This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Schur–Weyl duality, Verma modules, and row quotients of Ariki–Koike algebras

Abel Lacabanne Institut de Recherche en Mathématique et Physique
Université Catholique de Louvain
Chemin du Cyclotron 2
1348 Louvain-la-Neuve
Belgium
abel.lacabanne@uclouvain.be
 and  Pedro Vaz Institut de Recherche en Mathématique et Physique
Université Catholique de Louvain
Chemin du Cyclotron 2
1348 Louvain-la-Neuve
Belgium
pedro.vaz@uclouvain.be
Abstract.

We prove a Schur–Weyl duality between the quantum enveloping algebra of 𝔤𝔩m\mathfrak{gl}_{m} and certain quotient algebras of Ariki–Koike algebras, which we describe explicitly. This duality involves several algebraically independent parameters and the module underlying it is a tensor product of a parabolic universal Verma module and a tensor power of the standard representation of 𝔤𝔩m\mathfrak{gl}_{m}. We also give a new presentation by generators and relations of the generalized blob algebras of Martin and Woodcock as well as an interpretation in terms of Schur–Weyl duality by showing they occur as a special case of our algebras.

1. Introduction

Schur–Weyl duality is a celebrated theorem connecting the finite-dimensional modules over the general linear and the symmetric groups. It states that, over a field 𝕜\Bbbk that is algebraically closed, the actions of GLm(𝕜)GL_{m}(\Bbbk) and 𝔖n\mathfrak{S}_{n} on V=(𝕜m)nV=(\Bbbk^{m})^{\otimes n} commute and form double centralizers. Several variants of (quantum) Schur–Weyl duality are known, see for example [4, 6, 5, 9, 16, 24] for such variants related to our paper. One particular family of generalizations of interest for us uses a module akin to the one appearing in Schur–Weyl duality, but with an infinite-dimensional module instead of VV. For example, in [15] it is established a Schur–Weyl duality between 𝒰q(𝔰𝔩2)\mathcal{U}_{q}(\mathfrak{sl}_{2}) and the blob algebra of Martin and Saleur [19] with the underlying module being a tensor product of a projective Verma module with several copies of the standard representation of 𝒰q(𝔰𝔩2)\mathcal{U}_{q}(\mathfrak{sl}_{2}). We should warn the reader that in [15] the blob algebra was called the Temperley–Lieb algebra of type BB (see [18] for further explanations).

1.1. In this paper

We consider the tensor product of a parabolic universal Verma module with the mm-folded tensor product of the standard representation for 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) to establish a Schur–Weyl duality with a quotient of Ariki–Koike algebras. Ariki–Koike algebras were first considered by Cherednik in [10] as a cyclotomic quotient of the affine Hecke algebra of type AA. These algebras were later rediscovered and studied by Ariki and Koike [3] from a representation theoretic point of view. Independently, Broué and Malle attached in [7] a Hecke algebra to certain complex reflection groups, and Ariki–Koike algebras turn out to be the Hecke algebras associated to the complex reflection groups G(d,1,n)G(d,1,n).

Recall that the Ariki–Koike algebra (d,n)\mathcal{H}(d,n) with parameters q𝕜q\in\Bbbk^{*} and u¯=(u1,,ud)𝕜d\underline{u}=(u_{1},\ldots,u_{d})\in\Bbbk^{d} is the 𝕜\Bbbk-algebra with generators T0,T1,Tn1T_{0},T_{1},\ldots T_{n-1}, where T1,Tn1T_{1},\ldots T_{n-1} generate a finite-dimensional Hecke algebra of type AA and T0T_{0} satisfies T0T1T0T1=T1T0T1T0T_{0}T_{1}T_{0}T_{1}=T_{1}T_{0}T_{1}T_{0}, T0Ti=TiT0T_{0}T_{i}=T_{i}T_{0} for i>1i>1, and i=1d(T0ui)=0\prod_{i=1}^{d}(T_{0}-u_{i})=0. We consider the semisimple case, where the simple modules VμV_{\mu} of (d,n)\mathcal{H}(d,n) are indexed by dd-partitions of nn.

Let m¯=(m1,,md)\underline{m}=(m_{1},\ldots,m_{d}) be a dd-tuple of positive integers and 𝒫m¯n\mathcal{P}^{n}_{\underline{m}} be the set of all dd-partitions μ=(μ(1),,μ(d))\mu=(\mu^{(1)},\ldots,\mu^{(d)}) of nn such that l(μ(i))mil(\mu^{(i)})\leq m_{i} for all 1id1\leq i\leq d.

In this paper we introduce the row-quotient algebra m¯(d,n)\mathcal{H}_{\underline{m}}(d,n), that depends on m¯\underline{m} as the quotient of (d,n)\mathcal{H}(d,n) by the kernel of the surjection

(d,n)μ𝒫m¯nEnd𝕜(Vμ).\mathcal{H}(d,n)\twoheadrightarrow\prod_{\mu\in\mathcal{P}^{n}_{\underline{m}}}\operatorname{End}_{\Bbbk}\left(V_{\mu}\right).

Let M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) be a parabolic Verma module and VV the standard representation for 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}). In our conventions, 𝔭\mathfrak{p} is standard and has Levi factor 𝔩=𝔤𝔩m1××𝔤𝔩md\mathfrak{l}=\mathfrak{gl}_{m_{1}}\times\cdots\times\mathfrak{gl}_{m_{d}}, with mi1m_{i}\geq 1 and m1+m2++md=mm_{1}+m_{2}+\dotsm+m_{d}=m and Λ\Lambda depends on dd algebraically independent parameters λ1,,λd\lambda_{1},\ldots,\lambda_{d} (see Section 3.2 for more details). Thanks to the braided structure on the category of integrable modules over 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}), we define a left action of (d,n)\mathcal{H}(d,n) on M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} in Section 4. Our main result is:

Theorem A (4.2 and 4.1).
  • The action of 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) and of (d,n)\mathcal{H}(d,n) on M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} commute with each other, which endow M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} with a structure of (d,n)𝒰q(𝔤𝔩m)\mathcal{H}(d,n)\otimes\mathcal{U}_{q}(\mathfrak{gl}_{m})-module.

  • The algebra morphism (d,n)End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn)\mathcal{H}(d,n)\rightarrow\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is surjective and factors through an isomorphism

    m¯(d,n)End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn).\mathcal{H}_{\underline{m}}(d,n)\overset{\simeq}{\longrightarrow}\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}). (1)
  • There is an isomorphism of (d,n)𝒰q(𝔤𝔩m)\mathcal{H}(d,n)\otimes\mathcal{U}_{q}(\mathfrak{gl}_{m})-modules

    M𝔭(Λ)Vnμ𝒫m¯nVμM𝔭(Λ,μ),M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}\simeq\bigoplus_{\mu\in\mathcal{P}^{n}_{\underline{m}}}V_{\mu}\otimes M^{\mathfrak{p}}(\Lambda,\mu),

    where M𝔭(Λ,μ)M^{\mathfrak{p}}(\Lambda,\mu) is a simple module (see 3.2).

The isomorphism in Equation (1) has several particular specializations (Corollaries 4.3-4.7), some of them recovering well-known algebras:

  • If 𝔭=𝔤𝔩m\mathfrak{p}=\mathfrak{gl}_{m} and mnm\geq n, then End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn)\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is isomorphic to the Hecke algebra of type AA.

  • If 𝔭=𝔤𝔩m\mathfrak{p}=\mathfrak{gl}_{m} and m=2m=2, then End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn)\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is isomorphic to the Temperley–Lieb algebra of type AA.

  • For 𝔭\mathfrak{p} such that mndm\geq nd and minm_{i}\geq n for all 1id1\leq i\leq d, then End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn)\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is isomorphic to the Ariki–Koike algebra (d,n)\mathcal{H}(d,n).

  • If 𝔭\mathfrak{p} is such that d=2d=2 and m1,m2nm_{1},m_{2}\geq n, then End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn)\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is isomorphic to the Hecke algebra of type BB with unequal and algebraically independent parameters (see [14, Example 5.2.2, (c)]).

  • If the parabolic subalgebra 𝔭\mathfrak{p} coincides with the standard Borel subalgebra of 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) then End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn)\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is isomorphic to Martin–Woodcock’s [20] generalized blob algebra (d,n)\mathcal{B}(d,n). This generalizes the case of 𝒰q(𝔰𝔩2)\mathcal{U}_{q}(\mathfrak{sl}_{2}) covered in [15].

In the last case, this gives a new interpretation of the generalized blob algebras (d,n)\mathcal{B}(d,n) in terms of Schur–Weyl duality. We also give a new presentation of (d,n)\mathcal{B}(d,n) as a quotient of Ariki–Koike algebras:

Theorem B (2.15).

Suppose that (d,n)\mathcal{H}(d,n) is semisimple and that for every i,j,ki,j,k we have (1+q2)ukui+uj(1+q^{-2})u_{k}\neq u_{i}+u_{j}. The generalized blob algebra (d,n)\mathcal{B}(d,n) is isomorphic to the quotient of (d,n)\mathcal{H}(d,n) by the two-sided ideal generated by the element

τ=1i<jd[(T1q)(T0qui+ujq+q1)(T1q)].\tau=\prod_{1\leq i<j\leq d}\left[(T_{1}-q)\left(T_{0}-q\frac{u_{i}+u_{j}}{q+q^{-1}}\right)(T_{1}-q)\right].

1.2. Connection to other works

The idea of writing this note originated when we started thinking of possible extensions of our work in [18] to more general Kac–Moody algebras and were not able to find the appropriate generalizations of [15] in the literature. When we were finishing writing this note Peng Shan informed us about [23], whose results are far beyond the ambitions of this article. Nevertheless, we expect our results to be connected to [23, §8] using a braided equivalence of categories between a category of modules for the quantum group 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) and a category of modules over the affine Lie algebra 𝔤𝔩^m\widehat{\mathfrak{gl}}_{m}, which is due to Kazhdan and Lusztig [17]. However, the explicit description of the endomorphism algebra of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}, which was our first motivation towards categorification later on, does not seem to appear anywhere in [23] except in the particular case of our 4.5.

Another motivation for the results presented here resides in the potential applications to low-dimensional topology, as indicated in [22]. We find that it would be also interesting to investigate the use of several Verma modules in a tensor product as suggested in [11].

Acknowledgments

We would like to thank Steen Ryom-Hansen for comments on an earlier version of this paper. The authors would also like to thank the referee for his/her numerous, detailed, and helpful comments. The authors were supported by the Fonds de la Recherche Scientifique - FNRS under Grant no. MIS-F.4536.19.

2. Ariki–Koike algebras, row quotients and generalized blob algebras

We recall the definition of Ariki–Koike algebras and define some quotients which will appear as endomorphism algebras of modules over a quantum group. As a particular case we recover the generalized blob algebras of Martin and Woodcock [20] and we obtain a presentation of these blob algebras that seems to be new.

2.1. Reminders on Ariki–Koike algebras

Fix once and for all a field 𝕜\Bbbk and two positive integers dd and nn and choose elements q𝕜q\in\Bbbk^{*} and u1,,ud𝕜u_{1},\ldots,u_{d}\in\Bbbk. We recall the definition of the Ariki–Koike algebra introduced in [3], which we view as a quotient of the group algebra of the Artin–Tits braid group of type BB.

