This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Second-Order Nonlinearity Estimated and Compensated Diffusion LMS Algorithm: Theoretical Upper Bound, Cramer-Rao Lower bound, and Convergence Analysis

Hadi Zayyani zayyani@qut.ac.ir Mehdi Korki mkorki@swin.edu.au Qom University of Technology (QUT), Qom, Iran Swinburne University of Technology, Melbourne, Australia
Abstract

In this paper, an algorithm for estimation and compensation of second-order nonlinearity in wireless sensor setwork (WSN) in distributed estimation framework is proposed. First, the effect of second-order nonlinearity on the performance of Diffusion Least Mean Square (DLMS) algorithm is investigated and an upper bound for l2l^{2}-norm of the error due to nonlinearity is derived mathematically. Second, mean convergence analysis of the DLMS algorithm in presence of second-order nonlinearity is derived. Third, a distributed algorithm is suggested which consists of extra nonlinearity estimation and compensation units. Moreover, considering the second-order nonlinearity, the Cramer-Rao bound (CRB) for estimating both the unknown vector and nonlinearity coefficient vector is calculated, in which the Fisher information matrix is obtained in a closed-form formula. Simulation results demonstrate the effectiveness of the proposed algorithm in improving the performance of distributed estimation in the presence of nonlinear sensors in a WSN.

keywords:
Distributed estimation, nonlinearity, compensation, second order, diffusion.
journal: Journal of DSP Signal Processing

1 Introduction

The problem of distributed estimation of an unknown vector from linear measurements is a well-known subject in signal processing community which has numerous applications in wireless sensor network (WSN), channel estimation, spectrum estimation, massive MIMO communication, and target tracking problems [1], [2]. The distributed estimation algorithms benefit from the inter-collaboration of sensor nodes. The cooperation strategies for distributed estimation are incremental, consensus, and diffusion approaches [1]. Among them, the diffusion strategy is more versatile due to its simplicity, scalability, and low storage demands.

Many distributed diffusion algorithms are proposed in the literature, e.g., diffusion LMS [3], [4], diffusion LMP [5], [6], diffusion Affine Projection Algorithm (APA) [7], [8], diffusion CMPN [9], and diffusion correntropy [10]-[13], to name a few. Among diffusion algorithms, the Diffusion Least Mean Square (DLMS) algorithm is the basic algorithm which uses mean square error (MSE) as its cost function. There are also numerous variants of the DLMS algorithm, which aim to either reduce the communication load [14], [15], make the algorithm robust against impulsive noise [16], [17], make the algorithm secure with respect to adversaries [18], [19], [20], or in sparse setting [21]. Unfortunately, the performance of the aforementioned algorithms in a WSN deteriorates when the sensors have some nonlinearity effect due e.g. to their power amplifiers. This is because they are designed for the linear measurement model. The main objective of this paper is to make the DLMS algorithm robust against nonlinearities.

In the literature of distributed estimation, there are some works that consider a nonlinear model for the measurements [22]-[28]. In the pioneering work of [22], two distributed algorithms are suggested for estimation in a nonlinear observation model. Moreover, a diffusion based kernel least mean squares (KLMS) is presented in a nonlinear measurement setup [23]. In addition, a distributed estimation algorithm with nonlinear sensors with one bit measurements are proposed in [24]. Besides, [25] suggests two algorithms for estimating the parameters of nonlinear Hammerstein systems with missing data. A distributed nonlinear parameter estimation algorithm is further developed in unbalanced multi-agent networks [26]. Nonlinear model is partially used in [27], in which a method for distributed solution of robust estimation problems is proposed with equality constraints based on the augmented Lagrangian method. [28] discusses both linear and nonlinear models for secure distributed estimation in the presence of attackers in the network.

In this paper, we deal with second-order non-linear model for sensors. It allows to model a linear system which shows some small degree of nonlinearities. The challenges of the second-order nonlinear model is in adaptiveness in which the nonlinear coefficient may change over time. In the proposed solution, the adaptiveness are taken into account. Thanks to the second-order nonlinear model, we can investigate the nonlinearity effect on the performance of a DLMS algorithm. Hence, an upper bound for the error is calculated in the paper. Also, an improved version of DLMS algorithm is suggested which incorporates nonlinearity estimation and compensation units. Further, the Cramer-Rao bound (CRB) is calculated for the distributed estimation problem in the presence of second-order nonlinearity. Simulation results show the benefit of the proposed method especially when there are small nonlinear coefficients.

2 System model and problem formulation

Consider a WSN with NN sensors (nodes) collecting a scalar measurement dk,id_{k,i}, where 1kN1\leq k\leq N is the node index and 1iI1\leq i\leq I is the time instant. Each sensor contains its own L×1L\times 1 input regression vector 𝐮k,i\mathbf{u}_{k,i}. The model of measurements is linear, i.e., dk,i=𝐮k,iTωo+vk,id_{k,i}={\mathbf{u}^{T}_{k,i}}\mathbf{\omega}_{o}+v_{k,i}, with the unknown L×1L\times 1 vector ωo\mathbf{\omega}_{o}, where vk,iv_{k,i} denotes the measurement noise. It is assumed that the sensor equipment has a power amplifier with a second-order nonlinear model. So, if the nonlinear function is f()f(\cdot) then nonlinear measurements are

d~k,i=f(dk,i)=dk,i+bkdk,i2+θk,i,\tilde{d}_{k,i}=f(d_{k,i})=d_{k,i}+b_{k}d^{2}_{k,i}+\theta_{k,i}, (1)

where bkb_{k} is the second-order nonlinearity coefficient of kkth sensor and θk,i\theta_{k,i} is the measurement noise which is assumed to be zero-mean Gaussian with variance σθ,k2\sigma^{2}_{\theta,k}. The constant term in the above model (1) is omitted since the system is an approximately linear system with a second-order nonlinear term.

The main objective of the distributed estimation problem in the WSN is to estimate the unknown vector ωo\mathbf{\omega}_{o} using nonlinear measurements d~k,i\tilde{d}_{k,i} and regression vectors 𝐮k,i\mathbf{u}_{k,i} of sensors. The other objective is to estimate the nonlinearity of the sensors in the network.

3 The DLMS Algorithm in the presence of nonlinearities

Diffusion algorithms are usually suitable solutions for distributed estimation problems, of which DLMS is the most basic. The two steps of the DLMS algorithm is the adaptation and combination steps. It can be implemented in two ways: Adapt Then Combine (ATC) and Combine Then Adapt (CTA). The ATC version of DLMS is as follows [1]:

{φ~k,i=ωk,i1+μkl𝒩kclk𝐮l,i(d~l,i𝐮l,iTωk,i1),ω~k,i=l𝒩kalkφ~~l,i,\Bigg{\{}\begin{array}[]{ll}\tilde{\mathbf{\varphi}}_{k,i}=\mathbf{\omega}_{k,i-1}+\mu_{k}\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}\mathbf{u}_{l,i}(\tilde{d}_{l,i}-\mathbf{u}^{T}_{l,i}\mathbf{\omega}_{k,i-1}),\\ \tilde{\mathbf{\omega}}_{k,i}=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\tilde{\tilde{\mathbf{\varphi}}}_{l,i},\end{array} (2)

where 𝒩k\cal N_{\mathrm{k}}, φ~k,i\tilde{\mathbf{\varphi}}_{k,i}, and φ~~l,i=f(φ~l,i)\tilde{\tilde{\mathbf{\varphi}}}_{l,i}=f(\tilde{\mathbf{\varphi}}_{l,i}) denote the neighborhood set of the kk’th sensor, the intermediate estimation of kk’th sensor in the presence of nonlinearity at time index ii, and the received intermediate estimation of sensor ll, respectively. Further, alka_{lk} and clkc_{lk} are the combination coefficients from node ll to node kk in the adaptation and combination steps, respectively. The local cost function of node kk in the DLMS algorithm in presence of nonlinearity is defined as

J~k(ω)=l𝒩kclkE{d~l,i𝐮l,iTω22}.\tilde{J}_{k}(\omega)=\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}\mathrm{E}\{||\tilde{d}_{l,i}-\mathbf{u}^{T}_{l,i}\mathbf{\omega}||^{2}_{2}\}. (3)

where expectation operator E{}\mathrm{E}\{\} can be neglected and the point estimation can be replaced for expectation.

4 The DLMS Algorithm in the presence of nonlinearities

Diffusion algorithms are usually suitable solutions for distributed estimation problems, of which DLMS is the most basic. The two steps of the DLMS algorithm is the adaptation and combination steps. It can be implemented in two ways: Adapt Then Combine (ATC) and Combine Then Adapt (CTA). The ATC version of DLMS is as follows [1]:

{φ~k,i=ωk,i1+μkl𝒩kclk𝐮l,i(d~l,i𝐮l,iTωk,i1),ω~k,i=l𝒩kalkφ~~l,i,\Bigg{\{}\begin{array}[]{ll}\tilde{\mathbf{\varphi}}_{k,i}=\mathbf{\omega}_{k,i-1}+\mu_{k}\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}\mathbf{u}_{l,i}(\tilde{d}_{l,i}-\mathbf{u}^{T}_{l,i}\mathbf{\omega}_{k,i-1}),\\ \tilde{\mathbf{\omega}}_{k,i}=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\tilde{\tilde{\mathbf{\varphi}}}_{l,i},\end{array} (4)

where 𝒩k\cal N_{\mathrm{k}}, φ~k,i\tilde{\mathbf{\varphi}}_{k,i}, and φ~~l,i=f(φ~l,i)\tilde{\tilde{\mathbf{\varphi}}}_{l,i}=f(\tilde{\mathbf{\varphi}}_{l,i}) denote the neighborhood set of the kk’th sensor, the intermediate estimation of kk’th sensor in the presence of nonlinearity at time index ii, and the received intermediate estimation of sensor ll, respectively. Further, alka_{lk} and clkc_{lk} are the combination coefficients from node ll to node kk in the adaptation and combination steps, respectively. The local cost function of node kk in the DLMS algorithm in presence of nonlinearity is defined as

J~k(ω)=l𝒩kclkE{d~l,i𝐮l,iTω22}.\tilde{J}_{k}(\omega)=\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}\mathrm{E}\{||\tilde{d}_{l,i}-\mathbf{u}^{T}_{l,i}\mathbf{\omega}||^{2}_{2}\}. (5)

where expectation operator E{}\mathrm{E}\{\} can be neglected and the point estimation can be replaced for expectation.

