This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\IfFileExists

qkpieri.conf

Seidel and Pieri products in cominuscule quantum KK-theory

Anders S. Buch Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA asbuch@math.rutgers.edu Pierre–Emmanuel Chaput Domaine Scientifique Victor Grignard, 239, Boulevard des Aiguillettes, Université de Lorraine, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France pierre-emmanuel.chaput@univ-lorraine.fr  and  Nicolas Perrin Centre de Mathématiques Laurent Schwartz (CMLS), CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France nicolas.perrin.cmls@polytechnique.edu
(Date: November 21, 2023)
Abstract.

We prove a collection of formulas for products of Schubert classes in the quantum KK-theory ring QK(X)\operatorname{QK}(X) of a cominuscule flag variety XX. This includes a KK-theory version of the Seidel representation, stating that the quantum product of a Seidel class with an arbitrary Schubert class is equal to a single Schubert class times a power of the deformation parameter qq. We also prove new Pieri formulas for the quantum KK-theory of maximal orthogonal Grassmannians and Lagrangian Grassmannians, and give a new proof of the known Pieri formula for the quantum KK-theory of Grassmannians of type A. Our formulas have simple statements in terms of quantum shapes that represent the natural basis elements qd[𝒪Xu]q^{d}[{\mathcal{O}}_{X^{u}}] of QK(X)\operatorname{QK}(X). Along the way we give a simple formula for KK-theoretic Gromov-Witten invariants of Pieri type for Lagrangian Grassmannians, and prove a rationality result for the points in a Richardson variety in a symplectic Grassmannian that are perpendicular to a point in projective space.

Key words and phrases:
Quantum KK-theory, Gromov-Witten invariants, cominuscule flag varieties, Seidel representation, Pieri formulas, symplectic Grassmannians, Richardson varieties
2020 Mathematics Subject Classification:
Primary 14N35; Secondary 19E08, 14N15, 14M15, 14E08
Buch was partially supported by NSF grants DMS-1205351, DMS-1503662, DMS-2152316, a Visiting Professorship at Université de Lorraine, and NSF grant DMS-1929284 while in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Spring of 2021. Perrin was partially supported by ANR project FanoHK, grant ANR-20-CE40-0023.

1. Introduction

In this paper we prove a collection of explicit formulas for products of Schubert classes in the quantum KK-theory ring QK(X)\operatorname{QK}(X) of a cominuscule flag variety. These formulas include a KK-theory version of the Seidel representation of the quantum cohomology ring QH(X)\operatorname{QH}(X) [Sei97, Bel04, CMP09], as well as Pieri formulas for products with special Schubert classes of classical Grassmannians that generalize earlier Pieri formulas in quantum cohomology [Ber97, KT03, KT04] and in KK-theory [Len00, BR12]. The Pieri formula for QK(X)\operatorname{QK}(X) is known from [BM11] when XX is a Grassmannian of type A, but is new for maximal orthogonal Grassmannians and Lagrangian Grassmannians. Our formulas have simple expressions in terms of quantum shapes that encode the natural basis elements qd𝒪u=qd[𝒪Xu]q^{d}{\mathcal{O}}^{u}=q^{d}[{\mathcal{O}}_{X^{u}}] of QK(X)\operatorname{QK}(X), generalizing the familiar identification of cominuscule Schubert classes with diagrams of boxes [Pro84].

Let X=G/PXX=G/P_{X} be a flag variety defined by a complex semisimple linear algebraic group GG and a parabolic subgroup PXP_{X}. Let Φ\Phi be the root system of GG, WW the Weyl group, and let BB be a Borel subgroup contained in PXP_{X}. A simple root γ{\gamma} is called cominuscule if, when the highest root is expressed in the basis of simple roots, the coefficient of γ{\gamma} is one. The flag variety XX is called cominuscule if PXP_{X} is a maximal parabolic subgroup defined by a cominuscule simple root. Let w0XWw_{0}^{X}\in W be the minimal representative of the longest element w0w_{0} modulo the Weyl group WXW_{X} of PXP_{X}. The minimal representatives w0Fw_{0}^{F} defined by all cominuscule flag varieties of GG, together with the identity, form a subgroup of the Weyl group:

Wcomin={w0FF=G/PF is cominuscule}{1}W.W^{\mathrm{comin}}\,=\,\{w_{0}^{F}\mid\text{$F=G/P_{F}$ is cominuscule}\}\cup\{1\}\,\leq\,W\,.

Each element uWu\in W defines the Schubert varieties Xu=Bu.PX¯X_{u}=\overline{Bu.P_{X}} and Xu=Bu.PX¯X^{u}=\overline{B^{-}u.P_{X}} in XX. The Schubert classes [Xw][X^{w}] for wWcominw\in W^{\mathrm{comin}} will be called Seidel classes. It was proved in [Bel04] and also in [CMP09] that quantum cohomology products with Seidel classes have only one term. More precisely, for wWcominw\in W^{\mathrm{comin}} and uWu\in W we have [Xw][Xu]=qωu1.ω[Xwu][X^{w}]\star[X^{u}]=q^{\omega^{\vee}-u^{-1}.\omega^{\vee}}[X^{wu}] in QH(X)\operatorname{QH}(X), where ω\omega^{\vee} is the unique fundamental coweight such that w.ω=w0.ωw.\omega^{\vee}=w_{0}.\omega^{\vee}. This defines a representation of WcominW^{\mathrm{comin}} on QH(X)/q1\operatorname{QH}(X)/\langle q-1\rangle called the Seidel representation. Our first result generalizes the Seidel representation to the quantum KK-theory ring when XX is itself cominuscule. We denote the Schubert classes in K(X)K(X) by 𝒪u=[𝒪Xu]{\mathcal{O}}_{u}=[{\mathcal{O}}_{X_{u}}] and 𝒪u=[𝒪Xu]{\mathcal{O}}^{u}=[{\mathcal{O}}_{X^{u}}].

Theorem 1.1 (Seidel representation).

Let X=G/PXX=G/P_{X} be a cominuscule flag variety, and let wWcominw\in W^{\mathrm{comin}} and uWu\in W. We have in QK(X)\operatorname{QK}(X) that

𝒪w𝒪u=qd𝒪wu,{\mathcal{O}}^{w}\star{\mathcal{O}}^{u}\,=\,q^{d}\,{\mathcal{O}}^{wu}\,,

where dd is determined by  dc1(TX)+codim(Xwu)=codim(Xw)+codim(Xu)\int_{d}c_{1}(T_{X})+\operatorname{codim}(X^{wu})=\operatorname{codim}(X^{w})+\operatorname{codim}(X^{u}).

When X=G/PXX=G/P_{X} is a cominuscule flag variety, the subset WXWW^{X}\subset W of minimal representatives of the cosets in W/WXW/W_{X} can be represented by generalized Young diagrams [Pro84, Per07, BS16]. Set 𝒫X={αΦαγ}{\mathcal{P}}_{X}=\{{\alpha}\in\Phi\mid{\alpha}\geq{\gamma}\}, where γ{\gamma} is the cominuscule simple root defining XX, and give 𝒫X{\mathcal{P}}_{X} the partial order αα{\alpha}^{\prime}\leq{\alpha} if and only if αα{\alpha}-{\alpha}^{\prime} is a sum of positive roots. The inversion set I(u)={αΦ+u.α<0}I(u)=\{{\alpha}\in\Phi^{+}\mid u.{\alpha}<0\} of any element uWXu\in W^{X} is a lower order ideal in 𝒫X{\mathcal{P}}_{X}. The set 𝒫X{\mathcal{P}}_{X} can be identified with a set of boxes in the plane, which in turn identifies I(u)I(u) with a diagram of boxes that we call the shape of uu. This defines a bijection between the set of shapes in 𝒫X{\mathcal{P}}_{X} and the Schubert basis {[Xu]}\{[X^{u}]\} of H(X,)H^{*}(X,{\mathbb{Z}}).

More generally, let ={qd[Xu]uWX,d}{\mathcal{B}}=\{q^{d}[X^{u}]\mid u\in W^{X},d\in{\mathbb{Z}}\} be the natural {\mathbb{Z}}-basis of QH(X)q=QH(X)[q,q1]\operatorname{QH}(X)_{q}=\operatorname{QH}(X)\otimes{\mathbb{Z}}[q,q^{-1}]. It was shown in [BCMP22] that {\mathcal{B}} has a natural partial order defined by qe[Xv]qd[Xu]q^{e}[X^{v}]\leq q^{d}[X^{u}] if and only if XuX_{u} and XvX^{v} can be connected by a rational curve of degree at most ded-e. Moreover, this partial order is a distributive lattice when XX is cominuscule. Let 𝒫^X\widehat{\mathcal{P}}_{X}\subset{\mathcal{B}} be the subset of join-irreducible elements. Then 𝒫^X\widehat{\mathcal{P}}_{X} is an infinite partially ordered set that contains 𝒫X{\mathcal{P}}_{X} as an interval. When X=Gr(m,n)X=\operatorname{Gr}(m,n) is a Grassmannian of type A, 𝒫^X=2/(m,mn)\widehat{\mathcal{P}}_{X}={\mathbb{Z}}^{2}/{\mathbb{Z}}(m,m-n) is Postnikov’s cylinder from [Pos05]. This poset was also defined in [Hag04]. The posets 𝒫^X\widehat{\mathcal{P}}_{X} defined by other cominuscule flag varieties are isomorphic to certain full heaps of affine Dynkin diagrams that were constructed in [Gre13] and used to study minuscule representations.

Define a quantum shape to be any (non-empty, proper, lower) order ideal λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X}. A quantum shape will also be called a shape when it cannot be misunderstood to be a classical shape in 𝒫X{\mathcal{P}}_{X}. The assignment

I(qd[Xu])={α^𝒫^Xα^qd[Xu]}I(q^{d}[X^{u}])\,=\,\{\widehat{\alpha}\in\widehat{\mathcal{P}}_{X}\mid\widehat{\alpha}\leq q^{d}[X^{u}]\}

defines an order isomorphism from {\mathcal{B}} to the set of shapes in 𝒫^X\widehat{\mathcal{P}}_{X}, where shapes are ordered by inclusion. We write 𝒪λ=qd𝒪u{\mathcal{O}}^{\lambda}=q^{d}{\mathcal{O}}^{u} when λ=I(qd[Xu]){\lambda}=I(q^{d}[X^{u}]) is the quantum shape of qd[Xu]q^{d}[X^{u}].

Quantum multiplication by any Seidel class σ\sigma defines an order automorphism of {\mathcal{B}}, which restricts to an order automorphism of 𝒫^X\widehat{\mathcal{P}}_{X}. If λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} is any quantum shape, then σλ={σα^α^λ}\sigma\star{\lambda}=\{\sigma\star\widehat{\alpha}\mid\widehat{\alpha}\in{\lambda}\} defines a new quantum shape such that

σ𝒪λ=𝒪σλ.\sigma\star{\mathcal{O}}^{\lambda}\,=\,{\mathcal{O}}^{\sigma\star{\lambda}}\,.

Here we have abused notation and identified σ\sigma with the corresponding KK-theory class 𝒪I(σ)QK(X){\mathcal{O}}^{I(\sigma)}\in\operatorname{QK}(X). The poset 𝒫^X\widehat{\mathcal{P}}_{X} can be identified with an infinite set of boxes in the plane, such that each automorphism defined by a Seidel class is represented by a translation of the plane, possibly combined with a reflection. This gives a simple description of products with Seidel classes in terms of quantum shapes.

Let X=G/PXX=G/P_{X} be a cominuscule classical Grassmannian, that is, a Grassmannian Gr(m,n)\operatorname{Gr}(m,n) of type A, a maximal orthogonal Grassmannian OG(n,2n)\operatorname{OG}(n,2n), or a Lagrangian Grassmannian LG(n,2n)\operatorname{LG}(n,2n). The Chern classes of the tautological vector bundles over XX are represented by the special Schubert varieties XpXX^{p}\subset X, with pp\in{\mathbb{N}}. Formulas for products with the special Schubert classes [Xp][X^{p}] are known as Pieri formulas. Our Pieri formula for QK(X)\operatorname{QK}(X) takes the form

𝒪p𝒪λ=νc(ν/λ,p)𝒪ν,{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}\,=\,\sum_{\nu}c(\nu/{\lambda},p)\,{\mathcal{O}}^{\nu}\,,

where the sum is over all quantum shapes ν\nu containing λ{\lambda}. The coefficient c(ν/λ,p)c(\nu/{\lambda},p) depends on pp as well as the skew shape ν/λ:=νλ𝒫^X\nu/{\lambda}:=\nu\smallsetminus{\lambda}\subset\widehat{\mathcal{P}}_{X}. For Grassmannians of type A and maximal orthogonal Grassmannians, these coefficients c(ν/λ,p)c(\nu/{\lambda},p) are identical to those appearing in the Pieri formulas for the ordinary KK-theory ring. These coefficients are signed binomial coefficients in type A [Len00], and are signed counts of KOG-tableaux of shape ν/λ\nu/{\lambda} for maximal orthogonal Grassmannians [BR12]. In fact, in these cases the Pieri formula for QK(X)\operatorname{QK}(X) is an easy consequence of Theorem 1.1, the Pieri formula for K(X)K(X), and a bound on the qq-degrees in cominuscule quantum products proved in [BCMP22].

Assume now that X=LG(n,2n)X=\operatorname{LG}(n,2n) is a Lagrangian Grassmannian. In this case our Pieri formula for QK(X)\operatorname{QK}(X) is more difficult to state and prove. While the coefficients of the Pieri formula for K(X)K(X) are expressed as signed counts of KLG-tableaux in [BR12], we need to amend the definition of KLG-tableau with additional conditions in the quantum case. The tableaux satisfying these conditions will be called QKLG-tableaux. Another difference is that the Lagrangian Grassmannian XX does not have enough Seidel classes to translate the Pieri formula for K(X)K(X) to one for QK(X)\operatorname{QK}(X). We must therefore prove our quantum Pieri formula ‘from scratch’, starting with a geometric computation of the relevant KK-theoretic Gromov-Witten invariants, and then use combinatorics to translate these Gromov-Witten invariants to the structure constants c(ν/λ,p)c(\nu/{\lambda},p) of Pieri products. While both parts resemble the proof of the Pieri formula from [BR12], the technical challenges are harder for several reasons, and many steps rely on results proved in [BCMP22].

Our computation of Gromov-Witten invariants targets those of the form

Id(𝒪p,𝒪v,𝒪u)=χ(ev1(𝒪p)ev2(𝒪v)ev3(𝒪u)),I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{v},{\mathcal{O}}_{u})\,=\,\chi(\operatorname{ev}_{1}^{*}({\mathcal{O}}^{p})\cdot\operatorname{ev}_{2}^{*}({\mathcal{O}}^{v})\cdot\operatorname{ev}_{3}^{*}({\mathcal{O}}_{u}))\,,

where ev1,ev2,ev3:¯0,3(X,d)X\operatorname{ev}_{1},\operatorname{ev}_{2},\operatorname{ev}_{3}:\overline{\mathcal{M}}_{0,3}(X,d)\to X are the evaluation maps from the Kontsevich modulo space. By [BCMP18b], these can be computed as

Id(𝒪p,𝒪v,𝒪u)=χX([𝒪Γd(Xu,Xv)]𝒪p),I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{v},{\mathcal{O}}_{u})\,=\,\chi_{{}_{X}}([{\mathcal{O}}_{\Gamma_{d}(X_{u},X^{v})}]\cdot{\mathcal{O}}^{p})\,,

where the curve neighborhood Γd(Xu,Xv)X\Gamma_{d}(X_{u},X^{v})\subset X is defined as the union of all stable curves of degree dd connecting XuX_{u} and XvX^{v}. Let X^=SF(1,n;2n)\widehat{X}=\operatorname{SF}(1,n;2n) be the variety of two-step isotropic flags in the symplectic vector space 2n{\mathbb{C}}^{2n}, and let π:X^X\pi:\widehat{X}\to X and η:X^2n1\eta:\widehat{X}\to{\mathbb{P}}^{2n-1} be the projections. We then have 𝒪p=πη([𝒪L]){\mathcal{O}}^{p}=\pi_{*}\eta^{*}([{\mathcal{O}}_{L}]) for any linear subspace L2n1L\subset{\mathbb{P}}^{2n-1} of dimension npn-p. The projection formula therefore gives

Id(𝒪p,𝒪v,𝒪u)=χ2n1(ηπ[𝒪Γd(Xu,Xv)][𝒪L]).I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{v},{\mathcal{O}}_{u})\,=\,\chi_{{}_{{\mathbb{P}}^{2n-1}}}(\eta_{*}\pi^{*}[{\mathcal{O}}_{\Gamma_{d}(X_{u},X^{v})}]\cdot[{\mathcal{O}}_{L}])\,.

We compute the right hand side by showing that the restricted map

(1) η:π1(Γd(Xu,Xv))η(π1(Γd(Xu,Xv)))\eta:\pi^{-1}(\Gamma_{d}(X_{u},X^{v}))\,\to\,\eta(\pi^{-1}(\Gamma_{d}(X_{u},X^{v})))

is cohomologically trivial, and that its image is a complete intersection in 2n1{\mathbb{P}}^{2n-1} defined by explicitly determined equations. More precisely, define the skew shape θ=I(qd[Xu])/I([Xv])\theta=I(q^{d}[X^{u}])/I([X^{v}]) in 𝒫^X\widehat{\mathcal{P}}_{X}, let N(θ)N(\theta) be the number of components of θ\theta that are disjoint from the two diagonals in 𝒫^X\widehat{\mathcal{P}}_{X} (Section 7), and let R(θ)R(\theta) be the size of a maximal rim contained in θ\theta. Assuming that R(θ)nR(\theta)\leq n, we show that η(π1(Γd(Xu,Xv)))\eta(\pi^{-1}(\Gamma_{d}(X_{u},X^{v}))) is a complete intersection in 2n1{\mathbb{P}}^{2n-1} defined by N(θ)N(\theta) quadratic equations and nR(θ)N(θ)n-R(\theta)-N(\theta) linear equations. This gives the formula

(2) Id(𝒪p,𝒪v,𝒪u)=χ(𝒪Lη(π1(Γd(Xu,Xv))))=j=0R(θ)p(1)j 2N(θ)j(N(θ)j).I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{v},{\mathcal{O}}_{u})\,=\,\chi({\mathcal{O}}_{L\,\cap\,\eta(\pi^{-1}(\Gamma_{d}(X_{u},X^{v})))})\,=\,\sum_{j=0}^{R(\theta)-p}(-1)^{j}\,2^{N(\theta)-j}\textstyle{\binom{N(\theta)}{j}}\,.

In the special case d=0d=0 we have Γd(Xu,Xv)=XuXv\Gamma_{d}(X_{u},X^{v})=X_{u}\cap X^{v}, so (1) is the projection of a Richardson variety in X^\widehat{X}. This map was proved to be cohomologically trivial in [BR12] by showing that its general fibers are themselves Richardson varieties. This result has been generalized to arbitrary projections of Richardson varieties, see [BC12, KLS14] and [BCMP22, Thm. 2.10]. However, the variety π1(Γd(Xu,Xv))\pi^{-1}(\Gamma_{d}(X_{u},X^{v})) for d>0d>0 is not a Richardson variety, and it is difficult to determine the fibers of the projection (1).

Let Yd=SG(nd,2n)Y_{d}=\operatorname{SG}(n-d,2n) be the symplectic Grassmannian of isotropic subspaces of dimension ndn-d in 2n{\mathbb{C}}^{2n}, set Zd=SF(nd,n;2n)Z_{d}=\operatorname{SF}(n-d,n;2n), and let pd:ZdXp_{d}:Z_{d}\to X and qd:ZdYdq_{d}:Z_{d}\to Y_{d} be the projections. By the quantum-to-classical construction (see [BCMP22, §5] and references therein) we have Γd(Xu,Xv)=pd(qd1(R))\Gamma_{d}(X_{u},X^{v})=p_{d}(q_{d}^{-1}(R)), where R=qd(pd1(Xu))qd(pd1(Xv))R=q_{d}(p_{d}^{-1}(X_{u}))\cap q_{d}(p_{d}^{-1}(X^{v})) is a Richardson variety in YdY_{d}. Define the perpendicular incidence variety

S={(K,L)Yd×2n1KL},S\,=\,\{(K,L)\in Y_{d}\times{\mathbb{P}}^{2n-1}\mid K\subset L^{\perp}\}\,,

and let f:S2n1f:S\to{\mathbb{P}}^{2n-1} and g:SYdg:S\to Y_{d} be the projections. We then have f(g1(R))=η(π1(Γd(Xu,Xv)))f(g^{-1}(R))=\eta(\pi^{-1}(\Gamma_{d}(X_{u},X^{v}))).

We prove that for any Richardson variety RYdR\subset Y_{d}, the general fibers of the map f:g1(R)f(g1(R))f:g^{-1}(R)\to f(g^{-1}(R)) are rational, and the image f(g1(R))f(g^{-1}(R)) is a complete intersection in 2n1{\mathbb{P}}^{2n-1} defined by explicitly given linear and quadratic equations. The required properties of the projection (1) are deduced from this result. Our results about perpendicular incidences of Richardson varieties in YdY_{d} are stronger than required for this paper, but of independent interest. For example, the fibers of f:g1(R)f(g1(R))f:g^{-1}(R)\to f(g^{-1}(R)) is a plausible definition of Richardson varieties in the odd symplectic Grassmannian SG(nd,2n1)\operatorname{SG}(n-d,2n-1). Notice also that SS is not a flag variety, so f(g1(R))f(g^{-1}(R)) is not a projected Richardson variety.

A final step in our proof of the Pieri formula for QK(X)\operatorname{QK}(X) is to translate the formula (2) for Gromov-Witten invariants of Pieri type to a formula for the Pieri coefficients c(ν/λ,p)c(\nu/{\lambda},p). We first show that the structure constants Id(𝒪p,𝒪v,u)I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{v},{\mathcal{I}}_{u}) of the undeformed product 𝒪p𝒪v{\mathcal{O}}^{p}\odot{\mathcal{O}}^{v} (see Section 2.5) are determined by recursive identities. These identities are used to prove that the Pieri coefficients c(ν/λ,p)c(\nu/{\lambda},p) satisfy analogous recursive identities. The Pieri formula for QK(X)\operatorname{QK}(X) then follows by checking that the signed counts of QKLG-tableaux satisfy the same identities.

