A. Abdesselam
Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
I. Adachi
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
K. Adamczyk
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
J. K. Ahn
Korea University, Seoul 02841
H. Aihara
Department of Physics, University of Tokyo, Tokyo 113-0033
S. Al Said
Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
K. Arinstein
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
Y. Arita
Graduate School of Science, Nagoya University, Nagoya 464-8602
D. M. Asner
Brookhaven National Laboratory, Upton, New York 11973
H. Atmacan
University of Cincinnati, Cincinnati, Ohio 45221
V. Aulchenko
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
T. Aushev
Higher School of Economics (HSE), Moscow 101000
R. Ayad
Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
T. Aziz
Tata Institute of Fundamental Research, Mumbai 400005
V. Babu
Deutsches Elektronen–Synchrotron, 22607 Hamburg
S. Bahinipati
Indian Institute of Technology Bhubaneswar, Satya Nagar 751007
A. M. Bakich
School of Physics, University of Sydney, New South Wales 2006
Y. Ban
Peking University, Beijing 100871
E. Barberio
School of Physics, University of Melbourne, Victoria 3010
M. Barrett
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
M. Bauer
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
P. Behera
Indian Institute of Technology Madras, Chennai 600036
C. Beleño
II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
K. Belous
Institute for High Energy Physics, Protvino 142281
J. Bennett
University of Mississippi, University, Mississippi 38677
M. Berger
Stefan Meyer Institute for Subatomic Physics, Vienna 1090
F. Bernlochner
University of Bonn, 53115 Bonn
M. Bessner
University of Hawaii, Honolulu, Hawaii 96822
D. Besson
Moscow Physical Engineering Institute, Moscow 115409
V. Bhardwaj
Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
B. Bhuyan
Indian Institute of Technology Guwahati, Assam 781039
T. Bilka
Faculty of Mathematics and Physics, Charles University, 121 16 Prague
J. Biswal
J. Stefan Institute, 1000 Ljubljana
T. Bloomfield
School of Physics, University of Melbourne, Victoria 3010
A. Bobrov
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
A. Bondar
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
G. Bonvicini
Wayne State University, Detroit, Michigan 48202
A. Bozek
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
M. Bračko
University of Maribor, 2000 Maribor
J. Stefan Institute, 1000 Ljubljana
N. Braun
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
F. Breibeck
Institute of High Energy Physics, Vienna 1050
T. E. Browder
University of Hawaii, Honolulu, Hawaii 96822
M. Campajola
INFN - Sezione di Napoli, 80126 Napoli
Università di Napoli Federico II, 80126 Napoli
L. Cao
University of Bonn, 53115 Bonn
G. Caria
School of Physics, University of Melbourne, Victoria 3010
D. Červenkov
Faculty of Mathematics and Physics, Charles University, 121 16 Prague
M.-C. Chang
Department of Physics, Fu Jen Catholic University, Taipei 24205
P. Chang
Department of Physics, National Taiwan University, Taipei 10617
Y. Chao
Department of Physics, National Taiwan University, Taipei 10617
V. Chekelian
Max-Planck-Institut für Physik, 80805 München
A. Chen
National Central University, Chung-li 32054
K.-F. Chen
Department of Physics, National Taiwan University, Taipei 10617
Y. Chen
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
Y.-T. Chen
Department of Physics, National Taiwan University, Taipei 10617
B. G. Cheon
Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
K. Chilikin
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
H. E. Cho
Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
K. Cho
Korea Institute of Science and Technology Information, Daejeon 34141
S.-J. Cho
Yonsei University, Seoul 03722
V. Chobanova
Max-Planck-Institut für Physik, 80805 München
S.-K. Choi
Gyeongsang National University, Jinju 52828
Y. Choi
Sungkyunkwan University, Suwon 16419
S. Choudhury
Indian Institute of Technology Hyderabad, Telangana 502285
D. Cinabro
Wayne State University, Detroit, Michigan 48202
J. Crnkovic
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
S. Cunliffe
Deutsches Elektronen–Synchrotron, 22607 Hamburg
T. Czank
Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
S. Das
Malaviya National Institute of Technology Jaipur, Jaipur 302017
N. Dash
Indian Institute of Technology Madras, Chennai 600036
G. De Nardo
INFN - Sezione di Napoli, 80126 Napoli
Università di Napoli Federico II, 80126 Napoli
R. Dhamija
Indian Institute of Technology Hyderabad, Telangana 502285
F. Di Capua
INFN - Sezione di Napoli, 80126 Napoli
Università di Napoli Federico II, 80126 Napoli
J. Dingfelder
University of Bonn, 53115 Bonn
Z. Doležal
Faculty of Mathematics and Physics, Charles University, 121 16 Prague
T. V. Dong
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
D. Dossett
School of Physics, University of Melbourne, Victoria 3010
Z. Drásal
Faculty of Mathematics and Physics, Charles University, 121 16 Prague
S. Dubey
University of Hawaii, Honolulu, Hawaii 96822
S. Eidelman
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
D. Epifanov
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
M. Feindt
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
T. Ferber
Deutsches Elektronen–Synchrotron, 22607 Hamburg
A. Frey
II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
O. Frost
Deutsches Elektronen–Synchrotron, 22607 Hamburg
B. G. Fulsom
Pacific Northwest National Laboratory, Richland, Washington 99352
R. Garg
Panjab University, Chandigarh 160014
V. Gaur
Tata Institute of Fundamental Research, Mumbai 400005
N. Gabyshev
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
A. Garmash
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
M. Gelb
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
J. Gemmler
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
D. Getzkow
Justus-Liebig-Universität Gießen, 35392 Gießen
F. Giordano
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
A. Giri
Indian Institute of Technology Hyderabad, Telangana 502285
P. Goldenzweig
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
B. Golob