Definition 2.1.

The Ariki–Koike algebra (d,n)\mathcal{H}(d,n) with parameters q𝕜q\in\Bbbk^{*} and u¯=(u1,,ud)𝕜d\underline{u}=(u_{1},\ldots,u_{d})\in\Bbbk^{d} is the 𝕜\Bbbk-algebra with generators T0,T1,Tn1T_{0},T_{1},\ldots T_{n-1}, the relation

(Tiq)(Ti+q1)=0,(T_{i}-q)(T_{i}+q^{-1})=0,

the cyclotomic relation

i=1d(T0ui)=0,\prod_{i=1}^{d}(T_{0}-u_{i})=0,

and the braid relations

TiTj\displaystyle T_{i}T_{j} =TiTjif|ij|>1,\displaystyle=T_{i}T_{j}\ \mathrm{if}\ \lvert i-j\rvert>1, TiTi+1Ti=Ti+1TiTi+1for 1in2,\displaystyle T_{i}T_{i+1}T_{i}=T_{i+1}T_{i}T_{i+1}\ \mathrm{for}\ 1\leq i\leq n-2,
T0T1T0T1=T1T0T1T0.T_{0}T_{1}T_{0}T_{1}=T_{1}T_{0}T_{1}T_{0}.
Remark 2.2.

We use different conventions than [3]. In order to recover their definition, one should replace qq by q2q^{2}, T0T_{0} by a1a_{1}, and qTi1qT_{i-1} by aia_{i}.

As in the type AA Hecke algebra, for any w𝔖nw\in\mathfrak{S}_{n} we can define unambiguously TwT_{w} by choosing any reduced expression of ww.

It is shown in [3] that the algebra (d,n)\mathcal{H}(d,n) is of dimension dnn!d^{n}n! and a basis is given in terms of Jucys–Murphy elements, which are recursively defined by X1=T0X_{1}=T_{0} and Xi+1=TiXiTiX_{i+1}=T_{i}X_{i}T_{i}.

Theorem 2.3 ([3, Theorem 3.10, Theorem 3.20]).

A basis of (d,n)\mathcal{H}(d,n) is given by the set

{X1r1XdrdTw| 0ri<d,w𝔖n}.\left\{X_{1}^{r_{1}}\ldots X_{d}^{r_{d}}T_{w}\ \middle|\ 0\leq r_{i}<d,w\in\mathfrak{S}_{n}\right\}.

Moreover, the center of (d,n)\mathcal{H}(d,n) is generated by the symmetric polynomials in X1,,XdX_{1},\ldots,X_{d}.

We end this section with a semisimplicity criterion due to Ariki [2], which in our conventions takes the following form.

Theorem 2.4 ([2, Main Theorem]).

The algebra (d,n)\mathcal{H}(d,n) is semisimple if and only if

(n<l<n1i<jd(q2luiuj))(1in(1+q2+q4++q2(i1)))0.\left(\prod_{\begin{subarray}{c}-n<l<n\\ 1\leq i<j\leq d\end{subarray}}(q^{2l}u_{i}-u_{j})\right)\left(\prod_{1\leq i\leq n}(1+q^{2}+q^{4}+\ldots+q^{2(i-1)})\right)\neq 0.

2.2. Modules over Ariki–Koike algebras

In this section, we suppose that the algebra (d,n)\mathcal{H}(d,n) is semisimple. In [3], Ariki and Koike gave a construction of the simple (d,n)\mathcal{H}(d,n)-modules, using the combinatorics of multipartitions.

2.2.1. dd-partitions and the Young lattice

A partition μ\mu of nn of length l(μ)=kl(\mu)=k is a non-increasing sequence μ1μ2μk>0\mu_{1}\geq\mu_{2}\geq\cdots\geq\mu_{k}>0 of integers summing to |μ|=n\lvert\mu\rvert=n. A dd-partition of nn is a dd-tuple of partitions μ=(μ(1),,μ(d))\mu=(\mu^{(1)},\ldots,\mu^{(d)}) such that i=1d|μ(i)|=n\sum_{i=1}^{d}\lvert\mu^{(i)}\rvert=n. Given a dd-partition μ\mu its Young diagram is the set

[μ]={(a,b,c)××{1,,d}| 1al(μ),1bμa(c)},[\mu]=\left\{(a,b,c)\in\mathbb{N}\times\mathbb{N}\times\{1,\ldots,d\}\ \middle|\ 1\leq a\leq l(\mu),1\leq b\leq\mu^{(c)}_{a}\right\},

whose elements are called boxes. We usually represents a Young diagram as a dd-tuple of sequences of left-aligned boxes, with μa(c)\mu_{a}^{(c)} boxes in the aa-th row of the cc-th component.

Example 2.5.

The Young diagram of the 33-partition ((2,1),,(3))((2,1),\emptyset,(3)) of 66 is

\ytableausetupaligntableaux=center(\ydiagram2,1,,\ydiagram3).\ytableausetup{aligntableaux=center}\left(\ydiagram{2,1},\emptyset,\ydiagram{3}\right).

A box γ\gamma of [μ][\mu] is said to be removable if [μ]{γ}[\mu]\setminus\{\gamma\} is the Young diagram of a dd-partition ν\nu, and in this case the box γ\gamma is said to be addable to ν\nu.

Example 2.6.

The removable boxes of the 33-partition ((2,1),,(3))((2,1),\emptyset,(3)) below are depicted with a cross

\ytableausetupmathmode,aligntableaux=center({ytableau}××,,{ytableau}×).\ytableausetup{mathmode,aligntableaux=center}\left(\ytableau\phantom{a}&\times\\ \times,\emptyset,\ytableau\phantom{a}&\phantom{a}&\times\right).

With respect to the above the definitions, we will also use the evident notions of adding a box to a Young diagram or removing a box from a Young diagram.

We consider the Young lattice for dd-partitions and some sublattices. It is a graph with vertices consisting of dd-partitions of any integers, and there is an edge between two dd-partitions if and only if one can be obtained from the other by adding or removing a box.

Example 2.7.

The beginning of the Young lattice for 22-partitions is the following:

(,){\left(\emptyset,\emptyset\right)}(\ydiagram1,){\left(\ydiagram{1},\emptyset\right)}(,\ydiagram1){\left(\emptyset,\ydiagram{1}\right)}(\ydiagram1,1,){\left(\ydiagram{1,1},\emptyset\right)}(\ydiagram2,){\left(\ydiagram{2},\emptyset\right)}(\ydiagram1,\ydiagram1){\left(\ydiagram{1},\ydiagram{1}\right)}(\ydiagram2,){\left(\ydiagram{2},\emptyset\right)}(\ydiagram1,1,).{\left(\ydiagram{1,1},\emptyset\right).}

If we fix m¯=(m1,,md)d\underline{m}=(m_{1},\ldots,m_{d})\in\mathbb{N}^{d}, we then define 𝒫m¯n\mathcal{P}^{n}_{\underline{m}} as the set of dd-partitions μ\mu such that l(μ(i))mil(\mu^{(i)})\leq m_{i}. We will also consider the corresponding sublattice of the Young lattice.

Example 2.8.

For m1=1m_{1}=1 and m2=2m_{2}=2, the beginning of the Young lattice for 22-partitions μ\mu with l(μ(1))1l(\mu^{(1)})\leq 1 and l(μ(2))2l(\mu^{(2)})\leq 2 is the following:

(,){\left(\emptyset,\emptyset\right)}(\ydiagram1,){\left(\ydiagram{1},\emptyset\right)}(,\ydiagram1){\left(\emptyset,\ydiagram{1}\right)}(\ydiagram2,){\left(\ydiagram{2},\emptyset\right)}(\ydiagram1,\ydiagram1){\left(\ydiagram{1},\ydiagram{1}\right)}(\ydiagram2,){\left(\ydiagram{2},\emptyset\right)}(\ydiagram1,1,).{\left(\ydiagram{1,1},\emptyset\right).}

We end this subsection with the notion of a standard tableau of shape μ\mu where μ\mu is a dd-partition of nn. Such a standard tableau is a bijection 𝔱:[μ]{1,,n}\mathfrak{t}\colon[\mu]\rightarrow\{1,\ldots,n\} such that for all boxes γ=(a,b,c)\gamma=(a,b,c) and γ=(a,b,c)\gamma^{\prime}=(a^{\prime},b^{\prime},c) we have 𝔱(γ)<𝔱(γ)\mathfrak{t}(\gamma)<\mathfrak{t}(\gamma^{\prime}) if a=aa=a^{\prime} and b<bb<b^{\prime} or a<aa<a^{\prime} and b=bb=b^{\prime}. Giving a standard tableau of shape μ\mu is equivalent to giving a path in the Young lattice from the empty dd-partition to the dd-partition μ\mu.

Example 2.9.

The standard tableau

({ytableau}14,,{ytableau}23)\left(\ytableau 1\\ 4,\emptyset,\ytableau 2&3\right)

of shape ((1,1),,(2))((1,1),\emptyset,(2)) correspond to the path

\ytableausetupaligntableaux=center,smalltableaux(,,){\ytableausetup{aligntableaux=center,smalltableaux}\left(\emptyset,\emptyset,\emptyset\right)}(\ydiagram1,,){\left(\ydiagram{1},\emptyset,\emptyset\right)}(\ydiagram1,,\ydiagram1){\left(\ydiagram{1},\emptyset,\ydiagram{1}\right)}(\ydiagram1,,\ydiagram2){\left(\ydiagram{1},\emptyset,\ydiagram{2}\right)}(\ydiagram1,1,,\ydiagram2).{\left(\ydiagram{1,1},\emptyset,\ydiagram{2}\right).}

2.2.2. Constructing the simple modules

We present the construction of simple modules of the Ariki–Koike algebra following [3, Section 3]. This construction is similar to the classical construction of simple modules of the symmetric group, the Hecke algebra of type AA or of the complex reflection group G(d,1,n)G(d,1,n). This construction describes explicitly the action of the Ariki–Koike algebra on a vector space. For μ=(μ(1),,μ(d))\mu=(\mu^{(1)},\ldots,\mu^{(d)}) a dd-multipartition of nn, we set

Vμ=𝔱𝕜v𝔱,V_{\mu}=\bigoplus_{\mathfrak{t}}\Bbbk v_{\mathfrak{t}},

where the sum is over all the standard tableaux of shape μ\mu. Ariki and Koike gave an explicit action of the generators on the basis of VμV_{\mu} given by the standard tableaux. The action of T0T_{0} is diagonal with respect to this basis:

T0v𝔱=ucv𝔱,T_{0}v_{\mathfrak{t}}=u_{c}v_{\mathfrak{t}},

where cc is such that 𝔱(1,1,c)=1\mathfrak{t}(1,1,c)=1. The action of TiT_{i} is more involved and depends on the relative positions of the numbers ii and i+1i+1 in the tableau 𝔱\mathfrak{t}:

  1. (1)

    if ii and i+1i+1 are in the same row of the standard tableau 𝔱\mathfrak{t}, then Tiv𝔱=qv𝔱T_{i}v_{\mathfrak{t}}=qv_{\mathfrak{t}},

  2. (2)

    if ii and i+1i+1 are in the same column of the standard tableau 𝔱\mathfrak{t}, then Tiv𝔱=q1v𝔱T_{i}v_{\mathfrak{t}}=-q^{-1}v_{\mathfrak{t}},

  3. (3)

    if ii and i+1i+1 neither appear in the same row nor the same column of the standard tableau 𝔱\mathfrak{t}, then TiT_{i} will act on the two dimensional subspace generated by v𝔱v_{\mathfrak{t}} and v𝔰v_{\mathfrak{s}}, where 𝔰\mathfrak{s} is the standard tableau obtained from 𝔱\mathfrak{t} by permuting the entries ii and i+1i+1. The explicit matrix is given in [3] and we will not need it.