This paper is organized as follows. In Section 2 we fix our notation for flag varieties and discuss preliminaries. Section 3 contains the proof of Theorem 1.1. In Section 4 we define quantum shapes in the partially ordered set 𝒫^X\widehat{\mathcal{P}}_{X}, and explain how quantum multiplication by Seidel classes correspond to order automorphisms of this set. The Pieri formulas for QK(X)\operatorname{QK}(X) are given in Section 5 for Grassmannians of type A, in Section 6 for maximal orthogonal Grassmannians, and in Section 7 for Lagrangian Grassmannians. These sections also explain in detail how the posets 𝒫^X\widehat{\mathcal{P}}_{X} for the classical Grassmannians are identified with sets of boxes in the plane. While the Pieri formulas for Gr(m,n)\operatorname{Gr}(m,n) and OG(n,2n)\operatorname{OG}(n,2n) have short proofs given after their statements, the proof of the Pieri formula for Lagrangian Grassmannians is given in the last three sections. Section 8 proves that the map f:g1(R)f(g1(R))f:g^{-1}(R)\to f(g^{-1}(R)) is cohomologically trivial and identifies its image as a complete intersection in 2n1{\mathbb{P}}^{2n-1}. Section 9 uses this result to prove the formula (2) for Gromov-Witten invariants Id(𝒪p,𝒪v,𝒪u)I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{v},{\mathcal{O}}_{u}) of Pieri type. Finally, Section 10 proves the recursive identities that determine the invariants Id(𝒪p,𝒪v,u)I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{v},{\mathcal{I}}_{u}) and the Pieri coefficients c(ν/λ,p)c(\nu/{\lambda},p).

We thank Leonardo Mihalcea for inspiring collaboration on many related papers about quantum KK-theory, as well as many helpful comments to this paper. We also thank Mihail Ţarigradschi for helpful comments. Finally, we thank Prakash Belkale and Robert Proctor for making us aware of the references [Bel04, Hag04, Gre13].

2. Cominuscule flag varieties

In this section we summarize some basic notation and definitions. We follow the notation of [BCMP22].

2.1. Flag varieties

Let GG be a connected semisimple linear algebraic group over {\mathbb{C}}, and fix a Borel subgroup BB and a maximal torus TT such that TBGT\subset B\subset G. The opposite Borel subgroup BGB^{-}\subset G is determined by BB=TB\cap B^{-}=T. Let WW be the Weyl group of GG and let Φ\Phi be the root system, with simple roots ΔΦ+\Delta\subset\Phi^{+}.

A flag variety of GG is a projective variety with a transitive GG-action. Given a flag variety XX of GG, we let PXGP_{X}\subset G denote the stabilizer of the unique BB-fixed point in XX. We obtain the identification X=G/PX={g.PXgG}X=G/P_{X}=\{g.P_{X}\mid g\in G\}, where g.PXg.P_{X} is the gg-translate of the BB-fixed point.

Let WXWW_{X}\subset W be the Weyl group of PXP_{X} and let WXWW^{X}\subset W be the set of minimal representatives of the cosets in W/WXW/W_{X}. Each element wWw\in W defines the Schubert varieties

Xw=Bw.PX¯ and Xw=Bw.PX¯,X_{w}=\overline{Bw.P_{X}}\text{ \ \ \ \ and \ \ \ \ }X^{w}=\overline{B^{-}w.P_{X}}\,,

and for wWXw\in W^{X} we have dim(Xw)=codim(Xw,X)=(w)\dim(X_{w})=\operatorname{codim}(X^{w},X)=\ell(w). The Bruhat order on WXW^{X} is defined by vuv\leq u if and only if XvXuX_{v}\subset X_{u}.

Any element uWu\in W has a unique parabolic factorization u=uXuXu=u^{X}u_{X}, where uXWXu^{X}\in W^{X} and uXWXu_{X}\in W_{X}. The parabolic factorization of the longest element w0Ww_{0}\in W is w0=w0Xw0,Xw_{0}=w_{0}^{X}w_{0,X}, where w0Xw_{0}^{X} is the longest element in WXW^{X} and w0,Xw_{0,X} is the longest element in WXW_{X}. We have w0.Xu=Xuw_{0}.X^{u}=X_{u^{\vee}} for any uWXu\in W^{X}, where u=w0uw0,XWXu^{\vee}=w_{0}\,u\,w_{0,X}\in W^{X} denotes the Poincare dual basis element.

Lemma 2.1.

Let Z=G/PZZ=G/P_{Z} be any flag variety with PZPXP_{Z}\subset P_{X}, and let p:ZXp:Z\to X be the projection. Let F=p1(1.PX)=PX/PZF=p^{-1}(1.P_{X})=P_{X}/P_{Z} denote the fiber over 1.PX1.P_{X}, considered as a flag variety of PXP_{X}. Let uWXu\in W^{X} and wWZw\in W^{Z}.

(a) We have p(Zw)=Xw=XwXp(Z_{w})=X_{w}=X_{w^{X}}, and the general fibers of p:ZwXwp:Z_{w}\to X_{w} are translates of FwX=ZwXF_{w_{X}}=Z_{w_{X}}.

(b) We have p(Zw)=Xw=XwXp(Z^{w})=X^{w}=X^{w^{X}}, and the general fibers of p:ZwXwp:Z^{w}\to X^{w} are translates of FwXF^{w_{X}}.

(c) The map p:ZwXwp:Z^{w}\to X^{w} is birational if and only if wX=w0,XZ:=(w0,X)Zw_{X}=w_{0,X}^{Z}:=(w_{0,X})^{Z}.

(d) We have p1(Xu)=Zuw0,XZp^{-1}(X_{u})=Z_{u\,w_{0,X}^{Z}}, and uw0,XZWZu\,w_{0,X}^{Z}\in W^{Z}.

(e) We have p1(Xu)=Zup^{-1}(X^{u})=Z^{u}, and uWZu\in W^{Z}.

Proof.

Parts (a) and (b) are [BCMP22, Thm. 2.8 and Remark 2.9], and part (c) follows from (b). Parts (d) and (e) hold because the TT-fixed points in p1(u.PX)p^{-1}(u.P_{X}) are the points of the form ut.PZut.P_{Z}, with tWXt\in W_{X}. ∎

Proposition 2.2.

Let Y=G/PYY=G/P_{Y} and X=G/PXX=G/P_{X} be flag varieties, let uWYu\in W^{Y}, and assume that (PX.PY)Yu(P_{X}.P_{Y})\cap Y^{u}\neq\emptyset. Then (PX.PY)Yu=(w0X)1.Yv(P_{X}.P_{Y})\cap Y^{u}=(w_{0}^{X})^{-1}.Y^{v}, where v=w0Xu((w0,Y)X)1WYv=w_{0}^{X}u\,((w_{0,Y})^{X})^{-1}\in W^{Y}. In particular, (PX.PY)Yu(P_{X}.P_{Y})\cap Y^{u} is a Schubert variety in YY.

Proof.

Set Z=G/(PXPY)Z=G/(P_{X}\cap P_{Y}), let p:ZXp:Z\to X and q:ZYq:Z\to Y be the projections, and set F=p1(1.PX)=PX/PZF=p^{-1}(1.P_{X})=P_{X}/P_{Z}. Let t=w0uw0,Zt=w_{0}uw_{0,Z} be the Poincare dual element of uu in WZW^{Z}. By [BCMP22, Thm. 2.8] we have t.FZt=tX.ZtXt.F\cap Z_{t}=t^{X}.Z_{t_{X}}. The assumption PX.PYYuP_{X}.P_{Y}\cap Y^{u}\neq\emptyset implies that p(Zu)=Xp(Z^{u})=X, hence tX=w0Xt^{X}=w_{0}^{X} and tX=(w0X)1tt_{X}=(w_{0}^{X})^{-1}t. We obtain

FZu=w0.(t.FZt)=w0.(tX.ZtX)=(w0tXw0).Zw0tXw0,Z=(w0X)1.Zw0Xu,F\cap Z^{u}=w_{0}.(t.F\cap Z_{t})=w_{0}.(t^{X}.Z_{t_{X}})=(w_{0}t^{X}w_{0}).Z^{w_{0}t_{X}w_{0,Z}}=(w_{0}^{X})^{-1}.Z^{w_{0}^{X}u}\,,

where w0tXw0,Z=w0Xuw_{0}t_{X}w_{0,Z}=w_{0}^{X}u belongs to WZW^{Z}. Since q:FZu(PX.PY)Yuq:F\cap Z^{u}\to(P_{X}.P_{Y})\cap Y^{u} is an isomorphism, it follows from Lemma 2.1(c) that (w0Xu)Y=w0,YZ=(w0,Y)X(w_{0}^{X}u)_{Y}=w_{0,Y}^{Z}=(w_{0,Y})^{X} and (w0Xu)Y=w0Xu((w0,Y)X)1(w_{0}^{X}u)^{Y}=w_{0}^{X}u((w_{0,Y})^{X})^{-1}. The result now follows from Lemma 2.1(b). ∎

2.2. Cominuscule flag varieties

A simple root γΔ{\gamma}\in\Delta is called cominuscule if the coefficient of γ{\gamma} is one when the highest root of Φ\Phi is expressed in the basis of simple roots. The flag variety X=G/PXX=G/P_{X} is called cominuscule if PXP_{X} is a maximal parabolic subgroup corresponding to a cominuscule simple root γ{\gamma}, that is, sγs_{\gamma} is the unique simple reflection in WXW^{X}. A cominuscule flag variety XX is also called minuscule if the root system Φ\Phi is simply laced. In the remainder of this section we assume that X=G/PXX=G/P_{X} is the cominuscule flag variety defined by the cominuscule simple root γΔ{\gamma}\in\Delta.

The Bruhat order on WXW^{X} is a distributive lattice [Pro84] with meet and join operations defined by Xuv=XuXvX_{u\cap v}=X_{u}\cap X_{v} and Xuv=XuXvX^{u\cup v}=X^{u}\cap X^{v} for u,vWXu,v\in W^{X}. The minimal representatives in WXW^{X} can be identified with shapes of boxes as follows [Pro84, Per07, BS16]. The root system Φ\Phi has a natural partial order defined by αα{\alpha}^{\prime}\leq{\alpha} if and only if αα{\alpha}-{\alpha}^{\prime} is a sum of positive roots. Let 𝒫XΦ+{\mathcal{P}}_{X}\subset\Phi^{+} be the subset

𝒫X={αΦαγ},{\mathcal{P}}_{X}=\{{\alpha}\in\Phi\mid{\alpha}\geq{\gamma}\}\,,

with the induced partial order (see Table 1). A lower order ideal λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} is called a shape in 𝒫X{\mathcal{P}}_{X}. There is a natural bijection between WXW^{X} and the set of shapes in 𝒫X{\mathcal{P}}_{X} that sends wWXw\in W^{X} to its inversion set

I(w)={αΦ+w.αΦ}.I(w)=\{{\alpha}\in\Phi^{+}\mid w.{\alpha}\in\Phi^{-}\}\,.

This correspondence is compatible with the Bruhat order, so that vuv\leq u holds in WXW^{X} if and only if I(v)I(u)I(v)\subset I(u). In addition, we have (w)=|I(w)|\ell(w)=|I(w)|. The elements of 𝒫X{\mathcal{P}}_{X} will frequently be called boxes. There exists a natural labeling δ:𝒫XΔ\delta:{\mathcal{P}}_{X}\to\Delta defined by δ(α)=w.α\delta({\alpha})=w.{\alpha}, where wWXw\in W^{X} is the unique element with shape I(w)={α𝒫X:α<α}I(w)=\{{\alpha}^{\prime}\in{\mathcal{P}}_{X}:{\alpha}^{\prime}<{\alpha}\}. Given uWXu\in W^{X}, write I(u)={γ=α1,α2,,α}I(u)=\{{\gamma}={\alpha}_{1},{\alpha}_{2},\dots,{\alpha}_{\ell}\}, where the boxes of I(u)I(u) are listed in non-decreasing order, that is, αiαj{\alpha}_{i}\leq{\alpha}_{j} implies iji\leq j. Then u=sδ(α)sδ(α2)sδ(α1)u=s_{\delta({\alpha}_{\ell})}\cdots s_{\delta({\alpha}_{2})}s_{\delta({\alpha}_{1})} is a reduced expression for uu.

If λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} is any shape and wWXw\in W^{X} is the corresponding element with I(w)=λI(w)={\lambda}, then the Schubert varieties defined by ww will also be denoted by

Xλ=Xw and Xλ=Xw.X_{\lambda}=X_{w}\text{ \ \ \ \ and \ \ \ \ }X^{\lambda}=X^{w}\,.
Table 1. Partially ordered sets 𝒫X{\mathcal{P}}_{X} of cominuscule varieties with I(z1)I(z_{1}) highlighted. In each case the partial order is given by αα{\alpha}^{\prime}\leq{\alpha} if and only if α{\alpha}^{\prime} is weakly north-west of α{\alpha}.
Grassmannian Gr(3,7)\operatorname{Gr}(3,7) of type A Max. orthog. Grassmannian OG(6,12)\operatorname{OG}(6,12)
[Uncaptioned image]
33 44 55 66
22 33 44 55
11 22 33 44
[Uncaptioned image]
66 44 33 22 11
55 44 33 22
66 44 33
55 44
66
Lagrangian Grassmannian LG(6,12)\operatorname{LG}(6,12) Cayley Plane E6/P6E_{6}/P_{6}
[Uncaptioned image]
66 55 44 33 22 11
66 55 44 33 22
66 55 44 33
66 55 44
66 55
66
[Uncaptioned image]
66 55 44 22
33 44 55 66
11 33 44 55
22 44 33 11
Even quadric Q1011Q^{10}\subset{\mathbb{P}}^{11} Freudenthal variety E7/P7E_{7}/P_{7}
[Uncaptioned image]
11 22 33 44 55
66 44 33 22 11
Odd quadric Q1112Q^{11}\subset{\mathbb{P}}^{12}
[Uncaptioned image]
11 22 33 44 55 66 55 44 33 22 11
[Uncaptioned image]
77 66 55 44 33 11
22 44 33
55 44 22
66 55 44 33 11
77 66 55 44 33
22 44
55
66
77

2.3. Curve neighborhoods

Let Md=¯0,3(X,d)M_{d}=\overline{\mathcal{M}}_{0,3}(X,d) denote the Kontsevich moduli space of 3-pointed stable maps to XX of degree dd and genus zero, see [FP97]. The evaluation maps are denoted evi:MdX\operatorname{ev}_{i}:M_{d}\to X, for 1i31\leq i\leq 3. Given opposite Schubert varieties XuX_{u} and XvX^{v} in XX and a degree d0d\geq 0, let

Md(Xu,Xv)=ev11(Xu)ev21(Xv)M_{d}(X_{u},X^{v})=\operatorname{ev}_{1}^{-1}(X_{u})\cap\operatorname{ev}_{2}^{-1}(X^{v})

be the Gromov-Witten variety of stable maps that send the first two marked points to XuX_{u} and XvX^{v}, respectively. This variety is empty or unirational with rational singularities [BCMP13, §3]. The curve neighborhood

Γd(Xu,Xv)=ev3(Md(Xu,Xv))\Gamma_{d}(X_{u},X^{v})=\operatorname{ev}_{3}(M_{d}(X_{u},X^{v}))

is the union of all stable curves of degree dd in XX that connect XuX_{u} and XvX^{v}. In particular, Γd(Xu)=Γd(Xu,X)\Gamma_{d}(X_{u})=\Gamma_{d}(X_{u},X) is the union of all stable curves of degree dd that pass through XuX_{u}. Since this variety is a Schubert variety in XX [BCMP13, Prop. 3.2(b)], we can define elements u(d),v(d)WXu(d),v(-d)\in W^{X} by

Γd(Xu)=Xu(d) and Γd(Xv)=Xv(d).\Gamma_{d}(X_{u})=X_{u(d)}\text{ \ \ \ \ and \ \ \ \ }\Gamma_{d}(X^{v})=X^{v(-d)}\,.

Define zdWXz_{d}\in W^{X} by Γd(1.PX)=Xzd\Gamma_{d}(1.P_{X})=X_{z_{d}}.

The curve neighborhood Γd(Xu,Xv)\Gamma_{d}(X_{u},X^{v}) can be constructed as a projected Richardson variety as follows [BCMP18b]. Given x,yXx,y\in X, let dist(x,y)H2(X,)=\operatorname{dist}(x,y)\in H_{2}(X,{\mathbb{Z}})={\mathbb{Z}} denote the minimal degree of a rational curve in XX that meets both xx and yy. The diameter of XX is the distance dX(2)=dist(1.PX,w0.PX)d_{X}(2)=\operatorname{dist}(1.P_{X},w_{0}.P_{X}) between two general points. For 0ddX(2)0\leq d\leq d_{X}(2), we can choose points x,yXx,y\in X with dist(x,y)=d\operatorname{dist}(x,y)=d. Let Γd(x,y)\Gamma_{d}(x,y) be the union of all stable curves of degree dd that pass through xx and yy. Then Γd(x,y)\Gamma_{d}(x,y) is a non-singular Schubert variety, whose stabilizer PYdP_{Y_{d}} is a parabolic subgroup of GG. The set of all GG-translates of Γd(x,y)\Gamma_{d}(x,y) can therefore be identified with the flag variety Yd=G/PYdY_{d}=G/P_{Y_{d}}. Let Zd=G/PZdZ_{d}=G/P_{Z_{d}} be the flag variety defined by PZd=PXPYdP_{Z_{d}}=P_{X}\cap P_{Y_{d}}, and let pd:ZdXp_{d}:Z_{d}\to X and qd:ZdYdq_{d}:Z_{d}\to Y_{d} be the projections. Set

Yd(Xu,Xv)=qd(pd1(Xu))qd(pd1(Xv))andZd(Xu,Xv)=qd1(Yd(Xu,Xv)).\begin{split}Y_{d}(X_{u},X^{v})&=q_{d}(p_{d}^{-1}(X_{u}))\cap q_{d}(p_{d}^{-1}(X^{v}))\ \ \ \ \ \text{and}\\ Z_{d}(X_{u},X^{v})&=q_{d}^{-1}(Y_{d}(X_{u},X^{v}))\,.\end{split}

These varieties are Richardson varieties in YdY_{d} and ZdZ_{d}. By [BCMP18b, Thm. 4.1] and [BCMP22, Thm. 10.1] we then have Γd(Xu,Xv)=pd(Zd(Xu,Xv))\Gamma_{d}(X_{u},X^{v})=p_{d}(Z_{d}(X_{u},X^{v})), and the restricted projection

(3) pd:Zd(Xu,Xv)Γd(Xu,Xv)p_{d}:Z_{d}(X_{u},X^{v})\to\Gamma_{d}(X_{u},X^{v})

is cohomologically trivial. We let κd=(w0,Yd)X=w0,YdZdWX{\kappa}_{d}=(w_{0,Y_{d}})^{X}=w_{0,Y_{d}}^{Z_{d}}\in W^{X} be the unique element such that Xκd=p(q1(1.PYd))X_{{\kappa}_{d}}=p(q^{-1}(1.P_{Y_{d}})) is a translate of Γd(x,y)\Gamma_{d}(x,y). A combinatorial description of the elements κd,zdWX{\kappa}_{d},z_{d}\in W^{X} can be found in [BCMP22, Def. 5.2].

2.4. Quantum cohomology

The (small) quantum cohomology ring QH(X)\operatorname{QH}(X) is a [q]{\mathbb{Z}}[q]-algebra, which is defined by QH(X)=H(X,)[q]\operatorname{QH}(X)=H^{*}(X,{\mathbb{Z}})\otimes_{\mathbb{Z}}{\mathbb{Z}}[q] as a [q]{\mathbb{Z}}[q]-module. When XX is cominuscule, the multiplicative structure is given by

[Xu][Xv]=d0(pd)[Zd(Xu,Xv)]qd.[X_{u}]\star[X^{v}]\,=\,\sum_{d\geq 0}(p_{d})_{*}[Z_{d}(X_{u},X^{v})]\,q^{d}\,.

This follows from the quantum equals classical theorem [Buc03, BKT03, CMP08, BM11, CP11, BCMP18b]. A mostly type-uniform proof was given in [BCMP22]. Notice that we have

(pd)[Zd(Xu,Xv)]={[Γd(Xu,Xv)]if dimΓd(Xu,Xv)=dimZd(Xu,Xv),0otherwise,(p_{d})_{*}[Z_{d}(X_{u},X^{v})]\,=\,\begin{cases}[\Gamma_{d}(X_{u},X^{v})]&\text{if $\dim\Gamma_{d}(X_{u},X^{v})=\dim Z_{d}(X_{u},X^{v})$,}\\ 0&\text{otherwise,}\end{cases}

for example because the projection (3) is cohomologically trivial. Let

QH(X)q=QH(X)[q][q,q1]\operatorname{QH}(X)_{q}=\operatorname{QH}(X)\otimes_{{\mathbb{Z}}[q]}{\mathbb{Z}}[q,q^{-1}]

be the localization of QH(X)\operatorname{QH}(X) at the deformation parameter qq. The set ={qd[Xu]uWX and d}{\mathcal{B}}=\{q^{d}\,[X^{u}]\mid u\in W^{X}\text{ and }d\in{\mathbb{Z}}\} is a natural {\mathbb{Z}}-basis of QH(X)q\operatorname{QH}(X)_{q}.

2.5. Quantum KK-theory

Let K(X)K(X) denote the KK-theory ring of algebraic vector bundles on XX. Given uWu\in W, we let 𝒪u=[𝒪Xu]{\mathcal{O}}_{u}=[{\mathcal{O}}_{X_{u}}] and 𝒪u=[𝒪Xu]{\mathcal{O}}^{u}=[{\mathcal{O}}_{X^{u}}] denote the corresponding KK-theoretic Schubert classes. For any shape λ𝒫X{\lambda}\subset{\mathcal{P}}_{X}, we similarly write 𝒪λ=[𝒪Xλ]{\mathcal{O}}_{\lambda}=[{\mathcal{O}}_{X_{\lambda}}] and 𝒪λ=[𝒪Xλ]{\mathcal{O}}^{\lambda}=[{\mathcal{O}}_{X^{\lambda}}].

The quantum KK-theory ring QK(X)\operatorname{QK}(X) is an algebra over the power series ring q{\mathbb{Z}}\llbracket q\rrbracket, which is given by QK(X)=K(X)q\operatorname{QK}(X)=K(X)\otimes_{\mathbb{Z}}{\mathbb{Z}}\llbracket q\rrbracket as a q{\mathbb{Z}}\llbracket q\rrbracket-module. An undeformed product on QK(X)\operatorname{QK}(X) is defined by

𝒪u𝒪v=d0(pd)[𝒪Zd(Xu,Xv)]qd=d0[𝒪Γd(Xu,Xv)]qd.{\mathcal{O}}_{u}\odot{\mathcal{O}}^{v}\,=\,\sum_{d\geq 0}(p_{d})_{*}[{\mathcal{O}}_{Z_{d}(X_{u},X^{v})}]\,q^{d}\,=\,\sum_{d\geq 0}[{\mathcal{O}}_{\Gamma_{d}(X_{u},X^{v})}]\,q^{d}\,.

