This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Belle Collaboration


Search for the BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays

R. Garg Panjab University, Chandigarh 160014    V. Bhardwaj Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    J. B. Singh Panjab University, Chandigarh 160014    I. Adachi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    J. K. Ahn Korea University, Seoul 136-713    H. Aihara Department of Physics, University of Tokyo, Tokyo 113-0033    S. Al Said Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589    D. M. Asner Brookhaven National Laboratory, Upton, New York 11973    V. Aulchenko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Aushev Moscow Institute of Physics and Technology, Moscow Region 141700    R. Ayad Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451    V. Babu Tata Institute of Fundamental Research, Mumbai 400005    S. Bahinipati Indian Institute of Technology Bhubaneswar, Satya Nagar 751007    V. Bansal Pacific Northwest National Laboratory, Richland, Washington 99352    C. Beleño II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    T. Bilka Faculty of Mathematics and Physics, Charles University, 121 16 Prague    J. Biswal J. Stefan Institute, 1000 Ljubljana    A. Bobrov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Bozek H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    M. Bračko University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    L. Cao Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    D. Červenkov Faculty of Mathematics and Physics, Charles University, 121 16 Prague    A. Chen National Central University, Chung-li 32054    B. G. Cheon Hanyang University, Seoul 133-791    K. Chilikin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    H. E. Cho Hanyang University, Seoul 133-791    K. Cho Korea Institute of Science and Technology Information, Daejeon 305-806    S.-K. Choi Gyeongsang National University, Chinju 660-701    Y. Choi Sungkyunkwan University, Suwon 440-746    D. Cinabro Wayne State University, Detroit, Michigan 48202    S. Cunliffe Deutsches Elektronen–Synchrotron, 22607 Hamburg    N. Dash Indian Institute of Technology Bhubaneswar, Satya Nagar 751007    S. Di Carlo LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay    Z. Doležal Faculty of Mathematics and Physics, Charles University, 121 16 Prague    T. V. Dong High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    Z. Drásal Faculty of Mathematics and Physics, Charles University, 121 16 Prague    S. Eidelman Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    J. E. Fast Pacific Northwest National Laboratory, Richland, Washington 99352    B. G. Fulsom Pacific Northwest National Laboratory, Richland, Washington 99352    V. Gaur Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    N. Gabyshev Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Garmash Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Giri Indian Institute of Technology Hyderabad, Telangana 502285    B. Golob Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    O. Grzymkowska H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    J. Haba High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Hayasaka Niigata University, Niigata 950-2181    H. Hayashii Nara Women’s University, Nara 630-8506    W.-S. Hou Department of Physics, National Taiwan University, Taipei 10617    C.-L. Hsu School of Physics, University of Sydney, New South Wales 2006    K. Inami Graduate School of Science, Nagoya University, Nagoya 464-8602    G. Inguglia Deutsches Elektronen–Synchrotron, 22607 Hamburg    A. Ishikawa Department of Physics, Tohoku University, Sendai 980-8578    R. Itoh High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Iwasaki Osaka City University, Osaka 558-8585    Y. Iwasaki High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    W. W. Jacobs Indiana University, Bloomington, Indiana 47408    H. B. Jeon Kyungpook National University, Daegu 702-701    S. Jia Beihang University, Beijing 100191    Y. Jin Department of Physics, University of Tokyo, Tokyo 113-0033    D. Joffe Kennesaw State University, Kennesaw, Georgia 30144    K. K. Joo Chonnam National University, Kwangju 660-701    T. Julius School of Physics, University of Melbourne, Victoria 3010    A. B. Kaliyar Indian Institute of Technology Madras, Chennai 600036    T. Kawasaki Kitasato University, Sagamihara 252-0373    H. Kichimi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    D. Y. Kim Soongsil University, Seoul 156-743    J. B. Kim Korea University, Seoul 136-713    S. H. Kim Hanyang University, Seoul 133-791    K. Kinoshita University of Cincinnati, Cincinnati, Ohio 45221    P. Kodyš Faculty of Mathematics and Physics, Charles University, 121 16 Prague    S. Korpar University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    D. Kotchetkov University of Hawaii, Honolulu, Hawaii 96822    P. Križan Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    R. Kroeger University of Mississippi, University, Mississippi 38677    P. Krokovny Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Kuhr Ludwig Maximilians University, 80539 Munich    R. Kumar Punjab Agricultural University, Ludhiana 141004    Y.-J. Kwon Yonsei University, Seoul 120-749    J. S. Lange Justus-Liebig-Universität Gießen, 35392 Gießen    J. K. Lee Seoul National University, Seoul 151-742    S. C. Lee Kyungpook National University, Daegu 702-701    C. H. Li Liaoning Normal University, Dalian 116029    L. K. Li Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    Y. B. Li Peking University, Beijing 100871    L. Li Gioi Max-Planck-Institut für Physik, 80805 München    J. Libby Indian Institute of Technology Madras, Chennai 600036    D. Liventsev Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    P.-C. Lu Department of Physics, National Taiwan University, Taipei 10617    T. Luo Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    J. MacNaughton University of Miyazaki, Miyazaki 889-2192    M. Masuda Earthquake Research Institute, University of Tokyo, Tokyo 113-0032    T. Matsuda University of Miyazaki, Miyazaki 889-2192    D. Matvienko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    M. Merola INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80055 Napoli    K. Miyabayashi Nara Women’s University, Nara 630-8506    H. Miyata Niigata University, Niigata 950-2181    R. Mizuk P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Physical Engineering Institute, Moscow 115409 Moscow Institute of Physics and Technology, Moscow Region 141700    G. B. Mohanty Tata Institute of Fundamental Research, Mumbai 400005    T. Mori Graduate School of Science, Nagoya University, Nagoya 464-8602    R. Mussa INFN - Sezione di Torino, 10125 Torino    M. Nakao High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. J. Nath Indian Institute of Technology Guwahati, Assam 781039    M. Nayak Wayne State University, Detroit, Michigan 48202 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    S. Nishida High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Nishimura University of Hawaii, Honolulu, Hawaii 96822    S. Ogawa Toho University, Funabashi 274-8510    H. Ono Nippon Dental University, Niigata 951-8580 Niigata University, Niigata 950-2181    Y. Onuki Department of Physics, University of Tokyo, Tokyo 113-0033    P. Pakhlov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Physical Engineering Institute, Moscow 115409    G. Pakhlova P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Institute of Physics and Technology, Moscow Region 141700    B. Pal Brookhaven National Laboratory, Upton, New York 11973    S. Pardi INFN - Sezione di Napoli, 80126 Napoli    S. Patra Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    S. Paul Department of Physics, Technische Universität München, 85748 Garching    T. K. Pedlar Luther College, Decorah, Iowa 52101    R. Pestotnik J. Stefan Institute, 1000 Ljubljana    L. E. Piilonen Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    V. Popov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Institute of Physics and Technology, Moscow Region 141700    K. Prasanth Tata Institute of Fundamental Research, Mumbai 400005    E. Prencipe Forschungszentrum Jülich, 52425 Jülich    P. K. Resmi Indian Institute of Technology Madras, Chennai 600036    A. Rostomyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    G. Russo INFN - Sezione di Napoli, 80126 Napoli    Y. Sakai High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Salehi University of Malaya, 50603 Kuala Lumpur Ludwig Maximilians University, 80539 Munich    S. Sandilya University of Cincinnati, Cincinnati, Ohio 45221    T. Sanuki Department of Physics, Tohoku University, Sendai 980-8578    O. Schneider École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015    G. Schnell University of the Basque Country UPV/EHU, 48080 Bilbao IKERBASQUE, Basque Foundation for Science, 48013 Bilbao    J. Schueler University of Hawaii, Honolulu, Hawaii 96822    C. Schwanda Institute of High Energy Physics, Vienna 1050    Y. Seino Niigata University, Niigata 950-2181    K. Senyo Yamagata University, Yamagata 990-8560    M. E. Sevior School of Physics, University of Melbourne, Victoria 3010    V. Shebalin Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    C. P. Shen Beihang University, Beijing 100191    T.-A. Shibata Tokyo Institute of Technology, Tokyo 152-8550    J.-G. Shiu Department of Physics, National Taiwan University, Taipei 10617    A. Sokolov Institute for High Energy Physics, Protvino 142281    E. Solovieva P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Institute of Physics and Technology, Moscow Region 141700    M. Starič J. Stefan Institute, 1000 Ljubljana    Z. S. Stottler Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    M. Sumihama Gifu University, Gifu 501-1193    T. Sumiyoshi Tokyo Metropolitan University, Tokyo 192-0397    M. Takizawa Showa Pharmaceutical University, Tokyo 194-8543 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198    K. Tanida Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195    F. Tenchini Deutsches Elektronen–Synchrotron, 22607 Hamburg    K. Trabelsi LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay    M. Uchida Tokyo Institute of Technology, Tokyo 152-8550    T. Uglov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Institute of Physics and Technology, Moscow Region 141700    Y. Unno Hanyang University, Seoul 133-791    S. Uno High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    Y. Usov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    R. Van Tonder Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    G. Varner University of Hawaii, Honolulu, Hawaii 96822    K. E. Varvell School of Physics, University of Sydney, New South Wales 2006    E. Waheed School of Physics, University of Melbourne, Victoria 3010    B. Wang University of Cincinnati, Cincinnati, Ohio 45221    C. H. Wang National United University, Miao Li 36003    M.-Z. Wang Department of Physics, National Taiwan University, Taipei 10617    P. Wang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    X. L. Wang Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    M. Watanabe Niigata University, Niigata 950-2181    E. Won Korea University, Seoul 136-713    S. B. Yang Korea University, Seoul 136-713    H. Ye Deutsches Elektronen–Synchrotron, 22607 Hamburg    J. Yelton University of Florida, Gainesville, Florida 32611    J. H. Yin Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    C. Z. Yuan Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    Z. P. Zhang University of Science and Technology of China, Hefei 230026    V. Zhilich Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    V. Zhukova P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    V. Zhulanov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090
Abstract

