
σ([Gn]AαGn,τ)+σ([Gn][G],τ)+σ([Gn],τ).\displaystyle\leq\sigma(\mathbb{C}[G_{n}]\subset A\rtimes_{\alpha}G_{n},\tau)+\sigma(\mathbb{C}[G_{n}]\subset\mathbb{C}[G],\tau)+\sigma(\mathbb{C}[G_{n}],\tau).

Now using Lemma 1.2 again, we can further establish

σ(AαG,τ)=σ(AαGn,τ)+σ([G],τ)σ([Gn],τ).\sigma(A\rtimes_{\alpha}G,\tau)=\sigma(A\rtimes_{\alpha}G_{n},\tau)+\sigma(\mathbb{C}[G],\tau)-\sigma(\mathbb{C}[G_{n}],\tau).

By Theorem 3.1, Proposition 5.1 in [CN21] and Lemma 2.6, we have

σ(AαG,τ)\displaystyle\sigma(A\rtimes_{\alpha}G,\tau) (1+1|Gn|(σ(A,τ)1))+β1(2)(G)β0(2)(G)+1(11|Gn|)\displaystyle\leq(1+\frac{1}{|G_{n}|}(\sigma(A,\tau)-1))+\beta_{1}^{(2)}(G)-\beta_{0}^{(2)}(G)+1-\left(1-\frac{1}{|G_{n}|}\right)
=1|Gn|σ(A,τ)+β1(2)(G)β0(2)(G)+1.\displaystyle=\frac{1}{|G_{n}|}\sigma(A,\tau)+\beta_{1}^{(2)}(G)-\beta_{0}^{(2)}(G)+1.

Thus taking the limit as nn goes to infinity, we have

σ(AαG,τ)β1(2)(G)β0(2)(G)+1.\sigma(A\rtimes_{\alpha}G,\tau)\leq\beta_{1}^{(2)}(G)-\beta_{0}^{(2)}(G)+1.\qed
Example 3.5.

Let GG be a countable abelian group such that for all nn\in\mathbb{N}, there exists a subgroup GnG_{n} with n|Gn|<.n\leq|G_{n}|<\infty. Then L(G)L(G) is a separable abelian von Neumann algebra and there exists a finite self-adjoint set YL(G)Y\subset L(G) such that L(G)=Y′′L(G)=\mathbb{C}\langle Y\rangle^{\prime\prime}. Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action on a tracial von Neumann algebra. Suppose AMA\subset M is a finitely generated unital *-subalgebra such that M=A′′M=A^{\prime\prime} and AA is globally invariant under α\alpha. For GnGG_{n}\subset G a finite subgroup, we have that AY(AαGn)YA\vee\mathbb{C}\langle Y\rangle\subset(A\rtimes_{\alpha}G_{n})\vee\mathbb{C}\langle Y\rangle and so ((AαGn)Y)′′=MαG((A\rtimes_{\alpha}G_{n})\vee\mathbb{C}\langle Y\rangle)^{\prime\prime}=M\rtimes_{\alpha}G. By Lemma 1.2 and [CN21, Corollary 2.13], one gets

σ((AαGn)Y,τ)\displaystyle\sigma((A\rtimes_{\alpha}G_{n})\vee\mathbb{C}\langle Y\rangle,\tau) =σ([Gn](AαGn)Y,τ)+σ([Gn],τ)\displaystyle=\sigma(\mathbb{C}[G_{n}]\subset(A\rtimes_{\alpha}G_{n})\vee\mathbb{C}\langle Y\rangle,\tau)+\sigma(\mathbb{C}[G_{n}],\tau)
σ([Gn]AαGn,τ)+σ([Gn]([Gn]Y),τ)+σ([Gn],τ).\displaystyle\leq\sigma(\mathbb{C}[G_{n}]\subset A\rtimes_{\alpha}G_{n},\tau)+\sigma(\mathbb{C}[G_{n}]\subset(\mathbb{C}[G_{n}]\vee\mathbb{C}\langle Y\rangle),\tau)+\sigma(\mathbb{C}[G_{n}],\tau).

Using Lemma 1.2 again, one has

σ((AαGn)Y,τ)=σ(AαGn,τ)+σ(([Gn]Y),τ)σ([Gn],τ),\sigma((A\rtimes_{\alpha}G_{n})\vee\mathbb{C}\langle Y\rangle,\tau)=\sigma(A\rtimes_{\alpha}G_{n},\tau)+\sigma((\mathbb{C}[G_{n}]\vee\mathbb{C}\langle Y\rangle),\tau)-\sigma(\mathbb{C}[G_{n}],\tau),

and so by Theorem 3.1, [CN22, Corollary 3.3] and Lemma 2.6, one has

σ((AαGn)Y,τ)\displaystyle\sigma((A\rtimes_{\alpha}G_{n})\vee\mathbb{C}\langle Y\rangle,\tau) (1+1|Gn|(σ(A,τ)1))+1(11|Gn|)\displaystyle\leq(1+\frac{1}{|G_{n}|}(\sigma(A,\tau)-1))+1-\left(1-\frac{1}{|G_{n}|}\right)
=1+1|Gn|σ(A,τ).\displaystyle=1+\frac{1}{|G_{n}|}\sigma(A,\tau).

Hence, for all ε>0\varepsilon>0, MαGM\rtimes_{\alpha}G admits a dense *-subalgebra BB with σ(B,τ)1+ε\sigma(B,\tau)\leq 1+\varepsilon. \hfill\blacksquare

4.  Schreier’s Formula for dimDerc(A.τ)\dim\text{Der}_{c}(A.\tau)

We fix AMA\subset M a finitely generated unital *-subalgebra with A=XA=\mathbb{C}\langle X\rangle, where XX is a finite self-adjoint subset of AA. In [Shl09], Shlyakhtenko considered the following subspace of the derivation space

Derc(A,τ):={dDer(A,τ):d(11)A,d(x)AA for all xX}.\text{Der}_{c}(A,\tau):=\{d\in\text{Der}(A,\tau):d^{*}(1\otimes 1)\in A,d(x)\in A\otimes A^{\circ}\text{ for all }x\in X\}.

Notice that by definition, we have Derc(A,τ)Der11(A,τ)\text{Der}_{c}(A,\tau)\subset\text{Der}_{1\otimes 1}(A,\tau) and

dimDerc(A,τ)¯σ(A,τ).\dim\overline{\text{Der}_{c}(A,\tau)}\leq\sigma(A,\tau).

We mention that if ξAA\xi\in A\otimes A^{\circ}, then the derivation d():=[,ξ]d(\cdot):=[\cdot,\xi] is in Derc(A,τ),\text{Der}_{c}(A,\tau), and so

InnDer(A,τ)Derc(A,τ)¯.\text{InnDer}(A,\tau)\subset\overline{\text{Der}_{c}(A,\tau)}.

The following result shows that we can apply Theorem 2.5 and Corollary 2.7 to this subspace, but first we remind the reader on notation of the free difference quotients and their connection to derivations on AA. Let TX={tx:xX}T_{X}=\{t_{x}:x\in X\} be a set of indeterminate variables equipped with the involution tx=txt^{*}_{x}=t_{x^{*}}. We denote by TX\mathbb{C}\langle T_{X}\rangle the *-algebra formally spanned by elements of the form tx1tx2txdt_{x_{1}}t_{x_{2}}\cdots t_{x_{d}}, where xiXx_{i}\in X for i={1,,d}i=\{1,\ldots,d\}. Let evX:TXA\text{ev}_{X}:\mathbb{C}\langle T_{X}\rangle\to A be the *-homomorphism extended linearly by tx1tx2txdx1x2xdt_{x_{1}}t_{x_{2}}\cdots t_{x_{d}}\mapsto x_{1}x_{2}\cdots x_{d}. Given a pTXp\in\mathbb{C}\langle T_{X}\rangle, we write p(X)p(X) for evX(p)\text{ev}_{X}(p). This map is surjective, and it is injective if and only if XX is algebraically free. The free difference quotients are the derivations x:TXTXTX\partial_{x}:\mathbb{C}\langle T_{X}\rangle\to\mathbb{C}\langle T_{X}\rangle\otimes\mathbb{C}\langle T_{X}\rangle^{\circ} defined by linearity and the conditions

x(ty)\displaystyle\partial_{x}(t_{y}) =δx=y11,\displaystyle=\delta_{x=y}1\otimes 1,
x(pq)\displaystyle\partial_{x}(pq) =px(q)+x(p)q.\displaystyle=p\cdot\partial_{x}(q)+\partial_{x}(p)\cdot q.

Given p,qTXp,q\in\mathbb{C}\langle T_{X}\rangle, we denote (pq)(X)=p(X)q(X)(p\otimes q)(X)=p(X)\otimes q(X) and by the above, we have (x(p))(X)AA(\partial_{x}(p))(X)\in A\otimes A^{\circ} for pTXp\in\mathbb{C}\langle T_{X}\rangle. Given dDer(A,τ)d\in\text{Der}(A,\tau) and pTxp\in\mathbb{C}\langle T_{x}\rangle, one has

d(p)=xXx(p)(X)d(x).d(p)=\sum_{x\in X}\partial_{x}(p)(X)d(x). (3)

Notice that to define a derivation on AA, one can, using the right hand side of equation (3), define a derivation on TX\mathbb{C}\langle T_{X}\rangle to L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) and check that the derivation factors through AA.

Theorem 4.1 (Theorem B ).

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Then

dimDerc([G]AαG,τ)¯((AαG)(AαG))′′=1|G|dimDerc(A,τ)¯(AA)′′.\dim\overline{\emph{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}=\frac{1}{|G|}\dim\overline{\emph{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}.

