This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

The Belle Collaboration


Search for the Decay 𝑩𝒔𝟎𝜼𝜼B_{s}^{0}\rightarrow\eta^{\prime}\eta

N. K. Nisar Brookhaven National Laboratory, Upton, New York 11973    V. Savinov University of Pittsburgh, Pittsburgh, Pennsylvania 15260    I. Adachi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    H. Aihara Department of Physics, University of Tokyo, Tokyo 113-0033    S. Al Said Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589    D. M. Asner Brookhaven National Laboratory, Upton, New York 11973    H. Atmacan University of Cincinnati, Cincinnati, Ohio 45221    T. Aushev Higher School of Economics (HSE), Moscow 101000    R. Ayad Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451    V. Babu Deutsches Elektronen–Synchrotron, 22607 Hamburg    S. Bahinipati Indian Institute of Technology Bhubaneswar, Satya Nagar 751007    P. Behera Indian Institute of Technology Madras, Chennai 600036    J. Bennett University of Mississippi, University, Mississippi 38677    M. Bessner University of Hawaii, Honolulu, Hawaii 96822    V. Bhardwaj Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    B. Bhuyan Indian Institute of Technology Guwahati, Assam 781039    T. Bilka Faculty of Mathematics and Physics, Charles University, 121 16 Prague    J. Biswal J. Stefan Institute, 1000 Ljubljana    G. Bonvicini Wayne State University, Detroit, Michigan 48202    A. Bozek H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342    M. Bračko University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    T. E. Browder University of Hawaii, Honolulu, Hawaii 96822    M. Campajola INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    D. Červenkov Faculty of Mathematics and Physics, Charles University, 121 16 Prague    M.-C. Chang Department of Physics, Fu Jen Catholic University, Taipei 24205    V. Chekelian Max-Planck-Institut für Physik, 80805 München    A. Chen National Central University, Chung-li 32054    B. G. Cheon Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    K. Chilikin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    H. E. Cho Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    K. Cho Korea Institute of Science and Technology Information, Daejeon 34141    S.-K. Choi Gyeongsang National University, Jinju 52828    Y. Choi Sungkyunkwan University, Suwon 16419    S. Choudhury Indian Institute of Technology Hyderabad, Telangana 502285    D. Cinabro Wayne State University, Detroit, Michigan 48202    S. Cunliffe Deutsches Elektronen–Synchrotron, 22607 Hamburg    S. Das Malaviya National Institute of Technology Jaipur, Jaipur 302017    N. Dash Indian Institute of Technology Madras, Chennai 600036    G. De Nardo INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    R. Dhamija Indian Institute of Technology Hyderabad, Telangana 502285    F. Di Capua INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    Z. Doležal Faculty of Mathematics and Physics, Charles University, 121 16 Prague    T. V. Dong Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    S. Dubey University of Hawaii, Honolulu, Hawaii 96822    S. Eidelman Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    D. Epifanov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Ferber Deutsches Elektronen–Synchrotron, 22607 Hamburg    D. Ferlewicz School of Physics, University of Melbourne, Victoria 3010    A. Frey II. Physikalisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen    B. G. Fulsom Pacific Northwest National Laboratory, Richland, Washington 99352    R. Garg Panjab University, Chandigarh 160014    V. Gaur Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    N. Gabyshev Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Garmash Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    A. Giri Indian Institute of Technology Hyderabad, Telangana 502285    P. Goldenzweig Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    Y. Guan University of Cincinnati, Cincinnati, Ohio 45221    K. Gudkova Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    C. Hadjivasiliou Pacific Northwest National Laboratory, Richland, Washington 99352    S. Halder Tata Institute of Fundamental Research, Mumbai 400005    T. Hara High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    O. Hartbrich University of Hawaii, Honolulu, Hawaii 96822    K. Hayasaka Niigata University, Niigata 950-2181    H. Hayashii Nara Women’s University, Nara 630-8506    M. T. Hedges University of Hawaii, Honolulu, Hawaii 96822    C.-L. Hsu School of Physics, University of Sydney, New South Wales 2006    T. Iijima Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602 Graduate School of Science, Nagoya University, Nagoya 464-8602    K. Inami Graduate School of Science, Nagoya University, Nagoya 464-8602    A. Ishikawa High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    R. Itoh High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    M. Iwasaki Osaka City University, Osaka 558-8585    Y. Iwasaki High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    W. W. Jacobs Indiana University, Bloomington, Indiana 47408    S. Jia Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    Y. Jin Department of Physics, University of Tokyo, Tokyo 113-0033    C. W. Joo Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583    K. K. Joo Chonnam National University, Gwangju 61186    J. Kahn Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    A. B. Kaliyar Tata Institute of Fundamental Research, Mumbai 400005    K. H. Kang Kyungpook National University, Daegu 41566    G. Karyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    T. Kawasaki Kitasato University, Sagamihara 252-0373    H. Kichimi High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    C. Kiesling Max-Planck-Institut für Physik, 80805 München    C. H. Kim Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    D. Y. Kim Soongsil University, Seoul 06978    S. H. Kim Seoul National University, Seoul 08826    Y.-K. Kim Yonsei University, Seoul 03722    K. Kinoshita University of Cincinnati, Cincinnati, Ohio 45221    P. Kodyš Faculty of Mathematics and Physics, Charles University, 121 16 Prague    T. Konno Kitasato University, Sagamihara 252-0373    A. Korobov Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    S. Korpar University of Maribor, 2000 Maribor J. Stefan Institute, 1000 Ljubljana    E. Kovalenko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    P. Križan Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    R. Kroeger University of Mississippi, University, Mississippi 38677    P. Krokovny Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    T. Kuhr Ludwig Maximilians University, 80539 Munich    M. Kumar Malaviya National Institute of Technology Jaipur, Jaipur 302017    R. Kumar Punjab Agricultural University, Ludhiana 141004    K. Kumara Wayne State University, Detroit, Michigan 48202    A. Kuzmin Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    Y.