This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\sidecaptionvpos

figurec

thanks: also at Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, Indiathanks: also at Department of Space, Earth and Environment, Chalmers University of Technology, 412 96 Gothenburg, Swedenthanks: also at Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, Indiathanks: also at Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, Indiathanks: also at Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japanthanks: also at Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, Indiathanks: also at Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, India

IceCube Collaboration

Search for Extremely-High-Energy Neutrinos and First Constraints on the Ultrahigh-Energy Cosmic-Ray Proton Fraction with IceCube

R. Abbasi Department of Physics, Loyola University Chicago, Chicago, IL 60660, USA    M. Ackermann Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    J. Adams Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand    S. K. Agarwalla Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    J. A. Aguilar Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium    M. Ahlers Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark    J.M. Alameddine Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    N. M. Amin Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    K. Andeen Department of Physics, Marquette University, Milwaukee, WI 53201, USA    C. Argüelles Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    Y. Ashida Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    S. Athanasiadou Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    S. N. Axani Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    R. Babu Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    X. Bai Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA    A. Balagopal V Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Baricevic Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    S. W. Barwick Dept. of Physics and Astronomy, University of California, Irvine, CA 92697, USA    S. Bash Physik-department, Technische Universität München, D-85748 Garching, Germany    V. Basu Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    R. Bay Dept. of Physics, University of California, Berkeley, CA 94720, USA    J. J. Beatty Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA    J. Becker Tjus Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    J. Beise Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    C. Bellenghi Physik-department, Technische Universität München, D-85748 Garching, Germany    S. BenZvi Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA    D. Berley Dept. of Physics, University of Maryland, College Park, MD 20742, USA    E. Bernardini Dipartimento di Fisica e Astronomia Galileo Galilei, Università Degli Studi di Padova, I-35122 Padova PD, Italy    D. Z. Besson Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA    E. Blaufuss Dept. of Physics, University of Maryland, College Park, MD 20742, USA    L. Bloom Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA    S. Blot Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    F. Bontempo Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    J. Y. Book Motzkin Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    C. Boscolo Meneguolo Dipartimento di Fisica e Astronomia Galileo Galilei, Università Degli Studi di Padova, I-35122 Padova PD, Italy    S. Böser Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    O. Botner Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    J. Böttcher III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    J. Braun Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    B. Brinson School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA    Z. Brisson-Tsavoussis Dept. of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada    J. Brostean-Kaiser Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    L. Brusa III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    R. T. Burley Department of Physics, University of Adelaide, Adelaide, 5005, Australia    D. Butterfield Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. A. Campana Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA    I. Caracas Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    K. Carloni Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    J. Carpio Department of Physics & Astronomy, University of Nevada, Las Vegas, NV 89154, USA Nevada Center for Astrophysics, University of Nevada, Las Vegas, NV 89154, USA    S. Chattopadhyay Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    N. Chau Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium    Z. Chen Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA    D. Chirkin Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    S. Choi Dept. of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea    B. A. Clark Dept. of Physics, University of Maryland, College Park, MD 20742, USA    A. Coleman Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    P. Coleman III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    G. H. Collin Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA    A. Connolly Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA    J. M. Conrad Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA    R. Corley Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    D. F. Cowen Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA    C. De Clercq Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium    J. J. DeLaunay Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA    D. Delgado Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    S. Deng III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    A. Desai Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    P. Desiati Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    K. D. de Vries Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium    G. de Wasseige Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    T. DeYoung Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    A. Diaz Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA    J. C. Díaz-Vélez Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    P. Dierichs III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    M. Dittmer Institut für Kernphysik, Universität Münster, D-48149 Münster, Germany    A. Domi Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    L. Draper Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    H. Dujmovic Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    D. Durnford Dept. of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada    K. Dutta Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    M. A. DuVernois Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    T. Ehrhardt Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    L. Eidenschink Physik-department, Technische Universität München, D-85748 Garching, Germany    A. Eimer Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    P. Eller Physik-department, Technische Universität München, D-85748 Garching, Germany    E. Ellinger Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    S. El Mentawi III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    D. Elsässer Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    R. Engel Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany Karlsruhe Institute of Technology, Institute of Experimental Particle Physics, D-76021 Karlsruhe, Germany    H. Erpenbeck Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    W. Esmail Institut für Kernphysik, Universität Münster, D-48149 Münster, Germany    J. Evans Dept. of Physics, University of Maryland, College Park, MD 20742, USA    P. A. Evenson Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    K. L. Fan Dept. of Physics, University of Maryland, College Park, MD 20742, USA    K. Fang Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    K. Farrag Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    A. R. Fazely Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA    A. Fedynitch Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan    N. Feigl Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany    S. Fiedlschuster Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    C. Finley Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden    L. Fischer Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    D. Fox Dept. of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA    A. Franckowiak Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    S. Fukami Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    P. Fürst III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    J. Gallagher Dept. of Astronomy, University of Wisconsin—Madison, Madison, WI 53706, USA    E. Ganster III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    A. Garcia Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    M. Garcia Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    G. Garg Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    E. Genton Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    L. Gerhardt Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA    A. Ghadimi Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA    C. Girard-Carillo Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    C. Glaser Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    T. Glüsenkamp Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    J. G. Gonzalez Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    S. Goswami Department of Physics & Astronomy, University of Nevada, Las Vegas, NV 89154, USA Nevada Center for Astrophysics, University of Nevada, Las Vegas, NV 89154, USA    A. Granados Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    D. Grant Dept. of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada    S. J. Gray Dept. of Physics, University of Maryland, College Park, MD 20742, USA    S. Griffin Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    S. Griswold Dept. of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA    K. M. Groth Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark    D. Guevel Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    C. Günther III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    P. Gutjahr Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    C. Ha Dept. of Physics, Chung-Ang University, Seoul 06974, Republic of Korea    C. Haack Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    A. Hallgren Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    L. Halve III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    F. Halzen Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    L. Hamacher III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    H. Hamdaoui Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA    M. Ha Minh Physik-department, Technische Universität München, D-85748 Garching, Germany    M. Handt III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    K. Hanson Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    J. Hardin Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA    A. A. Harnisch Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    P. Hatch Dept. of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada    A. Haungs Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    J. Häußler III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    K. Helbing Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    J. Hellrung Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    J. Hermannsgabner III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    L. Heuermann III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    N. Heyer Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    S. Hickford Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    A. Hidvegi Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden    C. Hill Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    G. C. Hill Department of Physics, University of Adelaide, Adelaide, 5005, Australia    R. Hmaid Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    K. D. Hoffman Dept. of Physics, University of Maryland, College Park, MD 20742, USA    S. Hori Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    K. Hoshina Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Hostert Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    W. Hou Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    T. Huber Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    K. Hultqvist Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden    M. Hünnefeld Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    R. Hussain Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    K. Hymon Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan    A. Ishihara Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    W. Iwakiri Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    M. Jacquart Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    S. Jain Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    O. Janik Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    M. Jansson Dept. of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea    M. Jeong Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    M. Jin Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    B. J. P. Jones Dept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA    N. Kamp Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    D. Kang Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    W. Kang Dept. of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea    X. Kang Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA    A. Kappes Institut für Kernphysik, Universität Münster, D-48149 Münster, Germany    D. Kappesser Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    L. Kardum Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    T. Karg Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    M. Karl Physik-department, Technische Universität München, D-85748 Garching, Germany    A. Karle Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Katil Dept. of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada    U. Katz Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    M. Kauer Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    J. L. Kelley Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Khanal Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    A. Khatee Zathul Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Kheirandish Department of Physics & Astronomy, University of Nevada, Las Vegas, NV 89154, USA Nevada Center for Astrophysics, University of Nevada, Las Vegas, NV 89154, USA    J. Kiryluk Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA    S. R. Klein Dept. of Physics, University of California, Berkeley, CA 94720, USA Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA    Y. Kobayashi Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    A. Kochocki Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    R. Koirala Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    H. Kolanoski Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany    T. Kontrimas Physik-department, Technische Universität München, D-85748 Garching, Germany    L. Köpke Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    C. Kopper Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    D. J. Koskinen Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark    P. Koundal Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    M. Kowalski Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    T. Kozynets Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark    N. Krieger Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    J. Krishnamoorthi Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    T. Krishnan Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    K. Kruiswijk Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    E. Krupczak Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    A. Kumar Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    E. Kun Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    N. Kurahashi Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA    N. Lad Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    C. Lagunas Gualda Physik-department, Technische Universität München, D-85748 Garching, Germany    M. Lamoureux Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    M. J. Larson Dept. of Physics, University of Maryland, College Park, MD 20742, USA    F. Lauber Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    J. P. Lazar Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    K. Leonard DeHolton Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA    A. Leszczyńska Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    J. Liao School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA    M. Lincetto Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    Y. T. Liu Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA    M. Liubarska Dept. of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada    C. Love Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA    L. Lu Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    F. Lucarelli Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland    W. Luszczak Dept. of Astronomy, Ohio State University, Columbus, OH 43210, USA Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA    Y. Lyu Dept. of Physics, University of California, Berkeley, CA 94720, USA Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA    J. Madsen Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    E. Magnus Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium    K. B. M. Mahn Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    Y. Makino Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    E. Manao Physik-department, Technische Universität München, D-85748 Garching, Germany    S. Mancina Dipartimento di Fisica e Astronomia Galileo Galilei, Università Degli Studi di Padova, I-35122 Padova PD, Italy    A. Mand Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    W. Marie Sainte Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    I. C. Mariş Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium    S. Marka Columbia Astrophysics and Nevis Laboratories, Columbia University, New York, NY 10027, USA    Z. Marka Columbia Astrophysics and Nevis Laboratories, Columbia University, New York, NY 10027, USA    M. Marsee Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA    I. Martinez-Soler Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    R. Maruyama Dept. of Physics, Yale University, New Haven, CT 06520, USA    F. Mayhew Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    F. McNally Department of Physics, Mercer University, Macon, GA 31207-0001, USA    J. V. Mead Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark    K. Meagher Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    S. Mechbal Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    A. Medina Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA    M. Meier Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    Y. Merckx Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium    L. Merten Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    J. Mitchell Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA    T. Montaruli Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland    R. W. Moore Dept. of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada    Y. Morii Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    R. Morse Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Moulai Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    T. Mukherjee Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    R. Naab Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    M. Nakos Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    U. Naumann Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    J. Necker Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    A. Negi Dept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA    L. Neste Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden    M. Neumann Institut für Kernphysik, Universität Münster, D-48149 Münster, Germany    H. Niederhausen Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    M. U. Nisa Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    K. Noda Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    A. Noell III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    A. Novikov Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    A. Obertacke Pollmann Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    V. O’Dell Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Olivas Dept. of Physics, University of Maryland, College Park, MD 20742, USA    R. Orsoe Physik-department, Technische Universität München, D-85748 Garching, Germany    J. Osborn Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    E. O’Sullivan Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    V. Palusova Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    H. Pandya Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    N. Park Dept. of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada    G. K. Parker Dept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA    V. Parrish Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    E. N. Paudel Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    L. Paul Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA    C. Pérez de los Heros Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    T. Pernice Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    J. Peterson Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Pizzuto Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Plum Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA    A. Pontén Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    Y. Popovych Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    M. Prado Rodriguez Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    B. Pries Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    R. Procter-Murphy Dept. of Physics, University of Maryland, College Park, MD 20742, USA    G. T. Przybylski Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA    L. Pyras Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    C. Raab Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    J. Rack-Helleis Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    N. Rad Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    M. Ravn Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    K. Rawlins Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA    Z. Rechav Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Rehman Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    E. Resconi Physik-department, Technische Universität München, D-85748 Garching, Germany    S. Reusch Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    W. Rhode Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    B. Riedel Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Rifaie Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    E. J. Roberts Department of Physics, University of Adelaide, Adelaide, 5005, Australia    S. Robertson Dept. of Physics, University of California, Berkeley, CA 94720, USA Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA    S. Rodan Dept. of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Republic of Korea    M. Rongen Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    A. Rosted Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    C. Rott Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA Dept. of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea    T. Ruhe Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    L. Ruohan Physik-department, Technische Universität München, D-85748 Garching, Germany    D. Ryckbosch Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium    I. Safa Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    J. Saffer Karlsruhe Institute of Technology, Institute of Experimental Particle Physics, D-76021 Karlsruhe, Germany    D. Salazar-Gallegos Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    P. Sampathkumar Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    A. Sandrock Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    M. Santander Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA    S. Sarkar Dept. of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada    S. Sarkar Dept. of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom    J. Savelberg III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    P. Savina Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    P. Schaile Physik-department, Technische Universität München, D-85748 Garching, Germany    M. Schaufel III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    H. Schieler Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    S. Schindler Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    L. Schlickmann Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany    B. Schlüter Institut für Kernphysik, Universität Münster, D-48149 Münster, Germany    F. Schlüter Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium    N. Schmeisser Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    T. Schmidt Dept. of Physics, University of Maryland, College Park, MD 20742, USA    J. Schneider Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    F. G. Schröder Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    L. Schumacher Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    S. Schwirn III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    S. Sclafani Dept. of Physics, University of Maryland, College Park, MD 20742, USA    D. Seckel Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    L. Seen Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Seikh Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA    M. Seo Dept. of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea    S. Seunarine Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA    P. Sevle Myhr Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    R. Shah Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA    S. Shefali Karlsruhe Institute of Technology, Institute of Experimental Particle Physics, D-76021 Karlsruhe, Germany    N. Shimizu Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    M. Silva Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    B. Skrzypek Dept. of Physics, University of California, Berkeley, CA 94720, USA    B. Smithers Dept. of Physics, University of Texas at Arlington, 502 Yates St., Science Hall Rm 108, Box 19059, Arlington, TX 76019, USA    R. Snihur Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    J. Soedingrekso Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    A. Søgaard Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark    D. Soldin Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    P. Soldin III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    G. Sommani Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    C. Spannfellner Physik-department, Technische Universität München, D-85748 Garching, Germany    G. M. Spiczak Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA    C. Spiering Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    J. Stachurska Dept. of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium    M. Stamatikos Dept. of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210, USA    T. Stanev Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    T. Stezelberger Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA    T. Stürwald Dept. of Physics, University of Wuppertal, D-42119 Wuppertal, Germany    T. Stuttard Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark    G. W. Sullivan Dept. of Physics, University of Maryland, College Park, MD 20742, USA    I. Taboada School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA    S. Ter-Antonyan Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA    A. Terliuk Physik-department, Technische Universität München, D-85748 Garching, Germany    M. Thiesmeyer Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    W. G. Thompson Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    J. Thwaites Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    S. Tilav Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    K. Tollefson Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    C. Tönnis Dept. of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea    S. Toscano Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium    D. Tosi Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Trettin Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    M. A. Unland Elorrieta Institut für Kernphysik, Universität Münster, D-48149 Münster, Germany    A. K. Upadhyay Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    K. Upshaw Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA    A. Vaidyanathan Department of Physics, Marquette University, Milwaukee, WI 53201, USA    N. Valtonen-Mattila Dept. of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden    J. Vandenbroucke Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    N. van Eijndhoven Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium    D. Vannerom Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA    J. van Santen Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, D-15738 Zeuthen, Germany    J. Vara Institut für Kernphysik, Universität Münster, D-48149 Münster, Germany    F. Varsi Karlsruhe Institute of Technology, Institute of Experimental Particle Physics, D-76021 Karlsruhe, Germany    J. Veitch-Michaelis Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Venugopal Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    M. Vereecken Centre for Cosmology, Particle Physics and Phenomenology - CP3, Université catholique de Louvain, Louvain-la-Neuve, Belgium    S. Vergara Carrasco Dept. of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand    S. Verpoest Bartol Research Institute and Dept. of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA    D. Veske Columbia Astrophysics and Nevis Laboratories, Columbia University, New York, NY 10027, USA    A. Vijai Dept. of Physics, University of Maryland, College Park, MD 20742, USA    C. Walck Oskar Klein Centre and Dept. of Physics, Stockholm University, SE-10691 Stockholm, Sweden    A. Wang School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA    C. Weaver Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    P. Weigel Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA    A. Weindl Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    J. Weldert Dept. of Physics, Pennsylvania State University, University Park, PA 16802, USA    A. Y. Wen Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    C. Wendt Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    J. Werthebach Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    M. Weyrauch Karlsruhe Institute of Technology, Institute for Astroparticle Physics, D-76021 Karlsruhe, Germany    N. Whitehorn Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    C. H. Wiebusch III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany    D. R. Williams Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA    L. Witthaus Dept. of Physics, TU Dortmund University, D-44221 Dortmund, Germany    M. Wolf Physik-department, Technische Universität München, D-85748 Garching, Germany    G. Wrede Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany    X. W. Xu Dept. of Physics, Southern University, Baton Rouge, LA 70813, USA    J. P. Yanez Dept. of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada    E. Yildizci Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    S. Yoshida Dept. of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan    R. Young Dept. of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA    F. Yu Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    S. Yu Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA    T. Yuan Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    A. Zegarelli Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany    S. Zhang Dept. of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA    Z. Zhang Dept. of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA    P. Zhelnin Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA    P. Zilberman Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA    M. Zimmerman Dept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin—Madison, Madison, WI 53706, USA analysis@icecube.wisc.edu
(May 7th 2025)
Abstract