Furthermore, we have

dimDerc(AαG,τ)¯((AαG)(AαG))′′1=1|G|(dimDerc(A,τ)¯(AA)′′1).\dim\overline{\emph{Der}_{c}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1=\frac{1}{|G|}(\dim\overline{\emph{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1).
Proof.

First, we show that dhDerc([G]AαG,τ)d^{h}\in\text{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), whenever dDerc(A,τ)d\in\text{Der}_{c}(A,\tau) and hGh\in G. For dDerc(A,τ)d\in\text{Der}_{c}(A,\tau), we have, by Theorem 3.1, that dhDer11([G]AαG)d^{h}\in\text{Der}_{1\otimes 1}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G) with (dh)(ueue)=d(11)uh(AαG)(AαG)(d^{h})(u_{e}\otimes u_{e}^{\circ})=d^{*}(1\otimes 1^{\circ})u_{h}^{*}\in(A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ}. Let pgTp_{g}\in\mathbb{C}\langle T\rangle such that αg(x)=pg(X)\alpha_{g}(x)=p_{g}(X), where gGg\in G. Then for xXx\in X, we have

dh(x)\displaystyle d^{h}(x) =Jττ(ue(uh))JττgG(ugug)d(αg(ak))\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})d\big{(}\alpha_{g}(a_{k})\big{)}
=Jττ(ue(uh))JττgG(ugug)xX(x(pg)(X))d(x)\displaystyle=J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u^{*}_{h})^{\circ})J_{\tau\otimes\tau^{\circ}}\sum_{g\in G}(u_{g}^{*}\otimes u_{g}^{\circ})\sum_{x\in X}\big{(}\partial_{x}(p_{g})(X)\big{)}d(x)

Since d(x)AAd(x)\in A\otimes A^{\circ} for all xXx\in X, we have that dh(x)(AαG)(AαG)d^{h}(x)\in(A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ} and dh(ug)=0d^{h}(u_{g})=0 for all gGg\in G. Hence dhDerc(AαG,τ).d^{h}\in\text{Der}_{c}(A\rtimes_{\alpha}G,\tau).

Next, we show that DhDerc(A,τ)D_{h}\in\text{Der}_{c}(A,\tau), whenever DDerc([G]AαG,τ)D\in\text{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). Let DDerc([G]AαG,τ)D\in\text{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) and by Theorem 3.1, we have DhDer11(A,τ)D_{h}\in\text{Der}_{1\otimes 1}(A,\tau) with Dh(11)=[L2(A,τ)]D(ueuh)D^{*}_{h}(1\otimes 1^{\circ})=[L^{2}(A,\tau)]D^{*}(u_{e}\otimes u_{h}^{*}), where hGh\in G. Using [Voi98, Proposition 4.1], we have

Dh(11)=[L2(A,τ)](D(ueue)uh(1τ)D(uh)).D_{h}^{*}(1\otimes 1^{\circ})=[L^{2}(A,\tau)]\big{(}D^{*}(u_{e}\otimes u_{e}^{\circ})u_{h}-(1\otimes\tau^{\circ})D(u_{h}^{*})^{*}\big{)}.

Since (AαG)(AαG)(A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ} decomposes to a finite direct sum of AAA\otimes A^{\circ}, Dh(11)AAD_{h}^{*}(1\otimes 1^{\circ})\in A\otimes A^{\circ}. Since pg,h(AA)p_{g,h}\in(A\otimes A)^{\prime} for all g,hGg,h\in G, we have Dh(x)AAD_{h}(x)\in A\otimes A^{\circ} for all xXx\in X. Hence DhDerc(A,τ)D_{h}\in\text{Der}_{c}(A,\tau).

By applying the third map in Theorem 2.5, one has the right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-module isomorphism

Derc([G]AαG,τ)=gG(Derc(A,τ))1αg,\text{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)=\bigoplus_{g\in G}(\text{Der}_{c}(A,\tau))_{1\otimes\alpha_{g}},

where the direct sum is with respect to the ,Y\langle\cdot,\cdot\rangle_{Y}, where Y=X{ug:gG}Y=X\cup\{u_{g}:g\in G\}.

Lastly, by Lemma 1.2 and Derc([G],τ)¯=InnDer([G],τ)¯\overline{\text{Der}_{c}(\mathbb{C}[G],\tau)}=\overline{\text{InnDer}(\mathbb{C}[G],\tau)}, we can apply Corollary 2.7 to the following subspaces Derc([G]AαG,τ)Der(AαG,τ)\text{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)\subset\text{Der}(A\rtimes_{\alpha}G,\tau) and Derc(A,τ)Der(A,τ)\text{Der}_{c}(A,\tau)\subset\text{Der}(A,\tau) to get

dimDerc([G]AαG,τ)¯((AαG)(AαG))′′=1|G|dimDerc(A,τ)¯(AA)′′\dim\overline{\text{Der}_{c}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}=\frac{1}{|G|}\dim\overline{\text{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}

and

dimDerc(AαG,τ)¯((AαG)(AαG))′′1=1|G|(dimDerc(A,τ)¯(AA)′′1).\dim\overline{\text{Der}_{c}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1=\frac{1}{|G|}(\dim\overline{\text{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1).

The proof of the following corollary is similar to the proof of Corollary 2.8.

Corollary 4.2.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. If HGH\subset G is a finite subgroup of GG, then

dimDerc(AαG,τ)¯((AαG)(AαG))′′1=1[G:H](dimDerc(AαH,τ)¯(AA)′′1).\dim\overline{\emph{Der}_{c}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1=\frac{1}{[G:H]}(\dim\overline{\emph{Der}_{c}(A\rtimes_{\alpha}H,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1).

The following is an estimate for the microstates free entropy dimension δ0\delta_{0} when we consider the crossed product of a von Neumann algebra with a finite group. This uses a known inequality, dimDerc(A,τ)δ0\dim\text{Der}_{c}(A,\tau)\leq\delta_{0} (see [Shl09, Theorem 2, Corollary 17]). Note that the assumption A′′RωA^{\prime\prime}\hookrightarrow R^{\omega} is to guarantee δ0>\delta_{0}>-\infty, where RR is the hyperfinite II1 factor.

Corollary 4.3.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Assume that A′′A^{\prime\prime} can be embedded in the ultrapower of the hyperfinite II1\emph{II}_{1} factor. Then for any generating set YY of AαGA\rtimes_{\alpha}G, we have

1|G|(dimDerc(A,τ)¯(AA)′′1)+1δ0(Y)\frac{1}{|G|}(\dim\overline{\emph{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1)+1\leq\delta_{0}(Y)
Proof.

Using [Shl09, Theorem 2] and Theorem 4.1, we have

δ0(Y)dimDerc(AαG,τ)¯((AαG)(AαG))′′=1|G|(dimDerc(A,τ)¯(AA)′′1)+1.\delta_{0}(Y)\geq\dim\overline{\text{Der}_{c}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}=\frac{1}{|G|}(\dim\overline{\text{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1)+1.\qed

5.  Schreier’s Formula for Δ\Delta

In this section, we remind the reader of Δ\Delta and we show that Δ\Delta can be computed by taking the von Neumann dimension of a certain subspace of derivations. Then we show Theorem 5.7 by choosing a set of generators to apply Theorem 2.5 and Corollary 2.7 on Δ\Delta. We further assume that the finite group GG acting on MM is abelian, since this extra assumption guarantees a generating set of AA that is scaled under the action of α\alpha. Lastly, we apply our results to the free entropy dimensions.

We fix AMA\subset M a finitely generated unital *-subalgebra with A=XA=\mathbb{C}\langle X\rangle, where XX is a finite self-adjoint subset of AA. In [CS05, Section 3], Connes and Shlyakhtenko defined the quantity Δ\Delta for XX with respect to τ\tau as

Δ(A,τ)=dim(Xt(B(L2(A,τ)))¯WOT(HS(L2(A,τ)))X)(AA)′′,\Delta(A,\tau)=\dim\left(\overline{\partial^{t}_{X}\Big{(}B\big{(}L^{2}(A,\tau)\big{)}\Big{)}}^{\text{WOT}}\cap\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Bigg{)}^{X}\right)_{(A\otimes A^{\circ})^{\prime\prime}},

where HS(L2(A,τ))\text{HS}\big{(}L^{2}(A,\tau)\big{)} is the set of Hilbert–Schmidt operators on L2(A,τ)L^{2}(A,\tau) and Xt(y)=([y,x])xX\partial^{t}_{X}(y)=\big{(}[y,x]\big{)}_{x\in X} for yB(L2(A,τ))y\in B\big{(}L^{2}(A,\tau)\big{)}. Although it is not obvious from the definition, Δ(A,τ)\Delta(A,\tau) only depends on AA (see [CS05, Theorem 3.3]. Since Xt\partial^{t}_{X} is continuous with respect to the weak operator topology, we can redefine the quantity as

Δ(A,τ)=dim(Xt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X)(AA)′′.\Delta(A,\tau)=\dim\left(\overline{\partial^{t}_{X}\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}}^{\text{WOT}}\cap\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}^{X}\right)_{(A\otimes A^{\circ})^{\prime\prime}}.

Notice that Xt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X\overline{\partial^{t}_{X}\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}}^{\text{WOT}}\cap\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}^{X} is a closed subspace of (HS(L2(A,τ)))X\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}^{X}, since convergence with respect to the Hilbert–Schmidt norm implies the weak operator topology convergence.