This product 𝒪u𝒪v{\mathcal{O}}_{u}\odot{\mathcal{O}}^{v} is not associative. Let ψ:QK(X)QK(X)\psi:\operatorname{QK}(X)\to\operatorname{QK}(X) be the line neighborhood operator, defined as the q{\mathbb{Z}}\llbracket q\rrbracket-linear extension of the map ψ=(ev2)(ev1):K(X)K(X)\psi=(\operatorname{ev}_{2})_{*}(\operatorname{ev}_{1})^{*}:K(X)\to K(X), where ev1\operatorname{ev}_{1} and ev2\operatorname{ev}_{2} are the evaluation maps from ¯0,2(X,1)\overline{\mathcal{M}}_{0,2}(X,1). Equivalently, we have ψ(𝒪u)=𝒪u(1)\psi({\mathcal{O}}^{u})={\mathcal{O}}^{u(-1)} for uWXu\in W^{X}. Givental’s associative quantum product on QK(X)\operatorname{QK}(X) is then given by [BCMP18a, Prop. 3.2]

𝒪u𝒪v=(1qψ)(𝒪u𝒪v).{\mathcal{O}}_{u}\star{\mathcal{O}}^{v}\,=\,(1-q\psi)({\mathcal{O}}_{u}\odot{\mathcal{O}}^{v})\,.

Let QK(X)q\operatorname{QK}(X)_{q} be the localization obtained by adjoining the inverse of qq to QK(X)\operatorname{QK}(X). The set ={qd𝒪uuWX and d}{\mathcal{B}}^{\prime}=\{q^{d}\,{\mathcal{O}}^{u}\mid u\in W^{X}\text{ and }d\in{\mathbb{Z}}\} is a {\mathbb{Z}}-basis of QK(X)q\operatorname{QK}(X)_{q}, in the sense that every element of QK(X)q{\mathcal{F}}\in\operatorname{QK}(X)_{q} can be uniquely expressed as an infinite linear combination

=dd0uWXau,dqd𝒪u{\mathcal{F}}=\sum_{d\geq d_{0}}\sum_{u\in W^{X}}a_{u,d}\,q^{d}\,{\mathcal{O}}^{u}

of {\mathcal{B}}^{\prime}, with au,da_{u,d}\in{\mathbb{Z}} and the degrees dd bounded below.

3. The Seidel representation on quantum KK-theory

Let X=G/PXX=G/P_{X} be a fixed cominuscule flag variety. In this section we prove that certain products 𝒪u𝒪v{\mathcal{O}}^{u}\star{\mathcal{O}}^{v} in QK(X)\operatorname{QK}(X) are equal to a single element qd𝒪wq^{d}\,{\mathcal{O}}^{w} from {\mathcal{B}}^{\prime}. The same statement was proved in [Bel04, CMP09] for products of Schubert classes in the quantum cohomology ring QH(M)\operatorname{QH}(M) of any flag variety M=G/PMM=G/P_{M}. For u,vWu,v\in W we let dmin(u,v)d_{\min}(u,v) and dmax(u,v)d_{\max}(u,v) denote the minimal and maximal powers of qq in the quantum cohomology product [Xu][Xv]QH(X)[X^{u}]\star[X^{v}]\in\operatorname{QH}(X). Let dmax(u)=dmax(u,w0X)d_{\max}(u)=d_{\max}(u,w_{0}^{X}) be the maximal power of qq in [Xu][1.PX][X^{u}]\star[1.P_{X}].

Lemma 3.1.

Let uWXu\in W^{X} and dmax(u)ddX(2)d_{\max}(u)\leq d\leq d_{X}(2). Then Γd(1.PX,Xu)=(w0X)1.Xv\Gamma_{d}(1.P_{X},X^{u})=(w_{0}^{X})^{-1}.X^{v}, where v=w0X(uκd)(zdκd)1WXv=w_{0}^{X}(u\cup{\kappa}_{d})(z_{d}{\kappa}_{d})^{-1}\in W^{X}.

Proof.

Using that κdWYd{\kappa}_{d}\in W_{Y_{d}}, we obtain qd(pd1(Xu))=qd(pd1(Xuκd))q_{d}(p_{d}^{-1}(X^{u}))=q_{d}(p_{d}^{-1}(X^{u\cup{\kappa}_{d}})), and hence Γd(1.PX,Xu)=Γd(1.PX,Xuκd)\Gamma_{d}(1.P_{X},X^{u})=\Gamma_{d}(1.P_{X},X^{u\cup{\kappa}_{d}}), so we may replace uu with uκdu\cup{\kappa}_{d} and assume that d=dmax(u)d=d_{\max}(u) (see [BCMP22, §7.1]). We have qd(pd1(1.PX))=PX.PYdq_{d}({p_{d}}^{-1}(1.P_{X}))=P_{X}.P_{Y_{d}} and qd(pd1(Xu))=(Yd)uκdq_{d}(p_{d}^{-1}(X^{u}))=(Y_{d})^{u{\kappa}_{d}} by Lemma 2.1, and since κduYdw0,YdZd=κd=κd1{\kappa}_{d}\leq u_{Y_{d}}\leq w_{0,Y_{d}}^{Z_{d}}={\kappa}_{d}={\kappa}_{d}^{-1}, we obtain uκdWYdu{\kappa}_{d}\in W^{Y_{d}}. It therefore follows from Proposition 2.2 that Yd(1.PX,Xu)=(PX.PYd)Yduκd=(w0X)1.YdvY_{d}(1.P_{X},X^{u})=(P_{X}.P_{Y_{d}})\cap Y_{d}^{u{\kappa}_{d}}=(w_{0}^{X})^{-1}.Y_{d}^{v}, where v=w0X(uκd)κd1=w0XuWYdv=w_{0}^{X}(u{\kappa}_{d}){\kappa}_{d}^{-1}=w_{0}^{X}u\in W^{Y_{d}}. The result follows from this and Lemma 2.1, using that pd:Zd(1.PX,Xu)Γd(1.PX,Xu)p_{d}:Z_{d}(1.P_{X},X^{u})\to\Gamma_{d}(1.P_{X},X^{u}) is birational [BCMP22, Prop. 7.1] and w0,XZd=zdκdw_{0,X}^{Z_{d}}=z_{d}{\kappa}_{d} [BCMP22, Lemma 6.1]. ∎

Corollary 3.2.

For uWu\in W we have [1.PX][Xu]=qdmax(u)[Xw0Xu][1.P_{X}]\star[X^{u}]=q^{d_{\max}(u)}\,[X^{w_{0}^{X}u}] in QH(X)\operatorname{QH}(X) and [𝒪1.PX]𝒪u=qdmax(u)𝒪w0Xu[{\mathcal{O}}_{1.P_{X}}]\star{\mathcal{O}}^{u}=q^{d_{\max}(u)}\,{\mathcal{O}}^{w_{0}^{X}u} in QK(X)\operatorname{QK}(X).

Proof.

This follows from Lemma 3.1 together with [BCMP22, Prop. 7.1, Thm. 8.3, and Thm. 8.10]. Notice that the product [𝒪1.PX]𝒪u[{\mathcal{O}}_{1.P_{X}}]\star{\mathcal{O}}^{u} has no exceptional degree by the inequality in [BCMP22, Def. 8.2]. ∎

Let WcominWW^{\mathrm{comin}}\subset W be the subset of point representatives of cominuscule flag varieties of GG, together with the identity element:

Wcomin={w0FF is a cominuscule flag variety of G}{1}.W^{\mathrm{comin}}=\{w_{0}^{F}\mid\text{$F$ is a cominuscule flag variety of $G$}\}\cup\{1\}\,.

Remarkably, this is a subgroup of WW, which is also isomorphic to the quotient of the coweight lattice of Φ\Phi by the coroot lattice. The isomorphism sends w0Fw_{0}^{F} to the class of the fundamental coweight corresponding to FF.

The classes qd[Xw]QH(X)qq^{d}[X^{w}]\in\operatorname{QH}(X)_{q} and qd𝒪wQK(X)qq^{d}{\mathcal{O}}^{w}\in\operatorname{QK}(X)_{q} given by wWcominw\in W^{\mathrm{comin}} and dd\in{\mathbb{Z}} are called Seidel classes. The cohomological Seidel classes qd[Xw]q^{d}[X^{w}] form a subgroup of the group of units QH(X)q×\operatorname{QH}(X)_{q}^{\times} by [Bel04, CMP09]. We will see in Corollary 3.7 below that the KK-theoretic Seidel classes similarly form a subgroup of QK(X)q×\operatorname{QK}(X)_{q}^{\times}.

The following lemma shows that [Xu][X^{u}] is a Seidel class if and only if the dual class [Xu][X_{u}] is a Seidel class (when XX is cominuscule).

Lemma 3.3.

Let X=G/PXX=G/P_{X} and F=G/PFF=G/P_{F} be flag varieties. The dual element of (w0F)X(w_{0}^{F})^{X} in WXW^{X} is ((w0F)1w0X)X((w_{0}^{F})^{-1}w_{0}^{X})^{X}.

Proof.

Using that w0=w0Fw0,Fw_{0}=w_{0}^{F}w_{0,F}, we obtain (w0F)1w0=w0,F=(w0,F)1=w0w0F(w_{0}^{F})^{-1}w_{0}=w_{0,F}=(w_{0,F})^{-1}=w_{0}w_{0}^{F}, so the dual element of (w0F)X(w_{0}^{F})^{X} is (w0w0F)X=((w0F)1w0)X=((w0F)1w0X)X(w_{0}w_{0}^{F})^{X}=((w_{0}^{F})^{-1}w_{0})^{X}=((w_{0}^{F})^{-1}w_{0}^{X})^{X}. ∎

The following combinatorial lemma is justified with a case-by-case argument. We hope to give a type-independent proof in later work.

Lemma 3.4.

Let XX be a cominuscule flag variety, let αI(z1){γ}{\alpha}\in I(z_{1})\smallsetminus\{{\gamma}\}, and define uWXu\in W^{X} by I(u)={α𝒫Xα(z1sγ).α}I(u)=\{{\alpha}^{\prime}\in{\mathcal{P}}_{X}\mid{\alpha}^{\prime}\leq(z_{1}s_{\gamma}).{\alpha}\}. The following are equivalent.

(a)u=wXu=w^{X} for some wWcominw\in W^{\mathrm{comin}}.

(b)δ(α)\delta({\alpha}) is a cominuscule simple root.

(c)α(z1sγ).α{\alpha}\not\leq(z_{1}s_{\gamma}).{\alpha}.

(d)𝒫XI(u)={α𝒫Xαα}{\mathcal{P}}_{X}\smallsetminus I(u)=\{{\alpha}^{\prime}\in{\mathcal{P}}_{X}\mid{\alpha}^{\prime}\geq{\alpha}\}.

When these conditions hold we have u=(w0F)Xu^{\vee}=(w_{0}^{F})^{X}, where F=G/PFF=G/P_{F} is the cominuscule flag variety defined by δ(α)\delta({\alpha}).

Proof.

The action of w0,Xw_{0,X} restricts to an order-reversing involution of 𝒫X{\mathcal{P}}_{X}, and z1sγ:I(z1){γ}w0,X.(I(z1){γ})z_{1}s_{\gamma}:I(z_{1})\smallsetminus\{{\gamma}\}\to w_{0,X}.(I(z_{1})\smallsetminus\{{\gamma}\}) is an order isomorphism, see [BCMP22, Lemma 4.4 and Prop. 5.10]. This uniquely determines (z1sγ).α(z_{1}s_{\gamma}).{\alpha} for most cominuscule flag varieties. In this proof we will identify shapes labeled by simple root numbers with the product of the corresponding simple reflections in south-east to north-west order. For example, the set 𝒫X{\mathcal{P}}_{X} labeled by simple root numbers, as in Table 1, is identified with w0Xw_{0}^{X}.

Assume first that the root system Φ\Phi has type An1A_{n-1}, with simple roots Δ={β1,,βn1}\Delta=\{{\beta}_{1},\dots,{\beta}_{n-1}\}. All simple roots are cominuscule. Let X=Gr(m,n)X=\operatorname{Gr}(m,n) be defined by γ=βm{\gamma}={\beta}_{m}. Then 𝒫X{\mathcal{P}}_{X} is a rectangle with mm rows and nmn-m columns, and I(z1){γ}I(z_{1})\smallsetminus\{{\gamma}\} consists of the top row and leftmost column of 𝒫X{\mathcal{P}}_{X}, except for the minimal box γ{\gamma}. Let αI(z1){γ}{\alpha}\in I(z_{1})\smallsetminus\{{\gamma}\} be the box in column cc of the top row of 𝒫X{\mathcal{P}}_{X}. Then (z1sγ).α(z_{1}s_{\gamma}).{\alpha} is the box in column c1c-1 of the bottom row of 𝒫X{\mathcal{P}}_{X}, and I(u)I(u) is a rectangle with mm rows and c1c-1 columns. We also have δ(α)=βm+c1\delta({\alpha})={\beta}_{m+c-1}, which defines F=Gr(m+c1,n)F=\operatorname{Gr}(m+c-1,n). The shape of (w0F)X(w_{0}^{F})^{X} is a rectangle with mm rows and nmc+1n-m-c+1 columns; this follows because the top part of I(w0F)I(w_{0}^{F}) cancels when w0Fw_{0}^{F} is reduced modulo WXW_{X}. For example, for X=Gr(3,8)X=\operatorname{Gr}(3,8) and c=4c=4, we obtain F=Gr(6,8)F=\operatorname{Gr}(6,8) and

w0X= 3 4 5 6 7 2 3 4 5 6 1 2 3 4 5 ,w0F= 6 7 5 6 4 5 3 4 2 3 1 2 , and (w0F)X= 3 4 2 3 1 2 =s2s1s3s2s4s3.w_{0}^{X}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$7$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss\crcr}}}\ ,\ w_{0}^{F}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$7$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss\crcr}}}\ ,\text{ and \ }(w_{0}^{F})^{X}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss\crcr}}}=s_{2}s_{1}s_{3}s_{2}s_{4}s_{3}\,.}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

The marked box is α{\alpha}. It follows that uu is dual to (w0F)X(w_{0}^{F})^{X} in WXW^{X}, and conditions (a)-(d) are satisfied. A symmetric argument applies when α{\alpha} belongs to the leftmost column of 𝒫X{\mathcal{P}}_{X}.

We next assume that Φ\Phi has type DnD_{n}, with simple roots Δ={β1,,βn}\Delta=\{{\beta}_{1},\dots,{\beta}_{n}\}. The three cominuscule flag varieties of this type are Q=Dn/P1Q=D_{n}/P_{1}, X=Dn/Pn1X^{\prime}=D_{n}/P_{n-1}, and X′′=Dn/PnX^{\prime\prime}=D_{n}/P_{n}. Here QQ2n2Q\cong Q^{2n-2} is a quadric and XX′′OG(n,2n)X^{\prime}\cong X^{\prime\prime}\cong\operatorname{OG}(n,2n) are maximal orthogonal Grassmannians. For n=6n=6, the point representatives are

w0Q= 1 2 3 4 5 6 4 3 2 1 ,w0X= 5 4 3 2 1 6 4 3 2 5 4 3 6 4 5 , and w0X′′= 6 4 3 2 1 5 4 3 2 6 4 3 5 4 6 .w_{0}^{Q}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss\crcr}}}\ ,\ w_{0}^{X^{\prime}}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss\crcr}}}\ ,\text{ and \ }w_{0}^{X^{\prime\prime}}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss\crcr}}}\ .}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Let X=QX=Q. The elements in WQW^{Q} representing Seidel classes other than 11 and [1.PX][1.P_{X}] are the two elements of length n1n-1. For n=6n=6, we obtain

(w0X)Q=
1 2 3 4 5
 and 
(w0X′′)Q
= 1 2 3 4 6
.
(w_{0}^{X^{\prime}})^{Q}=\,\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss\crcr}}}\text{ \ \ and \ \ }(w_{0}^{X^{\prime\prime}})^{Q}=\,\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss\crcr}}}\ .}}}}}}}}}}}}}

The set I(z1){γ}I(z_{1})\smallsetminus\{{\gamma}\} contains all boxes of 𝒫Q{\mathcal{P}}_{Q}, except γ{\gamma} and the maximal box. The two incomparable boxes of 𝒫Q{\mathcal{P}}_{Q} are α=θ+βn1{\alpha}^{\prime}=\theta+{\beta}_{n-1} and α′′=θ+βn{\alpha}^{\prime\prime}=\theta+{\beta}_{n}, where θ=β1++βn2\theta={\beta}_{1}+\dots+{\beta}_{n-2}. Since z1sγz_{1}s_{\gamma} swaps α{\alpha}^{\prime} and α′′{\alpha}^{\prime\prime} and fixes all other boxes of I(z1){γ}I(z_{1})\smallsetminus\{{\gamma}\}, it follows that (a)-(d) are satisfied if and only if α{α,α′′}{\alpha}\in\{{\alpha}^{\prime},{\alpha}^{\prime\prime}\}. Assume that α=α′′{\alpha}={\alpha}^{\prime\prime}. We obtain u=sn1sn2s2s1u=s_{n-1}s_{n-2}\cdots s_{2}s_{1}, δ(α)=βn\delta({\alpha})={\beta}_{n}, and F=X′′F=X^{\prime\prime}. If nn is even, then the bottom label of w0Xw_{0}^{X^{\prime}} is n1n-1, hence u=(w0X)Qu=(w_{0}^{X^{\prime}})^{Q}, and otherwise u=(w0X′′)Qu=(w_{0}^{X^{\prime\prime}})^{Q}. This is consistent with the lemma, since the elements (w0X)Q(w_{0}^{X^{\prime}})^{Q} and (w0X′′)Q(w_{0}^{X^{\prime\prime}})^{Q} are dual to each other when nn is even and self-dual when nn is odd. A symmetric argument applies when α=α{\alpha}={\alpha}^{\prime}.

Let X=XX=X^{\prime}. The shape of (w0Q)X(w_{0}^{Q})^{X^{\prime}} is a single row of n1n-1 boxes, and (w0X′′)X(w_{0}^{X^{\prime\prime}})^{X^{\prime}} is dual to (w0Q)X(w_{0}^{Q})^{X^{\prime}} in WXW^{X^{\prime}}. For n=6n=6, we have

(w0Q)X=
5 4 3 2 1
 and 
(w0X′′)X
= 5 4 3 2 6 4 3 5 4 6
.
(w_{0}^{Q})^{X^{\prime}}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$1$\hss}\vss\crcr}}}\text{ \ and \ }(w_{0}^{X^{\prime\prime}})^{X^{\prime}}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(10.0,10.0) \put(0.0,10.0){\line(1,0){10.0}} \put(0.0,0.0){\line(1,0){10.0}} \put(0.0,0.0){\line(0,1){10.0}} \put(10.0,0.0){\line(0,1){10.0}} \end{picture}}\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$2$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$3$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$5$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$4$\hss}\vss\\\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\vbox to10.0pt{\hbox to10.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to10.0pt{\vss\hbox to10.0pt{\hss$6$\hss}\vss\crcr}}}\ .}}}}}}}}}}}}}}}}}}}}}

The set I(z1){γ}I(z_{1})\smallsetminus\{{\gamma}\} consists of the first two rows of 𝒫X{\mathcal{P}}_{X^{\prime}}, with γ{\gamma} removed. Let α1,αnI(z1){γ}{\alpha}_{1},{\alpha}_{n}\in I(z_{1})\smallsetminus\{{\gamma}\} be the unique boxes with labels δ(α1)=β1\delta({\alpha}_{1})={\beta}_{1} and δ(αn)=βn\delta({\alpha}_{n})={\beta}_{n}. Then (z1sγ).αn=α1(z_{1}s_{\gamma}).{\alpha}_{n}={\alpha}_{1}, and (z1sγ).α1(z_{1}s_{\gamma}).{\alpha}_{1} is the second to last diagonal box of 𝒫X{\mathcal{P}}_{X}. It follows that conditions (a)-(d) hold if and only if α{α1,αn}{\alpha}\in\{{\alpha}_{1},{\alpha}_{n}\}, and the description of uu^{\vee} is accurate.

If XX is a Lagrangian Grassmannian LG(n,2n)\operatorname{LG}(n,2n), an odd quadric Q2n1Q^{2n-1}, or the Freudenthal variety E7/P7E_{7}/P_{7}, then no boxes of I(z1){γ}I(z_{1})\smallsetminus\{{\gamma}\} satisfy conditions (a)–(d). The Cayley plane E6/P6E_{6}/P_{6} is similar to the cases of type DnD_{n} and left to the reader. ∎

Lemma 3.5.

Let XX be a minuscule flag variety, let u1,u2,,uWXu_{1},u_{2},\dots,u_{\ell}\in W^{X}, and assume that 𝒪u1𝒪u2𝒪u=qd{\mathcal{O}}^{u_{1}}\star{\mathcal{O}}^{u_{2}}\star\dots\star{\mathcal{O}}^{u_{\ell}}=q^{d} for some dd\in{\mathbb{Z}}. Then 𝒪ui{\mathcal{O}}^{u_{i}}\star{\mathcal{B}}^{\prime}\subset{\mathcal{B}}^{\prime} for each ii, where ={qe𝒪vvWX,d}{\mathcal{B}}^{\prime}=\{q^{e}{\mathcal{O}}^{v}\mid v\in W^{X},d\in{\mathbb{Z}}\} is the {\mathbb{Z}}-basis of QK(X)q\operatorname{QK}(X)_{q}.

Proof.

It follows from [BCMP22, Thm. 8.4] that QK(X)q\operatorname{QK}(X)_{q} has non-negative structure constants relative to the basis

′′={(1)(v)+dc1(TX)qd𝒪vvWX and d}.{\mathcal{B}}^{\prime\prime}=\{(-1)^{\ell(v)+\int_{d}c_{1}(T_{X})}\,q^{d}{\mathcal{O}}^{v}\mid v\in W^{X}\text{ and }d\in{\mathbb{Z}}\}\,.