We present a search for the diffuse extremely-high-energy neutrino flux using 12.612.6 years of IceCube data. The nonobservation of neutrinos with energies well above 10 PeV10\text{\,}\mathrm{PeV} constrains the all-flavor neutrino flux at 1018 eV{10}^{18}\text{\,}\mathrm{eV} to a level of E2Φνe+νμ+ντ108 GeV cm2 s1 sr1E^{2}\Phi_{\nu_{e}+\nu_{\mu}+\nu_{\tau}}\simeq${10}^{-8}\text{\,}\mathrm{GeV}\text{\,}{\mathrm{cm}}^{-2}\text{\,}{\mathrm{s}}^{-1}\text{\,}{\mathrm{sr}}^{-1}$, the most stringent limit to date. Using these data, we constrain the proton fraction of ultrahigh-energy cosmic rays (UHECRs) above 30 EeV\simeq$30\text{\,}\mathrm{EeV}$ to be \lesssim70 %70\text{\,}\mathrm{\char 37\relax} (at 9090% CL) if the cosmological evolution of the sources is comparable to or stronger than the star formation rate. This is the first result to disfavor the “proton-only” hypothesis for UHECR in this evolution regime using neutrino data. This result complements direct air-shower measurements by being insensitive to uncertainties associated with hadronic interaction models. We also evaluate the tension between IceCube’s nonobservation and the \sim200 PeV200\text{\,}\mathrm{PeV} KM3NeT neutrino candidate (KM3-230213A), finding it to be 2.9σ\sim 2.9\sigma based on a joint-livetime fit between neutrino datasets.