Proposition 2.10 ([3, Theorem 3.7]).

If μ\mu is any dd-multipartition of nn, the space VμV_{\mu} is a well-defined (d,n)\mathcal{H}(d,n)-module and it is absolutely simple. A set of isomorphism classes of simple (d,n)\mathcal{H}(d,n)-modules is moreover given by {Vμ}μ\{V_{\mu}\}_{\mu}, for μ\mu running over the set of dd-partitions of nn.

The action of the Jucys–Murphy elements is also diagonal in the basis of standard tableaux:

Xiv𝔱=ucq2(ba)v𝔱,X_{i}v_{\mathfrak{t}}=u_{c}q^{2(b-a)}v_{\mathfrak{t}}, (2)

where 𝔱(a,b,c)=i\mathfrak{t}(a,b,c)=i. A useful consequence of 2.10 is the following: if VV is a simple (d,n)\mathcal{H}(d,n)-module and vVv\in V is a common eigenvector for X1,,XdX_{1},\ldots,X_{d} with eigenvalues as in (2) for some standard tableau 𝔱\mathfrak{t} of shape μ\mu, then VV is isomorphic to VμV_{\mu}.

From the explicit description of the modules VμV_{\mu}, using the standard inclusion (n,d)(n+1,d)\mathcal{H}(n,d)\hookrightarrow\mathcal{H}(n+1,d), it is easy to see that for any dd-partition of n+1n+1 we have

Res(n,d)(n+1,d)(Vμ)νVν,\operatorname{Res}_{\mathcal{H}(n,d)}^{\mathcal{H}(n+1,d)}(V_{\mu})\simeq\bigoplus_{\nu}V_{\nu},

where the sum is over all dd-partition ν\nu of nn whose Young diagram is obtained by deleting one removable box from the Young diagram of μ\mu. The branching rule of the inclusions (1,d)(2,d)(n,d)\mathcal{H}(1,d)\subset\mathcal{H}(2,d)\subset\cdots\subset\mathcal{H}(n,d) is therefore governed by the Young lattice of dd-partitions.

2.3. Row quotients of (d,n)\mathcal{H}(d,n) and generalized blob algebras

We now define the row quotients of (d,n)\mathcal{H}(d,n) which will appear later as endomorphism algebras of a tensor product of modules for 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}).

Definition 2.11.

Let m¯=(m1,,md)d\underline{m}=(m_{1},\ldots,m_{d})\in\mathbb{N}^{d} and recall that the algebra (d,n)\mathcal{H}(d,n) is assumed to be semisimple, which implies that (d,n)μEnd𝕜(Vμ)\mathcal{H}(d,n)\simeq\prod_{\mu}\operatorname{End}_{\Bbbk}\left(V_{\mu}\right), the product being over all dd-partitions of nn. Recall also that 𝒫m¯n\mathcal{P}^{n}_{\underline{m}} is the set of dd-partitions of nn with ii-th component of length at most mim_{i}.

The m¯\underline{m}-row quotient of (d,n)\mathcal{H}(d,n), denoted m¯(d,n)\mathcal{H}_{\underline{m}}(d,n), is the quotient of (d,n)\mathcal{H}(d,n) by the kernel of the surjection

(d,n)μ𝒫m¯nEnd𝕜(Vμ).\mathcal{H}(d,n)\twoheadrightarrow\prod_{\mu\in\mathcal{P}^{n}_{\underline{m}}}\operatorname{End}_{\Bbbk}\left(V_{\mu}\right).
Remark 2.12.

If minm_{i}\geq n for all 1id1\leq i\leq d then m¯(d,n)(d,n)\mathcal{H}_{\underline{m}}(d,n)\simeq\mathcal{H}(d,n).

Similar to the case of (d,n)\mathcal{H}(d,n), we have inclusions m¯(1,d)m¯(2,d)m¯(n,d)\mathcal{H}_{\underline{m}}(1,d)\subset\mathcal{H}_{\underline{m}}(2,d)\subset\cdots\subset\mathcal{H}_{\underline{m}}(n,d) and the branching rule is governed by the corresponding truncation of the Young lattice of dd-partitions.

2.3.1. Generalized blob algebras

In the particular case where mi=1m_{i}=1 for all 1id1\leq i\leq d, we recover the definition of the generalized blob algebras [20, Equation (14)], which we denote by (d,n)\mathcal{B}(d,n). Under a mild hypothesis on the parameters, we give a presentation of (d,n)\mathcal{B}(d,n).

We consider the following element of (d,n)\mathcal{H}(d,n):

τ=1i<jd[(T1q)(T0qui+ujq+q1)(T1q)].\tau=\prod_{1\leq i<j\leq d}\left[(T_{1}-q)\left(T_{0}-q\frac{u_{i}+u_{j}}{q+q^{-1}}\right)(T_{1}-q)\right].

This element may look cumbersome, but can be better understood thanks to the following lemma:

Lemma 2.13.

The two-sided ideal of (d,n)\mathcal{H}(d,n) generated by τ\tau is equal to the two-sided ideal generated by

(T1q)1i<jd(X1+X2(ui+uj)).(T_{1}-q)\prod_{1\leq i<j\leq d}\left(X_{1}+X_{2}-(u_{i}+u_{j})\right).
Proof.

A simple computation in (d,n)\mathcal{H}(d,n) shows that

(T1q)(T0qui+ujq+q1)(T1q)=q(X1+X2(ui+uj))(T1q).(T_{1}-q)\left(T_{0}-q\frac{u_{i}+u_{j}}{q+q^{-1}}\right)(T_{1}-q)=q\left(X_{1}+X_{2}-(u_{i}+u_{j})\right)(T_{1}-q).

We therefore conclude using the fact that (T1q)2=(q+q1)(T1q)(T_{1}-q)^{2}=-(q+q^{-1})(T_{1}-q) and that T1T_{1} commutes with X1+X2X_{1}+X_{2}. ∎

We now investigate which (d,n)\mathcal{H}(d,n)-modules VμV_{\mu} factor through the quotient by the two-sided ideal generated by τ\tau.

Proposition 2.14.

The element τ\tau acts by zero on VμV_{\mu} if and only if l(μ(k))1l(\mu^{(k)})\leq 1 for every kk such that (1+q2)ukui+uj(1+q^{-2})u_{k}\neq u_{i}+u_{j} for all i,ji,j.

Proof.

Suppose that μ\mu and kk are such that l(μ(k))2l(\mu^{(k)})\geq 2 with (1+q2)ukui+uj(1+q^{-2})u_{k}\neq u_{i}+u_{j} for all i,ji,j. Then there exist a tableau 𝔱\mathfrak{t} of shape μ\mu such that 11 and 22 are in the first two columns of the kk-th component of the Young diagram of μ\mu. By definition of VμV_{\mu}, the generator T1T_{1} acts on v𝔱v_{\mathfrak{t}} by multiplication by q1-q^{-1}. The Jucys–Murphy element X1X_{1} acts on v𝔱v_{\mathfrak{t}} by multiplication by uku_{k} whereas the Jucys–Murphy element X2X_{2} acts on v𝔱v_{\mathfrak{t}} by multiplication by q2ukq^{-2}u_{k}. Therefore, thanks to 2.13, τ\tau does not act by zero on VμV_{\mu}.

It remains to check that τ\tau acts by zero on VμV_{\mu} with l(μ(k))1l(\mu^{(k)})\leq 1 whenever (1+q2)ukui+uj(1+q^{-2})u_{k}\neq u_{i}+u_{j} for all i,ji,j. Let 𝔱\mathfrak{t} be a standard tableau of shape μ\mu. If 11 and 22 are in the same component of the tableau 𝔱\mathfrak{t}, then either 11 and 22 are in the same row and T1T_{1} acts on v𝔱v_{\mathfrak{t}} by multiplication by qq, either 11 and 22 are in the same column and X1+X2X_{1}+X_{2} acts on 𝔱\mathfrak{t} by multiplication by (1+q2)uk(1+q^{-2})u_{k}. The second case is possible only if there exists i,ji,j such that (1+q2)uk=ui+uj(1+q^{-2})u_{k}=u_{i}+u_{j} and then τ\tau acts by zero. If 11 and 22 are in two different Young diagrams and X1+X2X_{1}+X_{2} acts on 𝔱\mathfrak{t} by uk+ulu_{k}+u_{l}, where kk (resp. ll) is such that 𝔱(1,1,k)=1\mathfrak{t}(1,1,k)=1 (resp 𝔱(1,1,l)=2\mathfrak{t}(1,1,l)=2). In both cases, τ\tau acts by zero. ∎

Theorem 2.15.

Suppose that (d,n)\mathcal{H}(d,n) is semisimple and that for every i,j,ki,j,k we have (1+q2)ukui+uj(1+q^{-2})u_{k}\neq u_{i}+u_{j}. The generalized blob algebra (d,n)\mathcal{B}(d,n) is isomorphic to the quotient of (d,n)\mathcal{H}(d,n) by the two-sided ideal generated by τ\tau.

Proof.

Recall that we supposed that m1==md=1m_{1}=\ldots=m_{d}=1. Thanks to 2.14, the element τ\tau is in the kernel of the surjection

(d,n)μ𝒫m¯nEnd𝕜(Vμ).\mathcal{H}(d,n)\twoheadrightarrow\prod_{\mu\in\mathcal{P}^{n}_{\underline{m}}}\operatorname{End}_{\Bbbk}\left(V_{\mu}\right).

Therefore, we have a surjection (d,n)/(d,n)τ(d,n)(d,n)\mathcal{H}(d,n)/\mathcal{H}(d,n)\tau\mathcal{H}(d,n)\twoheadrightarrow\mathcal{B}(d,n). Once again, thanks to 2.14, the simple modules of (d,n)/(d,n)τ(d,n)\mathcal{H}(d,n)/\mathcal{H}(d,n)\tau\mathcal{H}(d,n) are exactly the VμV_{\mu} with μ𝒫m¯n\mu\in\mathcal{P}^{n}_{\underline{m}} which shows that the above surjection is an isomorphism. ∎

3. Quantum 𝔤𝔩m\mathfrak{gl}_{m}, parabolic Verma modules and tensor products

We recall the definition of the quantum enveloping algebra of 𝔤𝔩m\mathfrak{gl}_{m}, and we also recall some basic properties of its modules, e.g. concerning parabolic Verma modules.

3.1. The quantum enveloping algebra of 𝔤𝔩m\mathfrak{gl}_{m}

Let qq be an indeterminate. The following definition of 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) is over the field (q)\mathbb{Q}(q), but, via scalar extension, we will also consider it over a field containing (q)\mathbb{Q}(q) without further notice.

Definition 3.1.