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
J. Stefan Institute, 1000 Ljubljana
D. Greenwald
Department of Physics, Technische Universität München, 85748 Garching
M. Grosse Perdekamp
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
RIKEN BNL Research Center, Upton, New York 11973
J. Grygier
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
O. Grzymkowska
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
Y. Guan
University of Cincinnati, Cincinnati, Ohio 45221
E. Guido
INFN - Sezione di Torino, 10125 Torino
H. Guo
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
J. Haba
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
C. Hadjivasiliou
Pacific Northwest National Laboratory, Richland, Washington 99352
P. Hamer
II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
K. Hara
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
T. Hara
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
O. Hartbrich
University of Hawaii, Honolulu, Hawaii 96822
J. Hasenbusch
University of Bonn, 53115 Bonn
K. Hayasaka
Niigata University, Niigata 950-2181
H. Hayashii
Nara Women’s University, Nara 630-8506
X. H. He
Peking University, Beijing 100871
M. Heck
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
M. T. Hedges
University of Hawaii, Honolulu, Hawaii 96822
D. Heffernan
Osaka University, Osaka 565-0871
M. Heider
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
A. Heller
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
M. Hernandez Villanueva
University of Mississippi, University, Mississippi 38677
T. Higuchi
Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
S. Hirose
Graduate School of Science, Nagoya University, Nagoya 464-8602
K. Hoshina
Tokyo University of Agriculture and Technology, Tokyo 184-8588
W.-S. Hou
Department of Physics, National Taiwan University, Taipei 10617
Y. B. Hsiung
Department of Physics, National Taiwan University, Taipei 10617
C.-L. Hsu
School of Physics, University of Sydney, New South Wales 2006
K. Huang
Department of Physics, National Taiwan University, Taipei 10617
M. Huschle
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
Y. Igarashi
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
T. Iijima
Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
Graduate School of Science, Nagoya University, Nagoya 464-8602
M. Imamura
Graduate School of Science, Nagoya University, Nagoya 464-8602
K. Inami
Graduate School of Science, Nagoya University, Nagoya 464-8602
G. Inguglia
Institute of High Energy Physics, Vienna 1050
A. Ishikawa
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
R. Itoh
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
M. Iwasaki
Osaka City University, Osaka 558-8585
Y. Iwasaki
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
S. Iwata
Tokyo Metropolitan University, Tokyo 192-0397
W. W. Jacobs
Indiana University, Bloomington, Indiana 47408
I. Jaegle
University of Florida, Gainesville, Florida 32611
E.-J. Jang
Gyeongsang National University, Jinju 52828
H. B. Jeon
Kyungpook National University, Daegu 41566
S. Jia
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
Y. Jin
Department of Physics, University of Tokyo, Tokyo 113-0033
D. Joffe
Kennesaw State University, Kennesaw, Georgia 30144
M. Jones
University of Hawaii, Honolulu, Hawaii 96822
C. W. Joo
Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
K. K. Joo
Chonnam National University, Gwangju 61186
T. Julius
School of Physics, University of Melbourne, Victoria 3010
J. Kahn
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
H. Kakuno
Tokyo Metropolitan University, Tokyo 192-0397
A. B. Kaliyar
Tata Institute of Fundamental Research, Mumbai 400005
J. H. Kang
Yonsei University, Seoul 03722
K. H. Kang
Kyungpook National University, Daegu 41566
P. Kapusta
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
G. Karyan
Deutsches Elektronen–Synchrotron, 22607 Hamburg
S. U. Kataoka
Nara University of Education, Nara 630-8528
Y. Kato
Graduate School of Science, Nagoya University, Nagoya 464-8602
H. Kawai
Chiba University, Chiba 263-8522
T. Kawasaki
Kitasato University, Sagamihara 252-0373
T. Keck
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
H. Kichimi
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
C. Kiesling
Max-Planck-Institut für Physik, 80805 München
B. H. Kim
Seoul National University, Seoul 08826
C. H. Kim
Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
D. Y. Kim
Soongsil University, Seoul 06978
H. J. Kim
Kyungpook National University, Daegu 41566
H.-J. Kim
Yonsei University, Seoul 03722
J. B. Kim
Korea University, Seoul 02841
K.-H. Kim
Yonsei University, Seoul 03722
K. T. Kim
Korea University, Seoul 02841
S. H. Kim
Seoul National University, Seoul 08826
S. K. Kim
Seoul National University, Seoul 08826
Y. J. Kim
Korea University, Seoul 02841
Y.-K. Kim
Yonsei University, Seoul 03722
T. Kimmel
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
H. Kindo
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
K. Kinoshita
University of Cincinnati, Cincinnati, Ohio 45221
C. Kleinwort
Deutsches Elektronen–Synchrotron, 22607 Hamburg
J. Klucar
J. Stefan Institute, 1000 Ljubljana
N. Kobayashi
Tokyo Institute of Technology, Tokyo 152-8550
P. Kodyš
Faculty of Mathematics and Physics, Charles University, 121 16 Prague
Y. Koga
Graduate School of Science, Nagoya University, Nagoya 464-8602
I. Komarov
Deutsches Elektronen–Synchrotron, 22607 Hamburg
T. Konno
Kitasato University, Sagamihara 252-0373
S. Korpar
University of Maribor, 2000 Maribor
J. Stefan Institute, 1000 Ljubljana
D. Kotchetkov
University of Hawaii, Honolulu, Hawaii 96822
P. Križan
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
J. Stefan Institute, 1000 Ljubljana
R. Kroeger
University of Mississippi, University, Mississippi 38677
J.-F. Krohn
School of Physics, University of Melbourne, Victoria 3010
P. Krokovny
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
B. Kronenbitter
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
T. Kuhr
Ludwig Maximilians University, 80539 Munich
R. Kulasiri
Kennesaw State University, Kennesaw, Georgia 30144
M. Kumar
Malaviya National Institute of Technology Jaipur, Jaipur 302017
R. Kumar