We report the results of a search for the BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays. This study is based on a data sample corresponding to an integrated luminosity of 711 fb-1, collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. We investigate the J/ψπ+πJ/\psi\pi^{+}\pi^{-} invariant mass distribution in the range 4.0 to 4.6 GeV/c2c^{2} using both B+J/ψπ+πK+B^{+}\to J/\psi\pi^{+}\pi^{-}K^{+} and B0J/ψπ+πKS0B^{0}\to J/\psi\pi^{+}\pi^{-}K^{0}_{S} decays. We find excesses of events above the background levels, with significances of 2.1 and 0.9 standard deviations for charged and neutral BY(4260)KB\to Y(4260)K decays, respectively, taking into account the systematic uncertainties. These correspond to upper limits on the product of branching fractions, (B+Y(4260)K+)×(Y(4260)J/ψπ+π)<1.4×105{\cal B}(B^{+}\to Y(4260)K^{+})\times{\cal B}(Y(4260)\to J/\psi\pi^{+}\pi^{-})<1.4\times 10^{-5} and (B0Y(4260)K0)×(Y(4260)J/ψπ+π)<1.7×105{\cal B}(B^{0}\to Y(4260)K^{0})\times{\cal B}(Y(4260)\to J/\psi\pi^{+}\pi^{-})<1.7\times 10^{-5} at the 90% confidence level.

pacs:
13.20.Gd, 13.20.He, 14.40.Nd

The Y(4260)Y(4260) state, also known as ψ(4260)\psi(4260) pdg , was first seen by the BABAR collaboration in 2005 BaBar in the initial-state radiation (ISR) process e+eγISRY(4260),Y(4260)J/ψπ+πe^{+}e^{-}\to\gamma_{\rm ISR}Y(4260),~Y(4260)\to J/\psi\pi^{+}\pi^{-} and confirmed by the Belle and CLEO collaborations using the same process belle ; cleo . The world average mass and decay width of the Y(4260)Y(4260) are (4230±8)(4230\pm 8) MeV/c2c^{2} and (55±19)(55\pm 19) MeV pdg , respectively. Due to its observation in ISR production, the JPCJ^{PC} of the Y(4260)Y(4260) is expected to be 11^{--}. The decay of Y(4260)Y(4260) to J/ψπ+πJ/\psi\pi^{+}\pi^{-} indicates the presence of a cc¯c\bar{c} pair among its quark constituents. However, its mass and properties are not consistent with those expected for any of the cc¯c\bar{c} states in the charmonium spectrum, which makes it problematic to assign the Y(4260)Y(4260) to one of the conventional cc¯c\bar{c} states with JPC=1J^{PC}=1^{--}.