-J. Kwon Yonsei University, Seoul 03722    K. Lalwani Malaviya National Institute of Technology Jaipur, Jaipur 302017    J. S. Lange Justus-Liebig-Universität Gießen, 35392 Gießen    S. C. Lee Kyungpook National University, Daegu 41566    Y. B. Li Peking University, Beijing 100871    L. Li Gioi Max-Planck-Institut für Physik, 80805 München    J. Libby Indian Institute of Technology Madras, Chennai 600036    K. Lieret Ludwig Maximilians University, 80539 Munich    D. Liventsev Wayne State University, Detroit, Michigan 48202 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    C. MacQueen School of Physics, University of Melbourne, Victoria 3010    M. Masuda Earthquake Research Institute, University of Tokyo, Tokyo 113-0032 Research Center for Nuclear Physics, Osaka University, Osaka 567-0047    T. Matsuda University of Miyazaki, Miyazaki 889-2192    D. Matvienko Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    M. Merola INFN - Sezione di Napoli, 80126 Napoli Università di Napoli Federico II, 80126 Napoli    F. Metzner Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe    R. Mizuk P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Higher School of Economics (HSE), Moscow 101000    G. B. Mohanty Tata Institute of Fundamental Research, Mumbai 400005    S. Mohanty Tata Institute of Fundamental Research, Mumbai 400005 Utkal University, Bhubaneswar 751004    M. Nakao High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    A. Natochii University of Hawaii, Honolulu, Hawaii 96822    L. Nayak Indian Institute of Technology Hyderabad, Telangana 502285    M. Nayak School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978    S. Nishida High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    K. Nishimura University of Hawaii, Honolulu, Hawaii 96822    S. Ogawa Toho University, Funabashi 274-8510    H. Ono Nippon Dental University, Niigata 951-8580 Niigata University, Niigata 950-2181    Y. Onuki Department of Physics, University of Tokyo, Tokyo 113-0033    P. Oskin P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    P. Pakhlov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Moscow Physical Engineering Institute, Moscow 115409    G. Pakhlova Higher School of Economics (HSE), Moscow 101000 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    T. Pang University of Pittsburgh, Pittsburgh, Pennsylvania 15260    S. Pardi INFN - Sezione di Napoli, 80126 Napoli    H. Park Kyungpook National University, Daegu 41566    S.-H. Park High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    S. Patra Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306    S. Paul Department of Physics, Technische Universität München, 85748 Garching Max-Planck-Institut für Physik, 80805 München    T. K. Pedlar Luther College, Decorah, Iowa 52101    R. Pestotnik J. Stefan Institute, 1000 Ljubljana    L. E. Piilonen Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    T. Podobnik Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    E. Prencipe Forschungszentrum Jülich, 52425 Jülich    M. T. Prim University of Bonn, 53115 Bonn    M. Röhrken Deutsches Elektronen–Synchrotron, 22607 Hamburg    A. Rostomyan Deutsches Elektronen–Synchrotron, 22607 Hamburg    N. Rout Indian Institute of Technology Madras, Chennai 600036    G. Russo Università di Napoli Federico II, 80126 Napoli    D. Sahoo Tata Institute of Fundamental Research, Mumbai 400005    S. Sandilya Indian Institute of Technology Hyderabad, Telangana 502285    A. Sangal University of Cincinnati, Cincinnati, Ohio 45221    L. Santelj Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana J. Stefan Institute, 1000 Ljubljana    T. Sanuki Department of Physics, Tohoku University, Sendai 980-8578    G. Schnell Department of Physics, University of the Basque Country UPV/EHU, 48080 Bilbao IKERBASQUE, Basque Foundation for Science, 48013 Bilbao    J. Schueler University of Hawaii, Honolulu, Hawaii 96822    C. Schwanda Institute of High Energy Physics, Vienna 1050    Y. Seino Niigata University, Niigata 950-2181    K. Senyo Yamagata University, Yamagata 990-8560    M. E. Sevior School of Physics, University of Melbourne, Victoria 3010    M. Shapkin Institute for High Energy Physics, Protvino 142281    C. Sharma Malaviya National Institute of Technology Jaipur, Jaipur 302017    C. P. Shen Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    J.-G. Shiu Department of Physics, National Taiwan University, Taipei 10617    B. Shwartz Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    F. Simon Max-Planck-Institut für Physik, 80805 München    E. Solovieva P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991    S. Stanič University of Nova Gorica, 5000 Nova Gorica    M. Starič J. Stefan Institute, 1000 Ljubljana    Z. S. Stottler Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061    M. Sumihama Gifu University, Gifu 501-1193    T. Sumiyoshi Tokyo Metropolitan University, Tokyo 192-0397    M. Takizawa Showa Pharmaceutical University, Tokyo 194-8543 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198    U. Tamponi INFN - Sezione di Torino, 10125 Torino    K. Tanida Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195    F. Tenchini Deutsches Elektronen–Synchrotron, 22607 Hamburg    K. Trabelsi Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay    M. Uchida Tokyo Institute of Technology, Tokyo 152-8550    T. Uglov P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 Higher School of Economics (HSE), Moscow 101000    Y. Unno Department of Physics and Institute of Natural Sciences, Hanyang University, Seoul 04763    S. Uno High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193    P. Urquijo School of Physics, University of Melbourne, Victoria 3010    R. Van Tonder University of Bonn, 53115 Bonn    G. Varner University of Hawaii, Honolulu, Hawaii 96822    A. Vossen Duke University, Durham, North Carolina 27708    E. Waheed High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801    C. H. Wang National United University, Miao Li 36003    M.-Z. Wang Department of Physics, National Taiwan University, Taipei 10617    P. Wang Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049    X. L. Wang Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443    S. Watanuki Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay    E. Won Korea University, Seoul 02841    X. Xu Soochow University, Suzhou 215006    B. D. Yabsley School of Physics, University of Sydney, New South Wales 2006    W. Yan Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    S. B. Yang Korea University, Seoul 02841    H. Ye Deutsches Elektronen–Synchrotron, 22607 Hamburg    Z. P. Zhang Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026    V. Zhilich Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 Novosibirsk State University, Novosibirsk 630090    V. Zhukova P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Abstract