Punjab Agricultural University, Ludhiana 141004
K. Kumara
Wayne State University, Detroit, Michigan 48202
T. Kumita
Tokyo Metropolitan University, Tokyo 192-0397
E. Kurihara
Chiba University, Chiba 263-8522
Y. Kuroki
Osaka University, Osaka 565-0871
A. Kuzmin
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
P. Kvasnička
Faculty of Mathematics and Physics, Charles University, 121 16 Prague
Y.-J. Kwon
Yonsei University, Seoul 03722
Y.-T. Lai
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
K. Lalwani
Malaviya National Institute of Technology Jaipur, Jaipur 302017
J. S. Lange
Justus-Liebig-Universität Gießen, 35392 Gießen
I. S. Lee
Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
J. K. Lee
Seoul National University, Seoul 08826
J. Y. Lee
Seoul National University, Seoul 08826
S. C. Lee
Kyungpook National University, Daegu 41566
M. Leitgab
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
RIKEN BNL Research Center, Upton, New York 11973
R. Leitner
Faculty of Mathematics and Physics, Charles University, 121 16 Prague
D. Levit
Department of Physics, Technische Universität München, 85748 Garching
P. Lewis
University of Bonn, 53115 Bonn
C. H. Li
Liaoning Normal University, Dalian 116029
H. Li
Indiana University, Bloomington, Indiana 47408
J. Li
Kyungpook National University, Daegu 41566
L. K. Li
University of Cincinnati, Cincinnati, Ohio 45221
Y. Li
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Y. B. Li
Peking University, Beijing 100871
L. Li Gioi
Max-Planck-Institut für Physik, 80805 München
J. Libby
Indian Institute of Technology Madras, Chennai 600036
K. Lieret
Ludwig Maximilians University, 80539 Munich
A. Limosani
School of Physics, University of Melbourne, Victoria 3010
Z. Liptak
Hiroshima Institute of Technology, Hiroshima 731-5193
C. Liu
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
Y. Liu
University of Cincinnati, Cincinnati, Ohio 45221
D. Liventsev
Wayne State University, Detroit, Michigan 48202
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
A. Loos
University of South Carolina, Columbia, South Carolina 29208
R. Louvot
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
M. Lubej
J. Stefan Institute, 1000 Ljubljana
T. Luo
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
J. MacNaughton
University of Miyazaki, Miyazaki 889-2192
M. Masuda
Earthquake Research Institute, University of Tokyo, Tokyo 113-0032
Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
T. Matsuda
University of Miyazaki, Miyazaki 889-2192
D. Matvienko
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
J. T. McNeil
University of Florida, Gainesville, Florida 32611
M. Merola
INFN - Sezione di Napoli, 80126 Napoli
Università di Napoli Federico II, 80126 Napoli
F. Metzner
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
K. Miyabayashi
Nara Women’s University, Nara 630-8506
Y. Miyachi
Yamagata University, Yamagata 990-8560
H. Miyake
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
H. Miyata
Niigata University, Niigata 950-2181
Y. Miyazaki
Graduate School of Science, Nagoya University, Nagoya 464-8602
R. Mizuk
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Higher School of Economics (HSE), Moscow 101000
G. B. Mohanty
Tata Institute of Fundamental Research, Mumbai 400005
S. Mohanty
Tata Institute of Fundamental Research, Mumbai 400005
Utkal University, Bhubaneswar 751004
H. K. Moon
Korea University, Seoul 02841
T. J. Moon
Seoul National University, Seoul 08826
T. Mori
Graduate School of Science, Nagoya University, Nagoya 464-8602
T. Morii
Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
H.-G. Moser
Max-Planck-Institut für Physik, 80805 München
M. Mrvar
Institute of High Energy Physics, Vienna 1050
T. Müller
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
N. Muramatsu
Research Center for Electron Photon Science, Tohoku University, Sendai 980-8578
R. Mussa
INFN - Sezione di Torino, 10125 Torino
Y. Nagasaka
Hiroshima Institute of Technology, Hiroshima 731-5193
Y. Nakahama
Department of Physics, University of Tokyo, Tokyo 113-0033
I. Nakamura
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
K. R. Nakamura
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
E. Nakano
Osaka City University, Osaka 558-8585
T. Nakano
Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
M. Nakao
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
H. Nakayama
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
H. Nakazawa
Department of Physics, National Taiwan University, Taipei 10617
T. Nanut
J. Stefan Institute, 1000 Ljubljana
K. J. Nath
Indian Institute of Technology Guwahati, Assam 781039
Z. Natkaniec
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
A. Natochii
University of Hawaii, Honolulu, Hawaii 96822
L. Nayak
Indian Institute of Technology Hyderabad, Telangana 502285
M. Nayak
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978
C. Ng
Department of Physics, University of Tokyo, Tokyo 113-0033
C. Niebuhr
Deutsches Elektronen–Synchrotron, 22607 Hamburg
M. Niiyama
Kyoto Sangyo University, Kyoto 603-8555
N. K. Nisar
Brookhaven National Laboratory, Upton, New York 11973
S. Nishida
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
K. Nishimura
University of Hawaii, Honolulu, Hawaii 96822
O. Nitoh
Tokyo University of Agriculture and Technology, Tokyo 184-8588
A. Ogawa
RIKEN BNL Research Center, Upton, New York 11973
K. Ogawa
Niigata University, Niigata 950-2181
S. Ogawa
Toho University, Funabashi 274-8510
T. Ohshima
Graduate School of Science, Nagoya University, Nagoya 464-8602
S. Okuno
Kanagawa University, Yokohama 221-8686
S. L. Olsen
Gyeongsang National University, Jinju 52828
H. Ono
Nippon Dental University, Niigata 951-8580
Niigata University, Niigata 950-2181
Y. Onuki
Department of Physics, University of Tokyo, Tokyo 113-0033
P. Oskin
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
W. Ostrowicz
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
C. Oswald
University of Bonn, 53115 Bonn
H. Ozaki
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
P. Pakhlov
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Moscow Physical Engineering Institute, Moscow 115409
G. Pakhlova
Higher School of Economics (HSE), Moscow 101000
