This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Search for singly charmed dibaryons in baryon-baryon scattering

Yao Cui1 cuiyao.990213@163.com    Xinmei Zhu2 xmzhu@yzu.edu.cn    Yuheng Wu3 Wuyuheng@ycit.edu.cn    Hongxia Huang1 hxhuang@njnu.edu.cn(Corresponding author)    Jialun Ping1 jlping@njnu.edu.cn 1School of Physics and Technology, Nanjing Normal University, Nanjing 210097, People’s Republic of China 2Department of Physics, Yangzhou University, Yangzhou 225009, People’s Republic of China 3Department of Physics, Yancheng Institute of Technology, Yancheng 224000, People’s Republic of China
Abstract

We perform a systematical investigation of the singly charmed dibaryon system with strangeness numbers S=1S=-1, 3-3 and 5-5 in the framework of the chiral quark model. Two resonance states with strangeness numbers S=1S=-1 are obtained in the baryon-baryon scattering process. In the ΛΛc\Lambda\Lambda_{c} scattering phase shifts, the ΣΣc\Sigma\Sigma_{c} appears as a resonance state with the mass and width 3591 MeV and 11.1 MeV, respectively. In the NΞcN\Xi_{c} and NΞcN\Xi^{\prime}_{c} scattering phase shifts, the ΣΣc\Sigma\Sigma^{\ast}_{c} exhibits as a resonance state with the mass and width 3621-3624 MeV and 14.9 MeV, respectively. All these heavy-flavor dibaryons are worth searching for in experiments. Besides, we would like to emphasize that the coupling calculation between the bound channels and open channels is indispensable. The study of the scattering process maybe an effective way to look for the genuine resonances.

I Introduction

In the last two decades, a growing number of exotic particles have been discovered in experiment. A series of XYZXYZ states, PcP_{c} states, and charm Tcc+T_{cc}^{+} state were reported in experiment, which has led to extensive research into exotic hadrons  XYZ1 ; XYZ2 ; XYZ3 ; XYZ4 . Understanding hadron-hadron interactions and searching for exotic hadron states are important topics in hadron physics, among which questing for dibaryons is a long-standing challenge. The well-known dibaryon is deuteron discovered in 1932  deutron . In 2014, the Wide Angle Shower Apparatus (WASA) detector at the Cooler Synchrotron (COSY) WASA1 ; WASA2 collaboration established the narrow resonance state dd^{\ast} with I(JP)=0(3+)I(J^{P})=0(3^{+}), and given the first clear-cut experimental evidence for the existence of a true dibaryon resonance WASA3 . The dd^{\ast} (2380) may be a ΔΔ\Delta\Delta dibaryon state or a six-quark state, and extensively investigated within various theoretical approaches dstar1 ; dstar2 ; dstar3 ; dstar4 .

For the strange dibaryon, the progress of the NΩN\Omega searches in the experiment attracted more and more attention for this state, which was observed in Au+Au collisions by STAR experiment at the Relativistic Heavy Ion Collider (RHIC) nomega1 . And before that, the dibaryon NΩN\Omega was investigated by different theoretical methods such as quark models nomega2 ; nomega3 ; nomega4 ; nomega5 ; nomega6 , and the lattice QCD nomega7 ; nomega8 .

The research of charmed dibaryon is further inspired by the experimental discovery of the doubly charmed baryon Ξcc\Xi_{cc} by the Large Hadron Collider beauty (LHCb) Collaboration LHCb . For the dibaryons with heavy quarks, the NΛcN\Lambda_{c} system with one heavy quark was both studied on the hadron level c1 and on the quark level c2 . The dibaryon systems with two heavy quarks were researched in the one-pion-exchange model cc1 and one-boson-exchange model cc2 ; cc3 . Besides, the dibaryon systems with three heavy quarks were also investigated from the lattice QCD ccc1 , the QCD sum rule ccc2 , one-boson-exchange ccc3 ; ccc5 and the quark model ccc4 . Recently, Junnarkar and Mathur reported the first lattice QCD study of the heavy quark flavor deuteron-like dibaryons ccc1 , and suggested that the dibaryons ΩcΩcc(sscscc)\Omega_{c}\Omega_{cc}(sscscc), ΩbΩbb(ssbsbb)\Omega_{b}\Omega_{bb}(ssbsbb) and ΩccbΩcbb(ccbcbb)\Omega_{ccb}\Omega_{cbb}(ccbcbb) were stable under strong and electromagnetic interactions. They also found that the binding of these dibaryons became stronger as they became heavier in mass. In addition, there are many other investigations on deuteron-like states. In Ref.cc2 , they perform a systematic study of the possible loosely bound states composed of two charmed baryons or a charmed baryon and an anticharmed baryon within the framework of the the one-boson exchange model. And in Ref.ccc5 , they also adopted the one-boson-exchange model to perform a systematic investigation of interactions between a doubly charmed baryon (Ξcc\Xi_{cc}) and a SS-wave charmed baryon (Λc,Σc\Lambda_{c},\Sigma_{c}^{\ast} and Ξc,\Xi_{c}^{\prime,\ast}), which can be easily bound together to form shallow molecular hexaquarks. Taking inspiration from the research on the dibaryon states containing heavy quarks, it is meaningful to use various methods to study and search for these heavy dibaryons.

Quantum chromodynamics (QCD) is a theory describing strong interactions based on regular field theory. The equivalent degrees of freedom are quarks and gluons, and QCD is asymptotically free at high energies and can be solved precisely by perturbation theory. Generally, hadronic structure and hadron interactions belong to the low-energy physics of QCD, which are much harder to calculate directly from QCD because of the nonperturbative nature of QCD. One must rely on effective theories or models inspired by QCD to gain insight into the phenomena of the hadronic world. The constituent quark model is one of them, which transforms the complicated interactions between current quarks into dynamic properties of constituent quarks. The chiral quark model (ChQM) is a typical one of the constituent quark model. The ChQM was successfully used to calculate mesons 2 ; meson , baryons, tetraquarks 4 ; chqm2 , pentaquarks 5 and dibaryons nomega5 . In particular, for dibaryon systems, the ChQM is able to calculate the dibaryon systems from light to heavy quarks very well, such as nucleon-nucleon interaction nn , NΩN\Omega nomega5 and the fully heavy dibaryon systems full , which is consistent with the results of the lattice QCD.

In the present work, we systematically investigate the singly charmed dibaryons in the ChQM, where the effective potential between two baryons are evaluated, and the search of possible bound states are performed with the coupled channel effects. Moreover, based on the conservation of the quantum numbers and the limitation of the phase space, we also study the baryon-baryon scattering process to look for the existence of any resonance states in the singly charmed dibaryon systems.

The structure of this paper is as follows. A brief introduction of the quark model and calculation methods are given in Section II. Section III is devoted to the numerical results and discussions. Section IV is a summary and the last section is Appendix, which shows the way of constructing wave functions.

II Quark model and calculation methods

Phenomenological model is an important tool to analyze the nature of multi-quark states. Here, the chiral quark model(ChQM) is used to study the singly charmed dibaryon systems with IJ=01IJ=01. In addition, the six-body problem is transformed into a two-body problem by using the resonance group method(RGM) for simplified calculations.

II.1 The chiral quark model

The model has become one of the most common approaches to describe hadron spectra, hadron-hadron interactions and multiquark states ChQM(RPP) . The construction of the ChQM is based on the breaking of chiral symmetry dynamics chqm1 ; chqm2 . The model mainly uses one-gluon-exchange potential to describe the short-range interactions, a σ\sigma meson exchange (only between u, d quarks) potential to provide the mid-range attractions, and Goldstone boson exchange potential for the long-range effects chqm3 . In addition to the Goldstone bosons exchange, there are additional DD meson that can be exchanged between u/d and c quarks, DsD_{s} meson that can be exchanged between s and c quarks, and ηc\eta_{c} that can be exchanged between any two quarks of the u, d, s and c quarks. In order to incorporate the charm quark well and study the effect of the DD, Ds,ηcD_{s},\eta_{c} meson exchange interaction, we extend the model to SU(4)SU(4), and add the interaction of these heavy mesons interactions. The extension is made in the spirit of the phenomenological approach of Refs.  Glozman ; Stancu . The detail of ChQM used in the present work can be found in the references ChQM1 ; ChQM2 ; ChQM3 . In the following, only the Hamiltonian and parameters are given.

H\displaystyle H =\displaystyle= i=16(mi+pi22mi)Tc+i<j[VCON(rij)+VOGE(rij)+Vσ(rij)+VOBE(rij)],\displaystyle\sum_{i=1}^{6}\left(m_{i}+\frac{p_{i}^{2}}{2m_{i}}\right)-T_{c}+\sum_{i<j}\left[V^{CON}(r_{ij})+V^{OGE}(r_{ij})+V^{\sigma}(r_{ij})+V^{OBE}(r_{ij})\right], (1)
VCON(rij)\displaystyle V^{CON}(r_{ij}) =\displaystyle= ac𝝀i𝝀j[rij2+V0],\displaystyle-a_{c}{\bm{\lambda}}_{i}\cdot{\bm{\lambda}}_{j}[r_{ij}^{2}+V_{0}], (2)
VOGE(rij)\displaystyle V^{OGE}(r_{ij}) =\displaystyle= 14αs𝝀i𝝀j[1rijπ2(1mi2+1mj2+4𝝈i𝝈j3mimj)δ(rij)34mimjrij3Sij],\displaystyle\frac{1}{4}\alpha_{s}\bm{\lambda}_{i}\cdot\bm{\lambda}_{j}\left[\frac{1}{r_{ij}}-\frac{\pi}{2}\left(\frac{1}{m_{i}^{2}}+\frac{1}{m_{j}^{2}}+\frac{4\bm{\sigma}_{i}\cdot\bm{\sigma}_{j}}{3m_{i}m_{j}}\right)\delta(r_{ij})-\frac{3}{4m_{i}m_{j}r^{3}_{ij}}S_{ij}\right], (3)
Vσ(rij)\displaystyle V^{\sigma}(r_{ij}) =\displaystyle= gch24πΛσ2mσΛσ2mσ2[Y(mσrij)ΛσmσY(Λσrij)]\displaystyle-\frac{g_{ch}^{2}}{4\pi}\frac{\Lambda_{\sigma}^{2}m_{\sigma}}{\Lambda_{\sigma}^{2}-m_{\sigma}^{2}}\left[Y\left(m_{\sigma}r_{ij}\right)-\frac{\Lambda_{\sigma}}{m_{\sigma}}Y\left(\Lambda_{\sigma}r_{ij}\right)\right] (4)
VOBE(rij)\displaystyle V^{OBE}(r_{ij}) =\displaystyle= vπ(rij)a=13𝝀ia𝝀ja+vK(rij)a=47𝝀ia𝝀ja+vη(rij)[(𝝀i8𝝀j8)cosθP(𝝀i0𝝀j0)sinθP]\displaystyle v^{\pi}(r_{ij})\sum_{a=1}^{3}\bm{\lambda}_{i}^{a}\cdot\bm{\lambda}_{j}^{a}+v^{K}(r_{ij})\sum_{a=4}^{7}\bm{\lambda}_{i}^{a}\cdot\bm{\lambda}_{j}^{a}+v^{\eta}(r_{ij})\left[\left(\bm{\lambda}_{i}^{8}\cdot\bm{\lambda}_{j}^{8}\right)\cos\theta_{P}-(\bm{\lambda}_{i}^{0}\cdot\bm{\lambda}_{j}^{0})\sin\theta_{P}\right] (6)
+vD(rij)a=912𝝀ia𝝀ja+vDs(rij)a=1314𝝀ia𝝀ja+vηc(rij)𝝀i15𝝀j15\displaystyle+v^{D}(r_{ij})\sum_{a=9}^{12}\bm{\lambda}_{i}^{a}\cdot\bm{\lambda}_{j}^{a}+v^{D_{s}}(r_{ij})\sum_{a=13}^{14}\bm{\lambda}_{i}^{a}\cdot\bm{\lambda}_{j}^{a}+v^{\eta_{c}}(r_{ij})\bm{\lambda}_{i}^{15}\cdot\bm{\lambda}_{j}^{15}
vχ(rij)\displaystyle v^{\chi}(r_{ij}) =\displaystyle= gch24πmχ212mimjΛ2Λ2mχ2mχ{[Y(mχrij)Λ3mχ3Y(Λrij)]𝝈i𝝈j\displaystyle-\frac{g_{ch}^{2}}{4\pi}\frac{m_{\chi}^{2}}{12m_{i}m_{j}}\frac{\Lambda^{2}}{\Lambda^{2}-m_{\chi}^{2}}m_{\chi}\left\{\left[Y(m_{\chi}r_{ij})-\frac{\Lambda^{3}}{m_{\chi}^{3}}Y(\Lambda r_{ij})\right]\bm{\sigma}_{i}\cdot\bm{\sigma}_{j}\right. (7)
+[H(mχrij)Λ3mχ3H(Λrij)]Sij}𝝀Fi𝝀Fj,χ=π,K,η,D,Ds,ηc\displaystyle\left.+\left[H(m_{\chi}r_{ij})-\frac{\Lambda^{3}}{m_{\chi}^{3}}H(\Lambda r_{ij})\right]S_{ij}\right\}\bm{\lambda}^{F}_{i}\cdot\bm{\lambda}^{F}_{j},~{}~{}~{}\chi=\pi,K,\eta,D,D_{s},\eta_{c}
Sij\displaystyle S_{ij} =\displaystyle= (σi𝒓ij)(𝝈j𝒓ij)rij213𝝈i𝝈j.\displaystyle\frac{{\bm{(}\sigma}_{i}\cdot{\bm{r}}_{ij})({\bm{\sigma}}_{j}\cdot{\bm{r}}_{ij})}{r_{ij}^{2}}-\frac{1}{3}~{}{\bm{\sigma}}_{i}\cdot{\bm{\sigma}}_{j}. (8)

