This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\floatsetup

[table]capposition=top

The Belle Collaboration


Search for the Decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta

A. Abdesselam Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451    I. Adachi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Adamczyk H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    J. K. Ahn Korea University, Seoul 02841    H. Aihara Department of Physics, University of Tokyo, Tokyo 113-0033    S. Al Said Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589    K. Arinstein Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    Y. Arita Graduate School of Science, Nagoya University, Nagoya 464-8602    D. M. Asner Brookhaven National Laboratory, Upton, New York 11973    H. Atmacan University of Cincinnati, Cincinnati, Ohio 45221    V. Aulchenko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Aushev Higher School of Economics (HSE), Moscow 101000    R. Ayad Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451    T. Aziz Tata Institute of Fundamental Research, Mumbai 400005    V. Babu Deutsches Elektronen–Synchrotron, 22607 Hamburg    S. Bahinipati Indian Institute of Technology Bhubaneswar, Satya Nagar 751007    A. M. Bakich School of Physics, University of Sydney, New South Wales 2006    Y. Ban Peking University, Beijing 100871    E. Barberio School of Physics, University of Melbourne, Victoria 3010    M. Barrett High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    M. Bauer Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    P. Behera Indian Institute of Technology Madras, Chennai 600036    C. Beleño II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    K. Belous Institute for High Energy Physics, Protvino 142281    J. Bennett University of Mississippi, University, Mississippi 38677    M. Berger Stefan Meyer Institute for Subatomic Physics, Vienna 1090    F. Bernlochner University of Bonn, 53115 Bonn    M. Bessner University of Hawaii, Honolulu, Hawaii 96822    D. Besson Moscow Physical Engineering Institute, Moscow 115409    V. Bhardwaj Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    B. Bhuyan Indian Institute of Technology Guwahati, Assam 781039    T. Bilka Faculty of Mathematics and Physics, Charles University, 121 16 Prague    J. Biswal J. Stefan Institute, 1000 Ljubljana    T. Bloomfield School of Physics, University of Melbourne, Victoria 3010    A. Bobrov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Bondar Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    G. Bonvicini Wayne State University, Detroit, Michigan 48202    A. Bozek H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    M. Bračko University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    N. Braun Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    F. Breibeck Institute of High Energy Physics, Vienna 1050    T. E. Browder University of Hawaii, Honolulu, Hawaii 96822    M. Campajola INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    L. Cao University of Bonn, 53115 Bonn    G. Caria School of Physics, University of Melbourne, Victoria 3010    D. Červenkov Faculty of Mathematics and Physics, Charles University, 121 16 Prague    M.-C. Chang Department of Physics, Fu Jen Catholic University, Taipei 24205    P. Chang Department of Physics, National Taiwan University, Taipei 10617    Y. Chao Department of Physics, National Taiwan University, Taipei 10617    V. Chekelian Max-Planck-Institut für Physik, 80805 München    A. Chen National Central University, Chung-li 32054    K.-F. Chen Department of Physics, National Taiwan University, Taipei 10617    Y. Chen Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    Y.-T. Chen Department of Physics, National Taiwan University, Taipei 10617    B. G. Cheon Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    K. Chilikin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    H. E. Cho Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    K. Cho Korea Institute of Science and Technology Information, Daejeon 34141    S.-J. Cho Yonsei University, Seoul 03722    V. Chobanova Max-Planck-Institut für Physik, 80805 München    S.-K. Choi Gyeongsang National University, Jinju 52828    Y. Choi Sungkyunkwan University, Suwon 16419    S. Choudhury Indian Institute of Technology Hyderabad, Telangana 502285    D. Cinabro Wayne State University, Detroit, Michigan 48202    J. Crnkovic University of Illinois at Urbana-Champaign, Urbana, Illinois 61801    S. Cunliffe Deutsches Elektronen–Synchrotron, 22607 Hamburg    T. Czank Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    S. Das Malaviya National Institute of Technology Jaipur, Jaipur 302017    N. Dash Indian Institute of Technology Madras, Chennai 600036    G. De Nardo INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    R. Dhamija Indian Institute of Technology Hyderabad, Telangana 502285    F. Di Capua INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    J. Dingfelder University of Bonn, 53115 Bonn    Z. Doležal Faculty of Mathematics and Physics, Charles University, 121 16 Prague    T. V. Dong Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    D. Dossett School of Physics, University of Melbourne, Victoria 3010    Z. Drásal Faculty of Mathematics and Physics, Charles University, 121 16 Prague    S. Dubey University of Hawaii, Honolulu, Hawaii 96822    S. Eidelman Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    D. Epifanov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    M. Feindt Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    T. Ferber Deutsches Elektronen–Synchrotron, 22607 Hamburg    A. Frey II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    O. Frost Deutsches Elektronen–Synchrotron, 22607 Hamburg    B. G. Fulsom Pacific Northwest National Laboratory, Richland, Washington 99352    R. Garg Panjab University, Chandigarh 160014    V. Gaur Tata Institute of Fundamental Research, Mumbai 400005    N. Gabyshev Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Garmash Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    M. Gelb Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    J. Gemmler Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    D. Getzkow Justus-Liebig-Universität Gießen, 35392 Gießen    F. Giordano University of Illinois at Urbana-Champaign, Urbana, Illinois 61801    A. Giri Indian Institute of Technology Hyderabad, Telangana 502285    P. Goldenzweig Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    B. Golob Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    D. Greenwald Department of Physics, Technische Universität München, 85748 Garching    M. Grosse Perdekamp University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 RIKEN BNL Research Center, Upton, New York 11973    J. Grygier Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    O. Grzymkowska H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    Y. Guan University of Cincinnati, Cincinnati, Ohio 45221    E. Guido INFN - Sezione di Torino, 10125 Torino    H. Guo Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    J. Haba High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    C. Hadjivasiliou Pacific Northwest National Laboratory, Richland, Washington 99352    P. Hamer II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    K. Hara High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    T. Hara High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    O. Hartbrich University of Hawaii, Honolulu, Hawaii 96822    J. Hasenbusch University of Bonn, 53115 Bonn    K. Hayasaka Niigata University, Niigata 950-2181    H. Hayashii Nara Women’s University, Nara 630-8506    X. H. He Peking University, Beijing 100871    M. Heck Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    M. T. Hedges University of Hawaii, Honolulu, Hawaii 96822    D. Heffernan Osaka University, Osaka 565-0871    M. Heider Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    A. Heller Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    M. Hernandez Villanueva University of Mississippi, University, Mississippi 38677    T. Higuchi Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    S. Hirose Graduate School of Science, Nagoya University, Nagoya 464-8602    K. Hoshina Tokyo University of Agriculture and Technology, Tokyo 184-8588    W.