Recall the identification L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) with HS(L2(A,τ))\text{HS}\big{(}L^{2}(A,\tau)\big{)} via ξηξη¯\xi\otimes\eta^{\circ}\mapsto\xi\otimes\bar{\eta}, where ξ,ηL2(A,τ)\xi,\eta\in L^{2}(A,\tau) and note that L2(A,τ)L2(A,τ)L^{2}(A,\tau)\odot L^{2}(A^{\circ},\tau^{\circ}) is identified with FR(L2(A,τ))\text{FR}\big{(}L^{2}(A,\tau)\big{)}. Thus, S=(Sx)xXXt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))XS=(S_{x})_{x\in X}\in\overline{\partial^{t}_{X}\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}}^{\text{WOT}}\cap\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}^{X}, if there exists a net {ξλ}L2(AA,ττ)\{\xi_{\lambda}\}\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) such that

limλSXt(ξλ),ξη=limλxXSx[ξλ,x],ξxηx=0,\lim_{\lambda\to\infty}\langle S-\partial^{t}_{X}(\xi_{\lambda}),\xi\otimes\eta^{\circ}\rangle=\lim_{\lambda\to\infty}\sum_{x\in X}\langle S_{x}-[\xi_{\lambda},x],\xi_{x}\otimes\eta_{x}^{\circ}\rangle=0,

whenever ξ,ηL2(A,τ)X\xi,\eta\in L^{2}(A,\tau)^{X}.

Also, observe that [ϕX(Der(A,τ))]M|X|((AA)′′,ττ)[\phi_{X}(\text{Der}(A,\tau))]\in M_{|X|}((A\otimes A^{\circ})^{\prime\prime},\tau\otimes\tau^{\circ}), where ϕX\phi_{X} is the map defined in subsection 1.3, because ϕX(Der(A,τ))L2(AA,ττ)X\phi_{X}(\text{Der}(A,\tau))\subset L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})^{X} is invariant under the diagonal action of (AA)(A\otimes A^{\circ})^{\prime}.

Definition 5.1.

For A=XA=\mathbb{C}\langle X\rangle, we denote by DerFR,X(A,τ)\text{Der}_{\text{FR},X}(A,\tau) the derivations dDer(A,τ)d\in\text{Der}(A,\tau) such that (d(x))xX[ϕX(Der(A,τ))](L2(A,τ)L2(A,τ))X(d(x))_{x\in X}\in[\phi_{X}(\text{Der}(A,\tau))](L^{2}(A,\tau)\odot L^{2}(A^{\circ},\tau^{\circ}))^{X}. For each dDerFR,X(A,τ)d\in\text{Der}_{\text{FR},X}(A,\tau), we define a seminorm ρX,d:Der(A,τ)\rho_{X,d}:\text{Der}(A,\tau)\to\mathbb{R} by

ρX,d(d):=|d,dX|.\rho_{X,d}(d^{\prime}):=\left|\langle d^{\prime},d\rangle_{X}\right|.

Set 𝒫FR,X:={ρX,d:dDerFR,X(A,τ)}\mathcal{P}_{\text{FR},X}:=\{\rho_{X,d}:d\in\text{Der}_{\text{FR},X}(A,\tau)\}. We define Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau) to be the closure of InnDer(A,τ)\text{InnDer}(A,\tau) under the topology generated by this family of seminorms.

Since L2(A,τ)L2(A,τ)L^{2}(A,\tau)\odot L^{2}(A^{\circ},\tau^{\circ}) is dense in L2(AA,ττ)L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}), the intersection of the kernels of these seminorms is trivial. Thus (Der(A,τ),𝒫FR,X)(\text{Der}(A,\tau),\mathcal{P}_{\text{FR},X}) is a locally convex space. By the Cauchy–Schwartz inequality, it follows that Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau) is a closed (AA)′′(A\otimes A^{\circ})^{\prime\prime}-submodule in Der(A,τ)\text{Der}(A,\tau). Although DerFR,X(A,τ)\text{Der}_{\text{FR},X}(A,\tau) is not closed, it is a (AA)(A\otimes A^{\circ})-submodule. We note that each element in Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau) is “almost weakly approximated” by inner derivations, in the sense that the weak limits are only against elements in DerFR,X(A,τ)\text{Der}_{\text{FR},X}(A,\tau).

The following lemma shows that the corresponding subspace of derivations for Δ\Delta is the one we defined above.

Lemma 5.2.

Let (M,τ)(M,\tau) be a tracial von Neumann algebra with finitely generated unital *-subalgebra AMA\subset M and let XAX\subset A be any finite self-adjoint subset satisfying A=XA=\mathbb{C}\langle X\rangle. The following linear map

Der[,X](A,τ)\displaystyle\emph{Der}_{[\,\cdot\,,X]}(A,\tau) Xt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X\displaystyle\to\overline{\partial^{t}_{X}\Big{(}\emph{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}}^{\emph{WOT}}\cap\Big{(}\emph{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}^{X}
d\displaystyle d (d(x))xX\displaystyle\mapsto(d(x))_{x\in X}

is bijective, and right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-linear. Consequently, Der[,X](A,τ)\emph{Der}_{[\,\cdot\,,X]}(A,\tau) is a closed right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-submodule and we have

Δ(A,τ)=dimDer[,X](A,τ).\Delta(A,\tau)=\dim\emph{Der}_{[\,\cdot\,,X]}(A,\tau).
Proof.

First, we show that the map is valued in the correct range. That is, given dDer[,X](A,τ)d\in\text{Der}_{[\,\cdot\,,X]}(A,\tau), one has (d(x))xXXt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X(d(x))_{x\in X}\in\overline{\partial^{t}_{X}(\text{HS}(L^{2}(A,\tau)))}^{\text{WOT}}\cap(\text{HS}(L^{2}(A,\tau)))^{X}. Since dDer[,X](A,τ)d\in\text{Der}_{[\,\cdot\,,X]}(A,\tau) there exists a net {dλ}λΛInnDer(A,τ)\{d_{\lambda}\}_{\lambda\in\Lambda}\in\text{InnDer}(A,\tau) that almost weakly approximates dd with ξλL2(AA,ττ)\xi_{\lambda}\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) such that dλ():=[,ξλ]d_{\lambda}(\cdot):=[\cdot\,,-\xi_{\lambda}] for each λ\lambda. For ξ=(ξx)xX,η=(ηx)xXL2(A,τ)X\xi=(\xi_{x})_{x\in X},\eta=(\eta_{x})_{x\in X}\in L^{2}(A,\tau)^{X}, we have

(d(x))xXXt(xλ),ξη\displaystyle\langle(d(x))_{x\in X}-\partial_{X}^{t}(x_{\lambda}),\xi\otimes\eta\rangle =xXd(x)[ξλ,x],ξxηx\displaystyle=\sum_{x\in X}\langle d(x)-[\xi_{\lambda},x],\xi_{x}\otimes\eta_{x}\rangle
=xXd(x)dλ(x),ξxηx\displaystyle=\sum_{x\in X}\langle d(x)-d_{\lambda}(x),\xi_{x}\otimes\eta_{x}\rangle
=(d(x)dλ(x))xX,ξη\displaystyle=\langle(d(x)-d_{\lambda}(x))_{x\in X},\xi\otimes\eta\rangle

By setting dDerFR,X(A,τ)d^{\prime}\in\text{Der}_{\text{FR},X}(A,\tau) such that (d(x))xX:=[ϕX(Der(A,τ))](ξη)(d^{\prime}(x))_{x\in X}:=[\phi_{X}(\text{Der}(A,\tau))](\xi\otimes\eta), the above computation becomes

(d(x))xXXt(xλ),ξη=(d(x)dλ(x))xX,[ϕX(Der(A,τ))](ξη)=ddλ,dX.\langle(d(x))_{x\in X}-\partial_{X}^{t}(x_{\lambda}),\xi\otimes\eta\rangle=\langle(d(x)-d_{\lambda}(x))_{x\in X},[\phi_{X}(\text{Der}(A,\tau))](\xi\otimes\eta)\rangle=\langle d-d_{\lambda},d^{\prime}\rangle_{X}.

Thus we have that (d(x))xXXt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X.(d(x))_{x\in X}\in\overline{\partial^{t}_{X}(\text{HS}(L^{2}(A,\tau)))}^{\text{WOT}}\cap(\text{HS}(L^{2}(A,\tau)))^{X}.

Next, from the Leibniz rule, one has that each derivation is determined by its values on XX. Hence, the map above is injective. The map is right (AA)′′(A\otimes A^{\circ})^{\prime\prime}, since the right action on a derivation is pointwise.

Before we prove sujectivity, we show that any element of Xt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X\overline{\partial^{t}_{X}(\text{HS}(L^{2}(A,\tau)))}^{\text{WOT}}\cap(\text{HS}(L^{2}(A,\tau)))^{X} gives rise to a derivation in Der(A,τ)\text{Der}(A,\tau). That is, given S=(Sx)xXXt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))XS=(S_{x})_{x\in X}\in\overline{\partial^{t}_{X}(\text{HS}(L^{2}(A,\tau)))}^{\text{WOT}}\cap(\text{HS}(L^{2}(A,\tau)))^{X}, there exists dSDer(A,τ)d_{S}\in\text{Der}(A,\tau) such that (dS(x))xX=S(d_{S}(x))_{x\in X}=S. For pTXp\in\mathbb{C}\langle T_{X}\rangle, define

d^S(p)=xXx(p)(X)Sx.\widehat{d}_{S}(p)=\sum_{x\in X}\partial_{x}(p)(X)S_{x}.