The lemma therefore follows from the proof of [BW21, Lemma 3]. Namely, if the expansion of 𝒪ui𝒪v{\mathcal{O}}^{u_{i}}\star{\mathcal{O}}^{v} contains more than one term, then so does the expansion of 𝒪u1𝒪u𝒪v=qd𝒪v{\mathcal{O}}^{u_{1}}\star\dots\star{\mathcal{O}}^{u_{\ell}}\star{\mathcal{O}}^{v}=q^{d}{\mathcal{O}}^{v}, which is a contradiction. ∎

Theorem 3.6.

Let XX be a cominuscule flag variety and let uWXu\in W^{X}. The following are equivalent.

(S1)u=wXu=w^{X} for some wWcominw\in W^{\mathrm{comin}}.

(S2)[Xu][X^{u}]\star{\mathcal{B}}\subset{\mathcal{B}}, where ={qd[Xv]vWX{\mathcal{B}}=\{q^{d}\,[X^{v}]\mid v\in W^{X}, d}d\in{\mathbb{Z}}\} is the {\mathbb{Z}}-basis of QH(X)q\operatorname{QH}(X)_{q}.

(S3)𝒪u{\mathcal{O}}^{u}\star{\mathcal{B}}^{\prime}\subset{\mathcal{B}}^{\prime}, where ={qd𝒪vvWX{\mathcal{B}}^{\prime}=\{q^{d}\,{\mathcal{O}}^{v}\mid v\in W^{X}, d}d\in{\mathbb{Z}}\} is the {\mathbb{Z}}-basis of QK(X)q\operatorname{QK}(X)_{q}.

(S4)[Xu][Xu]=[1.PX]QH(X)[X_{u}]\star[X^{u}]=[1.P_{X}]\,\in\,\operatorname{QH}(X).

(S5)𝒪u𝒪u=[𝒪1.PX]QK(X){\mathcal{O}}_{u}\star{\mathcal{O}}^{u}=[{\mathcal{O}}_{1.P_{X}}]\,\in\,\operatorname{QK}(X).

(S6)dmax(u,u)=0d_{\max}(u^{\vee},u)=0.

(S7)  We have u{1,w0X}u\in\{1,w_{0}^{X}\}, or \exists αI(z1){\alpha}\in I(z_{1}) such that αI(u){\alpha}\notin I(u) and (z1sγ).αI(u)(z_{1}s_{\gamma}).{\alpha}\in I(u).

Furthermore, if α{\alpha} is as in condition (S7), then I(u)={α𝒫Xα(z1sγ).α}I(u)=\{{\alpha}^{\prime}\in{\mathcal{P}}_{X}\mid{\alpha}^{\prime}\leq(z_{1}s_{\gamma}).{\alpha}\}, δ(α)\delta({\alpha}) is a cominuscule simple root, and u=(w0F)Xu^{\vee}=(w_{0}^{F})^{X} where F=G/PFF=G/P_{F} is the cominuscule flag variety defined by δ(α)\delta({\alpha}).

Proof.

We may assume u{1,w0X}u\notin\{1,w_{0}^{X}\} by Corollary 3.2. The implications (S3) \Rightarrow (S2) \Rightarrow (S4) and (S3) \Rightarrow (S5) \Rightarrow (S4) are clear, noting that the quantum cohomology product [Xu][Xv][X^{u}]\star[X^{v}] is the leading term of 𝒪u𝒪v{\mathcal{O}}^{u}\star{\mathcal{O}}^{v}, and is non-zero by Corollary 3.2 since [Xu][Xu][Xv]0[X_{u}]\star[X^{u}]\star[X^{v}]\neq 0. The implication (S4) \Rightarrow (S6) is also clear. Using the notation u1,u1Wu_{1},u^{1}\in W defined in [BCMP22, Def. 6.5], it follows from [BCMP22, Prop. 7.1 and Cor. 7.4] that dmax(u,u)=0d_{\max}(u^{\vee},u)=0 is equivalent to u1u1u_{1}\not\leq u^{1}, noting that dmax(u)>0d_{\max}(u)>0 and dmax(u)>0d_{\max}(u^{\vee})>0. The elements u1u_{1} and u1u^{1} are cominuscule minimal representatives, so u1u1u_{1}\not\leq u^{1} is equivalent to I(u1)I(u1)I(u_{1})\not\subset I(u^{1}). By [BCMP22, Prop. 6.2 and Prop. 6.7(b)] these inversion sets are given by

I(u1)=z11.(I(u)(I(sγ)I(z1))) and I(u1)=sγ.(I(u)(I(z1){γ})).I(u_{1})=z_{1}^{-1}.(I(u)\cap(I(s_{\gamma}^{\vee})\smallsetminus I(z_{1}^{\vee})))\text{ \ \ and \ \ }I(u^{1})=s_{\gamma}.(I(u)\cap(I(z_{1})\smallsetminus\{{\gamma}\}))\,.

Since (z1sγ)1.(I(sγ)I(z1))=I(z1){γ}(z_{1}s_{\gamma})^{-1}.(I(s_{\gamma}^{\vee})\smallsetminus I(z_{1}^{\vee}))=I(z_{1})\smallsetminus\{{\gamma}\} and γI(u){\gamma}\in I(u), we deduce that I(u1)I(u1)I(u_{1})\not\subset I(u^{1}) holds if and only if (z1sγ)1.I(u)I(z1)I(u)(z_{1}s_{\gamma})^{-1}.I(u)\cap I(z_{1})\not\subset I(u). This proves that (S6) is equivalent to (S7). Assume (S7), and let αI(z1){\alpha}\in I(z_{1}) satisfy αI(u){\alpha}\notin I(u) and (z1sγ).αI(u)(z_{1}s_{\gamma}).{\alpha}\in I(u). Then α(z1sγ).α{\alpha}\not\leq(z_{1}s_{\gamma}).{\alpha}, so Lemma 3.4 implies that δ(α)\delta({\alpha}) is a cominuscule simple root. This is only possible when XX is minuscule. Using (S6), it follows from [BCMP22, Thm. 8.3] that 𝒪u𝒪u=[𝒪1.PX]{\mathcal{O}}_{u}\star{\mathcal{O}}^{u}=[{\mathcal{O}}_{1.P_{X}}]. By Corollary 3.2, this implies that (𝒪u𝒪u)m({\mathcal{O}}_{u}\star{\mathcal{O}}^{u})^{\star m} is a power of qq for some positive integer mm, so it follows from Lemma 3.5 that 𝒪u{\mathcal{O}}^{u}\star{\mathcal{B}}^{\prime}\subset{\mathcal{B}}^{\prime}. This proves the implication (S7) \Rightarrow (S3). We finally show that (S1) is equivalent to (S7). The implication (S7) \Rightarrow (S1) follows immediately from Lemma 3.4. If (S1) holds, then u=(w0F)Xu^{\vee}=(w_{0}^{F})^{X}, where F=G/PFF=G/P_{F} is the cominuscule flag variety defined by some cominuscule simple root γΔ{γ}{\gamma}^{\prime}\in\Delta\smallsetminus\{{\gamma}\}. Let αI(z1){\alpha}\in I(z_{1}) be any root for which δ(α)=γ\delta({\alpha})={\gamma}^{\prime}, and define vWXv\in W^{X} by I(v)={α𝒫Xα(z1sγ).α}I(v)=\{{\alpha}^{\prime}\in{\mathcal{P}}_{X}\mid{\alpha}^{\prime}\leq(z_{1}s_{\gamma}).{\alpha}\}. Then Lemma 3.4 shows that u=vu=v, which proves the implication (S1) \Rightarrow (S7). The last claims of the theorem also follow from Lemma 3.4. ∎

The following result provides the action of the subgroup of Seidel classes in QK(X)q×\operatorname{QK}(X)_{q}^{\times} on the basis {\mathcal{B}}^{\prime}. The statement was proved for the quantum cohomology of arbitrary flag varieties in [Bel04, CMP09].

Corollary 3.7.

Let XX be a cominuscule flag variety, and let wWcominw\in W^{\mathrm{comin}} and vWv\in W. Then, 𝒪w𝒪v=qdmin(w,v)𝒪wv{\mathcal{O}}^{w}\star{\mathcal{O}}^{v}=q^{d_{\min}(w,v)}\,{\mathcal{O}}^{wv} holds in QK(X)\operatorname{QK}(X).

Proof.

It follows from [Bel04, CMP09] that [Xw][Xv]=qdmin(w,v)[Xwv][X^{w}]\star[X^{v}]=q^{d_{\min}(w,v)}\,[X^{wv}] holds in the quantum cohomology ring QH(X)\operatorname{QH}(X). The result follows from this since [Xw][Xv][X^{w}]\star[X^{v}] is the leading term of 𝒪w𝒪v{\mathcal{O}}^{w}\star{\mathcal{O}}^{v}, and 𝒪w𝒪v{\mathcal{O}}^{w}\star{\mathcal{O}}^{v} is a power of qq times a single Schubert class by Theorem 3.6. ∎

Example 3.8.

Let X=Q2n2X=Q^{2n-2} be the quadric of type DnD_{n}, let PH4n4(X)P\in H^{4n-4}(X) be the point class, and let σ,τH2n2(X)\sigma,\tau\in H^{2n-2}(X) be the two Schubert classes of middle degree. Since WcominW^{\mathrm{comin}} has order 4 and deg(q)=deg(P)\deg(q)=\deg(P), we deduce that the Seidel classes in H(X)H^{*}(X) consist of 11, σ\sigma, τ\tau, and PP. If nn is even, then στ=P\sigma\cdot\tau=P and σ2=τ2=0\sigma^{2}=\tau^{2}=0 hold in H(X)H^{*}(X). It follows that στ=P\sigma\star\tau=P, σ2=τ2=q\sigma^{2}=\tau^{2}=q, σP=qτ\sigma\star P=q\,\tau, and τP=qσ\tau\star P=q\,\sigma hold in QH(X)\operatorname{QH}(X). Similarly, if nn is odd, then σ2=τ2=P\sigma^{2}=\tau^{2}=P, στ=q\sigma\star\tau=q, σP=qτ\sigma\star P=q\,\tau, and τP=qσ\tau\star P=q\,\sigma hold in QH(X)\operatorname{QH}(X). Any product of a Seidel class with a non-Seidel Schubert class in QH(X)\operatorname{QH}(X) is the unique element in {\mathcal{B}} of the correct degree. This determines all products with Seidel classes in QH(X)\operatorname{QH}(X). Products of arbitrary Schubert classes in QH(X)\operatorname{QH}(X) and QK(X)\operatorname{QK}(X) are determined by this together with Corollary 3.7 and the quantum Chevalley formulas [FW04, BCMP18a].

Example 3.9.

Let X=Gr(2,4)X=\operatorname{Gr}(2,4). Then

[X ][X ]=q[X ][X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}]\star[X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}]\ =\ q\,[X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}]}}}}}}

holds in QH(X)\operatorname{QH}(X). Let {e1,e2,e3,e4}\{e_{1},e_{2},e_{3},e_{4}\} be the standard basis of 4{\mathbb{C}}^{4}. We claim that

Γ1(X ,X )={VXVe1,e40},\Gamma_{1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}},X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})\ =\ \{V\in X\mid V\cap\langle e_{1},e_{4}\rangle\neq 0\}\,,}}}

that is, Γ1(X ,X )\Gamma_{1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}},X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})}}} is a translate of the Schubert divisor X X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}}. The curve neighborhood Γ1(X ,X )\Gamma_{1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}},X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})}}} is the union of all lines connecting the Schubert varieties

X ={AXe1Ae1,e2,e3}andX ={BXe4B}.\begin{split}X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}\ &=\ \{A\in X\mid\langle e_{1}\rangle\subset A\subset\langle e_{1},e_{2},e_{3}\rangle\}\ \ \text{and}\\ X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}\ &=\ \{B\in X\mid\langle e_{4}\rangle\subset B\}\,.\end{split}}}}

Given VΓ1(X ,X )V\in\Gamma_{1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}},X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})}}}, we can find AX A\in X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}} and BX B\in X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}}}} such that

0ABVA+B4.0\,\neq\,A\,\cap\,B\,\subset\,V\,\subset\,A+B\,\neq\,{\mathbb{C}}^{4}\,.

Since VV and e1,e4\langle e_{1},e_{4}\rangle are both contained in A+BA+B, we obtain Ve1,e40V\cap\langle e_{1},e_{4}\rangle\neq 0. This proves the claim, since Γ1(X ,X )\Gamma_{1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}},X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})}}} is a divisor in XX.

Set Y1=Fl(1,3;4)Y_{1}=\operatorname{Fl}(1,3;4), Z1=Fl(4)Z_{1}=\operatorname{Fl}(4), and let p1:Z1Xp_{1}:Z_{1}\to X and q1:Z1Y1q_{1}:Z_{1}\to Y_{1} be the projections. We have q1p11(X )=(Y1)3142q_{1}p_{1}^{-1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})=(Y_{1})_{3142}} and q1p11(X )=(Y1)1243q_{1}p_{1}^{-1}(X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})=(Y_{1})^{1243}}}, so it follows from Monk’s formula that

[Y1(X ,X )]=[Y12143][Y11243]=[Y13142]+[Y12341].[Y_{1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}},X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})]\,=\,[Y_{1}^{2143}]\cdot[Y_{1}^{1243}]\,=\,[Y_{1}^{3142}]+[Y_{1}^{2341}]\,.}}}

We deduce that Y1(X ,X )Y_{1}(X_{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}},X^{\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(4.0,4.0) \put(0.0,4.0){\line(1,0){4.0}} \put(0.0,0.0){\line(1,0){4.0}} \put(0.0,0.0){\line(0,1){4.0}} \put(4.0,0.0){\line(0,1){4.0}} \end{picture}}\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to4.0pt{\vss\hbox to4.0pt{\hss$$\hss}\vss\crcr}}}})}}} is not a Schubert variety in Y1Y_{1}.

Remark 3.10.

Let M=G/PMM=G/P_{M} be any flag variety of GG. Recall that H2(M,)H_{2}(M,{\mathbb{Z}}) can be identified with the coroot lattice of GG modulo the coroot lattice of PMP_{M}, by identifying each curve class [Msβ][M_{s_{\beta}}] with the simple coroot β{\beta}^{\vee} (see e.g. [BM15, §2]). Let uWu\in W, wWcominw\in W^{\mathrm{comin}}, and let βΔI(w){\beta}\in\Delta\cap I(w) be the cominuscule simple root defining the cominuscule flag variety corresponding to ww. Set d=ωβu1.ωβH2(M,)d={\omega}_{\beta}^{\vee}-u^{-1}.{\omega}_{\beta}^{\vee}\in H_{2}(M,{\mathbb{Z}}), where ωβ{\omega}^{\vee}_{\beta} is the fundamental coweight dual to β{\beta}. It was proved in [Bel04, CMP09] that the identity

[Mw][Mu]=qd[Mwu][M^{w}]\star[M^{u}]=q^{d}[M^{wu}]

holds in the small quantum cohomology ring QH(M)\operatorname{QH}(M). This is consistent with the following conjecture.

Conjecture 3.11.

Let M=G/PMM=G/P_{M} be any flag variety. For uWu\in W, wWcominw\in W^{\mathrm{comin}}, I(w)Δ={β}I(w)\cap\Delta=\{{\beta}\}, and d=ωβu1.ωβH2(M,)d={\omega}_{\beta}^{\vee}-u^{-1}.{\omega}_{\beta}^{\vee}\in H_{2}(M,{\mathbb{Z}}), we have

Γd(Mw0w,Mu)=w1.Mwu.\Gamma_{d}(M_{w_{0}w},M^{u})=w^{-1}.M^{wu}\,.

This conjecture follows from Proposition 2.2 when d=0d=0, from Lemma 3.1 when MM is cominuscule and w=w0Mw=w_{0}^{M}, and from [LLSY22, Cor. 4.6] when MM is a Grassmannian of type A and [Mw][M^{w}] is a special Seidel class. In response to this paper, it was proved in [Tar23] that Conjecture 3.11 is true for all flag varieties of type A, and the general conjecture follows from the special case where PMP_{M} is a maximal parabolic subgroup.

4. Quantum shapes

Let X=G/PXX=G/P_{X} be a cominuscule flag variety. An infinite partially ordered set 𝒫^X\widehat{\mathcal{P}}_{X} extending 𝒫X{\mathcal{P}}_{X} was constructed in [BCMP22], such that elements of the set ={qd[Xu]uWX,d}{\mathcal{B}}=\{q^{d}[X^{u}]\mid u\in W^{X},\,d\in{\mathbb{Z}}\} correspond to order ideals in 𝒫^X\widehat{\mathcal{P}}_{X} that we call quantum shapes. Isomorphic partially ordered sets were constructed in [Hag04, Pos05, Gre13]. Products of Seidel classes with arbitrary Schubert classes have simple combinatorial descriptions in terms of quantum shapes, and our Pieri formulas also have their simplest expressions in terms of these shapes. In this section we summarize the facts we need. Proofs of our claims and more details can be found in [BCMP22, §7.2]. Some claims are justified by Proposition 4.4 proved at the end of this section.

Recall that {\mathcal{B}} is a {\mathbb{Z}}-basis of QH(X)q\operatorname{QH}(X)_{q}. Define a partial order on {\mathcal{B}} by

qe[Xv]qd[Xu]Γde(Xu,Xv).q^{e}[X^{v}]\leq q^{d}[X^{u}]\ \ \Longleftrightarrow\ \ \Gamma_{d-e}(X_{u},X^{v})\neq\emptyset\,.

The condition Γde(Xu,Xv)\Gamma_{d-e}(X_{u},X^{v})\neq\emptyset says that some rational curve in XX of degree at most ded-e intersects both XuX_{u} and XvX^{v}. Equivalently, qe[Xv]qd[Xu]q^{e}[X^{v}]\leq q^{d}[X^{u}] holds if and only if qd[Xu]q^{d}[X^{u}] occurs with non-zero coefficient in the expansion of qe[Xv]qd[Xw]q^{e}[X^{v}]\star q^{d^{\prime}}[X^{w}] in QH(X)q\operatorname{QH}(X)_{q}, for some wWXw\in W^{X} and d0d^{\prime}\geq 0 [BCMP22, §7.2]. The following was proved in [BCMP22, Thm. 7.8].

Theorem 4.1.

Let u,vWXu,v\in W^{X} and dd\in{\mathbb{Z}}. The power qdq^{d} occurs in [Xu][Xv][X^{u}]\star[X^{v}] if and only if [Xv]qd[Xu][point][Xv][X^{v}]\leq q^{d}[X_{u}]\leq[\mathrm{point}]\star[X^{v}].

Corollary 4.2.

Assume that u,u,v,vWXu,u^{\prime},v,v^{\prime}\in W^{X} satisfy uuu^{\prime}\leq u and vvv^{\prime}\leq v. Then dmin(u,v)dmin(u,v)d_{\min}(u^{\prime},v^{\prime})\leq d_{\min}(u,v) and dmax(u,v)dmax(u,v)d_{\max}(u^{\prime},v^{\prime})\leq d_{\max}(u,v).

Proof.

Set d=dmin(u,v)d=d_{\min}(u,v). Then [Xv][Xv]qd[Xu]qd[Xu][X^{v^{\prime}}]\leq[X^{v}]\leq q^{d}[X_{u}]\leq q^{d}[X_{u^{\prime}}]. Using that [Xu][Xv]0[X^{u^{\prime}}]\star[X^{v^{\prime}}]\neq 0, this shows that dmin(u,v)dd_{\min}(u^{\prime},v^{\prime})\leq d. Similarly, if we set d=dmax(u,v)d=d_{\max}(u^{\prime},v^{\prime}), then qd[Xu]qd[Xu][point][Xv][point][Xv]q^{d}[X_{u}]\leq q^{d}[X_{u^{\prime}}]\leq[\mathrm{point}]\star[X^{v^{\prime}}]\leq[\mathrm{point}]\star[X^{v}] and [Xu][Xv]0[X^{u}]\star[X^{v}]\neq 0 implies that ddmax(u,v)d\leq d_{\max}(u,v), as required. ∎

The following special case is useful for showing that a quantum product [Xu][Xv][X^{u}]\star[X^{v}] has only classical terms.

Corollary 4.3.

Let u,vWXu,v\in W^{X}. Assume that uwu\leq w and vw0wv\leq w_{0}w for some wWcominw\in W^{\mathrm{comin}}. Then dmax(u,v)=0d_{\max}(u,v)=0.

Proof.

This follows from Corollary 4.2 and condition (S6) of Theorem 3.6. ∎

The partially ordered set {\mathcal{B}} is a distributive lattice by [BCMP22, Prop. 7.10]. Let 𝒫^X\widehat{\mathcal{P}}_{X}\subset{\mathcal{B}} be the subset of all join-irreducible elements. These elements will be called boxes. Define a quantum shape in 𝒫^X\widehat{\mathcal{P}}_{X} to be any non-empty proper lower order ideal λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X}. A quantum shape will also be called a shape when it cannot be misunderstood to be a classical shape in 𝒫X{\mathcal{P}}_{X}. A skew shape in 𝒫^X\widehat{\mathcal{P}}_{X} is the difference λ/μ:=λμ{\lambda}/\mu:={\lambda}\smallsetminus\mu between two shapes μλ𝒫^X\mu\subset{\lambda}\subset\widehat{\mathcal{P}}_{X}. All shapes in 𝒫^X\widehat{\mathcal{P}}_{X} are infinite, and all skew shapes in 𝒫^X\widehat{\mathcal{P}}_{X} are finite. Given qd[Xu]q^{d}[X^{u}]\in{\mathcal{B}}, define

I(qd[Xu])={α^𝒫^Xα^qd[Xu]}.I(q^{d}[X^{u}])=\{\widehat{\alpha}\in\widehat{\mathcal{P}}_{X}\mid\widehat{\alpha}\leq q^{d}[X^{u}]\}\,.

Notice that if qd[Xu]𝒫^Xq^{d}[X^{u}]\in\widehat{\mathcal{P}}_{X}, then qd[Xu]q^{d}[X^{u}] is the unique maximal box of I(qd[Xu])I(q^{d}[X^{u}]). By [BCMP22, Thm. 7.13], the map II is an order isomorphism of {\mathcal{B}} with the set of all shapes in 𝒫^X\widehat{\mathcal{P}}_{X}, where shapes are ordered by inclusion. For any shape λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} we will write 𝒪λ=qd𝒪u{\mathcal{O}}^{\lambda}=q^{d}{\mathcal{O}}^{u}, where qd[Xu]q^{d}[X^{u}]\in{\mathcal{B}} is the unique element with shape I(qd[Xu])=λI(q^{d}[X^{u}])={\lambda}.