The quantum enveloping algebra 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) is the (q)\mathbb{Q}(q)-algebra with generators Li±1,EjL_{i}^{\pm 1},E_{j} and FjF_{j}, for 1im1\leq i\leq m and 1jm11\leq j\leq m-1 with the following relations:

Li±1Li1\displaystyle L_{i}^{\pm 1}L_{i}^{\mp 1} =1,\displaystyle=1, LiLj\displaystyle L_{i}L_{j} =LjLi,\displaystyle=L_{j}L_{i},
LiEj\displaystyle L_{i}E_{j} =qδi,jδi,j+1EjLi,\displaystyle=q^{\delta_{i,j}-\delta_{i,j+1}}E_{j}L_{i}, LiFj\displaystyle L_{i}F_{j} =qδi,j+δi,j+1FjLi,\displaystyle=q^{-\delta_{i,j}+\delta_{i,j+1}}F_{j}L_{i},
[Ei,Fj]=δi,jLiLi+11Li1Li+1qq1,[E_{i},F_{j}]=\delta_{i,j}\frac{L_{i}L_{i+1}^{-1}-L_{i}^{-1}L_{i+1}}{q-q^{-1}},

and the quantum Serre relations

EiEj\displaystyle E_{i}E_{j} =EjEiif|ij|>1,\displaystyle=E_{j}E_{i}\ \mathrm{if}\ \lvert i-j\rvert>1, Ei2Ei±1(q+q1)EiEi±1Ei+Ei±1Ei2\displaystyle E_{i}^{2}E_{i\pm 1}-(q+q^{-1})E_{i}E_{i\pm 1}E_{i}+E_{i\pm 1}E_{i}^{2} =0,\displaystyle=0,
FiFj\displaystyle F_{i}F_{j} =FjFiif|ij|>1,\displaystyle=F_{j}F_{i}\ \mathrm{if}\ \lvert i-j\rvert>1, Fi2Fi±1(q+q1)FiFi±1Fi+Fi±1Fi2\displaystyle F_{i}^{2}F_{i\pm 1}-(q+q^{-1})F_{i}F_{i\pm 1}F_{i}+F_{i\pm 1}F_{i}^{2} =0.\displaystyle=0.

We endow it with a structure of a Hopf algebra, with comultiplication Δ\Delta, counit ε\varepsilon and antipode SS given on generators by the following:

Δ(Li)\displaystyle\Delta(L_{i}) =LiLi,\displaystyle=L_{i}\otimes L_{i}, ε(Li)\displaystyle\varepsilon(L_{i}) =1,\displaystyle=1, S(Li)=Li1,\displaystyle S(L_{i})=L_{i}^{-1},
Δ(Ei)\displaystyle\Delta(E_{i}) =Ei1+LiLi+11Ei,\displaystyle=E_{i}\otimes 1+L_{i}L_{i+1}^{-1}\otimes E_{i}, ε(Ei)\displaystyle\varepsilon(E_{i}) =0,\displaystyle=0, S(Ei)=Li1Li+1Ei,\displaystyle S(E_{i})=-L_{i}^{-1}L_{i+1}E_{i},
Δ(Fi)\displaystyle\Delta(F_{i}) =FiLi1Li+1+1Fi,\displaystyle=F_{i}\otimes L_{i}^{-1}L_{i+1}+1\otimes F_{i}, ε(Fi)\displaystyle\varepsilon(F_{i}) =0,\displaystyle=0, S(Fi)=FiLiLi+11.\displaystyle S(F_{i})=-F_{i}L_{i}L_{i+1}^{-1}.

Set 𝒰q(𝔤𝔩m)0\mathcal{U}_{q}(\mathfrak{gl}_{m})^{0} as the subalgebra generated by (Li)1im(L_{i})_{1\leq i\leq m}, and 𝒰q(𝔤𝔩m)0\mathcal{U}_{q}(\mathfrak{gl}_{m})^{\geq 0} as the subalgebra generated by (Li,Ej)1im1jm1(L_{i},E_{j})_{\begin{subarray}{c}1\leq i\leq m\\ 1\leq j\leq m-1\end{subarray}}.

We denote by P=i=1mεiP=\bigoplus_{i=1}^{m}\mathbb{Z}\varepsilon_{i} the weight lattice of 𝔤𝔩m\mathfrak{gl}_{m} with \mathbb{Z}-basis given by the fundamental weights (ϖi)1im(\varpi_{i})_{1\leq i\leq m} where ϖi=ε1++εi\varpi_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i}. We denote by QQ the root lattice with \mathbb{Z}-basis given by the simple roots (αi)1id1(\alpha_{i})_{1\leq i\leq d-1} where αi=εiεi+1\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}. Denote by Φ+\Phi^{+} the set of positive roots, by P+P^{+} the set of dominant weights for 𝔤𝔩m\mathfrak{gl}_{m}, that is μ=i=1mμiεi\mu=\sum_{i=1}^{m}\mu_{i}\varepsilon_{i} with μ1μ2μm\mu_{1}\geq\mu_{2}\geq\cdots\geq\mu_{m}. We also endow PP with the standard non-degenerate bilinear form: εi,εj=δi,j\langle\varepsilon_{i},\varepsilon_{j}\rangle=\delta_{i,j}. The symmetric group 𝔖m\mathfrak{S}_{m} acts on PP by permuting the coordinates and leaves the bilinear form ,\langle\cdot,\cdot\rangle invariant. Finally, let ρ\rho be the half-sum of the positive roots.

We will often work with extensions [β1,,βk]P\mathbb{Z}[\beta_{1},\ldots,\beta_{k}]\otimes_{\mathbb{Z}}P, where the βi\beta_{i}’s are indeterminates and we also extend the bilinear form ,\langle\cdot,\cdot\rangle to [β1,,βk]P\mathbb{Z}[\beta_{1},\ldots,\beta_{k}]\otimes_{\mathbb{Z}}P.

3.2. Weights and parabolic Verma modules

Suppose that our field 𝕜\Bbbk contains the field (q)\mathbb{Q}(q) and let MM be an 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-module over the ground field 𝕜\Bbbk. An element vMv\in M is said to be a weight vector if Liv=φ(εi)vL_{i}v=\varphi(\varepsilon_{i})v, where φ:P𝕜\varphi\colon P\rightarrow\Bbbk is the corresponding weight. The module MM is said to be a weight module if the action of the elements L1,,LmL_{1},\ldots,L_{m} is simultaneously diagonalizable. A highest weight module is a weight module MM such that M=𝒰q(𝔤𝔩m)vM=\mathcal{U}_{q}(\mathfrak{gl}_{m})v, where vv is a weight vector such that Eiv=0E_{i}v=0 for 1im11\leq i\leq m-1.

It is well-known that finite dimensional weight 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-modules of type 11 are parameterized by the set P+P^{+} of dominant weights.

In this paper, we will be interested in modules over the field (q,λ1,,λk)\mathbb{Q}(q,\lambda_{1},\ldots,\lambda_{k}), where λi=qβi\lambda_{i}=q^{\beta_{i}} is an indeterminate (recall that qq is formal and so qβiq^{\beta_{i}} is also formal). Moreover, we only consider type 11 modules, where the weights are of the form

φ(ν)=qμ,ν,\varphi(\nu)=q^{\langle\mu,\nu\rangle},

for some μ[β1,,βk]P\mu\in\mathbb{Z}[\beta_{1},\ldots,\beta_{k}]\otimes_{\mathbb{Z}}P and for all νP\nu\in P.

We now turn to parabolic Verma modules. Let 𝔭\mathfrak{p} be a standard parabolic subalgebra of 𝔤𝔩m\mathfrak{gl}_{m} with Levi factor 𝔩=𝔤𝔩m1××𝔤𝔩md\mathfrak{l}=\mathfrak{gl}_{m_{1}}\times\cdots\times\mathfrak{gl}_{m_{d}}, where mi1m_{i}\geq 1 and i=1dmi=m\sum_{i=1}^{d}m_{i}=m. Denote by II the set {m~i| 1id1}\left\{\tilde{m}_{i}\ |\ 1\leq i\leq d-1\right\}, where m~i=m1++mi\tilde{m}_{i}=m_{1}+\ldots+m_{i}, so that 𝒰q(𝔩)\mathcal{U}_{q}(\mathfrak{l}) is generated by Li,EjL_{i},E_{j} and FjF_{j} for 1im1\leq i\leq m and jIj\not\in I and 𝒰q(𝔭)\mathcal{U}_{q}(\mathfrak{p}) is generated by Li,EjL_{i},E_{j} and FkF_{k} for 1im1\leq i\leq m, 1jm11\leq j\leq m-1 and kIk\not\in I. Denote by Pi+P^{+}_{i} the set of dominant weights for 𝔤𝔩mi\mathfrak{gl}_{m_{i}}. We identify the set P1+××Pd+P^{+}_{1}\times\cdots\times P^{+}_{d} with the dominant weights P𝔩+P^{+}_{\mathfrak{l}} of 𝔩\mathfrak{l} by the following map

(μ(1),,μ(d))i=1d(j=1miμj(i)εm~i1+j).(\mu^{(1)},\ldots,\mu^{(d)})\rightarrow\sum_{i=1}^{d}\left(\sum_{j=1}^{m_{i}}\mu_{j}^{(i)}\varepsilon_{\tilde{m}_{i-1}+j}\right).

For a dominant weight μP𝔩+\mu\in P_{\mathfrak{l}}^{+}, we have an simple integrable finite dimensional 𝒰q(𝔩)\mathcal{U}_{q}(\mathfrak{l})-module V𝔩(Λ,μ)V^{\mathfrak{l}}(\Lambda,\mu) of highest weight

Λμ=i=1d(j=1mi(βi+μj(i))εm~i1+j).\Lambda_{\mu}=\sum_{i=1}^{d}\left(\sum_{j=1}^{m_{i}}(\beta_{i}+\mu_{j}^{(i)})\varepsilon_{\tilde{m}_{i-1}+j}\right).

Indeed, one can check that Λμ,αi{\langle\Lambda_{\mu},\alpha_{i}\rangle}\in\mathbb{N} for any iIi\not\in I. We turn this 𝒰q(𝔩)\mathcal{U}_{q}(\mathfrak{l})-module into a 𝒰q(𝔭)\mathcal{U}_{q}(\mathfrak{p})-module by setting EiV𝔩(Λ,μ)=0E_{i}V^{\mathfrak{l}}(\Lambda,\mu)=0 for all iIi\in I. Then the parabolic Verma module M𝔭(Λ,μ)M^{\mathfrak{p}}(\Lambda,\mu) is

M𝔭(Λ,μ)=𝒰q(𝔤𝔩m)𝒰q(𝔭)V𝔩(Λ,μ).M^{\mathfrak{p}}(\Lambda,\mu)=\mathcal{U}_{q}(\mathfrak{gl}_{m})\otimes_{\mathcal{U}_{q}(\mathfrak{p})}V^{\mathfrak{l}}(\Lambda,\mu).

It is a highest weight module of highest weight Λμ\Lambda_{\mu}. If μ=0\mu=0, then we will simply denote this module by M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) and its highest weight by Λ\Lambda.

Lemma 3.2.

For any μP𝔩+\mu\in P_{\mathfrak{l}}^{+}, the parabolic Verma module M𝔭(Λ,μ)M^{\mathfrak{p}}(\Lambda,\mu) is simple.

Proof.