Attempts have been made to identify Y(4260)Y(4260) as a candidate for a mixed state, which is an admixture of charmonium and tetraquark states admix , a hybrid charmonium state, which is a bound state of charmonium with a gluon t_5 , a tetraquark tetra , a mesonic molecule t_3 ; t_2 ; t_4 , or a charmonium baryonium t_6 . The Zc(3900)±Z_{c}(3900)^{\pm} state, which as it is charged makes it a natural tetraquark candidate, has been observed by the BESIII and Belle collaborations in the J/ψπ±J/\psi\pi^{\pm} invariant mass spectrum of the e+eY(4260)J/ψπ+πe^{+}e^{-}\to Y(4260)\to J/\psi\pi^{+}\pi^{-} process besiii ; belle_Zc , provides further evidence of the unconventional nature of the Y(4260)Y(4260).

A mixed-state model, based upon a QCD sum-rule approach theo , suggests the possible interval on the product of the branching fractions of B+Y(4260)K+,Y(4260)J/ψπ+πB^{+}\to Y(4260)K^{+},~Y(4260)\to J/\psi\pi^{+}\pi^{-} to be in the range 3.0×1081.8×1063.0\times 10^{-8}-1.8\times 10^{-6}. The BABAR collaboration has measured a signal for the charged BB decay with a statistical significance of 3.1 standard deviations (σ\sigma) based on a data sample of 211 fb1\rm fb^{-1} which contains (232±3)×106BB¯(232\pm 3)\times 10^{6}B\bar{B} pairs babar . They set the upper limit at the 95% confidence interval to be (B+Y(4260)K+)×(Y(4260)J/ψπ+π)<2.9×105\mathcal{B}(B^{+}\to Y(4260)K^{+})\times\mathcal{B}(Y(4260)\to J/\psi\pi^{+}\pi^{-})<2.9\times 10^{-5}. Further improvement is required on the precision of both the theoretical estimate and experimental measurement to elucidate the structure of Y(4260)Y(4260).

Recently, two resonance structures have been observed by the BESIII collaboration in a fit to the cross section of the e+eJ/ψπ+πe^{+}e^{-}\to J/\psi\pi^{+}\pi^{-} process besIII . The resonance structures are interpreted as Y(4260)Y(4260) and Y(4360)Y(4360) with measured masses (4222.0±3.1±1.4)(4222.0\pm 3.1\pm 1.4) MeV/c2c^{2} and (4320.0±10.4±7.0)(4320.0\pm 10.4\pm 7.0) MeV/c2c^{2}, respectively. The measured Y(4260)Y(4260) mass is not significantly lower than world average pdg , from which it deviates merely about 1σ\sigma, and the Y(4360)Y(4360) has not yet been confirmed. We assume the presence of Y(4260)Y(4260) only in the J/ψπ+πJ/\psi\pi^{+}\pi^{-} invariant mass region of interest as in the previous measurements belle ; BaBar ; cleo instead of adopting the search for the improved mass region.

In this paper, we report a search for BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} charge decays based on a data sample corresponding to an integrated luminosity of 711 fb1\rm fb^{-1} which contains (771.58±10.57)×106BB¯(771.58\pm 10.57)\times 10^{6}~B\bar{B} pairs, collected with the Belle detector detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider kekb operating at the Υ(4S)\Upsilon(4S) resonance.

As the well established Bψ(2S)KB\to\psi(2S)K and BX(3872)KB\to X(3872)K decays have the same topology as the BY(4260)KB\to Y(4260)K decays, these decays are used as control samples to validate and calibrate Monte Carlo (MC) simulations. The signal simulation sample for each decay mode is generated using EvtGen evtgen . Here, the decays of ψ(2S)\psi(2S), X(3872)X(3872) and J/ψJ/\psi are specified to be ψ(2S)J/ψπ+π\psi(2S)\to J/\psi\pi^{+}\pi^{-}, X(3872)J/ψπ+πX(3872)\to J/\psi\pi^{+}\pi^{-} and J/ψ+J/\psi\to\ell^{+}\ell^{-}, respectively, while KS0K_{S}^{0} decays generically pdg . All radiation effects are taken into account using PHOTOS photos . The detector response is simulated using GEANT3 geant .

The charged tracks used in the analysis are required to originate from the interaction point (IP) and have their point of closest approach to the IP within 3.5 cm along the beam axis and 1.0 cm in the plane transverse to the beam axis. Identification of charged pions and kaons are based on the information from the aerogel Cherenkov counter system, time-of-flight scintillation counter (TOF) and central drift chamber. All of the information is combined to form the pion (kaon) likelihood, π(K)\mathcal{L}_{\pi}~(\mathcal{L}_{K}), and the selections are made on the basis of the likelihood ratio π(K)=π(K)/(π+K)\mathcal{R}_{\pi(K)}={\mathcal{L}_{\pi(K)}}/({\mathcal{L}_{\pi}+\mathcal{L}_{K}}). Charged pions (kaons) are identified requiring π(K)>0.6\mathcal{R}_{\pi}~(\mathcal{R}_{K})>0.6 with an identification efficiency of 94% (86%) and a misidentification rate of 7.5% (4%) for misidentifying kaon (pion) as a pion (kaon), respectively. These efficiencies and misidentification rates are determined using a control sample of D+D0(Kπ+)π+D^{*+}\to D^{0}(K^{-}\pi^{+})\pi^{+} decays in the kinematic region of interest.

A KS0π+πK_{S}^{0}\to\pi^{+}\pi^{-} candidate decay is reconstructed from a pair of oppositely charged tracks with a π+π\pi^{+}\pi^{-} invariant mass in the range 488 MeV/c2<Mππ<c^{2}<M_{\pi\pi}< 508 MeV/c2c^{2} (±4σ\pm 4\sigma around the nominal KS0K_{S}^{0} mass pdg ). The selected candidates are required to satisfy the criteria described in Ref. fangks .

Muon identification muon utilizes the track penetration depth and hit-distribution pattern in the KL0K_{L}^{0} and μ\mu detector, which are combined to form the muon likelihood, μ\mathcal{L}_{\mu}, and the selection is made on the basis of the likelihood ratio μ=μ/(μ+π+K)\mathcal{R}_{\mu}={\mathcal{L}_{\mu}}/({\mathcal{L}_{\mu}+\mathcal{L}_{\pi}+\mathcal{L}_{K}}). Muons are identified requiring μ>0.1\mathcal{R}_{\mu}>0.1 with an identification efficiency of 93% and a misidentification rate of 3% for misidentifying a pion as a muon. Electron identification electron utilizes the electromagnetic shower shape and EECL/pE_{\rm ECL}/p ratio, where EECLE_{\rm ECL} is the energy deposition in electromagnetic calorimeter and pp is the track momentum, as well as the information used in the charged hadron identification, except that from the TOF. All the information is combined to form the electron likelihood ratio, e\mathcal{R}_{e}. Electrons are identified requiring e>0.01\mathcal{R}_{e}>0.01.