Given α𝒫X{\alpha}\in{\mathcal{P}}_{X}, define ξ(α)WX\xi({\alpha})\in W^{X} by I(ξ(α))={α𝒫Xαα}I(\xi({\alpha}))=\{{\alpha}^{\prime}\in{\mathcal{P}}_{X}\mid{\alpha}^{\prime}\leq{\alpha}\}. Then the quantum shape I([Xξ(α)])𝒫^XI([X^{\xi({\alpha})}])\subset\widehat{\mathcal{P}}_{X} contains a unique maximal box τ(α)\tau({\alpha}) distinct from 11\in{\mathcal{B}}, the identity element of QH(X)\operatorname{QH}(X). The map τ:𝒫X𝒫^X\tau:{\mathcal{P}}_{X}\to\widehat{\mathcal{P}}_{X} is an order isomorphism of 𝒫X{\mathcal{P}}_{X} onto an interval in 𝒫^X\widehat{\mathcal{P}}_{X} by [BCMP22, Thm. 7.13]. We identify 𝒫X{\mathcal{P}}_{X} with the image τ(𝒫X)𝒫^X\tau({\mathcal{P}}_{X})\subset\widehat{\mathcal{P}}_{X}. Given a classical shape λ𝒫X{\lambda}\subset{\mathcal{P}}_{X}, we will abuse notation and also use λ{\lambda} to denote the corresponding quantum shape I([Xλ])=τ(λ)I(1)𝒫^XI([X^{\lambda}])=\tau({\lambda})\cup I(1)\subset\widehat{\mathcal{P}}_{X}, see Proposition 4.4(c). Both of these shapes define the same class 𝒪λQK(X){\mathcal{O}}^{\lambda}\in\operatorname{QK}(X).

Quantum multiplication by any Seidel class σ=qd[Xw]\sigma=q^{d}[X^{w}] in QH(X)q\operatorname{QH}(X)_{q} defines an order automorphism of {\mathcal{B}}, which restricts to an order automorphism of 𝒫^X\widehat{\mathcal{P}}_{X}. Since 1𝒫^X1\in\widehat{\mathcal{P}}_{X} by Proposition 4.4(a), it follows that all Seidel classes belong to 𝒫^X\widehat{\mathcal{P}}_{X}. Given any shape λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X}, we define a new quantum shape by σλ={σα^α^λ}\sigma\star{\lambda}=\{\sigma\star\widehat{\alpha}\mid\widehat{\alpha}\in{\lambda}\}. We then have

𝒪I(σ)𝒪λ=𝒪σλ{\mathcal{O}}^{I(\sigma)}\star{\mathcal{O}}^{\lambda}\,=\,{\mathcal{O}}^{\sigma\star{\lambda}}

in QK(X)q\operatorname{QK}(X)_{q}, where 𝒪I(σ)=qd𝒪w{\mathcal{O}}^{I(\sigma)}=q^{d}{\mathcal{O}}^{w} is the Seidel class in QK(X)q\operatorname{QK}(X)_{q} corresponding to σ\sigma. The action of Seidel classes on 𝒫^X\widehat{\mathcal{P}}_{X} therefore determines arbitrary products with Seidel classes in QH(X)q\operatorname{QH}(X)_{q} and QK(X)q\operatorname{QK}(X)_{q}. For multiplication by powers of qq, we use the notation λ[d]=qdλ={qdα^α^λ}{\lambda}[d]=q^{d}\star{\lambda}=\{q^{d}\star\widehat{\alpha}\mid\widehat{\alpha}\in{\lambda}\}, so that 𝒪λ[d]=qd𝒪λ{\mathcal{O}}^{{\lambda}[d]}=q^{d}{\mathcal{O}}^{\lambda}. The shifting operations on shapes in 𝒫X{\mathcal{P}}_{X} (see [BCMP22, §6.2]) are then given by λ(d)=λ[d]𝒫X{\lambda}(d)={\lambda}[d]\cap{\mathcal{P}}_{X} (when λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} is identified with the quantum shape λI(1)𝒫^X{\lambda}\cup I(1)\subset\widehat{\mathcal{P}}_{X}).

The following figures show the partially ordered set 𝒫^X\widehat{\mathcal{P}}_{X} for the quadrics of dimensions 7 and 12, as well as the exceptional cominuscule flag varieties. Each set has the west-to-east order, where any node is covered by the nodes immediately northeast, east, or southeast of it. The elements of 𝒫X{\mathcal{P}}_{X} are colored gray. Seidel classes are represented by lines marking the eastern borders of their quantum shapes. We use PP to denote the point class, and σ\sigma and σ\sigma^{\prime} are used to represent Seidel classes in H(X,)H^{*}(X,{\mathbb{Z}}) that are not in the subgroup of QH(X)q×\operatorname{QH}(X)_{q}^{\times} generated by PP and qq. Multiplication by any Seidel class corresponds to the rigid transformation of 𝒫^X\widehat{\mathcal{P}}_{X} that moves the border of 11 to the border of the Seidel class. This rigid transformation is a horizontal translation, possibly combined with a reflection in a horizontal line.

Q7Q^{7}:

q1q^{-1}q1Pq^{-1}PqqqPqPq2Pq^{-2}P11PPq2q^{2}

Q12Q^{12}:

q1σq^{-1}\sigmaq1Pq^{-1}Pσ\sigma^{\prime}qqqσq\sigmaq1σq^{-1}\sigma^{\prime}11σ\sigmaPPqσq\sigma^{\prime}

E6/P6E_{6}/P_{6}:

q1q^{-1}q1σq^{-1}\sigmaq1Pq^{-1}Pqqqσq\sigmaqPqPq2Pq^{-2}P11σ\sigmaPPq2q^{2}

E7/P7E_{7}/P_{7}:

q2Pq^{-2}Pq1Pq^{-1}PPPqPqP11qqq2q^{2}

The following results will be used to describe the quantum posets 𝒫^X\widehat{\mathcal{P}}_{X} of classical Grassmannians in the next three sections.

Proposition 4.4.

Let X=G/PXX=G/P_{X} be a cominuscule flag variety.

(a) We have 𝒫^XH(X)={τ(α)α𝒫XI(z1)}{1}\widehat{\mathcal{P}}_{X}\cap H^{*}(X)=\{\tau({\alpha})\mid{\alpha}\in{\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee})\}\cup\{1\}.

(b) The map (𝒫^XH(X))×𝒫^X(\widehat{\mathcal{P}}_{X}\cap H^{*}(X))\times{\mathbb{Z}}\to\widehat{\mathcal{P}}_{X} defined by ([Xu],d)qd[Xu]([X^{u}],d)\mapsto q^{d}[X^{u}] is bijective.

(c) We have τ(𝒫X)=I([1.PX])I(1)𝒫^X\tau({\mathcal{P}}_{X})=I([1.P_{X}])\smallsetminus I(1)\subset\widehat{\mathcal{P}}_{X}.

Proof.

Parts (a) and (b) follow from [BCMP22, Def. 7.11 and Thm. 7.13], noting that τ(α)=[Xξ(α)]\tau({\alpha})=[X^{\xi({\alpha})}] holds if and only if α𝒫XI(z1){\alpha}\in{\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee}). Let α𝒫X{\alpha}\in{\mathcal{P}}_{X}. Then τ(α)τ(ρ)=[1.PX]\tau({\alpha})\leq\tau(\rho)=[1.P_{X}], where ρ𝒫X\rho\in{\mathcal{P}}_{X} is the highest root. Since [Xξ(α)]=τ(α)1[X^{\xi({\alpha})}]=\tau({\alpha})\cup 1 by [BCMP22, Thm. 7.13(a)], and [Xξ(α)]1[X^{\xi({\alpha})}]\neq 1, we obtain τ(α)1\tau({\alpha})\not\leq 1. This proves that τ(α)I([1.PX])I(1)\tau({\alpha})\in I([1.P_{X}])\smallsetminus I(1). Given α^I([1.PX])I(1)\widehat{\alpha}\in I([1.P_{X}])\smallsetminus I(1), we may write α^=qd[Xξ(α)]\widehat{\alpha}=q^{-d}[X^{\xi({\alpha}^{\prime})}] for some α𝒫XI(z1){\alpha}^{\prime}\in{\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee}) and dd\in{\mathbb{Z}}. The condition α^[1.PX]\widehat{\alpha}\leq[1.P_{X}] implies d0d\geq 0, and α^1\widehat{\alpha}\not\leq 1 implies that αI(zd){\alpha}^{\prime}\notin I(z_{d}) by [BCMP22, Lemma 7.12]. It therefore follows from [BCMP22, Prop. 5.9(a) and Cor. 5.11] that α=(z1sγ)d.α𝒫X{\alpha}=(z_{1}s_{\gamma})^{-d}.{\alpha}^{\prime}\in{\mathcal{P}}_{X}, and from [BCMP22, Def. 7.11] that τ(α)=α^\tau({\alpha})=\widehat{\alpha}. This proves part (c). ∎

Lemma 4.5.

Let α{\alpha} be any non-minimal box in 𝒫XI(z1){\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee}), and let α^τ(α)\widehat{\alpha}^{\prime}\lessdot\tau({\alpha}) be a covering in 𝒫^X\widehat{\mathcal{P}}_{X}. Then α^=τ(α)\widehat{\alpha}^{\prime}=\tau({\alpha}^{\prime}) for some α𝒫X{\alpha}^{\prime}\in{\mathcal{P}}_{X}, such that αα{\alpha}^{\prime}\lessdot{\alpha} is a covering in 𝒫X{\mathcal{P}}_{X}.

Proof.

Since α{\alpha} is not minimal in 𝒫XI(z1){\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee}), it follows from Proposition 4.4(a) that α^1\widehat{\alpha}^{\prime}\not\leq 1, hence α^=τ(α)\widehat{\alpha}^{\prime}=\tau({\alpha}^{\prime}) for some ατ(𝒫X){\alpha}^{\prime}\in\tau({\mathcal{P}}_{X}) by Proposition 4.4(c). Proposition 4.4(c) also implies that αα{\alpha}^{\prime}\lessdot{\alpha} is a covering in 𝒫X{\mathcal{P}}_{X}, as required. ∎

5. Pieri formula for Grassmannians of type A

5.1. Quantum shapes

Let X=Gr(m,n)X=\operatorname{Gr}(m,n) be the Grassmannian of mm-dimensional vector subspaces of n{\mathbb{C}}^{n}. The quantum cohomology ring QH(X)\operatorname{QH}(X) was computed by Witten [Wit95] and Bertram [Ber97], and a Pieri formula for the ordinary KK-theory ring K(X)K(X) was obtained by Lenart [Len00]. The Grassmannian XX is minuscule of type An1A_{n-1}, and the corresponding partially ordered set 𝒫X{\mathcal{P}}_{X} is a rectangle of boxes with mm rows and nmn-m columns, endowed with the northwest-to-southeast order discussed below.

𝒫X= {\mathcal{P}}_{X}\,=\,\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(8.0,8.0) \put(0.0,8.0){\line(1,0){8.0}} \put(0.0,0.0){\line(1,0){8.0}} \put(0.0,0.0){\line(0,1){8.0}} \put(8.0,0.0){\line(0,1){8.0}} \end{picture}}\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\crcr}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Each shape λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} can be identified with a partition

λ=(λ1λ2λm0){\lambda}=({\lambda}_{1}\geq{\lambda}_{2}\geq\dots\geq{\lambda}_{m}\geq 0)

with λ1nm{\lambda}_{1}\leq n-m, where λi{\lambda}_{i} is the number of boxes in the ii-th row of λ{\lambda}. If λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} consists of a single row of boxes, then λ{\lambda} will also be identified with the integer p=|λ|p=|{\lambda}|. The special Schubert classes in K(X)K(X) are the classes 𝒪p{\mathcal{O}}^{p} for 1pnm1\leq p\leq n-m. Another family of special classes consists of 𝒪(1)r{\mathcal{O}}^{(1)^{r}} for 1rm1\leq r\leq m, where (b)a(b)^{a} denotes a rectangle with aa rows and bb columns.

Let 2{\mathbb{Z}}^{2} denote a grid of boxes (i,j)(i,j) that fill the plane, where the row number ii increases from north to south, and the column number jj increases from west to east. We endow 2{\mathbb{Z}}^{2} with the northwest-to-southeast partial order, defined by (i,j)(i,j)(i^{\prime},j^{\prime})\leq(i,j) if and only if iii^{\prime}\leq i and jjj^{\prime}\leq j. The quotient 2/(m,mn){\mathbb{Z}}^{2}/{\mathbb{Z}}(m,m-n) is ordered by (i,j)+(m,mn)(i,j)+(m,mn)(i^{\prime},j^{\prime})+{\mathbb{Z}}(m,m-n)\ \leq\ (i,j)+{\mathbb{Z}}(m,m-n) if and only if (i,j)(i+am,j+aman)(i^{\prime},j^{\prime})\leq(i+am,j+am-an) for some aa\in{\mathbb{Z}}. The cylinder 2/(m,mn){\mathbb{Z}}^{2}/{\mathbb{Z}}(m,m-n) was used to study the quantum cohomology ring QH(X)\operatorname{QH}(X) in [Pos05, §3]. This partially ordered set was also defined in [Hag04, §8].

Proposition 5.1.

Let X=Gr(m,n)X=\operatorname{Gr}(m,n) and set σ=[Xnm]\sigma=[X^{n-m}] and τ=[X(1)m]\tau=[X^{(1)^{m}}].

(a) The group of Seidel classes in QH(X)q×\operatorname{QH}(X)_{q}^{\times} is generated by σ\sigma and τ\tau.

(b) We have σm=τnm=[1.PX]\sigma^{m}=\tau^{n-m}=[1.P_{X}] and στ=q\sigma\star\tau=q in QH(X)\operatorname{QH}(X).

(c) The map ϕ:2/(m,mn)𝒫^X\phi:{\mathbb{Z}}^{2}/{\mathbb{Z}}(m,m-n)\to\widehat{\mathcal{P}}_{X} defined by ϕ(i,j)=σiτj[1.PX]1\phi(i,j)=\sigma^{i}\star\tau^{j}\star[1.P_{X}]^{-1} is an order isomorphism, which identifies 𝒫X{\mathcal{P}}_{X} with the rectangle [1,m]×[1,nm][1,m]\times[1,n-m].

(d) The actions of σ\sigma and τ\tau on 𝒫^X\widehat{\mathcal{P}}_{X} are determined by σϕ(i,j)=ϕ(i+1,j)\sigma\star\phi(i,j)=\phi(i+1,j) and τϕ(i,j)=ϕ(i,j+1)\tau\star\phi(i,j)=\phi(i,j+1).

Proof.

Noting that σ=[Xw0F]\sigma=[X^{w_{0}^{F}}] and τ=[Xw0F]\tau=[X^{w_{0}^{F^{\prime}}}], where F=Gr(1,n)F=\operatorname{Gr}(1,n) and F=Gr(n1,n)F^{\prime}=\operatorname{Gr}(n-1,n), it follows that σ\sigma and τ\tau are Seidel classes in QH(X)\operatorname{QH}(X). Part (b) follows from Bertram’s quantum Pieri formula [Ber97], and is also an easy consequence of Corollary 3.7. These results also show that

σi=[X(nm)i] and τj=[X(j)m]\sigma^{i}=[X^{(n-m)^{i}}]\text{ \ \ \ and \ \ \ }\tau^{j}=[X^{(j)^{m}}]

for 1im1\leq i\leq m and 1jnm1\leq j\leq n-m. Part (a) follows from this, noting that σ\sigma and τ\tau generate nn distinct Seidel classes in H(X)H^{*}(X).

The map ϕ\phi is well defined by part (b), and order-preserving since, if (i,j)(i,j)(i^{\prime},j^{\prime})\leq(i,j), then ϕ(i,j)\phi(i,j) occurs in the expansion of the product ϕ(i,j)(σiiτjj)\phi(i^{\prime},j^{\prime})\star(\sigma^{i-i^{\prime}}\star\tau^{j-j^{\prime}}). The maximal box of (nm)i(n-m)^{i} is the ii-th box of the rightmost column of 𝒫X{\mathcal{P}}_{X}, and the maximal box of (j)m(j)^{m} is the jj-th box of the bottom row of 𝒫X{\mathcal{P}}_{X}. Since these maximal boxes include all boxes of 𝒫XI(z1){\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee}), it follows from Proposition 4.4 that ϕ\phi is surjective. If σiτj=1\sigma^{i}\star\tau^{j}=1 in QH(X)q\operatorname{QH}(X)_{q}, then since σ\sigma has order nn and inverse τ\tau in QH(X)/(q1)\operatorname{QH}(X)/(q-1), we must have j=ianj=i-an for some aa\in{\mathbb{Z}}. Since σiτj=1\sigma^{i}\star\tau^{j}=1 has degree (nm)i+mj=0(n-m)i+mj=0 in QH(X)q\operatorname{QH}(X)_{q}, we obtain (i,j)=a(m,mn)(i,j)=a(m,m-n). This implies that ϕ\phi is bijective. To show that ϕ\phi is an order isomorphism, we must show that, if α^α^\widehat{\alpha}^{\prime}\lessdot\widehat{\alpha} is a covering in 𝒫^X\widehat{\mathcal{P}}_{X}, then ϕ1(α^)<ϕ1(α^)\phi^{-1}(\widehat{\alpha}^{\prime})<\phi^{-1}(\widehat{\alpha}). If X=1X={\mathbb{P}}^{1}, then this follows because 2/(1,1){\mathbb{Z}}^{2}/{\mathbb{Z}}(1,-1) is totally ordered, so assume that n3n\geq 3. Using that ϕ\phi is surjective and quantum multiplication by the Seidel classes σ\sigma and τ\tau define order automorphisms of 𝒫^X\widehat{\mathcal{P}}_{X}, we may assume that α^=[1.PX]=ϕ(m,nm)\widehat{\alpha}=[1.P_{X}]=\phi(m,n-m) is the maximal box of 𝒫X𝒫^X{\mathcal{P}}_{X}\subset\widehat{\mathcal{P}}_{X}. We then deduce from Lemma 4.5 that α^=ϕ(m1,nm)\widehat{\alpha}^{\prime}=\phi(m-1,n-m) or α^=ϕ(m,nm1)\widehat{\alpha}^{\prime}=\phi(m,n-m-1), and in either case we obtain ϕ1(α^)<ϕ1(α^)\phi^{-1}(\widehat{\alpha}^{\prime})<\phi^{-1}(\widehat{\alpha}). Noting that ϕ(m,nm)=[1.PX]\phi(m,n-m)=[1.P_{X}] and ϕ(m,0)=ϕ(0,nm)=1\phi(m,0)=\phi(0,n-m)=1, it follows from Proposition 4.4(c) that 𝒫X{\mathcal{P}}_{X} is identified with the rectangle [1,m]×[1,nm][1,m]\times[1,n-m]. This proves part (c). Part (d) follows from the definition of ϕ\phi, which completes the proof. ∎

Example 5.2.

Let X=Gr(2,5)X=\operatorname{Gr}(2,5) and set σ=[X3]\sigma=[X^{3}], τ=[X(1,1)]\tau=[X^{(1,1)}], and P=[1.PX]P=[1.P_{X}]. The following figure shows the rectangle [0,3]×[0,4]2[0,3]\times[0,4]\subset{\mathbb{Z}}^{2}, with each box (i,j)(i,j) labeled by ϕ(i,j)\phi(i,j). The framed 2×32\times 3 rectangle can be identified with 𝒫X{\mathcal{P}}_{X}.

P1P^{-1}σ1\sigma^{-1}τ2\tau^{-2}1111σ1τ\sigma^{\!-\!1}\tauτ1\tau^{-1}σ\sigmaσ\sigmaτ\tauτ\tauτ1σ\tau^{\!-\!1}\sigmaqqqqτ2\tau^{2}qτq\tauPPqτ2q\tau^{2}qσq\sigmaqPqP
Remark 5.3.

Let X=Gr(m,n)X=\operatorname{Gr}(m,n). The map from Proposition 5.1(c) defines an order-preserving bijection ϕ:[1,m]×𝒫^X\phi:[1,m]\times{\mathbb{Z}}\to\widehat{\mathcal{P}}_{X}, which is an order isomorphism if and only if m=1m=1. In particular, 𝒫^X\widehat{\mathcal{P}}_{X} does not have ‘cylinder’ behavior when X=n1X={\mathbb{P}}^{n-1} is projective space. A non-empty proper lower order ideal λ[1,m]×{\lambda}\subset[1,m]\times{\mathbb{Z}} can be represented by the decreasing sequence (λ1λ2λm)({\lambda}_{1}\geq{\lambda}_{2}\geq\dots\geq{\lambda}_{m}), where λi{\lambda}_{i}\in{\mathbb{Z}} is maximal such that (i,λi)λ(i,{\lambda}_{i})\in{\lambda}. The image ϕ(λ)\phi({\lambda}) is a shape in 𝒫^X\widehat{\mathcal{P}}_{X} if and only if λ1λmnm{\lambda}_{1}-{\lambda}_{m}\leq n-m, and any shape in 𝒫^X\widehat{\mathcal{P}}_{X} has this form. In this case the corresponding basis element qd[Xμ]q^{d}[X^{\mu}] is obtained by removing rim-hooks from λ{\lambda}, see [BCFF99].

5.2. Pieri formula

Let θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} be a skew shape. A row of θ\theta means a subset of the form θϕ({k}×)\theta\cap\phi(\{k\}\times{\mathbb{Z}}), where kk\in{\mathbb{Z}} and ϕ\phi is the map defined in Proposition 5.1, and a column of θ\theta is a subset of the form θϕ(×{k})\theta\cap\phi({\mathbb{Z}}\times\{k\}). The skew shape θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} is called a horizontal strip if each column of θ\theta contains at most one box. Let r(θ)r(\theta) denote the number of non-empty rows in θ\theta. For p1p\geq 1 we define

𝒜(θ,p)={(1)|θ|p(r(θ)1|θ|p)if θ is a horizontal strip,0otherwise.{\mathcal{A}}(\theta,p)=\begin{cases}(-1)^{|\theta|-p}\binom{r(\theta)-1}{|\theta|-p}&\text{if $\theta$ is a horizontal strip,}\\ 0&\text{otherwise.}\end{cases}

A Pieri formula for products of the form 𝒪p𝒪λ{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda} in QK(X)\operatorname{QK}(X) was proved in [BM11]. We proceed to show that this formula is an easy consequence of Corollary 3.7, Lenart’s Pieri formula for K(X)K(X) [Len00], and a bound on the qq-degrees in quantum KK-theory products proved in [BCMP22].

Theorem 5.4.