Since for any iIi\in I the scalar product Λμ,αi\langle\Lambda_{\mu},\alpha_{i}\rangle is not an integer, as one easily checks, the claim follows.∎

Remark 3.3.

If the parabolic subalgebra 𝔭\mathfrak{p} is the Borel subalgebra 𝔟\mathfrak{b} of upper triangular matrices, we have 𝒰q(𝔭)=𝒰q(𝔤𝔩m)0\mathcal{U}_{q}(\mathfrak{p})=\mathcal{U}_{q}(\mathfrak{gl}_{m})^{\geq 0} and the parabolic Verma module M𝔟(Λ)M^{\mathfrak{b}}(\Lambda) is the universal Verma module. The adjective universal means that any parabolic Verma module can be obtained from M𝔟(Λ)M^{\mathfrak{b}}(\Lambda) by specialization of the parameters.

In the rest of this article, all dominant weights μP𝔩+\mu\in P^{+}_{\mathfrak{l}} will satisfy μmi(i)0\mu_{m_{i}}^{(i)}\geq 0 for all 1id1\leq i\leq d, and it will be convenient to identify such a weight μ\mu with the corresponding dd-partition in 𝒫m¯n\mathcal{P}^{n}_{\underline{m}}. We will use the same notation μ\mu to denote the dd-partition or the corresponding dominant weight.

We also denote by VV the standard representation of 𝔤𝔩m\mathfrak{gl}_{m} of dimension mm. Explicitly, this is a highest weight module with highest weight ε1\varepsilon_{1}, it has as a basis v1,,vmv_{1},\ldots,v_{m} and the action of 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) is given by

Livj=qδi,jvj,Eivj=δi+1,jvj1andFivj=δi,jvj+1.L_{i}\cdot v_{j}=q^{\delta_{i,j}}v_{j},\quad E_{i}\cdot v_{j}=\delta_{i+1,j}v_{j-1}\quad\text{and}\quad F_{i}\cdot v_{j}=\delta_{i,j}v_{j+1}.

3.3. Tensor products and branching rule

As 𝒰q(glm)\mathcal{U}_{q}(gl_{m}) is a Hopf algebra, its category of modules can be endowed with a tensor product. Explicitly, given MM and NN two modules over a ground ring RR, the action of the generators on MRNM\otimes_{R}N is given using the comultiplication: for all vMv\in M and wNw\in N, one have

Li(vw)=LivLiw,Ei(vw)=Eivw+LiLi+11vEiwandFi(vw)=FivLi1Li+11w+vFiw.L_{i}\cdot(v\otimes w)=L_{i}\cdot v\otimes L_{i}\cdot w,\quad E_{i}\cdot(v\otimes w)=E_{i}\cdot v\otimes w+L_{i}L_{i+1}^{-1}\cdot v\otimes E_{i}\cdot w\\ \text{and}\quad F_{i}\cdot(v\otimes w)=F_{i}\cdot v\otimes L_{i}^{-1}L_{i+1}^{-1}\cdot w+v\otimes F_{i}\cdot w.

We will write \otimes instead of R\otimes_{R} to simplify the notations. Since we will be interested in the endomorphism algebra of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}, we start by understanding the decomposition of this module.

Proposition 3.4.

For any μ𝒫𝔩n\mu\in\mathcal{P}_{\mathfrak{l}}^{n}, there is an isomorphism of 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-modules

M𝔭(Λ,μ)Vν𝒫𝔩n+1M𝔭(Λ,ν),M^{\mathfrak{p}}(\Lambda,\mu)\otimes V\simeq\bigoplus_{\nu\in\mathcal{P}_{\mathfrak{l}}^{n+1}}M^{\mathfrak{p}}(\Lambda,\nu),

where the sum is over all ν𝒫𝔩n+1\nu\in\mathcal{P}_{\mathfrak{l}}^{n+1} whose Young diagram is obtained from the Young diagram of μ\mu by adding one addable box.

Proof.

We start by showing that M𝔭(Λ,μ)VM^{\mathfrak{p}}(\Lambda,\mu)\otimes V has a filtration given by the M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu) as in the statement. First, we have the following tensor identity:

(𝒰q(𝔤𝔩m)𝒰q(𝔭)V𝔩(Λ,μ))V𝒰q(𝔤𝔩m)𝒰q(𝔭)(V𝔩(Λ,μ)V).(\mathcal{U}_{q}(\mathfrak{gl}_{m})\otimes_{\mathcal{U}_{q}(\mathfrak{p})}V^{\mathfrak{l}}(\Lambda,\mu))\otimes V\simeq\mathcal{U}_{q}(\mathfrak{gl}_{m})\otimes_{\mathcal{U}_{q}(\mathfrak{p})}(V^{\mathfrak{l}}(\Lambda,\mu)\otimes V).

Noticing that L𝒰q(𝔤𝔩m)𝒰q(𝔭)LL\mapsto\mathcal{U}_{q}(\mathfrak{gl}_{m})\otimes_{\mathcal{U}_{q}(\mathfrak{p})}L is an exact functor from the category of finite dimensional 𝒰q(𝔭)\mathcal{U}_{q}(\mathfrak{p})-modules to the category of 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-modules, it remains to show that

V𝔩(Λ,μ)Vν𝒫𝔩n+1V𝔩(Λ,ν),V^{\mathfrak{l}}(\Lambda,\mu)\otimes V\simeq\bigoplus_{\nu\in\mathcal{P}_{\mathfrak{l}}^{n+1}}V^{\mathfrak{l}}(\Lambda,\nu),

where the sum is over all ν𝒫𝔩n+1\nu\in\mathcal{P}_{\mathfrak{l}}^{n+1} whose Young diagram is obtained from the Young diagram of μ\mu by adding one addable box. This follows from the usual branching rule for 𝒰q(𝔤𝔩mi)\mathcal{U}_{q}(\mathfrak{gl}_{m_{i}})-modules.

To show that the sum is direct, we use arguments from the infinite-dimensional representation theory of Lie algebras. We consider the usual category 𝒪\mathcal{O} for 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) [21, Chapter 4]. We then show that each M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu) lie in a different block of the category 𝒪\mathcal{O}, which then implies that the sum is direct.

First, as M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu) is a quotient of the universal Verma module M𝔟(Λν)M^{\mathfrak{b}}(\Lambda_{\nu}), these two modules share the same central character. Therefore M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu) and (Λ,ν)𝔭{}^{\mathfrak{p}}(\Lambda,\nu^{\prime}) are in the same block if and only if the central characters afforded by M𝔟(Λν)M^{\mathfrak{b}}(\Lambda_{\nu}) and M𝔟(Λν)M^{\mathfrak{b}}(\Lambda_{\nu^{\prime}}) are the same. But these central characters are equal if and only if Λν\Lambda_{\nu} and Λν\Lambda_{\nu^{\prime}} are in the same orbit for the dot action of the symmetric group, which is the usual action of the symmetric group shifted by the sum of simple roots ρ\rho.

We obtain that M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu) and M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu^{\prime}) are in the same block if and only if there exists w𝔖mw\in\mathfrak{S}_{m} such that

wΛν=Λν.w\cdot\Lambda_{\nu}=\Lambda_{\nu^{\prime}}.

Now, suppose that M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu) and M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu^{\prime}) are in the same block. Since the dot action satisfies w(η+γ)=wη+w(γ)w\cdot(\eta+\gamma)=w\cdot\eta+w(\gamma), we deduce that w(Λ)=Λw(\Lambda)=\Lambda so that ww lies in 𝔖m1××𝔖md\mathfrak{S}_{m_{1}}\times\cdots\times\mathfrak{S}_{m_{d}}. Then, writing w=(w1,,wd)w=(w_{1},\ldots,w_{d}), we find that wiν(i)=ν(i)w_{i}\cdot\nu^{(i)}=\nu^{\prime(i)} for every 1id1\leq i\leq d. Since both ν(i)\nu^{(i)} and ν(i)\nu^{\prime(i)} are dominant weights, we deduce that ν(i)=ν(i)\nu^{(i)}=\nu^{\prime(i)} for every 1id1\leq i\leq d. Indeed, each orbit for the dot action contains a unique dominant weight.

Hence if νν\nu\neq\nu^{\prime}, the parabolic Verma modules M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu) and M𝔭(Λ,ν)M^{\mathfrak{p}}(\Lambda,\nu^{\prime}) are in different blocks of the category 𝒪\mathcal{O}. ∎

Using the previous proposition and induction, one shows the following corollary.

Corollary 3.5.

There is an isomorphism

M𝔭(Λ)Vnμ𝒫𝔩nM(Λ,μ)nμ,M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}\simeq\bigoplus_{\mu\in\mathcal{P}^{n}_{\mathfrak{l}}}M(\Lambda,\mu)^{n_{\mu}},

where nμn_{\mu} is the number of paths from the empty dd-partition to μ\mu in the Young lattice of dd-multipartitions.

3.4. Braiding and an action of the Artin-Tits group of type BB

The quantized enveloping algebra (or rather a completion of the tensor product with itself) contains an element, called the quasi-RR-matrix, which is a crucial tool in defining a braiding on a subcategory of the 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-modules. Since there are several possible braidings, we make our choice explicit and refer to [8, 10.1.D] for more details.

In a completion of 𝒰q(𝔤𝔩m)𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})\otimes\mathcal{U}_{q}(\mathfrak{gl}_{m}), we define an element Θ\Theta by

Θ=αΦ+(n=0+qn(n1)2(qq1)n[n]!EαnFαn),\Theta=\prod_{\alpha\in\Phi^{+}}\left(\sum_{n=0}^{+\infty}q^{\frac{n(n-1)}{2}}\frac{(q-q^{-1})^{n}}{[n]!}E_{\alpha}^{n}\otimes F_{\alpha}^{n}\right),

where [n]!=i=1nqiqiqq1[n]!=\prod_{i=1}^{n}\frac{q^{i}-q^{-i}}{q-q^{-1}} and Eα,FαE_{\alpha},F_{\alpha} being the root vectors associated to a positive root α\alpha. If MM and NN are two 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) type 11 weight modules over the ground ring (q,λ1,,λd1)\mathbb{Q}(q,\lambda_{1},\ldots,\lambda_{d-1}) where 𝒰q(𝔤𝔩m)>0\mathcal{U}_{q}(\mathfrak{gl}_{m})^{>0} act locally nilpotently, Θ\Theta induces an isomorphism of vector spaces ΘM,N:MNMN\Theta_{M,N}\colon M\otimes N\rightarrow M\otimes N. We then define a morphism of 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-modules

cM,N:MNNM,c_{M,N}\colon M\otimes N\rightarrow N\otimes M,

by

cM,N=τfΘM,N,c_{M,N}=\tau\circ f\circ\Theta_{M,N},

where τ\tau is the flip vwwvv\otimes w\mapsto w\otimes v and ff is the map vwqμ,νvwv\otimes w\mapsto q^{\langle\mu,\nu\rangle}v\otimes w if vv and ww are of respective weights μ\mu and ν\nu. This endows the category of type 11 weight modules on which 𝒰q(𝔤𝔩m)>0\mathcal{U}_{q}(\mathfrak{gl}_{m})^{>0} acts locally nilpotently with a braiding. In particular, we have the hexagon equation:

cLM,N=(cL,NIdM)(IdLcM,N)andcL,MN=(IdMcL,N)(cL,MIdN).c_{L\otimes M,N}=(c_{L,N}\otimes\operatorname{Id}_{M})\circ(\operatorname{Id}_{L}\otimes c_{M,N})\quad\text{and}\quad c_{L,M\otimes N}=(\operatorname{Id}_{M}\otimes c_{L,N})\circ(c_{L,M}\otimes\operatorname{Id}_{N}).