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
B. Pal
Brookhaven National Laboratory, Upton, New York 11973
T. Pang
University of Pittsburgh, Pittsburgh, Pennsylvania 15260
E. Panzenböck
II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
Nara Women’s University, Nara 630-8506
S. Pardi
INFN - Sezione di Napoli, 80126 Napoli
C.-S. Park
Yonsei University, Seoul 03722
C. W. Park
Sungkyunkwan University, Suwon 16419
H. Park
Kyungpook National University, Daegu 41566
K. S. Park
Sungkyunkwan University, Suwon 16419
S.-H. Park
Yonsei University, Seoul 03722
S. Patra
Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
S. Paul
Department of Physics, Technische Universität München, 85748 Garching
Max-Planck-Institut für Physik, 80805 München
T. K. Pedlar
Luther College, Decorah, Iowa 52101
T. Peng
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
L. Pesántez
University of Bonn, 53115 Bonn
R. Pestotnik
J. Stefan Institute, 1000 Ljubljana
M. Peters
University of Hawaii, Honolulu, Hawaii 96822
L. E. Piilonen
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
T. Podobnik
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
J. Stefan Institute, 1000 Ljubljana
V. Popov
Higher School of Economics (HSE), Moscow 101000
K. Prasanth
Tata Institute of Fundamental Research, Mumbai 400005
E. Prencipe
Forschungszentrum Jülich, 52425 Jülich
M. T. Prim
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
K. Prothmann
Max-Planck-Institut für Physik, 80805 München
Excellence Cluster Universe, Technische Universität München, 85748 Garching
M. V. Purohit
University of South Carolina, Columbia, South Carolina 29208
A. Rabusov
Department of Physics, Technische Universität München, 85748 Garching
J. Rauch
Department of Physics, Technische Universität München, 85748 Garching
B. Reisert
Max-Planck-Institut für Physik, 80805 München
P. K. Resmi
Indian Institute of Technology Madras, Chennai 600036
E. Ribežl
J. Stefan Institute, 1000 Ljubljana
M. Ritter
Ludwig Maximilians University, 80539 Munich
M. Röhrken
Deutsches Elektronen–Synchrotron, 22607 Hamburg
J. Rorie
University of Hawaii, Honolulu, Hawaii 96822
A. Rostomyan
Deutsches Elektronen–Synchrotron, 22607 Hamburg
N. Rout
Indian Institute of Technology Madras, Chennai 600036
M. Rozanska
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
G. Russo
Università di Napoli Federico II, 80126 Napoli
D. Sahoo
Tata Institute of Fundamental Research, Mumbai 400005
Y. Sakai
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
M. Salehi
University of Malaya, 50603 Kuala Lumpur
Ludwig Maximilians University, 80539 Munich
S. Sandilya
University of Cincinnati, Cincinnati, Ohio 45221
D. Santel
University of Cincinnati, Cincinnati, Ohio 45221
L. Santelj
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
J. Stefan Institute, 1000 Ljubljana
T. Sanuki
Department of Physics, Tohoku University, Sendai 980-8578
J. Sasaki
Department of Physics, University of Tokyo, Tokyo 113-0033
N. Sasao
Kyoto University, Kyoto 606-8502
Y. Sato
Graduate School of Science, Nagoya University, Nagoya 464-8602
V. Savinov
University of Pittsburgh, Pittsburgh, Pennsylvania 15260
T. Schlüter
Ludwig Maximilians University, 80539 Munich
O. Schneider
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
G. Schnell
University of the Basque Country UPV/EHU, 48080 Bilbao
IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
M. Schram
Pacific Northwest National Laboratory, Richland, Washington 99352
J. Schueler
University of Hawaii, Honolulu, Hawaii 96822
C. Schwanda
Institute of High Energy Physics, Vienna 1050
A. J. Schwartz
University of Cincinnati, Cincinnati, Ohio 45221
B. Schwenker
II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen
R. Seidl
RIKEN BNL Research Center, Upton, New York 11973
Y. Seino
Niigata University, Niigata 950-2181
D. Semmler
Justus-Liebig-Universität Gießen, 35392 Gießen
K. Senyo
Yamagata University, Yamagata 990-8560
O. Seon
Graduate School of Science, Nagoya University, Nagoya 464-8602
I. S. Seong
University of Hawaii, Honolulu, Hawaii 96822
M. E. Sevior
School of Physics, University of Melbourne, Victoria 3010
L. Shang
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
M. Shapkin
Institute for High Energy Physics, Protvino 142281
C. Sharma
Malaviya National Institute of Technology Jaipur, Jaipur 302017
V. Shebalin
University of Hawaii, Honolulu, Hawaii 96822
C. P. Shen
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
T.-A. Shibata
Tokyo Institute of Technology, Tokyo 152-8550
H. Shibuya
Toho University, Funabashi 274-8510
S. Shinomiya
Osaka University, Osaka 565-0871
J.-G. Shiu
Department of Physics, National Taiwan University, Taipei 10617
B. Shwartz
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
A. Sibidanov
School of Physics, University of Sydney, New South Wales 2006
F. Simon
Max-Planck-Institut für Physik, 80805 München
J. B. Singh
Panjab University, Chandigarh 160014
R. Sinha
Institute of Mathematical Sciences, Chennai 600113
K. Smith
School of Physics, University of Melbourne, Victoria 3010
A. Sokolov
Institute for High Energy Physics, Protvino 142281
Y. Soloviev
Deutsches Elektronen–Synchrotron, 22607 Hamburg
E. Solovieva
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
S. Stanič
University of Nova Gorica, 5000 Nova Gorica
M. Starič
J. Stefan Institute, 1000 Ljubljana
M. Steder
Deutsches Elektronen–Synchrotron, 22607 Hamburg
Z. Stottler
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
J. F. Strube
Pacific Northwest National Laboratory, Richland, Washington 99352
J. Stypula
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
S. Sugihara
Department of Physics, University of Tokyo, Tokyo 113-0033
A. Sugiyama
Saga University, Saga 840-8502
M. Sumihama
Gifu University, Gifu 501-1193
K. Sumisawa
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
T. Sumiyoshi
Tokyo Metropolitan University, Tokyo 192-0397
W. Sutcliffe
University of Bonn, 53115 Bonn
K. Suzuki
Graduate School of Science, Nagoya University, Nagoya 464-8602
K. Suzuki
Stefan Meyer Institute for Subatomic Physics, Vienna 1090
S. Suzuki
Saga University, Saga 840-8502
S. Y. Suzuki
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