A J/ψJ/\psi candidate is reconstructed in its decay mode J/ψ+J/\psi\to\ell^{+}\ell^{-}, where \ell stands for ee or μ\mu. In the J/ψe+eJ/\psi\to e^{+}e^{-} mode, the energy loss due to bremsstrahlung photons is recovered by including the four-momenta of the photons detected within 0.05 radians around the electron or positron initial direction in the invariant mass calculation; this mode is, hereinafter, referred to as J/ψe+e(γ)J/\psi\to e^{+}e^{-}(\gamma). An invariant mass of a J/ψJ/\psi candidate is required to be in the range 3.05GeV/c2Mee(γ)3.13GeV/c23.05~{\rm GeV}/c^{2}\leq M_{ee(\gamma)}\leq 3.13~{\rm GeV}/c^{2} or 3.07GeV/c2Mμμ3.13GeV/c23.07~{\rm GeV}/c^{2}\leq M_{\mu\mu}\leq 3.13~{\rm GeV}/c^{2}. The asymmetric interval is taken for e+e(γ)e^{+}e^{-}(\gamma) to include the radiative tail due to the imperfect energy loss recovery. A vertex- and mass-constrained fit is performed to the selected J/ψJ/\psi candidates in order to improve their momentum resolution.

The selected J/ψJ/\psi candidate is then combined with a π+π\pi^{+}\pi^{-} pair to form ψ(2S)\psi(2S), X(3872)X(3872), and Y(4260)Y(4260) candidates, requiring the J/ψπ+πJ/\psi\pi^{+}\pi^{-} invariant mass, MJ/ψππM_{J/\psi\pi\pi}, to be in the range 3.67GeV/c2MJ/ψππ3.70GeV/c23.67~{\rm GeV}/c^{2}\leq M_{J/\psi\pi\pi}\leq 3.70~{\rm GeV}/c^{2}, 3.835GeV/c2MJ/ψππ3.910GeV/c23.835~{\rm GeV}/c^{2}\leq M_{J/\psi\pi\pi}\leq 3.910~{\rm GeV}/c^{2} and 4.0GeV/c2MJ/ψππ4.6GeV/c24.0~{\rm GeV}/c^{2}\leq M_{J/\psi\pi\pi}\leq 4.6~{\rm GeV}/c^{2}, respectively. To reconstruct a B+(B0)B^{+}~(B^{0}) candidate, a K+K^{+} (KS0K_{S}^{0}) candidate is combined with a ψ(2S)\psi(2S), X(3872)X(3872) or Y(4260)Y(4260) candidate.

To identify the BB meson, two kinematic variables, the beam-constrained mass (Mbc=(Ebeam/c2)2i(pi/c)2M_{\rm bc}=\sqrt{(E_{\rm beam}/c^{2})^{2}-\sum_{i}(p_{i}^{*}/c)^{2}}) and the energy difference (ΔE=iEiEbeam\Delta E=\sum_{i}E_{i}^{*}-E_{\rm beam}), are used to discriminate the signal from the background. Here, EbeamE_{\rm beam} is the beam energy and pip_{i}^{*} (EiE_{i}^{*}) is the momentum (energy) of the ithi^{\rm th} final-state particle of the reconstructed signal candidate, where both are evaluated in the e+ee^{+}e^{-} center-of-mass (CM) frame. The BB candidates with Mbc>M_{\rm bc}> 5.27 GeV/c2c^{2} are selected for further analysis.

Even after applying all the selection criteria, multiple BB candidates can be reconstructed from wrong combinations of the retained particles in an event. The mean number of BB candidates per event is found to be 1.6 (1.6), 1.7 (1.6) and 1.4 (1.2) for the charged (neutral) Bψ(2S)(J/ψπ+π)KB\to\psi(2S)(\to J/\psi\pi^{+}\pi^{-})K, BX(3872)(J/ψπ+π)KB\to X(3872)(\to J/\psi\pi^{+}\pi^{-})K and BY(4260)KB\to Y(4260)K decays, respectively. In an event with multiple BB candidates, we select the best candidate that has the smallest value of χBCS2\chi^{2}_{\rm BCS} = χvtx2+χMbc2+χJ/ψ2(+χKS02)\chi^{2}_{\rm vtx}+\chi^{2}_{M_{\rm bc}}+\chi^{2}_{J/\psi}(+\chi^{2}_{K_{S}^{0}}), where χvtx2\chi^{2}_{\rm vtx} represents the χ2\chi^{2} value obtained from a kinematic fit to the BB decay vertex for all the charged daughter particles, and the other χ2\chi^{2} values are evaluated using the reconstructed mass MiM_{i} and its resolution σi\sigma_{i} and the nominal mass miPDGm_{i}^{\rm PDG} pdg of the reconstructed meson ii as χi2=[(MimiPDG)/σi]2\chi^{2}_{i}=[(M_{i}-m_{i}^{\rm PDG})/\sigma_{i}]^{2}. Here, beam-constrained MbcM_{\rm bc} is used for the reconstructed mass in χMbc2\chi_{M_{\rm bc}}^{2}, and χKS02\chi_{K_{S}^{0}}^{2} is used only for the neutral BB decays. The reconstructed mass resolutions σMbc\sigma_{M_{\rm bc}}, σJ/ψ\sigma_{J/\psi}, and σKS0\sigma_{K_{S}^{0}} are evaluated in the Bψ(2S)KB\to\psi(2S)K decays to be 2.6 MeV/c2{\rm MeV}/c^{2}, 9.8 MeV/c2{\rm MeV}/c^{2} and 1.6 MeV/c2{\rm MeV}/c^{2}, respectively. According to MC simulations, the best candidate selection identifies the true signal at rates of 76% (72%) for the charged (neutral) BY(4260)KB\to Y(4260)K decays. The same best candidate selection criterion are applied in the reconstruction of the control sample decays.