-S. Hou Department of Physics, National Taiwan University, Taipei 10617    Y. B. Hsiung Department of Physics, National Taiwan University, Taipei 10617    C.-L. Hsu School of Physics, University of Sydney, New South Wales 2006    K. Huang Department of Physics, National Taiwan University, Taipei 10617    M. Huschle Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    Y. Igarashi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    T. Iijima Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602 Graduate School of Science, Nagoya University, Nagoya 464-8602    M. Imamura Graduate School of Science, Nagoya University, Nagoya 464-8602    K. Inami Graduate School of Science, Nagoya University, Nagoya 464-8602    G. Inguglia Institute of High Energy Physics, Vienna 1050    A. Ishikawa High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    R. Itoh High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Iwasaki Osaka City University, Osaka 558-8585    Y. Iwasaki High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    S. Iwata Tokyo Metropolitan University, Tokyo 192-0397    W. W. Jacobs Indiana University, Bloomington, Indiana 47408    I. Jaegle University of Florida, Gainesville, Florida 32611    E.-J. Jang Gyeongsang National University, Jinju 52828    H. B. Jeon Kyungpook National University, Daegu 41566    S. Jia Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    Y. Jin Department of Physics, University of Tokyo, Tokyo 113-0033    D. Joffe Kennesaw State University, Kennesaw, Georgia 30144    M. Jones University of Hawaii, Honolulu, Hawaii 96822    C. W. Joo Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    K. K. Joo Chonnam National University, Gwangju 61186    T. Julius School of Physics, University of Melbourne, Victoria 3010    J. Kahn Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    H. Kakuno Tokyo Metropolitan University, Tokyo 192-0397    A. B. Kaliyar Tata Institute of Fundamental Research, Mumbai 400005    J. H. Kang Yonsei University, Seoul 03722    K. H. Kang Kyungpook National University, Daegu 41566    P. Kapusta H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    G. Karyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    S. U. Kataoka Nara University of Education, Nara 630-8528    Y. Kato Graduate School of Science, Nagoya University, Nagoya 464-8602    H. Kawai Chiba University, Chiba 263-8522    T. Kawasaki Kitasato University, Sagamihara 252-0373    T. Keck Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    H. Kichimi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    C. Kiesling Max-Planck-Institut für Physik, 80805 München    B. H. Kim Seoul National University, Seoul 08826    C. H. Kim Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    D. Y. Kim Soongsil University, Seoul 06978    H. J. Kim Kyungpook National University, Daegu 41566    H.-J. Kim Yonsei University, Seoul 03722    J. B. Kim Korea University, Seoul 02841    K.-H. Kim Yonsei University, Seoul 03722    K. T. Kim Korea University, Seoul 02841    S. H. Kim Seoul National University, Seoul 08826    S. K. Kim Seoul National University, Seoul 08826    Y. J. Kim Korea University, Seoul 02841    Y.-K. Kim Yonsei University, Seoul 03722    T. Kimmel Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    H. Kindo High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Kinoshita University of Cincinnati, Cincinnati, Ohio 45221    C. Kleinwort Deutsches Elektronen–Synchrotron, 22607 Hamburg    J. Klucar J. Stefan Institute, 1000 Ljubljana    N. Kobayashi Tokyo Institute of Technology, Tokyo 152-8550    P. Kodyš Faculty of Mathematics and Physics, Charles University, 121 16 Prague    Y. Koga Graduate School of Science, Nagoya University, Nagoya 464-8602    I. Komarov Deutsches Elektronen–Synchrotron, 22607 Hamburg    T. Konno Kitasato University, Sagamihara 252-0373    S. Korpar University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    D. Kotchetkov University of Hawaii, Honolulu, Hawaii 96822    P. Križan Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    R. Kroeger University of Mississippi, University, Mississippi 38677    J.-F. Krohn School of Physics, University of Melbourne, Victoria 3010    P. Krokovny Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    B. Kronenbitter Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    T. Kuhr Ludwig Maximilians University, 80539 Munich    R. Kulasiri Kennesaw State University, Kennesaw, Georgia 30144    M. Kumar Malaviya National Institute of Technology Jaipur, Jaipur 302017    R. Kumar Punjab Agricultural University, Ludhiana 141004    K. Kumara Wayne State University, Detroit, Michigan 48202    T. Kumita Tokyo Metropolitan University, Tokyo 192-0397    E. Kurihara Chiba University, Chiba 263-8522    Y. Kuroki Osaka University, Osaka 565-0871    A. Kuzmin Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    P. Kvasnička Faculty of Mathematics and Physics, Charles University, 121 16 Prague    Y.-J. Kwon Yonsei University, Seoul 03722    Y.-T. Lai High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    K. Lalwani Malaviya National Institute of Technology Jaipur, Jaipur 302017    J. S. Lange Justus-Liebig-Universität Gießen, 35392 Gießen    I. S. Lee Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    J. K. Lee Seoul National University, Seoul 08826    J. Y. Lee Seoul National University, Seoul 08826    S. C. Lee Kyungpook National University, Daegu 41566    M. Leitgab University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 RIKEN BNL Research Center, Upton, New York 11973    R. Leitner Faculty of Mathematics and Physics, Charles University, 121 16 Prague    D. Levit Department of Physics, Technische Universität München, 85748 Garching    P. Lewis University of Bonn, 53115 Bonn    C. H. Li Liaoning Normal University, Dalian 116029    H. Li Indiana University, Bloomington, Indiana 47408    J. Li Kyungpook National University, Daegu 41566    L. K. Li University of Cincinnati, Cincinnati, Ohio 45221    Y. Li Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    Y. B. Li Peking University, Beijing 100871    L. Li Gioi Max-Planck-Institut für Physik, 80805 München    J. Libby Indian Institute of Technology Madras, Chennai 600036    K. Lieret Ludwig Maximilians University, 80539 Munich    A. Limosani School of Physics, University of Melbourne, Victoria 3010    Z. Liptak Hiroshima Institute of Technology, Hiroshima 731-5193    C. Liu Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    Y. Liu University of Cincinnati, Cincinnati, Ohio 45221    D. Liventsev Wayne State University, Detroit, Michigan 48202 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    A. Loos University of South Carolina, Columbia, South Carolina 29208    R. Louvot École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015    M. Lubej J. Stefan Institute, 1000 Ljubljana    T. Luo Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    J. MacNaughton University of Miyazaki, Miyazaki 889-2192    