5 The Upper bound for the error term due to nonlinearity

In this section, we investigate the effect of second-order nonlinearity on the performance of the DLMS algorithm. We derive an upper bound for the l2l^{2}-norm of the error term, which is the difference between the estimated vector after combination step in the presence of nonlinearity and without the nonlinearity. To that end, we write the formula of the intermediate estimation in (4) in the following form

φ~k,i=ωk,i1μkωJ~(ωk,i1)=\tilde{\mathbf{\varphi}}_{k,i}=\mathbf{\omega}_{k,i-1}-\mu_{k}\nabla_{\mathbf{\omega}}\tilde{J}(\mathbf{\omega}_{k,i-1})=
ωk,i1+μkl𝒩kclk𝐮l,i(d~l,i𝐮l,iTωk,i1)=\mathbf{\omega}_{k,i-1}+\mu_{k}\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}\mathbf{u}_{l,i}(\tilde{d}_{l,i}-\mathbf{u}^{T}_{l,i}\mathbf{\omega}_{k,i-1})=\\
φk,i+μkl𝒩kclk(bldl,i2)𝐮l,i=φk,i+Δφk,i,\mathbf{\varphi}_{k,i}+\mu_{k}\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}(b_{l}d^{2}_{l,i})\mathbf{u}_{l,i}=\mathbf{\varphi}_{k,i}+\Delta\mathbf{\varphi}_{k,i}, (6)

where the noise term θl\theta_{l} is neglected in comparison to nonlinear term bldl,i2b_{l}d^{2}_{l,i} and Δφk,iμkl𝒩kclk(bld~l,i2)𝐮l,i\Delta\mathbf{\varphi}_{k,i}\triangleq\mu_{k}\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}(b_{l}\tilde{d}^{2}_{l,i})\mathbf{u}_{l,i} is the error vector of the intermediate estimation. In fact, we assume that the noise level is much lower than the nonlinearity term. Then, the intermediate estimations of φ~l,i\tilde{\mathbf{\varphi}}_{l,i} is received by the node kk as φ~~l,i=f(φ~k=l,i)+ηl,i\tilde{\tilde{\mathbf{\varphi}}}_{l,i}=f(\tilde{\mathbf{\varphi}}_{k=l,i})+\eta_{l,i}. So, we have

φ~~l,i=φ~l,i+blφ~l,i2+ηl,i=\tilde{\tilde{\mathbf{\varphi}}}_{l,i}=\tilde{\mathbf{\varphi}}_{l,i}+b_{l}\tilde{\mathbf{\varphi}}^{2}_{l,i}+\eta_{l,i}=
φl,i+Δφl,i+bl(φl,i+Δφl,i)2+ηl,i,\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i}+b_{l}(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})^{2}+\eta_{l,i}, (7)

where 𝐱2𝐱𝐱\mathbf{x}^{2}\triangleq\mathbf{x}\odot\mathbf{x} is the element-wise square of a vector in which \odot is the hadamard operator. Then, the output of combination unit will be

ω~k,i=l𝒩kalkφ~~l,i=\tilde{\omega}_{k,i}=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\tilde{\tilde{\mathbf{\varphi}}}_{l,i}=
ωk,i+l𝒩kalk[Δφl,i+bl(φl,i+Δφl,i)2+ηl,i],\omega_{k,i}+\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\Big{[}\Delta\mathbf{\varphi}_{l,i}+b_{l}(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})^{2}+\eta_{l,i}\Big{]}, (8)

where ωk,i=l𝒩kalkφl,i\omega_{k,i}=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\mathbf{\varphi}_{l,i} is the new true estimation without nonlinearity. To upper bound the l2l^{2}-norm of the error vector of ω~k,iωk,i\tilde{\omega}_{k,i}-\omega_{k,i}, we write

=ω~k,iωk,i22={\mathcal{E}}=||\tilde{\omega}_{k,i}-\omega_{k,i}||^{2}_{2}=
l1𝒩kl2𝒩kal1,kal2,k[Δφl1,i+bl1(φl1,i+Δφl1,i)2]T\sum_{l_{1}\in\cal N_{\mathrm{k}}}\sum_{l_{2}\in\cal N_{\mathrm{k}}}a_{l_{1},k}a_{l_{2},k}\Big{[}\Delta\mathbf{\varphi}_{l_{1},i}+b_{l_{1}}(\mathbf{\varphi}_{l_{1},i}+\Delta\mathbf{\varphi}_{l_{1},i})^{2}\Big{]}^{T}
[Δφl2,i+bl2(φl2,i+Δφl2,i)2].\quad\quad\quad\Big{[}\Delta\mathbf{\varphi}_{l_{2},i}+b_{l_{2}}(\mathbf{\varphi}_{l_{2},i}+\Delta\mathbf{\varphi}_{l_{2},i})^{2}\Big{]}. (9)

The upper bound for the error term is expressed in the following theorem.

Theorem 1.

The error term =ω~k,iωk,i22{\mathcal{E}}=||\tilde{\omega}_{k,i}-\omega_{k,i}||^{2}_{2} is upper bounded by

=ω~k,iωk,i22C1,maxl1𝒩kl2𝒩kal1,kal2,k,{\mathcal{E}}=||\tilde{\omega}_{k,i}-\omega_{k,i}||^{2}_{2}\leq C_{1,\mathrm{max}}\sum_{l_{1}\in\cal N_{\mathrm{k}}}\sum_{l_{2}\in\cal N_{\mathrm{k}}}a_{l_{1},k}a_{l_{2},k}, (10)

where

C1,max=2bl,max2.5Lμ1.5ωo3+C_{1,\mathrm{max}}=2b^{2.5}_{l,\mathrm{max}}L\mu^{1.5}||\mathbf{\omega}_{o}||^{3}+
μ1.5bl,max3.5ωo3(Lμbl,maxωo+4L)2,\mu^{1.5}b^{3.5}_{l,\mathrm{max}}||\mathbf{\omega}_{o}||^{3}(L\sqrt{\mu b_{l,\mathrm{max}}}||\mathbf{\omega}_{o}||+4\sqrt{L})^{2}, (11)

where bl,maxb_{l,\mathrm{max}} is the upper bound of |bl||b_{l}|.

Proof.

Neglecting ii and kk in (9) for simplicity, and assuming the nonlinear coefficients blb_{l} are small, we can neglect the second order error terms, i.e., Δφl1TΔφl2\Delta\mathbf{\varphi}^{T}_{l_{1}}\Delta\mathbf{\varphi}_{l_{2}}. Then, we have the following approximation

l1l2al1al2{bl2Δφl1Tφl22+bl1(φl12)TΔφl2+bl1bl2[{\mathcal{E}}\approx\sum_{l_{1}}\sum_{l_{2}}a_{l_{1}}a_{l_{2}}\Big{\{}b_{l_{2}}\Delta\mathbf{\varphi}^{T}_{l_{1}}\mathbf{\varphi}^{2}_{l_{2}}+b_{l_{1}}(\mathbf{\varphi}^{2}_{l_{1}})^{T}\Delta\mathbf{\varphi}_{l_{2}}+b_{l_{1}}b_{l_{2}}\Big{[}
(φl12)Tφl22+2(φl1TΔφl1T)φl22+2(φl12)T(φl2Δφl2)]}(\mathbf{\varphi}^{2}_{l_{1}})^{T}\mathbf{\varphi}^{2}_{l_{2}}+2\Big{(}\mathbf{\varphi}^{T}_{l_{1}}\odot\Delta\mathbf{\varphi}^{T}_{l_{1}}\Big{)}\mathbf{\varphi}^{2}_{l_{2}}+2(\mathbf{\varphi}^{2}_{l_{1}})^{T}\Big{(}\mathbf{\varphi}_{l_{2}}\odot\Delta\mathbf{\varphi}_{l_{2}}\Big{)}\Big{]}\Big{\}}
=l1l2al1al2Ψl1,l2.=\sum_{l_{1}}\sum_{l_{2}}a_{l_{1}}a_{l_{2}}\Psi_{l_{1},l_{2}}. (12)

Using the triangular inequality, we have

l1l2al1al2Ψl1,l2l1l2al1al2|Ψl1,l2|,{\mathcal{E}}\approx\sum_{l_{1}}\sum_{l_{2}}a_{l_{1}}a_{l_{2}}\Psi_{l_{1},l_{2}}\leq\sum_{l_{1}}\sum_{l_{2}}a_{l_{1}}a_{l_{2}}|\Psi_{l_{1},l_{2}}|, (13)

and we achieve

|Ψl1,l2||bl2||Δφl1Tφl22|+|bl1||(φl12)TΔφl2|+|\Psi_{l_{1},l_{2}}|\leq|b_{l_{2}}||\Delta\mathbf{\varphi}^{T}_{l_{1}}\mathbf{\varphi}^{2}_{l_{2}}|+|b_{l_{1}}||(\mathbf{\varphi}^{2}_{l_{1}})^{T}\Delta\mathbf{\varphi}_{l_{2}}|+
bl1bl2[|(φl12)Tφl22|+2|(φl1TΔφl1T)φl22|+2|(φl12)T(φl2Δφl2)|].b_{l_{1}}b_{l_{2}}\Big{[}|(\mathbf{\varphi}^{2}_{l_{1}})^{T}\mathbf{\varphi}^{2}_{l_{2}}|+2|(\mathbf{\varphi}^{T}_{l_{1}}\odot\Delta\mathbf{\varphi}^{T}_{l_{1}})\mathbf{\varphi}^{2}_{l_{2}}|+2|(\mathbf{\varphi}^{2}_{l_{1}})^{T}(\mathbf{\varphi}_{l_{2}}\odot\Delta\mathbf{\varphi}_{l_{2}})|\Big{]}. (14)

Now, we assume |Δφj|2<Mj|\Delta\mathbf{\varphi}_{j}|^{2}<M_{j}, where MjM_{j} is the upper bound for square error of elements. Also, we assume Δφ22<MΔϕ||\Delta\mathbf{\varphi}||^{2}_{2}<M_{\Delta\phi}, where MΔϕM_{\Delta\phi} is the upper bound of the l2l^{2}-norm. We also know that MjM_{j} and MΔϕM_{\Delta\phi} have linear relationship, i.e., MΔϕ=LMjM_{\Delta\phi}=LM_{j}. Thus, we only derive the upper bound MjM_{j}. By neglecting the noise term and assuming μk=μ\mu_{k}=\mu, we can write

|Δφj|=|μl𝒩kclk(bldl,i2)ul,i,j|μl𝒩kclk|bl||dl,i2||ul,i,j|.|\Delta\mathbf{\varphi}_{j}|=|\mu\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}(b_{l}{d}^{2}_{l,i})u_{l,i,j}|\leq\mu\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}|b_{l}||{d}^{2}_{l,i}||u_{l,i,j}|. (15)