Let X=Gr(m,n)X=\operatorname{Gr}(m,n), let λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} be any quantum shape, and let 1pnm1\leq p\leq n-m. Then

𝒪p𝒪λ=ν𝒜(ν/λ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}=\sum_{\nu}{\mathcal{A}}(\nu/{\lambda},p)\,{\mathcal{O}}^{\nu}

holds in QK(X)q\operatorname{QK}(X)_{q}, where the sum is over all quantum shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing λ{\lambda}.

Proof.

Set τ=𝒪(1)m\tau={\mathcal{O}}^{(1)^{m}} and choose kk\in{\mathbb{Z}} maximal such that ϕ(m,k)λ\phi(m,k)\in{\lambda}. By Corollary 3.7 and Proposition 5.1 we have τk𝒪λ=𝒪μ\tau^{-k}\star{\mathcal{O}}^{\lambda}={\mathcal{O}}^{\mu}, where μ𝒫X\mu\subset{\mathcal{P}}_{X} is a classical shape with μm=0\mu_{m}=0. Corollary 4.3 then implies that dmax(p,μ)=0d_{\max}(p,\mu)=0, so [BCMP22, Cor. 8.3] shows that 𝒪p𝒪μ{\mathcal{O}}^{p}\star{\mathcal{O}}^{\mu} agrees with the classical product 𝒪p𝒪μ{\mathcal{O}}^{p}\cdot{\mathcal{O}}^{\mu} in K(X)K(X). Notice that, if νμ\nu\supset\mu is any quantum shape such that ν/μ\nu/\mu is a horizontal strip, then ν\nu is a classical shape. It therefore follows from [Len00, Thm. 3.2] that

𝒪p𝒪μ=ν𝒜(ν/μ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\mu}=\sum_{\nu}{\mathcal{A}}(\nu/\mu,p)\,{\mathcal{O}}^{\nu}

holds in QK(X)\operatorname{QK}(X), where the sum is over all shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing μ\mu. Since quantum multiplication by τk\tau^{k} defines a module automorphism of QK(X)\operatorname{QK}(X) and defines an order automorphism of 𝒫^X\widehat{\mathcal{P}}_{X}, this identity is equivalent to the theorem. ∎

The following version of Theorem 5.4 is equivalent to the Pieri formula for QK(X)\operatorname{QK}(X) proved in [BM11].

Corollary 5.5.

Let λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} be any shape and let 1pnm1\leq p\leq n-m. Then

𝒪p𝒪λ=μ𝒜(μ/λ,p)𝒪μ+qν𝒜(ν[1]/λ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}=\sum_{\mu}{\mathcal{A}}(\mu/{\lambda},p)\,{\mathcal{O}}^{\mu}+q\sum_{\nu}{\mathcal{A}}(\nu[1]/{\lambda},p)\,{\mathcal{O}}^{\nu}

holds in QK(X)\operatorname{QK}(X), where the first sum is over all shapes μ𝒫X\mu\subset{\mathcal{P}}_{X} containing λ{\lambda}, and the second sum is over all shapes ν𝒫X\nu\subset{\mathcal{P}}_{X} for which ν[1]\nu[1] contains λ{\lambda}.

Proof.

This is a direct translation of Theorem 5.4, using that 𝒪ν[1]=q𝒪ν{\mathcal{O}}^{\nu[1]}=q\,{\mathcal{O}}^{\nu}. ∎

Example 5.6.

Let X=Gr(3,7)X=\operatorname{Gr}(3,7). By Remark 5.3 we can represent a shape λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} by a non-empty proper lower order ideal λ=(λ1λ2λ3){\lambda}=({\lambda}_{1}\geq{\lambda}_{2}\geq{\lambda}_{3}) in [1,3]×[1,3]\times{\mathbb{Z}}, such that λ1λ34{\lambda}_{1}-{\lambda}_{3}\leq 4. When λ30{\lambda}_{3}\geq 0, this order ideal will be displayed as a Young diagram with at most 3 rows. We will also identify the shape λ{\lambda} with the class 𝒪λ{\mathcal{O}}^{\lambda} in QK(X)\operatorname{QK}(X). With this notation we have

𝒪3 = + + + + + + + + + + + ,{\mathcal{O}}^{3}\,\star\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\crcr}}}\ \ =\ \ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss\crcr}}}\ +\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss\crcr}}}\ -\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$\scriptscriptstyle+$\hss}\vss\crcr}}}\ ,}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

where added boxes are indicated by pluses. This is equivalent to

𝒪3 = +q q .{\mathcal{O}}^{3}\,\star\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\crcr}}}\ \ =\ \ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\crcr}}}\ +\ q\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\crcr}}}\ -\ q\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(7.0,7.0) \put(0.0,7.0){\line(1,0){7.0}} \put(0.0,0.0){\line(1,0){7.0}} \put(0.0,0.0){\line(0,1){7.0}} \put(7.0,0.0){\line(0,1){7.0}} \end{picture}}\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to7.0pt{\vss\hbox to7.0pt{\hss$$\hss}\vss\crcr}}}\ .}}}}}}}}}}}}}}}}}}}}}}}}

Notice that the shape

+\scriptscriptstyle+ +\scriptscriptstyle+ +\scriptscriptstyle+
+\scriptscriptstyle+

is not included, as the box added to the third row is in the same column of 𝒫^X\widehat{\mathcal{P}}_{X} as the rightmost box added to the first row.

6. Pieri formula for maximal orthogonal Grassmannians

6.1. Quantum shapes

Let X=OG(n,2n)X=\operatorname{OG}(n,2n) be the maximal orthogonal Grassmannian, parametrizing one component of the maximal isotropic subspaces of 2n{\mathbb{C}}^{2n} endowed with an orthogonal bilinear form. The quantum cohomology ring QH(X)\operatorname{QH}(X) was computed in [KT04], and a Pieri formula for the ordinary KK-theory ring K(X)K(X) was obtained in [BR12].

The orthogonal Grassmannian XX is minuscule of type DnD_{n}. We identify the simple roots of type DnD_{n} with the vectors

Δ={enen1,,e3e2,e2e1,e2+e1},\Delta=\{e_{n}-e_{n-1},\dots,e_{3}-e_{2},e_{2}-e_{1},e_{2}+e_{1}\}\,,

where γ=e1+e2{\gamma}=e_{1}+e_{2} is the cominuscule simple root defining XX. We then obtain

𝒫X={ei+ej1i<jn},{\mathcal{P}}_{X}=\{e_{i}+e_{j}\mid 1\leq i<j\leq n\}\,,

where the partial order is given by ei+ejei+eje_{i^{\prime}}+e_{j^{\prime}}\leq e_{i}+e_{j} if and only if iii^{\prime}\leq i and jjj^{\prime}\leq j. We represent 𝒫X{\mathcal{P}}_{X} as a staircase shape with n1n-1 rows, where ei+eje_{i}+e_{j} is represented by the box in row ii and column jj:

𝒫OG(6,12)= {\mathcal{P}}_{\operatorname{OG}(6,12)}\,=\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(8.0,8.0) \put(0.0,8.0){\line(1,0){8.0}} \put(0.0,0.0){\line(1,0){8.0}} \put(0.0,0.0){\line(0,1){8.0}} \put(8.0,0.0){\line(0,1){8.0}} \end{picture}}\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\crcr}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Each shape λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} can be identified with a strict partition

λ=(λ1>λ2>>λ>0){\lambda}=({\lambda}_{1}>{\lambda}_{2}>\dots>{\lambda}_{\ell}>0)

with λ1n1{\lambda}_{1}\leq n-1, where λi{\lambda}_{i} is the number of boxes in the ii-th row of λ{\lambda}. If λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} consists of a single row of boxes, then λ{\lambda} will also be identified with the integer p=|λ|p=|{\lambda}|. The special Schubert classes in K(X)K(X) are the classes 𝒪p{\mathcal{O}}^{p} for 1pn11\leq p\leq n-1.

Define the set

𝒫¯X={(i,j)2i<j<i+n},\overline{\mathcal{P}}_{X}=\{(i,j)\in{\mathbb{Z}}^{2}\mid i<j<i+n\}\,,

and give 𝒫¯X\overline{\mathcal{P}}_{X} the northwest-to-southeast order (i,j)(i,j)(i^{\prime},j^{\prime})\leq(i,j) if and only if iii^{\prime}\leq i and jjj^{\prime}\leq j. We represent 𝒫¯X\overline{\mathcal{P}}_{X} as an infinite set of boxes (i,j)(i,j) in the plane, where the row number ii increases from north to south, and the column number jj increases from west to east. Each row in 𝒫¯X\overline{\mathcal{P}}_{X} contains n1n-1 boxes. The set 𝒫X{\mathcal{P}}_{X} will be identified with the subset {(i,j)21i<jn}𝒫¯X\{(i,j)\in{\mathbb{Z}}^{2}\mid 1\leq i<j\leq n\}\subset\overline{\mathcal{P}}_{X}.

𝒫¯OG(6,12)=\overline{\mathcal{P}}_{\operatorname{OG}(6,12)}\,=

Recall the map τ:𝒫X𝒫^X\tau:{\mathcal{P}}_{X}\to\widehat{\mathcal{P}}_{X} from Section 4.

Proposition 6.1.

Let X=OG(n,2n)X=\operatorname{OG}(n,2n).

(a) The group of Seidel classes in QH(X)q×\operatorname{QH}(X)_{q}^{\times} is generated by [1.PX][1.P_{X}] and [Xn1][X^{n-1}].

(b) We have [Xn1]2=q[X^{n-1}]^{2}=q and [1.PX]2=[Xn1]n[1.P_{X}]^{2}=[X^{n-1}]^{n} in QH(X)\operatorname{QH}(X).

(c) The map ϕ:𝒫¯X𝒫^X\phi:\overline{\mathcal{P}}_{X}\to\widehat{\mathcal{P}}_{X} defined by ϕ(i,j)=[Xn1]jnτ(ei+nj+en)\phi(i,j)=[X^{n-1}]^{j-n}\star\tau(e_{i+n-j}+e_{n}) is an order isomorphism which identifies 𝒫X{\mathcal{P}}_{X} with the set {(i,j)21i<jn}\{(i,j)\in{\mathbb{Z}}^{2}\mid 1\leq i<j\leq n\}.

(d) The action of Seidel classes on 𝒫^X\widehat{\mathcal{P}}_{X} is given by [Xn1]ϕ(i,j)=ϕ(i+1,j+1)[X^{n-1}]\star\phi(i,j)=\phi(i+1,j+1) and [1.PX]ϕ(i,j)=ϕ(j,i+n)[1.P_{X}]\star\phi(i,j)=\phi(j,i+n).

Proof.

Let F=Q2n2F=Q^{2n-2} be the quadric of type DnD_{n}. Then we have the relation w0F=s1sn2sn1snsn2s1w_{0}^{F}=s_{1}\cdots s_{n-2}s_{n-1}s_{n}s_{n-2}\cdots s_{1}, hence (w0F)X=s1sn2sn(w_{0}^{F})^{X}=s_{1}\cdots s_{n-2}s_{n}. This shows that [Xn1]=[Xw0F][X^{n-1}]=[X^{w_{0}^{F}}]. Since (w0F)2=1(w_{0}^{F})^{2}=1 holds in WW, it follows from Corollary 3.7 that [Xn1]2[X^{n-1}]^{2} is a power of qq. Using that deg(q)=2n2\deg(q)=2n-2, we obtain [Xn1]2=q[X^{n-1}]^{2}=q. Since WcominW^{\mathrm{comin}} has order 4, we have (w0X)2{1,w0F}(w_{0}^{X})^{2}\in\{1,w_{0}^{F}\}, so Corollary 3.7 implies that either [1.PX]2[1.P_{X}]^{2} or [Xn1][1.PX]2[X^{n-1}]\star[1.P_{X}]^{2} is a power of qq. In either case, [1.PX]2[1.P_{X}]^{2} is a power of [Xn1][X^{n-1}], and since dim(X)=(n2)\dim(X)=\binom{n}{2}, we must have [1.PX]2=[Xn1]n[1.P_{X}]^{2}=[X^{n-1}]^{n}. Parts (a) and (b) follow from these observations.

For convenience we set αi=ei+en{\alpha}_{i}=e_{i}+e_{n} for 1in11\leq i\leq n-1 and αi=ei+en1{\alpha}^{\prime}_{i}=e_{i}+e_{n-1} for 1in21\leq i\leq n-2, so that 𝒫XI(z1)={α1,,αn2,α1,,αn1}{\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee})=\{{\alpha}^{\prime}_{1},\dots,{\alpha}^{\prime}_{n-2},{\alpha}_{1},\dots,{\alpha}_{n-1}\}. Then I(τ(αi))𝒫XI(\tau({\alpha}_{i}))\cap{\mathcal{P}}_{X} consists of the top ii rows of 𝒫X{\mathcal{P}}_{X}, and I(τ(αi))𝒫XI(\tau({\alpha}^{\prime}_{i}))\cap{\mathcal{P}}_{X} is obtained by removing the rightmost column in this shape. Notice also that τ(α1)=[Xn1]\tau({\alpha}_{1})=[X^{n-1}], τ(αn1)=[1.PX]\tau({\alpha}_{n-1})=[1.P_{X}], and ϕ(i,j)=[Xn1]jnτ(αi+nj)\phi(i,j)=[X^{n-1}]^{j-n}\star\tau({\alpha}_{i+n-j}). It follows from [KT04] or Corollary 3.7 that [Xn1]τ(αi)=τ(αi+1)[X^{n-1}]\star\tau({\alpha}^{\prime}_{i})=\tau({\alpha}_{i+1}) holds in QH(X)\operatorname{QH}(X) for 1in21\leq i\leq n-2. Proposition 4.4 therefore implies that

𝒫^XH(X)={1,τ(α1),,τ(αn2),τ(α1),,τ(αn1)}={[Xn1]ϵτ(αi)1in1 and ϵ{0,1}}\begin{split}\widehat{\mathcal{P}}_{X}\cap H^{*}(X)\ &=\ \{1,\tau({\alpha}^{\prime}_{1}),\dots,\tau({\alpha}^{\prime}_{n-2}),\tau({\alpha}_{1}),\dots,\tau({\alpha}_{n-1})\}\\ &=\ \{[X^{n-1}]^{\epsilon}\star\tau({\alpha}_{i})\mid 1\leq i\leq n-1\text{ and }\epsilon\in\{0,-1\}\}\end{split}

and that ϕ\phi is bijective. Since αi<αi+1{\alpha}_{i}<{\alpha}_{i+1} holds in 𝒫X{\mathcal{P}}_{X} and [Xn1][X^{n-1}] is a Seidel class, we obtain ϕ(i,j)<ϕ(i+1,j)\phi(i,j)<\phi(i+1,j) for i+1<j<i+ni+1<j<i+n. For i<j<i+n1i<j<i+n-1 we have

ϕ(i,j)=[Xn1]jnτ(αi+nj)=[Xn1]j+1nτ(αi+nj1)<[Xn1]j+1nτ(αi+nj1)=ϕ(i,j+1).\begin{split}\phi(i,j)\ &=\ [X^{n-1}]^{j-n}\star\tau({\alpha}_{i+n-j})\ =\ [X^{n-1}]^{j+1-n}\star\tau({\alpha}^{\prime}_{i+n-j-1})\\ &<\ [X^{n-1}]^{j+1-n}\star\tau({\alpha}_{i+n-j-1})\ =\ \phi(i,j+1)\,.\end{split}

This implies that ϕ\phi is order-preserving. Assume that α^α^\widehat{\alpha}^{\prime}\lessdot\widehat{\alpha} is a covering in 𝒫^X\widehat{\mathcal{P}}_{X}. We must show that ϕ1(α^)<ϕ1(α^)\phi^{-1}(\widehat{\alpha}^{\prime})<\phi^{-1}(\widehat{\alpha}). Since ϕ\phi is surjective and quantum multiplication by [Xn1][X^{n-1}] is an order automorphism of 𝒫^X\widehat{\mathcal{P}}_{X}, we may assume that α^=τ(αi)\widehat{\alpha}=\tau({\alpha}_{i}) for some ii. Lemma 4.5 then shows that α^=τ(α)\widehat{\alpha}^{\prime}=\tau({\alpha}^{\prime}) for some α𝒫X{\alpha}^{\prime}\in{\mathcal{P}}_{X}. We deduce that α^=τ(αi)\widehat{\alpha}^{\prime}=\tau({\alpha}^{\prime}_{i}) or α^=τ(αi1)\widehat{\alpha}^{\prime}=\tau({\alpha}_{i-1}). In either case we obtain ϕ1(α^)<ϕ1(α^)\phi^{-1}(\widehat{\alpha}^{\prime})<\phi^{-1}(\widehat{\alpha}). This proves that ϕ\phi is an order isomorphism. Finally, using that ϕ(0,n1)=1\phi(0,n-1)=1 and ϕ(n1,n)=[1.PX]\phi(n-1,n)=[1.P_{X}], the last claim in part (c) follows from Proposition 4.4(c).

The identity [Xn1]ϕ(i,j)=ϕ(i+1,j+1)[X^{n-1}]\star\phi(i,j)=\phi(i+1,j+1) follows from the definition of ϕ\phi. Quantum multiplication by [1.PX][1.P_{X}] corresponds to an order automorphism of 𝒫¯X\overline{\mathcal{P}}_{X} that commutes with multiplication by [Xn1][X^{n-1}], and any such order automorphism of 𝒫¯X\overline{\mathcal{P}}_{X} is a translation along a northwest-to-southeast line, possibly combined with a reflection in such a line. Using that [1.PX]ϕ(0,n1)=ϕ(n1,n)[1.P_{X}]\star\phi(0,n-1)=\phi(n-1,n), we deduce that multiplication by [1.PX][1.P_{X}] corresponds to the automorphism (i,j)(j,i+n)(i,j)\mapsto(j,i+n) of 𝒫¯X\overline{\mathcal{P}}_{X}, which proves part (d). ∎

We may identify 𝒫^X\widehat{\mathcal{P}}_{X} with the set of boxes 𝒫¯X\overline{\mathcal{P}}_{X}. Given a shape λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} and dd\in{\mathbb{Z}}, it follows from Proposition 6.1 that the shifted shape λ[d]=qdλ{\lambda}[d]=q^{d}\star{\lambda} is obtained by moving λ{\lambda} by 2d2d diagonal steps in southeast direction.

Remark 6.2.

It is natural to extend the notation λ[d]{\lambda}[d] to half-integer shifts by setting λ[k/2]=[Xn1]kλ{\lambda}[k/2]=[X^{n-1}]^{k}\star{\lambda}. We then have (𝒪n1)k𝒪λ=𝒪λ[k/2]({\mathcal{O}}^{n-1})^{k}\star{\mathcal{O}}^{\lambda}={\mathcal{O}}^{{\lambda}[k/2]} in QK(X)q\operatorname{QK}(X)_{q}.

6.2. Pieri formula

The Pieri formula for the KK-theory ring K(X)K(X) proved in [BR12] expresses the structure constants of Pieri products as signed counts of KOG-tableaux, defined as follows.

Definition 6.3 (KOG-tableau, [BR12]).

Given a skew shape θ𝒫X\theta\subset{\mathcal{P}}_{X}, a KOG-tableau of shape θ\theta is a labeling of the boxes of θ\theta with positive integers, such that (i) each row of θ\theta is strictly increasing from left to right; (ii) each column of θ\theta is strictly increasing from top to bottom; and (iii) each box of θ\theta is either smaller than or equal to all boxes south-west of it, or it is greater than or equal to all boxes south-west of it. The content of a KOG-tableau is the set of integers contained in its boxes. Let (θ,p){\mathcal{B}}(\theta,p) denote (1)|θ|p(-1)^{|\theta|-p} times the number of KOG-tableaux of shape θ\theta with content {1,2,,p}\{1,2,\dots,p\}.

The skew shape θ\theta is called a rim if no box in θ\theta is strictly south and strictly east of another box in θ\theta. If θ\theta is not a rim, then there are no KOG-tableau of shape θ\theta, hence (θ,p)=0{\mathcal{B}}(\theta,p)=0 for all pp.

Theorem 6.4.

Let X=OG(n,2n)X=\operatorname{OG}(n,2n), let λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} be any quantum shape, and let 1pn11\leq p\leq n-1. Then

𝒪p𝒪λ=ν(ν/λ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}=\sum_{\nu}{\mathcal{B}}(\nu/{\lambda},p)\,{\mathcal{O}}^{\nu}

holds in QK(X)q\operatorname{QK}(X)_{q}, where the sum is over all quantum shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing λ{\lambda}.

Proof.

Choose kk maximal such that ϕ(k,k+n1)λ\phi(k,k+n-1)\in{\lambda}. By Corollary 3.7 and Proposition 6.1 we have (𝒪n1)k𝒪λ=𝒪μ({\mathcal{O}}^{n-1})^{-k}\star{\mathcal{O}}^{\lambda}={\mathcal{O}}^{\mu}, where μ𝒫X\mu\subset{\mathcal{P}}_{X} is a classical shape with μ1n2\mu_{1}\leq n-2. Corollary 4.3 then implies that dmax(p,μ)=0d_{\max}(p,\mu)=0, so [BCMP22, Cor. 8.3] shows that 𝒪p𝒪μ{\mathcal{O}}^{p}\star{\mathcal{O}}^{\mu} agrees with the classical product 𝒪p𝒪μ{\mathcal{O}}^{p}\cdot{\mathcal{O}}^{\mu} in K(X)K(X). Notice that, if νμ\nu\supset\mu is any quantum shape such that ν/μ\nu/\mu is a rim, then ν\nu is a classical shape. It therefore follows from [BR12, Cor. 4.8] that

𝒪p𝒪μ=ν(ν/μ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\mu}=\sum_{\nu}{\mathcal{B}}(\nu/\mu,p)\,{\mathcal{O}}^{\nu}

holds in QK(X)\operatorname{QK}(X), where the sum is over all shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing μ\mu. Since quantum multiplication by (𝒪n1)k({\mathcal{O}}^{n-1})^{k} defines a module automorphism of QK(X)\operatorname{QK}(X) and defines an order automorphism of 𝒫^X\widehat{\mathcal{P}}_{X}, this identity is equivalent to the theorem. ∎

Corollary 6.5.

Let λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} be any shape and let 1pn11\leq p\leq n-1. Then

𝒪p𝒪λ=μ(μ/λ)𝒪μ+qν(ν[1]/λ)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}\ =\ \sum_{\mu}{\mathcal{B}}(\mu/{\lambda})\,{\mathcal{O}}^{\mu}+q\sum_{\nu}{\mathcal{B}}(\nu[1]/{\lambda})\,{\mathcal{O}}^{\nu}

holds in QK(X)\operatorname{QK}(X), where the first sum is over all shapes μ𝒫X\mu\subset{\mathcal{P}}_{X} containing λ{\lambda}, and the second sum is over all shapes ν𝒫X\nu\subset{\mathcal{P}}_{X} for which ν[1]\nu[1] contains λ{\lambda}.