M. Masuda Earthquake Research Institute, University of Tokyo, Tokyo 113-0032 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047    T. Matsuda University of Miyazaki, Miyazaki 889-2192    D. Matvienko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    J. T. McNeil University of Florida, Gainesville, Florida 32611    M. Merola INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    F. Metzner Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    K. Miyabayashi Nara Women’s University, Nara 630-8506    Y. Miyachi Yamagata University, Yamagata 990-8560    H. Miyake High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    H. Miyata Niigata University, Niigata 950-2181    Y. Miyazaki Graduate School of Science, Nagoya University, Nagoya 464-8602    R. Mizuk P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Higher School of Economics (HSE), Moscow 101000    G. B. Mohanty Tata Institute of Fundamental Research, Mumbai 400005    S. Mohanty Tata Institute of Fundamental Research, Mumbai 400005 Utkal University, Bhubaneswar 751004    H. K. Moon Korea University, Seoul 02841    T. J. Moon Seoul National University, Seoul 08826    T. Mori Graduate School of Science, Nagoya University, Nagoya 464-8602    T. Morii Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    H.-G. Moser Max-Planck-Institut für Physik, 80805 München    M. Mrvar Institute of High Energy Physics, Vienna 1050    T. Müller Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    N. Muramatsu Research Center for Electron Photon Science, Tohoku University, Sendai 980-8578    R. Mussa INFN - Sezione di Torino, 10125 Torino    Y. Nagasaka Hiroshima Institute of Technology, Hiroshima 731-5193    Y. Nakahama Department of Physics, University of Tokyo, Tokyo 113-0033    I. Nakamura High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. R. Nakamura High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    E. Nakano Osaka City University, Osaka 558-8585    T. Nakano Research Center for Nuclear Physics, Osaka University, Osaka 567-0047    M. Nakao High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    H. Nakayama High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    H. Nakazawa Department of Physics, National Taiwan University, Taipei 10617    T. Nanut J. Stefan Institute, 1000 Ljubljana    K. J. Nath Indian Institute of Technology Guwahati, Assam 781039    Z. Natkaniec H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    A. Natochii University of Hawaii, Honolulu, Hawaii 96822    L. Nayak Indian Institute of Technology Hyderabad, Telangana 502285    M. Nayak School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978    C. Ng Department of Physics, University of Tokyo, Tokyo 113-0033    C. Niebuhr Deutsches Elektronen–Synchrotron, 22607 Hamburg    M. Niiyama Kyoto Sangyo University, Kyoto 603-8555    N. K. Nisar Brookhaven National Laboratory, Upton, New York 11973    S. Nishida High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Nishimura University of Hawaii, Honolulu, Hawaii 96822    O. Nitoh Tokyo University of Agriculture and Technology, Tokyo 184-8588    A. Ogawa RIKEN BNL Research Center, Upton, New York 11973    K. Ogawa Niigata University, Niigata 950-2181    S. Ogawa Toho University, Funabashi 274-8510    T. Ohshima Graduate School of Science, Nagoya University, Nagoya 464-8602    S. Okuno Kanagawa University, Yokohama 221-8686    S. L. Olsen Gyeongsang National University, Jinju 52828    H. Ono Nippon Dental University, Niigata 951-8580 Niigata University, Niigata 950-2181    Y. Onuki Department of Physics, University of Tokyo, Tokyo 113-0033    P. Oskin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    W. Ostrowicz H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    C. Oswald University of Bonn, 53115 Bonn    H. Ozaki High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    P. Pakhlov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Physical Engineering Institute, Moscow 115409    G. Pakhlova Higher School of Economics (HSE), Moscow 101000 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    B. Pal Brookhaven National Laboratory, Upton, New York 11973    T. Pang University of Pittsburgh, Pittsburgh, Pennsylvania 15260    E. Panzenböck II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen Nara Women’s University, Nara 630-8506    S. Pardi INFN - Sezione di Napoli, 80126 Napoli    C.-S. Park Yonsei University, Seoul 03722    C. W. Park Sungkyunkwan University, Suwon 16419    H. Park Kyungpook National University, Daegu 41566    K. S. Park Sungkyunkwan University, Suwon 16419    S.-H. Park Yonsei University, Seoul 03722    S. Patra Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    S. Paul Department of Physics, Technische Universität München, 85748 Garching Max-Planck-Institut für Physik, 80805 München    T. K. Pedlar Luther College, Decorah, Iowa 52101    T. Peng Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    L. Pesántez University of Bonn, 53115 Bonn    R. Pestotnik J. Stefan Institute, 1000 Ljubljana    M. Peters University of Hawaii, Honolulu, Hawaii 96822    L. E. Piilonen Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    T. Podobnik Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    V. Popov Higher School of Economics (HSE), Moscow 101000    K. Prasanth Tata Institute of Fundamental Research, Mumbai 400005    E. Prencipe Forschungszentrum Jülich, 52425 Jülich    M. T. Prim Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    K. Prothmann Max-Planck-Institut für Physik, 80805 München Excellence Cluster Universe, Technische Universität München, 85748 Garching    M. V. Purohit University of South Carolina, Columbia, South Carolina 29208    A. Rabusov Department of Physics, Technische Universität München, 85748 Garching    J. Rauch Department of Physics, Technische Universität München, 85748 Garching    B. Reisert Max-Planck-Institut für Physik, 80805 München    P. K. Resmi Indian Institute of Technology Madras, Chennai 600036    E. Ribežl J. Stefan Institute, 1000 Ljubljana    M. Ritter Ludwig Maximilians University, 80539 Munich    M. Röhrken Deutsches Elektronen–Synchrotron, 22607 Hamburg    J. Rorie University of Hawaii, Honolulu, Hawaii 96822    A. Rostomyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    N. Rout Indian Institute of Technology Madras, Chennai 600036    M. Rozanska H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    G. Russo Università di Napoli Federico II, 80126 Napoli    D. Sahoo Tata Institute of Fundamental Research, Mumbai 400005    Y. Sakai High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Salehi University of Malaya, 50603 Kuala Lumpur Ludwig Maximilians University, 80539 Munich    S. Sandilya University of Cincinnati, Cincinnati, Ohio 45221    D. Santel University of Cincinnati, Cincinnati, Ohio 45221    L. Santelj Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    T. Sanuki Department of Physics, Tohoku University, Sendai 980-8578    J. Sasaki Department of Physics, University of Tokyo, Tokyo 113-0033    N. Sasao Kyoto University, Kyoto 606-8502    Y. Sato Graduate School of Science, Nagoya University, Nagoya 464-8602    V. Savinov University of Pittsburgh, Pittsburgh, Pennsylvania 15260    T. Schlüter Ludwig Maximilians University, 80539 Munich    O. Schneider École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015    G. Schnell University of the Basque Country UPV/EHU, 48080 Bilbao IKERBASQUE, Basque Foundation for Science, 48013 Bilbao    M. Schram Pacific Northwest National Laboratory, Richland, Washington 99352    J. Schueler University of Hawaii, Honolulu, Hawaii 96822    C. Schwanda Institute of High Energy Physics, Vienna 1050    A. J. Schwartz University of Cincinnati, Cincinnati, Ohio 45221    B. Schwenker II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    R. Seidl RIKEN BNL Research Center, Upton, New York 11973    Y. Seino Niigata University, Niigata 950-2181    D. Semmler Justus-Liebig-Universität Gießen, 35392 Gießen    K. Senyo Yamagata University, Yamagata 990-8560    O. Seon Graduate School of Science, Nagoya University, Nagoya 464-8602    I. S. Seong University of Hawaii, Honolulu, Hawaii 96822    M. E. Sevior School of Physics, University of Melbourne, Victoria 3010    L. Shang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    M. Shapkin Institute for High Energy Physics, Protvino 142281    C. Sharma Malaviya National Institute of Technology Jaipur, Jaipur 302017    V. Shebalin University of Hawaii, Honolulu, Hawaii 96822    C. P. Shen Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    T.