Assuming 𝐮l,i=1||\mathbf{u}_{l,i}||=1, without loss of generality, we have |ul,i,j|1|u_{l,i,j}|\leq 1. Also, using Cauchy-Schuartz inequality, we have |dl,i|2=|𝐮l,iTωo|ωo2|d_{l,i}|^{2}=|\mathbf{u}^{T}_{l,i}\mathbf{\omega}_{o}|\leq||\mathbf{\omega}_{o}||^{2}. Then, we have

|Δφj|μl𝒩kclkbl,maxωo2=μbl,maxωo2=Mj=M.|\Delta\mathbf{\varphi}_{j}|\leq\mu\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}b_{l,{\mathrm{max}}}||\mathbf{\omega}_{o}||^{2}=\mu b_{l,{\mathrm{max}}}||\mathbf{\omega}_{o}||^{2}=M_{j}=M. (16)

Further, we have MΔϕ=μLbl,maxωo2M_{\Delta\phi}=\mu Lb_{l,{\mathrm{max}}}||\mathbf{\omega}_{o}||^{2}. After finding the upper bounds MjM_{j} and MΔϕM_{\Delta\phi}, we derive the upper bound for |Ψl1,l2||\Psi_{l_{1},l_{2}}| by applying Cauchy-Schartz inequality. Hence, we have

|Ψl1,l2||bl2||Δφl1||.||φl22||+|bl1||Δφl2||.||φl12||+bl1bl2[|\Psi_{l_{1},l_{2}}|\leq|b_{l_{2}}||\Delta\mathbf{\varphi}_{l_{1}}||.||\mathbf{\varphi}^{2}_{l_{2}}||+|b_{l_{1}}||\Delta\mathbf{\varphi}_{l_{2}}||.||\mathbf{\varphi}^{2}_{l_{1}}||+b_{l_{1}}b_{l_{2}}\Big{[}
||φl12||.||φl22||+2||φl1TΔφl1T||.||φl22||+2||φl2TΔφl2T||.||φl12||].||\mathbf{\varphi}^{2}_{l_{1}}||.||\mathbf{\varphi}^{2}_{l_{2}}||+2||\mathbf{\varphi}^{T}_{l_{1}}\odot\Delta\mathbf{\varphi}^{T}_{l_{1}}||.||\mathbf{\varphi}^{2}_{l_{2}}||+2||\mathbf{\varphi}^{T}_{l_{2}}\odot\Delta\mathbf{\varphi}^{T}_{l_{2}}||.||\mathbf{\varphi}^{2}_{l_{1}}||\Big{]}. (17)

Then, considering the upper bounds, we have

|Ψl1,l2|bl,maxMΔϕ(||φl12||+||φl22||)+bl,max2[|\Psi_{l_{1},l_{2}}|\leq b_{l,\mathrm{max}}\sqrt{M_{\Delta\phi}}(||\mathbf{\varphi}^{2}_{l_{1}}||+||\mathbf{\varphi}^{2}_{l_{2}}||)+b^{2}_{l,\mathrm{max}}\Big{[}
||φl12||||φl22||+2||φl22||B1+2||φl12||B2],||\mathbf{\varphi}^{2}_{l_{1}}||||\mathbf{\varphi}^{2}_{l_{2}}||+2||\mathbf{\varphi}^{2}_{l_{2}}||B_{1}+2||\mathbf{\varphi}^{2}_{l_{1}}||B_{2}\Big{]}, (18)

where B1B_{1} and B2B_{2} are the upper bounds of φl1TΔφl1T||\mathbf{\varphi}^{T}_{l_{1}}\odot\Delta\mathbf{\varphi}^{T}_{l_{1}}|| and φl2TΔφl2T||\mathbf{\varphi}^{T}_{l_{2}}\odot\Delta\mathbf{\varphi}^{T}_{l_{2}}||, respectively. We have φl1TΔφl1T2=j(ϕl1,jΔϕl1,j)2Mjφ2=Mj=B12||\mathbf{\varphi}^{T}_{l_{1}}\odot\Delta\mathbf{\varphi}^{T}_{l_{1}}||^{2}=\sum_{j}(\phi_{l_{1},j}\Delta\phi_{l_{1},j})^{2}\leq M_{j}||\mathbf{\varphi}||^{2}=M_{j}=B^{2}_{1}, where without loss of generality, we assume that the intermediate estimations are normalized to unity. Similarly, we have B2=MjB_{2}=\sqrt{M_{j}}. Besides, we have φl12=j=1Lϕl1,j4MjL||\mathbf{\varphi}^{2}_{l_{1}}||=\sqrt{\sum_{j=1}^{L}\phi^{4}_{l_{1},j}}\leq M_{j}\sqrt{L}. Hence, following (18) and simplifying the terms, we have

|Ψl1,l2|2bl,maxL(Mj)1.5+bl,max2L(Mj)1.5(LMj+4L).|\Psi_{l_{1},l_{2}}|\leq 2b_{l,\mathrm{max}}L(M_{j})^{1.5}+b^{2}_{l,\mathrm{max}}L(M_{j})^{1.5}(L\sqrt{M_{j}}+4\sqrt{L}).
=C1,max=C_{1,\mathrm{max}} (19)

Then, substituting Mj=μbl,maxωo2M_{j}=\mu b_{l,{\mathrm{max}}}||\mathbf{\omega}_{o}||^{2} in (19), with some simplifications, the proof is achieved. ∎

6 Mean convergence analysis in presence of nonlinearity

In this section, the mean convergence analysis of DLMS in presence of second-order nonlinearity is performed. In the first case, we assume the nonlinearity both in measurements and links. In the second case, we consider the nonlinearity just in measurements.

6.1 Genral-case:nonlinearity both in measurements and links

From the combination step of the DLMS algorithm in presence of second-order nonlinearity, we have

ωk,i=l𝒩kalk[φl,i~+blφl,i2~+ηl,i]=\mathbf{\omega}_{k,i}=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\Big{[}\tilde{\mathbf{\varphi}_{l,i}}+b_{l}\tilde{\mathbf{\varphi}^{2}_{l,i}}+\mathbf{\eta}_{l,i}\Big{]}=
l𝒩kalk[φl,i~+bl(φl,i+Δφl,i)+ηl,i]=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\Big{[}\tilde{\mathbf{\varphi}_{l,i}}+b_{l}(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})+\mathbf{\eta}_{l,i}\Big{]}=
l𝒩kalkφl,i+l𝒩kalk[φl,i~+bl(φl,i+Δφl,i)+ηl,i],\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\mathbf{\varphi}_{l,i}+\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\Big{[}\tilde{\mathbf{\varphi}_{l,i}}+b_{l}(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})+\mathbf{\eta}_{l,i}\Big{]}, (20)

where Δφl,i\Delta\mathbf{\varphi}_{l,i} and φl,i\mathbf{\varphi}_{l,i} are given by

Δφl,iμl𝒩lclk(bld~l,i2)𝐮l,i,\Delta\mathbf{\varphi}_{l,i}\triangleq\mu\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}}k}(b_{l}^{{}^{\prime}}\tilde{d}^{2}_{l^{{}^{\prime}},i})\mathbf{u}_{l^{{}^{\prime}},i}, (21)

and

φl,i=ωl,i1+μ𝐩l,i,\mathbf{\varphi}_{l,i}=\mathbf{\omega}_{l,i-1}+\mu\mathbf{p}_{l,i}, (22)

where 𝐩l,i=l𝒩lclkel,i𝐮l,i\mathbf{p}_{l,i}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}}k}e_{l^{{}^{\prime}},i}\mathbf{u}_{l^{{}^{\prime}},i} in which we have el,i=dl,i𝐮l,iωl,i1e_{l^{{}^{\prime}},i}=d_{l^{{}^{\prime}},i}-\mathbf{u}^{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1}. So, if we define ω~l,i=ωl,iωo\tilde{\mathbf{\omega}}_{l,i}=\mathbf{\omega}_{l,i}-\mathbf{\omega}^{o} and ω~~l,i=E{ω~l,i}\tilde{\tilde{\mathbf{\omega}}}_{l,i}=\mathrm{E}\{\tilde{\mathbf{\omega}}_{l,i}\}, we have

ω~~l,i=l𝒩lalkω~~l,i1+l𝒩lalk[μE{𝐩l,i}+E{Δφl,i}+blE{(φl,i+Δφl,i)2}].\tilde{\tilde{\mathbf{\omega}}}_{l,i}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\tilde{\tilde{\mathbf{\omega}}}_{l,i-1}+\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\Big{[}\mu\mathrm{E}\{\mathbf{p}_{l,i}\}+\mathrm{E}\{\Delta\mathbf{\varphi}_{l,i}\}+b_{l}\mathrm{E}\{(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})^{2}\}\Big{]}. (23)

Then, if we define 𝐟l,iE{𝐩l,i}\mathbf{f}_{l,i}\triangleq\mathrm{E}\{\mathbf{p}_{l,i}\}, 𝐠l,iE{Δφl,i}\mathbf{g}_{l,i}\triangleq\mathrm{E}\{\Delta\mathbf{\varphi}_{l,i}\}, and 𝐤l,iE{(φl,i+Δφl,i)2}\mathbf{k}_{l,i}\triangleq\mathrm{E}\{(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})^{2}\}, then (23) can be written in the following form

ω~~l,i=l𝒩lalkω~~l,i1+l𝒩lalk[μ𝐟l,i+𝐠l,i+bl𝐤l,i].\tilde{\tilde{\mathbf{\omega}}}_{l,i}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\tilde{\tilde{\mathbf{\omega}}}_{l,i-1}+\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\Big{[}\mu\mathbf{f}_{l,i}+\mathbf{g}_{l,i}+b_{l}\mathbf{k}_{l,i}\Big{]}. (24)

In the appendix 1, the 𝐟l,i\mathbf{f}_{l,i}, 𝐠l,i\mathbf{g}_{l,i}, and kbl,ikb_{l,i} are calculated as

𝐟l,i=σu2l𝒩lcl,lω~~l,i1,\mathbf{f}_{l,i}=-\sigma^{2}_{u}\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\tilde{\tilde{\mathbf{\omega}}}_{l^{{}^{\prime}},i-1}, (25)

,

𝐠l,i=𝟎,\mathbf{g}_{l,i}=\mathbf{0}, (26)

and

𝐤l,i=E{φl,i2}+E{Δφl,i2}=𝐡l,i+𝐫l,i,\mathbf{k}_{l,i}=\mathrm{E}\{\mathbf{\varphi}^{2}_{l,i}\}+\mathrm{E}\{\Delta\mathbf{\varphi}^{2}_{l,i}\}=\mathbf{h}_{l,i}+\mathbf{r}_{l,i}, (27)

where 𝐡l,iE{φl,i2}\mathbf{h}_{l,i}\triangleq\mathrm{E}\{\mathbf{\varphi}^{2}_{l,i}\} and 𝐫l,i=E{Δφl,i2}\mathbf{r}_{l,i}=\mathrm{E}\{\Delta\mathbf{\varphi}^{2}_{l,i}\}. In appendix 2, the 𝐡l,i\mathbf{h}_{l,i} and 𝐫l,i\mathbf{r}_{l,i} are computed in Appendix 2.