Where TcT_{c} is the kinetic energy of the center of mass; SijS_{ij} is quark tensor operator. We only consider the SS-wave systems at present, so the tensor force dose not work here; Y(x)Y(x) and H(x)H(x) are standard Yukawa functions ChQM(RPP) ; αch\alpha_{ch} is the chiral coupling constant, determined as usual from the π\pi-nucleon coupling constant; αs\alpha_{s} is the quark-gluon coupling constant ChQM1 . Here mχm_{\chi} is the mass of the mesons, which are experimental value; Λχ\Lambda_{\chi} is the cut-off parameters of different mesons, which can refer to Ref D . The coupling constant gchg_{ch} for scalar chiral field is determined from the NNπNN\pi coupling constant through

gch24π=(35)2gπNN24πmu,d2mN2\frac{g_{ch}^{2}}{4\pi}=(\frac{3}{5})^{2}\frac{g_{\pi NN}^{2}}{4\pi}\frac{m_{u,d}^{2}}{m_{N}^{2}} (9)

All other symbols have their usual meanings.

Table 1: Model parameters
      bb     mu,dm_{u,d}     msm_{s}     mcm_{c}     mbm_{b}
(fm) (MeV) (MeV) (MeV) (MeV)
ChQM 0.52088 313 590 1700 5105
aca_{c} V0V_{0} αsqq\alpha_{s_{qq}} αsqs\alpha_{s_{qs}} αsss\alpha_{s_{ss}}
(MeV fm-2) (fm2)
ChQM 49.350 -1.0783 0.67321 0.85644 0.71477
αsqc\alpha_{s_{qc}} αssc\alpha_{s_{sc}} αscc\alpha_{s_{cc}}
ChQM 0.59301 0.60775 1.0807
Table 2: The calculated masses (in MeV) of the baryons in ChQM. Experimental values are taken from the Particle Data Group (PDG) PDG .
  NN   Δ\Delta   Λ\Lambda   Σ\Sigma   Σ\Sigma^{*}   Ω\Omega
ChQM 933 1254 1100 1201 1370 1664
Exp. 939 1233 1116 1189 1315 1672
  Ξ\Xi   Ξ\Xi^{*}   Λc\Lambda_{c}   Σc\Sigma_{c}   Σc\Sigma^{*}_{c}   Ξc\Xi_{c}
ChQM 1338 1507 2225 2416 2449 2450
Exp. 1385 1530 2286 2455 2520 2470
  Ξc\Xi^{{}^{\prime}}_{c}   Ξc\Xi^{*}_{c}   Ξcc\Xi_{cc}   Ωc\Omega_{c}   Ωc\Omega^{*}_{c}
ChQM 2546 2571 3493 2696 2714
Exp. 2578 2645 3519 2695 2700

All parameters were determined by fitting the masses of the baryons of light and heavy flavors. The model parameters and the fitting masses of baryons are shown in Table 1 and Table 2, respectively.

II.2 Calculation methods

In this work, RGM RGM1 ; RGM2 is used to carry out a dynamical calculation. In the framework of RGM, which split the dibaryon system into two clusters, the main feature of RGM is that for a system consisting of two clusters, it can assume that the two clusters are frozen inside, and only consider the relative motion between the two clusters, so the conventional ansatz for the two-cluster wave function is:

ψ6q=𝒜[[ϕB1ϕB2][σ]ISχL(𝑹)]J,\psi_{6q}={\cal A}\left[[\phi_{B_{1}}\phi_{B_{2}}]^{[\sigma]IS}\otimes\chi_{L}(\bm{R})\right]^{J}, (10)

where the symbol 𝒜{\cal A} is the anti-symmetrization operator. With the SU(4)SU(4) extension, both the light and heavy quarks are considered as identical particles. So 𝒜=19P36{\cal A}=1-9P_{36}. [σ]=[222][\sigma]=[222] gives the total color symmetry and all other symbols have their usual meanings. ϕBi\phi_{B_{i}} is the 33-quark cluster wave function. From the variational principle, after variation with respect to the relative motion wave function χ(𝐑)=LχL(𝐑)\chi(\bm{\mathbf{R}})=\sum_{L}\chi_{L}(\bm{\mathbf{R}}), one obtains the RGM equation

H(𝐑,𝐑)χ(𝐑)𝑑𝐑=EN(𝐑,𝐑)χ(𝐑)𝑑𝐑\int H(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}})\chi(\bm{\mathbf{R^{\prime}}})d\bm{\mathbf{R^{\prime}}}=E\int N(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}})\chi(\bm{\mathbf{R^{\prime}}})d\bm{\mathbf{R^{\prime}}} (11)

where H(𝐑,𝐑)H(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}}) and N(𝐑,𝐑)N(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}}) are Hamiltonian and norm kernels. The RGM can be written as

L(𝐑,𝐑)χ(𝐑)𝑑𝐑=0\int L(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}})\chi(\bm{\mathbf{R^{\prime}}})d\bm{\mathbf{R^{\prime}}}=0 (12)

where

L(𝐑,𝐑)\displaystyle L(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}}) =\displaystyle= H(𝐑,𝐑)EN(𝐑,𝐑)\displaystyle H(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}})-EN(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}}) (13)
=\displaystyle= [𝐑22μ+VrelD(𝐑)Erel]δ(𝐑𝐑)\displaystyle\left[-\frac{\bigtriangledown_{\bm{\mathbf{R^{\prime}}}}^{2}}{2\mu}+V_{rel}^{D}(\bm{\mathbf{R^{\prime}}})-E_{rel}\right]\delta(\bm{\mathbf{R}}-\bm{\mathbf{R^{\prime}}})
+\displaystyle+ HEX(𝐑,𝐑)ENEX(𝐑,𝐑)\displaystyle H^{EX}(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}})-EN^{EX}(\bm{\mathbf{R}},\bm{\mathbf{R^{\prime}}})

where μ\mu is the approximate mass between the two quark clusters; Erel=EEintE_{rel}=E-E_{int} is the relative motion energy; VrelDV_{rel}^{D} is the direct term in the interaction potential. By solving the RGM equation, we can get the energies EE and the wave functions. In fact, it is not convenient to work with the RGM expressions. Then, we expand the relative motion wave function χ(𝐑)\chi(\bm{\mathbf{R}}) by using a set of gaussians with different centers,

χL(𝑹)=14π(32πb2)3/4i=1nCi\displaystyle\chi_{L}(\bm{R})=\frac{1}{\sqrt{4\pi}}(\frac{3}{2\pi b^{2}})^{3/4}\sum_{i=1}^{n}C_{i}
×exp[34b2(𝑹𝑺i)2]YLM(𝑺i^)d𝑺i^,\displaystyle~{}~{}~{}~{}\times\int\exp\left[-\frac{3}{4b^{2}}(\bm{R}-\bm{S}_{i})^{2}\right]Y_{LM}(\hat{\bm{S}_{i}})d\hat{\bm{S}_{i}},~{}~{}~{}~{}~{} (14)

where LL is the orbital angular momentum between two clusters. Since the system we studied are all SS-waves, L=0L=0 in this work, and 𝑺𝒊\bm{S_{i}}, i=1,2,,ni=1,2,...,n are the generator coordinates, which are introduced to expand the relative motion wave function. By including the center of mass motion:

ϕC(𝑹C)=(6πb2)3/4e3𝑹C2b2,\phi_{C}(\bm{R}_{C})=(\frac{6}{\pi b^{2}})^{3/4}e^{-\frac{3\bm{R}^{2}_{C}}{b^{2}}}, (15)

the ansatz Eq.(10) can be rewritten as

ψ6q=𝒜i=1nCid𝑺i^4πα=13ϕα(𝑺i)β=46ϕβ(𝑺i)\displaystyle\psi_{6q}={\cal A}\sum_{i=1}^{n}C_{i}\int\frac{d\hat{\bm{S}_{i}}}{\sqrt{4\pi}}\prod_{\alpha=1}^{3}\phi_{\alpha}(\bm{S}_{i})\prod_{\beta=4}^{6}\phi_{\beta}(-\bm{S}_{i})
×[[χI1S1(B1)χI2S2(B2)]ISYLM(𝑺i^)]J\displaystyle~{}~{}~{}~{}\times\left[[\chi_{I_{1}S_{1}}(B_{1})\chi_{I_{2}S_{2}}(B_{2})]^{IS}Y_{LM}(\hat{\bm{S}_{i}})\right]^{J}
×[χc(B1)χc(B2)][σ],\displaystyle~{}~{}~{}~{}\times[\chi_{c}(B_{1})\chi_{c}(B_{2})]^{[\sigma]}, (16)

where χI1S1\chi_{I_{1}S_{1}} and χI2S2\chi_{I_{2}S_{2}} are the product of the flavor and spin wave functions, and χc\chi_{c} is the color wave function. The flavor, spin, and color wave functions are constructed in two steps. First, constructing the wave functions for the baryon and baryon clusters; then, coupling the two wave functions of two clusters to form the wave function for the dibaryon system. The detail of constructing the wave functions are presented in Appendix. For the orbital wave functions, ϕα(𝑺i)\phi_{\alpha}(\bm{S}_{i}) and ϕβ(𝑺i)\phi_{\beta}(-\bm{S}_{i}) are the single-particle orbital wave functions with different reference centers:

ϕα(𝑺𝒊)=(1πb2)34e(𝒓α𝑺𝒊/2)22b2,\displaystyle\phi_{\alpha}(\bm{S_{i}})=\left(\frac{1}{\pi b^{2}}\right)^{\frac{3}{4}}e^{-\frac{(\bm{r}_{\alpha}-\bm{S_{i}}/2)^{2}}{2b^{2}}},
ϕβ(𝑺𝒊)=(1πb2)34e(𝒓β+𝑺𝒊/2)22b2.\displaystyle\phi_{\beta}(-\bm{S_{i}})=\left(\frac{1}{\pi b^{2}}\right)^{\frac{3}{4}}e^{-\frac{(\bm{r}_{\beta}+\bm{S_{i}}/2)^{2}}{2b^{2}}}. (17)

By expanding the relative motion wave function between two clusters in the RGM equation by gaussians, the integro-differential equation of RGM can be reduced to an algebraic equation, which is the generalized eigen-equation. With the reformulated ansatz, the RGM equation Eq.(11) becomes an algebraic eigenvalue equation:

jCjHi,j=EjCjNi,j.\sum_{j}C_{j}H_{i,j}=E\sum_{j}C_{j}N_{i,j}. (18)

where Hi,jH_{i,j} and Ni,jN_{i,j} are the Hamiltonian matrix elements and overlaps, respectively. Besides, to keep the matrix dimension manageably small, the baryon-baryon separation is taken to be less than 6 fm in the calculation. By solving the generalized energy problem, we can obtain the energy and the corresponding wave functions of the dibaryon system. On the basis of RGM, we can further calculate scattering problems to find resonance states.