The dominant background comes from e+eqq¯e^{+}e^{-}\to q\bar{q} (q=u,d,sq=u,d,s or cc) continuum events. To suppress this background, we utilize the difference in event topology between the isotropic distribution of particles in BB¯B\bar{B} events and the jet-like collimation of particles in qq¯q\bar{q} events by placing a requirement on the ratio of the second- and zeroth-order Fox-Wolfram moments r2cut to be less than 0.5.

Among the backgrounds from BB¯B\bar{B} events, the main contribution is expected to arise from inclusive BB decays to J/ψJ/\psi. To understand possible backgrounds, simulated sample of inclusive BB decays with a J/ψ(+J/\psi~(\ell^{+}\ell^{-}) in the final state are studied; the sample corresponds to an integrated luminosity that is two orders of magnitude larger than that of data. No peaking structures are found in the MJ/ψππM_{J/\psi\pi\pi} signal regions of Bψ(2S)KB\to\psi(2S)K, BX(3872)KB\to X(3872)K, and BY(4260)KB\to Y(4260)K decays. In order to check possible contributions from non-J/ψJ/\psi sources, the J/ψJ/\psi mass sidebands (2.54 GeV/c2<MJ/ψ<c^{2}<M_{J/\psi}< 2.72 GeV/c2c^{2} and 3.32 GeV/c2<MJ/ψ<c^{2}<M_{J/\psi}< 3.50 GeV/c2c^{2}) are studied. The contributions are found to be negligible.

An unbinned extended maximum likelihood (UML) fit is performed to the ΔE\Delta E distribution of each decay mode. The statistical weight for each candidate to be a signal decay is determined by using the 𝒫slot{}_{s}\mathcal{P}lot technique splot . The statistical weights can be used to effectively subtract the combinatorial background from the MJ/ψππM_{J/\psi\pi\pi} distribution of each decay mode. The signal yield of the intended resonance, then, can be extracted from the weighted MJ/ψππM_{J/\psi\pi\pi} distribution, having a single background component of the non-resonant BJ/ψπ+πKB\to J/\psi\pi^{+}\pi^{-}K decays.

The ΔE\Delta E variable is required to satisfy 0.11GeV<ΔE<0.11GeV\mathbin{-}0.11~{\rm GeV}<\Delta E<0.11~{\rm GeV} for the Bψ(2S)KB\to\psi(2S)K, X(3872)KX(3872)K and Y(4260)KY(4260)K decay modes. The UML function used here is

(NS,NB)=e(NS+NB)N!i=1N[NS×PS(xi)+NB×PB(xi)]\mathcal{L}(N_{\rm S},N_{\rm B})=\frac{e^{-(N_{\rm S}+N_{\rm B})}}{N!}\prod_{i=1}^{N}[N_{\rm S}\times P_{\rm S}(x_{i})+N_{\rm B}\times P_{\rm B}(x_{i})] (1)

where NN is the total number of events, NSN_{\rm S} (NBN_{\rm B}) is the number of signal (background) events, PSP_{\rm S} (PBP_{\rm B}) is the signal (background) probability density function (PDF) of the variable xx, and the index ii runs over the total number of events. Here, the signal refers to the charged or neutral BJ/ψπ+πKB\to J/\psi\pi^{+}\pi^{-}K decays, the background refers to the combinatorial background, and xx refers to the ΔE\Delta E variable. The signal PDF is modeled by a sum of three Gaussians for the BY(4260)KB\to Y(4260)K decay modes and by a sum of two Gaussians and a bifurcated Gaussian for the Bψ(2S)KB\to\psi(2S)K and BX(3872)KB\to X(3872)K modes. The mean and resolution of the core Gaussian are allowed to vary in the fit while the remaining shape and normalization parameters are fixed to those obtained in the fit to the signal MC. The background PDF is modeled by a first-order polynomial except for the BX(3872)KB\to X(3872)K decay mode, in which a second-order polynomial is used. All parameters of the background PDF are allowed to vary in the fit.

The yields of the Bψ(2S)KB\to\psi(2S)K, X(3872)KX(3872)K, and Y(4260)KY(4260)K decays are extracted using independent UML fits to the weighted MJ/ψππM_{J/\psi\pi\pi} distributions. Here, while the functional form of Eq. 1 is used to evaluate the likelihood, the signal refers to the charged or neutral decay of Bψ(2S)KB\to\psi(2S)K, X(3872)KX(3872)K, or Y(4260)KY(4260)K, the background refers to the corresponding non-resonant BJ/ψπ+πKB\to J/\psi\pi^{+}\pi^{-}K decay, and xx refers to the MJ/ψππM_{J/\psi\pi\pi} variable. The signal PDF is modeled by a sum of two Gaussians for the Bψ(2S)KB\to\psi(2S)K and Y(4260)KY(4260)K decays while an additional bifurcated Gaussian is used for the BX(3872)KB\to X(3872)K decays. The core Gaussian parameters for the Bψ(2S)KB\to\psi(2S)K and B+X(3872)K+B^{+}\to X(3872)K^{+} decays are allowed to vary in the fit, while those for the B0X(3872)K0B^{0}\to X(3872)K^{0} and BY(4260)KB\to Y(4260)K decays are fixed to the values obtained in the fit to the signal MC and calibrated with data; the calibration is based on the comparison of the shape parameters between the data and simulation of the B+X(3872)K+B^{+}\to X(3872)K^{+} decay. All the remaining shape and normalization parameters of the signal PDF are fixed to those obtained in the fit to the signal MC. The background PDF is modeled by a first-order polynomial except for the Bψ(2S)KB\to\psi(2S)K decay modes, in which a second-order polynomial is used. All parameters of the background PDF are allowed to vary in the fit. The ΔE\Delta E distributions, weighted MJ/ψππM_{J/\psi\pi\pi} distributions and projections of their PDFs obtained from the fits are shown in Fig. 12, and 3 for the Bψ(2S)KB\to\psi(2S)K, X(3872)KX(3872)K, and Y(4260)KY(4260)K decay samples, respectively. The obtained signal yields of the Bψ(2S)KB\to\psi(2S)K, and BX(3872)KB\to X(3872)K, X(3872)J/ψπ+πX(3872)\to J/\psi\pi^{+}\pi^{-} decays are listed in Table 1 and for BY(4260)KB\to Y(4260)K, Y(4260)J/ψπ+πY(4260)\to J/\psi\pi^{+}\pi^{-} decays are listed in Table 2.