-A. Shibata Tokyo Institute of Technology, Tokyo 152-8550    H. Shibuya Toho University, Funabashi 274-8510    S. Shinomiya Osaka University, Osaka 565-0871    J.-G. Shiu Department of Physics, National Taiwan University, Taipei 10617    B. Shwartz Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Sibidanov School of Physics, University of Sydney, New South Wales 2006    F. Simon Max-Planck-Institut für Physik, 80805 München    J. B. Singh Panjab University, Chandigarh 160014    R. Sinha Institute of Mathematical Sciences, Chennai 600113    K. Smith School of Physics, University of Melbourne, Victoria 3010    A. Sokolov Institute for High Energy Physics, Protvino 142281    Y. Soloviev Deutsches Elektronen–Synchrotron, 22607 Hamburg    E. Solovieva P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    S. Stanič University of Nova Gorica, 5000 Nova Gorica    M. Starič J. Stefan Institute, 1000 Ljubljana    M. Steder Deutsches Elektronen–Synchrotron, 22607 Hamburg    Z. Stottler Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    J. F. Strube Pacific Northwest National Laboratory, Richland, Washington 99352    J. Stypula H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    S. Sugihara Department of Physics, University of Tokyo, Tokyo 113-0033    A. Sugiyama Saga University, Saga 840-8502    M. Sumihama Gifu University, Gifu 501-1193    K. Sumisawa High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    T. Sumiyoshi Tokyo Metropolitan University, Tokyo 192-0397    W. Sutcliffe University of Bonn, 53115 Bonn    K. Suzuki Graduate School of Science, Nagoya University, Nagoya 464-8602    K. Suzuki Stefan Meyer Institute for Subatomic Physics, Vienna 1090    S. Suzuki Saga University, Saga 840-8502    S. Y. Suzuki High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    H. Takeichi Graduate School of Science, Nagoya University, Nagoya 464-8602    M. Takizawa Showa Pharmaceutical University, Tokyo 194-8543 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198    U. Tamponi INFN - Sezione di Torino, 10125 Torino    M. Tanaka High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    S. Tanaka High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Tanida Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195    N. Taniguchi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    Y. Tao University of Florida, Gainesville, Florida 32611    G. N. Taylor School of Physics, University of Melbourne, Victoria 3010    F. Tenchini Deutsches Elektronen–Synchrotron, 22607 Hamburg    Y. Teramoto Osaka City University, Osaka 558-8585    A. Thampi Forschungszentrum Jülich, 52425 Jülich    K. Trabelsi Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay    T. Tsuboyama High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Uchida Tokyo Institute of Technology, Tokyo 152-8550    I. Ueda High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    S. Uehara High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    T. Uglov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Higher School of Economics (HSE), Moscow 101000    Y. Unno Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    S. Uno High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    P. Urquijo School of Physics, University of Melbourne, Victoria 3010    Y. Ushiroda High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    Y. Usov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    S. E. Vahsen University of Hawaii, Honolulu, Hawaii 96822    C. Van Hulse University of the Basque Country UPV/EHU, 48080 Bilbao    R. Van Tonder University of Bonn, 53115 Bonn    P. Vanhoefer Max-Planck-Institut für Physik, 80805 München    G. Varner University of Hawaii, Honolulu, Hawaii 96822    K. E. Varvell School of Physics, University of Sydney, New South Wales 2006    K. Vervink École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015    A. Vinokurova Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    V. Vorobyev Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Vossen Duke University, Durham, North Carolina 27708    M. N. Wagner Justus-Liebig-Universität Gießen, 35392 Gießen    E. Waheed High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    B. Wang Max-Planck-Institut für Physik, 80805 München    C. H. Wang National United University, Miao Li 36003    E. Wang University of Pittsburgh, Pittsburgh, Pennsylvania 15260    M.-Z. Wang Department of Physics, National Taiwan University, Taipei 10617    P. Wang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    X. L. Wang Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    M. Watanabe Niigata University, Niigata 950-2181    Y. Watanabe Kanagawa University, Yokohama 221-8686    S. Watanuki Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay    R. Wedd School of Physics, University of Melbourne, Victoria 3010    S. Wehle Deutsches Elektronen–Synchrotron, 22607 Hamburg    E. Widmann Stefan Meyer Institute for Subatomic Physics, Vienna 1090    J. Wiechczynski H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    K. M. Williams Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    E. Won Korea University, Seoul 02841    X. Xu Soochow University, Suzhou 215006    B. D. Yabsley School of Physics, University of Sydney, New South Wales 2006    S. Yamada High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    H. Yamamoto Department of Physics, Tohoku University, Sendai 980-8578    Y. Yamashita Nippon Dental University, Niigata 951-8580    W. Yan Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    S. B. Yang Korea University, Seoul 02841    S. Yashchenko Deutsches Elektronen–Synchrotron, 22607 Hamburg    H. Ye Deutsches Elektronen–Synchrotron, 22607 Hamburg    J. Yelton University of Florida, Gainesville, Florida 32611    J. H. Yin Korea University, Seoul 02841    Y. Yook Yonsei University, Seoul 03722    C. Z. Yuan Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    Y. Yusa Niigata University, Niigata 950-2181    C. C. Zhang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    J. Zhang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    L. M. Zhang Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    Z. P. Zhang Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    L. Zhao Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    V. Zhilich Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    V. Zhukova P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Physical Engineering Institute, Moscow 115409    V. Zhulanov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Zivko J. Stefan Institute, 1000 Ljubljana    A. Zupanc Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    N. Zwahlen École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
Abstract