For a scattering problem, the relative wave function of the baryon-baryon is expanded as

χL(𝑹)=i=1nCiu~L(𝑹,𝑺i)𝑹YL,M(𝑹^)\chi_{L}\left(\bm{R}\right)=\sum_{i=1}^{n}C_{i}\frac{\tilde{u}_{L}\left(\bm{R},\bm{S}_{i}\right)}{\bm{R}}Y_{L,M}\left(\hat{\bm{R}}\right) (19)

with

u~L(𝑹,𝑺i)\tilde{u}_{L}\left(\bm{R},\bm{S}_{i}\right)\\
={αiuL(𝑹,𝑺i),𝑹𝑹C[hL(𝒌,𝑹)sihL+(𝒌,𝑹)]𝑹,𝑹𝑹C=\left\{\begin{matrix}&\alpha_{i}u_{L}\left(\bm{R},\bm{S}_{i}\right),~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}&\bm{R}\leq\bm{R}_{C}\\ &\left[h_{L}^{-}\left(\bm{k},\bm{R}\right)-s_{i}h_{L}^{+}\left(\bm{k},\bm{R}\right)\right]\bm{R},&\bm{R}\geq\bm{R}_{C}\end{matrix}\right. (20)

where

uL(𝑹)=4π(32πb2)e34b2(𝑹2+ri2)jL(i32b2Rri)u_{L}\left(\bm{R}\right)=\sqrt{4\pi}\left(\frac{3}{2\pi b^{2}}\right)e^{-\frac{3}{4b^{2}}\left(\bm{R}^{2}+r_{i}^{2}\right)}j_{L}\left(-i\frac{3}{2b^{2}}Rr_{i}\right) (21)

CiC_{i} are the expansion coefficients, and CiC_{i} satisfy i=1nCi=1\sum_{i=1}^{n}C_{i}=1. n is the number of Gaussion bases (which is determined by the stability of the results), and jLj_{L} is the LLth spherical Bessel function. hL±h_{L}^{\pm} are the LLth spherical Hankel functions, kk is the momentum of the relative motion with k=2μEcmk=\sqrt{2\mu E_{cm}}, μ\mu is the reduced mass of two baryons of the open channel, EcmE_{cm} is the incident energy of the relevant open channels, and RCR_{C} is a cutoff radius beyond which all of the strong interactions can be disregarded. αi\alpha_{i} and sis_{i} are complex parameters that determined in terms of continuity conditions at R=RCR=R_{C}. After performing the variational procedure by the Kohn-Hulthe´\acute{e}n-Kato(KHK) variational method KHK , a LLth partial-wave equation for the scattering problem can be reduced as

jnijLCj=ijL(i=0,1,,n1),\sum_{j}^{n}\mathcal{L}_{ij}^{L}C_{j}=\mathcal{M}_{ij}^{L}~{}~{}~{}~{}~{}~{}~{}~{}(i=0,1,...,n-1), (22)

with

ijL=𝒦ijL𝒦i0L𝒦0jL+𝒦00L\mathcal{L}_{ij}^{L}=\mathcal{K}_{ij}^{L}-\mathcal{K}_{i0}^{L}-\mathcal{K}_{0j}^{L}+\mathcal{K}_{00}^{L} (23)
iL=ijL𝒦i0L\mathcal{M}_{i}^{L}=\mathcal{M}_{ij}^{L}-\mathcal{K}_{i0}^{L} (24)

and

𝒦ijL=ϕA^ϕB^u~L(𝑹,𝑺i)𝑹YL,M(𝑹)|HE|\mathcal{K}_{ij}^{L}=\left\langle\hat{\phi_{A}}\hat{\phi_{B}}\frac{\tilde{u}_{L}(\bm{R}^{\prime},\bm{S}_{i})}{\bm{R}^{\prime}}Y_{L,M}(\bm{R}^{\prime})\left|H-E\right|\right.\\
𝒜[ϕA^ϕB^u~L(𝑹,𝑺j)𝑹YL,M(𝑹)]\left.\cdot\mathcal{A}\left[\hat{\phi_{A}}\hat{\phi_{B}}\frac{\tilde{u}_{L}(\bm{R},\bm{S}_{j})}{\bm{R}}Y_{L,M}(\bm{R})\right]\right\rangle (25)

By solving Eq.(22) we obtain the expansion coefficients CiC_{i}. Then, the SS matrix element SLS_{L} and the phase shifts δL\delta_{L} are given by

SLe2iδL=i=1nCiSiS_{L}\equiv e^{2i\delta_{L}}=\sum_{i=1}^{n}C_{i}S_{i} (26)

Through the scattering process, not only can we better study the interaction between hadrons, but it can also help us research resonance states. The general scattering phase shift diagram should be a smooth curve, that is, the phase shift will change gently as the incident energy increases. But in some cases, the phase shift will be abrupt, the change will be more than 90 degrees, which is the resonance phenomena. The rapid phase change is a general feature of resonance phenomena, see Fig.1. The center of mass energy with phase shift π2\frac{\pi}{2} gives the mass of the resonance (MM^{\prime} in Fig.1), and the difference of the energies with phase shift 3π4\frac{3\pi}{4} and π4\frac{\pi}{4} gives the partial decay width of the resonance (Γ\Gamma in Fig.1).

Refer to caption
Figure 1: The resonance phenomena in scattering phase shifts.

III The results and discussions

In this work, we perform a systematical investigation of the S-wave singly charmed dibaryon systems with strange S=1,3,5S=-1,-3,-5, isospin I=0I=0, and the angular momentum J=1J=1. To study the interaction between two hadrons, we calculate the effective potential of the system. Then, a dynamic calculation are carried out to search for bound states. Besides, the scattering process is also investigated to look for the existence of any resonance states.

III.1 Effective potentials

The effective potential between two baryons is shown as

V(Si)=E(Si)E()V({S_{i}})=E({S_{i}})-E({\infty}) (27)

where SiS_{i} stands for the distance between two clusters and E()E(\infty) stands for a sufficient large distance of two clusters, and the expression of E(Si)E(S_{i}) is as follow.

E(Si)=Ψ6q(Si)|H|Ψ6q(Si)Ψ6q(Si)|Ψ6q(Si)E(S_{i})=\frac{\left\langle\Psi_{6q}(S_{i})\left|H\right|\Psi_{6q}(S_{i})\right\rangle}{\left\langle\Psi_{6q}(S_{i})|\Psi_{6q}(S_{i})\right\rangle} (28)

Ψ6q(Si)\Psi_{6q}(S_{i}) represents the wave function of a certain channel. Besides, Ψ6q(Si)|H|Ψ6q(Si)\left\langle\Psi_{6q}(S_{i})\left|H\right|\Psi_{6q}(S_{i})\right\rangle and Ψ6q(Si)|Ψ6q(Si)\left\langle\Psi_{6q}(S_{i})|\Psi_{6q}(S_{i})\right\rangle are the Hamiltonian matrix and the overlap of the states. The effective potentials of all channels with different strange numbers are shown in Fig.2, Fig.3 and Fig.4 respectively.

For S=1S=-1 system, as shown in Fig.2, all of the seven channels are attractive, the potentials for the four channels ΣΣc,ΣΣc,ΣΣc\Sigma\Sigma_{c},\Sigma\Sigma_{c}^{*},\Sigma^{*}\Sigma_{c} and ΣΣc\Sigma^{*}\Sigma_{c}^{*} are deeper than the other three channels ΛΛc,NΞc\Lambda\Lambda_{c},N\Xi_{c} and NΞcN\Xi_{c}^{\prime}, which indicates that the ΣΣc,ΣΣc,ΣΣc\Sigma\Sigma_{c},\Sigma\Sigma_{c}^{*},\Sigma^{*}\Sigma_{c} and ΣΣc\Sigma^{*}\Sigma_{c}^{*} are more likely to form bound states or resonance states.

For S=3S=-3 system, from Fig.3 we can see that the potentials of the ΞΞc,ΞΞc\Xi\Xi_{c}^{*},\Xi^{*}\Xi_{c}^{*} and ΛΩc\Lambda\Omega_{c}^{*} are attractive, while the potentials for the other six channels are repulsive. The attraction of ΞΞc\Xi\Xi_{c}^{*} and ΞΞc\Xi^{*}\Xi_{c}^{*} is much stronger than that of ΛΩc\Lambda\Omega_{c}^{*}, which implies that it is more possible for ΞΞc\Xi\Xi_{c}^{*} and ΞΞc\Xi^{*}\Xi_{c}^{*} to form bound states or resonance states. However, compared to S=1S=-1, the attraction is much weaker.

For S=5S=-5 system, see Fig.4, there are only two channels in this system, one of which is ΩΩc\Omega\Omega_{c}, a purely repulsive state; and the other is ΩΩc\Omega\Omega_{c}^{*}, which is weakly attractive. Therefore, it is difficult for these channels to form any bound state. However, we still need to confirm the existence of bound states or resonance states by performing the dynamic calculations.

Refer to caption
Figure 2: The effective potentials of different channels of the singly charmed dibaryon with S=1S=-1.
Refer to caption
Figure 3: The effective potentials of different channels of the singly charmed dibaryon with S=3S=-3.
Refer to caption
Figure 4: The effective potentials of different channels of the singly charmed dibaryon with S=5S=-5.

III.2 Bound state calculation

In order to see whether there is any bound state, a dynamic calculation based on RGM RGM2 has been performed. The energies of each channel as well as the one with channel coupling calculation are listed in Table 3, Table 4 and Table 5. The first column is the state of every channel; the second column EthE_{th} denotes the theoretical threshold of each corresponding state; the third column EscE_{sc} represents the energy of every single channel; the fourth column BscB_{sc} stands for the binding energy of every single channel, which is Bsc=EscEthB_{sc}=E_{sc}-E_{th}; the fifth column EccE_{cc} denotes the lowest energy of the system by channel coupling calculation; and the last column BccB_{cc} represents the binding energy with all channels coupling, which is Bcc=EccEthB_{cc}=E_{cc}-E_{th}. Here, we should notice that when the state is unbound, we label it as “ub”.