H. Takeichi
Graduate School of Science, Nagoya University, Nagoya 464-8602
M. Takizawa
Showa Pharmaceutical University, Tokyo 194-8543
J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198
U. Tamponi
INFN - Sezione di Torino, 10125 Torino
M. Tanaka
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
S. Tanaka
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
K. Tanida
Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
N. Taniguchi
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
Y. Tao
University of Florida, Gainesville, Florida 32611
G. N. Taylor
School of Physics, University of Melbourne, Victoria 3010
F. Tenchini
Deutsches Elektronen–Synchrotron, 22607 Hamburg
Y. Teramoto
Osaka City University, Osaka 558-8585
A. Thampi
Forschungszentrum Jülich, 52425 Jülich
K. Trabelsi
Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay
T. Tsuboyama
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
M. Uchida
Tokyo Institute of Technology, Tokyo 152-8550
I. Ueda
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
S. Uehara
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
T. Uglov
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Higher School of Economics (HSE), Moscow 101000
Y. Unno
Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763
S. Uno
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
P. Urquijo
School of Physics, University of Melbourne, Victoria 3010
Y. Ushiroda
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
Y. Usov
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
S. E. Vahsen
University of Hawaii, Honolulu, Hawaii 96822
C. Van Hulse
University of the Basque Country UPV/EHU, 48080 Bilbao
R. Van Tonder
University of Bonn, 53115 Bonn
P. Vanhoefer
Max-Planck-Institut für Physik, 80805 München
G. Varner
University of Hawaii, Honolulu, Hawaii 96822
K. E. Varvell
School of Physics, University of Sydney, New South Wales 2006
K. Vervink
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
A. Vinokurova
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
V. Vorobyev
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
A. Vossen
Duke University, Durham, North Carolina 27708
M. N. Wagner
Justus-Liebig-Universität Gießen, 35392 Gießen
E. Waheed
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
B. Wang
Max-Planck-Institut für Physik, 80805 München
C. H. Wang
National United University, Miao Li 36003
E. Wang
University of Pittsburgh, Pittsburgh, Pennsylvania 15260
M.-Z. Wang
Department of Physics, National Taiwan University, Taipei 10617
P. Wang
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
X. L. Wang
Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443
M. Watanabe
Niigata University, Niigata 950-2181
Y. Watanabe
Kanagawa University, Yokohama 221-8686
S. Watanuki
Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay
R. Wedd
School of Physics, University of Melbourne, Victoria 3010
S. Wehle
Deutsches Elektronen–Synchrotron, 22607 Hamburg
E. Widmann
Stefan Meyer Institute for Subatomic Physics, Vienna 1090
J. Wiechczynski
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
K. M. Williams
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
E. Won
Korea University, Seoul 02841
X. Xu
Soochow University, Suzhou 215006
B. D. Yabsley
School of Physics, University of Sydney, New South Wales 2006
S. Yamada
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
H. Yamamoto
Department of Physics, Tohoku University, Sendai 980-8578
Y. Yamashita
Nippon Dental University, Niigata 951-8580
W. Yan
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
S. B. Yang
Korea University, Seoul 02841
S. Yashchenko
Deutsches Elektronen–Synchrotron, 22607 Hamburg
H. Ye
Deutsches Elektronen–Synchrotron, 22607 Hamburg
J. Yelton
University of Florida, Gainesville, Florida 32611
J. H. Yin
Korea University, Seoul 02841
Y. Yook
Yonsei University, Seoul 03722
C. Z. Yuan
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Y. Yusa
Niigata University, Niigata 950-2181
C. C. Zhang
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
J. Zhang
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
L. M. Zhang
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
Z. P. Zhang
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
L. Zhao
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
V. Zhilich
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
V. Zhukova
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Moscow Physical Engineering Institute, Moscow 115409
V. Zhulanov
Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
Novosibirsk State University, Novosibirsk 630090
T. Zivko
J. Stefan Institute, 1000 Ljubljana
A. Zupanc
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
J. Stefan Institute, 1000 Ljubljana
N. Zwahlen
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
Abstract
We report a search for the decay using fb-1 of data
collected at the (5S) resonance
with the Belle detector
at the KEKB asymmetric-energy electron-positron collider.
This decay is suppressed in the Standard Model
and proceeds through transitions sensitive to new physics.
The expected branching fraction for in the Standard Model
spans a wide range []
with a large theoretical uncertainty
due to non-perturbative hadronic physics.
We apply a discovery-optimized background suppression method
and report a 90% confidence-level upper limit of
on the branching fraction for this decay.
pacs:
XX.YY.ZZ, AA.BB.CC
††preprint: BELLE-CONF-2002
I Introduction and Physics motivation
In the Standard Model (SM) charmless hadronic decays
proceed via tree-level and penguin transitions as shown in Fig. I.
Penguin transitions are sensitive to Beyond-the-Standard-Model (BSM) physics scenarios
and could affect the branching fractions and CP asymmetries in such decaysbelleiiphysicsbook .
Once branching fractions for two-body decays are measured,
and the theoretical uncertainties are reduced,
it would be possible to extract CP violating parameters
from the data using the formalism based on SU(3)/U(3) symmetry bf1 .
To achieve this goal, at least four of these six branching fractions need to be measured.
Only the branching fraction for has been measured so far bsepep .