We report the results of the first search for the decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta using 121.4fb1121.4~\textrm{fb}^{-1} of data collected at the Υ(5S)\Upsilon(5S) resonance with the Belle detector at the KEKB asymmetric-energy e+ee^{+}e^{-} collider. We observe no significant signal and set a 90% confidence-level upper limit of 6.5×1056.5\times 10^{-5} on the branching fraction of this decay.

pacs:
13.25.Hw, 14.40.Nd

The charmless hadronic decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta is suppressed in the Standard Model (SM) and proceeds only through transitions sensitive to Beyond-the-Standard-Model (BSM) physics Bevan:2014iga . BSM scenarios, such as a fourth generation of fermions, supersymmetry with broken R-parity, and a two-Higgs doublet model with flavor-changing neutral currents, could affect the branching fraction and CP asymmetry of this decay belleiiphysicsbook . The expected branching fraction for Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta in the SM spans a range of (24)×105(2-4)\times 10^{-5} bf1 ; bf2 ; bf3 ; bf4 ; bf5 . Once branching fractions for two-body decays Bd,s0ηηB_{d,s}^{0}\to\eta\eta, ηη\eta^{\prime}\eta, and ηη\eta^{\prime}\eta^{\prime} are measured, it would be possible to extract CP-violating parameters using a formalism based on SU(3)/U(3) symmetry bf1 . To achieve this goal, at least four of these six branching fractions need to be measured. Only the branching fraction for Bs0ηηB_{s}^{0}\to\eta^{\prime}\eta^{\prime} has been measured so far  bsepep .

In this Letter, we report the results of the first search for the decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta using the full Belle data sample of 121.4fb1121.4~\textrm{fb}^{-1} collected at the Υ(5S)\Upsilon(5S) resonance. The inclusion of the charge-conjugate decay mode is implied throughout. The Belle detector was a large-solid-angle magnetic spectrometer that operated at the KEKB asymmetric-energy e+ee^{+}e^{-} collider KEKB . The detector components relevant to our study include a tracking system comprising a silicon vertex detector (SVD) and a central drift chamber (CDC), a particle identification (PID) system that consists of a barrel-like arrangement of time-of-flight scintillation counters (TOF) and an array of aerogel threshold Cherenkov counters (ACC), and a CsI(Tl) crystal-based electromagnetic calorimeter (ECL). All these components were located inside a superconducting solenoid coil that provided a 1.5 T magnetic field. A detailed description of the Belle detector can be found elsewhere Belle .

The Υ(5S)\Upsilon(5S) resonance decays into Bs0B s0B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}, Bs0B s0B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0}, and Bs0B s0B_{s}^{0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0} pairs, where the relative fractions of the two former decays are fBs0B s0=(87.0±1.7)%f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{*0}}=(87.0\pm 1.7)\% and fBs0B s0=(7.3±1.4)%f_{B_{s}^{*0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{0}}=(7.3\pm 1.4)\% frac , respectively. Signal Bs0B_{s}^{0} mesons originate from the direct decays of Υ(5S)\Upsilon(5S) or from radiative decays of the excited vector state Bs0B_{s}^{*0}. The Υ(5S)\Upsilon(5S) production cross section is 340±16340\pm 16 pb frac . To present our nominal result for (Bs0ηη)\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta) we use the world average value for the fraction of Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} in bb¯b\bar{b} events fs=0.201±0.031f_{s}=0.201\pm 0.031 PDG , the data sample is therefore estimated to contain (16.60±2.68)×106(16.60\pm 2.68)\times 10^{6} Bs0B_{s}^{0} mesons. We also report the results for fs×(Bs0ηη)f_{s}\times\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta).

To maximize discovery potential of the analysis and to validate the signal extraction procedure, we use a sample of background Monte Carlo (MC) simulated events equivalent to six times the data statistics. In addition, to estimate the overall reconstruction efficiency we use a high-statistics signal MC sample, where the other Bs()0B_{s}^{(\ast)0} meson decays according to known branching fractions PDG . Both samples are used to develop a model implemented in the unbinned extended maximum-likelihood (ML) fit to data. The MC-based model is validated with a control sample of B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} decays reconstructed from 711 fb1{\rm fb^{-1}} of Υ(4S)\Upsilon(4S) data.