Introduction—Extremely-high-energy neutrinos (EHEν\nu, Eν1016 eV=10 PeVE_{\nu}\gtrsim${10}^{16}\text{\,}\mathrm{eV}$=$10\text{\,}\mathrm{PeV}$) are unique messengers of the distant Universe. Unlike photons and ultrahigh-energy cosmic rays (UHECRs, ECR1018 eV=1 EeVE_{\mathrm{CR}}\geq${10}^{18}\text{\,}\mathrm{eV}$=$1\text{\,}\mathrm{EeV}$), neutrinos are chargeless and only weakly interacting, allowing them to travel undeflected by magnetic fields and unattenuated by interactions with background photons. Their fluxes are closely linked to the properties of UHECR sources, which remain unidentified [1, 2]. Of particular interest is the chemical composition of UHECRs, which carries more information about the source environments than spectral measurements. Inside source environments, UHECRs can interact with ambient photon fields and matter, producing astrophysical neutrinos carrying up to \sim5 %5\text{\,}\mathrm{\char 37\relax} of the parent cosmic ray energy. Additionally, after escaping their sources, UHECRs can interact with the cosmic microwave background (CMB) and extragalactic background light (EBL), creating a flux of cosmogenic neutrinos [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Interactions with the CMB are presumed responsible for the “Greisen-Zatsepin-Kuz’min (GZK) cutoff” of extragalactic UHECRs [21, 22] above 1019.6\sim 10^{19.6}\,eV\mathrm{eV}. The production of cosmogenic neutrinos depends on a few key features of UHECR sources: their composition, spectrum, and distribution as a function of redshift. Thus, the measurement or even nonobservation of cosmogenic neutrinos can constrain some of these features.

In this Letter, we report a search for EHEν\nu using 12.6 years12.6\text{\,}\mathrm{years} of data from the IceCube Neutrino Observatory. The data were taken between June 2010 and June 2023, corresponding to 4605 days of livetime. This is 5050% more exposure than that of the previous IceCube search [23]. Additionally, the event selection has been reoptimized, improving the effective area by 15%\sim$15$\% near 1 EeV1\text{\,}\mathrm{EeV}. The null observation of cosmogenic neutrinos places significant constraints on the cosmological evolution of UHECR sources and, moreover, the composition of UHECRs. In this work, we investigate the specific hypothesis of a proton-only composition of UHECRs with the GZK cutoff generating the observed suppression of UHECRs at EeV\mathrm{EeV} energies. The method was proposed in [9], and in a similar fashion applied to the neutrino measurement by the Pierre Auger Collaboration [24]. We find, at 9090% CL, that the observed fraction of UHECRs that are protons at Earth above 30 EeV\simeq$30\text{\,}\mathrm{EeV}$ cannot exceed 7070% if the source evolution is comparable to the star formation rate (SFR)—a general tracer of matter density in the Universe. These constraints are complementary to, and agree with, direct air-shower measurements [25, 26] by being insensitive to uncertainties associated with hadronic interaction models.

Data Sample—IceCube [27] is a neutrino detector at the South Pole. It consists of 51605160 digital optical modules (DOMs), distributed on 8686 strings, instrumenting a cubic kilometer of ice at depths between 14501450 and 2450 m2450\text{\,}\mathrm{m}. Each DOM hosts a 10-inch photomultiplier tube [28] and readout electronics [29]. Charged particles produced in neutrino interactions give rise to Cherenkov light when propagating through the ice. Those Cherenkov photons are detected by DOMs and converted into photoelectrons (PE\mathrm{PE}). On top of the IceCube strings, a surface array called IceTop [30] measures cosmic-ray air showers. EHEν\nu events in IceCube are observed as either tracks—light depositions along the trajectory of a long-range μ\mu/τ\tau produced in νμ\nu_{\mu}/ντ\nu_{\tau} charged-current interactions—or cascades—approximately spherical light depositions arising from all-flavor neutral-current interactions and charged-current interactions of νe\nu_{e}.

This search aims to select cosmogenic neutrinos while rejecting backgrounds. Because 100\gtrsim 100TeV\mathrm{TeV} neutrinos are absorbed by Earth [31], EHEν\nus are expected to be downgoing or horizontal at IceCube. The dominant background is downgoing atmospheric muon bundles produced in cosmic-ray air showers. This flux is modeled using corsika [32], with sibyll2.3c [33] as the hadronic interaction model and the cosmic-ray flux prediction from [34]. Further backgrounds arise from atmospheric and astrophysical neutrinos. Atmospheric neutrinos are produced by meson decays during cosmic-ray air showers. Their flux is divided into a conventional component [35] originating from pion and kaon decays, and a yet-unobserved prompt component [36] produced by heavier, short-lived mesons. All neutrinos—atmospheric, astrophysical, and cosmogenic—are simulated using the juliet code [37].

The 3 kHz3\text{\,}\mathrm{kHz} event trigger rate in IceCube is dominated by atmospheric muons, while the cosmogenic neutrino flux is already constrained to 1\ll 1 event per year [23]. The signal-to-noise ratio is improved by employing an event selection based on quality cuts of high-energy events in combination with an IceTop veto. Full details of the event selection are presented in End Matter. In brief, cosmogenic signal events have extremely high energies and, therefore, produce large amounts of charge (PE\mathrm{PE}). As the atmospheric muon background is exclusively downgoing, we reject most backgrounds with a zenith-angle-dependent charge threshold. To do this, the event direction is reconstructed with a maximum-likelihood reconstruction using an infinite-length track hypothesis [38].

Energy loss profiles for single muons show large stochastic variations as the muons propagate. In contrast, in high-multiplicity muon bundles, these single-muon fluctuations partly average out. To leverage this, the energy loss profile of events is reconstructed along the track direction, and stricter charge requirements are imposed upon less stochastic events. Using stochasticity information improved the effective area by 1515% between 100 PeV100\text{\,}\mathrm{PeV} and 1 EeV1\text{\,}\mathrm{EeV} relative to the previous search. Lastly, IceTop is used to further reduce the background from atmospheric events, as described in [39]. The sample is divided into subsamples of tracks and cascades based on the reconstructed particle velocity, and their deposited energy and arrival direction are reconstructed with likelihood-based methods [40, 41] (cf. End Matter).

After the event selection, the expected atmospheric background is 0.40±0.03$0.40$\pm 0.03 events, and up to 5\sim 5 cosmogenic neutrinos are expected for the most optimistic model [10], consisting of 7373% tracks and 2727% cascades. The flux beyond PeV\mathrm{PeV} energies is not well constrained, and the expectation strongly depends on the assumed model. The astrophysical expectation ranges from 9\sim 9 events for an unbroken power law with a hard spectral index (γ=2.37\gamma=2.37[42], down to 0.5\sim 0.5 events assuming a power law with a cutoff (γ=2.39\gamma=2.39, Ecutoff=1.4 PeVE_{\mathrm{cutoff}}=$1.4\text{\,}\mathrm{PeV}$ 111These best-fit parameters follow from the analysis scheme in [44], and they will be published in future work.). At the highest energies, Eν>100 PeVE_{\nu}>$100\text{\,}\mathrm{PeV}$, this expectation is reduced to 0.90.9 events and 3×10303\text{\times}{10}^{-30} events, respectively.

For both astrophysical and cosmogenic neutrinos, a flavor ratio of νe:νμ:ντ=1:1:1\nu_{\mathrm{e}}:\nu_{\mu}:\nu_{\tau}=1:1:1 at Earth is assumed [45], as well as equal fluxes of neutrinos and antineutrinos.

Three events with PeV\mathrm{PeV} energies survive the event selection: a through-going track [46], an uncontained cascade [47], and a starting track [48].

Analysis and Results—To infer physics parameters, the data are fit using a binned Poisson likelihood in the space of reconstructed direction and energy, following the method in [23]. Being in the regime of small statistics, all hypothesis tests and limits are based on ensembles of pseudoexperiments. Confidence intervals are determined using the likelihood ratio test statistic [49].

Systematic uncertainties are treated similarly to [45]: They are varied in pseudoexperiments based on estimated priors. The effect of incorporating systematics is modest, with the differential limit weakened by 44% at 100 PeV100\text{\,}\mathrm{PeV}, reducing toward 11% at the highest energies. Details of the likelihood and systematics treatment are available in Supplemental Material [50].

Differential limit and model tests—The differential upper limit on the neutrino flux above 5×106 GeV5\text{\times}{10}^{6}\text{\,}\mathrm{GeV} is depicted in Fig. 1 as a red line. The sensitivity, i.e., the limit in case of a null observation, and previous limits are also shown. The limit is weakened with respect to the sensitivity below 100 PeV100\text{\,}\mathrm{PeV} due to the observed events. At the highest energies the improvement to the previous limit (IceCube 9yr [23]) is comparable to the increase in detector livetime as expected for a largely background-free analysis. At around 1 EeV, additionally, event selection enhancements make a sizable contribution. Notably, by a few hundred PeV\mathrm{PeV}, the previous limit deviates from the sensitivity due to observed PeV\mathrm{PeV} neutrinos. In this analysis, although a similar number of PeV\mathrm{PeV} neutrinos were observed, improved energy reconstructions mean they are incompatible with a flux centered at 100 PeV100\text{\,}\mathrm{PeV} and above.

The differential limit is compared to a representative variety of cosmogenic neutrino models as gray lines. Qualitatively, larger normalizations, higher maximum accelerating energies, and stronger source evolutions generate larger cosmogenic neutrino fluxes [12, 11, 59]. In contrast, when the injected cosmic-ray primaries are heavy nuclei, photodisintegration becomes the dominant process over photopion production and the neutrino flux is suppressed [6, 60, 13]. All model predictions shown in Fig. 1 (except Van Vliet et al. 2019 [20], abbreviated “vV2019” hereafter) assume a pure-proton composition with moderate source redshift evolutions comparable to the SFR. The maximum acceleration energy varies between 1011 GeV{10}^{11}\text{\,}\mathrm{GeV} and 1012 GeV{10}^{12}\text{\,}\mathrm{GeV}.