\figcaption
Tree level, gluonic penguin, and gluon admixture Feynman diagrams for
charmless two-body decays of to pairs of pseudoscalar mesons.
II Data Sample and Belle Detector
In this paper we report the results of the first search for the decay
using the full Belle data sample of
collected at the resonance.
The Belle detector Belle
was
a large-solid-angle magnetic spectrometer
that operated at the KEKB asymmetric-energy collider KEKB .
The detector components relevant to our study include
a tracking system comprising a silicon vertex detector (SVD) and a central drift chamber (CDC),
a particle identification (PID) system
that consists of a barrel-like arrangement of time-of-flight scintillation counters (TOF)
and an array of aerogel threshold Cherenkov counters (ACC),
and a CsI(Tl) crystal-based electromagnetic calorimeter (ECL).
All these components are located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field.
The decays into
, or , and pairs
with relative fractions and frac .
The data sample contains pairs nbsbsb .
The excited vector state decays to by emitting a photon.
The daughter meson is reconstructed in the decay mode ,
each of the two mesons is reconstructed via its two photon decay.
The expected branching fraction for the decay of interest spans
a wide range: bf1 ; bf2 ; bf3 ; bf4 ; bf5 , where the main
source of theoretical uncertainty is due to non-perturbative hadronic physics.
To maximize analysis discovery potential
and
to validate the signal extraction procedure
we use a background Monte Carlo (MC) sample equivalent to six times the data statistics.
We use a high-statistics signal MC sample to estimate the overall reconstruction efficiency.
Both samples are used to develop
a model implemented
in the unbinned extended maximum likelihood (ML) fit to data.
The MC-based model is calibrated using a control data sample
of 711 collected at the .
III Reconstruction and Signal Candidate Selection
We reconstruct candidates
using pairs of electromagnetic showers
not matched to the projections
of charged tracks to the calorimeter.
We require that the reconstructed energy of these showers
exceed 50 (100) MeV in the barrel (end-cap)
region of the ECL.
The larger end-cap ECL energy threshold
is due to the larger beam-related background in this region.
The ECL energy thresholds have practically
no impact on the analysis discussed in this paper.
To reject hadronic showers mimicking photons,
the ratio of the energy deposited by a photon candidate
in the and ECL crystal array
centered on the crystal with the largest reconstructed energy
is required to exceed 0.75.
The invariant mass of the candidate is required
to be in the range ,
which corresponds, approximately, to
when approximated by a Gaussian resolution function.
To suppress misreconstructed candidates,
the absolute value of cosine of helicity angle
(defined as the angle between
the photon momentum in presumed parent’s rest frame
and the momentum of the parent in the laboratory frame)
is required to be less than 0.97.
Candidates for the decay are reconstructed
using pairs of oppositely-charged pions and candidates.
We require the reconstructed invariant mass to be in the range
, which corresponds,
approximately, to the range
of the Gaussian approximation for the resolution function,
after performing a kinematic fit
constraining the reconstructed invariant mass
of the daughter candidate
to the nominal mass PDG .
To identify charged pion candidates,
the ratios of PID likelihoods,
,
are used, where is the likelihood for the track according to pion hypothesis,
while is the likelihood according to kaon () or electron () hypotheses.
We require and for pion candidates.
According to MC studies,
these requirements reject
28% of background signal candidates
(which are primarily due to charged kaons and electrons),
while the resulting efficiency loss is below 3%.
Charged pion tracks are required to originate from near the interaction point (IP)
by restricting their distance of closest approach along and perpendicular
to the beam collision axis to be less than 4.0 cm and 0.3 cm, respectively.
These selection criteria suppress beam-related backgrounds and reject poorly-reconstructed tracks.
To reduce systematic uncertainties associated with track reconstruction efficiency,
the transverse momenta of charged pions are required to be greater than 100 MeV/c.
To identify candidates we use
beam-energy constrained mass, ,
the energy difference, ,
and the reconstructed invariant mass of the ,
where , and
are the beam energy,
the momentum magnitude
and
the reconstructed energy of candidate,
respectively.
All these quantities are evaluated in the center-of-mass frame.
To improve the resolution (by approximately 10%),
each candidate is kinematically constrained to the nominal invariant mass of ,
the candidates are further constrained to the nominal invariant mass of .
Signal candidates are required to satisfy selection criteria and GeV.
In Gaussian approximation, the resolution is, approximately, 40 MeV.
The beam-energy-constrained mass resolution is 4 .
To improve the significance of the signal in case the data indicate its presence,
we include the reconstructed invariant mass in the 3D ML fit
used to statistically separate the signal from background.
IV Background Suppression and Optimization for Discovery
Hadronic continuum, i.e. production of light quark pairs
in the annihilation [ ()],
is the primary source of background
in studies of charmless hadronic decays.
Because of large initial momenta of the light quarks,
continuum events exhibit a “jet-like” event shape,
while events are distributed isotropically.
We use modified Fox-Wolfram moments ksfw ,
used to describe the topology of the event,
to discriminate between signal events and continuum background.
A likelihood ratio () is calculated
using Fisher discriminant coefficients obtained
in an optimization based on these moments.
We suppress the background
using a discovery-optimized cut on
obtained using Punzi’s figure-of-merit punzi :
(1)
where
is the cut on ,
and are the overall signal reconstruction efficiency
and the number of background events expected in the signal region
for a given value of the cut on , respectively.
The quantity is the desired significance
(which we varied between 3 and 5)
in the Gaussian approximation of Poisson statistics.
To predict we use sideband data with the signal region blinded
and
the scaling factor obtained from the background MC sample.
We require signal candidates to satisfy the requirement ,
which corresponds to and 52 background events in the
signal and sideband regions of our fit variables, respectively.
\figcaption
Distributions of
for signal (red) and background (blue) MC samples.
Normalization is arbitrary.
The background contains real mesons.
Such events exhibit a peak in the distribution,
however, they are distributed uniformly in and .
The fraction of this peaking background
is a free parameter in our ML fits.