Proof.

This is a direct translation of Theorem 6.4, using that 𝒪ν[1]=q𝒪ν{\mathcal{O}}^{\nu[1]}=q\,{\mathcal{O}}^{\nu}. ∎

Example 6.6.

Let X=OG(5,10)X=\operatorname{OG}(5,10). Then the following holds in QK(X)\operatorname{QK}(X).

𝒪2𝒪(4,2)= 2𝒪(4,3,1)𝒪(4,3,2)+q2q𝒪1+q𝒪2.{\mathcal{O}}^{2}\star{\mathcal{O}}^{(4,2)}\,=\,2\,{\mathcal{O}}^{(4,3,1)}-{\mathcal{O}}^{(4,3,2)}+q-2\,q\,{\mathcal{O}}^{1}+q\,{\mathcal{O}}^{2}\,.

The corresponding KOG-tableaux are:

11 22       22 11       11 11 22       11 22       11 22 11       11 22 22       11 22 11 22

7. Pieri formula for Lagrangian Grassmannians

7.1. Quantum shapes

Let X=LG(n,2n)X=\operatorname{LG}(n,2n) be the Lagrangian Grassmannian of maximal isotropic subspaces of 2n{\mathbb{C}}^{2n} endowed with a symplectic bilinear form. The quantum cohomology ring QH(X)\operatorname{QH}(X) was computed in [KT03], and a Pieri formula for the ordinary KK-theory ring K(X)K(X) was obtained in [BR12].

The Lagrangian Grassmannian XX is cominuscule, but not minuscule, of type CnC_{n}. We identify the simple roots of type CnC_{n} with the vectors

Δ={enen1,,e3e2,e2e1,2e1},\Delta=\{e_{n}-e_{n-1},\dots,e_{3}-e_{2},e_{2}-e_{1},2e_{1}\}\,,

where γ=2e1{\gamma}=2e_{1} is the cominuscule simple root defining XX. We then obtain

𝒫X={ei+ej1ijn},{\mathcal{P}}_{X}=\{e_{i}+e_{j}\mid 1\leq i\leq j\leq n\}\,,

where the partial order is given by ei+ejei+eje_{i^{\prime}}+e_{j^{\prime}}\leq e_{i}+e_{j} if and only if iii^{\prime}\leq i and jjj^{\prime}\leq j. We represent 𝒫X{\mathcal{P}}_{X} as a staircase shape with nn rows, where ei+eje_{i}+e_{j} corresponds to the box in row ii and column jj:

𝒫LG(6,12)= {\mathcal{P}}_{\operatorname{LG}(6,12)}\,=\ \vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(8.0,8.0) \put(0.0,8.0){\line(1,0){8.0}} \put(0.0,0.0){\line(1,0){8.0}} \put(0.0,0.0){\line(0,1){8.0}} \put(8.0,0.0){\line(0,1){8.0}} \end{picture}}\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\\\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\vbox to8.0pt{\hbox to8.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to8.0pt{\vss\hbox to8.0pt{\hss$$\hss}\vss\crcr}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Each shape λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} can be identified with a strict partition

λ=(λ1>λ2>>λ>0){\lambda}=({\lambda}_{1}>{\lambda}_{2}>\dots>{\lambda}_{\ell}>0)

with λ1n{\lambda}_{1}\leq n, where λi{\lambda}_{i} is the number of boxes in the ii-th row of λ{\lambda}. If λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} consists of a single row of boxes, then λ{\lambda} will also be identified with the integer p=|λ|p=|{\lambda}|. The special Schubert classes in K(X)K(X) are the classes 𝒪p{\mathcal{O}}^{p} for 1pn1\leq p\leq n.

Define the set

𝒫¯X={(i,j)2iji+n},\overline{\mathcal{P}}_{X}=\{(i,j)\in{\mathbb{Z}}^{2}\mid i\leq j\leq i+n\}\,,

and give 𝒫¯X\overline{\mathcal{P}}_{X} the northwest-to-southeast order (i,j)(i,j)(i^{\prime},j^{\prime})\leq(i,j) if and only if iii^{\prime}\leq i and jjj^{\prime}\leq j. We represent 𝒫¯X\overline{\mathcal{P}}_{X} as an infinite set of boxes (i,j)(i,j) in the plane, where the row number ii increases from north to south, and the column number jj increases from east to west. Each row in 𝒫¯X\overline{\mathcal{P}}_{X} contains n+1n+1 boxes. The set 𝒫X{\mathcal{P}}_{X} will be identified with the subset {(i,j)21ijn}𝒫¯X\{(i,j)\in{\mathbb{Z}}^{2}\mid 1\leq i\leq j\leq n\}\subset\overline{\mathcal{P}}_{X}.

𝒫¯LG(6,12)=\overline{\mathcal{P}}_{\operatorname{LG}(6,12)}\,=

Recall that zdWXz_{d}\in W^{X} is defined by Xzd=Γd(1.PX)X_{z_{d}}=\Gamma_{d}(1.P_{X}) for d0d\geq 0.

Proposition 7.1.

Let X=LG(n,2n)X=\operatorname{LG}(n,2n).

(a) The group of Seidel classes in QH(X)q×\operatorname{QH}(X)_{q}^{\times} is generated by [1.PX][1.P_{X}] and qq.

(b) We have [1.PX]2=qn[1.P_{X}]^{2}=q^{n} in QH(X)\operatorname{QH}(X).

(c) The map ϕ:𝒫¯X𝒫^X\phi:\overline{\mathcal{P}}_{X}\to\widehat{\mathcal{P}}_{X} defined by ϕ(i,j)=qjn[Xzi+nj]\phi(i,j)=q^{j-n}\,[X^{z_{i+n-j}}] is an order isomorphism which identifies 𝒫X{\mathcal{P}}_{X} with the set {(i,j)21ijn}\{(i,j)\in{\mathbb{Z}}^{2}\mid 1\leq i\leq j\leq n\}.

(d) The action of Seidel classes on 𝒫^X\widehat{\mathcal{P}}_{X} is determined by qϕ(i,j)=ϕ(i+1,j+1)q\star\phi(i,j)=\phi(i+1,j+1) and [1.PX]ϕ(i,j)=ϕ(j,i+n)[1.P_{X}]\star\phi(i,j)=\phi(j,i+n).

Proof.

Since the root system of type CnC_{n} has only one cominuscule root, we have Wcomin={1,w0X}W^{\mathrm{comin}}=\{1,w_{0}^{X}\}. It follows that [1.PX]2[1.P_{X}]^{2} is a power of qq in QH(X)\operatorname{QH}(X), and since dim(X)=(n+12)\dim(X)=\binom{n+1}{2} and deg(q)=n+1\deg(q)=n+1, we must have [1.PX]2=qn[1.P_{X}]^{2}=q^{n}. Parts (a) and (b) follow from this.

We have 𝒫XI(z1)={e1+en,,en1+en,2en}{\mathcal{P}}_{X}\smallsetminus I(z_{1}^{\vee})=\{e_{1}+e_{n},\dots,e_{n-1}+e_{n},2e_{n}\}. Since ei+ene_{i}+e_{n} is the unique maximal box of I(zi)I(z_{i}), it follows from Proposition 4.4 that the map ϕ\phi is bijective. Notice that for a,b[0,n]a,b\in[0,n] and dd\in{\mathbb{Z}}, [Xza]qd[Xzb][X^{z_{a}}]\leq q^{d}[X^{z_{b}}] holds in 𝒫^X\widehat{\mathcal{P}}_{X} if and only if d0d\geq 0 and Γd(Xzb)Xza\Gamma_{d}(X_{z_{b}})\cap X^{z_{a}}\neq\emptyset, which is equivalent to d0d\geq 0 and ab+da\leq b+d, see [BCMP22, Lemma 7.9]. It follows that ϕ(i,j)ϕ(i,j)\phi(i^{\prime},j^{\prime})\leq\phi(i,j) holds in 𝒫^X\widehat{\mathcal{P}}_{X} if and only if (i,j)(i,j)(i^{\prime},j^{\prime})\leq(i,j) holds in 𝒫¯X\overline{\mathcal{P}}_{X}. This shows that ϕ\phi is an order isomorphism. The last claim in part (c) follows from Proposition 4.4(c), noting that ϕ(0,n)=1\phi(0,n)=1 and ϕ(n,n)=[1.PX]\phi(n,n)=[1.P_{X}].

The identity qϕ(i,j)=ϕ(i+1,j+1)q\star\phi(i,j)=\phi(i+1,j+1) follows from the definition of ϕ\phi. Quantum multiplication by [1.PX][1.P_{X}] corresponds to an order automorphism of 𝒫¯X\overline{\mathcal{P}}_{X} that commutes with multiplication by qq, and any such order automorphism of 𝒫¯X\overline{\mathcal{P}}_{X} is a translation along a northwest-to-southeast line, possibly combined with a reflection in such a line. Using that [1.PX]ϕ(0,n)=ϕ(n,n)[1.P_{X}]\star\phi(0,n)=\phi(n,n), we deduce the formula [1.PX]ϕ(i,j)=ϕ(j,i+n)[1.P_{X}]\star\phi(i,j)=\phi(j,i+n), proving part (d). ∎

We may identify 𝒫^X\widehat{\mathcal{P}}_{X} with the set of boxes 𝒫¯X\overline{\mathcal{P}}_{X}. Given a shape λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} and dd\in{\mathbb{Z}}, it follows from Proposition 7.1 that the shifted shape λ[d]=qdλ{\lambda}[d]=q^{d}\star{\lambda} is obtained by moving λ{\lambda} by dd diagonal steps in southeast direction.

7.2. Pieri formula

The Pieri formula for the KK-theory ring K(X)K(X) proved in [BR12] expresses the structure constants of Pieri products as signed counts of KLG-tableaux, defined as follows.

Definition 7.2 (KLG-tableau, [BR12]).

Let θ𝒫X\theta\subset{\mathcal{P}}_{X} be a rim. A KLG-tableau of shape θ\theta is a labeling of the boxes of θ\theta with elements from the ordered set

{1<1<2<2<}\{1^{\prime}<1<2^{\prime}<2<\cdots\}

such that (i) each row of θ\theta is strictly increasing from left to right; (ii) each column of θ\theta is strictly increasing from top to bottom; (iii) each box containing an unprimed integer is larger than or equal to all boxes southwest of it; (iv) each box containing a primed integer is smaller than or equal to all boxes southwest of it; (v) no SW diagonal box contains a primed integer. The content of a KLG-tableau is the set of integers ii such that some box contains ii or ii^{\prime}. Define 𝒞(θ,p){\mathcal{C}}(\theta,p) to be (1)|θ|p(-1)^{|\theta|-p} times the number of KLG-tableaux of shape θ\theta with content {1,2,,p}\{1,2,\dots,p\}. If θ𝒫X\theta\subset{\mathcal{P}}_{X} is a skew shape that is not a rim, then set 𝒞(θ,p)=0{\mathcal{C}}(\theta,p)=0.

In contrast to the case of maximal orthogonal Grassmannians, we need to adjust the definition of KLG-tableau with extra conditions in the quantum case.

Definition 7.3 (QKLG-tableau).

Let TT be a KLG-tableau whose shape is a rim contained in 𝒫^X\widehat{\mathcal{P}}_{X}. A box of TT is called unrepeated if its label is distinct from all other labels when ignoring primes. A box of TT is a quantum box if it belongs to the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X} or is connected to an unrepeated quantum box. A box of TT is terminal if it is not on the SW diagonal of 𝒫^X\widehat{\mathcal{P}}_{X} and is not connected to a box to the left or below it. We say that TT is a QKLG-tableau if (vi) every primed non-terminal quantum box is unrepeated, and (vii) every terminal quantum box is primed. For any rim θ\theta contained in 𝒫^X\widehat{\mathcal{P}}_{X}, we let 𝒩(θ,p){\mathcal{N}}(\theta,p) denote (1)|θ|p(-1)^{|\theta|-p} times the number of QKLG-tableaux of shape θ\theta with content {1,2,,p}\{1,2,\dots,p\}. If θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} is a skew shape that is not a rim, then set 𝒩(θ,p)=0{\mathcal{N}}(\theta,p)=0.

The integers 𝒩(θ,p){\mathcal{N}}(\theta,p) can also be defined recursively, see Definition 10.5.

Theorem 7.4.

Let X=LG(n,2n)X=\operatorname{LG}(n,2n), let λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X} be any quantum shape, and let 1pn1\leq p\leq n. Then

𝒪p𝒪λ=ν𝒩(ν/λ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}\,=\,\sum_{\nu}\,{\mathcal{N}}(\nu/{\lambda},p)\,{\mathcal{O}}^{\nu}

holds in QK(X)q\operatorname{QK}(X)_{q}, where the sum is over all quantum shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing λ{\lambda}.

The proof of Theorem 7.4 is given in the three remaining sections of this paper.

Corollary 7.5.

Let λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} be any shape and let 1pn1\leq p\leq n. Then

𝒪p𝒪λ=μ𝒞(μ/λ,p)𝒪μ+qν𝒩(ν[1]/λ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}\,=\,\sum_{\mu}{\mathcal{C}}(\mu/{\lambda},p)\,{\mathcal{O}}^{\mu}+q\sum_{\nu}{\mathcal{N}}(\nu[1]/{\lambda},p)\,{\mathcal{O}}^{\nu}

holds in QK(X)\operatorname{QK}(X), where the first sum is over all shapes μ𝒫X\mu\subset{\mathcal{P}}_{X} containing λ{\lambda}, and the second sum is over all shapes ν𝒫X\nu\subset{\mathcal{P}}_{X} for which ν[1]\nu[1] contains λ{\lambda}.

Example 7.6.

Let X=LG(7,14)X=\operatorname{LG}(7,14) and set λ=(7,5,4,2){\lambda}=(7,5,4,2) and ν=(7,5,3,2)\nu=(7,5,3,2). Then ν[1]/λ\nu[1]/{\lambda} meets both the SW diagonal and the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}. The coefficient of q𝒪νq\,{\mathcal{O}}^{\nu} in 𝒪6𝒪λ{\mathcal{O}}^{6}\star{\mathcal{O}}^{\lambda} is 4-4, due to the following list of QKLG-tableaux of shape ν[1]/λ\nu[1]/{\lambda} with content {1,2,3,4,5,6}\{1,2,3,4,5,6\}:

11^{\prime} 22^{\prime} 66 33^{\prime} 44^{\prime} 44 55       11^{\prime} 22^{\prime} 66 33^{\prime} 33^{\prime} 44 55       11^{\prime} 22^{\prime} 66 33^{\prime} 44^{\prime} 55 66       11^{\prime} 22^{\prime} 66 66 33^{\prime} 44 55

Quantum boxes are indicated with a think border. There are five additional KLG-tableaux of shape ν[1]/λ\nu[1]/{\lambda} with content {1,2,3,4,5,6}\{1,2,3,4,5,6\} which do not satisfy the additional conditions of Definition 7.3:

11^{\prime} 22^{\prime} 66 55 33^{\prime} 33 44       11^{\prime} 22^{\prime} 66 55 33^{\prime} 44 55       11^{\prime} 22^{\prime} 66 55 22^{\prime} 33 44       11^{\prime} 11^{\prime} 66 22^{\prime} 33^{\prime} 44 55       11^{\prime} 11^{\prime} 66 55 22^{\prime} 33 44

The first two violate condition (vii) and the last three violate condition (vi).

8. Perpendicular incidences of symplectic Richardson varieties

Let YPQY_{P}^{Q} be a Richardson variety in the symplectic Grassmannian Y=SG(m,2n)Y=\operatorname{SG}(m,2n). Each point L2n1L\in{\mathbb{P}}^{2n-1} defines the subvariety YPQL={VYPQVL}Y_{P}^{Q}\cap L^{\perp}=\{V\in Y_{P}^{Q}\mid V\subset L^{\perp}\}. Let PQ2n1{\mathbb{P}}_{P}^{Q}\subset{\mathbb{P}}^{2n-1} be the subset of points LL for which YPQLY_{P}^{Q}\cap L^{\perp} is not empty. In this section we show that PQ{\mathbb{P}}_{P}^{Q} is a complete intersection defined by explicitly given equations. We also show that YPQLY_{P}^{Q}\cap L^{\perp} is rational for all points LL in a dense open subset of PQ{\mathbb{P}}_{P}^{Q}. This will be used in Section 9 to compute the Gromov-Witten invariants required to prove our Pieri formula for the quantum KK-theory of Lagrangian Grassmannians.

8.1. Symplectic Grassmannians

Let {e1,,e2n}\{e_{1},\dots,e_{2n}\} denote the standard basis of 2n{\mathbb{C}}^{2n}. Define the symplectic vector space E=2nE={\mathbb{C}}^{2n}, where the skew-symmetric bilinear form on EE is given by (ei,ej)=δi+j,2n+1(e_{i},e_{j})=\delta_{i+j,2n+1} for 1ij2n1\leq i\leq j\leq 2n. Given 0mn0\leq m\leq n, let Y=SG(m,E)=SG(m,2n)Y=\operatorname{SG}(m,E)=\operatorname{SG}(m,2n) denote the symplectic Grassmannian of mm-dimensional isotropic subspaces of EE,

Y=SG(m,E)={VEdim(V)=m and (V,V)=0}.Y=\operatorname{SG}(m,E)=\{V\subset E\mid\dim(V)=m\text{ and }(V,V)=0\}\,.

This space has a transitive action by the symplectic group G=Sp(E)G=\operatorname{Sp}(E). Let BGB\subset G be the Borel subgroup of upper triangular matrices, let BGB^{-}\subset G be the opposite Borel subgroup of lower triangular matrices, and let T=BBT=B\cap B^{-} be the maximal torus of symplectic diagonal matrices.

For a,ba,b\in{\mathbb{Z}}, let [a,b]={xaxb}[a,b]=\{x\in{\mathbb{Z}}\mid a\leq x\leq b\} denote the corresponding integer interval. Given any subset P[1,2n]P\subset[1,2n], we let EP=Span{eppP}E_{P}=\operatorname{Span}_{\mathbb{C}}\{e_{p}\mid p\in P\} be the span of the basis elements corresponding to PP. A Schubert symbol for SG(m,2n)\operatorname{SG}(m,2n) is a subset P[1,2n]P\subset[1,2n] of cardinality mm, such that p+p′′2n+1p^{\prime}+p^{\prime\prime}\neq 2n+1 for all p,p′′Pp^{\prime},p^{\prime\prime}\in P. The subspace EPE_{P} is a point of SG(m,2n)\operatorname{SG}(m,2n) if and only if PP is a Schubert symbol, and the TT-fixed points of SG(m,E)\operatorname{SG}(m,E) are exactly the points EPE_{P} for which PP is a Schubert symbol for YY. Each Schubert symbol PP defines the Schubert varieties

YP=B.EP¯ and YP=B.EP¯Y.Y_{P}=\overline{B.E_{P}}\text{ \ \ \ \ and \ \ \ \ }Y^{P}=\overline{B^{-}.E_{P}}\ \subset Y\,.

These varieties can also be defined by (see [BKT15, §4.1])

YP={VYdim(VE[1,b])#(P[1,b])b[1,2n]} andYP={VYdim(VE[a,2n])#(P[a,2n])a[1,2n]}.\begin{split}Y_{P}\,&=\,\{V\in Y\mid\dim(V\cap E_{[1,b]})\geq\#(P\cap[1,b])~{}\forall~{}b\in[1,2n]\}\text{ \ \ \ and}\\ Y^{P}\,&=\,\{V\in Y\mid\dim(V\cap E_{[a,2n]})\geq\#(P\cap[a,2n])~{}\forall~{}a\in[1,2n]\}\,.\end{split}

Given Schubert symbols PP and QQ for YY, we will denote the elements of these sets by P={p1<p2<<pm}P=\{p_{1}<p_{2}<\dots<p_{m}\} and Q={q1<q2<<qm}Q=\{q_{1}<q_{2}<\dots<q_{m}\}. The Bruhat order on Schubert symbols is defined by QPQ\leq P if and only if qipiq_{i}\leq p_{i} for 1im1\leq i\leq m. With this notation we have

QPEQYPYQYPYPYQ.Q\leq P\ \ \Leftrightarrow\ \ E_{Q}\in Y_{P}\ \ \Leftrightarrow\ \ Y_{Q}\subset Y_{P}\ \ \Leftrightarrow\ \ Y_{P}\cap Y^{Q}\neq\emptyset\,.

Define the length (P)\ell(P) to be

(P)=i=1m(pii)#{i<j:pi+pj>2n+1}.\ell(P)\ =\ \sum_{i=1}^{m}(p_{i}-i)\,-\,\#\{i<j:p_{i}+p_{j}>2n+1\}\,.

We then have dim(YP)=codim(YP,Y)=(P)\dim(Y_{P})=\operatorname{codim}(Y^{P},Y)=\ell(P). Notice also that YPY^{P} is a translate of YPY_{P^{\vee}}, where P={2n+1ppP}P^{\vee}=\{2n+1-p\mid p\in P\} is the Poincare dual Schubert symbol.

8.2. Richardson varieties

Two Schubert symbols PP and QQ for Y=SG(m,2n)Y=\operatorname{SG}(m,2n) such that QPQ\leq P define the Richardson variety

YPQ=YPYQ.Y_{P}^{Q}=Y_{P}\cap Y^{Q}\,.

This variety is known to be rational [Ric92]. Using that dim(YPQ)=(P)(Q)\dim(Y_{P}^{Q})=\ell(P)-\ell(Q), we obtain

(4) dim(YPQ)=i=1m(piqi)#{i<j:qi+qj<2n+1<pi+pj}.\dim(Y_{P}^{Q})\ =\ \sum_{i=1}^{m}(p_{i}-q_{i})\,-\,\#\{i<j:q_{i}+q_{j}<2n+1<p_{i}+p_{j}\}\,.

For any point VYPQV\in Y_{P}^{Q} we have VE[q1,pm]V\subset E_{[q_{1},p_{m}]} and VE[qi,pi]0V\cap E_{[q_{i},p_{i}]}\neq 0 for 1im1\leq i\leq m; this holds because dim(VE[1,pi])i\dim(V\cap E_{[1,p_{i}]})\geq i, dim(VE[qi,2n])m+1i\dim(V\cap E_{[q_{i},2n]})\geq m+1-i, and dim(V)=m\dim(V)=m.