Refer to caption
Figure 1: Differential upper limit (9090% CL) on the neutrino flux. The differential limit is compared to the IceCube 9 year result [23], the limit by Auger [61], the flux inferred from KM3-230213A [62], cosmogenic neutrino flux models [10, 11, 13, 20] and a UHE astrophysical model [63]. The model from vV2019 [20] assumes α=2.5\alpha=2.5, Emax=1020 eVE_{\mathrm{max}}=${10}^{20}\text{\,}\mathrm{eV}$, m=3.4m=3.4, and a 1010% proton fraction. The Auger limit is rescaled to all-flavor, decade-wide bins for comparison.

For each aforementioned model, we performed a likelihood ratio test as described in Supplemental Material [50]; the results are in Table 1. Although three events were observed, the best-fit normalization for a cosmogenic flux component is zero for all tested models. This indicates the data can be sufficiently explained by astrophysical neutrinos. All tested cosmogenic models assuming a pure proton composition of UHECRs are rejected at 9595% CL. This indicates that regardless of the differences between those models, if the SFR is driving the source evolution of UHECRs, a proton-only composition can be excluded.

Table 1: A selection of cosmogenic neutrino models, the model rejection factor (MRF [64]) at 90% CL, and associated pp value. The analysis strongly (p<0.05)(p<0.05) constrains several previously allowed models of the cosmogenic neutrino flux. Cosmogenic models assuming a proton-only composition are marked with a star.
Model MRF (90% CL) pp value
Ahlers 2010 [10] (1 EeV1\text{\,}\mathrm{EeV}) 0.28 0.003
Ahlers 2012 [13] 0.65 0.043
Kotera SFR [11] 0.49 0.027
van Vliet [20] (fp=0.1,m=3.4,α=2.5f_{p}=0.1,m=3.4,\alpha=2.5) 2.72 0.268
Murase AGN [63] (γ=2.0,ξCR=3\gamma=2.0,\xi_{\mathrm{CR}}=3) 0.47 0.057
Murase AGN [63] (γ=2.3,ξCR=100\gamma=2.3,\xi_{\mathrm{CR}}=100) 0.62 0.019

Proton fraction constraints—Given the measured UHECR flux, the nonobservation of neutrinos imposes constraints on the sources. This approach is complementary to many existing models, which focus on accurately describing the cosmic-ray energy spectrum and composition and, thus, also obtain an estimation of the accompanying cosmogenic neutrino flux [15, 19, 65, 66].

The crpropa package [67] is used to model cosmogenic fluxes (following vV2019 [20]). In the simulation, protons and secondary neutrinos are propagated to Earth including energy losses from photopion production and pair production on the CMB and EBL [68], neutron decay and cosmological adiabatic losses. Identical sources are distributed homogeneously and isotropically with a power-law injection spectrum Φ(E)Eαexp(E/Emax)\Phi(E)\propto E^{-\alpha}\exp(-E/E_{\mathrm{max}}) with spectral index α[1.0,3.0]\alpha\in[$1.0$,$3.0$] and exponential cutoff at Emax[4×1010 GeV,1014 GeV]E_{\mathrm{max}}\in[$4\text{\times}{10}^{10}\text{\,}\mathrm{GeV}$,${10}^{14}\text{\,}\mathrm{GeV}$].

Two different models for cosmological source evolution are tested:

SE1(z)={(1+z)m,zz(1+z)m,z>z\mathrm{SE}_{1}(z)=\begin{cases}(1+z)^{m},&z\leq z^{\prime}\\ (1+z^{\prime})^{m},&z>z^{\prime}\end{cases} (1)

with z=1.5z^{\prime}=1.5 up to zmax=4z_{\mathrm{max}}=4 [20], and a more conservative model of SE2(z)=(1+z)m\mathrm{SE}_{2}(z)=(1+z)^{m} with zmax=2z_{\mathrm{max}}=2, where mm denotes the source evolution parameter. The simulation is normalized to the all-particle cosmic-ray flux measured by Auger at 1010.5510^{10.55}\,GeV\mathrm{GeV}. We normalize to the highest-energy data point below the observed GZK suppression, such that the cosmic-ray flux at the suppression energy is saturated. This defines the flux corresponding to a proton fraction at Earth (fpf_{p}) of 100100% above energies of 30 EeV\simeq$30\text{\,}\mathrm{EeV}$. The reference energy impacts the resulting neutrino fluxes. A systematic shift to the reference energy on the order of the systematic energy scale of Auger of ±14%\pm$14$\% [25] results in a 55% shift of the overall neutrino flux.

Figure 2 shows the construction of the fpf_{p} constraints. The light-colored histograms show the simulated proton flux saturating the Auger measurement and the secondary neutrino flux. The source parameters α\alpha and EmaxE_{\mathrm{max}} are chosen to minimize the integral neutrino energy flux to obtain a conservative prediction for a given value of mm. The relatively wide range for α\alpha is motivated by both experimental and theoretical work, e.g., the Auger Collaboration [69] showing that α\alpha between 1 and 2 are allowed. Allowing this wider range gives a slightly more conservative result than bounding α\alpha at 2. The range for EmaxE_{\mathrm{max}} is bracketed by the “GZK-cutoff” energy at the low end, and by a value much higher than the observed cosmic rays on the other. In practice, when marginalizing, the minimum value for EmaxE_{\mathrm{max}} is always chosen. The flux shown in the figure is in tension with IceCube data, and, thus, fpf_{p} can be constrained based on the determined upper limit. As suggested in vV2019 [20], fpf_{p} can be determined by comparing the predicted neutrino flux with the experimental limit at 1 EeV1\text{\,}\mathrm{EeV}. However, we instead perform a model test, which improves the sensitivity.

Refer to caption
Figure 2: Illustration of the construction of proton fraction constraints. The red and blue histograms are 9090% CL upper limits on the flux of UHECR protons and cosmogenic neutrinos (per flavor), derived from the nonobservation of EHEν\nu, assuming SE1(z)\mathrm{SE}_{1}(z) with m=3.5m=3.5. Also plotted in black is the cosmic-ray flux measured by Auger [70]. The light-colored histograms represent the case where the proton flux (light red) is allowed to saturate the Auger measurement at 1010.55GeV10^{10.55}\,$\mathrm{GeV}$. The corresponding neutrino flux (light blue) is in tension with the nonobservation in IceCube data and is, therefore, excluded.

This procedure is repeated for different values of the source evolution parameter mm, and the resulting constraints are shown in Fig. 3 for the source evolution models SE1(z)\mathrm{SE}_{1}(z) and SE2(z)\mathrm{SE}_{2}(z). The value of mm for UHECR sources is unknown, but here we focus on the range in which fpf_{p} can be constrained by this analysis. For instance, given the source evolution is comparable to the SFR or stronger, fpf_{p} is constrained to be below about 7070%. Alternatively, due to the degeneracy between fpf_{p} and mm, the results can be interpreted as an upper bound on the source evolution of m3m\lesssim 3 for proton-dominated UHECRs, strengthening the claim of the previous analysis [39].

Refer to caption
Figure 3: Constraints on the proton fraction (fpf_{p}) of UHECRs as a function of source evolution parameter mm at 9090% CL based on the nonobservation of UHE neutrinos in this study. The excluded region is shown for the two source evolution models SE1(z)\mathrm{SE}_{1}(z) (blue) and SE2(z)\mathrm{SE}_{2}(z) (orange) and compared to constraints from Auger [24].

The predicted neutrino fluxes are dominated by distant cosmic-ray sources, from which high-energy cosmic rays are not expected to survive. The model presented here assumes that cosmic-ray sources are distributed homogeneously within the Universe. This is true at large distances, but due to Earth’s position within the Local Supercluster and Local Sheet, the local density of sources is enhanced. This leads to a relative reduction of distant sources and, thus, of the expected neutrino flux. Including a model of the local overdensity of sources based on the star formation rate of local galaxies [25, 71] weakens the neutrino fluxes, and the corresponding proton fraction constraints, by about 33% (m=6.0m=6.0) to 44% (m=2.0m=2.0). Additionally, a recent study by Auger shows that up to 55% of UHECRs above 40 EeV40\text{\,}\mathrm{EeV} can be associated with Centaurus A as the dominant local source [69]; in this case, the fpf_{p} constraint becomes weaker by the same fraction.

For context, constraints already exist from direct air-shower measurements. The Auger XmaxX_{\mathrm{max}} data [25] and the TA event isotropy [26] both favor small proton fractions. However, the data allow [24, 72], and some analyses find [66, 65, 73], a proton fraction as high as 10%\sim$10$\%. Air-shower-based composition measurements, while powerful, are dependent on hadronic interaction models and the associated uncertainties. As such, independent measurements that do not rely on air-shower observables directly are highly complementary and necessary. In particular, our result in this study does not rely on observables from air showers and is, therefore, insensitive to the uncertainties associated with hadronic interaction models. Although the estimation of the atmospheric muon or neutrino background has a dependence on hadronic interaction models, the influence on the derived constraints is negligible.

Auger has also used their neutrino data to constrain fpf_{p} [24], similar to Fig. 3. Here, we substantially improve the constraints. In particular, a direct comparison with the SE2\mathrm{SE}_{2} model with zmax=2z_{\mathrm{max}}=2 can be made, where the resulting exclusion contour—the orange shaded region in Fig. 3—is shifted to smaller values of mm relative to the Auger result (the black dotted line) by 1\sim 1. For example, at m3.4m\sim 3.4, which is comparable to the SFR, we find fp70%f_{p}\lesssim 70\% at 90%CL, where the Auger result is fully compatible with unity. We note that the IceCube result achieves this improvement despite making very conservative modeling choices, e.g., marginalizing over α\alpha and EmaxE_{\mathrm{max}}.