We claim that d^S(ker(evX))=0\widehat{d}_{S}(\ker(\text{ev}_{X}))=0. Let pTXp\in\mathbb{C}\langle T_{X}\rangle be such that p(X)=0p(X)=0. Since (Sx)xXXt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X(S_{x})_{x\in X}\in\overline{\partial^{t}_{X}(\text{HS}(L^{2}(A,\tau)))}^{\text{WOT}}\cap(\text{HS}(L^{2}(A,\tau)))^{X}, we have that (Sx)xX=(WOT-limλ[ξλ,x])xX(S_{x})_{x\in X}=(\text{WOT-}\lim_{\lambda\to\infty}[\xi_{\lambda},x])_{x\in X} for some net (ξλ)λΛL2(AA,ττ))(\xi_{\lambda})_{\lambda\in\Lambda}\subset L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ})). This means that

d^S(q(X))=WOT-limλ[ξλ,q(X)]\widehat{d}_{S}(q(X))=\text{WOT-}\lim_{\lambda\to\infty}[\xi_{\lambda},q(X)]

for all qTXq\in\mathbb{C}\langle T_{X}\rangle. Hence, we have d^S(p(X))=0\widehat{d}_{S}(p(X))=0, since [ξλ,p(X)]=0[\xi_{\lambda},p(X)]=0 for all λ\lambda. Since d^S\widehat{d}_{S} factors through AA, it follows that there exist dSDer(A,τ)d_{S}\in\text{Der}(A,\tau) such that d^S(p)=dS(p(X))\widehat{d}_{S}(p)=d_{S}(p(X)) for all pTXp\in\mathbb{C}\langle T_{X}\rangle.

Finally, we show that the map is surjective. Let dSd_{S} be the derivation on AA as defined above, where S=(Sx)xXS=(S_{x})_{x\in X}. We claim that dSDer[,X](A,τ)d_{S}\in\text{Der}_{[\,\cdot\,,X]}(A,\tau). Again, since SXt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))XS\in\overline{\partial^{t}_{X}(\text{HS}(L^{2}(A,\tau)))}^{\text{WOT}}\cap(\text{HS}(L^{2}(A,\tau)))^{X}, there exists (ξλ)λΛL2(AA,ττ)(\xi_{\lambda})_{\lambda\in\Lambda}\subset L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) such that (Xt(ξλ))xX(Sx)xX(\partial^{t}_{X}(\xi_{\lambda}))_{x\in X}\to(S_{x})_{x\in X} in L2L^{2}-norm. Set dλ()=[,ξλ]InnDer(A,τ)d_{\lambda}(\cdot)=[\,\cdot\,,-\xi_{\lambda}]\in\text{InnDer}(A,\tau). Then for dDerFR,X(A,τ)d^{\prime}\in\text{Der}_{\text{FR},X}(A,\tau),

dSdλ,dX\displaystyle\langle d_{S}-d_{\lambda},d^{\prime}\rangle_{X} =xX(dS(x)[x,ξλ],d(x)\displaystyle=\sum_{x\in X}\langle(d_{S}(x)-[x,-\xi_{\lambda}],d^{\prime}(x)\rangle
=xX(Sx[ξλ,x]),d(x)\displaystyle=\sum_{x\in X}\langle(S_{x}-[\xi_{\lambda},x]),d^{\prime}(x)\rangle
=SXt(ξλ),(d(x))xX.\displaystyle=\langle S-\partial^{t}_{X}(\xi_{\lambda}),(d^{\prime}(x))_{x\in X}\rangle.

Since (d(x))xX[ϕX(Der(A,τ))](L2(A,τ)L2(A,τ))X(d^{\prime}(x))_{x\in X}\in[\phi_{X}(\text{Der}(A,\tau))](L^{2}(A,\tau)\odot L^{2}(A^{\circ},\tau^{\circ}))^{X}, we have dSDer[,X](A,τ).d_{S}\in\text{Der}_{[\,\cdot\,,X]}(A,\tau). Thus, we have the following right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-module isomophism

Der[,X](A,τ)Xt(HS(L2(A,τ)))¯WOT(HS(L2(A,τ)))X.\text{Der}_{[\,\cdot\,,X]}(A,\tau)\cong\overline{\partial^{t}_{X}\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}}^{\text{WOT}}\cap\Big{(}\text{HS}\big{(}L^{2}(A,\tau)\big{)}\Big{)}^{X}.

It follows that Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau) is closed and taking their dimension gives

Δ(A,τ)=dimDer[,X](A,τ)(AA)′′.\Delta(A,\tau)=\dim\text{Der}_{[\,\cdot\,,X]}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}.\qed

Next, fix α\alpha a trace-preserving action of a finite abelian group GG on MM and let AA be globally invariant under α\alpha. With the assumption that GG is a finite abelian group, we show that AA contains a generating set that is scaled under α\alpha. Let G^\hat{G} be the dual group of GG and consider the following finite self-adjoint subset of AA,

XG^:={1|G|gGχ(g)¯αg(x):xX,χG^}.X_{\hat{G}}:=\left\{\frac{1}{|G|}\sum_{g\in G}\overline{\chi(g)}\alpha_{g}(x):x\in X,\chi\in\hat{G}\right\}.

Since XG^AX_{\hat{G}}\subset A and x=χG^gG|G|1χ(g)¯αg(x)x=\sum_{\chi\in\hat{G}}\sum_{g\in G}|G|^{-1}\overline{\chi(g)}\alpha_{g}(x), we have XG^=A\mathbb{C}\langle X_{\hat{G}}\rangle=A. We note that XG^X_{\hat{G}} is scaled under α\alpha, since for χG^\chi\in\hat{G}, hGh\in G and xXx\in X

αh(1|G|gGχ(g)¯αg(x))=1|G|gGχ(g)¯αhg(x)=χ(h1)¯1|G|gGχ(g)¯αg(x)=χ(h)1|G|gGχ(g)¯αg(x).\alpha_{h}\left(\frac{1}{|G|}\sum_{g\in G}\overline{\chi(g)}\alpha_{g}(x)\right)=\frac{1}{|G|}\sum_{g\in G}\overline{\chi(g)}\alpha_{hg}(x)=\overline{\chi(h^{-1})}\frac{1}{|G|}\sum_{g\in G}\overline{\chi(g)}\alpha_{g}(x)=\chi(h)\frac{1}{|G|}\sum_{g\in G}\overline{\chi(g)}\alpha_{g}(x).

It follows that AαGA\rtimes_{\alpha}G is generated by Y=XG^{ug:gG}Y=X_{\hat{G}}\cup\{u_{g}:g\in G\}, and these generators are also scaled under the action of α\alpha. Notice that since YY is scaled by α\alpha, one has ,Y=,αg(Y)\langle\cdot,\cdot\rangle_{Y}=\langle\cdot,\cdot\rangle_{\alpha_{g}(Y)} for all gGg\in G. Thus, we can always choose XX a finite self-adjoint generating set for AA such that XX is scaled under α\alpha and similarly for AαGA\rtimes_{\alpha}G.

Our objective is to prove that Theorem 2.5 and Corollary 2.7 can be applied to the subspaces Der[,Y](AαG,τ)\text{Der}_{[\,\cdot\,,Y]}(A\rtimes_{\alpha}G,\tau) and Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau). To do so, it will become apparent that we need to work with a derivation of the form ugD(αg())ugu_{g}^{*}\cdot D(\alpha_{g}(\cdot))\cdot u_{g}, where DDerFR,Y(AαG,τ)D\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau).

Lemma 5.3.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. For each gGg\in G, the map Vg:Der(AαG,τ)Der(AαG,τ)V_{g}:\emph{Der}(A\rtimes_{\alpha}G,\tau)\to\emph{Der}(A\rtimes_{\alpha}G,\tau) defined by

DugD(αg())ugD\mapsto u_{g}^{*}\cdot D(\alpha_{g}(\cdot))\cdot u_{g}

is a unitary with respect to ,Y\langle\cdot,\cdot\rangle_{Y}, where YY is a finite self-adjoint generating set of AαGA\rtimes_{\alpha}G such that YY is scaled under α\alpha. Furthermore, VgV_{g} commutes with the right ((AαG)(AαG))′′((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}-action on Der(AαG,τ)\emph{Der}(A\rtimes_{\alpha}G,\tau) and VgDerFR,Y(AαG,τ)DerFR,Y(AαG,τ),V_{g}\emph{Der}_{\emph{FR},Y}(A\rtimes_{\alpha}G,\tau)\subset\emph{Der}_{\emph{FR},Y}(A\rtimes_{\alpha}G,\tau), for all gGg\in G.

Proof.

First we show that for gGg\in G and DDer(AαG)D\in\text{Der}(A\rtimes_{\alpha}G), VgDV_{g}D is a derivation. Then for a,bAαGa,b\in A\rtimes_{\alpha}G, one has

(VgD)(ab)\displaystyle(V_{g}D)(ab) =ugD(αg(ab))ug\displaystyle=u_{g}^{*}\cdot D(\alpha_{g}(ab))\cdot u_{g}
=(ugug)D(αg(a)αg(b))\displaystyle=(u_{g}^{*}\otimes u_{g}^{\circ})D(\alpha_{g}(a)\alpha_{g}(b))
=(ugug)[D(αg(a))αg(b)+αg(a)D(αg(b))]\displaystyle=(u_{g}^{*}\otimes u_{g}^{\circ})[D(\alpha_{g}(a))\cdot\alpha_{g}(b)+\alpha_{g}(a)\cdot D(\alpha_{g}(b))]
=(ugug)[(ue(ugbug))D(αg(a))+(ugaugue)D(αg(b))]\displaystyle=(u_{g}^{*}\otimes u_{g}^{\circ})[(u_{e}\otimes(u_{g}bu_{g}^{*})^{\circ})D(\alpha_{g}(a))+(u_{g}au_{g}^{*}\otimes u_{e}^{\circ})D(\alpha_{g}(b))]
=(ueb)(ugug)D(αg(a))+(aue)(ugug)D(αg(b))]\displaystyle=(u_{e}\otimes b^{\circ})(u_{g}^{*}\otimes u_{g}^{\circ})D(\alpha_{g}(a))+(a\otimes u_{e}^{\circ})(u_{g}^{*}\otimes u_{g}^{\circ})D(\alpha_{g}(b))]
=VgD(a)b+aVgD(b).\displaystyle=V_{g}D(a)\cdot b+a\cdot V_{g}D(b).