Table 3: The energy (in MeV) of C=1, S=-1 for the charmed dibaryon systems.
   ChannelsChannels   EthE_{th} (MeV)   EscE_{sc} (MeV)   BscB_{sc} (MeV)   EccE_{cc} (MeV)   BccB_{cc} (MeV)
  ΛΛc\Lambda\Lambda_{c}   3324.88   3331.25   ub   3331.21   ub
  NΞcN\Xi_{c}   3383.51   3389.46   ub
  NΞc{N\Xi^{{}^{\prime}}_{c}}   3479.16   3483.34   ub
  ΣΣc\Sigma\Sigma_{c}   3617.83   3595.26   -22.57
  ΣΣc\Sigma\Sigma^{*}_{c}   3650.64   3625.19   -25.45
  ΣΣc\Sigma^{*}\Sigma_{c}   3786.60   3754.77   -31.83
  ΣΣc\Sigma^{*}\Sigma^{*}_{c}   3819.41   3794.34   -25.02
Table 4: The energy (in MeV) of C=1, S=-3 for the charmed dibaryon systems.
   ChannelsChannels   EthE_{th} (MeV)   EscE_{sc} (MeV)   BscB_{sc} (MeV)   EccE_{cc} (MeV)   BccB_{cc} (MeV)
  ΛΩc{\Lambda\Omega_{c}}   3796.20   3802.83   ub   3789.92   ub
  ΛΩc\Lambda\Omega^{*}_{c}   3813.99   3818.86   ub
  ΛcΩ\Lambda_{c}\Omega   3888.73   3894.12   ub
  ΞΞc\Xi\Xi_{c}   3788.70   3795.15   ub
  ΞΞc\Xi\Xi^{{}^{\prime}}_{c}   3884.30   3890.53   ub
  ΞΞc\Xi\Xi^{*}_{c}   3909.60   3912.23   ub
  ΞΞc\Xi^{*}\Xi_{c}   3957.42   3963.12   ub
  ΞΞc\Xi^{*}\Xi^{{}^{\prime}}_{c}   4053.07   4058.67   ub
  ΞΞc\Xi^{*}\Xi^{*}_{c}   4078.37   4082.40   ub
Table 5: The energy (in MeV) of C=1, S=-5 for the charmed dibaryon systems.
   ChannelsChannels   EthE_{th} (MeV)   EscE_{sc} (MeV)   BscB_{sc} (MeV)   EccE_{cc} (MeV)   BccB_{cc} (MeV)
  ΩΩc{\Omega\Omega_{c}}   4360.05   4363.77   ub   4363.77   ub
  ΩΩc{\Omega\Omega^{*}_{c}}   4377.84   4382.12   ub

S=-1: The single channel calculation shows that the channels ΣΣc,ΣΣc,ΣΣc\Sigma\Sigma_{c},\Sigma\Sigma_{c}^{*},\Sigma^{*}\Sigma_{c} and ΣΣc\Sigma^{*}\Sigma_{c}^{*} are bound states with the binding energies -23 MeV, -25 MeV, -32 MeV and -25 MeV, respectively (see Table 3). This conclusion is consistent with the property that there is a strong effective attraction of these channels. However, for the ΛΛc,NΞc\Lambda\Lambda_{c},N\Xi_{c} and NΞcN\Xi_{c}^{\prime} channels, which are unbound, the energies obtained by single channel calculations are above their corresponding thresholds due to the weak attraction of these channels. For the calculation of the channel coupling, the lowest energy is still above the lowest threshold (ΛΛc\Lambda\Lambda_{c}). Therefore, for this system, no bound states below the lowest threshold were found. For higher-energy single-channel bound states, they can be coupled to the open channels and the scattering process is needed to determine the existence of resonance states.

S=-3: From Table 4, the single channel calculation shows that all these nine channels are unbound. After the channel coupling calculation, the lowest energy of this system is 3790 MeV (still higher than the threshold of the lowest channel ΞΞc\Xi\Xi_{c} ), which indicates that the singly charmed dibaryon system with IJ=01,S=3IJ=01,S=-3 is unbound. This is reasonable. The attractions of the channels ΞΞc,ΞΞc\Xi\Xi_{c}^{*},\Xi^{*}\Xi_{c}^{*} and ΛΩc\Lambda\Omega_{c}^{*} are not strong enough to form any bound state, and the interaction of the other channels are repulsive, as shown in Fig.3.

S=-5: The situation is similar to that of the S=3S=-3 system. As shown in Table 5, both of the channels ΩΩc\Omega\Omega_{c} and ΩΩc\Omega\Omega_{c}^{*} are unbound. The lowest energy of the system is higher than the threshold of the ΩΩc\Omega\Omega_{c} by the channel coupling calculation. So the system with S=5S=-5 is unbound.

III.3 Resonance states

As mentioned above, some channels are bound due to the strong attractions of the system. However, these states will decay to the corresponding open channels by coupling with them and become resonance states. Besides, some states will become scattering state by the effect of coupling to both the open and closed channels. To further check the existence of the resonance states, we studied the scattering phase shifts of all possible open channels. Since no resonance states are obtained in the S=3S=-3 and S=5S=-5 systems, we only show the scattering phase shifts of the S=1S=-1 system here.

In the S=1S=-1 system, four singly bound states are obtained, which are ΣΣc\Sigma\Sigma_{c}, ΣΣc\Sigma\Sigma_{c}^{*}, ΣΣc\Sigma^{*}\Sigma_{c} and ΣΣc\Sigma^{*}\Sigma_{c}^{*}, and there are three open channels, which are ΛΛc,NΞc\Lambda\Lambda_{c},N\Xi_{c} and NΞcN\Xi_{c}^{\prime}. We analyze two types of channel coupling in this work. The first is the two-channel coupling with a singly bound state and a related open channel, while the other is the five-channel coupling with four bound states and a corresponding open channel. The general features of the calculated results are as follows.

Here, we should note that the horizontal axis Ec.m.E_{c.m.} in Fig.5 is the incident energy without the theoretical threshold of the corresponding open channel. So the resonance mass MM^{\prime} is obtained by adding Ec.m.E_{c.m.} and the theoretical threshold of the corresponding open channel. In order to minimize the theoretical errors and compare our predictions with future experimental data, we shift the resonance mass by M=MEth+EexpM=M^{\prime}-E_{th}+E_{exp}, where EthE_{th} and EexpE_{exp} are the theoretical and experimental thresholds of the resonance state, respectively. Taking the resonance state ΛΛc\Lambda\Lambda_{c} in the ΣΣc\Sigma\Sigma_{c} channel as an example, the resonance mass shown in Fig.5(a) is M=3597M^{\prime}=3597 MeV, the theoretical threshold is Mth=3595M_{th}=3595 MeV, and the experimental threshold is Mexp=3618M_{exp}=3618 MeV. Then the final resonance mass M=35973595+3618=3620M=3597-3595+3618=3620 MeV. The estimated masses and widths of the resonances in different channels are listed in Table6, where MM is the resonance mass, Γi\Gamma_{i} is the partial decay width of the resonance state decaying to different open channels, and Γtotal\Gamma_{total} is the total decay width of the resonance state.

For the case of the two-channel coupling, in ΛΛc\Lambda\Lambda_{c} scattering process, it is obvious that ΣΣc\Sigma\Sigma_{c} and ΣΣc\Sigma^{*}\Sigma_{c}^{*} appear as resonance states, as shown in Fig.5(a) and Fig.5(d), respectively. The resonance mass and decay width of every resonance state are obtained from the ΛΛc\Lambda\Lambda_{c} scattering phase shifts. At the same time, ΣΣc\Sigma\Sigma_{c}^{*} and ΣΣc\Sigma^{*}\Sigma_{c} do not behave as resonance states in ΛΛc\Lambda\Lambda_{c} scattering process, as shown in Fig.5(b) and Fig.5(c), respectively. There may be two reasons: the one is that stronger coupling between the two channels causes the bound state to be pushed above the threshold and become a scattering state; the other one is that the coupling between the two channels is so weak that the resonance state does not manifest during the scattering process. To clarify this issue, we calculate the cross matrix elements between the two channels (ΛΛc\Lambda\Lambda_{c} and ΣΣc\Sigma\Sigma_{c}^{*}/ΣΣc\Sigma^{*}\Sigma_{c}), they are all close to zero, which means that the coupling between ΛΛc\Lambda\Lambda_{c} and ΣΣc\Sigma\Sigma_{c}^{*}/ΣΣc\Sigma^{*}\Sigma_{c} is very weak. Therefore, neither ΣΣc\Sigma\Sigma_{c}^{*} nor ΣΣc\Sigma^{*}\Sigma_{c} behaves as a resonance state in the ΛΛc\Lambda\Lambda_{c} scattering phase shifts.

Refer to caption
Figure 5: The ΛΛc\Lambda\Lambda_{c} phase shift with two-channel coupling for the S=1S=-1 system.

However, in the NΞcN\Xi_{c} scattering process, the situation reversed. From Fig.6, both ΣΣc\Sigma\Sigma_{c}^{*} and ΣΣc\Sigma^{*}\Sigma_{c} appear as resonance states, while the other two channels ΣΣc\Sigma\Sigma_{c} and ΣΣc\Sigma^{*}\Sigma_{c}^{*} do not. The cross matrix elements between NΞcN\Xi_{c} and ΣΣc\Sigma\Sigma_{c}/ΣΣc\Sigma^{*}\Sigma_{c}^{*} show that the coupling between them is very weak, which results in the absence of resonance state ΣΣc\Sigma\Sigma_{c}/ΣΣc\Sigma^{*}\Sigma_{c}^{*} in the NΞcN\Xi_{c} scattering phase shift. In the NΞcN\Xi_{c}^{\prime} scattering process, as shown in Fig.7, the conclusion is similar to the one in the NΞcN\Xi_{c} scattering process. All the resonance masses and decay width are shown in Table6.

Refer to caption
Figure 6: The NΞcN\Xi_{c} phase shift with two-channel coupling for the S=1S=-1 system.

For the case of five-channel coupling, the scattering phase shifts are shown in Fig.8, and the resonance masses and decay widths are listed in Table6. There is only one resonance state ΣΣc\Sigma\Sigma_{c} appears in the ΛΛc\Lambda\Lambda_{c} phase shifts, as shown in Fig.8(a). From Table6, the resonance mass of the ΣΣc\Sigma\Sigma_{c} in the five-channel coupling case is 3591 MeV, which is lower than the one in the two-channel coupling case (3620 MeV). This is because the coupling between closed channels will push down the channels with lower energy. At the same time, the channel coupling can also raises the energy of the higher state, even pushes the higher state above the threshold. Therefore, the resonance state ΣΣc\Sigma^{*}\Sigma_{c}^{*} in two-channel coupling disappears in the five-channel coupling. Similarly, there is only one resonance state ΣΣc\Sigma\Sigma_{c}^{*} appears in the NΞcN\Xi_{c} phase shifts, which is shown in Fig.8(b). In the NΞcN\Xi_{c}^{\prime} phase shifts, the situation is slightly different. Two resonance states ΣΣc\Sigma\Sigma_{c}^{*} and ΣΣc\Sigma^{*}\Sigma_{c} are shown in Fig.8(c). By comparing with the results in the two-channel coupling, the resonance mass of ΣΣc\Sigma\Sigma_{c}^{*} is 30 MeV lower, while the one of ΣΣc\Sigma^{*}\Sigma_{c} is 9 MeV higher. However, since the resonance ΣΣc\Sigma^{*}\Sigma_{c} disappears in the NΞcN\Xi_{c} scattering phase shifts, it will decay through the NΞcN\Xi_{c} open channel. So the ΣΣc\Sigma^{*}\Sigma_{c} cannot be identified as a resonance state. All these results show that the existence of the resonance states and the resonance energy are both affected by the multi-channel coupling. So the effect of the channel coupling cannot be ignored in the multi-quark system.