Now, putting all together, (24) can be written as

ω~~l,i=l𝒩lalkω~~l,i1μσu2l𝒩lalkl𝒩lcl,lω~~l,i1+l𝒩lalkbl(𝐡l,i+𝐫l,i)=\tilde{\tilde{\mathbf{\omega}}}_{l,i}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\tilde{\tilde{\mathbf{\omega}}}_{l,i-1}-\mu\sigma^{2}_{u}\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\tilde{\tilde{\mathbf{\omega}}}_{l^{{}^{\prime}},i-1}+\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}b_{l}(\mathbf{h}_{l,i}+\mathbf{r}_{l,i})=
l𝒩lγlkω~~l,i1+𝐠k,i,\sum_{l\in\cal N_{\mathrm{l}}}\gamma_{lk}\tilde{\tilde{\mathbf{\omega}}}_{l,i-1}+\mathbf{g}_{k,i}, (28)

where γlk=alkμσu2l𝒩lalkcl,l\gamma_{l^{{}^{\prime}}k}=a_{l^{{}^{\prime}}k}-\mu\sigma^{2}_{u}\sum_{l\in\cal N_{\mathrm{l^{{}^{\prime}}}}}a_{lk}c_{l^{{}^{\prime}},l} and we have

𝐠k,i=l𝒩lalkbl(𝐡l,i+𝐫l,i).\mathbf{g}_{k,i}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}b_{l}(\mathbf{h}_{l,i}+\mathbf{r}_{l,i}). (29)

6.2 Special-case:nonlinearity only in measurements

In this part, the mean convergence analysis is performed when the only nonlinearity is in measurements. In this case, we can write

ωk,i=l𝒩lalkφ~l,i=l𝒩lalk(φl,i+Δφl,i)=\mathbf{\omega}_{k,i}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\tilde{\mathbf{\varphi}}_{l,i}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})=
l𝒩lalk(ωl,i1+μ𝐩l,i+Δφl,i).\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}(\mathbf{\omega}_{l,i-1}+\mu\mathbf{p}_{l,i}+\Delta\mathbf{\varphi}_{l,i}). (30)

Then, (30) can be written as

ωk,iωo=l𝒩lalk(ωl,i1ωo)+l𝒩lalk(μ𝐩l,i+Δφl,i).\mathbf{\omega}_{k,i}-\mathbf{\omega}^{o}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}(\mathbf{\omega}_{l,i-1}-\mathbf{\omega}^{o})+\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}(\mu\mathbf{p}_{l,i}+\Delta\mathbf{\varphi}_{l,i}). (31)

By taking expectation from both sides of (31), we have

ω~~k,i=l𝒩lalkω~~l,i1μσ2l𝒩lalkl𝒩lcl,lω~~l,i1.\tilde{\tilde{\mathbf{\omega}}}_{k,i}=\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\tilde{\tilde{\mathbf{\omega}}}_{l,i-1}-\mu\sigma^{2}\sum_{l\in\cal N_{\mathrm{l}}}a_{lk}\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\tilde{\tilde{\mathbf{\omega}}}_{l^{{}^{\prime}},i-1}. (32)

Now, (32) can be written as a recursion without bias term, as follows:

ω~~k,i=lGrapha~l,kω~~l,i1,\tilde{\tilde{\mathbf{\omega}}}_{k,i}=\sum_{l\in\mathrm{Graph}}\tilde{a}_{l,k}\tilde{\tilde{\mathbf{\omega}}}_{l,i-1}, (33)

where a~l,k=alkμσu2l𝒩lcl,l\tilde{a}_{l,k}=a_{lk}-\mu\sigma^{2}_{u}\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}.

7 The Proposed Algorithm

DLMS algorithm performance is degraded by nonlinearity. To improve the performance of the DLMS algorithm in the presence of nonlinearity, we propose to estimate the nonlinear coefficients and then compensate their effects. This process is adaptive and online as it shows its benefits in comparison to a pre-calibration process. We call the proposed algorithm second-order nonlinearity estimated and compensated DLMS (SONEC-DLMS) algorithm. It consists of five different steps. The details of steps are:

  1. 1.

    Nonlinear coefficient estimation: If we define the coefficient vector of node kk as 𝐛k=[bl]l𝒩k\mathbf{b}_{k}=[b_{l}]_{l\in\cal N_{\mathrm{k}}}, we estimate this vector at node kk by suggesting the following cost function as:

    Jk(ω)=l𝒩kalkE{d~l,ibldl,i2𝐮k,iTω22}=J_{k}(\mathbf{\omega})=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\mathrm{E}\{||\tilde{d}_{l,i}-b_{l}d^{2}_{l,i}-\mathbf{u}^{T}_{k,i}\mathbf{\omega}||^{2}_{2}\}=
    J¯k(ω,𝐛k,𝐝k),\bar{J}_{k}(\mathbf{\omega},\mathbf{b}_{k},\mathbf{d}_{k}), (34)

    where 𝐝k=[dl,i]l𝒩k\mathbf{d}_{k}=[d_{l,i}]_{l\in\cal N_{\mathrm{k}}} is the linear ground truth measurement vector of node kk with incorporating the measurement noise and is estimated in the second step of the algorithm, and 𝐛k=[bl,k]l𝒩k\mathbf{b}_{k}=[b_{l,k}]_{l\in\cal N_{\mathrm{k}}} is the nonlinear coefficients estimated by node kk. To find 𝐛k\mathbf{b}_{k}, we use a steepest descent of J¯k(ω,𝐛k,𝐝k^)\bar{J}_{k}(\mathbf{\omega},\mathbf{b}_{k},\hat{\mathbf{d}_{k}}) by assuming 𝐝k^\hat{\mathbf{d}_{k}} is known. So, we have

    𝐛^k,i=𝐛^k,i1μb𝐛kJ¯=𝐛^k,i1+μb𝐜k𝐞~k,i𝐝k,i2,\hat{\mathbf{b}}_{k,i}=\hat{\mathbf{b}}_{k,i-1}-\mu_{b}\nabla_{\mathbf{b}_{k}}\bar{J}=\hat{\mathbf{b}}_{k,i-1}+\mu_{b}{\bf{c}}_{k}\tilde{\mathbf{e}}_{k,i}\odot\mathbf{d}^{2}_{k,i}, (35)

    where 𝐜k=[clk]l𝒩k{\bf{c}}_{k}=[c_{lk}]_{l\in\cal N_{\mathrm{k}}}, 𝐞~k,i=[e~l,i]l𝒩k\tilde{\mathbf{e}}_{k,i}=[\tilde{e}_{l,i}]_{l\in\cal N_{\mathrm{k}}}, and 𝐝2=𝐝𝐝\mathbf{d}^{2}=\mathbf{d}\odot\mathbf{d}.

  2. 2.

    True measurement estimation: In this step, since we estimate dl,id_{l,i} from d~l,i\tilde{d}_{l,i}, i.e., the second-order nonlinear equation, we can equivalently call this step compensation of nonlinear measurements. We use the second-order equation bldl,i2+dl,id~l,i=0b_{l}d^{2}_{l,i}+d_{l,i}-\tilde{d}_{l,i}=0. So, neglecting the other incorrect solution, the correct solution is

    d^l,i=1+1+4b^ld~l,i2b^l.\hat{d}_{l,i}=\frac{-1+\sqrt{1+4\hat{b}_{l}\tilde{d}_{l,i}}}{2\hat{b}_{l}}. (36)
  3. 3.

    Adaptation step: This step is equivalent to a classical adaptation step in DLMS algorithm, i.e.,

    φk,i=ωk,i1μωJ¯(ωk,i1)=\mathbf{\varphi}_{k,i}=\mathbf{\omega}_{k,i-1}-\mu\nabla_{\mathbf{\omega}}\bar{J}(\mathbf{\omega}_{k,i-1})=
    ωk,i1+μl𝒩kclke~l,i𝐮l,i,\mathbf{\omega}_{k,i-1}+\mu\sum_{l\in\cal N_{\mathrm{k}}}c_{lk}\tilde{e}_{l,i}\mathbf{u}_{l,i}, (37)

    where e~l,i=d~l,ib^ld^l,i2𝐮l,iTωk,i1\tilde{e}_{l,i}=\tilde{d}_{l,i}-\hat{b}_{l}\hat{d}^{2}_{l,i}-\mathbf{u}^{T}_{l,i}\mathbf{\omega}_{k,i-1}.

  4. 4.

    Compensation of nonlinearity in the intermediate estimation: After exchanging the intermediate estimations of φl,i\mathbf{\varphi}_{l,i}, the received intermediate estimations, i.e., φ~l,i=f(φl,i)\tilde{\mathbf{\varphi}}_{l,i}=f(\mathbf{\varphi}_{l,i}), should be compensated by the relation of second order nonlinear equation. Similar to step 2, we write

    φ^l,i,j=1+1+4b^lφ~l,i,j2b^l.\hat{\varphi}_{l,i,j}=\frac{-1+\sqrt{1+4\hat{b}_{l}\tilde{\varphi}_{l,i,j}}}{2\hat{b}_{l}}. (38)
  5. 5.

    Combination step: In this step, we update the final estimation of node kk as ωk,i=l𝒩kalkφ^l,i\mathbf{\omega}_{k,i}=\sum_{l\in\cal N_{\mathrm{k}}}a_{lk}\hat{\mathbf{\varphi}}_{l,i}.

Hence, the SONEC-DLMS algorithm is a five-step diffusion algorithm having three extra steps compared to DLMS algorithm. These three steps are, one step for estimation of nonlinear coefficients and, two other steps for compensation of nonlinearity of measurements and intermediate estimations. We call this algorithm fully-distributed SONEC-DLMS algorithm. The computational complexity of the proposed SONEC-DLMS in terms of number of addition, multiplication, and nonlinear operator of square root, in comparison to DLMS algorithm is depicted in Table 1. It is seen that the computational complexity of the proposed algorithm is approximately three times that of the DLMS algorithm.

Table 1: Computational Complexity per node kk and per iteration of algorithms (Nk=Card{𝒩k}N_{k}=\mathrm{Card}\{\cal N_{\mathrm{k}}\})
Algorithm Add Multiplication Nonlinear
DLMS L(3Nk1)\!\!\!\begin{aligned} L(3N_{k}-1)&\end{aligned} L(3Nk+1)\!\!\!\begin{aligned} L(3N_{k}+1)&\end{aligned} 0\!\!\!\begin{aligned} 0&\end{aligned}
SONEC-DLMS L(9Nk+1)\!\!\!\begin{aligned} L(9N_{k}+1)&\end{aligned} L(9Nk+2)\!\!\!\begin{aligned} L(9N_{k}+2)&\end{aligned} 3Nk\!\!\!\begin{aligned} 3N_{k}&\end{aligned}
Nonlinear: Nonlinear operators such as square root.