We reconstruct η\eta candidates using pairs of electromagnetic showers not matched to the projections of charged tracks to the ECL and therefore identified as photons. We require that the reconstructed energies of these showers exceed 50 (100) MeV in the barrel (endcap) region of the ECL. The larger energy threshold for the endcaps is due to the larger beam-related background in these regions. To reject hadronic showers mimicking photons, the ratio of the energies deposited by a photon candidate in the (3×3)(3\times 3) and (5×5)(5\times 5) ECL crystal arrays centered on the crystal with the largest deposited energy is required to exceed 0.75. The reconstructed invariant mass of the η\eta candidates is required to be 515M(γγ)580515\leq M(\gamma\gamma)\leq 580 MeV/c2{\rm MeV}/{\it c}^{2}, which corresponds, approximately, to a ±3σ\pm 3\sigma Gaussian resolution window around the nominal η\eta mass PDG . To suppress combinatorial background arising due to low-energy photons, the magnitude of the cosine of the helicity angle (cosθhel\cos\theta_{\textrm{hel}}) is required to be less than 0.97, where θhel\theta_{\textrm{hel}} is the angle in the η\eta candidate’s rest frame between the directions of its Lorentz boost from the laboratory frame and one of the photons.

The η\eta^{\prime} candidates are formed by combining pairs of oppositely charged pions with the η\eta candidates. We require the reconstructed η\eta^{\prime} invariant mass to be in the range 920M(π+πη)980920\leq M(\pi^{+}\pi^{-}\eta)\leq 980 MeV/c2{\rm MeV}/{\it c}^{2}, which corresponds, approximately, to the range [10,+6]σ[-10,+6]\sigma of the Gaussian resolution, after performing a kinematic fit constraining the reconstructed mass of the η\eta candidate to the nominal η\eta mass PDG . To identify charged pion candidates, the ratios of PID likelihoods, Ri/π=i/(π+i)R_{i/\pi}={{\mathcal{L}}}_{i}/({\mathcal{L}}_{\pi}+{\mathcal{L}}_{i}), are used, where LπL_{\pi} is the likelihood for the track being a pion, while LiL_{i} is the corresponding likelihood for the kaon (i=Ki=K) or electron (i=ei=e) hypotheses. We require RK/π0.6R_{K/\pi}\leq 0.6 and Re/π0.95R_{e/\pi}\leq 0.95 for pion candidates. The likelihood for each particle species is obtained by combining information from CDC, TOF and ACC nakano_pid , and (for electrons only) ECL eid . According to MC studies, these requirements reject 28% of background, while the resulting efficiency loss is below 3%. Charged pion tracks are required to originate from near the interaction point (IP) by restricting their distance of closest approach to the zz axis to be less than 4.0 cm along the zz axis and 0.3 cm perpendicular to it, respectively. The zz axis is opposite to the direction of the e+e^{+} beam. These selection criteria suppress beam-related backgrounds and reject poorly reconstructed tracks. To reduce systematic uncertainties associated with track reconstruction efficiency, the transverse momenta of charged pions are required to be greater than 100 MeV/c{\rm MeV}/{\it c}.

To identify Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta candidates we use (shown here in natural units) the beam-energy-constrained Bs0B_{s}^{0} mass, Mbc=Ebeam2pBs2M_{\rm bc}=\sqrt{E_{\rm beam}^{2}-p_{B_{s}}^{2}}, the energy difference, ΔE=EBsEbeam\Delta E=E_{B_{s}}-E_{\rm beam}, and the reconstructed invariant mass of the η\eta^{\prime}, where EbeamE_{\rm beam}, pBsp_{B_{s}} and EBsE_{B_{s}} are the beam energy, the momentum and energy of the Bs0B_{s}^{0} candidate, respectively. All these quantities are calculated in the e+ee^{+}e^{-} center-of-mass frame. To improve the ΔE\Delta E resolution, the η\eta^{\prime} candidates are further constrained to the nominal mass of η\eta^{\prime}, though most of the improvement comes from the η\eta mass constraint. Signal candidates are required to satisfy selection criteria Mbc>5.3M_{\rm bc}>5.3 GeV/c2{\rm GeV}/{\it c}^{2} and 0.4ΔE0.3-0.4\leq\Delta E\leq 0.3 GeV. In a Gaussian approximation, the ΔE\Delta E resolution is approximately 40 MeV. Similarly, the MbcM_{\rm bc} resolution is 4 MeV/c2{\rm MeV}/c^{2}. To take advantage of all available information in case the data indicate signal presence, we include M(π+πη)M(\pi^{+}\pi^{-}\eta) in the three-dimensional (3D) ML fit used to statistically separate the signal from background. We define the signal region: 5.35<Mbc<5.435.35<M_{\rm bc}<5.43 GeV/c2{\rm GeV}/{\it c}^{2}, 0.25<ΔE<0.10-0.25<\Delta E<0.10 GeV, and 0.94<M(π+πη)<0.970.94<M(\pi^{+}\pi^{-}\eta)<0.97 GeV/c2{\rm GeV}/{\it c}^{2}. The area outside the signal region is considered as sideband. To optimize sensitivity we use a narrower signal region 5.39<Mbc<5.435.39<M_{\rm bc}<5.43 GeV/c2{\rm GeV}/{\it c}^{2} which would contain the largest signal contribution.