Secondly we show that VgV_{g} is a unitary for all gGg\in G. Indeed, for D,DDer(AαG,τ)D,D^{\prime}\in\text{Der}(A\rtimes_{\alpha}G,\tau) and using ,Y=,αg(Y)\langle\cdot,\cdot\rangle_{Y}=\langle\cdot,\cdot\rangle_{\alpha_{g}(Y)} in the last equality, it follows that

Vg(D),DY\displaystyle\langle V_{g}(D),D^{\prime}\rangle_{Y} =yYugD(αg(y))ug,D(y)\displaystyle=\sum_{y\in Y}\langle u_{g}^{*}\cdot D(\alpha_{g}(y))\cdot u_{g},D^{\prime}(y)\rangle
=yY(ugug)D(αg(y)),D(y)\displaystyle=\sum_{y\in Y}\langle(u_{g}^{*}\otimes u_{g}^{\circ})D(\alpha_{g}(y)),D^{\prime}(y)\rangle
=yYD(αg(y)),(ug(ug))D(y)\displaystyle=\sum_{y\in Y}\langle D(\alpha_{g}(y)),(u_{g}\otimes(u_{g}^{*})^{\circ})D^{\prime}(y)\rangle
=yYD(αg(y)),Vg1D(αg(y))\displaystyle=\sum_{y\in Y}\langle D(\alpha_{g}(y)),V_{g^{-1}}D^{\prime}(\alpha_{g}(y))\rangle
=D,Vg1Dαg(Y)\displaystyle=\langle D,V_{g^{-1}}D^{\prime}\rangle_{\alpha_{g}(Y)}
=D,Vg1DY.\displaystyle=\langle D,V_{g^{-1}}D^{\prime}\rangle_{Y}.

Next, for m((AαG)(AαG))′′m\in((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}, DDer(AαG,τ)D\in\text{Der}(A\rtimes_{\alpha}G,\tau) and bAαGb\in A\rtimes_{\alpha}G, one has

[Vg(Dm)](b)=ug(Dm)(αg(b))ug=(ugug)JττmJττD(αg(b))[V_{g}(D\cdot m)](b)=u_{g}^{*}\cdot(D\cdot m)(\alpha_{g}(b))\cdot u_{g}=(u_{g}^{*}\otimes u_{g}^{\circ})J_{\tau\otimes\tau^{\circ}}m^{*}J_{\tau\otimes\tau^{\circ}}D(\alpha_{g}(b))

and by JττmJττ((AαG)(AαG))J_{\tau\otimes\tau^{\circ}}m^{*}J_{\tau\otimes\tau^{\circ}}\in((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime}, we have

[Vg(Dm)](b)=JττmJττ(ugug)D(αg(b))=(VgD(b))m.[V_{g}(D\cdot m)](b)=J_{\tau\otimes\tau^{\circ}}m^{*}J_{\tau\otimes\tau^{\circ}}(u_{g}^{*}\otimes u_{g}^{\circ})D(\alpha_{g}(b))=(V_{g}D(b))\cdot m.

Thus for each gGg\in G, VgV_{g} commutes with the right ((AαG)(AαG))′′((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}-action on Der(AαG,τ)\text{Der}(A\rtimes_{\alpha}G,\tau).

Lastly, we show that for each gGg\in G, VgDerFR,Y(AαG,τ)DerFR,Y(AαG,τ)V_{g}\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau)\subset\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau). For each yYy\in Y and gGg\in G, one has αg(y)=λg,yy\alpha_{g}(y)=\lambda_{g,y}y. For DDer(AαG,τ)D\in\text{Der}(A\rtimes_{\alpha}G,\tau), we get

ϕY(VgD)=((ugug)λg,yD(y))yY=(δy=y(ugug)λg,y)y,yϕY(D)\phi_{Y}(V_{g}D)=((u_{g}^{*}\otimes u_{g}^{\circ})\lambda_{g,y}D(y))_{y\in Y}=(\delta_{y=y^{\prime}}(u_{g}^{*}\otimes u_{g}^{\circ})\lambda_{g,y})_{y,y^{\prime}}\phi_{Y}(D)

and it follows that

ϕYVgϕY1=(δy=y(ugug)λg,y)y,yM|Y|(((AαG)(AαG)),ττ).\phi_{Y}V_{g}\phi^{-1}_{Y}=(\delta_{y=y^{\prime}}(u_{g}^{*}\otimes u_{g}^{\circ})\lambda_{g,y})_{y,y^{\prime}}\in M_{|Y|}(((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ}),\tau\otimes\tau^{\circ}).

Notice that

ϕYVgϕY1(ϕY(Der(AαG,τ)))ϕY(Der(AαG,τ))\phi_{Y}V_{g}\phi^{-1}_{Y}(\phi_{Y}(\text{Der}(A\rtimes_{\alpha}G,\tau)))\subset\phi_{Y}(\text{Der}(A\rtimes_{\alpha}G,\tau))

for all gGg\in G, which means that the subspace is reducing for ϕYVgϕY1\phi_{Y}V_{g}\phi_{Y}^{-1} and so it commutes with [ϕY(Der(AαG,τ))][\phi_{Y}(\text{Der}(A\rtimes_{\alpha}G,\tau))]. Since

ϕYVgϕY1(L2(AαG,τ)L2((AαG),τ))Y(L2(AαG,τ)L2((AαG),τ))Y,\phi_{Y}V_{g}\phi^{-1}_{Y}(L^{2}(A\rtimes_{\alpha}G,\tau)\odot L^{2}((A\rtimes_{\alpha}G)^{\circ},\tau^{\circ}))^{Y}\subset(L^{2}(A\rtimes_{\alpha}G,\tau)\odot L^{2}((A\rtimes_{\alpha}G)^{\circ},\tau^{\circ}))^{Y},

it follows that VgDDerFR,Y(AαG,τ)V_{g}D\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau), when DDerFR,Y(AαG,τ)D\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau). ∎

Remark 5.4.

Let YAαGY\subset A\rtimes_{\alpha}G be any finite self-adjoint subset satisfying AαG=YA\rtimes_{\alpha}G=\mathbb{C}\langle Y\rangle. In particular, YY need not be scaled under the action of GG. In this case, VgV_{g} is no longer a unitary with respect to ,Y\langle\cdot,\cdot\rangle_{Y} for all gGg\in G. But following the proof above, one still has Vg(D),DY=D,Vg1Dαg(Y)\langle V_{g}(D),D^{\prime}\rangle_{Y}=\langle D,V_{g^{-1}}D^{\prime}\rangle_{\alpha_{g}(Y)}. Since AαG=αg(Y)A\rtimes_{\alpha}G=\mathbb{C}\langle\alpha_{g}(Y)\rangle, for all yYy^{\prime}\in Y there exists a polynomial pyTYp_{y^{\prime}}\in\mathbb{C}\langle T_{Y}\rangle such that αg(y)=py(Y)\alpha_{g}(y^{\prime})=p_{y^{\prime}}(Y). Then we get

(VgD)(y)=ugD(αg(y))ug=(ugug)D(py(Y))=yY(ugug)y(py)(Y)D(y).(V_{g}D)(y^{\prime})=u_{g}^{*}\cdot D(\alpha_{g}(y^{\prime}))\cdot u_{g}=(u_{g}^{*}\otimes u_{g}^{\circ})D(p_{y^{\prime}}(Y))=\sum_{y\in Y}(u_{g}^{*}\otimes u_{g}^{\circ})\partial_{y}(p_{y^{\prime}})(Y)D(y).

From the last equality above

ϕYVgϕY1=((ugug)y(py)(Y))y,yYM|Y|((AαG)(AαG)).\phi_{Y}V_{g}\phi^{-1}_{Y}=((u_{g}^{*}\otimes u_{g}^{\circ})\partial_{y}(p_{y^{\prime}})(Y))_{y^{\prime},y\in Y}\in M_{|Y|}((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ}).

Notice that

ϕYVgϕY1(ϕY(Der(AαG,τ)))ϕY(Der(AαG,τ))\phi_{Y}V_{g}\phi^{-1}_{Y}(\phi_{Y}(\text{Der}(A\rtimes_{\alpha}G,\tau)))\subset\phi_{Y}(\text{Der}(A\rtimes_{\alpha}G,\tau))

for all gGg\in G, which means that the subspace is reducing for ϕYVgϕY1\phi_{Y}V_{g}\phi_{Y}^{-1} and so it commutes with [ϕY(Der(AαG,τ))][\phi_{Y}(\text{Der}(A\rtimes_{\alpha}G,\tau))]. Since

ϕYVgϕY1(L2(AαG,τ)L2((AαG),τ))Y(L2(AαG,τ)L2((AαG),τ))Y,\phi_{Y}V_{g}\phi^{-1}_{Y}(L^{2}(A\rtimes_{\alpha}G,\tau)\odot L^{2}((A\rtimes_{\alpha}G)^{\circ},\tau^{\circ}))^{Y}\subset(L^{2}(A\rtimes_{\alpha}G,\tau)\odot L^{2}((A\rtimes_{\alpha}G)^{\circ},\tau^{\circ}))^{Y},

it follows that VgDDerFR,Y(AαG,τ)V_{g}D\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau), when DDerFR,Y(AαG,τ)D\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau).