Refer to caption
Figure 1: Fit to the ΔE\Delta E ((a) and (b)) and 𝒫slot{}_{s}\mathcal{P}lot of MJ/ψππM_{J/\psi\pi\pi} ((c) and (d)) distributions for B+ψ(2S)(J/ψπ+π)K+B^{+}\to\psi(2S)(\to J/\psi\pi^{+}\pi^{-})K^{+} decays (top) and B0ψ(2S)(J/ψπ+π)KS0B^{0}\to\psi(2S)(\to J/\psi\pi^{+}\pi^{-})K_{S}^{0} decays (bottom), respectively. The curves show the fit functions for the signal (red dotted curve), background (green dashed curve) and their sum (blue solid line).
Refer to caption
Figure 2: Fit to the ΔE\Delta E ((a) and (b)) and 𝒫slot{}_{s}\mathcal{P}lot of MJ/ψππM_{J/\psi\pi\pi} ((c) and (d)) distributions for B+X(3872)(J/ψπ+π)K+B^{+}\to X(3872)(\to J/\psi\pi^{+}\pi^{-})K^{+} decays (top) and B0X(3872)(J/ψπ+π)KS0B^{0}\to X(3872)(\to J/\psi\pi^{+}\pi^{-})K_{S}^{0} decays (bottom), respectively. Fit follow the same convention as Fig. 1.
Refer to caption
Figure 3: Fit to the ΔE\Delta E ((a) and (b)) and 𝒫slot{}_{s}\mathcal{P}lot of MJ/ψππM_{J/\psi\pi\pi} ((c) and (d)) distributions for B+Y(4260)(J/ψπ+π)K+B^{+}\to Y(4260)(\to J/\psi\pi^{+}\pi^{-})K^{+} decays (top) and B0Y(4260)(J/ψπ+π)KS0B^{0}\to Y(4260)(\to J/\psi\pi^{+}\pi^{-})K^{0}_{S} decays (bottom), respectively. Fit follow the same convention as Fig. 1.
Table 1: Summary of the reconstruction efficiency (ϵ\epsilon), signal yield (NSN_{\rm S}) and branching fraction (\mathcal{B}) measured for the Bψ(2S)KB\to\psi(2S)K and BX(3872)K,X(3872)J/ψπ+πB\to X(3872)K,~X(3872)\to J/\psi\pi^{+}\pi^{-} decays, together with the world average of the branching fraction (PDG\mathcal{B}_{\rm PDG}pdg for reference. Only the statistical uncertainty is included on the measured values of NSN_{\rm S} and \mathcal{B}.
Decay ϵ\epsilon (%) NSN_{\rm S} \mathcal{B} PDG\mathcal{B}_{\rm PDG}
B+ψ(2S)K+B^{+}\to\psi(2S)K^{+} 16.8 3481±953481\pm 95 (6.54±0.18)×104(6.54\pm 0.18)\times 10^{-4} (6.21±0.23)×104(6.21\pm 0.23)\times 10^{-4}
B0ψ(2S)K0B^{0}\to\psi(2S)K^{0} 10.3 856±74856\pm 74 (5.25±0.45)×104(5.25\pm 0.45)\times 10^{-4} (5.8±0.5)×104(5.8\pm 0.5)\times 10^{-4}
B+X(3872)K+,X(3872)J/ψπ+πB^{+}\to X(3872)K^{+},~X(3872)\to J/\psi\pi^{+}\pi^{-} 22.2 185±13185\pm 13 (9.07±0.64)×106(9.07\pm 0.64)\times 10^{-6} (8.6±0.8)×106(8.6\pm 0.8)\times 10^{-6}
B0X(3872)K0,X(3872)J/ψπ+πB^{0}\to X(3872)K^{0},~X(3872)\to J/\psi\pi^{+}\pi^{-} 13.1 29.9±6.229.9\pm 6.2 (4.97±1.03)×106(4.97\pm 1.03)\times 10^{-6} (4.3±1.3)×106(4.3\pm 1.3)\times 10^{-6}

For the BY(4260)KB\to Y(4260)K decays, the statistical significance of the signal yield is evaluated using the likelihood ratio as 2ln(0/max)\sqrt{-2\rm ln(\mathcal{L}_{0}/\mathcal{L}_{\rm max})}, where max\mathcal{L}_{\rm max} and 0\mathcal{L}_{0} denote the maximum likelihood of the nominal fit and that of the fit with the null signal hypothesis. The statistical significances are evaluated to be 2.9σ\sigma and 1.4σ\sigma for the charged and neutral BY(4260)KB\to Y(4260)K decays, respectively. The likelihood ratio is smeared with the systematic uncertainties, discussed later, and listed in Table 3. The signal significances taking into account the systematic uncertainties are determined to be 2.1σ\sigma and 0.9σ\sigma for the charged and neutral BY(4260)KB\to Y(4260)K decays, respectively.

The branching fractions (\mathcal{B}) of the Bψ(2S)KB\to\psi(2S)K decays are obtained as =NS/[NBB¯×ϵ×fK×(ψ(2S)J/ψπ+π)×(J/ψ+)]\mathcal{B}=N_{\rm S}/[N_{B\bar{B}}\times\epsilon\times f_{K}\times\mathcal{B}(\psi(2S)\to J/\psi\pi^{+}\pi^{-})\times\mathcal{B}(J/\psi\to\ell^{+}\ell^{-})], where NSN_{\rm S} is the number of signal decays, NBB¯N_{B\bar{B}} is the number of BB¯B\bar{B} events in the data sample, and the branching fractions of the secondary decays are taken from Ref. pdg . Here, equal production of B+BB^{+}B^{-} and B0B¯0B^{0}\bar{B}^{0} pairs from Υ(4S)\Upsilon(4S) decays is assumed. The reconstruction efficiency, ϵ\epsilon, is estimated from the signal MC simulation, with the application of calibrations to account for discrepancies between the data and signal MC related to particle identifications and KS0K^{0}_{S} reconstruction. These calibrations use dedicated control samples as discussed later. The coefficient fKf_{K} is introduced to translate the branching fractions for the final states with KS0K^{0}_{S} into those for the ones with K0K^{0} and set 1 and 0.5 for the charged and neutral Bψ(2S)KB\to\psi(2S)K decays, respectively. For the BX(3872)KB\to X(3872)K and Y(4260)KY(4260)K decays, the branching fraction products are obtained in a similar manner as