Refer to caption
Figure 7: The NΞcN\Xi_{c}^{\prime} phase shift with two-channel coupling for the S=1S=-1 system.
Refer to caption
Figure 8: The ΛΛc\Lambda\Lambda_{c}, NΞcN\Xi_{c} and NΞcN\Xi_{c}^{\prime} phase shifts with five-channel coupling for the S=1S=-1 system.
Table 6: The masses (MM) and decay widths (in the unit of MeV) of resonance states with the difference scattering process. Γi\Gamma_{i} is the partial decay width of the resonance state decaying to the ii-th open channel. Γtotal\Gamma_{total} is the total decay width of the resonance state.
Open channels Two channel coupling Five channel coupling
ΣΣc\Sigma\Sigma_{c} ΣΣc\Sigma\Sigma_{c}^{\ast} ΣΣc\Sigma^{\ast}\Sigma_{c} ΣΣc\Sigma^{\ast}\Sigma_{c}^{\ast} ΣΣc\Sigma\Sigma_{c} ΣΣc\Sigma\Sigma_{c}^{\ast} ΣΣc\Sigma^{\ast}\Sigma_{c} ΣΣc\Sigma^{\ast}\Sigma_{c}^{\ast}
MM Γi\Gamma_{i} MM Γi\Gamma_{i} MM Γi\Gamma_{i} MM Γi\Gamma_{i} MM Γi\Gamma_{i} MM Γi\Gamma_{i} MM Γi\Gamma_{i} MM Γi\Gamma_{i}
ΛΛc\Lambda\Lambda_{c} 3620 8.5 \dots \dots \dots \dots 3832 10.7 35913591 11.111.1 \dots \dots \dots \dots \dots \dots
NΞcN\Xi_{c} \dots \dots 3652 0.6 3801 3.7 \dots \dots \dots \dots 3621 0.1 \dots \dots \dots \dots
NΞcN\Xi_{c}^{\prime} \dots \dots 3654 11.5 3776 10.5 \dots \dots \dots \dots 3624 14.8 3785 32.0 \dots \dots
Γtotal\Gamma_{total} 8.5 12.1 14.2 10.7 11.1 14.9 32.0

IV Summary

The S-wave singly charmed dibaryon systems with strangeness numbers S=1S=-1, 3-3 and 5-5 are systemically investigated by using the RGM in the framework of ChQM. Our goal is to search for any bound state or resonance state of singly charmed dibaryon systems. Herein, the effective potentials are calculated to explore the interactions of between two baryons. Both the single-channel and the coupled-channel dynamic bound-state calculations are carried out to search for possible states. Meanwhile, the study of the scattering process of the open channels is carried out to confirm possible resonance states.

According to the numerical results, in the S=1S=-1 system, the attractions between Σ\Sigma/Σ\Sigma^{*} and Σc\Sigma_{c}/Σc\Sigma_{c}^{*} are large enough to form singly bound states ΣΣc\Sigma\Sigma_{c}, ΣΣc\Sigma\Sigma^{*}_{c}, ΣΣc\Sigma^{*}\Sigma_{c} and ΣΣc\Sigma^{*}\Sigma_{c}^{*}. However, these states can couple with the corresponding open channels, and become resonance states or scattering states. By including the effect of channel-coupling, two resonance states with strangeness numbers S=1S=-1 are obtained. The one is the ΣΣc\Sigma\Sigma_{c} state with the mass and width 3591 MeV and 11.1 MeV, respectively, and the decay channel is ΛΛc\Lambda\Lambda_{c}. The other is the ΣΣc\Sigma\Sigma^{\ast}_{c} state with the mass and width 3621-3624 MeV and 14.9 MeV, respectively, and the decay channels are NΞcN\Xi_{c} and NΞcN\Xi^{\prime}_{c}. All these dibaryons are worth searching for in experiments, although it will be a challenging subject.

In the past two decades, numerous heavy-flavor hadrons have been discovered in experiments, which are considered as promising candidates for tetraquarks and pentaquarks. In Ref. Wang:2024riu , the authors claimed that the existence of molecular states in DDDD^{*}, DD¯D\bar{D}^{*}, and ΣcD¯()\Sigma_{c}\bar{D}^{(*)} systems leads to the emergence of a large number of deuteronlike hexaquarks in the heavy flavor sectors. The systems composed of charmed baryons and hyperons are predicted by the mass spectra calculation. In Ref. Kong:2022rvd , the charmed-strange molecular dibaryons are investigated in a quasipotential Bethe-Salpeter approach together with the one-boson-exchange model. The results suggested that attractions widely exist in charmed-strange system, and the S-wave bound states can be produced from most of the channels. In this work, fewer charmed dibaryon resonance states are obtained, since the coupling with the open channels are considered. The study of the scattering process is an effective way to look for the genuine resonances. However, to distinguish the various explanations and confirm the existence of the exotic hadron states is still very difficult, and requires the joint efforts of both theorists and experimentalists.

Acknowledgements.
This work is supported partly by the National Natural Science Foundation of China under Contracts Nos. 11675080, 11775118 and 11535005.

V Appendix

Here, we only list the wave functions we used in this work. The spin wave function of a q3q^{3} cluster is labeled as χs,szσ\chi_{s,s_{z}}^{\sigma}, where ss and szs_{z} are the spin quantum number and the third component, respectively. For wave functions with the same quantum number but different symmetries, we distinguish them with different numbers. For example, χ12,12σ1\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1} and χ12,12σ2\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2} represent respectively the symmetric and antisymmetric spin wave functions with spin quantum number 12\frac{1}{2}.

χ32,32σ\displaystyle\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma} =\displaystyle= ααα\displaystyle\alpha\alpha\alpha
χ32,12σ\displaystyle\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma} =\displaystyle= 13(ααβ+αβα+βαα)\displaystyle\frac{1}{\sqrt{3}}(\alpha\alpha\beta+\alpha\beta\alpha+\beta\alpha\alpha)
χ32,12σ\displaystyle\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma} =\displaystyle= 13(αββ+βαβ+ββα)\displaystyle\frac{1}{\sqrt{3}}(\alpha\beta\beta+\beta\alpha\beta+\beta\beta\alpha)
χ32,32σ\displaystyle\chi_{\frac{3}{2},-\frac{3}{2}}^{\sigma} =\displaystyle= βββ\displaystyle\beta\beta\beta
χ12,12σ1\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1} =\displaystyle= 16(2ααβαβαβαα)\displaystyle\sqrt{\frac{1}{6}}(2\alpha\alpha\beta-\alpha\beta\alpha-\beta\alpha\alpha)
χ12,12σ2\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2} =\displaystyle= 12(αβαβαα)\displaystyle\sqrt{\frac{1}{2}}(\alpha\beta\alpha-\beta\alpha\alpha)
χ12,12σ1\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1} =\displaystyle= 16(αββ+βαβ2ββα)\displaystyle\sqrt{\frac{1}{6}}(\alpha\beta\beta+\beta\alpha\beta-2\beta\beta\alpha)
χ12,12σ2\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2} =\displaystyle= 12(αβββαβ)\displaystyle\sqrt{\frac{1}{2}}(\alpha\beta\beta-\beta\alpha\beta)

The flavor wave functions of the q3q^{3} cluster χI,Izf\chi_{I,I_{z}}^{f} (II and IzI_{z} are the isospin quantum number and the third component, respectively) are as follows. Here, both the light and heavy quarks are considered as identical particles with the SU(4)SU(4) extension.

χ0,0f1\displaystyle\chi_{0,0}^{f1} =\displaystyle= 12(usd+sudsdudsu)\displaystyle\frac{1}{2}(usd+sud-sdu-dsu)
χ0,0f2\displaystyle\chi_{0,0}^{f2} =\displaystyle= 112(2uds2dsu+sdu+usdsuddsu)\displaystyle\sqrt{\frac{1}{12}}(2uds-2dsu+sdu+usd-sud-dsu)
χ0,0f3\displaystyle\chi_{0,0}^{f3} =\displaystyle= 12(ucd+cudcdudcu)\displaystyle\frac{1}{2}(ucd+cud-cdu-dcu)
χ0,0f4\displaystyle\chi_{0,0}^{f4} =\displaystyle= 112(2ucd2dcu+cdu+ucdcuddcu)\displaystyle\sqrt{\frac{1}{12}}(2ucd-2dcu+cdu+ucd-cud-dcu)
χ0,0f5\displaystyle\chi_{0,0}^{f5} =\displaystyle= 16(2sscscscss)\displaystyle\sqrt{\frac{1}{6}}(2ssc-scs-css)
χ0,0f6\displaystyle\chi_{0,0}^{f6} =\displaystyle= 12(scscss)\displaystyle\sqrt{\frac{1}{2}}(scs-css)
χ0,0f7\displaystyle\chi_{0,0}^{f7} =\displaystyle= 13(ssc+scs+css)\displaystyle\sqrt{\frac{1}{3}}(ssc+scs+css)
χ0,0f8\displaystyle\chi_{0,0}^{f8} =\displaystyle= sss\displaystyle sss
χ12,12f1\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f1} =\displaystyle= 12(dcs+cdscsdscd)\displaystyle\frac{1}{2}(dcs+cds-csd-scd)
χ12,12f2\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f2} =\displaystyle= 112(2dsc2sdc+csd+dcscdsscd)\displaystyle\sqrt{\frac{1}{12}}(2dsc-2sdc+csd+dcs-cds-scd)
χ12,12f3\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f3} =\displaystyle= 16(udd+dud2ddu)\displaystyle\sqrt{\frac{1}{6}}(udd+dud-2ddu)
χ12,12f4\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f4} =\displaystyle= 12(udddud)\displaystyle\sqrt{\frac{1}{2}}(udd-dud)
χ12,12f5\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f5} =\displaystyle= 112(2dsc+2sdccsddcscdsscd)\displaystyle\sqrt{\frac{1}{12}}(2dsc+2sdc-csd-dcs-cds-scd)
χ12,12f6\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f6} =\displaystyle= 12(dcs+scdcsdcds)\displaystyle\frac{1}{2}(dcs+scd-csd-cds)
χ12,12f7\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f7} =\displaystyle= 16(dss+sds2ssd)\displaystyle\sqrt{\frac{1}{6}}(dss+sds-2ssd)
χ12,12f8\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f8} =\displaystyle= 12(dsssds)\displaystyle\sqrt{\frac{1}{2}}(dss-sds)
χ12,12f9\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f9} =\displaystyle= 16(dsc+sdc+csd+dcs+cds+scd)\displaystyle\sqrt{\frac{1}{6}}(dsc+sdc+csd+dcs+cds+scd)
χ12,12f10\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f10} =\displaystyle= 13(dss+sds+ssd)\displaystyle\sqrt{\frac{1}{3}}(dss+sds+ssd)
χ12,12f1\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f1} =\displaystyle= 16(2uudududuu)\displaystyle\sqrt{\frac{1}{6}}(2uud-udu-duu)
χ12,12f2\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f2} =\displaystyle= 12(ududuu)\displaystyle\sqrt{\frac{1}{2}}(udu-duu)
χ12,12f3\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f3} =\displaystyle= 12(ucs+cuscsuscu)\displaystyle\frac{1}{2}(ucs+cus-csu-scu)
χ12,12f4\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f4} =\displaystyle= 112(2usc2suc+csu+ucscusscu)\displaystyle\sqrt{\frac{1}{12}}(2usc-2suc+csu+ucs-cus-scu)
χ12,12f5\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f5} =\displaystyle= 112(2usc+2succsuucscusscu)\displaystyle\sqrt{\frac{1}{12}}(2usc+2suc-csu-ucs-cus-scu)
χ12,12f6\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f6} =\displaystyle= 12(ucs+scucsucus)\displaystyle\frac{1}{2}(ucs+scu-csu-cus)
χ12,12f7\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f7} =\displaystyle= 16(uss+sus2ssu)\displaystyle\sqrt{\frac{1}{6}}(uss+sus-2ssu)
χ12,12f8\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f8} =\displaystyle= 12(usssus)\displaystyle\sqrt{\frac{1}{2}}(uss-sus)
χ12,12f9\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f9} =\displaystyle= 16(usc+suc+csu+ucs+cus+scu)\displaystyle\sqrt{\frac{1}{6}}(usc+suc+csu+ucs+cus+scu)
χ12,12f10\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f10} =\displaystyle= 13(uss+sus+ssu)\displaystyle\sqrt{\frac{1}{3}}(uss+sus+ssu)
χ1,1f1\displaystyle\chi_{1,-1}^{f1} =\displaystyle= 16(2ddcdcdcdd)\displaystyle\sqrt{\frac{1}{6}}(2ddc-dcd-cdd)
χ1,1f2\displaystyle\chi_{1,-1}^{f2} =\displaystyle= 12(dcdcdd)\displaystyle\sqrt{\frac{1}{2}}(dcd-cdd)
χ1,1f3\displaystyle\chi_{1,-1}^{f3} =\displaystyle= 16(2ddsdsdsdd)\displaystyle\sqrt{\frac{1}{6}}(2dds-dsd-sdd)
χ1,1f4\displaystyle\chi_{1,-1}^{f4} =\displaystyle= 12(dsdsdd)\displaystyle\sqrt{\frac{1}{2}}(dsd-sdd)
χ1,1f5\displaystyle\chi_{1,-1}^{f5} =\displaystyle= 13(ddc+dcd+cdd)\displaystyle\sqrt{\frac{1}{3}}(ddc+dcd+cdd)
χ1,1f6\displaystyle\chi_{1,-1}^{f6} =\displaystyle= 13(dds+dsd+sdd)\displaystyle\sqrt{\frac{1}{3}}(dds+dsd+sdd)
χ1,0f1\displaystyle\chi_{1,0}^{f1} =\displaystyle= 112(2uds+2dussduusdsuddsu)\displaystyle\sqrt{\frac{1}{12}}(2uds+2dus-sdu-usd-sud-dsu)
χ1,0f2\displaystyle\chi_{1,0}^{f2} =\displaystyle= 12(usd+dsusdusud)\displaystyle\frac{1}{2}(usd+dsu-sdu-sud)
χ1,0f3\displaystyle\chi_{1,0}^{f3} =\displaystyle= 112(2udc+2duccduucdcuddcu)\displaystyle\sqrt{\frac{1}{12}}(2udc+2duc-cdu-ucd-cud-dcu)
χ1,0f4\displaystyle\chi_{1,0}^{f4} =\displaystyle= 12(ucd+dcucducud)\displaystyle\frac{1}{2}(ucd+dcu-cdu-cud)
χ1,0f5\displaystyle\chi_{1,0}^{f5} =\displaystyle= 16(udc+duc+cdu+ucd+cud+dcu)\displaystyle\sqrt{\frac{1}{6}}(udc+duc+cdu+ucd+cud+dcu)
χ1,0f6\displaystyle\chi_{1,0}^{f6} =\displaystyle= 16(uds+dus+sdu+usd+sud+dsu)\displaystyle\sqrt{\frac{1}{6}}(uds+dus+sdu+usd+sud+dsu)
χ1,1f1\displaystyle\chi_{1,1}^{f1} =\displaystyle= 16(2uusususuu)\displaystyle\sqrt{\frac{1}{6}}(2uus-usu-suu)
χ1,1f2\displaystyle\chi_{1,1}^{f2} =\displaystyle= 12(ususuu)\displaystyle\sqrt{\frac{1}{2}}(usu-suu)
χ1,1f3\displaystyle\chi_{1,1}^{f3} =\displaystyle= 16(2uucucucuu)\displaystyle\sqrt{\frac{1}{6}}(2uuc-ucu-cuu)
χ1,1f4\displaystyle\chi_{1,1}^{f4} =\displaystyle= 12(ucucuu)\displaystyle\sqrt{\frac{1}{2}}(ucu-cuu)
χ1,1f5\displaystyle\chi_{1,1}^{f5} =\displaystyle= 13(uuc+ucu+cuu)\displaystyle\sqrt{\frac{1}{3}}(uuc+ucu+cuu)
χ1,1f6\displaystyle\chi_{1,1}^{f6} =\displaystyle= 13(uus+usu+suu)\displaystyle\sqrt{\frac{1}{3}}(uus+usu+suu)