AGN model constraints—In addition, we tested the active-galactic-nuclei (AGN) model from [63], instead of a cosmogenic flux model. The astrophysical neutrino flux described in this model cannot be explained by the observed sub-PeV astrophysical neutrinos (cf. Fig. 1). These UHE astrophysical neutrinos are indistinguishable from cosmogenic neutrinos event by event. The neutrino emission is based on observed photon fluxes, using phenomenological parameters like the cosmic-ray loading factor ξCR\xi_{\mathrm{CR}}. The modeled flux scales linearly with ξCR\xi_{\mathrm{CR}}, so the limit (cf. Table 1) can be interpreted as an upper limit of ξCR1.4\xi_{\mathrm{CR}}\leq 1.4 and ξCR62\xi_{\mathrm{CR}}\leq 62 for assumed CR spectral indexes of γ=2.0\gamma=$2.0$ and 2.32.3, respectively. That the resulting MRFs are <1<1 indicates that inner jets of AGN are unlikely to be a dominant source for UHECRs in this model scenario.

KM3-230213A — Recently, KM3NeT published a 220 PeV\sim$220\text{\,}\mathrm{PeV}$ neutrino candidate [62]. The inferred diffuse flux, also shown in Fig. 1, assumes an E2E^{-2} ranging from 72 PeV72\text{\,}\mathrm{PeV} to 2.6 EeV2.6\text{\,}\mathrm{EeV} and significantly exceeds the limits presented in this work. With the exposure of this analysis, this flux leads to an expectation of 70\sim 70 events, inconsistent with our nonobservation at >10σ>10\sigma; a transient source hypothesis could reduce this tension [74, 62, 75, 76]. Considering a joint fit between IceCube, Auger, and KM3NeT, the tension in the diffuse hypothesis is significantly reduced [77]. After repeating the joint fit with the IceCube exposure presented here, the probability of the joint fit resulting in one observed event in KM3NeT (with μKM3=0.01\mu_{\mathrm{KM3}}=0.01 expected events) and no events in both Auger (μA=0.3\mu_{\mathrm{A}}=0.3) and IceCube (μIC=0.68\mu_{\mathrm{IC}}=0.68) is \sim0.350.35%. The corresponding goodness-of-fit pp value determined by the saturated Poisson likelihood test [78] is 0.40.4% (2.92.9σ\sigma).

The impact on fpf_{p} constraints depends on the neutrino’s origin. If produced in a neutrino source environment, the constraints would be unaffected. If cosmogenic [79], a combined analysis will weaken the inferred limits.

Summary—The nonobservation of neutrinos with energies well above 10 PeV10\text{\,}\mathrm{PeV} in 12.6 years12.6\text{\,}\mathrm{years} of IceCube data places the most stringent limit on cosmogenic neutrino fluxes to date, reaching a neutrino flux of E2Φνe+νμ+ντ108 GeV cm2 s1 sr1E^{2}\Phi_{\nu_{e}+\nu_{\mu}+\nu_{\tau}}\simeq${10}^{-8}\text{\,}\mathrm{GeV}\text{\,}{\mathrm{cm}}^{-2}\text{\,}{\mathrm{s}}^{-1}\text{\,}{\mathrm{sr}}^{-1}$. Additionally, we provide the strongest constraints on the composition of UHECRs obtained by neutrino astronomy, disfavoring proton-only UHECRs if their sources are evolving with the SFR or stronger.

Acknowledgements.
Acknowledgments—The IceCube Collaboration acknowledges the significant contributions to this manuscript by Brian A. Clark and Maximilian Meier. The authors gratefully acknowledge the support from the following agencies and institutions: USA – U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, U.S. National Science Foundation-EPSCoR, U.S. National Science Foundation-Office of Advanced Cyberinfrastructure, Wisconsin Alumni Research Foundation, Center for High Throughput Computing (CHTC) at the University of Wisconsin–Madison, Open Science Grid (OSG), Partnership to Advance Throughput Computing (PATh), Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS), Frontera and Ranch computing project at the Texas Advanced Computing Center, U.S. Department of Energy-National Energy Research Scientific Computing Center, Particle astrophysics research computing center at the University of Maryland, Institute for Cyber-Enabled Research at Michigan State University, Astroparticle physics computational facility at Marquette University, NVIDIA Corporation, and Google Cloud Platform; Belgium – Funds for Scientific Research (FRS-FNRS and FWO), FWO Odysseus and Big Science programmes, and Belgian Federal Science Policy Office (Belspo); Germany – Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Deutsches Elektronen Synchrotron (DESY), and High Performance Computing cluster of the RWTH Aachen; Sweden – Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation; European Union – EGI Advanced Computing for research; Australia – Australian Research Council; Canada – Natural Sciences and Engineering Research Council of Canada, Calcul Québec, Compute Ontario, Canada Foundation for Innovation, WestGrid, and Digital Research Alliance of Canada; Denmark – Villum Fonden, Carlsberg Foundation, and European Commission; New Zealand – Marsden Fund; Japan – Japan Society for Promotion of Science (JSPS) and Institute for Global Prominent Research (IGPR) of Chiba University; Korea – National Research Foundation of Korea (NRF); Switzerland – Swiss National Science Foundation (SNSF). Data availability—The data that support the findings of this Letter are not publicly available upon publication because it is not technically feasible and/or the cost of preparing, depositing, and hosting the data would be prohibitive within the terms of this research project. The data are available from the authors upon reasonable request.