To further improve the performance of the SONEC-DLMS algorithm, we propose a semi-distributed SONEC-DLMS algorithm, in which the nonlinear coefficients are estimated in a centralized manner by a fusion center by using training data. This version of the proposed algorithm, which can be considered as a combination of distributed and centralized algorithms, contains only four steps and the nonlinearity estimation step is done separately in a centralized manner. As we will see in the simulation results, the performance of this semi-distributed algorithm is close to that of DLMS without nonlinearity.

8 Cramer-Rao bound

In this section, the Cramer-Rao bound for estimating the nonlinear coefficient vector 𝐛=[bl]\mathbf{b}=[b_{l}] and unknown vector ω=ωo\mathbf{\omega}=\mathbf{\omega}_{o} is derived. Let us define an (L+N)×1(L+N)\times 1 parameter vector θ=[ωT𝐛T]T\mathbf{\theta}=[\mathbf{\omega}^{T}\mathbf{b}^{T}]^{T}. We intend to find the CRB of estimated θ\mathbf{\theta} based on the measurements d~l,i\tilde{d}_{l,i}. All the measurements are defined in a matrix 𝐗=[𝐱1,𝐱2,,𝐱N]\mathbf{X}=[\mathbf{x}_{1},\mathbf{x}_{2},...,\mathbf{x}_{N}] where 𝐱l=[d~l,1,d~l,2,,d~l,I]T\mathbf{x}_{l}=[\tilde{d}_{l,1},\tilde{d}_{l,2},...,\tilde{d}_{l,I}]^{T} is the total observations of node ll. From (1), we have d~l,iN(𝐮l,iTω+bl(𝐮l,iTω)2,σθ,l2)\tilde{d}_{l,i}\sim\mathrm{N}(\mathbf{u}^{T}_{l,i}\mathbf{\omega}+b_{l}(\mathbf{u}^{T}_{l,i}\mathbf{\omega})^{2},\sigma^{2}_{\theta,l}), where N(a,b)\mathrm{N}(a,b) represents the Gaussian distribution with mean aa and variance bb. The Fisher Information Matrix (FIM) of measurements 𝐗\mathbf{X} for estimating θ\mathbf{\theta} is calculated as FIMθ=(𝐅ω𝐅bωT𝐅bω𝐅b)\mathrm{FIM}_{\mathbf{\theta}}=\left(\begin{array}[]{cc}\mathbf{F}_{\omega}&\mathbf{F}^{T}_{b\omega}\\ \mathbf{F}_{b\omega}&\mathbf{F}_{b}\\ \end{array}\right), where 𝐅ω,i,j=E{2lnp(𝐗;θ)ωiωj}\mathbf{F}_{\omega,i,j}=-\mathrm{E}\Big{\{}\frac{\partial^{2}\ln p(\mathbf{X};\mathbf{\theta})}{\partial\omega_{i}\omega_{j}}\Big{\}}, 𝐅b,i,j=E{2lnp(𝐗;θ)bibj}\mathbf{F}_{b,i,j}=-\mathrm{E}\Big{\{}\frac{\partial^{2}\ln p(\mathbf{X};\mathbf{\theta})}{\partial b_{i}b_{j}}\Big{\}}, and 𝐅bω,i,j=E{2lnp(𝐗;θ)biωj}\mathbf{F}_{b\omega,i,j}=-\mathrm{E}\Big{\{}\frac{\partial^{2}\ln p(\mathbf{X};\mathbf{\theta})}{\partial b_{i}\omega_{j}}\Big{\}}.

To further proceed and to calculate the likelihood p(𝐗;θ)=p(𝐱1,𝐱2,,𝐱N;θ)p(\mathbf{X};\mathbf{\theta})=p(\mathbf{x}_{1},\mathbf{x}_{2},...,\mathbf{x}_{N};\mathbf{\theta}), we write the observation vector 𝐱k\mathbf{x}_{k} as

𝐱k=𝐔kω+bk(𝐔kω)2+𝐳k,\mathbf{x}_{k}=\mathbf{U}_{k}\mathbf{\omega}+b_{k}(\mathbf{U}_{k}\mathbf{\omega})^{2}+\mathbf{z}_{k}, (39)

where 𝐔kT=[𝐮k,1|𝐮k,2||𝐮k,I]\mathbf{U}^{T}_{k}=[\mathbf{u}_{k,1}|\mathbf{u}_{k,2}|...|\mathbf{u}_{k,I}] and 𝐳k=[θk,1,θk,2,,θk,I]T\mathbf{z}_{k}=[\theta_{k,1},\theta_{k,2},...,\theta_{k,I}]^{T}. Assuming the independence of measurement noises in different nodes 𝐳k\mathbf{z}_{k}, we have 𝐱kN(𝐔kω+bk(𝐔kω)2,diag(σθ,k2))\mathbf{x}_{k}\sim\mathrm{N}(\mathbf{U}_{k}\mathbf{\omega}+b_{k}(\mathbf{U}_{k}\mathbf{\omega})^{2},\mathrm{diag}(\sigma^{2}_{\theta,k})). Hence, the log-likelihood can be written as

lnp(𝐗;θ)=k=1Nlnp(𝐱k;θ)=\ln p(\mathbf{X};\mathbf{\theta})=\sum_{k=1}^{N}\ln p(\mathbf{x}_{k};\mathbf{\theta})=
k=1NN2lnp(2πσθ,k2)12σθ,k2𝐱k𝐔kω+bk(𝐔kω)22.\sum_{k=1}^{N}-\frac{N}{2}\ln p(2\pi\sigma^{2}_{\theta,k})-\frac{1}{2\sigma^{2}_{\theta,k}}||\mathbf{x}_{k}-\mathbf{U}_{k}\mathbf{\omega}+b_{k}(\mathbf{U}_{k}\mathbf{\omega})^{2}||^{2}. (40)

So, the partial derivative is lnp(𝐗;θ)ωiωj=k=1N12σθ,k2ωiωj𝐱k𝐔kωbk(𝐔kω)22\frac{\partial\ln p(\mathbf{X};\mathbf{\theta})}{\partial\omega_{i}\partial\omega_{j}}=\sum_{k=1}^{N}\frac{-1}{2\sigma^{2}_{\theta,k}}\frac{\partial}{\partial\omega_{i}\omega_{j}}||\mathbf{x}_{k}-\mathbf{U}_{k}\mathbf{\omega}-b_{k}(\mathbf{U}_{k}\mathbf{\omega})^{2}||^{2}. To further proceed, we define 𝐫k=𝐔kω+bk(𝐔kω)2\mathbf{r}_{k}=\mathbf{U}_{k}\mathbf{\omega}+b_{k}(\mathbf{U}_{k}\mathbf{\omega})^{2}.

Let A=2ωiωj(𝐫kT𝐫k)=2ωiωjp=1Irk,p2A=\frac{\partial^{2}}{\partial\omega_{i}\omega_{j}}(\mathbf{r}^{T}_{k}\mathbf{r}_{k})=\frac{\partial^{2}}{\partial\omega_{i}\omega_{j}}\sum_{p=1}^{I}r^{2}_{k,p}, then some calculations lead to

2ωiωj(𝐫kT𝐫k)=2𝐫kT2𝐫kωiωj+2(𝐫kωi)T(𝐫kωj).\frac{\partial^{2}}{\partial\omega_{i}\omega_{j}}(\mathbf{r}^{T}_{k}\mathbf{r}_{k})=2\mathbf{r}^{T}_{k}\frac{\partial^{2}\mathbf{r}_{k}}{\partial\omega_{i}\omega_{j}}+2(\frac{\partial\mathbf{r}_{k}}{\partial\omega_{i}})^{T}(\frac{\partial\mathbf{r}_{k}}{\partial\omega_{j}}). (41)

Using (41) and taking expectations and considering that E(𝐱k)=𝐫k\mathrm{E}(\mathbf{x}_{k})=\mathbf{r}_{k}, we have

𝐅ω,i,j=k=1N12σθ,k2(𝐫kωi)T(𝐫kωj)=k=1N12σθ,k2𝐩k,iT𝐩k,j,\mathbf{F}_{\omega,i,j}=\sum_{k=1}^{N}\frac{1}{2\sigma^{2}_{\theta,k}}(\frac{\partial\mathbf{r}_{k}}{\partial\omega_{i}})^{T}(\frac{\partial\mathbf{r}_{k}}{\partial\omega_{j}})=\sum_{k=1}^{N}\frac{1}{2\sigma^{2}_{\theta,k}}\mathbf{p}^{T}_{k,i}\mathbf{p}_{k,j}, (42)

where 𝐩k,i=𝐫kωi\mathbf{p}_{k,i}=\frac{\partial\mathbf{r}_{k}}{\partial\omega_{i}}. Some calculations show that we have

𝐩k,i=𝐮k,:,i[1+2bk(𝐔kω)],\mathbf{p}_{k,i}=\mathbf{u}_{k,:,i}\odot[1+2b_{k}(\mathbf{U}_{k}\mathbf{\omega})], (43)

where 𝐮k,:,i=[uk,1,i,uk,2,i,,uk,I,i]T\mathbf{u}_{k,:,i}=[u_{k,1,i},u_{k,2,i},...,u_{k,I,i}]^{T}. Similar calculations can lead to

𝐅ω,i,j=k=1N1σθ,k2𝐩k,iT𝐩k,j,𝐅b,i,j=k=1N1σθ,k2𝐩´k,iT𝐩´k,j,\mathbf{F}_{\omega,i,j}=\sum_{k=1}^{N}\frac{1}{\sigma^{2}_{\theta,k}}\mathbf{p}^{T}_{k,i}\mathbf{p}_{k,j},\mathbf{F}_{b,i,j}=\sum_{k=1}^{N}\frac{1}{\sigma^{2}_{\theta,k}}\acute{\mathbf{p}}^{T}_{k,i}\acute{\mathbf{p}}_{k,j}, (44)
𝐅bω,i,j=k=1N1σθ,k2𝐩´k,iT𝐩k,j,\mathbf{F}_{b\omega,i,j}=\sum_{k=1}^{N}\frac{1}{\sigma^{2}_{\theta,k}}\acute{\mathbf{p}}^{T}_{k,i}{\mathbf{p}}_{k,j}, (45)

where

𝐩´k,i={0ki,(𝐔kω)2k=i.\acute{\mathbf{p}}_{k,i}=\Bigg{\{}\begin{array}[]{ll}0\quad\quad\quad k\neq i,\\ (\mathbf{U}_{k}\mathbf{\omega})^{2}\quad k=i.\end{array} (46)

9 Simulation Results

In this section, some experiments are performed to investigate the performance of the proposed SONEC-DLMS algorithm in a distributed network with nonlinear sensors. The simulation setup is as follows. The WSN consists of N=16N=16 sensors. The network is selected the same as the one introduced in [19]. The sensors of WSN are collected a second order nonlinear measurement of a L×1L\times 1 unknown vector ωo\mathbf{\omega}^{o} with L=20. The unknown vector elements and the elements of the regression vectors are chosen from normal distribution. For the nonlinear coefficients, we use a uniform random variable blU(bl,max,0)b_{l}\sim U(-b_{l,\mathrm{max}},0). Unless otherwise stated, we use bl,max=0.4b_{l,\mathrm{max}}=0.4 in the simulations. The proposed distributed estimation algorithm aims to estimate the unknown vector in an adaptive manner. For the background noise nk,in_{k,i}, we use a zero-mean Gaussian distribution with standard deviation equal to 0.045. The performance metric for evaluating the performance of the proposed algorithm is the mean square deviation (MSD) criterion defined as MSD(dB)=20log10(ωωo2)\mathrm{MSD}(\mathrm{dB})=20~{}\mathrm{log}_{10}(||\mathbf{\omega}-\mathbf{\omega}_{o}||_{2}). The number of Monte Carlo simulations is 100 independent runs and the results are averaged over all runs. The combination coefficients alka_{lk} and clkc_{lk} are chosen by the uniform policy [1].