Hadronic continuum events from e+eqq¯e^{+}e^{-}\to q\bar{q} (q=u,d,c,sq=u,d,c,s) are the primary source of background. Because of large initial momenta of the light quarks, continuum events exhibit a “jetlike” event shape, while Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} events are distributed isotropically. We utilize modified Fox-Wolfram moments ksfw , used to describe the event topology, to discriminate between signal and continuum background. A likelihood ratio (\mathcal{LR}) is calculated using Fisher discriminant coefficients obtained in an optimization based on these moments. We suppress the background using a discovery-optimized selection on \mathcal{LR} obtained by maximizing the value of Punzi’s figure of merit punzi :

FOM=ε(t)a/2+B(t),{\rm FOM}=\frac{\varepsilon(t)}{a/2+\sqrt{B(t)}}, (1)

where tt is the requirement on \mathcal{LR}, ε\varepsilon and BB are the signal reconstruction efficiency and the number of background events expected in the signal region for a given value of tt, respectively. The quantity aa is the desired significance (which we vary between 3 and 5) in the units of standard deviation. To predict B(t)B(t) we multiply the number of events in the data sideband by the ratio of the numbers of events in the signal region and sideband in the background MC sample. We require signal candidates to satisfy the requirement 0.95\mathcal{LR}\geq 0.95, which corresponds to B(0.95)=3.3B(0.95)=3.3 and 48 background events in the signal region and sideband, respectively. This 47%-efficient requirement removes 99% of background. Using MC simulation we estimate continuum background to comprise 97% of the remaining events.

The background events containing real η\eta^{\prime} mesons exhibit a peak in the M(π+πη)M(\pi^{+}\pi^{-}\eta) distribution, however, they are distributed smoothly in MbcM_{\rm bc} and ΔE\Delta E. The fraction of this peaking background is a free parameter in our ML fits.

About 14% of the reconstructed signal MC events contain multiple candidates primarily arising due to misreconstructed η\eta mesons. In such events we retain the candidate with the smallest value of χη2+χπ+π2\sum{\chi^{2}_{\eta}}+\chi^{2}_{\pi^{+}\pi^{-}}, where χη2\chi^{2}_{\eta} denotes the η\eta mass-constrained fit statistic, the summation is over the two η\eta candidates, and χπ+π2\chi^{2}_{\pi^{+}\pi^{-}} quantifies the quality of the vertex fit for two pion tracks. Simulation shows that this procedure selects the correct Bs0B_{s}^{0} candidate in 62% of such events. The overall reconstruction efficiency is 10%.

To extract the signal yield, we perform an unbinned extended ML fit to the 3D distribution of MbcM_{\rm bc}, ΔE\Delta E, and M(π+πη)M(\pi^{+}\pi^{-}\eta). The likelihood function is

=ej3njN!i=1N(j3nj𝒫j[Mbci,ΔEi,Mi(π+πη)]),\mathcal{L}=\frac{e^{-\sum_{j}^{3}n_{j}}}{N!}\prod_{i=1}^{N}\left(\sum_{j}^{3}n_{j}\mathcal{P}_{j}[M_{\rm bc}^{i},\Delta E^{i},M^{i}(\pi^{+}\pi^{-}\eta)]\right), (2)

where ii is the event index, NN is the total number of events, jj denotes the fit component (the three components are background, correctly reconstructed signal, and misreconstructed signal described later), and the parameters njn_{j} represent signal and background yields. Due to negligible correlations among fit variables for both background and correctly reconstructed signal events, the probability density function (PDF) for each fit component is assumed to factorize as 𝒫[Mbci,ΔEi,Mi(π+πη)]=𝒫[Mbci]𝒫[ΔEi]𝒫[Mi(π+πη)]\mathcal{P}[M_{\rm bc}^{i},\Delta E^{i},M^{i}(\pi^{+}\pi^{-}\eta)]=\mathcal{P}[M_{\rm bc}^{i}]\cdot\mathcal{P}[\Delta E^{i}]\cdot\mathcal{P}[M^{i}(\pi^{+}\pi^{-}\eta)]. The signal PDF is represented by a weighted sum of the three PDFs describing possible Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta signal contributions from Bs()0B s()0B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0} pairs, where the weights are fixed according to previous measurements frac .