References

  • Particle Data Group [2020] Particle Data Group, Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • Ahlers [2015] M. Ahlers, High-energy Cosmogenic Neutrinos, Phys. Procedia 61, 392 (2015).
  • Berezinsky and Zatsepin [1969] V. Berezinsky and G. Zatsepin, Cosmic rays at ultrahigh-energies (neutrino?), Phys. Lett. B 28, 423 (1969).
  • Hill and Schramm [1983] C. T. Hill and D. N. Schramm, Ultrahigh-Energy Cosmic Ray Neutrinos, Phys. Lett. B 131, 247 (1983).
  • Engel et al. [2001] R. Engel, D. Seckel, and T. Stanev, Neutrinos from propagation of ultrahigh-energy protons, Phys. Rev. D 64, 093010 (2001).
  • Hooper et al. [2005] D. Hooper, A. Taylor, and S. Sarkar, The Impact of heavy nuclei on the cosmogenic neutrino flux, Astropart. Phys. 23, 11 (2005).
  • Anchordoqui et al. [2007] L. A. Anchordoqui, H. Goldberg, D. Hooper, S. Sarkar, and A. M. Taylor, Predictions for the Cosmogenic Neutrino Flux in Light of New Data from the Pierre Auger Observatory, Phys. Rev. D 76, 123008 (2007).
  • Takami et al. [2009] H. Takami, K. Murase, S. Nagataki, and K. Sato, Cosmogenic neutrinos as a probe of the transition from Galactic to extragalactic cosmic rays, Astropart. Phys. 31, 201 (2009).
  • Ahlers et al. [2009] M. Ahlers, L. A. Anchordoqui, and S. Sarkar, Neutrino diagnostics of ultra-high energy cosmic ray protons, Phys. Rev. D 79, 083009 (2009).
  • Ahlers et al. [2010] M. Ahlers, L. Anchordoqui, M. Gonzalez–Garcia, F. Halzen, and S. Sarkar, GZK neutrinos after the Fermi-LAT diffuse photon flux measurement, Astropart. Phys. 34, 106–115 (2010).
  • Kotera et al. [2010] K. Kotera, D. Allard, and A. V. Olinto, Cosmogenic Neutrinos: parameter space and detectabilty from PeV to ZeV, J. Cosmol. Astropart. Phys. 10 (2010), 013.
  • Yoshida and Ishihara [2012] S. Yoshida and A. Ishihara, Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach, Phys. Rev. D 85, 063002 (2012).
  • Ahlers and Halzen [2012] M. Ahlers and F. Halzen, Minimal cosmogenic neutrinos, Phys. Rev. D 86, 083010 (2012).
  • Aloisio et al. [2015] R. Aloisio, D. Boncioli, A. di Matteo, A. F. Grillo, S. Petrera, and F. Salamida, Cosmogenic neutrinos and ultra-high energy cosmic ray models, J. Cosmol. Astropart. Phys. 2015 (10), 006.
  • Heinze et al. [2016] J. Heinze, D. Boncioli, M. Bustamante, and W. Winter, Cosmogenic neutrinos challenge the cosmic-ray proton dip model, Astrophys. J. 825, 122 (2016).
  • Romero-Wolf and Ave [2018] A. Romero-Wolf and M. Ave, Bayesian Inference Constraints on Astrophysical Production of Ultra-high Energy Cosmic Rays and Cosmogenic Neutrino Flux Predictions, J. Cosmol. Astropart. Phys. 2018 (07), 025.
  • Alves Batista et al. [2019] R. Alves Batista, R. M. de Almeida, B. Lago, and K. Kotera, Cosmogenic photon and neutrino fluxes in the Auger era, J. Cosmol. Astropart. Phys. 2019 (01), 002.
  • Heinze et al. [2019] J. Heinze, A. Fedynitch, D. Boncioli, and W. Winter, A new view on Auger data and cosmogenic neutrinos in light of different nuclear disintegration and air-shower models, Astrophys. J. 873, 88 (2019).
  • Møller et al. [2019] K. Møller, P. B. Denton, and I. Tamborra, Cosmogenic neutrinos through the grand lens unveil the nature of cosmic accelerators, J. Cosmol. Astropart. Phys. 2019 (05), 047.
  • van Vliet et al. [2019] A. van Vliet, R. A. Batista, and J. R. Hörandel, Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos, Phys. Rev. D 100, 021302 (2019).
  • Greisen [1966] K. Greisen, End to the cosmic-ray spectrum?, Phys. Rev. Lett. 16, 748 (1966).
  • Zatsepin and Kuz’min [1966] G. T. Zatsepin and V. A. Kuz’min, Upper Limit of the Spectrum of Cosmic Rays, Soviet JETP Letters 4, 78 (1966).
  • Aartsen et al. [2018] M. Aartsen et al., Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data, Phys. Rev. D 98, 062003 (2018).
  • Aab et al. [2019] A. Aab et al., Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory, J. Cosmol. Astropart. Phys. 2019 (10), 022.
  • Abdul Halim et al. [2023a] A. Abdul Halim et al., Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory, J. Cosmol. Astropart. Phys. 2023 (05), 024.
  • Abbasi et al. [2024a] R. U. Abbasi et al., Isotropy of cosmic rays beyond 1020  eV{10}^{20}\text{ }\text{ }\mathrm{eV} favors their heavy mass composition, Phys. Rev. Lett. 133, 041001 (2024a).
  • Aartsen et al. [2017] M. Aartsen et al., The IceCube Neutrino Observatory: instrumentation and online systems, J. Instrum. 12, P03012 (2017).
  • Abbasi et al. [2010a] R. Abbasi et al., Calibration and characterization of the icecube photomultiplier tube, Nucl. Instrum. Methods Phys. Res., Sect. A 618, 139 (2010a).
  • Abbasi et al. [2009] R. Abbasi et al., The IceCube data acquisition system: Signal capture, digitization, and timestamping, Nucl. Instrum. Methods Phys. Res., Sect. A 601, 294 (2009).
  • Abbasi et al. [2013] R. Abbasi et al., IceTop: The surface component of IceCube, Nucl. Instrum. Methods Phys. Res., Sect. A 700, 188 (2013).
  • Cooper-Sarkar et al. [2011] A. Cooper-Sarkar, P. Mertsch, and S. Sarkar, The high energy neutrino cross-section in the Standard Model and its uncertainty, J. High Energy Phys. 2011 (8), 042.
  • Heck et al. [1998] D. Heck, J. Knapp, J. N. Capdevielle, G. Schatz, and T. Thouw, CORSIKA: A Monte Carlo code to simulate extensive air showers, Universität Karlsruhe, Karlsruhe, Germany, Report No. FZKA-6019  (1998).
  • Fedynitch et al. [2019] A. Fedynitch, F. Riehn, R. Engel, T. K. Gaisser, and T. Stanev, Hadronic interaction model sibyll 2.3c and inclusive lepton fluxes, Phys. Rev. D 100, 103018 (2019).
  • Gaisser [2012] T. K. Gaisser, Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio, Astropart. Phys. 35, 801 (2012).
  • Honda et al. [2007] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75, 043006 (2007).
  • Bhattacharya et al. [2015] A. Bhattacharya, R. Enberg, M. H. Reno, I. Sarcevic, and A. Stasto, Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC, J. High Energy Phys. 2015 (6), 110.
  • Yoshida et al. [2004] S. Yoshida, R. Ishibashi, and H. Miyamoto, Propagation of extremely high energy leptons in Earth: Implications for their detection by the IceCube neutrino telescope, Phys. Rev. D 69, 103004 (2004).
  • [38] K. Schatto, Stacked searches for high-energy neutrinos from blazars with IceCubePh.D. thesis, Mainz, 2014.
  • Aartsen et al. [2016a] M. G. Aartsen et al., Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube, Phys. Rev. Lett. 117, 241101 (2016a).
  • Aartsen et al. [2014] M. G. Aartsen et al., Energy reconstruction methods in the IceCube neutrino telescope, J. Instrum. 9, P03009 (2014).
  • Abbasi et al. [2024b] R. Abbasi et al., Improved modeling of in-ice particle showers for IceCube event reconstruction, J. Instrum. 19, P06026 (2024).
  • Abbasi et al. [2022] R. Abbasi et al., Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data, Astrophys. J. 928, 50 (2022).
  • Note [1] These best-fit parameters follow from the analysis scheme in [44], and they will be published in future work.
  • [44] R. Naab, E. Ganster, and Z. Zhang, Measurement of the astrophysical diffuse neutrino flux in a combined fit of IceCube’s high energy neutrino data, Proc. Sci. ICRC2023 (2023), 1064.
  • Abbasi et al. [2024c] R. Abbasi et al., Observation of Seven Astrophysical Tau Neutrino Candidates with IceCube, Phys. Rev. Lett. 132, 151001 (2024c).
  • Aartsen et al. [2016b] M. G. Aartsen et al., Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data, Astrophys. J. 833, 3 (2016b).
  • Aartsen et al. [2021] M. G. Aartsen et al., Detection of a particle shower at the Glashow resonance with IceCube, Nature (London) 591, 220 (2021).
  • IceCube Collaboration [2019] IceCube Collaboration, GCN Circular 24028, GRB Coordinates Network  (2019), gcn.nasa.gov/circulars/24028.
  • Feldman and Cousins [1998] G. J. Feldman and R. D. Cousins, Unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57, 3873 (1998).
  • [50] See Supplemental Material for detailes on the analysis method, in particular the likelihood construction, the treatment of the astrophysical flux and systematic uncertainties, which includes Refs. [51, 52, 53, 54, 55, 56, 57, 58].
  • Acero et al. [2025] M. A. Acero et al. (NOvA Collaboration), Monte Carlo method for constructing confidence intervals with unconstrained and constrained nuisance parameters in the NOvA experiment, JINST 20 (02), T02001.
  • Xie et al. [2024] K. Xie, J. Gao, T. Hobbs, D. R. Stump, and C.-P. Yuan, High-energy neutrino deep inelastic scattering cross sections, Phys. Rev. D 109, 113001 (2024).
  • Yañez and Fedynitch [2023] J. P. Yañez and A. Fedynitch, Data-driven muon-calibrated neutrino flux, Phys. Rev. D 107, 123037 (2023).
  • Chirkin et al. [2019] D. Chirkin, J. C. Díaz-Vélez, C. Kopper, A. Olivas, B. Riedel, M. Rongen, D. Schultz, and J. van Santen, Photon Propagation using GPUs by the IceCube Neutrino Observatory, in 2019 15th International Conference on eScience (eScience) (2019) pp. 388–393.
  • Lundberg et al. [2007] J. Lundberg, P. Miočinović, K. Woschnagg, T. Burgess, J. Adams, S. Hundertmark, P. Desiati, and P. Niessen, Light tracking through ice and water—Scattering and absorption in heterogeneous media with Photonics, Nucl. Instrum. Methods Phys. Res. A 581, 619 (2007).
  • Landau and Pomeranchuk [1953] L. D. Landau and I. I. Pomeranchuk, The limits of applicability of the theory of Bremsstrahlung by electrons and of the creation of pairs at large energies, Dokl. Akad. Nauk SSSR 92, 535 (1953).
  • Migdal [1956] A. B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, Phys. Rev. 103, 1811 (1956).
  • Gerhardt and Klein [2010] L. Gerhardt and S. R. Klein, Electron and Photon Interactions in the Regime of Strong LPM Suppression, Phys. Rev. D 82, 074017 (2010).
  • Decerprit and Allard [2011] G. Decerprit and D. Allard, Constraints on the origin of ultrahigh energy cosmic rays from cosmogenic neutrinos and photons, Astron. Astrophys. 535, A66 (2011).
  • Ave et al. [2005] M. Ave, N. Busca, A. Olinto, A. Watson, and T. Yamamoto, Cosmogenic neutrinos from ultra-high energy nuclei, Astropart. Phys. 23, 19 (2005).
  • [61] M. Niechciol et al., Latest results from the searches for ultra-high-energy photons and neutrinos at the Pierre Auger Observatory, Proc. Sci. ICRC 2023 (2023), 1488.
  • Aiello et al. [2025] S. Aiello et al., Observation of an ultra-high-energy cosmic neutrino with KM3NeT, Nature (London) 638, 376 (2025).
  • Murase et al. [2014] K. Murase, Y. Inoue, and C. D. Dermer, Diffuse neutrino intensity from the inner jets of active galactic nuclei: Impacts of external photon fields and the blazar sequence, Phys. Rev. D 90, 023007 (2014).
  • Hill and Rawlins [2003] G. C. Hill and K. Rawlins, Unbiased cut selection for optimal upper limits in neutrino detectors: the model rejection potential technique, Astropart. Phys. 19, 393–402 (2003).
  • Muzio et al. [2023] M. S. Muzio, M. Unger, and S. Wissel, Prospects for joint cosmic ray and neutrino constraints on the evolution of trans-Greisen-Zatsepin-Kuzmin proton sources, Phys. Rev. D 107, 103030 (2023).
  • Ehlert et al. [2024] D. Ehlert, A. van Vliet, F. Oikonomou, and W. Winter, Constraints on the proton fraction of cosmic rays at the highest energies and the consequences for cosmogenic neutrinos and photons, J. Cosmol. Astropart. Phys. 2024 (02), 022.
  • Alves Batista et al. [2022] R. Alves Batista et al., CRPropa 3.2 — an advanced framework for high-energy particle propagation in extragalactic and galactic spaces, J. Cosmol. Astropart. Phys. 2022 (09), 035.
  • Franceschini et al. [2008] A. Franceschini, G. Rodighiero, and M. Vaccari, Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity, Astron. Astrophys. 487, 837–852 (2008).
  • Halim et al. [2024] A. A. Halim et al., Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger Observatory, J. Cosmol. Astropart. Phys. 01 (2024), 022.
  • [70] F. Fenu et al., The cosmic ray energy spectrum measured using the Pierre Auger Observatory, Proc. Sci. ICRC 2017 (2018), 486.
  • Biteau [2021] J. Biteau, Stellar Mass and Star Formation Rate within a Billion Light-years, Astrophys. J. Suppl. Ser. 256, 15 (2021).
  • Abdul Halim et al. [2023b] A. Abdul Halim et al., Studies of the mass composition of cosmic rays and proton-proton interaction cross-sections at ultra-high energies with the Pierre Auger Observatory, PoS ICRC2023, 438 (2023b).
  • Muzio et al. [2025] M. S. Muzio, T. Yuan, and L. Lu, Emergence of a neutrino flux above 5 PeV and implications for ultrahigh energy cosmic rays (2025), arXiv:2502.06944 .
  • Li et al. [2025] S. W. Li, P. Machado, D. Naredo-Tuero, and T. Schwemberger, Clash of the Titans: ultra-high energy KM3NeT event versus IceCube data (2025), arXiv:2502.04508 .
  • Adriani et al. [2025a] O. Adriani et al., Characterising Candidate Blazar Counterparts of the Ultra-High-Energy Event KM3-230213A (2025a), arXiv:2502.08484 .
  • Fang et al. [2025] K. Fang, F. Halzen, and D. Hooper, Cascaded Gamma-ray Emission Associated with the KM3NeT Ultra-High-Energy Event KM3-230213A, Astrophys. J. Lett. 982, L16 (2025).
  • Adriani et al. [2025b] O. Adriani et al., The ultra-high-energy event KM3-230213A within the global neutrino landscape (2025b), arXiv:2502.08173 .
  • Baker and Cousins [1984] S. Baker and R. D. Cousins, Clarification of the use of chi-square and likelihood functions in fits to histograms, Nucl. Instrum. Methods Phys. Res. 221, 437 (1984).
  • Adriani et al. [2025c] O. Adriani et al., On the potential cosmogenic origin of the ultra-high-energy event KM3-230213A (2025c), arXiv:2502.08508 .
  • Abbasi et al. [2010b] R. Abbasi et al., First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory, Phys. Rev. D 82, 072003 (2010b).
  • Dunsch et al. [2019] M. Dunsch et al., Recent improvements for the lepton propagator PROPOSAL, Comput. Phys. Commun. 242, 132 (2019).
  • IceCube Collaboration [2025] IceCube Collaboration, Data release for A search for extremely-high-energy neutrinos and first constraints on the ultra-high-energy cosmic-ray proton fraction with IceCube,   (2025), doi.org/10.7910/DVN/JHK49D.
 