Let n\mathcal{B}_{n} be the Artin-Tits braid group of type BnB_{n}. It has the following presentation in terms of generators and relations:

n=τ0,τ1,,τn1|τ0τ1τ0τ1=τ1τ0τ1τ0,τiτj=τjτi,if|ij|>1,τiτi+1τi=τi+1τiτi+1,for 1in2.\mathcal{B}_{n}=\left\langle\tau_{0},\tau_{1},\ldots,\tau_{n-1}\middle|\begin{array}[]{ll}\tau_{0}\tau_{1}\tau_{0}\tau_{1}=\tau_{1}\tau_{0}\tau_{1}\tau_{0},&\\ \tau_{i}\tau_{j}=\tau_{j}\tau_{i},&\text{if}\ \lvert i-j\rvert>1,\\ \tau_{i}\tau_{i+1}\tau_{i}=\tau_{i+1}\tau_{i}\tau_{i+1},&\text{for}\ 1\leq i\leq n-2\end{array}\right\rangle.

Using the braiding, we define the following endomorphisms of MNnM\otimes N^{\otimes n}:

R0\displaystyle R_{0} =(cN,McM,N)IdNn1,\displaystyle=(c_{N,M}\circ c_{M,N})\otimes\operatorname{Id}_{N^{\otimes n-1}},
Ri\displaystyle R_{i} =IdMNi1cN,NIdNni1,for 1in1.\displaystyle=\operatorname{Id}_{M\otimes N^{\otimes i-1}}\otimes c_{N,N}\otimes\operatorname{Id}_{N^{\otimes n-i-1}},\ \text{for}\ 1\leq i\leq n-1.

Pictorially, one can represent these endomorphisms as

R0=NMNNandRi=MNNNNiR_{0}=\leavevmode\hbox to98.47pt{\vbox to70.43pt{\pgfpicture\makeatletter\hbox{\quad\lower-67.5882pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{ {}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{28.45276pt}{-28.45276pt}\pgfsys@curveto{28.45276pt}{-14.22638pt}{0.0pt}{-14.22638pt}{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.69055pt}\pgfsys@invoke{ }\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}{}\pgfsys@moveto{0.0pt}{-28.45276pt}\pgfsys@curveto{0.0pt}{-14.22638pt}{28.45276pt}{-14.22638pt}{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{-28.45276pt}\pgfsys@curveto{0.0pt}{-14.22638pt}{28.45276pt}{-14.22638pt}{28.45276pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } {}{{}}{}{{}}{}{{}}{}{}{}{{}}{}\pgfsys@moveto{0.0pt}{-28.45276pt}\pgfsys@curveto{0.0pt}{-42.67914pt}{28.45276pt}{-42.67914pt}{28.45276pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.49094pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$N$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.69055pt}\pgfsys@invoke{ }\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}{}\pgfsys@moveto{0.0pt}{-56.90552pt}\pgfsys@curveto{0.0pt}{-42.67914pt}{28.45276pt}{-42.67914pt}{28.45276pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{{}}{}{{}}{}{}{}{}\pgfsys@moveto{0.0pt}{-56.90552pt}\pgfsys@curveto{0.0pt}{-42.67914pt}{28.45276pt}{-42.67914pt}{28.45276pt}{-28.45276pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.48267pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$M$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{} {}{}{{}}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@lineto{56.90552pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{53.9437pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$N$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{69.2569pt}{-29.70276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$\dots$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{} {}{}{{}}{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@lineto{85.35828pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.39645pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$N$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} } \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}\quad\text{and}\quad R_{i}=\leavevmode\hbox to126.92pt{\vbox to87.72pt{\pgfpicture\makeatletter\hbox{\quad\lower-84.87572pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{ }\pgfsys@endscope\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{1.2pt}\pgfsys@invoke{ }{ {}{{}}{} {}{}{{}}{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.48267pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$M$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{} {}{}{{}}{}\pgfsys@moveto{28.45276pt}{0.0pt}\pgfsys@lineto{28.45276pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{25.49094pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$N$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.80414pt}{-29.70276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$\dots$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{}{{}}{}{{}}{}{}{}{{}}{}\pgfsys@moveto{56.90552pt}{0.0pt}\pgfsys@curveto{56.90552pt}{-28.45276pt}{85.35828pt}{-28.45276pt}{85.35828pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{82.39645pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$N$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} ; {}{{}}{}{{}}{}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{5.69055pt}\pgfsys@invoke{ }\color[rgb]{1,1,1}\definecolor[named]{pgfstrokecolor}{rgb}{1,1,1}\pgfsys@color@gray@stroke{1}\pgfsys@invoke{ }\pgfsys@color@gray@fill{1}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{1,1,1}{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@curveto{85.35828pt}{-28.45276pt}{56.90552pt}{-28.45276pt}{56.90552pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{ }\pgfsys@endscope{}{{}}{}{{}}{}{{}}{}{}{}{{}}{}\pgfsys@moveto{85.35828pt}{0.0pt}\pgfsys@curveto{85.35828pt}{-28.45276pt}{56.90552pt}{-28.45276pt}{56.90552pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{53.9437pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$N$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} ; {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{97.70966pt}{-29.70276pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$\dots$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{} {}{}{{}}{}\pgfsys@moveto{113.81104pt}{0.0pt}\pgfsys@lineto{113.81104pt}{-56.90552pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{110.84921pt}{-64.25519pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\tiny$N$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} {}{{}}{} {}{}{}{}{{{}{}}} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}}{{}}{{}} {} {}{}{} { {{}} {} {}{}{} {}{}{} } { {{}} {} {}{}{} } }{{}{}}{{}{}}{{{{}{}{{}} }}{{}}{{}}{{}}} {}\pgfsys@moveto{24.18501pt}{-78.24509pt}\pgfsys@moveto{24.18501pt}{-70.24509pt}\pgfsys@curveto{24.56pt}{-70.99509pt}{25.43501pt}{-71.49509pt}{26.68501pt}{-71.49509pt}\pgfsys@lineto{40.17912pt}{-71.49509pt}\pgfsys@curveto{41.42912pt}{-71.49509pt}{42.30414pt}{-71.99507pt}{42.67912pt}{-72.74509pt}\pgfsys@curveto{43.05411pt}{-71.99507pt}{43.92912pt}{-71.49509pt}{45.17912pt}{-71.49509pt}\pgfsys@lineto{58.67325pt}{-71.49509pt}\pgfsys@curveto{59.92325pt}{-71.49509pt}{60.79826pt}{-70.99509pt}{61.17325pt}{-70.24509pt}\pgfsys@stroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{40.95656pt}{-81.54271pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{$i$}} }}\pgfsys@invoke{ }\pgfsys@endscope}}} \pgfsys@invoke{ }\pgfsys@endscope}}} } \pgfsys@invoke{ }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{ }\pgfsys@endscope\hss}}\endpgfpicture}}
Proposition 3.6.

The assignment τiRi\tau_{i}\mapsto R_{i} defines an action of n\mathcal{B}_{n} on the module MNnM\otimes N^{\otimes n} which commutes with the 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m}) action.

Proof.

The fact that RiR_{i} is a 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-morphism follows by definition of RiR_{i}. The fact that the defining relations of n\mathcal{B}_{n} are satisfied follows from the embedding of the braid group of type BnB_{n} into the braid group of type An+1A_{n+1} [15, Lemma 2.1]. ∎

Finally, we end this section with a lemma due to Drinfeld [13, Proposition 5.1 and Remark 4) below] computing the action of the double braiding on highest weight modules, which is related with the action of the ribbon element.

Lemma 3.7.

Let L,ML,M and NN be highest weight modules of respective highest weight λ,μ\lambda,\mu and ν\nu such that LMNL\subset M\otimes N. Then the double braiding cN,McM,Nc_{N,M}\circ c_{M,N} restricted to NN acts by multiplication by the scalar

qλ,λ+2ρμ,μ+2ρν,ν+2ρ.q^{\langle\lambda,\lambda+2\rho\rangle-\langle\mu,\mu+2\rho\rangle-\langle\nu,\nu+2\rho\rangle}.

4. The endomorphism algebra of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}

The aim of this section is to prove the main result of this paper. We first explain why M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} inherits an action of the Ariki–Koike algebra from the action of the braid group of type BnB_{n}. It is a classical result that the eigenvalues of RiR_{i} are qq and q1-q^{-1}: the action of the braiding on VVV\otimes V is

vivj{qvjviifi=j,vjviifi>j,vjvi+(qq1)vivjifi<j.v_{i}\otimes v_{j}\mapsto\begin{cases}qv_{j}\otimes v_{i}&\ \text{if}\ i=j,\\ v_{j}\otimes v_{i}&\ \text{if}\ i>j,\\ v_{j}\otimes v_{i}+(q-q^{-1})v_{i}\otimes v_{j}&\ \text{if}\ i<j.\end{cases}

Moreover, using 3.7, we easily compute the eigenvalues of the endomorphism R0R_{0} in order to show that the action of n\mathcal{B}_{n} factors through the Ariki–Koike algebra.

Lemma 4.1.

The eigenvalues u1,,udu_{1},\ldots,u_{d} of R0R_{0} on M𝔭(Λ)VM^{\mathfrak{p}}(\Lambda)\otimes V are equal to

ui=(λiqm~i1)2.u_{i}=(\lambda_{i}q^{-\tilde{m}_{i-1}})^{2}.
Proof.

Let Λ\Lambda be the highest weight of M𝔭(Λ)M^{\mathfrak{p}}(\Lambda). The decomposition of M𝔭(Λ)VM^{\mathfrak{p}}(\Lambda)\otimes V is given in 3.4:

M𝔭(Λ)Vi=1dM𝔭(Λ,μi),M^{\mathfrak{p}}(\Lambda)\otimes V\simeq\bigoplus_{i=1}^{d}M^{\mathfrak{p}}(\Lambda,\mu_{i}),

where μi\mu_{i} is the dd-partition of 11 whose only non-zero component is the ii-th one and is equal to (1)(1). The highest weight of M𝔭(Λ,μi)M^{\mathfrak{p}}(\Lambda,\mu_{i}) being Λ+εm~i1+1\Lambda+\varepsilon_{\tilde{m}_{i-1}+1}, the action of R0R_{0} on M𝔭(Λ,μi)M^{\mathfrak{p}}(\Lambda,\mu_{i}) is given by

qΛ+εm~i1+1,Λ+εm~i1+1+2ρΛ,Λ+2ρε1,ε1+2ρ,q^{\langle\Lambda+\varepsilon_{\tilde{m}_{i-1}+1},\Lambda+\varepsilon_{\tilde{m}_{i-1}+1}+2\rho\rangle-\langle\Lambda,\Lambda+2\rho\rangle-\langle\varepsilon_{1},\varepsilon_{1}+2\rho\rangle},

and we check that

Λ+εm~i1+1,Λ+εm~i1+1+2ρΛ,Λ+2ρε1,ε1+2ρ=2(βim~i1).\langle\Lambda+\varepsilon_{\tilde{m}_{i-1}+1},\Lambda+\varepsilon_{\tilde{m}_{i-1}+1}+2\rho\rangle-\langle\Lambda,\Lambda+2\rho\rangle-\langle\varepsilon_{1},\varepsilon_{1}+2\rho\rangle=2(\beta_{i}-\tilde{m}_{i-1}).