To validate our fitting model and adjust the PDF shape parameters used to describe the signal, we use the control sample of B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} decays. We reconstruct KS0K_{S}^{0} candidates via secondary vertices associated with pairs of oppositely charged pions ks_reco using a neural network technique NN . The following information is used in the network: the momentum of the KS0K_{S}^{0} candidate in the laboratory frame; the distance along the zz axis between the two track helices at the point of their closest approach; the flight length in the xyx-y plane; the angle between the KS0K_{S}^{0} momentum and the vector joining the KS0K_{S}^{0} decay vertex to the IP; the angle between the pion momentum and the laboratory-frame KS0K_{S}^{0} momentum in the KS0K_{S}^{0} rest frame; the distance-of-closest-approach in the xyx-y plane between the IP and the two pion helices; and the pion hit information in the SVD and CDC. The selection efficiency is 87% over the momentum range of interest. We also require that the reconstructed π+π\pi^{+}\pi^{-} invariant mass is within 12 MeV/c2{\rm MeV}/{\it c}^{2}, which is about 3.5σ\sigma, of the nominal KS0K_{S}^{0} mass PDG . We require 5.20Mbc5.305.20\leq M_{\rm bc}\leq 5.30 GeV/c2{\rm GeV}/{\it c}^{2} for B0B^{0} candidates. The control-sample signal region is 5.27<Mbc<5.295.27<M_{\rm bc}<5.29 GeV/c2{\rm GeV}/{\it c}^{2}, 0.20<ΔE<0.10-0.20<\Delta E<0.10 GeV, and 0.94<M(π+πη)<0.970.94<M(\pi^{+}\pi^{-}\eta)<0.97 GeV/c2{\rm GeV}/{\it c}^{2}. All other selection criteria are the same as those used to select Bs0B_{s}^{0} candidates. This control sample is used to validate the η\eta and η\eta^{\prime} reconstruction and its effect on the resolution functions and PDF shape parameters. The validation of KS0K_{S}^{0} reconstruction was performed previously in a similar Bs0B_{s}^{0} analysis Pal:2015ghq .

The presence of four photons in the final state gives rise to a sizable misreconstruction probability for the signal events. We study these self-crossfeed (SCF) events using the signal MC sample. A large correlation between MbcM_{\rm bc} and ΔE\Delta E for such signal events is taken into account by describing the correctly reconstructed signal and SCF components separately with two different PDF sets. The latter comprise approximately 14% of the reconstructed signal and are excluded from the estimate of its efficiency. The Pearson correlation coefficient for the region with largest correlations for SCF signal events is 27%.

A sum of a Gaussian and a Crystal Ball xbal function is used to model the correctly reconstructed signal in each of the three fit variables. For MbcM_{\rm bc} and M(π+πη)M(\pi^{+}\pi^{-}\eta) we use a sum of these two functions with the same mean but different widths, while for ΔE\Delta E both the mean and width are different. A Bukin function bukin and an asymmetric Gaussian are used to model the SCF contribution in MbcM_{\rm bc} and ΔE\Delta E, respectively. For M(π+πη)M(\pi^{+}\pi^{-}\eta), we use a sum of a Gaussian and a first-order Chebyshev polynomial. In our nominal fit to data the fraction of correctly reconstructed signal is fixed to its MC value. The signal PDF shape parameters for MbcM_{\rm bc} and ΔE\Delta E are validated using the B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} control sample.

We use an ARGUS argus function to describe the background distribution in MbcM_{\rm bc} and a first-order Chebyshev polynomial for ΔE\Delta E. To model the peaking part in M(π+πη)M(\pi^{+}\pi^{-}\eta) we use the signal PDF, because the peak is due to real η\eta^{\prime} mesons, while an additional first-order Chebyshev polynomial is used for the non-peaking contribution. The projections of the fit to the B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} control sample are shown in Fig. 1.

Refer to caption
Figure 1: Signal-region projections of the fit results on MbcM_{\rm bc}, ΔE\Delta E, and M(π+πη)M(\pi^{+}\pi^{-}\eta) for the B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} control sample. Points with error bars are data, blue solid curves are the results of the fit, black dashed curves are the background component, and cyan-filled regions show the signal component.
Refer to caption
Figure 2: Signal-region projections of the fit results on MbcM_{\rm bc}, ΔE\Delta E, and M(π+πη)M(\pi^{+}\pi^{-}\eta) for Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta. The MbcM_{\rm bc} signal region of the dominant signal contribution, 5.39<Mbc<5.435.39<M_{\rm bc}<5.43 GeV/c2{\rm GeV}/{\it c}^{2}, is used to plot the ΔE\Delta E and M(π+πη)M(\pi^{+}\pi^{-}\eta) projections. Points with error bars are data, blue solid curves are the results of the fit, black dashed curves are the background component, and pink-filled regions show the signal component. The three MbcM_{\rm bc} peaks in the signal component (from right to left) correspond to contributions from Bs0B s0B_{s}^{*0}\accentset{\rule{4.83002pt}{0.6pt}}{B}_{s}^{*0}, Bs0B s0B_{s}^{*0}\accentset{\rule{4.83002pt}{0.6pt}}{B}_{s}^{0}, and Bs0B s0B_{s}^{0}\accentset{\rule{4.83002pt}{0.6pt}}{B}_{s}^{0} pairs.

To further test and validate our fitting model, ensemble tests are carried out by generating MC pseudoexperiments. In these experiments we use PDFs obtained from full detector simulation and the B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} data. We perform 1000 pseudoexperiments for each assumed number of signal events. An ML fit is executed for each sample prepared in these experiments. The signal yield distribution obtained from these fits exhibits good linearity. We use the results of pseudoexperiments to construct classical confidence intervals (without ordering) using a procedure due to Neyman frequentist_approach . For each ensemble of pseudoexperiments, the lower and upper ends of the respective confidence interval represent the values of fit signal yields for which 10% of the results lie below and above these values, respectively. These intervals are then combined to prepare a classical confidence belt belt_method ; belt_method_2 used to make a statistical interpretation of the results obtained from data. The confidence intervals prepared using this statistical method are known to slightly “overcover” for the number of signal events fc , therefore resulting in a conservative upper limit.