We report a search for the decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta using 121.4121.4 fb-1 of data collected at the Υ\Upsilon(5S) resonance with the Belle detector at the KEKB asymmetric-energy electron-positron collider. This decay is suppressed in the Standard Model and proceeds through transitions sensitive to new physics. The expected branching fraction for Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta in the Standard Model spans a wide range [(24)×105(2-4)\times 10^{-5}] with a large theoretical uncertainty due to non-perturbative hadronic physics. We apply a discovery-optimized background suppression method and report a 90% confidence-level upper limit of 7.1×1057.1\times 10^{-5} on the branching fraction for this decay.

pacs:
XX.YY.ZZ, AA.BB.CC
preprint: BELLE-CONF-2002

I Introduction and Physics motivation

In the Standard Model (SM) charmless hadronic decays Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta proceed via tree-level bub\to u and penguin bsb\to s transitions as shown in Fig. I. Penguin transitions are sensitive to Beyond-the-Standard-Model (BSM) physics scenarios and could affect the branching fractions and CP asymmetries in such decaysbelleiiphysicsbook . Once branching fractions for two-body decays Bsηη,ηη,ηηB_{s}\to\eta\eta,\eta\eta^{\prime},\eta^{\prime}\eta^{\prime} are measured, and the theoretical uncertainties are reduced, it would be possible to extract CP violating parameters from the data using the formalism based on SU(3)/U(3) symmetry bf1 . To achieve this goal, at least four of these six branching fractions need to be measured. Only the branching fraction for Bs0ηηB_{s}^{0}\to\eta^{\prime}\eta^{\prime} has been measured so far bsepep .

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
\figcaption

Tree level, gluonic penguin, and η\eta^{\prime} gluon admixture Feynman diagrams for charmless two-body decays of Bs0B_{s}^{0} to pairs of pseudoscalar mesons.

II Data Sample and Belle Detector

In this paper we report the results of the first search for the decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta using the full Belle data sample of 121.4fb1121.4\textrm{fb}^{-1} collected at the Υ(5S)\Upsilon(5S) resonance. The Belle detector Belle was a large-solid-angle magnetic spectrometer that operated at the KEKB asymmetric-energy e+ee^{+}e^{-} collider KEKB . The detector components relevant to our study include a tracking system comprising a silicon vertex detector (SVD) and a central drift chamber (CDC), a particle identification (PID) system that consists of a barrel-like arrangement of time-of-flight scintillation counters (TOF) and an array of aerogel threshold Cherenkov counters (ACC), and a CsI(Tl) crystal-based electromagnetic calorimeter (ECL). All these components are located inside a superconducting solenoid coil that provides a 1.5 T magnetic field.

The Υ(5S)\Upsilon(5S) decays into Bs0B s0B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}, Bs0B s0B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0} or Bs0B s0B_{s}^{0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}, and Bs0B s0B_{s}^{0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0} pairs with relative fractions fBs0B s0=(87.0±1.7)%f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}}=(87.0\pm 1.7)\% and fBs0B s0=(7.3±1.4)%f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0}}=(7.3\pm 1.4)\% frac . The data sample contains (6.53±0.66)×106(6.53\pm 0.66)\times 10^{6} Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} pairs nbsbsb . The excited vector state Bs0B_{s}^{*0} decays to Bs0B_{s}^{0} by emitting a photon. The daughter η\eta^{\prime} meson is reconstructed in the decay mode π+πη\pi^{+}\pi^{-}\eta, each of the two η\eta mesons is reconstructed via its two photon decay. The expected branching fraction for the BsB_{s} decay of interest spans a wide range: (24)×105(2-4)\times 10^{-5} bf1 ; bf2 ; bf3 ; bf4 ; bf5 , where the main source of theoretical uncertainty is due to non-perturbative hadronic physics.

To maximize analysis discovery potential and to validate the signal extraction procedure we use a background Monte Carlo (MC) sample equivalent to six times the data statistics. We use a high-statistics signal MC sample to estimate the overall reconstruction efficiency. Both samples are used to develop a model implemented in the unbinned extended maximum likelihood (ML) fit to data. The MC-based model is calibrated using a control data sample of 711 fb1{\rm fb^{-1}} collected at the Υ(4S)\Upsilon(4S).

III Reconstruction and Signal Candidate Selection

We reconstruct η\eta candidates using pairs of electromagnetic showers not matched to the projections of charged tracks to the calorimeter. We require that the reconstructed energy of these showers exceed 50 (100) MeV in the barrel (end-cap) region of the ECL. The larger end-cap ECL energy threshold is due to the larger beam-related background in this region. The ECL energy thresholds have practically no impact on the analysis discussed in this paper. To reject hadronic showers mimicking photons, the ratio of the energy deposited by a photon candidate in the (3×3)(3\times 3) and (5×5)(5\times 5) ECL crystal array centered on the crystal with the largest reconstructed energy is required to exceed 0.75. The invariant mass of the η\eta candidate is required to be in the range 515M(γγ)580515\leq M(\gamma\gamma)\leq 580 MeV/c2{\rm MeV/c}^{2}, which corresponds, approximately, to ±3σ\pm 3\sigma when approximated by a Gaussian resolution function. To suppress misreconstructed η\eta candidates, the absolute value of cosine of helicity angle (defined as the angle between the photon momentum in presumed parent’s rest frame and the momentum of the parent in the laboratory frame) is required to be less than 0.97.