The color wave function of a color-singlet q3q^{3} cluster is:

χc=\displaystyle\chi^{c}= 16(rgbrbg+gbrgrb+brgbgr)\displaystyle\sqrt{\frac{1}{6}}(rgb-rbg+gbr-grb+brg-bgr)

The total flavor-spin-color wave function of the dibaryon system can be acquired by substituting the wave functions of the flavor, the spin, and the color parts according to the given quantum number of the system, and the total flavor-spin-color wave function for each channel is shown as follows. ϕIz,szB\phi_{I_{z},s_{z}}^{B} represents the wave function of the q3q^{3} cluster (IzI_{z} and szs_{z} are the third component of the isospin and spin quantum numbers, BB is the corresponding baryon). Then we couple the two baryon wave functions by Clebsch-Gordan coefficients according to the total quantum number requirement, and we can obtain the total wave functions. There are seven channels for the C=1,S=1C=1,S=-1 system:

|ΛΛc=\displaystyle\left|\Lambda\Lambda_{c}\right\rangle= ϕ0,12Λϕ0,12Λc\displaystyle\phi_{0,\frac{1}{2}}^{\Lambda}\phi_{0,\frac{1}{2}}^{\Lambda_{c}}
|NΞc=\displaystyle\left|N\Xi_{c}\right\rangle= 12[ϕ12,12pϕ12,12Ξcϕ12,12nϕ12,12Ξc]\displaystyle\sqrt{\frac{1}{2}}\left[\phi_{\frac{1}{2},\frac{1}{2}}^{p}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}-\phi_{-\frac{1}{2},\frac{1}{2}}^{n}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}\right]
|NΞc=\displaystyle\left|N\Xi_{c}^{\prime}\right\rangle= 12[ϕ12,12pϕ12,12Ξcϕ12,12nϕ12,12Ξc]\displaystyle\sqrt{\frac{1}{2}}\left[\phi_{\frac{1}{2},\frac{1}{2}}^{p}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}-\phi_{-\frac{1}{2},\frac{1}{2}}^{n}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}\right]
|ΣΣc=\displaystyle\left|\Sigma\Sigma_{c}\right\rangle= 13[ϕ1,12Σϕ1,12Σcϕ0,12Σϕ0,12Σc+ϕ1,12Σϕ1,12Σc]\displaystyle\sqrt{\frac{1}{3}}\left[\phi_{1,\frac{1}{2}}^{\Sigma}\phi_{-1,\frac{1}{2}}^{\Sigma_{c}}-\phi_{0,\frac{1}{2}}^{\Sigma}\phi_{0,\frac{1}{2}}^{\Sigma_{c}}+\phi_{-1,\frac{1}{2}}^{\Sigma}\phi_{1,\frac{1}{2}}^{\Sigma_{c}}\right]
|ΣΣc=\displaystyle\left|\Sigma\Sigma_{c}^{*}\right\rangle= 12[ϕ0,12Σϕ0,32Σcϕ1,12Σϕ1,32Σcϕ1,12Σϕ1,32Σc]\displaystyle\frac{1}{2}\left[\phi_{0,-\frac{1}{2}}^{\Sigma}\phi_{0,\frac{3}{2}}^{\Sigma_{c}^{*}}-\phi_{1,-\frac{1}{2}}^{\Sigma}\phi_{-1,\frac{3}{2}}^{\Sigma_{c}^{*}}-\phi_{-1,-\frac{1}{2}}^{\Sigma}\phi_{1,\frac{3}{2}}^{\Sigma_{c}^{*}}\right]
112[ϕ0,12Σϕ0,12Σcϕ1,12Σϕ1,12Σcϕ1,12Σϕ1,12Σc]\displaystyle-\sqrt{\frac{1}{12}}\left[\phi_{0,\frac{1}{2}}^{\Sigma}\phi_{0,\frac{1}{2}}^{\Sigma_{c}^{*}}-\phi_{1,\frac{1}{2}}^{\Sigma}\phi_{-1,\frac{1}{2}}^{\Sigma_{c}^{*}}-\phi_{-1,\frac{1}{2}}^{\Sigma}\phi_{1,\frac{1}{2}}^{\Sigma_{c}^{*}}\right]
|ΣΣc=\displaystyle\left|\Sigma^{*}\Sigma_{c}\right\rangle= 12[ϕ1,32Σϕ1,12Σcϕ0,32Σϕ0,12Σc+ϕ1,32Σϕ1,12Σc]\displaystyle\frac{1}{2}\left[\phi_{1,\frac{3}{2}}^{\Sigma^{*}}\phi_{-1,-\frac{1}{2}}^{\Sigma_{c}}-\phi_{0,\frac{3}{2}}^{\Sigma^{*}}\phi_{0,-\frac{1}{2}}^{\Sigma_{c}}+\phi_{-1,\frac{3}{2}}^{\Sigma^{*}}\phi_{1,-\frac{1}{2}}^{\Sigma_{c}}\right]
112[ϕ1,12Σϕ1,12Σcϕ0,12Σϕ0,12Σcϕ1,12Σϕ1,12Σc]\displaystyle-\sqrt{\frac{1}{12}}\left[\phi_{1,\frac{1}{2}}^{\Sigma^{*}}\phi_{-1,\frac{1}{2}}^{\Sigma_{c}}-\phi_{0,\frac{1}{2}}^{\Sigma^{*}}\phi_{0,\frac{1}{2}}^{\Sigma_{c}}-\phi_{-1,\frac{1}{2}}^{\Sigma^{*}}\phi_{1,\frac{1}{2}}^{\Sigma_{c}}\right]
|ΣΣc=\displaystyle\left|\Sigma^{*}\Sigma_{c}^{*}\right\rangle= 110[ϕ1,32Σϕ1,12Σcϕ0,32Σϕ0,12Σc+ϕ1,32Σϕ1,12Σc\displaystyle\sqrt{\frac{1}{10}}\left[\phi_{1,\frac{3}{2}}^{\Sigma^{*}}\phi_{-1,-\frac{1}{2}}^{\Sigma_{c}^{*}}-\phi_{0,\frac{3}{2}}^{\Sigma^{*}}\phi_{0,-\frac{1}{2}}^{\Sigma_{c}^{*}}+\phi_{-1,\frac{3}{2}}^{\Sigma^{*}}\phi_{1,-\frac{1}{2}}^{\Sigma_{c}^{*}}\right.
+ϕ1,12Σϕ1,32Σcϕ0,12Σϕ0,32Σc+ϕ1,12Σϕ1,32Σc]\displaystyle\left.+\phi_{1,-\frac{1}{2}}^{\Sigma^{*}}\phi_{-1,\frac{3}{2}}^{\Sigma_{c}^{*}}-\phi_{0,-\frac{1}{2}}^{\Sigma^{*}}\phi_{0,\frac{3}{2}}^{\Sigma_{c}^{*}}+\phi_{-1,-\frac{1}{2}}^{\Sigma^{*}}\phi_{1,\frac{3}{2}}^{\Sigma_{c}^{*}}\right]
215[ϕ1,12Σϕ1,12Σcϕ0,12Σϕ0,12Σc+ϕ1,12Σϕ1,12Σc]\displaystyle-\sqrt{\frac{2}{15}}\left[\phi_{1,\frac{1}{2}}^{\Sigma^{*}}\phi_{-1,\frac{1}{2}}^{\Sigma_{c}^{*}}-\phi_{0,\frac{1}{2}}^{\Sigma^{*}}\phi_{0,\frac{1}{2}}^{\Sigma_{c}^{*}}+\phi_{-1,\frac{1}{2}}^{\Sigma^{*}}\phi_{1,\frac{1}{2}}^{\Sigma_{c}^{*}}\right]

nine channels for the C=1,S=3C=1,S=-3 system:

|ΛΩc=\displaystyle\left|\Lambda\Omega_{c}\right\rangle= ϕ0,12Λϕ0,12Ωc\displaystyle\phi_{0,\frac{1}{2}}^{\Lambda}\phi_{0,\frac{1}{2}}^{\Omega_{c}}
|ΛΩc=\displaystyle\left|\Lambda\Omega_{c}^{*}\right\rangle= 12ϕ0,12Λϕ0,12Ωc34ϕ0,12Λϕ0,32Ωc\displaystyle\frac{1}{2}\phi_{0,\frac{1}{2}}^{\Lambda}\phi_{0,\frac{1}{2}}^{\Omega_{c}^{*}}-\sqrt{\frac{3}{4}}\phi_{0,-\frac{1}{2}}^{\Lambda}\phi_{0,\frac{3}{2}}^{\Omega_{c}^{*}}
|ΛcΩ=\displaystyle\left|\Lambda_{c}\Omega\right\rangle= 12ϕ0,12Λcϕ0,12Ω34ϕ0,12Λcϕ0,32Ω\displaystyle\frac{1}{2}\phi_{0,\frac{1}{2}}^{\Lambda_{c}}\phi_{0,\frac{1}{2}}^{\Omega}-\sqrt{\frac{3}{4}}\phi_{0,-\frac{1}{2}}^{\Lambda_{c}}\phi_{0,\frac{3}{2}}^{\Omega}
|ΞΞc=\displaystyle\left|\Xi\Xi_{c}\right\rangle= 12[ϕ12,12Ξϕ12,12Ξcϕ12,12Ξϕ12,12Ξc]\displaystyle\sqrt{\frac{1}{2}}\left[\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}-\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}\right]
|ΞΞc=\displaystyle\left|\Xi\Xi_{c}^{\prime}\right\rangle= 12[ϕ12,12Ξϕ12,12Ξcϕ12,12Ξϕ12,12Ξc]\displaystyle\sqrt{\frac{1}{2}}\left[\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}-\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}\right]
|ΞΞc=\displaystyle\left|\Xi\Xi_{c}^{*}\right\rangle= 38[ϕ12,12Ξϕ12,32Ξcϕ12,12Ξϕ12,32Ξc]\displaystyle\sqrt{\frac{3}{8}}\left[\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi}\phi_{\frac{1}{2},\frac{3}{2}}^{\Xi_{c}^{*}}-\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi}\phi_{-\frac{1}{2},\frac{3}{2}}^{\Xi_{c}^{*}}\right]
18[ϕ12,12Ξϕ12,12Ξcϕ12,12Ξϕ12,12Ξc]\displaystyle-\sqrt{\frac{1}{8}}\left[\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{*}}-\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{*}}\right]
|ΞΞc=\displaystyle\left|\Xi^{*}\Xi_{c}\right\rangle= 38[ϕ12,32Ξϕ12,12Ξcϕ12,32Ξϕ12,12Ξc]\displaystyle\sqrt{\frac{3}{8}}\left[\phi_{\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}}-\phi_{-\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}}\right]
18[ϕ12,12Ξϕ12,12Ξcϕ12,12Ξϕ12,12Ξc]\displaystyle-\sqrt{\frac{1}{8}}\left[\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}-\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}\right]
|ΞΞc=\displaystyle\left|\Xi^{*}\Xi_{c}^{\prime}\right\rangle= 38[ϕ12,32Ξϕ12,12Ξcϕ12,32Ξϕ12,12Ξc]\displaystyle\sqrt{\frac{3}{8}}\left[\phi_{\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{\prime}}-\phi_{-\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{\prime}}\right]
18[ϕ12,12Ξϕ12,12Ξcϕ12,12Ξϕ12,12Ξc]\displaystyle-\sqrt{\frac{1}{8}}\left[\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}-\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}\right]
|ΞΞc=\displaystyle\left|\Xi^{*}\Xi_{c}^{*}\right\rangle= 320[ϕ12,32Ξϕ12,12Ξcϕ12,32Ξϕ12,12Ξc\displaystyle\sqrt{\frac{3}{20}}\left[\phi_{\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{*}}-\phi_{-\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{*}}\right.
+ϕ12,12Ξϕ12,32Ξcϕ12,12Ξϕ12,32Ξc]\displaystyle\left.+\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi^{*}}\phi_{-\frac{1}{2},\frac{3}{2}}^{\Xi_{c}^{*}}-\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi^{*}}\phi_{\frac{1}{2},\frac{3}{2}}^{\Xi_{c}^{*}}\right]
310[ϕ12,12Ξϕ12,12Ξcϕ12,12Ξϕ12,12Ξc]\displaystyle-\sqrt{\frac{3}{10}}\left[\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{*}}-\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{*}}\right]

and two channels for the C=1,S=5C=1,S=-5 system:

|ΩΩc=\displaystyle\left|\Omega\Omega_{c}\right\rangle= 34ϕ0,12Ωcϕ0,32Ω+14ϕ0,12Ωcϕ0,12Ω\displaystyle\sqrt{-\frac{3}{4}}\phi_{0,-\frac{1}{2}}^{\Omega_{c}}\phi_{0,\frac{3}{2}}^{\Omega}+\sqrt{\frac{1}{4}}\phi_{0,\frac{1}{2}}^{\Omega_{c}}\phi_{0,\frac{1}{2}}^{\Omega}
|ΩΩc=\displaystyle\left|\Omega\Omega_{c}^{*}\right\rangle= 310[ϕ0,32Ωϕ0,12Ωc+ϕ0,12Ωϕ0,32Ωc]\displaystyle\sqrt{\frac{3}{10}}\left[\phi_{0,\frac{3}{2}}^{\Omega}\phi_{0,-\frac{1}{2}}^{\Omega_{c}^{*}}+\phi_{0,-\frac{1}{2}}^{\Omega}\phi_{0,\frac{3}{2}}^{\Omega_{c}^{*}}\right]
25ϕ0,12Ωϕ0,12Ωc\displaystyle-\sqrt{\frac{2}{5}}\phi_{0,\frac{1}{2}}^{\Omega}\phi_{0,\frac{1}{2}}^{\Omega_{c}^{*}}

where the expression of ϕIz,szB\phi_{I_{z},s_{z}}^{B} is shown as follows:

ϕ0,12Λ=\displaystyle\phi_{0,\frac{1}{2}}^{\Lambda}= 12(χ0,0f1χ12,12σ1+χ0,0f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{0,0}^{f1}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{0,0}^{f2}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,12Λc=\displaystyle\phi_{0,\frac{1}{2}}^{\Lambda_{c}}= 12(χ0,0f3χ12,12σ1+χ0,0f4χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{0,0}^{f3}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{0,0}^{f4}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12p=\displaystyle\phi_{\frac{1}{2},\frac{1}{2}}^{p}= 12(χ12,12f1χ12,12σ1+χ12,12f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},\frac{1}{2}}^{f1}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},\frac{1}{2}}^{f2}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}= 12(χ12,12f1χ12,12σ1+χ12,12f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},-\frac{1}{2}}^{f1}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},-\frac{1}{2}}^{f2}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12n=\displaystyle\phi_{-\frac{1}{2},\frac{1}{2}}^{n}= 12(χ12,12f3χ12,12σ1+χ12,12f4χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},-\frac{1}{2}}^{f3}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},-\frac{1}{2}}^{f4}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}}= 12(χ12,12f3χ12,12σ1+χ12,12f4χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},\frac{1}{2}}^{f3}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},\frac{1}{2}}^{f4}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}= 12(χ12,12f5χ12,12σ1+χ12,12f6χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},-\frac{1}{2}}^{f5}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},-\frac{1}{2}}^{f6}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{\prime}}= 12(χ12,12f5χ12,12σ1+χ12,12f6χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},\frac{1}{2}}^{f5}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},\frac{1}{2}}^{f6}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ1,12Σ=\displaystyle\phi_{1,\frac{1}{2}}^{\Sigma}= 12(χ1,1f1χ12,12σ1+χ1,1f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,1}^{f1}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{1,1}^{f2}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ1,12Σc=\displaystyle\phi_{-1,\frac{1}{2}}^{\Sigma_{c}}= 12(χ1,1f1χ12,12σ1+χ1,1f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,-1}^{f1}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{1,-1}^{f2}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,12Σ=\displaystyle\phi_{0,\frac{1}{2}}^{\Sigma}= 12(χ1,0f1χ12,12σ1+χ1,0f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,0}^{f1}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{1,0}^{f2}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,12Σc=\displaystyle\phi_{0,\frac{1}{2}}^{\Sigma_{c}}= 12(χ1,0f3χ12,12σ1+χ1,0f4χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,0}^{f3}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{1,0}^{f4}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ1,12Σ=\displaystyle\phi_{-1,\frac{1}{2}}^{\Sigma}= 12(χ1,1f3χ12,12σ1+χ1,1f4χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,-1}^{f3}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{1,-1}^{f4}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ1,12Σc=\displaystyle\phi_{1,\frac{1}{2}}^{\Sigma_{c}}= 12(χ1,1f3χ12,12σ1+χ1,1f4χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,1}^{f3}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{1,1}^{f4}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,12Σ=\displaystyle\phi_{0,-\frac{1}{2}}^{\Sigma}= 12(χ1,0f1χ12,12σ1+χ1,0f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,0}^{f1}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{1,0}^{f2}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ1,12Σ=\displaystyle\phi_{1,-\frac{1}{2}}^{\Sigma}= 12(χ1,1f1χ12,12σ1+χ1,1f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,1}^{f1}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{1,1}^{f2}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ1,12Σ=\displaystyle\phi_{-1,-\frac{1}{2}}^{\Sigma}= 12(χ1,1f3χ12,12σ1+χ1,1f4χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{1,-1}^{f3}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{1,-1}^{f4}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,12Ωc=\displaystyle\phi_{0,\frac{1}{2}}^{\Omega_{c}}= 12(χ0,0f5χ12,12σ1+χ0,0f6χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{0,0}^{f5}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{0,0}^{f6}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,12Λ=\displaystyle\phi_{0,-\frac{1}{2}}^{\Lambda}= 12(χ0,0f1χ12,12σ1+χ0,0f2χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{0,0}^{f1}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{0,0}^{f2}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξ=\displaystyle\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi}= 12(χ12,12f7χ12,12σ1+χ12,12f8χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},\frac{1}{2}}^{f7}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},\frac{1}{2}}^{f8}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξ=\displaystyle\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi}= 12(χ12,12f7χ12,12σ1+χ12,12f8χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},-\frac{1}{2}}^{f7}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},-\frac{1}{2}}^{f8}\chi_{\frac{1}{2},\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξ=\displaystyle\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi}= 12(χ12,12f7χ12,12σ1+χ12,12f8χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},-\frac{1}{2}}^{f7}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},-\frac{1}{2}}^{f8}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξ=\displaystyle\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi}= 12(χ12,12f7χ12,12σ1+χ12,12f8χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},\frac{1}{2}}^{f7}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},\frac{1}{2}}^{f8}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{\prime}}= 12(χ12,12f5χ12,12σ1+χ12,12f6χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},-\frac{1}{2}}^{f5}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},-\frac{1}{2}}^{f6}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{\prime}}= 12(χ12,12f5χ12,12σ1+χ12,12f6χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{\frac{1}{2},\frac{1}{2}}^{f5}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{\frac{1}{2},\frac{1}{2}}^{f6}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,12Ωc=\displaystyle\phi_{0,-\frac{1}{2}}^{\Omega_{c}}= 12(χ0,0f5χ12,12σ1+χ0,0f6χ12,12σ2)χc\displaystyle\sqrt{\frac{1}{2}}\left(\chi_{0,0}^{f5}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 1}+\chi_{0,0}^{f6}\chi_{\frac{1}{2},-\frac{1}{2}}^{\sigma 2}\right)\chi^{c}
ϕ0,32Σc=\displaystyle\phi_{0,\frac{3}{2}}^{\Sigma_{c}^{*}}= χ1,0f5χ32,32σχc,ϕ1,32Σc=χ1,1f5χ32,32σχc\displaystyle\chi_{1,0}^{f5}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-1,\frac{3}{2}}^{\Sigma_{c}^{*}}=\chi_{1,-1}^{f5}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c}
ϕ1,32Σc=\displaystyle\phi_{1,\frac{3}{2}}^{\Sigma_{c}^{*}}= χ1,1f5χ32,32σχc,ϕ0,12Σc=χ1,0f5χ32,12σχc\displaystyle\chi_{1,1}^{f5}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{0,\frac{1}{2}}^{\Sigma_{c}^{*}}=\chi_{1,0}^{f5}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c}
ϕ1,12Σc=\displaystyle\phi_{-1,\frac{1}{2}}^{\Sigma_{c}^{*}}= χ1,1f5χ32,12σχc,ϕ1,12Σc=χ1,1f5χ32,12σχc\displaystyle\chi_{1,-1}^{f5}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{1,\frac{1}{2}}^{\Sigma_{c}^{*}}=\chi_{1,1}^{f5}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c}
ϕ1,32Σ=\displaystyle\phi_{1,\frac{3}{2}}^{\Sigma^{*}}= χ1,1f6χ32,32σχc,ϕ0,32Σ=χ1,0f6χ32,32σχc\displaystyle\chi_{1,1}^{f6}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{0,\frac{3}{2}}^{\Sigma^{*}}=\chi_{1,0}^{f6}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c}
ϕ1,32Σ=\displaystyle\phi_{-1,\frac{3}{2}}^{\Sigma^{*}}= χ1,1f6χ32,32σχc,ϕ1,12Σ=χ1,1f6χ32,12σχc\displaystyle\chi_{1,-1}^{f6}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{1,\frac{1}{2}}^{\Sigma^{*}}=\chi_{1,1}^{f6}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c}
ϕ0,12Σ=\displaystyle\phi_{0,\frac{1}{2}}^{\Sigma^{*}}= χ1,0f6χ32,12σχc,ϕ1,12Σ=χ1,1f6χ32,12σχc\displaystyle\chi_{1,0}^{f6}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-1,\frac{1}{2}}^{\Sigma^{*}}=\chi_{1,-1}^{f6}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c}
ϕ1,12Σc=\displaystyle\phi_{-1,-\frac{1}{2}}^{\Sigma_{c}^{*}}= χ1,1f5χ32,12σχc,ϕ0,12Σc=χ1,0f5χ32,12σχc\displaystyle\chi_{1,-1}^{f5}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{0,-\frac{1}{2}}^{\Sigma_{c}^{*}}=\chi_{1,0}^{f5}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c}
ϕ1,12Σc=\displaystyle\phi_{1,-\frac{1}{2}}^{\Sigma_{c}^{*}}= χ1,1f5χ32,12σχc,ϕ1,12Σ=χ1,1f6χ32,12σχc\displaystyle\chi_{1,1}^{f5}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{1,-\frac{1}{2}}^{\Sigma^{*}}=\chi_{1,1}^{f6}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c}
ϕ0,12Σc=\displaystyle\phi_{0,-\frac{1}{2}}^{\Sigma_{c}^{*}}= χ1,0f6χ32,12σχc,ϕ1,12Σ=χ1,1f6χ32,12σχc\displaystyle\chi_{1,0}^{f6}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-1,-\frac{1}{2}}^{\Sigma^{*}}=\chi_{1,-1}^{f6}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c}
ϕ0,32Ωc=\displaystyle\phi_{0,\frac{3}{2}}^{\Omega_{c}^{*}}= χ0,0f7χ32,32σχc,ϕ0,12Ωc=χ0,0f7χ32,12σχc\displaystyle\chi_{0,0}^{f7}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{0,\frac{1}{2}}^{\Omega_{c}^{*}}=\chi_{0,0}^{f7}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c}
ϕ0,12Ω=\displaystyle\phi_{0,\frac{1}{2}}^{\Omega}= χ0,0f8χ32,12σχc,ϕ0,32Ω=χ0,0f8χ32,32σχc\displaystyle\chi_{0,0}^{f8}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{0,\frac{3}{2}}^{\Omega}=\chi_{0,0}^{f8}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c}
ϕ12,32Ξc=\displaystyle\phi_{\frac{1}{2},\frac{3}{2}}^{\Xi_{c}^{*}}= χ12,12f9χ32,32σχc,ϕ12,32Ξc=χ12,12f9χ32,32σχc\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f9}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-\frac{1}{2},\frac{3}{2}}^{\Xi_{c}^{*}}=\chi_{\frac{1}{2},-\frac{1}{2}}^{f9}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{*}}= χ12,12f9χ32,12σχc,ϕ12,12Ξc=χ12,12f9χ32,12σχc\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f9}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi_{c}^{*}}=\chi_{\frac{1}{2},-\frac{1}{2}}^{f9}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c}
ϕ12,32Ξ=\displaystyle\phi_{\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}= χ12,12f10χ32,32σχc,ϕ12,32Ξ=χ12,12f10χ32,32σχc\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f10}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-\frac{1}{2},\frac{3}{2}}^{\Xi^{*}}=\chi_{\frac{1}{2},-\frac{1}{2}}^{f10}\chi_{\frac{3}{2},\frac{3}{2}}^{\sigma}\chi^{c}
ϕ12,12Ξ=\displaystyle\phi_{\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}= χ12,12f10χ32,12σχc,ϕ12,12Ξ=χ12,12f10χ32,12σχc\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f10}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-\frac{1}{2},\frac{1}{2}}^{\Xi^{*}}=\chi_{\frac{1}{2},-\frac{1}{2}}^{f10}\chi_{\frac{3}{2},\frac{1}{2}}^{\sigma}\chi^{c}
ϕ12,12Ξc=\displaystyle\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{*}}= χ12,12f9χ32,12σχc,ϕ12,12Ξc=χ12,12f9χ32,12σχc\displaystyle\chi_{\frac{1}{2},-\frac{1}{2}}^{f9}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi_{c}^{*}}=\chi_{\frac{1}{2},\frac{1}{2}}^{f9}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c}
ϕ12,12Ξ=\displaystyle\phi_{\frac{1}{2},-\frac{1}{2}}^{\Xi^{*}}= χ12,12f10χ32,12σχc,ϕ12,12Ξ=χ12,12f10χ32,12σχc\displaystyle\chi_{\frac{1}{2},\frac{1}{2}}^{f10}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{-\frac{1}{2},-\frac{1}{2}}^{\Xi^{*}}=\chi_{\frac{1}{2},-\frac{1}{2}}^{f10}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c}
ϕ0,12Ω=\displaystyle\phi_{0,-\frac{1}{2}}^{\Omega}= χ0,0f8χ32,12σχc,ϕ0,32Ωc=χ0,0f7χ32,12σχc\displaystyle\chi_{0,0}^{f8}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c},~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\phi_{0,\frac{3}{2}}^{\Omega_{c}^{*}}=\chi_{0,0}^{f7}\chi_{\frac{3}{2},-\frac{1}{2}}^{\sigma}\chi^{c}