End Matter

Event Selection—The event selection approach is based on a previous IceCube study [39], where signal candidates are found by applying four consecutive steps that are designed to remove atmospheric and astrophysical backgrounds. Table 2 provides the expected number of background events passing each cut stage, along with the expectation for a cosmogenic neutrino flux [10].

Table 2: For the four analysis cuts, the table describes the number of atmospheric muons, atmospheric neutrinos, and astrophysical neutrinos [44] passing the cuts. The final column provides a range of cosmogenic neutrino flux predictions between vV2019 [20] and [10].
Cut stage Atm μ\mu Atm ν\nu Astro ν\nu Cosmo ν\nu
(1) Charge and hit cut 5.5×1045.5\times 10^{4} 4.8 37 2.6–11.5
(2) Track quality cut 8.2×1038.2\times 10^{3} 0.4 1.3 1.4–8.5
(3) Muon bundle cut 0.6 0.2 0.5 0.8–5.6
(4) IceTop veto 0.2 0.2 0.5 0.8–5.4

In the first step of the event selection, only events with a total recorded charge of Qtot27 500 PEQ_{\mathrm{tot}}\geq$27\,500\text{\,}\mathrm{PE}$ and a number of hit DOMs of nDOMs100n_{\mathrm{DOMs}}\geq 100 are kept. This cut already rejects a majority of atmospheric neutrinos, reducing the expected background to <10<10 events.

Refer to caption
Figure 4: 2D histograms of the second stage of the event selection. Distribution of charge vs reconstructed relative particle velocity β\beta for for atmospheric muons (left), astrophysical neutrinos (center [42]), and cosmogenic neutrinos (right [10]). The cut applied is shown as a gray dashed line. The three candidate events passing all cuts are shown as black crosses.
Refer to caption
Figure 5: A 2D histogram showing the third stage of the event selection. Both plots show the distribution of charge as a function of reconstructed zenith for atmospheric muons, with the left panel showing low-stochasticity events and the right panel showing high-stochasticity events. The three candidate events passing all cuts are shown as black crosses.

The second step of the event selection is shown as the gray line in Fig. 4. The cut is a two-dimensional cut in the plane of reconstructed relative particle velocity β=|v|/c\beta=|\vec{v}|/c and the total recorded charge QtotQ_{\mathrm{tot}}. Mathematically,

log10(QtotPE)>{5.33β0.8675.3330(β0.867)0.867<β0.9344.73β>0.934.\hskip-10.00002pt\log_{10}\left(\frac{Q_{\mathrm{tot}}}{$\mathrm{PE}$}\right)>\begin{cases}5.33&\beta\leq 0.867\\ 5.33-30(\beta-0.867)&0.867<\beta\leq 0.934\\ 4.73&\beta>0.934.\end{cases} (EM-1)

The cut has multiple purposes. It rejects atmospheric neutrinos, and also rejects misreconstructed atmospheric muon events and neutrino events. The speed is reconstructed with the “LineFit” algorithm [80], which assumes a light source traveling with a velocity v\vec{v} along an infinite-length track. For a well-reconstructed track the speed will be distributed around the speed of light (|v|c0.3 m ns1|\vec{v}|\simeq c\simeq$0.3\text{\,}\mathrm{m}\text{\,}{\mathrm{ns}}^{-1}$). (Apparently “superluminal” tracks are also possible due to uncertainty of the reconstruction.) At this stage, 6565% of signal events are tracks well reconstructed with β\beta within 1010% of cc, and the majority of outliers are cascades with β<0.9\beta<$0.9$. As a consequence, the speed can also be used to separate the final event sample into subsets of cascades and tracks, which is done at |v|=0.27 m ns1|\vec{v}|=$0.27\text{\,}\mathrm{m}\text{\,}{\mathrm{ns}}^{-1}$, shown as a vertical dashed line in Fig. 4. The design of the event selection is mainly motivated by the distribution of the dominant tracklike events but is applied in the same fashion to all events, including cascades. After the track quality cut, the atmospheric neutrino expectation is <1<1. After this cut stage, the sample is dominated by downgoing atmospheric muon bundles. Therefore, at this stage in the analysis, we use a one-dimensional fit in observed charge between 5×104106 PE5\text{\times}{10}^{4}{10}^{6}\text{\,}\mathrm{PE} to determine the overall normalization of the atmospheric muon flux.

The third step of the event selection is designed to remove the main background of downgoing muon bundles. The cut is made in the 2D plane of reconstructed particle zenith cos(θ)\cos(\theta) and total recorded charge QtotQ_{\mathrm{tot}} and is visible in Fig. 5 for the atmospheric muon background. In this plane, the differences between signal (cosmogenic neutrinos) and dominant background (atmospheric muons) appear in both the zenith distribution and the energy loss profile of single muons or taus compared to muon bundles with large muon multiplicities. As the energy of a muon increases, its energy losses become more stochastic. In a muon bundle with the same total energy, the energy is distributed among many muons, resulting in a superposition of lower-energy muons losing their energy more continuously, even though their mean dE/dx\mathrm{d}E/\mathrm{d}x is comparable. To obtain a measure of the “stochasticity” of an event, the energy loss profile is reconstructed using a segmented energy loss reconstruction [40] over a distance of 40 m40\text{\,}\mathrm{m}. The reconstructed loss profile is then compared to a muon bundle probability density function obtained with proposal [81]. The probability density function is determined by simulating muon bundles for 40 m40\text{\,}\mathrm{m} repeatedly and recording their total energy loss. Then, we define the reconstructed stochasticity: κ=ilog[P(ΔEi/E)]/n.d.f.\kappa=-\sum_{i}\log\left[P(\Delta E_{i}/E)\right]/\mathrm{n.d.f.}, where the sum runs over all unfolded energy depositions ΔEi\Delta E_{i} in the reconstruction, and ΔEi/E\Delta E_{i}/E are the relative energy losses of the event. This produces a variable comparable to a reduced log-likelihood, the distribution of which is shown for atmospheric muon bundles and single high-energy muons in Fig. 6. Events with κ>8.37\kappa>8.37 are regarded as “highly” stochastic.

Refer to caption
Figure 6: Distribution of stochasticity for atmospheric muons (muon bundles) and νμCC\nu_{\mu}\,\mathrm{CC} (single muons) events.

With the goal of removing downgoing muon bundles, the cut imposes a stronger requirement on downgoing events than upgoing events. The cut is defined by two charge thresholds (a,ba,b), a shape parameter cc, and a transition point from the upgoing to downgoing region dd:

log10(QtotPE)>{acos(θ)<da+b1(1cos(θ)1d)ccos(θ)d\log_{10}\left(\frac{Q_{\mathrm{tot}}}{$\mathrm{PE}$}\right)>\begin{cases}a&\cos(\theta)<d\\ a+b\sqrt{1-\Big{(}\frac{1-\cos(\theta)}{1-d}\Big{)}^{c}}&\cos(\theta)\geq d\end{cases} (EM-2)

Parameter values are chosen to maximize the model rejection factor for the cosmogenic neutrino flux prediction in [10]. The final parameter values are a=4.777a=4.777, b=1.55b=1.55, c=1.5c=1.5, and d=0.12d=0.12 for the low-stochasticity events, and a=4.727a=4.727, b=1.05b=1.05, c=4c=4, abd d=0.10d=0.10 for high-stochasticity events. The result is a substantially looser selection for highly stochastic downgoing events, as seen in Fig. 5. This use of a stochasticity variable is new to this event selection and improves the MRF by more than 10% relative to the previous event selection.