We apply the 3D model to the data and obtain 2.7±2.52.7\pm 2.5 signal and 57.3±7.857.3\pm 7.8 background events. The signal-region projections of the fit are shown in Fig. 2. We observe no significant signal and estimate a 90% confidence-level (CL) upper limit on the branching fraction for the decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta using the following formula:

(Bs0ηη)<NUL90%NBs0×ε×,\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)<\frac{N_{\textrm{UL}}^{90\%}}{N_{B_{s}^{0}}\times\varepsilon\times\mathcal{B}}~, (3)

where NBs0N_{B_{s}^{0}} is the number of Bs0B_{s}^{0} mesons in the full Belle data sample, ε\varepsilon is the overall reconstruction efficiency for the signal Bs0B_{s}^{0} decay, and \mathcal{B} is the product of the subdecay branching fractions for η\eta and η\eta^{\prime} reconstructed in our analysis. Further, NUL90%N_{\textrm{UL}}^{90\%} is the expected signal yield of approximately 6.6 events at 90% CL obtained from the confidence belt constructed using the frequentist approach frequentist_approach . Using Eq. (3) we estimate a 90% CL upper limit on the branching fraction (Bs0ηη)<6.2×105\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)<6.2\times 10^{-5}. We also estimate a 90% CL upper limit on the product fs×(Bs0ηη)<1.2×105f_{s}\times\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)<1.2\times 10^{-5}. The systematic uncertainties are not included in these estimates.

Sources of systematic uncertainties and their relative contributions are listed in Table 1. The relative uncertainties on fsf_{s} and σ(Υ(5S))\sigma(\Upsilon(5S)) are 15.4% and 4.7%, respectively. The systematic uncertainty due to η\eta reconstruction is 2.1% per η\eta candidate eta_syst . Track reconstruction track_syst and PID systematic uncertainties are 0.35% and 2% per track, respectively. We estimate the systematic uncertainty due to the \mathcal{LR} requirement to be 10%, which represents the relative change in efficiency when this requirement is varied by ±\pm0.02 about the nominal value of 0.95. This range of variation is defined by the statistics of the control sample which is used to validate the efficiency and its dependence on the \mathcal{LR} requirement. Systematic uncertainty due to signal PDF shape is estimated by varying the fixed parameters within their statistical uncertainties determined with B0ηKS0B^{0}\rightarrow\eta^{\prime}K_{S}^{0} data. When varying these parameters, we observe an 11% change in the signal yield obtained from the data and use this number as an estimate of PDF parametrization systematics. Systematic uncertainty due to fBs()0B s()0f_{B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0}} is evaluated by varying relative fractions of possible contributions to signal PDF and is 1.3%. When varying the SCF contribution by ±50\pm 50% of itself, we observe a 4% change in the results of the fit to data, which we use as an estimate of SCF PDF systematic uncertainty. The relative uncertainties on η\eta and η\eta^{\prime} branching fractions are 1% and 1.2%, respectively. The statistical uncertainty due to MC statistics is estimated to be 0.1%. The overall systematic uncertainties for (Bs0ηη)\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta) and fs×(Bs0ηη)f_{s}\times\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta) are estimated by adding the individual contributions in quadrature and are 23.1% and 17.2%, respectively. These systematic uncertainties are included in the NUL90%N_{\textrm{UL}}^{90\%} estimates of approximately 7.0 and 6.9 events by smearing the fit yield distributions while constructing the confidence belt used to extract the results. We estimate the upper limits on the branching fraction (Bs0ηη)<6.5×105\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)<6.5\times 10^{-5} and on the product fs×(Bs0ηη)<1.3×105f_{s}\times\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)<1.3\times 10^{-5} at 90% CL. Finally, using the number of signal events obtained from the fit we estimate (Bs0ηη)=(2.5±2.2±0.6)×105\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)=(2.5\pm 2.2\pm 0.6)\times 10^{-5} and fs×(Bs0ηη)=(0.51±0.44±0.09)×105f_{s}\times\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta)=(0.51\pm 0.44\pm 0.09)\times 10^{-5}, where, for each of the two estimates, the first uncertainty is statistical and the second is systematic. We summarize the results in Table 2.

Table 1: Summary of systematic uncertainties.
Source Uncertainty (%)
fsf_{s} 15.4
σ(Υ(5S))\sigma(\Upsilon(5S)) 4.7
η\eta reconstruction 4.2
Tracking 0.7
PID 4.0
\mathcal{LR} selection 10.0
PDF parametrization 11.0
fBs()0B s()0f_{B_{s}^{(*)0}\accentset{\rule{4.91673pt}{0.6pt}}{B}_{s}^{(*)0}} 1.3
SCF PDF 4.0
Branching fraction of η\eta 1.0
Branching fraction of η\eta^{\prime} 1.2
MC statistics 0.1
Table 2: Summary of the results for fs×(Bs0ηη)f_{s}\times\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta) and (Bs0ηη)\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta). See the text for more information.
Quantity Value
fs×(Bs0ηη)f_{s}\times\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta) (0.51±0.44±0.09)×105(0.51\pm 0.44\pm 0.09)\times 10^{-5}
<1.3×105<1.3\times 10^{-5} @ 90% CL
(Bs0ηη)\mathcal{B}(B_{s}^{0}\rightarrow\eta^{\prime}\eta) (2.5±2.2±0.6)×105(2.5\pm 2.2\pm 0.6)\times 10^{-5}
<6.5×105<6.5\times 10^{-5} @ 90% CL

In summary, we have used the full data sample recorded by the Belle experiment at the Υ(5S)\Upsilon(5S) resonance to search for the decay Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta. We observe no statistically significant signal and set a 90% CL upper limit of 6.5×1056.5\times 10^{-5} on its branching fraction. To date, our result is the only experimental information on Bs0ηηB_{s}^{0}\rightarrow\eta^{\prime}\eta and is twice as large as the most optimistic SM-based theoretical prediction. This decay can be probed further at the next-generation Belle II experiment belle2 at the SuperKEKB collider in Japan.