V Candidate Multiplicity and Best Candidate Selection
About 14% of fully-reconstructed signal MC events contain multiple candidates
which are primarily (in 75% of such events) due to misreconstructed mesons.
In such events we use only the best candidate
with the smallest value of ,
where the values of are from the mass-constrained fit for the candidates
and is from a vertex fit for the charged pion pair.
The overall reconstruction efficiency is estimated to be 10%
including a 50% relative efficiency loss
due to the discovery-optimized background suppression.
VI Signal Extraction Procedure
To extract the signal yield, we perform an unbinned extended maximum likelihood fit
to the three-dimensional (3D) distribution of , , and .
The likelihood function is
(2)
where the index is used for the events and are the fit parameters
describing the numbers of signal and background events.
Due to negligible correlations among fit variables for background and well-reconstructed signal events,
the probability densities are assumed to factorize as
.
The signal PDF is represented by the weighted sum of the 3D PDFs representing
possible signal contributions from pairs,
where the weights are fixed according to previous measurements as described earlier:
(3)
We use data recorded at the resonance
to adjust the PDF shape parameters used to describe the signal.
We reconstruct candidates via secondary vertices
associated with pairs of oppositely-charged pions ks_reco
using a neural network (NN) technique NN .
The following information is used in the NN:
the momentum of candidate in the laboratory frame;
the distance along the axis between
the two track helices at the point of their closest approach;
the flight length in the plane;
the angle between the momentum
and the vector joining the decay vertex to the IP;
the angle between the pion momentum and the laboratory-frame momentum in the rest frame;
the distance-of-closest-approach in the plane between the IP and the two pion helices;
and the pion hit information in the SVD and CDC.
The selection efficiency is 87% over the momentum range of interest.
We also require that the invariant mass
be within 12 (about 3.5 in resolution)
of the nominal mass PDG .
We require for candidates.
All other selection criteria applied to the candidates
are the same as those used to select candidates.
The presence of four photons in our final state gives rise to
a sizable misreconstruction probability for the signal.
We study partially misreconstructed signal events,
denoted Self Cross Feed (SCF) events, using signal MC sample.
A large correlation between and for such signal MC events
(the Pearson correlation coefficient of 27% for the region of largest same-sign correlations)
is taken into account by describing the well-reconstructed part of the signal
and SCF separately.
SCF events comprise approximately 19% of the reconstructed signal MC sample
and are excluded from signal fit model and the efficiency estimate.
No sizable correlations among fit variables
have been identified for well-reconstructed signal MC events
nor for background events.
VII Fitting Models
A sum of a Gaussian and a Crystal Ball xbal function is used to model the signal in each of the three fit variables.
For and we use a sum with the same mean
but different widths, while for both mean and width are different.
A different approach for the parametrization is necessary
to provide a better description of its PDF which has a long asymmetric tail
due to the additional particles used to evaluate this variable.
We use a Crystal Ball function to describe the tails arising from energy leakage expected for photons in the calorimeter.
A Bukin function bukin and an asymmetric Gaussian are used to model the SCF contribution
in and , respectively.
For , we use a sum of a Gaussian and
a first order Chebyshev polynomial.
The signal PDF shape parameters for and
have been adjusted using the results obtained from the data.
An ARGUS argus function is used to describe the background distribution in ,
another first-order Chebyshev polynomial is used for .
To model the peaking part in we use the signal PDF,
because the peak is due to real mesons,
while an additional first-order Chebyshev polynomial is used for non-peaking contribution.
VIII Ensemble Tests
To test and validate our fitting model, ensemble tests are performed by generating MC pseudoexperiments.
In these experiments we use PDFs obtained from simulation and the data.
The number of signal events is varied between 0 and 50 events,
and 1000 pseudoexperiments are performed for each assumed number of signal events.
An ML fit is performed for each sample generated in these experiments.
For all values of assumed number of signal events
the fit signal yield distribution peaks
at the expected value, therefore exhibiting good linearity.
We use the results of pseudoexperiments
to construct classical confidence intervals (without ordering)
using a procedure due to Neyman frequentist_approach .
For each ensemble of pseudoexperiments
the lower and upper ends of respective confidence interval
represent the values of fit signal yields
for which 10% of the results lie below and above these values,
respectively.
These confidence intervals are then used to prepare
a classical 80% confidence belt belt_method
shown in Fig. IX.
We use this confidence belt
to make a statistical interpretation
of the results obtained from ML fit to data.
IX Results
We fit the 3D fit model described above to the data and
obtain signal and background events.
We show the signal-region projections of the fit to data in Fig. IX.
We observe no signal and estimate the 90% confidence-level (CL) upper limit on the branching fraction
for the decay using the frequentist approach frequentist_approach
and the following formula:
(4)
where is the number of pairs in the full Belle data sample,
is the overall reconstruction efficiency for the signal decay,
and
is the product of the secondary branching fractions for all daughter particles in our final state.
Further, is the expected signal yield
at 90% CL which is the value representing the right side of the confidence belt at the central value for
signal yield, which is approximately 6 events. Using Eq. (4) we
obtain a 90% CL upper limit on the branching fraction
of .
\figcaption
Classical 80% confidence belt (shown by a blue band) obtained from pseudoexperiments.
\figcaption
Full and signal-region projections of the 3D fit to the full data sample.
Signal and background PDFs are described in the text.
X Systematics
The relative systematic uncertainties for the quantities used in the upper limit estimate
are summarized in Table 1.
The statistical uncertainty on the reconstruction efficiency
can be estimated as ,
where is the total number of generated signal MC events
and is the reconstruction efficiency.
This uncertainty is estimated to be 0.1%.
We assign a 2.1% systematic uncertainty per candidate eta_syst .
Since we have two candidates in our decay,
we assign a 4.2% uncertainty for reconstruction.
The systematic uncertainty associated with
track reconstruction is 0.35% per track track_syst .
We therefore assign an uncertainty of 0.7% for two tracks.