Lemma 5.5.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. For DDer[,Y]([G]AαG,τ)D\in\emph{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), there exists (Dλ)λΛInnDer([G]AαG,τ)(D_{\lambda})_{\lambda\in\Lambda}\subset\emph{InnDer}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) that almost weakly approximates DD, where YY is a finite self-adjoint generating set for AαGA\rtimes_{\alpha}G such that YY is scaled under α\alpha.

Proof.

In light of Lemma 2.2, we need to find a net of inner derivation that almost weakly approximates DD such that each inner derivation satisfies the covariant condition, where DDer[,Y]([G]AαG,τ)D\in\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). Since DDer[,Y]([G]AαG,τ)D\in\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), there exists (Dλ)λΛInnDer(AαG,τ)(D_{\lambda})_{\lambda\in\Lambda}\subset\text{InnDer}(A\rtimes_{\alpha}G,\tau) that almost weakly approximates DD. First, we show that for all gGg\in G, {VgDλ}λΛ\{V_{g}D_{\lambda}\}_{\lambda\in\Lambda} almost weakly approximates DD. For gGg\in G and DDerFR,Y(AαG,τ)D^{\prime}\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau), we have by Lemma 5.3 that Vg1DV_{g^{-1}}D^{\prime} is a derivation on AαGA\rtimes_{\alpha}G and Vg1DDerFR,Y(AαG,τ)V_{g^{-1}}D^{\prime}\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau). So using DDer([G]AαG,τ)D\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) in the second equality,

DVgDλ,DY\displaystyle\langle D-V_{g}D_{\lambda},D^{\prime}\rangle_{Y} =yYD(y)(VgDλ)(y),D(y)\displaystyle=\sum_{y\in Y}\langle D(y)-(V_{g}D_{\lambda})(y),D^{\prime}(y)\rangle
=yYugD(αg(y))ugugDλ(αg(y))ug,D(y)\displaystyle=\sum_{y\in Y}\langle u_{g}^{*}\cdot D(\alpha_{g}(y))\cdot u_{g}-u_{g}^{*}\cdot D_{\lambda}(\alpha_{g}(y))\cdot u_{g},D^{\prime}(y)\rangle
=yY(DDλ)(αg(y)),(ug(ug))D(y)\displaystyle=\sum_{y\in Y}\langle(D-D_{\lambda})(\alpha_{g}(y)),(u_{g}\otimes(u_{g}^{*})^{\circ})D^{\prime}(y)\rangle
=yY(DDλ)(αg(y)),(Vg1D)(αg(y))\displaystyle=\sum_{y\in Y}\langle(D-D_{\lambda})(\alpha_{g}(y)),(V_{g^{-1}}D^{\prime})(\alpha_{g}(y))\rangle
=(DDλ),(Vg1D)αg(Y)\displaystyle=\langle(D-D_{\lambda}),(V_{g^{-1}}D^{\prime})\rangle_{\alpha_{g}(Y)}
=(DDλ),(Vg1D)Y.\displaystyle=\langle(D-D_{\lambda}),(V_{g^{-1}}D^{\prime})\rangle_{Y}.

Thus, for all gGg\in G, {VgDλ}λΛ\{V_{g}D_{\lambda}\}_{\lambda\in\Lambda} almost weakly approximates DD. Hence, we have that {1|G|gGVgDλ}InnDer([G]AαG,τ)\left\{\frac{1}{|G|}\sum_{g\in G}V_{g}D_{\lambda}\right\}\in\text{InnDer}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) almost weakly approximates DDer[,Y]([G]AαG,τ)D\in\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). ∎

Notice that the following lemma does not need GG to be abelian.

Lemma 5.6.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha with XAX\subset A a finite self-adjoint subset satisfying A=XA=\mathbb{C}\langle X\rangle and set Y=X{ug:gG}Y=X\cup\{u_{g}:g\in G\}. Then for hGh\in G, we have

  1. (1)

    dhDerFR,Y([G]AαG,τ)d^{h}\in\emph{Der}_{\emph{FR},Y}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), whenever dDerFR,X(A,τ)d\in\emph{Der}_{\emph{FR},X}(A,\tau); and

  2. (2)

    DhDerFR,X(A,τ)D_{h}\in\emph{Der}_{\emph{FR},X}(A,\tau), whenever DDerFR,Y(AαG,τ)D\in\emph{Der}_{\emph{FR},Y}(A\rtimes_{\alpha}G,\tau).

Proof.
  1. (1)

    By Theorem 2.5 and using ϕX1\phi_{X}^{-1} and ϕY\phi_{Y}, the map ddhd\mapsto d^{h} can defined on ϕXDer(A,τ)\phi_{X}\text{Der}(A,\tau) into ϕYDer(AαG,τ)\phi_{Y}\text{Der}(A\rtimes_{\alpha}G,\tau). Since

    Jττ(ueuh)Jττ(ugug)(L2(A,τ)L2(A,τ))L2(AαG,τ)L2((AαG),τ),J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}(u_{g}^{*}\otimes u_{g})(L^{2}(A,\tau)\odot L^{2}(A^{\circ},\tau^{\circ}))\subset L^{2}(A\rtimes_{\alpha}G,\tau)\odot L^{2}((A\rtimes_{\alpha}G)^{\circ},\tau^{\circ}),

    it follows that dhDerFR,Y(AαG,τ)d^{h}\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau), whenever dDerFR,X(A,τ)d\in\text{Der}_{\text{FR},X}(A,\tau).

  2. (2)

    By Theorem 2.5 and using ϕY1\phi_{Y}^{-1} and ϕX\phi_{X}, the map DDhD\mapsto D_{h} can defined on ϕYDer(A,τ)\phi_{Y}\text{Der}(A,\tau) into ϕXDer(AαG,τ)\phi_{X}\text{Der}(A\rtimes_{\alpha}G,\tau). Since

    Jττ(ueuh)Jττpe,h(L2(AαG,τ)L2((AαG),τ))(L2(A,τ)L2(A,τ)),J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}(L^{2}(A\rtimes_{\alpha}G,\tau)\odot L^{2}((A\rtimes_{\alpha}G)^{\circ},\tau^{\circ}))\subset(L^{2}(A,\tau)\odot L^{2}(A^{\circ},\tau^{\circ})),

    it follows that dhDerFR,Y](AαG,τ)d^{h}\in\text{Der}_{\text{FR},Y]}(A\rtimes_{\alpha}G,\tau), whenever dDerFR,X](A,τ)d\in\text{Der}_{\text{FR},X]}(A,\tau). ∎

The issue that arises trying to prove Theorem 5.7 is the fact that Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau) depends on the generating set. In the first map ddhd\to d^{h} of Theorem 2.5, the inner products that we have are ,αg(X)\langle\cdot,\cdot\rangle_{\alpha_{g}(X)} for each gGg\in G. However, since GG is abelian, we have that ,αg(X)=,X\langle\cdot,\cdot\rangle_{\alpha_{g}(X)}=\langle\cdot,\cdot\rangle_{X} and this further implies that given a net of inner derivation that almost weakly approximates a derivation with respect to ,X\langle\cdot,\cdot\rangle_{X}, then the same net almost weakly approximates the same derivation with respect to ,αg(X)\langle\cdot,\cdot\rangle_{\alpha_{g}(X)}.

Theorem 5.7 (Theorem C).

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Then

Δ([G]AαG,τ)=1|G|Δ(A,τ).\Delta(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)=\frac{1}{|G|}\Delta(A,\tau).

Furthermore, we have

Δ(AαG,τ)1=1|G|(Δ(A,τ)1).\Delta(A\rtimes_{\alpha}G,\tau)-1=\frac{1}{|G|}(\Delta(A,\tau)-1).
Proof.

Let XX be a generating set for AA that is scaled under α\alpha and set Y:=X{ug:gG}Y:=X\cup\{u_{g}:g\in G\}. First, we show that dhDer[,Y](AαG,τ)d^{h}\in\text{Der}_{[\,\cdot\,,Y]}(A\rtimes_{\alpha}G,\tau), whenever dDer[,X](A,τ)d\in\text{Der}_{[\,\cdot\,,X]}(A,\tau) and hGh\in G. For each dDer[,X](A,τ)d\in\text{Der}_{[\,\cdot\,,X]}(A,\tau), we have by Lemma 2.3 that dhDer([G]AαG)d^{h}\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G). Since dDer[,X](A,τ)d\in\text{Der}_{[\,\cdot\,,X]}(A,\tau), there exists (dλ)λΛInnDer(A,τ)(d_{\lambda})_{\lambda\in\Lambda}\subset\text{InnDer}(A,\tau) that almost weakly approximates dd and we note that (dλ)hInnDer(AαG,τ)(d_{\lambda})^{h}\in\text{InnDer}(A\rtimes_{\alpha}G,\tau). Let DDerFR,Y(AαG,τ)D^{\prime}\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau) and by Lemma 5.3 and Lemma 5.6, we know that VgDDerFR,Y(AαG,τ)V_{g}D^{\prime}\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau) and (VgD)hDerFR,X(A,τ)(V_{g}D^{\prime})_{h}\in\text{Der}_{\text{FR},X}(A,\tau) for all gGg\in G, respectively. Since dh,(dλ)hDer([G]AαG)d^{h},(d_{\lambda})^{h}\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G), we have