The fourth and final stage in the event selection uses IceTop to reject atmospheric muons. IceTop hits correlated with an event in the in-ice detector can be found by extrapolating the reconstructed track to the surface and finding the time tCAt_{\mathrm{CA}}, where the track is at its closest approach to IceTop. Correlated IceTop hits are defined by the collections of hits that satisfy 1 µstCA1.5 µs$-1\text{\,}\mathrm{\SIUnitSymbolMicro s}$\leq t_{\mathrm{CA}}\leq$1.5\text{\,}\mathrm{\SIUnitSymbolMicro s}$. Events are vetoed if they have two or more correlated hits in IceTop, reducing the remaining atmospheric muon background by \sim6060% but only reducing the all-sky neutrino rate by <5%<$5$\%.

Refer to caption
Figure 7: The sky-averaged effective area of the analysis as a function of energy. The effective area from the previous iteration of this analysis [23] is plotted as a dashed line.

The final zenith-averaged neutrino effective area for the event selection (before applying the IceTop veto) is shown in Fig. 7 and compared to the previous version of the event selection [39]. The effective area describes the neutrino-antineutrino average. The new event selection mostly improves the νμ\nu_{\mu} effective area between 10 PeV10\text{\,}\mathrm{PeV} and 1 EeV1\text{\,}\mathrm{EeV} by about 30%, while reducing the νe\nu_{e} and ντ\nu_{\tau} effective area between 11 and 10 PeV10\text{\,}\mathrm{PeV} to reduce the background of astrophysical neutrinos.

Data Release—A data release containing the main results of Figs. 1 and 7 is available online [82].

 


Supplemental Material for
“A search for extremely-high-energy neutrinos and first constraints
on the ultra-high-energy cosmic-ray proton fraction with IceCube”

The IceCube Collaboration

Likelihood Construction: To infer physics parameters, the data is fit using a binned Poisson likelihood in the space of reconstructed direction and energy. The likelihood formulation is adopted directly from the previous search [23]. The observable binning is likewise adopted from [23], except here 1010 directional cascade bins are used. The cascade angular binning is guided by the resolution of recent reconstruction algorithms [41].

The expectation in each observable bin ii is the sum of cosmogenic (μGZK,i\mu_{\mathrm{GZK},i}) and astrophysical (μastro,i\mu_{\mathrm{astro},i}) neutrinos, plus all other atmospheric backgrounds (μbkg,i\mu_{\mathrm{bkg},i}), and is compared to the number of observed events nin_{i}. The overall normalizations of the cosmogenic and astrophysical models—λGZK\lambda_{\mathrm{GZK}} and λastro\lambda_{\mathrm{astro}}— are allowed to float, with the latter a nuisance parameter.

(λGZK,λastro)=iPois(ni|λGZKμGZK,i+λastroμastro,i+μbkg,i).\mathcal{L}(\lambda_{\mathrm{GZK}},\lambda_{\mathrm{astro}})=\\ \prod_{i}\mathrm{Pois}(n_{i}|\lambda_{\mathrm{GZK}}\mu_{\mathrm{GZK},i}+\lambda_{\mathrm{astro}}\mu_{\mathrm{astro},i}+\mu_{\mathrm{bkg},i}). (S-1)

Being in the regime of small statistics, all hypothesis tests are based on ensembles of pseudo-experiments. Confidence intervals are determined using the likelihood ratio test statistic (TS) [49].

The compatibility of a cosmogenic neutrino model with observed data is tested via the likelihood ratio test:

Λ=log(supλGZK,λastro(λGZK,λastro)supλastro(λGZK=1,λastro)),\Lambda=\log\left(\frac{\underset{\lambda_{\mathrm{GZK}},\lambda_{\mathrm{astro}}}{\sup}\mathcal{L}(\lambda_{\mathrm{GZK}},\lambda_{\mathrm{astro}})}{\underset{\lambda_{\mathrm{astro}}}{\sup}\mathcal{L}(\lambda_{\mathrm{GZK}}=1,\lambda_{\mathrm{astro}})}\right), (S-2)

where sup\sup denotes the supremum.

To determine EHEν\nu flux constraints in a more model-independent manner, a differential upper limit is constructed. For this, a sliding E1E^{-1} neutrino spectrum extending half a decade to both sides around the central energy is injected in half-decade-wide steps [23]. For this flux, a spectral index of γ=1\gamma=1 is chosen for comparability with previous results and results from other experiments.

Astrophysical Flux Treatment: To perform hypothesis tests and calculate upper limits, we must make assumptions about the TeV-PeV astrophysical neutrino flux. Such assumptions are also needed when constructing pseudo-experiments.

For model-specific hypothesis tests, we assume a power-law spectrum with spectral index γ=2.37±0.09\gamma=2.37\pm 0.09 observed in the energy range 15 TeV15\text{\,}\mathrm{TeV} to 5 PeV5\text{\,}\mathrm{PeV} [42], where the indicated range is considered as a systematic uncertainty. In building pseudo-experiments for these hypothesis tests, the value of λastro\lambda_{\mathrm{astro}} is the best fit obtained from data [51]. This balances model rejection power with the discovery potential for cosmogenic neutrinos, while giving good coverage. The effect of assuming a softer spectral index (γ=2.52\gamma=2.52 [44]) ranges from 30 %-30\text{\,}\mathrm{\char 37\relax} (Murase [63]) to 6 %6\text{\,}\mathrm{\char 37\relax} (van Vliet [20]), and is negligible at the 1 %1\text{\,}\mathrm{\char 37\relax}-level for Ahlers 2010 [10].

For construction of the differential neutrino limit and proton fraction constraints, we assume a single power law with exponential cutoff [44]. In building pseudo-experiments we assumed λastro=0\lambda_{\mathrm{astro}}=0. The treatment is different in order to generate conservative upper-limits. This is because we are building upper-limits by construction. That is, even in case of an observation incompatible with background, only upper limits are reported. Of the commonly assumed models for the astrophysical neutrino flux—single-power laws, broken power laws, etc.—we found that assuming a single power-law model with exponential cutoff generated the most conservative results.

The assumptions made in this paper, and discussed above, differ from those made previously in [23]. Where the previous work assumed a relatively hard spectrum of γ=2\gamma=2, our assumptions here are in better agreement with recent measurements, and produce more conservative results. A full “joint-fit” with the TeV-PeV data will be helpful in further improving these constraints and is the topic of future work.

Systematic Uncertainties: The impact of systematic parameters is estimated by varying them in pseudo-experiments based on estimated priors. This procedure modifies nin_{i} in Eq. S-1, widens the distribution of TS values, and thus the extracted confidence intervals. The parameters taken into account are: the optical efficiency of the DOMs (±10 %\pm 10\text{\,}\mathrm{\char 37\relax}[28], the neutrino cross section (20+3{}^{+3}_{-20} %\mathrm{\char 37\relax}[31, 52], the average neutrino inelasticity (±20 %\pm 20\text{\,}\mathrm{\char 37\relax}[31, 52], the atmospheric muon flux (46+73{}^{+73}_{-46} %\mathrm{\char 37\relax}) and the conventional (±30 %\pm 30\text{\,}\mathrm{\char 37\relax}[53] and prompt (±100 %\pm 100\text{\,}\mathrm{\char 37\relax}[36] atmospheric neutrino flux. The uncertainty on the atmospheric muon flux is dominated by composition uncertainties of the cosmic-ray flux at Earth and the range is constructed by re-weighting the simulation to a primary cosmic-ray flux of protons or iron nuclei only [32, 34]. The baseline normalization of the atmospheric muon component is measured from a fit to sub-threshold data. The uncertainty on the cross section has two components – one from experimental uncertainties in extracting the parton distribution functions (PDFs) which are inputs to the calculation (±3 %\pm 3\text{\,}\mathrm{\char 37\relax}), and a second theoretical uncertainty in accounting for the effect of heavy quarks on the evolution of the PDFs at high energies according to perturbative QCD. The baseline cross section value from [31] shows that the value above 104 GeV\sim${10}^{4}\text{\,}\mathrm{GeV}$ can be up to 20 %\sim$20\text{\,}\mathrm{\char 37\relax}$ smaller depending the treatment of the bottom/top quark splitting. This leads to a conservative, asymmetric systematics uncertainty on the cross section of +3 %3\text{\,}\mathrm{\char 37\relax} and 20 %-20\text{\,}\mathrm{\char 37\relax}.

Simulation of EHEν\nus in IceCube: Simulation of EHEν\nus using the conventional IceCube method of ray-tracing individual photons [54] is computationally infeasible. Instead, pre-calculated photon tables are used [55] to reduce the computational cost. The baseline simulation does not include the Landau-Pomeranchuk-Migdal (LPM) effect [56, 57, 58]. The scale of the effect was investigated by a special νe\nu_{e} simulation including the LPM cascade elongation, and the effect was found to be a sub-percent effect on the total event rate of the EHEν\nu sample used in this work. The LPM effect on π0\pi^{0}-production in hadronic showers was not tested here.