The performance of the proposed SONEC-DLMS algorithm with its two different versions which are fully-distributed and semi-distributed is investigated. Furthermore, we have included a version of the proposed algorithm that utilizes compensation solely in the combination step. However, we have excluded another variant of the algorithm that applies compensation in the adaptation step but not in the combination step, as it failed to converge in the simulations. The step-sizes μk\mu_{k} and μb\mu_{b} have been carefully selected to minimize the final mean square deviation (MSD), with values of μk=0.01\mu_{k}=0.01 and μb=0.005\mu_{b}=0.005. The MSD of estimating the unknown vector ωo\mathbf{\omega}_{o} versus iteration number is depicted in Fig. 1. As it can be seen, the fully distributed SONEC-DLMS algorithm performs better than DLMS by at least 7dB. It shows that the performance of the semi-distributed SONEC-DLMS algorithm is close to that of the DLMS without nonlinearity. It demonstrates that there is a gap of at least 10dB between the CRB and the SONEC-DLMS. It also shows that the upper-bound is not tight, but is less than 10dB-10dB. Moreover, the MSD of estimating the nonlinear coefficient vector 𝐛\mathbf{b} versus iteration number is shown in Fig. 2. It shows a large gap between the performance of SONEC-DLMS algorithms and CRB.

Refer to caption
Figure 1: Variation of MSD for estimating the unknown vector ωo\mathbf{\omega}_{o} for DLMS with nonlinearity, DLMS without nonlinearity, fully-distributed SONEC-DLMS, semi-distributed SONEC-DLMS, and CRB.
Refer to caption
Figure 2: Variation of MSD for estimating the nonlinear coefficient vector 𝐛\mathbf{b} for fully-distributed SONEC-DLMS, semi-distributed SONEC-DLMS, and CRB.

10 Conclusion

In this paper, a solution for improving the performance of distributed estimation in the presence of nonlinearities was provided. The solution is to use a nonlinearity estimation and nonlinearity compensation units. Moreover, an upper bound for the error due to nonlinearity is obtained. Also, the CRB of the problem of distributed estimation in the presence of second-order nonlinearity was calculated. Simulation results show the effectiveness of the proposed algorithm. The future work could be working on the low resolution messages between sensors [29].

Appendix 1

To calculate 𝐟l,i=E{𝐩l,i}\mathbf{f}_{l,i}=\mathrm{E}\{\mathbf{p}_{l,i}\}, we can write

𝐟l,i=l𝒩lcl,lE{el,i𝐮l,i}=l𝒩lcl,lE{(dl,i𝐮l,iTωl,i1)𝐮l,i}=\mathbf{f}_{l,i}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\mathrm{E}\{e_{l^{{}^{\prime}},i}\mathbf{u}_{l^{{}^{\prime}},i}\}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\mathrm{E}\{(d_{l^{{}^{\prime}},i}-\mathbf{u}^{T}_{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1})\mathbf{u}_{l^{{}^{\prime}},i}\}=
l𝒩lcl,lE{𝐮l,iT(ωoωl,i1)𝐮l,i+𝐯l,i𝐮l,i}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\mathrm{E}\{\mathbf{u}^{T}_{l^{{}^{\prime}},i}(\mathbf{\omega}^{o}-\mathbf{\omega}_{l^{{}^{\prime}},i-1})\mathbf{u}_{l^{{}^{\prime}},i}+\mathbf{v}_{l^{{}^{\prime}},i}\mathbf{u}_{l^{{}^{\prime}},i}\}=
l𝒩lcl,lE{𝐮l,iTω~l,i1𝐮l,i}-\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\mathrm{E}\{\mathbf{u}^{T}_{l^{{}^{\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime}},i-1}\mathbf{u}_{l^{{}^{\prime}},i}\} (47)

To calculate 𝐬=E{𝐮l,iTω~l,i1𝐮l,i}\mathbf{s}=\mathrm{E}\{\mathbf{u}^{T}_{l^{{}^{\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime}},i-1}\mathbf{u}_{l^{{}^{\prime}},i}\}, we nominate 𝐫=𝐮l,i\mathbf{r}=\mathbf{u}_{l^{{}^{\prime}},i} and 𝐯=ω~l,i1\mathbf{v}=\tilde{\mathbf{\omega}}_{l^{{}^{\prime}},i-1} for simplicity. So, we have

sk=E{𝐫T𝐯rk}=E{(r1v1++rLvL)rk}=E{rk2vk},s_{k}=\mathrm{E}\{\mathbf{r}^{T}\mathbf{v}r_{k}\}=\mathrm{E}\{(r_{1}v_{1}+...+r_{L}v_{L})r_{k}\}=\mathrm{E}\{r^{2}_{k}v_{k}\}, (48)

since rk=ul,i1,kr_{k}=u_{l^{{}^{\prime}},i-1,k} and rj=rk=ul,i1,jr_{j}=r_{k}=u_{l^{{}^{\prime}},i-1,j} for kjk\neq j are uncorrelated. Hence, we have

E{𝐮l,iTω~l,i1𝐮l,i}=E{𝐫2𝐯}=σu2ω~~l,i1.\mathrm{E}\{\mathbf{u}^{T}_{l^{{}^{\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime}},i-1}\mathbf{u}_{l^{{}^{\prime}},i}\}=-\mathrm{E}\{\mathbf{r}^{2}\odot\mathbf{v}\}=-\sigma^{2}_{u}\tilde{\tilde{\mathbf{\omega}}}_{l^{{}^{\prime}},i-1}. (49)

Therefore, we reach to (25). To calculate 𝐠l,i=E{Δφl,i}\mathbf{g}_{l,i}=\mathrm{E}\{\Delta\mathbf{\varphi}_{l,i}\}, we can write

𝐠l,i=E{Δφl,i}=l𝒩lcl,lE{dl,i2𝐮l,i}=l𝒩lcl,lbl𝐪l,i,\mathbf{g}_{l,i}=\mathrm{E}\{\Delta\mathbf{\varphi}_{l,i}\}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\mathrm{E}\{d^{2}_{l^{{}^{\prime}},i}\mathbf{u}_{l^{{}^{\prime}},i}\}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}b_{l^{{}^{\prime}}}\mathbf{q}_{l^{{}^{\prime}},i}, (50)

where 𝐪l,iE{dl,i2𝐮l,i}\mathbf{q}_{l^{{}^{\prime}},i}\triangleq\mathrm{E}\{d^{2}_{l^{{}^{\prime}},i}\mathbf{u}_{l^{{}^{\prime}},i}\}. Then, we have

𝐪l,i=E{(𝐮l,iTωl,i1+vl,i)2𝐮l,i}=\mathbf{q}_{l^{{}^{\prime}},i}=\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1}+v_{l^{{}^{\prime}},i})^{2}\mathbf{u}_{l^{{}^{\prime}},i}\}=
E{(𝐮l,iTωl,i1)2𝐮l,i}+2E{vl,i(𝐮l,iTωl,i1)𝐮l,i}}+E{vl,i2𝐮l,i},\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1})^{2}\mathbf{u}_{l^{{}^{\prime}},i}\}+2\mathrm{E}\{v_{l^{{}^{\prime}},i}(\mathbf{u}^{T}_{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1})\mathbf{u}_{l^{{}^{\prime}},i}\}\}+\mathrm{E}\{v^{2}_{l^{{}^{\prime}},i}\mathbf{u}_{l^{{}^{\prime}},i}\}, (51)

where the second and third term in (51) are zero. So, we have

𝐪l,i=E{(𝐮l,iTωl,i1)2𝐮l,i}=E{(𝐮T𝐰)2𝐮}=E{(𝐰T𝐮𝐮T𝐰)𝐮},\mathbf{q}_{l^{{}^{\prime}},i}=\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1})^{2}\mathbf{u}_{l^{{}^{\prime}},i}\}=\mathrm{E}\{(\mathbf{u}^{T}\mathbf{w})^{2}\mathbf{u}\}=\mathrm{E}\{(\mathbf{w}^{T}\mathbf{u}\mathbf{u}^{T}\mathbf{w})\mathbf{u}\}, (52)

where we define 𝐮=𝐮l,iT\mathbf{u}=\mathbf{u}^{T}_{l^{{}^{\prime}},i} and 𝐰=ωl,i1\mathbf{w}=\mathbf{\omega}_{l^{{}^{\prime}},i-1} for simplicity. Then, we have

ql,i,r=E{(𝐰T𝐮𝐮T𝐰)ur}=E{j=1Lk=1Lwjujwkukur}=E{fr},q_{l^{{}^{\prime}},i,r}=\mathrm{E}\{(\mathbf{w}^{T}\mathbf{u}\mathbf{u}^{T}\mathbf{w})u_{r}\}=\mathrm{E}\Big{\{}\sum_{j=1}^{L}\sum_{k=1}^{L}w_{j}u_{j}w_{k}u_{k}u_{r}\Big{\}}=\mathrm{E}\{f_{r}\}, (53)

where we have

fr=j=1Lk=1Lwjujwkukur=f_{r}=\sum_{j=1}^{L}\sum_{k=1}^{L}w_{j}u_{j}w_{k}u_{k}u_{r}=
k=1,krLj=1,jrLwjujwkukur+j=1,jrLwjujwrurur+k=1Lwjurwrukur.\sum_{k=1,k\neq r}^{L}\sum_{j=1,j\neq r}^{L}w_{j}u_{j}w_{k}u_{k}u_{r}+\sum_{j=1,j\neq r}^{L}w_{j}u_{j}w_{r}u_{r}u_{r}+\sum_{k=1}^{L}w_{j}u_{r}w_{r}u_{k}u_{r}. (54)