dh(dλ)h,DY\displaystyle\langle d^{h}-(d_{\lambda})^{h},D^{\prime}\rangle_{Y} =xX(dh(dλ)h)(x),D(x)\displaystyle=\sum_{x\in X}\langle(d^{h}-(d_{\lambda})^{h})(x),D^{\prime}(x)\rangle
=xXgG(ddλ)(αg(x)),Jττ(ueuh)Jττ(ug(ug))D(x)\displaystyle=\sum_{x\in X}\sum_{g\in G}\langle(d-d_{\lambda})(\alpha_{g}(x)),J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}(u_{g}\otimes(u_{g}^{*})^{\circ})D^{\prime}(x)\rangle

and since (ddλ)(a)L2(AA,ττ)(d-d_{\lambda})(a)\in L^{2}(A\otimes A^{\circ},\tau\otimes\tau^{\circ}) for aAa\in A and by Lemma 2.1, the computation above becomes

dh(dλ)h,DY\displaystyle\langle d^{h}-(d_{\lambda})^{h},D^{\prime}\rangle_{Y} =xXgG(ddλ)(αg(x)),pe,eJττ(ueuh)Jττ(Vg1D)(αg(x))\displaystyle=\sum_{x\in X}\sum_{g\in G}\langle(d-d_{\lambda})(\alpha_{g}(x)),p_{e,e}J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}(V_{g^{-1}}D^{\prime})(\alpha_{g}(x))\rangle
=xXgG(ddλ)(αg(x)),Jττ(ueuh)Jττpe,h(Vg1D)(αg(x)),\displaystyle=\sum_{x\in X}\sum_{g\in G}\langle(d-d_{\lambda})(\alpha_{g}(x)),J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}(V_{g^{-1}}D^{\prime})(\alpha_{g}(x))\rangle,
=xXgG(ddλ)(αg(x)),(Vg1D)h(αg(x))\displaystyle=\sum_{x\in X}\sum_{g\in G}\langle(d-d_{\lambda})(\alpha_{g}(x)),(V_{g^{-1}}D^{\prime})_{h}(\alpha_{g}(x))\rangle
=gGddλ,(Vg1D)hαg(X)\displaystyle=\sum_{g\in G}\langle d-d_{\lambda},(V_{g^{-1}}D^{\prime})_{h}\rangle_{\alpha_{g}(X)}
=gGddλ,(Vg1D)hX.\displaystyle=\sum_{g\in G}\langle d-d_{\lambda},(V_{g^{-1}}D^{\prime})_{h}\rangle_{X}.

Hence dhDer[,Y]([G]AαG,τ)d^{h}\in\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau). Thus the map ddhd\mapsto d^{h} in Theorem 2.5 can be restricted to the following subspaces Der[,Y]([G]AαG,τ)\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) and Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau).

Next, we show that for hGh\in G and DDer[,Y](AαG,τ)D\in\text{Der}_{[\,\cdot\,,Y]}(A\rtimes_{\alpha}G,\tau), we have DhDer[,X](A,τ)D_{h}\in\text{Der}_{[\,\cdot\,,X]}(A,\tau). Let DDer[,Y]([G]AαG,τ)D\in\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) and by Lemma 2.4, we have that DhDer(A,τ)D_{h}\in\text{Der}(A,\tau). By Lemma 5.5, there exists (Dλ)λΛInnDer([G]AαG)(D_{\lambda})_{\lambda\in\Lambda}\in\text{InnDer}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G) that almost weakly approximates DD. Let dDerFR,X(A,τ)d^{\prime}\in\text{Der}_{\text{FR},X}(A,\tau) and by Lemma 5.6, we have dhDerFR,Y(AαG,τ)d^{h}\in\text{Der}_{\text{FR},Y}(A\rtimes_{\alpha}G,\tau). Then

Dh(Dλ)h,dX\displaystyle\langle D_{h}-(D_{\lambda}^{\prime})_{h},d^{\prime}\rangle_{X} =xXJττ(ueuh)Jττpe,h(DDλ)(x),d(x)\displaystyle=\sum_{x\in X}\langle J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes u_{h}^{\circ})J_{\tau\otimes\tau^{\circ}}p_{e,h}(D-D_{\lambda}^{\prime})(x),d^{\prime}(x)\rangle
=xX(DDλ)(x),pe,hJττ(ue(uh))Jττd(x),\displaystyle=\sum_{x\in X}\langle(D-D_{\lambda}^{\prime})(x),p_{e,h}J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}d^{\prime}(x)\rangle,

and since d(a)L2(A,τ)L2(A,τ)d^{\prime}(a)\in L^{2}(A,\tau)\odot L^{2}(A^{\circ},\tau^{\circ}) for aAa\in A, we can further compute

Dh(Dλ)h,dX\displaystyle\langle D_{h}-(D_{\lambda}^{\prime})_{h},d^{\prime}\rangle_{X} =xX(DDλ)(x),Jττ(ue(uh))Jττd(x)\displaystyle=\sum_{x\in X}\langle(D-D_{\lambda}^{\prime})(x),J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}d^{\prime}(x)\rangle
=1|G|gGxX(DDλ)(αg(x)),Jττ(ue(uh))Jττd(αg(x))\displaystyle=\frac{1}{|G|}\sum_{g\in G}\sum_{x\in X}\langle(D-D_{\lambda}^{\prime})(\alpha_{g}(x)),J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}d^{\prime}(\alpha_{g}(x))\rangle
=1|G|gGxX(DDλ)(x),Jττ(ue(uh))Jττ(ugug)d(αg(x))\displaystyle=\frac{1}{|G|}\sum_{g\in G}\sum_{x\in X}\langle(D-D_{\lambda}^{\prime})(x),J_{\tau\otimes\tau^{\circ}}(u_{e}\otimes(u_{h}^{*})^{\circ})J_{\tau\otimes\tau^{\circ}}(u_{g}^{*}\otimes u_{g}^{\circ})d^{\prime}(\alpha_{g}(x))\rangle
=1|G|xX(DDλ)(x),(d)h(x).\displaystyle=\frac{1}{|G|}\sum_{x\in X}\langle(D-D_{\lambda}^{\prime})(x),(d^{\prime})^{h}(x)\rangle.

Since D,Dλ,(d)hDer([G]AαG,τ)D,D^{\prime}_{\lambda},(d^{\prime})^{h}\in\text{Der}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau), the computation becomes

Dh(Dλ)h,dX=1|G|yY(DDλ)(y),(d)h(y)=1|G|DDλ,(d)hY.\langle D_{h}-(D_{\lambda}^{\prime})_{h},d^{\prime}\rangle_{X}=\frac{1}{|G|}\sum_{y\in Y}\langle(D-D_{\lambda}^{\prime})(y),(d^{\prime})^{h}(y)\rangle=\frac{1}{|G|}\langle D-D_{\lambda}^{\prime},(d^{\prime})^{h}\rangle_{Y}.

Hence, DhDer[,X](A,τ)D_{h}\in\text{Der}_{[\cdot,X]}(A,\tau). Thus the map DDhD\mapsto D_{h} in Theorem 2.5 can be restricted to the following subspaces Der[,Y]([G]AαG,τ)\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) and Der[,X](A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau).

By applying the third map in Theorem 2.5, one has the right (AA)′′(A\otimes A^{\circ})^{\prime\prime}-module isomorphism

Der[,Y]([G]AαG,τ)=gG(Der[,X](A,τ))1αg,\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)=\bigoplus_{g\in G}(\text{Der}_{[\,\cdot\,,X]}(A,\tau))_{1\otimes\alpha_{g}},

where the direct sum is with respect to the ,Y\langle\cdot,\cdot\rangle_{Y}, where Y=X{ug:gG}Y=X\cup\{u_{g}:g\in G\}.

Lastly, by Lemma 1.2 and Der[,{ug:gG}]([G],τ)=InnDer([G],τ)¯\text{Der}_{[\cdot,\{u_{g}:g\in G\}]}(\mathbb{C}[G],\tau)=\overline{\text{InnDer}(\mathbb{C}[G],\tau)}, we can apply Corollary 2.7 to the following subspaces Der[,Y](AαG,τ)Der(AαG,τ)\text{Der}_{[\,\cdot\,,Y]}(A\rtimes_{\alpha}G,\tau)\subset\text{Der}(A\rtimes_{\alpha}G,\tau) and Der[,X](A,τ)Der(A,τ)\text{Der}_{[\,\cdot\,,X]}(A,\tau)\subset\text{Der}(A,\tau) to get

Δ([G]AαG,τ)\displaystyle\Delta(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau) =dimDer[,Y]([G]AαG,τ)((AαG)(AαG))′′\displaystyle=\dim\text{Der}_{[\,\cdot\,,Y]}(\mathbb{C}[G]\subset A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}
=1|G|dimDer[,X](A,τ)(AA)′′\displaystyle=\frac{1}{|G|}\dim\text{Der}_{[\,\cdot\,,X]}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}
=1|G|Δ(A,τ),\displaystyle=\frac{1}{|G|}\Delta(A,\tau),

and

Δ(AαG,τ)1\displaystyle\Delta(A\rtimes_{\alpha}G,\tau)-1 =dimDer[,Y](AαG,τ)((AαG)(AαG))′′1\displaystyle=\dim\text{Der}_{[\,\cdot\,,Y]}(A\rtimes_{\alpha}G,\tau)_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}-1
=1|G|(dimDer[,X](A,τ)(AA)′′1)\displaystyle=\frac{1}{|G|}(\dim\text{Der}_{[\,\cdot\,,X]}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}-1)
=1|G|(Δ(A,τ)1).\displaystyle=\frac{1}{|G|}(\Delta(A,\tau)-1).\qed

The following corollary follows by a similar proof to Corollary 2.8.