By the definition of the Ariki–Koike algebra, Proposition 3.6 and the previous lemma we thus get an action of the Ariki–Koike algebra for the parameters ui=(λiqm~i1)2u_{i}=(\lambda_{i}q^{-\tilde{m}_{i-1}})^{2} on M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}. Therefore, the assignment TiRiT_{i}\mapsto R_{i} defines a morphism of algebras

(d,n)End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn).\mathcal{H}(d,n)\rightarrow\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}).
Theorem 4.2.
  • The algebra morphism (d,n)End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn)\mathcal{H}(d,n)\rightarrow\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is surjective and factors through an isomorphism

    m¯(d,n)End𝒰q(𝔤𝔩m)(M𝔭(Λ)Vn).\mathcal{H}_{\underline{m}}(d,n)\overset{\simeq}{\longrightarrow}\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{m})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}).
  • There is an isomorphism of (d,n)𝒰q(𝔤𝔩m)\mathcal{H}(d,n)\otimes\mathcal{U}_{q}(\mathfrak{gl}_{m})-module

    M𝔭(Λ)Vnμ𝒫m¯nVμM𝔭(Λ,μ).M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}\simeq\bigoplus_{\mu\in\mathcal{P}^{n}_{\underline{m}}}V_{\mu}\otimes M^{\mathfrak{p}}(\Lambda,\mu).
Proof.

The first part of the theorem follows immediately from the second part and the definition of the row-quotient m¯(d,n)\mathcal{H}_{\underline{m}}(d,n).

Using 3.5 and the fact that (d,n)\mathcal{H}(d,n) acts on M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} by 𝒰q(𝔤𝔩m)\mathcal{U}_{q}(\mathfrak{gl}_{m})-linear endomorphisms, we see that

M𝔭(Λ)Vnμ𝒫𝔩nV~μM𝔭(Λ,μ),M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}\simeq\bigoplus_{\mu\in\mathcal{P}^{n}_{\mathfrak{l}}}\tilde{V}_{\mu}\otimes M^{\mathfrak{p}}(\Lambda,\mu),

for some (d,n)\mathcal{H}(d,n)-modules V~μ\tilde{V}_{\mu}. Since the multiplicity of M𝔭(Λ,μ)M^{\mathfrak{p}}(\Lambda,\mu) in M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} is given by the number of paths in the Young lattice from the empty dd-partition to the dd-partition μ\mu, we have dim(V~μ)=dim(Vμ)\dim(\tilde{V}_{\mu})=\dim(V_{\mu}). Showing that VμV_{\mu} is a submodule of V~μ\tilde{V}_{\mu} will end the proof of the second part of the theorem.

Let 𝔱\mathfrak{t} be a standard Young tableau of shape μ\mu and denote by (ai,bi,ci)=𝔱1(i)(a_{i},b_{i},c_{i})=\mathfrak{t}^{-1}(i). Denote by μ[i]\mu[i] the dd-partition of ii obtained by adding the boxes labeled by 11 to ii in the chosen standard tableau 𝔱\mathfrak{t} to the empty dd-partition. We now choose a highest weight vector vM𝔭(Λ)Vnv\in M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} of weight Λμ\Lambda_{\mu} such that for all 1in1\leq i\leq n we have

vM𝔭(Λ,μ[i])V(ni)M𝔭(Λ)Vn.v\in M^{\mathfrak{p}}(\Lambda,\mu[i])\otimes V^{\otimes(n-i)}\subset M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}.

Using the branching rule, one see that such a vector exists and is unique up to a scalar. Let us show that this vector vv is a common eigenvector of the Jucys–Murphy elements XiX_{i}. It is easy to see that the action of the Jucys–Murphy element XiX_{i} on M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} is given by the double braiding (cV,M𝔭(Λ)V(i1)cM𝔭(Λ)V(i1),V)IdV(ni)(c_{V,M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes(i-1)}}\circ c_{M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes(i-1)},V})\otimes\operatorname{Id}_{V^{\otimes(n-i)}}. By 3.7, we obtain that XiX_{i} acts on vv by multiplication by

qΛμ[i],Λμ[i]+2ρΛμ[i1],Λμ[i1]+2ρε1,ε1+2ρ.q^{\langle\Lambda_{\mu[i]},\Lambda_{\mu[i]}+2\rho\rangle-\langle\Lambda_{\mu[i-1]},\Lambda_{\mu[i-1]}+2\rho\rangle-\langle\varepsilon_{1},\varepsilon_{1}+2\rho\rangle}.

Indeed, vv lies in the summand M𝔭(Λ,μ[i])V(ni)M𝔭(Λ,μ[i1])VV(ni)M^{\mathfrak{p}}(\Lambda,\mu[i])\otimes V^{\otimes(n-i)}\subset M^{\mathfrak{p}}(\Lambda,\mu[i-1])\otimes V\otimes V^{\otimes(n-i)} of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}. But Λμ[i]=Λμ[i1]+εki\Lambda_{\mu[i]}=\Lambda_{\mu[i-1]}+\varepsilon_{k_{i}} where ki=m~ci1+aik_{i}=\tilde{m}_{c_{i-1}}+a_{i} so that

Λμ[i],Λμ[i]+2ρΛμ[i1],Λμ[i1]+2ρε1,ε1+2ρ\displaystyle\langle\Lambda_{\mu[i]},\Lambda_{\mu[i]}+2\rho\rangle-\langle\Lambda_{\mu[i-1]},\Lambda_{\mu[i-1]}+2\rho\rangle-\langle\varepsilon_{1},\varepsilon_{1}+2\rho\rangle =2Λμ[i1],εki+2(1ki)\displaystyle=2\langle\Lambda_{\mu[i-1]},\varepsilon_{k_{i}}\rangle+2(1-k_{i})
=2(βci+biki),\displaystyle=2(\beta_{c_{i}}+b_{i}-k_{i}),

since the component of Λμ[i1]\Lambda_{\mu[i-1]} on εki\varepsilon_{k_{i}} is βci+(bi1)\beta_{c_{i}}+(b_{i}-1). Therefore, XiX_{i} acts on vv by multiplication by

(λciqbiki)2=uciq2(biai).(\lambda_{c_{i}}q^{b_{i}-k_{i}})^{2}=u_{c_{i}}q^{2(b_{i}-a_{i})}.

Therefore, the (d,n)\mathcal{H}(d,n) submodule spanned by vv is isomorphic to VμV_{\mu} and then VμV_{\mu} is a submodule of V~μ\tilde{V}_{\mu}. ∎

4.1. Some particular cases

We finish by giving some special cases of 4.2 in order to recover various well-known algebras. The two first special cases involve the well-known situation without a parabolic Verma module: it suffices to note that, if 𝔭=𝔤𝔩m\mathfrak{p}=\mathfrak{gl}_{m}, then M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) is the trivial module.

Corollary 4.3.

If the parabolic subalgebra 𝔭\mathfrak{p} is 𝔤𝔩m\mathfrak{gl}_{m} and mnm\geq n, then the endomorphism algebra of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} is isomorphic to Hecke algebra of type AA.

Corollary 4.4.

If the parabolic subalgebra 𝔭\mathfrak{p} is 𝔤𝔩m\mathfrak{gl}_{m} and m=2m=2, then the endomorphism algebra of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} is isomorphic to Temperley–Lieb algebra of type AA.

We now turn to special cases where 𝔭\mathfrak{p} is a strict subalgebra of 𝔤𝔩m\mathfrak{gl}_{m}. The following corollary follows from 2.12.

Corollary 4.5.

For 𝔭\mathfrak{p} such that mndm\geq nd and minm_{i}\geq n for all 1id1\leq i\leq d, the endomorphism algebra of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} is isomorphic to the Ariki–Koike algebra (d,n)\mathcal{H}(d,n).

The Hecke algebra of type BB with unequal parameters appears when we work with a standard parabolic subalgebra 𝔭\mathfrak{p} with Levi factor 𝔤𝔩m1×𝔤𝔩m2\mathfrak{gl}_{m_{1}}\times\mathfrak{gl}_{m_{2}}.

Corollary 4.6.

If the parabolic subalgebra 𝔭\mathfrak{p} is such that d=2d=2, m1nm_{1}\geq n and m2nm_{2}\geq n, then the endomorphism algebra of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} is isomorphic to the Hecke algebra of type BB with unequal and algebraically independent parameters.

Finally, the last special case is a generalization of the 𝔤𝔩2\mathfrak{gl}_{2} case of [15], where we recover the generalized blob algebra.

Corollary 4.7.

If the parabolic subalgebra 𝔭\mathfrak{p} is the standard Borel subalgebra 𝔟\mathfrak{b} of 𝔤𝔩m\mathfrak{gl}_{m}, that is d=md=m and mi=1m_{i}=1 for 1id1\leq i\leq d, then the endomorphism algebra of M(Λ)VnM(\Lambda)\otimes V^{\otimes n} is isomorphic to the generalized blob algebra (d,n)\mathcal{B}(d,n).

5. Some remarks on the non-semisimple case

This paper deals with the semisimple case, where the decomposition of M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} as the sum of simple modules is a crucial tool to compute its endomorphism algebra. Non-semisimple situations appear if qq is no longer an indeterminate in the base field 𝕜\Bbbk but a root of unity. If qq and the parameters λ1,,λd\lambda_{1},\ldots,\lambda_{d} appearing in the highest weight of M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) are no longer algebraically independent, a non-semisimple situation may also appear. Indeed, the parabolic Verma module might not be simple anymore as it is readily seen from the case of 𝔤𝔩2\mathfrak{gl}_{2}. It is then natural to ask whether it is possible to extend the Schur–Weyl duality to the non-semisimple case. Let us remark that if qq is not a root of unity and if λiλj1\lambda_{i}\lambda_{j}^{-1}\not\in\mathbb{Z} for all 1i,jd1\leq i,j\leq d then the behavior is similar to the one described in the previous sections.

In order to define the action, we use an “integral version” of the algebras 𝒰q(𝔤𝔩n)\mathcal{U}_{q}(\mathfrak{gl}_{n}) and (d,n)\mathcal{H}(d,n) and of the module M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}, compatible with the specialization at a root of unity.