Candidates for the decay ηπ+πη\eta^{\prime}\to\pi^{+}\pi^{-}\eta are reconstructed using pairs of oppositely-charged pions and η\eta candidates. We require the reconstructed η\eta^{\prime} invariant mass to be in the range 920M(π+πη)980920\leq M(\pi^{+}\pi^{-}\eta)\leq 980 MeV/c2{\rm MeV/c}^{2}, which corresponds, approximately, to the range [10,+6]σ[-10,+6]\sigma of the Gaussian approximation for the resolution function, after performing a kinematic fit constraining the reconstructed invariant mass of the daughter η\eta candidate to the nominal η\eta mass PDG . To identify charged pion candidates, the ratios of PID likelihoods, Ri/π=Lπ/(Lπ+Li)R_{i/\pi}=L_{\pi}/(L_{\pi}+L_{i}), are used, where LπL_{\pi} is the likelihood for the track according to pion hypothesis, while LiL_{i} is the likelihood according to kaon (i=Ki=K) or electron (i=ei=e) hypotheses. We require RK/π0.6R_{K/\pi}\leq 0.6 and Re/π0.95R_{e/\pi}\leq 0.95 for pion candidates. According to MC studies, these requirements reject 28% of background signal candidates (which are primarily due to charged kaons and electrons), while the resulting efficiency loss is below 3%. Charged pion tracks are required to originate from near the interaction point (IP) by restricting their distance of closest approach along and perpendicular to the beam collision axis to be less than 4.0 cm and 0.3 cm, respectively. These selection criteria suppress beam-related backgrounds and reject poorly-reconstructed tracks. To reduce systematic uncertainties associated with track reconstruction efficiency, the transverse momenta of charged pions are required to be greater than 100 MeV/c.

To identify Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta candidates we use beam-energy constrained Bs0B_{s}^{0} mass, Mbc=Ebeam2pBs2M_{\rm bc}=\sqrt{E_{\rm beam}^{2}-p_{B_{s}}^{2}}, the energy difference, ΔE=EBsEbeam\Delta E=E_{B_{s}}-E_{\rm beam}, and the reconstructed invariant mass of the η\eta^{\prime}, where EbeamE_{\rm beam}, pBsp_{B_{s}} and EBsE_{B_{s}} are the beam energy, the momentum magnitude and the reconstructed energy of Bs0B_{s}^{0} candidate, respectively. All these quantities are evaluated in the e+ee^{+}e^{-} center-of-mass frame. To improve the ΔE\Delta E resolution (by approximately 10%), each η\eta candidate is kinematically constrained to the nominal invariant mass of η\eta, the η\eta^{\prime} candidates are further constrained to the nominal invariant mass of η\eta^{\prime}. Signal candidates are required to satisfy selection criteria Mbc>5.3M_{\rm bc}>5.3 GeV/c2{\rm GeV/c}^{2} and 0.4ΔE0.3-0.4\leq\Delta E\leq 0.3 GeV. In Gaussian approximation, the ΔE\Delta E resolution is, approximately, 40 MeV. The beam-energy-constrained Bs0B_{s}^{0} mass resolution is 4 Mev/c2{\rm Mev/c^{2}}. To improve the significance of the signal in case the data indicate its presence, we include the reconstructed invariant mass M(π+πη)M(\pi^{+}\pi^{-}\eta) in the 3D ML fit used to statistically separate the signal from background.

IV Background Suppression and Optimization for Discovery

Hadronic continuum, i.e. production of light quark pairs in the e+ee^{+}e^{-} annihilation [e+eqq¯e^{+}e^{-}\to q\bar{q} (q=u,d,c,sq=u,d,c,s)], is the primary source of background in studies of charmless hadronic decays. Because of large initial momenta of the light quarks, continuum events exhibit a “jet-like” event shape, while Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} events are distributed isotropically. We use modified Fox-Wolfram moments ksfw , used to describe the topology of the event, to discriminate between signal events and continuum background. A likelihood ratio (\mathcal{LR}) is calculated using Fisher discriminant coefficients obtained in an optimization based on these moments. We suppress the background using a discovery-optimized cut on \mathcal{LR} obtained using Punzi’s figure-of-merit punzi :

FOM=ε(t)a/2+B(t),{\rm FOM}=\frac{\varepsilon(t)}{a/2+\sqrt{B(t)}}, (1)

where tt is the cut on \mathcal{LR}, ε\varepsilon and BB are the overall signal reconstruction efficiency and the number of background events expected in the signal region for a given value of the cut on \mathcal{LR}, respectively. The quantity aa is the desired significance (which we varied between 3 and 5) in the Gaussian approximation of Poisson statistics. To predict B(t)B(t) we use sideband data with the signal region blinded and the scaling factor obtained from the background MC sample. We require signal candidates to satisfy the requirement 0.95\mathcal{LR}\geq 0.95, which corresponds to B(0.95)=3B(0.95)=3 and 52 background events in the signal and sideband regions of our fit variables, respectively.

[Uncaptioned image]
\figcaption

Distributions of \mathcal{LR} for signal (red) and background (blue) MC samples. Normalization is arbitrary.

The background contains real η\eta^{\prime} mesons. Such events exhibit a peak in the M(π+πη)M(\pi^{+}\pi^{-}\eta) distribution, however, they are distributed uniformly in MbcM_{\rm bc} and ΔE\Delta E. The fraction of this peaking background is a free parameter in our ML fits.

V Candidate Multiplicity and Best Candidate Selection

About 14% of fully-reconstructed signal MC events contain multiple candidates which are primarily (in 75% of such events) due to misreconstructed η\eta mesons. In such events we use only the best candidate with the smallest value of χη2+χπ+π2\sum{\chi^{2}_{\eta}}+\chi^{2}_{\pi^{+}\pi^{-}}, where the values of χη2\chi^{2}_{\eta} are from the mass-constrained fit for the η\eta candidates and χπ+π2\chi^{2}_{\pi^{+}\pi^{-}} is from a vertex fit for the charged pion pair. The overall reconstruction efficiency is estimated to be 10% including a 50% relative efficiency loss due to the discovery-optimized background suppression.