Corollary 5.8.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. If HGH\subset G is a finite subgroup of GG, then

Δ(AαG,τ)1=1[G:H](Δ(AαH,τ)1).\Delta(A\rtimes_{\alpha}G,\tau)-1=\frac{1}{[G:H]}(\Delta(A\rtimes_{\alpha}H,\tau)-1).

The following is an estimate for the free entropy dimension δ0\delta_{0} when we consider the crossed product of a von Neumann algebra with a finite abelian group, this uses a known inequality, δ0Δ\delta_{0}\leq\Delta (see [CS05, Corollary 4.6]).

Corollary 5.9.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. Then for any generating set YY of AαGA\rtimes_{\alpha}G, we have

δ0(Y)1|G|(Δ(A,τ)1)+1.\delta_{0}(Y)\leq\frac{1}{|G|}(\Delta(A,\tau)-1)+1. (4)

In particular, if AA is a weak operator topology dense subset of MM with XX is a finite self-adjoint generating subset of AA then for any generating set YY of AαGA\rtimes_{\alpha}G, we have

δ0(Y)1|G|(|X|1)+2.\delta_{0}(Y)\leq\frac{1}{|G|}(|X|-1)+2.
Proof.

Using [CS05, Corollary 4.6] and Theorem 5.7, we have

δ0(Y)Δ(AαG,τ)=1|G|(Δ(A,τ)1)+1.\delta_{0}(Y)\leq\Delta(A\rtimes_{\alpha}G,\tau)=\frac{1}{|G|}(\Delta(A,\tau)-1)+1.

Lastly, let A=XA=\mathbb{C}\langle X\rangle be weak operator topology dense in MM. Then, since Δ\Delta is a *-algebra invariant, we further obtain

δ0(Y)=1|G|(Δ(A,τ)1)+11|G|(|X|1)+1.\delta_{0}(Y)=\frac{1}{|G|}(\Delta(A,\tau)-1)+1\leq\frac{1}{|G|}(|X|-1)+1.\qed

Similar to Example 3.5, the following example we consider GG to be a countable abelian group.

Example 5.10.

Let GG, GnG_{n}, L(G)L(G), MM, α\alpha, AA, and YY be as in Example 3.5. We use the same proof but using [CS05, Theorem 3.3] and [CS05, Corollary 3.5] instead of [CN21, Corollary 2.13] and [CN22, Corollary 3.3], respectively, one has

Δ((AαGn)Y,τ)1+1|Gn|Δ(A,τ).\Delta((A\rtimes_{\alpha}G_{n})\vee\mathbb{C}\langle Y\rangle,\tau)\leq 1+\frac{1}{|G_{n}|}\Delta(A,\tau).

Hence, for all ε>0\varepsilon>0, AαGA\rtimes_{\alpha}G admits a dense *-subalgebra BB with Δ(B,τ)1+ε\Delta(B,\tau)\leq 1+\varepsilon. By Corollary 5.9, it follows that for all ε>0\varepsilon>0, MαGM\rtimes_{\alpha}G admits a generating set YY such that δ0(Y)1+ε.\delta_{0}(Y)\leq 1+\varepsilon.\hfill\blacksquare

In [Shl22, Corollary 5] Shlyakhtenko showed that there exists a particular generating set YY of AαGA\rtimes_{\alpha}G such that δ0(Y)|G|1(2|X|+2)+1\delta_{0}(Y)\leq|G|^{-1}(2|X|+2)+1. Corollary 5.9 shows that any generating set of AαGA\rtimes_{\alpha}G can be used to obtain the sharper bound in equality (4)

Although, it is still unknown if δ,δ,δ0\delta^{*},\delta^{\star},\delta_{0} are *-algebra invariants; when Δ\Delta and dimDerc\dim\text{Der}_{c} agree, one has that δ\delta^{*}, δ\delta^{\star} and δ0\delta_{0} are indeed *-algebra invaraints by [Shl09, Theorem 2] and [CS05, Lemma 4.1, Theorem 4.4]. The following corollary extends the class where δ\delta^{*}, δ\delta^{\star} and δ0\delta_{0} agree and are *-algebra invaraints.

Corollary 5.11.

Let Gα(M,τ)G\stackrel{{\scriptstyle\alpha}}{{\curvearrowright}}(M,\tau) be a trace-preserving action of a finite abelian group GG on a tracial von Neumann algebra and let AMA\subset M be a finitely generated unital *-subalgebra which is globally invariant under α\alpha. If we have dimDerc(A,τ)(AA)′′=Δ(A,τ)\dim\emph{Der}_{c}(A,\tau)_{(A\otimes A^{\circ})^{\prime\prime}}=\Delta(A,\tau) and A′′A^{\prime\prime} can be embedded in the ultrapower of the hyperfinite II1\emph{II}_{1} factor, then for any generating set YY of AαGA\rtimes_{\alpha}G, one has

dimDerc(A,τ)¯(AA)′′=δ0(Y)=δ(Y)=δ(Y)=Δ(AαG,τ).\dim\overline{\emph{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}=\delta_{0}(Y)=\delta^{*}(Y)=\delta^{\star}(Y)=\Delta(A\rtimes_{\alpha}G,\tau).

If we instead have σ(A,τ)=Δ(A,τ)\sigma(A,\tau)=\Delta(A,\tau), then for any generating set YY of AαGA\rtimes_{\alpha}G, one has

σ(AαG,τ)=δ(Y)=δ(Y)=Δ(AαG,τ).\sigma(A\rtimes_{\alpha}G,\tau)=\delta^{*}(Y)=\delta^{\star}(Y)=\Delta(A\rtimes_{\alpha}G,\tau).
Proof.

We only show the first set of equalities, since the other uses a similar proof but with [CN21, Corollary 4.4] and Theorem 3.1. By [Shl09, Theorem 2] and [CS05, Lemma 4.1, Theorem 4.4], we have

dimDerc(A,τ)¯(AA)′′δ0(X)δ(X)δ(X)Δ(A,τ).\dim\overline{\text{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}\leq\delta_{0}(X)\leq\delta^{*}(X)\leq\delta^{\star}(X)\leq\Delta(A,\tau).

Since dimDerc(A,τ)¯(AA)′′=Δ(A,τ)\dim\overline{\text{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}=\Delta(A,\tau) it follows that

dimDerc(A,τ)¯(AA)′′=δ0(x)=δ(X)=δ(X)=Δ(A,τ).\dim\overline{\text{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}=\delta_{0}(x)=\delta^{*}(X)=\delta^{\star}(X)=\Delta(A,\tau).

It follows from Theorem 4.1 and Theorem 5.7 that

dimDerc(AαG,τ)¯((AαG)(AαG))′′\displaystyle\dim\overline{\text{Der}_{c}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}} =1|G|(dimDerc(A,τ)¯(AA)′′1)+1\displaystyle=\frac{1}{|G|}(\dim\overline{\text{Der}_{c}(A,\tau)}_{(A\otimes A^{\circ})^{\prime\prime}}-1)+1
=1|G|(Δ(A,τ)1)+1\displaystyle=\frac{1}{|G|}(\Delta(A,\tau)-1)+1
=Δ(AαG,τ).\displaystyle=\Delta(A\rtimes_{\alpha}G,\tau).

Thus, we have dimDerc(AαG,τ)¯((AαG)(AαG))′′=δ0(Y)=δ(Y)=δ(Y)=Δ(AαG,τ)\dim\overline{\text{Der}_{c}(A\rtimes_{\alpha}G,\tau)}_{((A\rtimes_{\alpha}G)\otimes(A\rtimes_{\alpha}G)^{\circ})^{\prime\prime}}=\delta_{0}(Y)=\delta^{*}(Y)=\delta^{\star}(Y)=\Delta(A\rtimes_{\alpha}G,\tau). ∎

References

  • [CN21] Ian Charlesworth and Brent Nelson, Free Stein irregularity and dimension, J. Operator Theory 85 (2021), no. 1, 101–133. MR 4198966
  • [CN22] by same author, On free Stein dimension, Preprint available at arXiv:2201.000621, 2022.
  • [CS05] Alain Connes and Dimitri Shlyakhtenko, L2L^{2}-homology for von Neumann algebras, J. Reine Angew. Math. 586 (2005), 125–168. MR 2180603 (2007b:46104)
  • [HNN49] Graham Higman, B. H. Neumann, and Hanna Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254. MR 32641
  • [MSY20] Tobias Mai, Roland Speicher, and Sheng Yin, The free field: realization via unbounded operators and atiyah property, Preprint available at arXiv:1905.08187, 2020.
  • [Pet09] Jesse Peterson, A 1-cohomology characterization of property (T) in von Neumann algebras, Pacific J. Math. 243 (2009), no. 1, 181–199. MR 2550142
  • [Shl09] Dimitri Shlyakhtenko, Lower estimates on microstates free entropy dimension, Anal. PDE 2 (2009), no. 2, 119–146. MR 2547131 (2012a:46129)
  • [Shl22] by same author, A inequality for non-microstates free entropy dimension for crossed products by finite abelian groups, Preprint available at arXiv:2201.09503, 2022.
  • [Voi94] Dan-Virgil Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. II, Invent. Math. 118 (1994), no. 3, 411–440. MR 1296352 (96a:46117)
  • [Voi96] D. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. III. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), no. 1, 172–199. MR 1371236
  • [Voi98] Dan-Virgil Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory. V. Noncommutative Hilbert transforms, Invent. Math. 132 (1998), no. 1, 189–227. MR 1618636 (99d:46087)