Hence, simple calculations show that

ql,i,r=k=1,krLj=1,jrLE{ujukur}wjwk+j=1,jrLE{ujur2}wjwr+k=1LE{ur2uk}wjwk.q_{l^{{}^{\prime}},i,r}=\sum_{k=1,k\neq r}^{L}\sum_{j=1,j\neq r}^{L}\mathrm{E}\{u_{j}u_{k}u_{r}\}w_{j}w_{k}+\sum_{j=1,j\neq r}^{L}\mathrm{E}\{u_{j}u^{2}_{r}\}w_{j}w_{r}+\sum_{k=1}^{L}\mathrm{E}\{u^{2}_{r}u_{k}\}w_{j}w_{k}. (55)

Using the whiteness of 𝐮\mathbf{u}, some simple calculations show that ql,i,r=0q_{l^{{}^{\prime}},i,r}=0. Hence, we reach to (26). To calculate 𝐤l,i\mathbf{k}_{l,i}, we have

𝐤l,i=E{(φl,i+Δφl,i)2}=E{φl,i2}+2E{φl,iΔφl,i}+E{(Δφl,i)2}.\mathbf{k}_{l,i}=\mathrm{E}\{(\mathbf{\varphi}_{l,i}+\Delta\mathbf{\varphi}_{l,i})^{2}\}=\mathrm{E}\{\mathbf{\varphi}^{2}_{l,i}\}+2\mathrm{E}\{\mathbf{\varphi}_{l,i}\odot\Delta\mathbf{\varphi}_{l,i}\}+\mathrm{E}\{(\Delta\mathbf{\varphi}_{l,i})^{2}\}. (56)

The second term in (56) is zero if we assume the uncorelatedness of φl,i\mathbf{\varphi}_{l,i} and Δφl,i\Delta\mathbf{\varphi}_{l,i} and also since we proved that E{Δφl,i}=𝟎\mathrm{E}\{\Delta\mathbf{\varphi}_{l,i}\}=\mathbf{0} in the current appendix. So, we have

𝐤l,i=E{φl,i2}+E{(Δφl,i)2}=𝐡l,i+𝐫l,i.\mathbf{k}_{l,i}=\mathrm{E}\{\mathbf{\varphi}^{2}_{l,i}\}+\mathrm{E}\{(\Delta\mathbf{\varphi}_{l,i})^{2}\}=\mathbf{h}_{l,i}+\mathbf{r}_{l,i}. (57)

Appendix 2

To compute 𝐡l,i=E{φl,i2}\mathbf{h}_{l,i}=\mathrm{E}\{\mathbf{\varphi}^{2}_{l,i}\}, we have

𝐡l,i=ωl,i12+2μωl,i1E{𝐩l,i}+μ2E{𝐩l,i2}=ωl,i12+2μωl,i1𝐟l,i+μ2E{𝐩l,i2}.\mathbf{h}_{l,i}=\mathbf{\omega}^{2}_{l,i-1}+2\mu\mathbf{\omega}_{l,i-1}\odot\mathrm{E}\{\mathbf{p}_{l,i}\}+\mu^{2}\mathrm{E}\{\mathbf{p}^{2}_{l,i}\}=\mathbf{\omega}^{2}_{l,i-1}+2\mu\mathbf{\omega}_{l,i-1}\odot\mathbf{f}_{l,i}+\mu^{2}\mathrm{E}\{\mathbf{p}^{2}_{l,i}\}. (58)

To calculate E{𝐩l,i2}\mathrm{E}\{\mathbf{p}^{2}_{l,i}\} in (58), some calculations show that

𝐩l,i2=l𝒩lcl,l𝐮l,iTω~l,i1𝐮l,il′′𝒩lcl′′,l𝐮l′′,iTω~l′′,i1𝐮l′′,i.\mathbf{p}^{2}_{l,i}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}\mathbf{u}^{T}_{l^{{}^{\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime}},i-1}\mathbf{u}_{l^{{}^{\prime}},i}\odot\sum_{l^{{}^{\prime\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime\prime}},l}\mathbf{u}^{T}_{l^{{}^{\prime\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime\prime}},i-1}\mathbf{u}_{l^{{}^{\prime\prime}},i}. (59)

Now, tl,i,r=E{pl,i,r2}t_{l,i,r}=\mathrm{E}\{p^{2}_{l,i,r}\} is equal to

tl,i,r=E{(𝐮l,iTω~l,i1𝐮l,i,r)(𝐮l′′,iTω~l′′,i1𝐮l′′,i,r)}=t_{l,i,r}=\mathrm{E}\{\Big{(}\mathbf{u}^{T}_{l^{{}^{\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime}},i-1}\mathbf{u}_{l^{{}^{\prime}},i,r}\Big{)}\Big{(}\mathbf{u}^{T}_{l^{{}^{\prime\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime\prime}},i-1}\mathbf{u}_{l^{{}^{\prime\prime}},i,r}\Big{)}\}=
l𝒩ll′′𝒩lcl,lcl′′,lE{(𝐮l,iTω~l,i1)(𝐮l′′,iTω~l′′,i1)ul,i,rul′′,i,r}.\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}\sum_{l^{{}^{\prime\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}c_{l^{{}^{\prime\prime}},l}\mathrm{E}\Big{\{}(\mathbf{u}^{T}_{l^{{}^{\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime}},i-1})(\mathbf{u}^{T}_{l^{{}^{\prime\prime}},i}\tilde{\mathbf{\omega}}_{l^{{}^{\prime\prime}},i-1})u_{l^{{}^{\prime}},i,r}u_{l^{{}^{\prime\prime}},i,r}\Big{\}}. (60)

Therefore, from (58), we have

𝐡l,i=ωl,i12+2μωl,i1𝐟l,i+μ2𝐭l,i.\mathbf{h}_{l,i}=\mathbf{\omega}^{2}_{l,i-1}+2\mu\mathbf{\omega}_{l,i-1}\odot\mathbf{f}_{l,i}+\mu^{2}\mathbf{t}_{l,i}. (61)

To calculate 𝐫l,i=E{Δ2φl,i}\mathbf{r}_{l,i}=\mathrm{E}\{\Delta^{2}\mathbf{\varphi}_{l,i}\}, we can write

Δ2φl,i,r=l𝒩ll′′𝒩lcl,lcl′′,lblbl′′dl,i2dl′′,i2ul,i,rul′′,i,r.\Delta^{2}\mathbf{\varphi}_{l,i,r}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}\sum_{l^{{}^{\prime\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}c_{l^{{}^{\prime\prime}},l}b_{l^{{}^{\prime}}}b_{l^{{}^{\prime\prime}}}d^{2}_{l^{{}^{\prime}},i}d^{2}_{l^{{}^{\prime\prime}},i}u_{l^{{}^{\prime}},i,r}u_{l^{{}^{\prime\prime}},i,r}. (62)

So, we have

rl,i,r=l𝒩ll′′𝒩lcl,lcl′′,lblbl′′E{dl,i2dl′′,i2ul,i,rul′′,i,r}=r_{l,i,r}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}\sum_{l^{{}^{\prime\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}c_{l^{{}^{\prime\prime}},l}b_{l^{{}^{\prime}}}b_{l^{{}^{\prime\prime}}}\mathrm{E}\{d^{2}_{l^{{}^{\prime}},i}d^{2}_{l^{{}^{\prime\prime}},i}u_{l^{{}^{\prime}},i,r}u_{l^{{}^{\prime\prime}},i,r}\}=
l𝒩ll′′𝒩lcl,lcl′′,lblbl′′E{(𝐮l,iTωl,i1+vl,i)2(𝐮l′′,iTωl′′,i1+vl′′,i)2ul,i,rul′′,i,r}.\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}\sum_{l^{{}^{\prime\prime}}\in\cal N_{\mathrm{l}}}c_{l^{{}^{\prime}},l}c_{l^{{}^{\prime\prime}},l}b_{l^{{}^{\prime}}}b_{l^{{}^{\prime\prime}}}\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1}+v_{l^{{}^{\prime}},i})^{2}(\mathbf{u}^{T}_{l^{{}^{\prime\prime}},i}\mathbf{\omega}_{l^{{}^{\prime\prime}},i-1}+v_{l^{{}^{\prime\prime}},i})^{2}u_{l^{{}^{\prime}},i,r}u_{l^{{}^{\prime\prime}},i,r}\}. (63)

To calculate

Al,l′′,r=E{(𝐮l,iTωl,i1+vl,i)2(𝐮l′′,iTωl′′,i1+vl′′,i)2ul,i,rul′′,i,r},\mathrm{A}_{l^{{}^{\prime}},l^{{}^{\prime\prime}},r}=\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}},i}\mathbf{\omega}_{l^{{}^{\prime}},i-1}+v_{l^{{}^{\prime}},i})^{2}(\mathbf{u}^{T}_{l^{{}^{\prime\prime}},i}\mathbf{\omega}_{l^{{}^{\prime\prime}},i-1}+v_{l^{{}^{\prime\prime}},i})^{2}u_{l^{{}^{\prime}},i,r}u_{l^{{}^{\prime\prime}},i,r}\}, (64)

for simplicity, it is re-written as

Al,l′′,r=E{(𝐮lT𝐰l+vl)2(𝐮l′′T𝐰l′′+vl′′)2ul,rul′′,r}=\mathrm{A}_{l^{{}^{\prime}},l^{{}^{\prime\prime}},r}=\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}}+v_{l^{{}^{\prime}}})^{2}(\mathbf{u}^{T}_{l^{{}^{\prime\prime}}}\mathbf{w}_{l^{{}^{\prime\prime}}}+v_{l^{{}^{\prime\prime}}})^{2}u_{l^{{}^{\prime}},r}u_{l^{{}^{\prime\prime}},r}\}=
E{[(𝐮lT𝐰l)2+2𝐯l𝐮lT𝐰l+vl2][(𝐮l′′T𝐰l′′)2+2𝐯l′′𝐮l′′T𝐰l′′+vl′′2]ul,rul′′,r}.\mathrm{E}\Big{\{}\Big{[}(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}})^{2}+2\mathbf{v}_{l^{{}^{\prime}}}\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}}+v^{2}_{l^{{}^{\prime}}}\Big{]}\Big{[}(\mathbf{u}^{T}_{l^{{}^{\prime\prime}}}\mathbf{w}_{l^{{}^{\prime\prime}}})^{2}+2\mathbf{v}_{l^{{}^{\prime\prime}}}\mathbf{u}^{T}_{l^{{}^{\prime\prime}}}\mathbf{w}_{l^{{}^{\prime\prime}}}+v^{2}_{l^{{}^{\prime\prime}}}\Big{]}u_{l^{{}^{\prime}},r}u_{l^{{}^{\prime\prime}},r}\Big{\}}. (65)