We start with the Ariki–Koike algebra. The definition given in Section 2.1 is valid for any field 𝕜\Bbbk and any choice of parameters. Concerning the algebra 𝒰q(𝔤𝔩n)\mathcal{U}_{q}(\mathfrak{gl}_{n}), we consider Lusztig’s integral from 𝒰qres(𝔤𝔩n)\mathcal{U}_{q}^{\mathrm{res}}(\mathfrak{gl}_{n}) over [q,q1]\mathbb{Z}[q,q^{-1}], see [8, Section 9.3]. It is also known that the quasi-RR-matrix Θ\Theta is an element of (a completion of) 𝒰qres(𝔤𝔩n)𝒰qres(𝔤𝔩n)\mathcal{U}_{q}^{\mathrm{res}}(\mathfrak{gl}_{n})\otimes\mathcal{U}_{q}^{\mathrm{res}}(\mathfrak{gl}_{n}). Then for a base field 𝕜\Bbbk and any ξ𝕜\xi\in\Bbbk^{*}, the quantum group 𝒰ξ(𝔤𝔩n)\mathcal{U}_{\xi}(\mathfrak{gl}_{n}) is defined as 𝕜[q,q1]𝒰qres(𝔤𝔩n)\Bbbk\otimes_{\mathbb{Z}[q,q^{-1}]}\mathcal{U}_{q}^{\mathrm{res}}(\mathfrak{gl}_{n}), where we see 𝕜\Bbbk as a [q,q1]\mathbb{Z}[q,q^{-1}]-module via the morphism sending qq to ξ\xi.

The parabolic Verma module M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) is a highest weight module and we choose vΛv_{\Lambda} a highest weight vector. We then have at our disposal an integral version, which is the submodule generated over 𝒰qres(𝔤𝔩n)\mathcal{U}_{q}^{\mathrm{res}}(\mathfrak{gl}_{n}) by the highest weight vΛv_{\Lambda}. Its specialization at q=ξq=\xi will still be denoted M𝔭(Λ)M^{\mathfrak{p}}(\Lambda). Similarly, we have a version at q=ξq=\xi of the standard module VV, which has a well-known integral form.

Since the quasi-RR-matrix Θ\Theta lies in the Lusztig’s integral form of the quantum group, we can similarly use the braiding to define the endomorphisms R0,R1,,Rn1R_{0},R_{1},\ldots,R_{n-1} of the 𝒰ξ(𝔤𝔩n)\mathcal{U}_{\xi}(\mathfrak{gl}_{n})-module M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}. As in the semisimple case, we have:

Proposition 5.1.

Let 𝕜\Bbbk be a field, q𝕜q\in\Bbbk^{*} and λ1,,λd𝕜\lambda_{1},\ldots,\lambda_{d}\in\Bbbk. Then the assignment TiRiT_{i}\mapsto R_{i} is a morphism of algebras from (d,n)\mathcal{H}(d,n) to End𝒰ξ(𝔤𝔩n)(M𝔭(Λ)Vn)\operatorname{End}_{\mathcal{U}_{\xi}(\mathfrak{gl}_{n})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}). The parameters uiu_{i} of the Ariki–Koike algebra are still given by 4.1.

It is more difficult to understand the image of map (d,n)End𝒰ξ(𝔤𝔩n)(M𝔭(Λ)Vn)\mathcal{H}(d,n)\rightarrow\operatorname{End}_{\mathcal{U}_{\xi}(\mathfrak{gl}_{n})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}), or even better to describe the image and the kernel of the map. In [15] Iohara, Lehrer and Zhang studied the particular case of 𝔤𝔩2\mathfrak{gl}_{2} and 𝔭=𝔟\mathfrak{p}=\mathfrak{b} (this corresponds to n=2n=2 and d=2d=2) and proved that if qq is an indeterminate in 𝕜\Bbbk and that λ1λ21=ql\lambda_{1}\lambda_{2}^{-1}=q^{l} for ll\in\mathbb{Z}, l1l\geq-1, then the map (d,n)End𝒰q(𝔤𝔩n)(M𝔭(Λ)Vn)\mathcal{H}(d,n)\rightarrow\operatorname{End}_{\mathcal{U}_{q}(\mathfrak{gl}_{n})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) is surjective [15, Proposition 5.11].

In order to extend the Schur–Weyl duality form the semisimple case to a non-semisimple case, a classical strategy [12, 1] is to argue that the dimensions of the various algebras, such as End𝒰ξ(𝔤𝔩n)(M𝔭(Λ)Vn)\operatorname{End}_{\mathcal{U}_{\xi}(\mathfrak{gl}_{n})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) or (d,n)\mathcal{H}(d,n), are independent of the base field 𝕜\Bbbk.

Following the arguments of [1], a first step would be to determine whether the parabolic Verma module M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) is tilting in an appropriate category 𝒪\mathcal{O} of infinite dimensional 𝒰q(𝔤𝔩n)\mathcal{U}_{q}(\mathfrak{gl}_{n})-modules. Since VV is tilting and the tensor product of tilting modules is tilting, having M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) being tilting would mean that M𝔭(Λ)VnM^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n} is. Since the space of endomorphisms of a tilting module is flat, its dimension does not depend on the base field 𝕜\Bbbk.

Concerning (d,n)\mathcal{H}(d,n), its definition is valid over the ring [q±1,u1,,ud]\mathbb{Z}[q^{\pm 1},u_{1},\ldots,u_{d}] and it is known that the basis given in 2.3 is a basis over this ring. This implies that the dimension of the algebra (d,n)\mathcal{H}(d,n) is independent of the field 𝕜\Bbbk and the choice of q𝕜q\in\Bbbk^{*} and of u1,,ud𝕜u_{1},\ldots,u_{d}\in\Bbbk.

Therefore, if M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) is tilting in an appropriate category 𝒪\mathcal{O} of infinite dimensional 𝒰q(𝔤𝔩n)\mathcal{U}_{q}(\mathfrak{gl}_{n})-modules, the map (d,n)End𝒰ξ(𝔤𝔩n)(M𝔭(Λ)Vn)\mathcal{H}(d,n)\rightarrow\operatorname{End}_{\mathcal{U}_{\xi}(\mathfrak{gl}_{n})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) would be surjective for any base field 𝕜\Bbbk.

If we want to consider the row-quotients m¯(d,n)\mathcal{H}_{\underline{m}}(d,n) of (d,n)\mathcal{H}(d,n), one must first give a definition which does not rely on the semisimplicity of the algebra (d,n)\mathcal{H}(d,n) so that the map (d,n)End𝒰ξ(𝔤𝔩n)(M𝔭(Λ)Vn)\mathcal{H}(d,n)\rightarrow\operatorname{End}_{\mathcal{U}_{\xi}(\mathfrak{gl}_{n})}(M^{\mathfrak{p}}(\Lambda)\otimes V^{\otimes n}) factors through m¯(d,n)\mathcal{H}_{\underline{m}}(d,n) and then study the existence of an integral basis of m¯(d,n)\mathcal{H}_{\underline{m}}(d,n).

Let us stress that these arguments depend heavily on M𝔭(Λ)M^{\mathfrak{p}}(\Lambda) being tilting and on the existence of an integral basis of m¯(d,n)\mathcal{H}_{\underline{m}}(d,n). One may need some extra assumptions on the field 𝕜\Bbbk, as for example being infinite, or on the parameters of the parabolic Verma module. This non-semisimple behavior deserves further study, which was outside the scope of this paper.

References

  • [1] H. H. Andersen, C. Stroppel, and D. Tubbenhauer. Cellular structures using UqU_{q}-tilting modules. Pacific J. Math., 292(1):21–59, 2018.
  • [2] S. Ariki. On the Semi-simplicity of the Hecke Algebra of (/r)𝔖n(\mathbb{Z}/r\mathbb{Z})\wr\mathfrak{S}_{n}. J. Algebra, 169(1):216–225, 1994.
  • [3] S. Ariki and K. Koike. A Hecke Algebra of (/r)𝔖n(\mathbb{Z}/r\mathbb{Z})\wr\mathfrak{S}_{n} and Construction of its Irreducible Representations. Adv. Math., 106(2):216–243, 1994.
  • [4] S. Ariki, T. Terasoma, and H. Yamada. Schur–Weyl reciprocity for the Hecke algebra of (/r)𝔖n(\mathbb{Z}/r\mathbb{Z})\wr\mathfrak{S}_{n}. J. Algebra, 178(2):374–390, 1995.
  • [5] M. Balagović, Z. Daugherty, I. Entova-Aizenbud, I. Halacheva, J. Hennig, M. S. Im, G. Letzter, E. Norton, V. Serganova, and C. Stroppel. The affine VW supercategory. Sel. Math. New Ser., 26, 2020.
  • [6] H. Bao, W. Wang, and H. Watanabe. Multiparameter quantum Schur duality of type BB. Proc. Amer. Math. Soc., 146(8):3203–3216, 2018.
  • [7] M. Broué and G. Malle. Zyklotomische Heckealgebren. Number 212, pages 119–189. 1993. Représentations unipotentes génériques et blocs des groupes réductifs finis.
  • [8] V. Chari and A. Pressley. A guide to quantum groups. Cambridge University Press, Cambridge, 1994.
  • [9] V. Chari and A. Pressley. Quantum affine algebras and affine Hecke algebras. Pacific J. Math., 174(2):295–326, 1996.
  • [10] I. V. Cherednik. A new interpretation of Gelfand-Tzetlin bases. Duke Math. J., 54(2):563–577, 1987.
  • [11] Z. Daugherty and A. Ram. Two boundary Hecke Algebras and combinatorics of type CC. 2018, arXiv: 1804.10296v1.
  • [12] S. Doty. Schur-Weyl duality in positive characteristic. In Representation theory, volume 478 of Contemp. Math., pages 15–28. Amer. Math. Soc., Providence, RI, 2009.
  • [13] V. Drinfeld. On almost cocommutative hopf algebras. Leningrad Math. J., 1(2):321–342, 1990.
  • [14] M. Geck and N. Jacon. Representations of Hecke algebras at roots of unity, volume 15 of Algebra and Applications. Springer-Verlag London, Ltd., London, 2011.
  • [15] K. Iohara, G. I. Lehrer, and R. B. Zhang. Schur–Weyl duality for certain infinite dimensional Uq(𝔰𝔩2)U_{q}(\mathfrak{sl}_{2})-modules. 2018, arXiv: 1811.01325v2.
  • [16] M. Jimbo. A qq-analogue of U(𝔤𝔩(N+1))U(\mathfrak{gl}(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys., 11(3):247–252, 1986.
  • [17] D. Kazhdan and G. Lusztig. Tensor structures arising from affine Lie algebras i-iv. J. Amer. Math. Soc., 6-7:905–947, 949–1011,335–381,383–453, 1993-1994.
  • [18] A. Lacabanne, G. Naisse, and P. Vaz. Tensor product categorifications, Verma modules, and the blob algebra. 2020, arxiv: 2005.06257v1.
  • [19] P. Martin and H. Saleur. The blob algebra and the periodic Temperley-Lieb algebra. Lett. Math. Phys., 30(3):189–206, 1994.
  • [20] P. Martin and D. Woodcock. Generalized blob algebras and alcove geometry. LMS J. Comput. Math., 6:249–296, 2003.
  • [21] V. Mazorchuk. Lectures on algebraic categorification. QGM Master Class Series. European Mathematical Society (EMS), Zürich, 2012.
  • [22] D. Rose and D. Tubbenhauer. HOMFLYPT homology for links in handlebodies via type A Soergel bimodules. 2019, arXiv: 1908.06878v1.
  • [23] R. Rouquier, P. Shan, M. Varagnolo, and E. Vasserot. Categorifications and cyclotomic rational double affine Hecke algebras. Invent. Math., 204(3):671–786, 2016.
  • [24] M. Sakamoto and T. Sakamoto. Schur–Weyl reciprocity for Ariki–Koike algebras. J. Algebra, 221(1):293–314, 1999.