References

  • (1) H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept. 639, 1-121 (2016)
  • (2) Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Prog. Part. Nucl. Phys. 107, 237-320 (2019)
  • (3) N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, Phys. Rept. 873, 1-154 (2020)
  • (4) H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Rept. Prog. Phys. 86, no.2, 026201 (2023)
  • (5) Harold C. Urey, F. G. Brickwedde, and G. M. Murphy, A Hydrogen Isotope of Mass 2, Phys. Rev. D 39, 164 (1932).
  • (6) M. Bashkanov, C. Bargholtz, M. Berlowski, D. Bogoslawsky, H. Calen, H. Clement, L. Demiroers, E. Doroshkevich, D. Duniec and C. Ekstrom, et al. Phys. Rev. Lett. 102, 052301 (2009)
  • (7) P. Adlarson et al. [WASA-at-COSY], Phys. Rev. Lett. 106, 242302 (2011)
  • (8) P. Adlarson et al. [WASA-at-COSY], Phys. Rev. C 90, no.3, 035204 (2014)
  • (9) A. Gal and H. Garcilazo, Phys. Rev. Lett. 111, 172301 (2013)
  • (10) M. Bashkanov, S. J. Brodsky and H. Clement, Phys. Lett. B 727, 438-442 (2013)
  • (11) J. L. Ping, H. X. Huang, H. R. Pang, F. Wang and C. W. Wong, Phys. Rev. C 79, 024001 (2009)
  • (12) H. Huang, J. Ping and F. Wang, Phys. Rev. C 89, no.3, 034001 (2014)
  • (13) J. Adam et al. [STAR], Phys. Lett. B 790, 490-497 (2019)
  • (14) M. Oka, Phys. Rev. D 38, 298 (1988)
  • (15) H. r. Pang, J. l. Ping, F. Wang, J. T. Goldman and E. g. Zhao, Phys. Rev. C 69, 065207 (2004)
  • (16) M. Chen, H. Huang, J. Ping and F. Wang, Phys. Rev. C 83, 015202 (2011)
  • (17) H. Huang, J. Ping and F. Wang, Phys. Rev. C 92, 065202 (2015)
  • (18) Q. B. Li and P. N. Shen, Eur. Phys. J. A 8, 417-421 (2000)
  • (19) F. Etminan et al. [HAL QCD], Nucl. Phys. A 928, 89-98 (2014)
  • (20) T. Iritani et al. [HAL QCD], Phys. Lett. B 792, 284-289 (2019)
  • (21) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 119, 112001 (2017)
  • (22) Y. R. Liu and M. Oka, Phys. Rev. D 85, 014015 (2012).
  • (23) H. X. Huang, J. L. Ping, and F. Wang, Phys. Rev. C 87, 034002 (2013).
  • (24) W. Meguro, Y. R. Liu, and M. Oka, Phys. Lett. B 704, 547 (2011).
  • (25) N. Lee, Z. G. Luo, X. L. Chen, and S. L. Zhu, Phys. Rev. D 84, 014031 (2011).
  • (26) N. Li and S. L. Zhu, Phys. Rev. D 86, 014020 (2012).
  • (27) P. Junnarkar and N. Mathur, Phys. Rev. Lett. 123, no.16, 162003 (2019)
  • (28) Z. G. Wang, Phys. Rev. D 102, no.3, 034008 (2020)
  • (29) Y. W. Pan, M. Z. Liu and L. S. Geng, Phys. Rev. D 102, no.5, 054025 (2020)
  • (30) R. Chen, F. L. Wang, A. Hosaka and X. Liu, Phys. Rev. D 97, no.11, 114011 (2018)
  • (31) H. Huang, J. Ping and F. Wang, Phys. Rev. C 101, no.1, 015204 (2020)
  • (32) J. Vijande, F. Fernandez and A. Valcarce, J. Phys. G 31, 481 (2005)
  • (33) J. Ping, C. Deng, H. Huang, F. F. Dong and F. Wang, EPJ Web Conf. 20, 01007 (2012)
  • (34) X. Chen and J. Ping, Eur. Phys. J. C 76, no.6, 351 (2016)
  • (35) D. R. Entem, F. Fernandez and A. Valcarce, Phys. Rev. C 62, 034002 (2000)
  • (36) X. Hu and J. Ping, Eur. Phys. J. C 82, no.2, 118 (2022)
  • (37) P. Xu, H. X. Huang, J. L. Ping and F. Wang, Chin. Phys. Lett. 28, 031301 (2011)
  • (38) H. Huang, J. Ping, X. Zhu and F. Wang, Eur. Phys. J. C 82, no.9, 805 (2022)
  • (39) A. Valcarce, H. Garcilazo, F. Fernandez and P. Gonzalez, Rept. Prog. Phys. 68, 965-1042 (2005)
  • (40) I. T. Obukhovsky and A. M. Kusainov, Phys. Lett. B 238, 142-148 (1990)
  • (41) F. Fernandez, A. Valcarce, U. Straub and A. Faessler, J. Phys. G 19, 2013-2026 (1993)
  • (42) L.Y. Glozman, D.O. Riska, Nucl. Phys. A 603 326 (1996).
  • (43) F. Stancu, Eur. Phys. J. C 79, 957 (2019).
  • (44) J. Vijande, F. Fernandez and A. Valcarce, J. Phys. G 31, 481 (2005)
  • (45) Y. Tan, W. Lu and J. Ping, Eur. Phys. J. Plus 135, no.9, 716 (2020)
  • (46) X. Hu and J. Ping, Eur. Phys. J. C 82, no.2, 118 (2022)
  • (47) Z. Xia, S. Fan, X. Zhu, H. Huang and J. Ping, Phys. Rev. C 105, no.2, 025201 (2022)
  • (48) J. Beringer, et al., Particle Data Group, Phys. Rev. D 86, 010001 (2012).
  • (49) J. A. Wheeler, Phys. Rev. 32, 1083 (1937).
  • (50) M. Kamimura, Supp. Prog. Theo. Phys. 62, 236 (1977).
  • (51) Supplement of the Progress of Theoretical Physics, No. 62, 1977
  • (52) B. Wang, K. Chen, L. Meng and S. L. Zhu, Phys. Rev. D 110, no.1, 014038 (2024)
  • (53) S. Y. Kong, J. T. Zhu and J. He, Eur. Phys. J. C 82, no.9, 834 (2022)