Then, some calculations lead to

Al,l′′,r=E{[(𝐮lT𝐰l)2(𝐮l′′T𝐰l′′)2ul,rul′′,r]}+E{[(𝐮lT𝐰l)2vl′′2]ul,rul′′,r}+\mathrm{A}_{l^{{}^{\prime}},l^{{}^{\prime\prime}},r}=\mathrm{E}\Big{\{}\Big{[}(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}})^{2}(\mathbf{u}^{T}_{l^{{}^{\prime\prime}}}\mathbf{w}_{l^{{}^{\prime\prime}}})^{2}u_{l^{{}^{\prime}},r}u_{l^{{}^{\prime\prime}},r}\Big{]}\Big{\}}+\mathrm{E}\Big{\{}\Big{[}(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}})^{2}v^{2}_{l^{{}^{\prime\prime}}}\Big{]}u_{l^{{}^{\prime}},r}u_{l^{{}^{\prime\prime}},r}\Big{\}}+
4E{[vlvl′′(𝐮lT𝐰l)(𝐮l′′T𝐰l′′)]ul,rul′′,r}+E{[vl2(𝐮l′′T𝐰l′′)2]ul,rul′′,r}+4\mathrm{E}\Big{\{}\Big{[}v_{l^{{}^{\prime}}}v_{l^{{}^{\prime\prime}}}(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}})(\mathbf{u}^{T}_{l^{{}^{\prime\prime}}}\mathbf{w}_{l^{{}^{\prime\prime}}})\Big{]}u_{l^{{}^{\prime}},r}u_{l^{{}^{\prime\prime}},r}\Big{\}}+\mathrm{E}\Big{\{}\Big{[}v^{2}_{l^{{}^{\prime}}}(\mathbf{u}^{T}_{l^{{}^{\prime\prime}}}\mathbf{w}_{l^{{}^{\prime\prime}}})^{2}\Big{]}u_{l^{{}^{\prime}},r}u_{l^{{}^{\prime\prime}},r}\Big{\}}+
E{vl2vl′′2ul,rul′′,r}.\mathrm{E}\{v^{2}_{l^{{}^{\prime}}}v^{2}_{l^{{}^{\prime\prime}}}u_{l^{{}^{\prime}},r}u_{l^{{}^{\prime\prime}},r}\}. (66)

It is easy to show that if l′′ll^{{}^{\prime\prime}}\neq l^{{}^{\prime}}, we have Al,l′′,r=𝟎\mathrm{A}_{l^{{}^{\prime}},l^{{}^{\prime\prime}},r}=\mathbf{0}. Also, for l′′=ll^{{}^{\prime\prime}}=l^{{}^{\prime}}, we have

Al,l,r=E{(𝐮lT𝐰l)4ul,r2}+E{(𝐮lT𝐰l)2vl2ul,r2}+\mathrm{A}_{l^{{}^{\prime}},l^{{}^{\prime}},r}=\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}})^{4}u^{2}_{l^{{}^{\prime}},r}\}+\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}})^{2}v^{2}_{l^{{}^{\prime}}}u^{2}_{l^{{}^{\prime}},r}\}+
5σv2E{(𝐮lT𝐰l)2ul,r2}+σv2+3σv4σu2.5\sigma^{2}_{v}\mathrm{E}\{(\mathbf{u}^{T}_{l^{{}^{\prime}}}\mathbf{w}_{l^{{}^{\prime}}})^{2}u^{2}_{l^{{}^{\prime}},r}\}+\sigma^{2}_{v}+3\sigma^{4}_{v}\sigma^{2}_{u}. (67)

Finally, from (63), we have

rl,i,r=l𝒩lcl,l2bl2Al,l,r.r_{l,i,r}=\sum_{l^{{}^{\prime}}\in\cal N_{\mathrm{l}}}c^{2}_{l^{{}^{\prime}},l}b^{2}_{l^{{}^{\prime}}}\mathrm{A}_{l^{{}^{\prime}},l^{{}^{\prime}},r}. (68)

References

  • [1] A. H. Sayed, Adaptation, Learning and Optimization over networks, Foundations and Trends in Machine Learning, 2014.
  • [2] A. Shirazinia, et al, “Massive MIMO for Decentralized Estimation of a Correlated Source,” IEEE Trans. on Signal Proc., vol. 64, no. 10, pp. 2499–2512, May 2016.
  • [3] C. G. Lopes, and A. H. Sayed, “Diffusion least-mean squares over adaptive networks: Formulation and performance analysis,” IEEE Trans. on Signal Proc., vol. 56, pp. 3122–3136, 2008.
  • [4] F. S. Cattivelli, and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE Trans. on Signal Proc., vol. 58, pp. 1035–1048, 2010.
  • [5] F. Wen, “Diffusion Least Mean P-power algorithms for distributed estimation in alpha-stable noise environments ,” Electron. Lett., vol. 49, no. 21, pp. 1355–1356, 2013.
  • [6] L. Lu, H. Zhao, W. Wang, and Y. Yu, “Performance analysis of the robust diffusion normalized least mean p-power algorithm,” IEEE Trans. on Circuit and Systems-II: Express Briefs., vol. 65, no. 12, pp. 2047–2051, Dec 2018.
  • [7] M. Shams Esfand Abadi, and M. S. Shafiee, “Distributed Estimation Over an Adaptive Diffusion Network Based on the Family of Affine Projection Algorithms,” IEEE Transactions on Signal and Information Processing over Networks, vol. 5, no. 2, pp. 234–247, June 2019.
  • [8] H. Shiri, M. A. Tinati, M. Codreanu, and S. Daneshvar, “Distributed Sparse Diffusion Estimation based on Set Membership and Affine Projection Algorithm,” DSP Signal Processing., vol. 73, pp. 47–61, Feb 2018.
  • [9] M. Korki, and H. Zayyani, “Weighted diffusion continuous mixed p-norm algorithm for distributed estimation in non-uniform noise environment,” Elsevier Signal Processing., vol. 164, pp. 225–233, Nov 2019.
  • [10] W. Ma, B. Chen, J. Duan, and H. Zhao, “Diffusion maximum correntropy criterion algorithms for robust distributed estimation,” Digital Signal Processing., vol. 58, pp. 10-16, 2016.
  • [11] F. Chen, et al, “Diffusion generalized maximum correntropy criterion algorithm for distributed estimation over multitask network,” Digital Signal Processing., vol. 81, pp. 16-25, Oct 2018.
  • [12] Y. He, F. Wang, S. Wang, P. Ren, and B. Chen, “Maximum total correntropy diffusion adaptation over networks with noisy links,” IEEE Trans. on Circuit and Systems-II: Express Briefs., vol. 66, no. 2, pp. 307–311, Feb 2019.
  • [13] V. C. Gogineni, S. P. Talebi, S. Werner, and D. P. Mandic, “Fractional-Order Correntropy Adaptive Filters for Distributed Processing of a-Stable Signals,” IEEE Signal Processing Letters, vol. 27, pp. 1884–1888, 2020.
  • [14] R. Arablouei, S. Werner, Y. Huang, and K. Dogancay, “Distributed Least Mean-Square Estimation With Partial Diffusion,” IEEE Tran. Signal Processing, vol. 62, no. 2, pp. 472–484, 2014.
  • [15] H. Zayyani, “Communication reducing diffusion LMS robust to impulsive noise using smart selection of communication nodes,” Circuit, System, and Signal Processing, vol. 41, no. 3, pp. 1788–1802, 2022.
  • [16] H. Zayyani, “Robust minimum disturbance diffusion LMS for distributed estimation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 521–525, 2020.
  • [17] H. Zayyani, and A. Javaheri, “A Robust Generalized Proportionate Diffusion LMS Algorithm for Distirbuted Estimation,” IEEE Trans on Circuits and systems-II: Express Briefs., vol. 68, no. 4, pp. 1552-1556 , April 2021.
  • [18] H. Chang, and W. Li, “Correction-based diffusion LMS algorithms for secure distributed estimation under attacks,” Digital Signal Processing, vol. 102, July 2020.
  • [19] H. Zayyani, F. Oruji, and I. Fijalkow, “An Adversary-Resilient Doubly Compressed Diffusion LMS Algorithm for Distributed Estimation,” Circuit, System, and Signal Processing, vol. 41, pp. 6182–6205, 2022.
  • [20] H. Zayyani, M. Korki, “Adaptive-Width Generalized Correntropy Diffusion Algorithm for Secure Distributed Estimation,” IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.
  • [21] S. Modalavalasa, U. K. Sahoo, and A. K. Sahoo, “Robust non-parametric sparse distributed regression over wireless networks,” DSP Signal Processing., vol. 104, Sep 2020.
  • [22] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed Parameter Estimation in Sensor Networks: Nonlinear Observation Models and Imperfect Communication,” IEEE Trans on Information Theory., vol. 58, no. 6, pp. 3575-3604 , June 2012.
  • [23] S. Chouvardas, and M. Draief, “A diffusion kernel LMS algorithm for nonlinear adaptive networks,” ICASSP 2016., Shanghai, China, 2016.
  • [24] H. Zayyani, R. Sari, and M. Korki, “A Distributed 1-bit Compressed Sensing Algorithm for Nonlinear Sensors With a Cramer Rao Bound,” IEEE Communication Letters., vol. 21, no. 12, pp. 2626-2629 , Dec 2017.
  • [25] S. Chen, and Y. Liu, “Robust Distributed Parameter Estimation of Nonlinear Systems With Missing Data Over Networks,” IEEE Transactions on Aerospace and Electronic Systems., vol. 56, no. 3, pp. 2228-2244 , June 2020.
  • [26] M. Meng, and X. Li, “Distributed Nonlinear Estimation Over Unbalanced Directed Networks,” IEEE Transactions Signal Processing., vol. 68, pp. 6212-6223 , 2020.
  • [27] S. C. Chan, H. C. Wu, C. H. Ho, and L. Zhang, “An Augmented Lagrangian Approach for Distributed Robust Estimation in Large-Scale Systems,” IEEE Systems Journal., vol. 13, no. 3, pp. 2986-2997 , Sep 2019.
  • [28] M. Meng, X. Li, and G. Xiao, “Distributed Estimation Under Sensor Attacks: Linear and Nonlinear Measurement Models,” IEEE Transactions on Signal and Information Processing over Networks, vol. 7, pp. 156–165, 2021.
  • [29] D. Ciuonzo, et al, “Bandwidth-Constrained Decentralized Detection of an Unknown Vector Signal via Multisensor Fusion,” IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 744–758, 2020.