We assign a 15.3% systematic uncertainty due to the discovery-optimized cut.
This uncertainty reflects the relative change in the efficiency
when the cut is varied by 0.02 about nominal value of 0.95.
Combining all the sources of uncertainties, the total relative systematic uncertainty is 19%.
Source
Uncertainty (%)
Number of pairs
10.1
Branching fraction of
0.5
Branching fraction of
1.2
MC statistics
0.1
reconstruction
4.2
Tracking
0.7
selection
15.3
Table 1: Summary of systematic uncertainties in the analysis.
XI Conclusions
In summary, we have used the full data sample recorded
by the Belle experiment at the resonance
to search for the rare decay .
We observe no statistically significant signal and set a 90% CL upper
limit of on its branching fraction.
Our result is 2 times larger than the most optimistic SM-based
and QCD-enhanced theoretical prediction and, to date,
is the only experimental information on .
This decay will be probed further at the
next-generation Belle II experiment belle2
at the SuperKEKB collider in Japan.
XII Acknowledgements
We thank the KEKB group for the excellent operation of the
accelerator, the KEK cryogenics group for the efficient
operation of the solenoid, and the KEK computer group and
the National Institute of Informatics for valuable computing
and SINET3 network support. We acknowledge support from
the Ministry of Education, Culture, Sports, Science, and
Technology of Japan and the Japan Society for the Promotion
of Science; the Australian Research Council and the
Australian Department of Education, Science and Training;
the National Natural Science Foundation of China under
contract No. 10575109 and 10775142; the Department of
Science and Technology of India;
the BK21 program of the Ministry of Education of Korea,
the CHEP SRC program and Basic Research program
(grant No. R01-2005-000-10089-0) of the Korea Science and
Engineering Foundation, and the Pure Basic Research Group
program of the Korea Research Foundation;
the Polish State Committee for Scientific Research;
the Ministry of Education and Science of the Russian
Federation and the Russian Federal Agency for Atomic Energy;
the Slovenian Research Agency; the Swiss
National Science Foundation; the National Science Council
and the Ministry of Education of Taiwan; and the
U.S. Department of Energy.
References
(1)
E. Kou, P. Urquijo, W. Altmannshofer et al.
(Belle II Collaboration),
Prog Theor Exp Phys (2019),
arXiv:1808.10567 [hep-ex].
(2)
Y.-K. Hsiao, C.-F. Chang, and X.-G. He,
Phys. Rev. D 93, 114002 (2016).
(3)
R. Aaij et al. (LHCb Collaboration),
Phys. Rev. Lett.115, 051801 (2015).
(4)
A. Abashian et al. (Belle Collaboration),
Nucl. Instr. and Meth. A 479, 117 (2002).
(5)
S. Kurokawa and E. Kikutani, Nucl. Instr. and. Meth. A499, 1 (2003),
and other papers included in this volume.
(6)
S. Esen et al. (Belle Collaboration),
Phys. Rev. D 87, 031101(R) (2013).
(7)
C. Oswald et al. (Belle Collaboration),
Phys. Rev. D 92, 072013 (2015).
(8)
A. R. Williamson and J. Zupan,
Phys. Rev. D 74, 014003 (2006).
(9)
A. Ali, G. Kramer, Y. Li, C.-D. L et al.,
Phys. Rev. D 76, 074018 (2007).
(10)
H.-Y. Cheng and C.-K. Chua,
Phys. Rev. D 80, 114026 (2009).
(11)
H.-Y. Cheng, C.-W. Chiang, and A.-L. Kuo,
Phys. Rev. D 91, 014011 (2015).
(12)
P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
(13)
The Fox-Wolfram moments were introduced in G. C. Fox
and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The
Fisher discriminant used by Belle, based on modified Fox-Wolfram moments,
is described in K. Abe et al.
(Belle Collaboration),
Phys. Rev. Lett. 87, 101801 (2001)
and
K. Abe et al. (Belle Collabboration.), Phys. Lett. B 511, 151 (2001).
(14)
G. Punzi,
eConf C 030908 (2003),
Proceedings of PHYSTAT2003:
Statistical Problems in Particle Physics, Astrophysics and Cosmology,
arXiv:physics/0308063 [physics.data-an].
(15)
K.-F. Chen et al. (Belle Collaboration), Phys. Rev. D 72, 012004 (2005).
(16)
M. Feindt and U. Kerzel,
The NeuroBayes neural network package,
Nucl. Instrum. Methods Phys. Res.,
Sect. A 559, 190 (2006).
(17)
M. Oreglia, A Study of the Reactions . PhD thesis, SLAC, 1980.
T. Skwarnicki, A study of the radiative CASCADE transitions between the Upsilon-Prime and Upsilon resonances. PhD thesis, Cracow, INP, 1986.
(18)
A.D. Bukin,
Fitting function for asymmetric peaks,
arXiv:0711.4449 [physics.data-an] (2007).
(19)
H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
(20)
A. Stuart and J.K. Ord, Classical Inference and Relationship,
5th ed.,
Kendall’s Advanced Theory of Statistics,
Vol. 2 (Oxford University Press, New York, 1991);
see also earlier editions by Kendall and Stuart.
W.T. Eadie, D. Drijard, F.E. James, M. Roos, and B. Sadoulet,
Statistical Methods in Experimental Physics,
(NorthHolland, Amsterdam, 1971).
(21)
J. Neyman, Phil. Trans. Roy. Soc. Lond. A236, 767, 333 (1937);
Reprinted in
A Selection of Early Statistical Papers of J. Neyman,
(University of California Press, Berkeley, 1967).
(22)
J. Schumann et al. (Belle Collaboration),
Phys. Rev. Lett. 97, 061802 (2006).
(23)
S. Ryu et al. (Belle Collaboration),
Phys. Rev. D 89, 072009 (2014).
(24)
T. Abe et al. (Belle II Collaboration), arXiv:1011.0352 [physics.ins-det] (2010).