(B+/0RK+/0)×(RJ/ψπ+π)=\displaystyle\mathcal{B}(B^{+/0}\to RK^{+/0})\times\mathcal{B}(R\to J/\psi\pi^{+}\pi^{-})=
NSNBB¯×ϵ×fK×(J/ψ+)\displaystyle\frac{N_{\rm S}}{N_{B\bar{B}}\times\epsilon\times f_{K}\times\mathcal{B}(J/\psi\to\ell^{+}\ell^{-})} (2)

where RR stands for the X(3872)X(3872) or Y(4260)Y(4260) resonance. The obtained branching fractions of the Bψ(2S)KB\to\psi(2S)K decays and branching fraction products for the BX(3872)K,X(3872)J/ψπ+πB\to X(3872)K,~X(3872)\to J/\psi\pi^{+}\pi^{-} decays are listed in Table 1 with the associated reconstruction efficiencies and signal yields. The obtained values agree well with the world averages pdg and also with the previous Belle measurements data , indicating the validity of the signal extraction procedure. The branching fraction products of the BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays as well as the associated reconstruction efficiencies and signal yields, are listed in Table 2.

With the absence of significant signals for the BY(4260)KB\to Y(4260)K decays, an upper limit (U.L.) is set on each signal yield at the 90% confidence level (C.L.) using a frequentist approach freq . The upper limits on the signal yields at the 90% C.L. (NSULN_{\rm S}^{UL}) are found to be 259 and 84 events for the B+Y(4260)K+B^{+}\to Y(4260)K^{+} and B0Y(4260)KS0B^{0}\to Y(4260)K^{0}_{S} decays, respectively. The upper limits on the branching fraction products are calculated using Eq.  Search for the BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays, with NSN_{\rm S} replaced by NSULN_{\rm S}^{UL} (systematic uncertainties are included in the upper limit calculation, as will be described later in this paper). The resulting upper limits are listed in Table 2.

Table 2: Summary of the reconstruction efficiency (ϵ\epsilon), signal yield (NSN_{\rm S}), signal significance (Σ\Sigma) and the 90% C.L. upper limit (U.L.) on the branching fraction for the B+Y(4260)K+B^{+}\to Y(4260)K^{+} and B0Y(4260)K0B^{0}\to Y(4260)K^{0} decays.
Decay ϵ\epsilon (%) NSN_{\rm S} Σ\Sigma (σ\sigma) U.L.
B+Y(4260)K+,Y(4260)J/ψπ+πB^{+}\to Y(4260)K^{+},~Y(4260)\to J/\psi\pi^{+}\pi^{-} 19.8 179±5341+55179\pm 53^{+55}_{-41} 2.1 1.4×1051.4\times 10^{-5}
B0Y(4260)K0,Y(4260)J/ψπ+πB^{0}\to Y(4260)K^{0},~Y(4260)\to J/\psi\pi^{+}\pi^{-} 10.6 39±2831+739\pm 28^{+~7}_{-31} 0.9 1.7×1051.7\times 10^{-5}

In order to improve the signal sensitivity, a simultaneous fit to the charged and neutral signal decays is performed keeping the fit procedure same as in the nominal fits for the individual signal decays, except for incorporating the constraint that (B+Y(4260)K+)/(B0Y(4260)K0)=(B+ψ(2S)K+)/(B0ψ(2S)K0)\mathcal{B}(B^{+}\to Y(4260)K^{+})/\mathcal{B}(B^{0}\to Y(4260)K^{0})=\mathcal{B}(B^{+}\to\psi(2S)K^{+})/\mathcal{B}(B^{0}\to\psi(2S)K^{0}) sys . The simultaneous fit for the BY(4260)KB\to Y(4260)K decays obtains 218±68218\pm 68 signal events, where the quoted uncertainty is statistical only. The combined statistical significance of the BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays is found to be 3.2σ\sigma, which reduces to 2.2σ\sigma once systematic uncertainties are taken into account. The simultaneous fit does not increase the significance of the Y(4260)Y(4260) signal.

Table 3: Summary of the systematic uncertainties (%) on the BY(4260)KB\to Y(4260)K branching fraction.
Source \rightarrow Tracking Particle identification PDF Y(4260)Y(4260) Fit bias NBB¯N_{B\bar{B}} (J/ψ+)\mathcal{B}(J/\psi\to\ell^{+}\ell^{-}) Total
Decay \downarrow KS0K_{S}^{0} Kaon Pion Lepton modeling parameters
B+Y(4260)K+B^{+}\to Y(4260)K^{+} 1.8 - 0.9 1.3 1.2 +8.011.1{}_{-11.1}^{+8.0} 19.5+29.0{}^{+29.0}_{-19.5} 4.3 1.4 0.4 +30.523.0{}_{-23.0}^{+30.5}
B0Y(4260)KS0B^{0}\to Y(4260)K_{S}^{0} 2.1 0.7 - 1.3 1.2 77.0+7.7{}^{+7.7}_{-77.0} 17.3+14.0{}^{+14.0}_{-17.3} 6.5 1.4 0.4 +17.579.2{}_{-79.2}^{+17.5}
Simultaneous 1.9 0.2 0.7 1.3 1.2 15.3+5.3{}^{+5.3}_{-15.3} 18.0+25.0{}^{+25.0}_{-18.0} 4.8 1.4 0.4 24.3+26.2{}^{+26.2}_{-24.3}