VI Signal Extraction Procedure

To extract the signal yield, we perform an unbinned extended maximum likelihood fit to the three-dimensional (3D) distribution of MbcM_{\rm bc}, ΔE\Delta E, and M(π+πη)M(\pi^{+}\pi^{-}\eta). The likelihood function is

=ejnjN!i=1N(jnj𝒫j(Mbci,ΔEi,Mi(π+πη))),\mathcal{L}=\frac{e^{\sum_{j}n_{j}}}{N!}\prod_{i=1}^{\textrm{N}}\left(\sum_{j}n_{j}\mathcal{P}_{j}(M_{\rm bc}^{i},\Delta E^{i},M^{i}(\pi^{+}\pi^{-}\eta))\right), (2)

where the index ii is used for the events and njn_{j} are the fit parameters describing the numbers of signal and background events. Due to negligible correlations among fit variables for background and well-reconstructed signal events, the probability densities are assumed to factorize as 𝒫j[Mbci,ΔEi,Mi(π+πη)]=𝒫j(Mbc)𝒫j(ΔE)𝒫j[M(π+πη)]\mathcal{P}_{j}[M_{\rm bc}^{i},\Delta E^{i},M^{i}(\pi^{+}\pi^{-}\eta)]=\mathcal{P}_{j}(M_{\rm bc})\cdot\mathcal{P}_{j}(\Delta E)\cdot\mathcal{P}_{j}[M(\pi^{+}\pi^{-}\eta)]. The signal PDF is represented by the weighted sum of the 3D PDFs representing possible Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta signal contributions from Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} pairs, where the weights are fixed according to previous measurements as described earlier:

𝒫sig=fBs0B s0𝒫Bs0B s0+fBs0B s0𝒫Bs0B s0+(1fBs0B s0fBs0B s0)𝒫Bs0B s0\mathcal{P}_{sig}=f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}}\cdot\mathcal{P}_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}}+f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0}}\cdot\mathcal{P}_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0}}+(1-f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}}-f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0}})\cdot\mathcal{P}_{B_{s}^{0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0}} (3)

We use B0ηKS0B^{0}\to\eta^{\prime}K_{S}^{0} data recorded at the Υ(4S)\Upsilon(4S) resonance to adjust the PDF shape parameters used to describe the signal. We reconstruct KS0K_{S}^{0} candidates via secondary vertices associated with pairs of oppositely-charged pions ks_reco using a neural network (NN) technique NN . The following information is used in the NN: the momentum of KS0K_{S}^{0} candidate in the laboratory frame; the distance along the zz axis between the two track helices at the point of their closest approach; the flight length in the xyx-y plane; the angle between the KS0K_{S}^{0} momentum and the vector joining the KS0K_{S}^{0} decay vertex to the IP; the angle between the pion momentum and the laboratory-frame KS0K_{S}^{0} momentum in the KS0K_{S}^{0} rest frame; the distance-of-closest-approach in the xyx-y plane between the IP and the two pion helices; and the pion hit information in the SVD and CDC. The selection efficiency is 87% over the momentum range of interest. We also require that the π+π\pi^{+}\pi^{-} invariant mass be within 12 MeV/c2{\rm MeV/c^{2}} (about 3.5σ\sigma in resolution) of the nominal KS0K_{S}^{0} mass PDG . We require 5.2Mbc5.35.2\leq M_{\rm bc}\leq 5.3 GeV/c2{\rm GeV/c^{2}} for B0B^{0} candidates. All other selection criteria applied to the B0B^{0} candidates are the same as those used to select Bs0B_{s}^{0} candidates.

The presence of four photons in our final state gives rise to a sizable misreconstruction probability for the signal. We study partially misreconstructed signal events, denoted Self Cross Feed (SCF) events, using signal MC sample. A large correlation between MbcM_{\rm bc} and ΔE\Delta E for such signal MC events (the Pearson correlation coefficient of 27% for the region of largest same-sign correlations) is taken into account by describing the well-reconstructed part of the signal and SCF separately. SCF events comprise approximately 19% of the reconstructed signal MC sample and are excluded from signal fit model and the efficiency estimate. No sizable correlations among fit variables have been identified for well-reconstructed signal MC events nor for background events.

VII Fitting Models

A sum of a Gaussian and a Crystal Ball xbal function is used to model the signal in each of the three fit variables. For MbcM_{\rm bc} and M(π+πη)M(\pi^{+}\pi^{-}\eta) we use a sum with the same mean but different widths, while for ΔE\Delta E both mean and width are different. A different approach for the ΔE\Delta E parametrization is necessary to provide a better description of its PDF which has a long asymmetric tail due to the additional particles used to evaluate this variable. We use a Crystal Ball function to describe the tails arising from energy leakage expected for photons in the calorimeter. A Bukin function bukin and an asymmetric Gaussian are used to model the SCF contribution in MbcM_{\rm bc} and ΔE\Delta E, respectively. For M(π+πη)M(\pi^{+}\pi^{-}\eta), we use a sum of a Gaussian and a first order Chebyshev polynomial. The signal PDF shape parameters for MbcM_{\rm bc} and ΔE\Delta E have been adjusted using the results obtained from the Υ(4S)\Upsilon(4S) data.

An ARGUS argus function is used to describe the background distribution in MbcM_{\rm bc}, another first-order Chebyshev polynomial is used for ΔE\Delta{E}. To model the peaking part in M(π+πη)M(\pi^{+}\pi^{-}\eta) we use the signal PDF, because the peak is due to real η\eta^{\prime} mesons, while an additional first-order Chebyshev polynomial is used for non-peaking contribution.

VIII Ensemble Tests

To test and validate our fitting model, ensemble tests are performed by generating MC pseudoexperiments. In these experiments we use PDFs obtained from simulation and the B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} data. The number of signal events is varied between 0 and 50 events, and 1000 pseudoexperiments are performed for each assumed number of signal events. An ML fit is performed for each sample generated in these experiments. For all values of assumed number of signal events the fit signal yield distribution peaks at the expected value, therefore exhibiting good linearity. We use the results of pseudoexperiments to construct classical confidence intervals (without ordering) using a procedure due to Neyman frequentist_approach . For each ensemble of pseudoexperiments the lower and upper ends of respective confidence interval represent the values of fit signal yields for which 10% of the results lie below and above these values, respectively. These confidence intervals are then used to prepare a classical 80% confidence belt belt_method shown in Fig. IX. We use this confidence belt to make a statistical interpretation of the results obtained from ML fit to data.

IX Results

We fit the 3D fit model described above to the data and obtain 2.7±2.52.7\pm 2.5 signal and 57.3±7.857.3\pm 7.8 background events. We show the signal-region projections of the fit to data in Fig. IX. We observe no signal and estimate the 90% confidence-level (CL) upper limit on the branching fraction for the decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta using the frequentist approach frequentist_approach and the following formula:

(Bs0ηη)<NUL90%2NBs()0B s()0εdp,\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)<\frac{N_{\textrm{UL}}^{90\%}}{2\cdot N_{B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0}}\cdot\varepsilon\cdot\mathcal{B}_{\textrm{dp}}}, (4)

where NBs()0B s()0N_{B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0}} is the number of Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} pairs in the full Belle data sample, ε\varepsilon is the overall reconstruction efficiency for the signal Bs0B_{s}^{0} decay, and dp\mathcal{B}_{\textrm{dp}} is the product of the secondary branching fractions for all daughter particles in our final state. Further, NUL90%N_{\textrm{UL}}^{90\%} is the expected signal yield at 90% CL which is the value representing the right side of the confidence belt at the central value for signal yield, which is approximately 6 events. Using Eq. (4) we obtain a 90% CL upper limit on the branching fraction of (Bs0ηη)<7.1×105\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)<7.1\times 10^{-5}.