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including grants DP180102629, DP170102389, DP170102204, DP150103061, FT130100303; Austrian Federal Ministry of Education, Science and Research (FWF) and FWF Austrian Science Fund No. P 31361-N36; the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Shanghai Science and Technology Committee (STCSM) under Grant No. 19ZR1403000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; Horizon 2020 ERC Advanced Grant No. 884719 and ERC Starting Grant No. 947006 “InterLeptons” (European Union); the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Atomic Energy (Project Identification No. RTI 4002) and the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grant Nos. 2016R1D1A1B01010135, 2016R1D1A1B02012900, 2018R1A2B3003643, 2018R1A6A1A06024970, 2018R1D1A1B07047294, 2019K1A3A7A09033840, 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026, and the HSE University Basic Research Program, Moscow; University of Tabuk research grants S-1440-0321, S-0256-1438, and S-0280-1439 (Saudi Arabia); the Slovenian Research Agency Grant Nos. J1-9124 and P1-0135; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

References

  • (1) Ed. A. J. Bevan, B. Golob, Th. Mannel, S. Prell, and B. D. Yabsley, Eur. Phys. J. C 74, 3026 (2014); SLAC-PUB-15968; KEK Preprint 2014-3.
  • (2) E. Kou et al., Prog. Theor. Exp. Phys. 2019, 123C01 (2019).
  • (3) Y.-K. Hsiao, C.-F. Chang, and X.-G. He, Phys. Rev. D 93, 114002 (2016).
  • (4) A. R. Williamson and J. Zupan, Phys. Rev. D 74, 014003 (2006).
  • (5) A. Ali et al., Phys. Rev. D 76, 074018 (2007).
  • (6) H.-Y. Cheng and C.-K. Chua, Phys. Rev. D 80, 114026 (2009).
  • (7) H.-Y. Cheng, C.-W. Chiang, and A.-L. Kuo, Phys. Rev. D 91, 014011 (2015).
  • (8) R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115, 051801 (2015).
  • (9) S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res. Sect. A 499, 1 (2003), and other papers included in this Volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013) and references therein.
  • (10) A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 479, 117 (2002); also see Section 2 in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
  • (11) S. Esen et al. (Belle Collaboration), Phys. Rev. D 87, 031101(R) (2013).
  • (12) P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  • (13) E. Nakano, Nucl. Instrum. Methods Phys. Res. Sect. A 494, 402 (2002).
  • (14) K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima and T. Tsukamoto, Nucl. Instrum. Methods Phys. Res. Sect. A 485, 490 (2002).
  • (15) The Fox-Wolfram moments were introduced in G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The Fisher discriminant used by Belle, based on modified Fox-Wolfram moments, is described in K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 101801 (2001) and K. Abe et al. (Belle Collaboration.), Phys. Lett. B 511, 151 (2001).
  • (16) G. Punzi, eConf C 030908 (2003), arXiv:physics/0308063 [physics.data-an].
  • (17) H. Nakano, Search for new physics by a time-dependent CP violation analysis of the decay BKSηγB\to K_{S}\eta\gamma using the Belle detector. PhD Thesis, Tohoku University (2014) Chapter 4, unpublished.
  • (18) M. Feindt and U. Kerzel, Nucl. Instrum. Methods Phys. Res. Sect. A 559, 190 (2006).
  • (19) B. Pal et al. (Belle Collaboration), Phys. Rev. Lett. 116, 161801 (2016).
  • (20) M. Oreglia, A Study of the Reactions ψγγψ\psi^{\prime}\to\gamma\gamma\psi. PhD thesis, SLAC-0236, 1980; T. Skwarnicki, A study of the radiative CASCADE transitions between the Upsilon-Prime and Upsilon resonances. PhD thesis, DESY-F31-86-02, 1986.
  • (21) A.D. Bukin, arXiv:0711.4449 [physics.data-an] (2007).
  • (22) H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278-282 (1990).
  • (23) J. Neyman, Phil. Trans. Roy. Soc. Lond. A 236, 767, 333-380 (1937); Reprinted in A Selection of Early Statistical Papers of J. Neyman, (University of California Press, Berkeley, 1967).
  • (24) A. Stuart and J.K. Ord, Classical Inference and Relationship, 5th ed., Kendall’s Advanced Theory of Statistics, Vol. 2 (Oxford University Press, New York, 1991); see also earlier editions by Kendall and Stuart.
  • (25) W.T. Eadie, D. Drijard, F.E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics, (NorthHolland, Amsterdam, 1971).
  • (26) G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873-3889 (1998).
  • (27) J. Schumann et al. (Belle Collaboration), Phys. Rev. Lett. 97, 061802 (2006).
  • (28) S. Ryu et al. (Belle Collaboration), Phys. Rev. D 89, 072009 (2014).
  • (29) T. Abe et al. (Belle II Collaboration), arXiv: 1011.0352 [physics.ins-det] (2010).