All the systematic uncertainties are summarized in Table 3. The tracking efficiency in MC simulation is calibrated using a control sample of DπD0,D0π+πKS0,KS0π+πD^{*}\to\pi D^{0},~D^{0}\to\pi^{+}\pi^{-}K_{S}^{0},~K_{S}^{0}\to\pi^{+}\pi^{-} decays, and the uncertainty on the calibration factor is 0.35% per track. The calibration factor for the KS0K^{0}_{S} reconstruction efficiency is obtained using D±D0(KS0π0)π±D^{*\pm}\to D^{0}(\to K_{S}^{0}\pi^{0})\pi^{\pm} decays with an uncertainty of 0.7%. For the particle identification efficiencies, the calibration factors are obtained using the dedicated control samples mentioned earlier, and the resulting systematic uncertainty is 0.9% and 1.3% for kaon and pion identification, respectively. The dominant systematic uncertainties are due to the PDF modeling, and the values of the Y(4260)Y(4260) mass and decay width pdg assumed in the fit. The changes on the signal yield from the nominal one due to the uncertainty in the PDF modeling is estimated by varying each of the fixed parameters independently by ±1σ\pm 1\sigma. The corresponding changes due to the uncertainties on the Y(4260)Y(4260) mass and decay width are estimated by separately applying the variation in the signal PDF based on the alternative signal MC simulations, which are generated varying each of the mass and decay width in the same manner. The resulting changes are added in quadrature. The uncertainty in the PDF modeling for the B0Y(4260)KS0B^{0}\to Y(4260)K^{0}_{S} decay gives an exceptionally large systematic uncertainty of 77.0%. This is due to the systematic uncertainty associated with the background PDF modeling. The fit procedures are validated in fully simulated MC experiments with ensembles of signal and inclusive BB decays involving J/ψJ/\psi. The small biases of 4.3%–4.8% seen in the validation are taken as systematic uncertainties. The uncertainties on NBB¯N_{B\bar{B}} and (J/ψ+\mathcal{B}(J/\psi\to\ell^{+}\ell^{-}), 1.4% and 0.4%, respectively, are also included in the systematic uncertainties. The total systematic uncertainties are estimated to be +30.523.0{}_{-23.0}^{+30.5}%, +17.579.2{}_{-79.2}^{+17.5}% and +26.224.3{}_{-24.3}^{+26.2}% on the results for the charged, neutral and combined BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays, respectively, by adding all the sources in quadrature.

In summary, a search for the BY(4260)KB\to Y(4260)K, Y(4260)J/ψπ+πY(4260)\to J/\psi\pi^{+}\pi^{-} decays is performed using BB¯B\bar{B} pairs collected at the Υ(4S)\Upsilon(4S) resonance by the Belle experiment at the KEKB. The observed signal yields are 179±5341+55179\pm 53^{+55}_{-41} events and 39±2831+739\pm 28^{+~7}_{-31} events for the charged and neutral BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays, respectively, from fits to the individual decay samples; the first and second uncertainties are statistical and systematic, respectively. The signal significances are obtained to be 2.1σ2.1\sigma and 0.9σ0.9\sigma for the charged and neutral decays, respectively, taking into account the systematic uncertainties associated with the signal extraction. In the absence of any significant signals, the upper limits on the branching fraction products at the 90% C.L. are determined to be 1.4×1051.4\times 10^{-5} and 1.7×1051.7\times 10^{-5} for the charged and neutral decays, respectively, taking into account the systematic uncertainties.

The obtained results give the most stringent upper limits, to date, on the branching fraction products of the charged and neutral BY(4260)K,Y(4260)J/ψπ+πB\to Y(4260)K,~Y(4260)\to J/\psi\pi^{+}\pi^{-} decays. The upper limits on the branching fraction products at the 95% C.L. are also determined and are 1.56×1051.56\times 10^{-5} and 2.16×1052.16\times 10^{-5} for the charged and neutral decays, respectively. The upper limit for the charged decay is consistent with the 95% confidence interval set by the BABAR collaboration babar and the one for the neutral decay is given for the first time. While an excess of events above background is seen, improved measurements with a larger data sample are demanded to establish signals and to elucidate the nature of the Y(4260)Y(4260) state.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Science Fund under Grant No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2015H1A2A1033649, No. 2016R1D1A1B01010135, No. 2016K1A3A7A09005 603, No. 2016R1D1A1B02012900, No. 2018R1A2B3003 643, No. 2018R1A6A1A06024970, No. 2018R1D1 A1B07047294; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Grant of the Russian Federation Government, Agreement No. 14.W03.31.0026; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

References

  • (1) M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
  • (2) B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 95, 142001 (2005).
  • (3) C. Z. Yuan et al. (Belle Collaboration), Phys. Rev. Lett. 99, 182004 (2007).
  • (4) Q. He et al. (CLEO Collaboration), Phys. Rev. D 74, 091104(R) (2006).
  • (5) J. M. Dias, R. M. Albuquerque, M. Nielsen and C. M. Zanetti, Phys. Rev. D 86, 116012 (2012).
  • (6) S. L. Zhu et al. Phys. Lett. B 625, 212 (2005).
  • (7) L. Maiani, V. Riquer, F. Piccinini and A. D. Polosa Phys. Rev. D 72, 031502 (2005).
  • (8) X. Liu, X. Q. Zeng and X. Q. Li, Phys. Rev. D 72, 054023 (2005).
  • (9) G. J. Ding, Phys. Rev. D 79, 014001 (2009).
  • (10) A. Martinez Torres, K. P. Khemchandani, D. Gamermann, and E. Oset, Phys. Rev. D 80, 094012 (2009).
  • (11) C. F. Qiao et al. Phys. Lett. B 639, 263 (2006).
  • (12) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 110, 252001 (2013).
  • (13) Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013).
  • (14) R. M. Albuquerque, M. Nielsen, C. M. Zanetti et al. Phys. Lett. B 747, 83 (2015).
  • (15) B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 73, 011101(R) (2006).
  • (16) M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 118, 092001 (2017).
  • (17) Charge-conjugate modes are implied throughout the paper.
  • (18) A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
  • (19) S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al. Prog. Theor. Exp. Phys. 2013, 03A001 (2013), and following articles up to 03A011.
  • (20) D. J. Lange, Nucl. Instrum. Methods, Phys. Res., Sect. A 462, 152 (2001).
  • (21) E. Barberio and Z. Wa̧s, Comput. Phys. Commun. 79, 291 (1994); P. Golonka and Z. Wa̧s, Eur. Phys. J. C 45, 97 (2006); 50, 53 (2007).
  • (22) R. Brun et al. GEANT3.21, CERN Report No. DD/EE/84-1, (1984).
  • (23) H. Nakano et al. (Belle Collaboration), Phys. Rev. D 97, 092003 (2018).
  • (24) A. Abashian et al. Nucl. Instrum. Methods. A 491, 69 (2002).
  • (25) E. Nakano et al. Nucl. Instrum. Methods. A 494, 402 (2002).
  • (26) G. C. Fox, S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
  • (27) M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods, Phys. Res. Sect. A 555, 356 (2005).
  • (28) S. -K. Choi et al. (Belle Collaboration), Phys. Rev. D 84, 052004(R) (2011).
  • (29) G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
  • (30) This expression is only valid if the state is a conventional cc¯c\bar{c} state.