[Uncaptioned image]
\figcaption

Classical 80% confidence belt (shown by a blue band) obtained from pseudoexperiments.

[Uncaptioned image]
[Uncaptioned image]
\figcaption

Full and signal-region projections of the 3D fit to the full Υ(5S)\Upsilon(5S) data sample. Signal and background PDFs are described in the text.

X Systematics

The relative systematic uncertainties for the quantities used in the upper limit estimate are summarized in Table 1. The statistical uncertainty on the reconstruction efficiency can be estimated as ε×(1ε)/N\sqrt{\varepsilon\times(1-\varepsilon)/N}, where NN is the total number of generated signal MC events and ε\varepsilon is the reconstruction efficiency. This uncertainty is estimated to be 0.1%. We assign a 2.1% systematic uncertainty per η\eta candidate eta_syst . Since we have two η\eta candidates in our decay, we assign a 4.2% uncertainty for η\eta reconstruction. The systematic uncertainty associated with track reconstruction is 0.35% per track track_syst . We therefore assign an uncertainty of 0.7% for two tracks. We assign a 15.3% systematic uncertainty due to the discovery-optimized \mathcal{LR} cut. This uncertainty reflects the relative change in the efficiency when the cut is varied by 0.02 about nominal value of 0.95. Combining all the sources of uncertainties, the total relative systematic uncertainty is 19%.

Source Uncertainty (%)
Number of Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} pairs 10.1
Branching fraction of η\eta 0.5
Branching fraction of η\eta^{\prime} 1.2
MC statistics 0.1
η\eta reconstruction 4.2
Tracking 0.7
\mathcal{LR} selection 15.3
Table 1: Summary of systematic uncertainties in the Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta analysis.

XI Conclusions

In summary, we have used the full data sample recorded by the Belle experiment at the Υ(5S)\Upsilon(5S) resonance to search for the rare decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta. We observe no statistically significant signal and set a 90% CL upper limit of 7.1×1057.1\times 10^{-5} on its branching fraction. Our result is 2 times larger than the most optimistic SM-based and QCD-enhanced theoretical prediction and, to date, is the only experimental information on Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta. This decay will be probed further at the next-generation Belle II experiment belle2 at the SuperKEKB collider in Japan.

XII Acknowledgements

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and SINET3 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Education, Science and Training; the National Natural Science Foundation of China under contract No. 10575109 and 10775142; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea, the CHEP SRC program and Basic Research program (grant No. R01-2005-000-10089-0) of the Korea Science and Engineering Foundation, and the Pure Basic Research Group program of the Korea Research Foundation; the Polish State Committee for Scientific Research; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.

References

  • (1) E. Kou, P. Urquijo, W. Altmannshofer et al. (Belle II Collaboration), Prog Theor Exp Phys (2019), arXiv:1808.10567 [hep-ex].
  • (2) Y.-K. Hsiao, C.-F. Chang, and X.-G. He, Phys. Rev. D 93, 114002 (2016).
  • (3) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett.115, 051801 (2015).
  • (4) A. Abashian et al. (Belle Collaboration), Nucl. Instr. and Meth. A 479, 117 (2002).
  • (5) S. Kurokawa and E. Kikutani, Nucl. Instr. and. Meth. A499, 1 (2003), and other papers included in this volume.
  • (6) S. Esen et al. (Belle Collaboration), Phys. Rev. D 87, 031101(R) (2013).
  • (7) C. Oswald et al. (Belle Collaboration), Phys. Rev. D 92, 072013 (2015).
  • (8) A. R. Williamson and J. Zupan, Phys. Rev. D 74, 014003 (2006).
  • (9) A. Ali, G. Kramer, Y. Li, C.-D. Lu¨{\rm\ddot{u}} et al., Phys. Rev. D 76, 074018 (2007).
  • (10) H.-Y. Cheng and C.-K. Chua, Phys. Rev. D 80, 114026 (2009).
  • (11) H.-Y. Cheng, C.-W. Chiang, and A.-L. Kuo, Phys. Rev. D 91, 014011 (2015).
  • (12) P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (13) The Fox-Wolfram moments were introduced in G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The Fisher discriminant used by Belle, based on modified Fox-Wolfram moments, is described in K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 101801 (2001) and K. Abe et al. (Belle Collabboration.), Phys. Lett. B 511, 151 (2001).
  • (14) G. Punzi, eConf C 030908 (2003), Proceedings of PHYSTAT2003: Statistical Problems in Particle Physics, Astrophysics and Cosmology, arXiv:physics/0308063 [physics.data-an].
  • (15) K.-F. Chen et al. (Belle Collaboration), Phys. Rev. D 72, 012004 (2005).
  • (16) M. Feindt and U. Kerzel, The NeuroBayes neural network package, Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006).
  • (17) M. Oreglia, A Study of the Reactions ψγγψ\psi^{\prime}\to\gamma\gamma\psi. PhD thesis, SLAC, 1980.
    T. Skwarnicki, A study of the radiative CASCADE transitions between the Upsilon-Prime and Upsilon resonances. PhD thesis, Cracow, INP, 1986.
  • (18) A.D. Bukin, Fitting function for asymmetric peaks, arXiv:0711.4449 [physics.data-an] (2007).
  • (19) H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
  • (20) A. Stuart and J.K. Ord, Classical Inference and Relationship, 5th ed., Kendall’s Advanced Theory of Statistics, Vol. 2 (Oxford University Press, New York, 1991); see also earlier editions by Kendall and Stuart.
    W.T. Eadie, D. Drijard, F.E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics, (NorthHolland, Amsterdam, 1971).
  • (21) J. Neyman, Phil. Trans. Roy. Soc. Lond. A236, 767, 333 (1937); Reprinted in A Selection of Early Statistical Papers of J. Neyman, (University of California Press, Berkeley, 1967).
  • (22) J. Schumann et al. (Belle Collaboration), Phys. Rev. Lett. 97, 061802 (2006).
  • (23) S. Ryu et al. (Belle Collaboration), Phys. Rev. D 89, 072009 (2014).
  • (24) T. Abe et al. (Belle II Collaboration), arXiv:1011.0352 [physics.ins-det] (2010).