Let Y=SG(m,E)Y=\operatorname{SG}(m,E) and Y=SG(m1,E)Y^{\prime}=\operatorname{SG}(m-1,E), and define the 2-step symplectic flag variety

Z=SF(m1,m;E)={(V,V)Y×YVV}.Z=\operatorname{SF}(m-1,m;E)=\{(V^{\prime},V)\in Y^{\prime}\times Y\mid V^{\prime}\subset V\}\,.

Let a:ZYa:Z\to Y and b:ZYb:Z\to Y^{\prime} be the projections. The TT-fixed points in ZZ have the form (EP,EP)(E_{P^{\prime}},E_{P}), where PP^{\prime} and PP are Schubert symbols for YY^{\prime} and YY, respectively, such that PPP^{\prime}\subset P. The corresponding Schubert varieties are denoted

ZP,P=B.(EP,EP)¯ and ZP,P=B.(EP,EP)¯.Z_{P^{\prime},P}=\overline{B.(E_{P^{\prime}},E_{P})}\text{ \ \ \ and \ \ \ }Z^{P^{\prime},P}=\overline{B^{-}.(E_{P^{\prime}},E_{P})}\,.

A Richardson variety in ZZ is denoted by ZP,PQ,Q=ZP,PZQ,QZ_{P^{\prime},P}^{Q^{\prime},Q}=Z_{P^{\prime},P}\cap Z^{Q^{\prime},Q}. Recall our standing notation P={p1<<pm}P=\{p_{1}<\dots<p_{m}\} and Q={q1<<qm}Q=\{q_{1}<\dots<q_{m}\} for Schubert symbols for SG(m,2n)\operatorname{SG}(m,2n).

Proposition 8.1.

Let QPQ\leq P be Schubert symbols for Y=SG(m,2n)Y=\operatorname{SG}(m,2n), and let 1km1\leq k\leq m. Set Q=Q{qk}Q^{\prime}=Q\smallsetminus\{q_{k}\} and P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}. Then the restricted map a:ZP,PQ,QYPQa:Z_{P^{\prime},P}^{Q^{\prime},Q}\to Y_{P}^{Q} is birational. In addition, the restricted map b:ZP,PQ,QYPQb:Z_{P^{\prime},P}^{Q^{\prime},Q}\to{Y^{\prime}}_{P^{\prime}}^{Q^{\prime}} is surjective if and only if dim(YPQ)dim(YPQ)\dim({Y^{\prime}}_{P^{\prime}}^{Q^{\prime}})\leq\dim(Y_{P}^{Q}).

We will prove Proposition 8.1 after introducing some additional notation and results. We will identify the Weyl group of Sp(2n)\operatorname{Sp}(2n) with the group of permutations

W={wS2nw(i)+w(2n+1i)=2n+1 for i[1,2n]}.W=\{w\in S_{2n}\mid w(i)+w(2n+1-i)=2n+1\text{ for }i\in[1,2n]\}\,.

This group is generated by the simple reflections s1,,snWs_{1},\dots,s_{n}\in W defined by

si(i)=i+1,si(i+1)=i,andsi(j)=j for j[1,n]{i,i+1}.s_{i}(i)=i+1\,,\ \ \ s_{i}(i+1)=i\,,\ \ \ \text{and}\ \ \ s_{i}(j)=j\ \text{ for }j\in[1,n]\smallsetminus\{i,i+1\}\,.

The simple reflection sns_{n} corresponds to the unique long simple root of the root system of type CnC_{n}. The parabolic subgroup PYGP_{Y}\subset G defining Y=SG(m,2n)Y=\operatorname{SG}(m,2n) corresponds to the subgroup WYWW_{Y}\subset W generated by sis_{i} for imi\neq m. Let WYWW^{Y}\subset W be the subset of minimal representatives of the cosets in W/WYW/W_{Y}. Then WYW^{Y} is in bijective correspondence with the Schubert symbols of YY. The Schubert symbol P={p1<p2<<pm}P=\{p_{1}<p_{2}<\dots<p_{m}\} corresponds to the permutation wWYw\in W^{Y} defined by

w(j)=pj for  1jm,andw(m+1)<w(m+2)<<w(n)n.w(j)=p_{j}\ \text{ for }\ 1\leq j\leq m\,,\ \ \ \text{and}\ \ \ w(m+1)<w(m+2)<\dots<w(n)\leq n\,.

This correspondence preserves the Bruhat order.

The permutation w^WZ\widehat{w}\in W^{Z} corresponding of a TT-fixed point (EP,EP)(E_{P^{\prime}},E_{P}) of Z=SF(m1,m;2n)Z=\operatorname{SF}(m-1,m;2n), with P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}, is defined by

w^(j)={pjif 1j<k,pj+1if kj<m,pkif j=m,\widehat{w}(j)=\begin{cases}p_{j}&\text{if $1\leq j<k$,}\\ p_{j+1}&\text{if $k\leq j<m$,}\\ p_{k}&\text{if $j=m$,}\end{cases}

and w^(m+1)<w^(m+2)<<w^(n)n\widehat{w}(m+1)<\widehat{w}(m+2)<\dots<\widehat{w}(n)\leq n. Equivalently, if wWYw\in W^{Y} corresponds to PP, then

w^=wsksk+1sm1.\widehat{w}=ws_{k}s_{k+1}\dots s_{m-1}\,.

Let wWYw^{\prime}\in W^{Y^{\prime}} be the permutation corresponding to PP^{\prime}. Then ww^{\prime} is obtained from w^\widehat{w} by first replacing the value w^(m)\widehat{w}(m) with min(pk,2n+1pk)\min(p_{k},2n+1-p_{k}), and then rearranging the values w^(m),,w^(n)\widehat{w}(m),\dots,\widehat{w}(n) in increasing order. Since w^(m+1)<<w^(n)n\widehat{w}(m+1)<\dots<\widehat{w}(n)\leq n, we can write w=w^yw^{\prime}=\widehat{w}y, where yy is the product of the first (w^)(w)\ell(\widehat{w})-\ell(w^{\prime}) simple reflections in the product

(5) smsm+1sn1snsn1sm+1sm.s_{m}s_{m+1}\cdots s_{n-1}s_{n}s_{n-1}\cdots s_{m+1}s_{m}\,.

Let F=Sp(2n)/BF=\operatorname{Sp}(2n)/B be the variety of complete symplectic flags, and let M=Sp(2n)/PMM=\operatorname{Sp}(2n)/P_{M} be any flag variety of G=Sp(2n)G=\operatorname{Sp}(2n). For τσ\tau\leq\sigma in WW, let Πστ(M)M\Pi_{\sigma}^{\tau}(M)\subset M denote the projected Richardson variety obtained as the image of FστF_{\sigma}^{\tau} under the projection FMF\to M. Recall from [BCMP22, §2] that the MM-Bruhat order M\leq_{M} on WW can be defined by

τMστσandσMLτM,\tau\leq_{M}\sigma\ \ \ \Longleftrightarrow\ \ \ \tau\leq\sigma\ \ \text{and}\ \ \sigma_{M}\leq_{L}\tau_{M}\,,

where σ=σMσM\sigma=\sigma^{M}\sigma_{M} and τ=τMτM\tau=\tau^{M}\tau_{M} are the parabolic factorizations with respect to WMW_{M}, and L\leq_{L} is the left weak Bruhat order on WW. We need the following properties of projected Richardson varieties from [KLS14] (see also [BCMP22, §3]).

Proposition 8.2 ([KLS14]).

Let τσ\tau\leq\sigma in WW. The projected Richardson variety Πστ(M)\Pi_{\sigma}^{\tau}(M) satisfies the following properties.

(a) We have Πστ(M)Mστ\Pi_{\sigma}^{\tau}(M)\subset M_{\sigma}^{\tau}.

(b) If σWM\sigma\in W^{M}, then equality Πστ(M)=Mστ\Pi_{\sigma}^{\tau}(M)=M_{\sigma}^{\tau} holds if and only if τWM\tau\in W^{M}.

(c) The projection FστΠστ(M)F_{\sigma}^{\tau}\to\Pi_{\sigma}^{\tau}(M) is birational if and only if τMσ\tau\leq_{M}\sigma.

(d) For any simple reflection siWMs_{i}\in W_{M} with σsi<σ\sigma s_{i}<\sigma, we have Πστ(M)=Πσsimin(τ,τsi)\Pi_{\sigma}^{\tau}(M)=\Pi_{\sigma s_{i}}^{\min(\tau,\tau s_{i})}.

Here min(τ,τsi)\min(\tau,\tau s_{i}) denotes the smaller element among τ\tau and τsi\tau s_{i} in the Bruhat order on WW.

Proof of Proposition 8.1.

Let uWYu\in W^{Y} correspond to PP and let vWYv\in W^{Y} correspond to QQ. Then YPQ=YuvY_{P}^{Q}=Y_{u}^{v} and ZP,PQ,Q=Zu^v^Z_{P^{\prime},P}^{Q^{\prime},Q}=Z_{\widehat{u}}^{\widehat{v}}, where u^=ux\widehat{u}=ux and v^=vx\widehat{v}=vx, with x=sksk+1sm1x=s_{k}s_{k+1}\cdots s_{m-1}. Since u^,v^WZ\widehat{u},\widehat{v}\in W^{Z}, we have Zu^v^=Πu^v^(Z)Z_{\widehat{u}}^{\widehat{v}}=\Pi_{\widehat{u}}^{\widehat{v}}(Z) by Proposition 8.2(b). Using that u^=ux\widehat{u}=ux and v^=vx\widehat{v}=vx are parabolic factorizations with respect to WYW_{Y}, we obtain v^Yu^\widehat{v}\leq_{Y}\widehat{u}, so Proposition 8.2(d,b,c) shows that Πu^v^(Y)=Πuv(Y)=Yuv\Pi_{\widehat{u}}^{\widehat{v}}(Y)=\Pi_{u}^{v}(Y)=Y_{u}^{v} and a:Zu^v^Yuva:Z_{\widehat{u}}^{\widehat{v}}\to Y_{u}^{v} is birational. This proves the first claim.

Since Zu^v^=Πu^v^(Z)Z_{\widehat{u}}^{\widehat{v}}=\Pi_{\widehat{u}}^{\widehat{v}}(Z), we have b(ZP,PQ,Q)=Πu^v^(Y)b(Z_{P^{\prime},P}^{Q^{\prime},Q})=\Pi_{\widehat{u}}^{\widehat{v}}(Y^{\prime}). Let u,vWYu^{\prime},v^{\prime}\in W^{Y^{\prime}} be the elements corresponding to PP^{\prime} and QQ^{\prime}. Then u=u^yu^{\prime}=\widehat{u}y and v=v^zv^{\prime}=\widehat{v}z, where yy is the product of the first (u^)(u)\ell(\widehat{u})-\ell(u^{\prime}) simple reflections in (5), and zz is the product of the first (v^)(v)\ell(\widehat{v})-\ell(v^{\prime}) simple reflections. Using Proposition 8.2(d), we obtain

Πu^v^(Y)=Πu^yv^min(y,z)(Y).\Pi_{\widehat{u}}^{\widehat{v}}(Y^{\prime})=\Pi_{\widehat{u}y}^{\widehat{v}\min(y,z)}(Y^{\prime})\,.

By Proposition 8.2(b), this variety is equal to Yuv{Y^{\prime}}_{u^{\prime}}^{v^{\prime}} if and only if zyz\leq y, which is equivalent to (u)(v)(u^)(v^)\ell(u^{\prime})-\ell(v^{\prime})\leq\ell(\widehat{u})-\ell(\widehat{v}). The second claim follows from this. ∎

8.3. Matrix representations of Richardson varieties

We need a parametrization of an open subset of YPQY_{P}^{Q} by matrices with perpendicular rows, which is based on a combinatorial diagram used in [BKT09, Rav15]. Let MPQM_{P}^{Q} be the variety of all m×(2n)m\times(2n)-matrices A=(ai,j)A=(a_{i,j}), with ai,ja_{i,j}\in{\mathbb{C}}, such that for 1im1\leq i\leq m we have ai,qi=1a_{i,q_{i}}=1, ai,pi0a_{i,p_{i}}\neq 0, and ai,j=0a_{i,j}=0 for j[qi,pi]j\notin[q_{i},p_{i}], and such that each pair of rows of AA are perpendicular as vectors in EE, that is,

(6) t=1n(ai,taj,2n+1tai,2n+1taj,t)=0\sum_{t=1}^{n}(a_{i,t}\,a_{j,2n+1-t}-a_{i,2n+1-t}\,a_{j,t})=0

for 1i<jm1\leq i<j\leq m. Notice that this equation is vacuous unless

qi+qj<2n+1<pi+pj.q_{i}+q_{j}<2n+1<p_{i}+p_{j}\,.

We will say that rows ii and jj in MPQM_{P}^{Q} are correlated if iji\neq j and this inequality holds. We will show in Theorem 8.5 that MPQM_{P}^{Q} is isomorphic to a dense open subset of the Richardson variety YPQY_{P}^{Q}. In particular, MPQM_{P}^{Q} is non-empty and irreducible. Identity (4) states that dim(YPQ)\dim(Y_{P}^{Q}) is equal to the number of entries ai,ja_{i,j} that are not explicitly assigned to a constant value, minus the number of pairs of correlated rows in MPQM_{P}^{Q}.

Example 8.3.

Let Y=SG(4,12)Y=\operatorname{SG}(4,12), Q={2,3,8,9}Q=\{2,3,8,9\}, and P={5,7,10,12}P=\{5,7,10,12\}. Then MPQM_{P}^{Q} is the variety of all matrices of the form

A=[01a1,3a1,4a1,50000000001a2,4a2,5a2,6a2,70000000000001a3,9a3,1000000000001a4,10a4,11a4,12],A=\setcounter{MaxMatrixCols}{12}\begin{bmatrix}0&1&a_{1,3}&a_{1,4}&a_{1,5}&0&0&0&0&0&0&0\\ 0&0&1&a_{2,4}&a_{2,5}&a_{2,6}&a_{2,7}&0&0&0&0&0\\ 0&0&0&0&0&0&0&1&a_{3,9}&a_{3,10}&0&0\\ 0&0&0&0&0&0&0&0&1&a_{4,10}&a_{4,11}&a_{4,12}\end{bmatrix}\,,

such that a1,50a_{1,5}\neq 0, a2,70a_{2,7}\neq 0, a3,100a_{3,10}\neq 0, a4,120a_{4,12}\neq 0, and the rows of AA are pairwise perpendicular. The variety MPQM_{P}^{Q} has 12 unassigned entries and 4 pairs of correlated rows, so dim(YPQ)=8\dim(Y_{P}^{Q})=8.

Remark 8.4.

Let QPQ\leq P be Schubert symbols for Y=SG(m,2n)Y=\operatorname{SG}(m,2n) and 1km1\leq k\leq m. Set Q=Q{qk}Q^{\prime}=Q\smallsetminus\{q_{k}\} and P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}. Then QPQ^{\prime}\leq P^{\prime} are Schubert symbols for Y=SG(m1,2n)Y^{\prime}=\operatorname{SG}(m-1,2n) and we have

dimYPQdimYPQ=(pkqk)#{j[1,m]jk and qj+qk<2n+1<pj+pk}.\dim Y_{P}^{Q}-\dim{Y^{\prime}}_{P^{\prime}}^{Q^{\prime}}=(p_{k}-q_{k})-\#\{j\in[1,m]\mid j\neq k\text{ and }q_{j}+q_{k}<2n+1<p_{j}+p_{k}\}\,.

This is the number of unassigned entries in row kk of MPQM_{P}^{Q}, minus the number of rows correlated to row kk.

Let YPQYPQ\accentset{\circ}{Y}_{P}^{Q}\subset Y_{P}^{Q} be the open subvariety defined by

YPQ={VYPQ 1im:VE[qi+1,pi]=VE[qi,pi1]=0}.\accentset{\circ}{Y}_{P}^{Q}=\{V\in Y_{P}^{Q}\mid\forall\,1\leq i\leq m:V\cap E_{[q_{i}+1,p_{i}]}=V\cap E_{[q_{i},p_{i}-1]}=0\}\,.

The following result confirms a conjecture of Ravikumar [Rav13, Conj. 6.5.3].

Theorem 8.5.

The variety YPQ\accentset{\circ}{Y}_{P}^{Q} is a dense open subset of YPQY_{P}^{Q}. Moreover, the map MPQYPQM_{P}^{Q}\to\accentset{\circ}{Y}_{P}^{Q} sending a matrix to its row span is an isomorphism of varieties.

Proof.

Since YPQY_{P}^{Q} is irreducible and the subsets

UiL={VYPQVE[qi+1,pi]=0} andUiR={VYPQVE[qi,pi1]=0}\begin{split}U^{L}_{i}&=\{V\in Y_{P}^{Q}\mid V\cap E_{[q_{i}+1,p_{i}]}=0\}\text{ \ \ \ and}\\ U^{R}_{i}&=\{V\in Y_{P}^{Q}\mid V\cap E_{[q_{i},p_{i}-1]}=0\}\end{split}

are open in YPQY_{P}^{Q}, the first claim will follow if we can show that UiLU^{L}_{i} and UiRU^{R}_{i} are non-empty for all 1im1\leq i\leq m. By replacing YPQY_{P}^{Q} with YQPY_{Q^{\vee}}^{P^{\vee}}, if required, we may assume that q1+pm2n+1q_{1}+p_{m}\geq 2n+1. The sets UmLU^{L}_{m} and U1RU^{R}_{1} are non-empty since EQUmLE_{Q}\in U^{L}_{m} and EPU1RE_{P}\in U^{R}_{1}. Set Ω={VYVE[1,pm1]}\Omega=\{V\in Y\mid V\subset E_{[1,p_{m}-1]}\}. Then YPΩY_{P}\cap\Omega is a BB-stable proper closed subset of YPY_{P}, so YPΩY_{P}\cap\Omega is a union of Schubert varieties YP^Y_{\widehat{P}} that are properly contained in YPY_{P}. It follows that YPQΩY_{P}^{Q}\cap\Omega is a union of Richardson varieties YP^QY_{\widehat{P}}^{Q} that are properly contained in YPQY_{P}^{Q}. Therefore, UmLΩU^{L}_{m}\smallsetminus\Omega is a dense open subset of YPQY_{P}^{Q}.

Set Y=SG(m1,2n)Y^{\prime}=\operatorname{SG}(m-1,2n), Q={q1<<qm1}Q^{\prime}=\{q_{1}<\dots<q_{m-1}\}, and P={p1<<pm1}P^{\prime}=\{p_{1}<\dots<p_{m-1}\}. By induction we may assume YPQ{\accentset{\circ}{Y}^{\prime}}_{P^{\prime}}^{Q^{\prime}}\neq\emptyset. By Remark 8.4, the condition q1+pm2n+1q_{1}+p_{m}\geq 2n+1 implies that dim(YPQ)dim(YPQ)\dim({Y^{\prime}}_{P^{\prime}}^{Q^{\prime}})\leq\dim(Y_{P}^{Q}). In fact, if row ii of MPQM_{P}^{Q} is correlated to row mm, then 2n+1pmq1qi<2n+1qm2n+1-p_{m}\leq q_{1}\leq q_{i}<2n+1-q_{m}, so row mm is correlated to at most pmqmp_{m}-q_{m} rows. Using Proposition 8.1, we can therefore choose a point (V,V)ZP,PQ,Q(V^{\prime},V)\in Z_{P^{\prime},P}^{Q^{\prime},Q} such that VYPQV^{\prime}\in{\accentset{\circ}{Y}^{\prime}}_{P^{\prime}}^{Q^{\prime}} and VUmLΩV\in U^{L}_{m}\smallsetminus\Omega. Since VE[1,pm1]V^{\prime}\subset E_{[1,p_{m}-1]} and VE[1,pm1]V\not\subset E_{[1,p_{m}-1]}, we have V=VE[1,pm1]V^{\prime}=V\cap E_{[1,p_{m}-1]}. The condition VYPQV^{\prime}\in{\accentset{\circ}{Y}^{\prime}}_{P^{\prime}}^{Q^{\prime}} therefore implies that VUiLUiRV\in U^{L}_{i}\cap U^{R}_{i} for 1im11\leq i\leq m-1. Set L=VE[qm,pm]L=V\cap E_{[q_{m},p_{m}]}. Since VE[1,pm1]V^{\prime}\subset E_{[1,p_{m-1}]}, we obtain VLVE[qm1+1,pm1]=0V^{\prime}\cap L\subset V^{\prime}\cap E_{[q_{m-1}+1,p_{m-1}]}=0, hence V=VLV=V^{\prime}\oplus L and dim(L)=1\dim(L)=1. Since VE[1,pm1]V^{\prime}\subset E_{[1,p_{m}-1]} and VE[1,pm1]V\not\subset E_{[1,p_{m}-1]}, it follows that LE[1,pm1]L\not\subset E_{[1,p_{m}-1]}. We deduce that VE[qm,pm1]=LE[qm,pm1]=0V\cap E_{[q_{m},p_{m}-1]}=L\cap E_{[q_{m},p_{m}-1]}=0, so that VUmRV\in U^{R}_{m}. We conclude that VYPQV\in\accentset{\circ}{Y}_{P}^{Q}, so this set is a dense open subset of YPQY_{P}^{Q}.

It is clear from the definitions that ASpan(A)A\mapsto\operatorname{Span}(A) is a well defined morphism of varieties MPQYPQM_{P}^{Q}\to\accentset{\circ}{Y}_{P}^{Q}. On the other hand, given VYPQV\in\accentset{\circ}{Y}_{P}^{Q}, each space Li=VE[qi,pi]L_{i}=V\cap E_{[q_{i},p_{i}]} is one-dimensional, for 1im1\leq i\leq m. In addition, if we write Li=uiL_{i}={\mathbb{C}}u_{i} with uiEu_{i}\in E, then the qiq_{i}-th and pip_{i}-th coordinates of uiu_{i} are non-zero. By rescaling uiu_{i}, we may assume that the qiq_{i}-th coordinate is 11. Let AA be the m×(2n)m\times(2n) matrix whose ii-th row is uiu_{i}. Then AMPQA\in M_{P}^{Q} and Span(A)=V\operatorname{Span}(A)=V. This completes the proof. ∎

Let QPQ\leq P be Schubert symbols for Y=SG(m,2n)Y=\operatorname{SG}(m,2n), let 1km1\leq k\leq m, and let A=(ai,j)MPQA=(a_{i,j})\in M_{P}^{Q}. Define the submatrix of constraints on row kk in AA to be the matrix A[k]A[k] with entries ai,ja_{i,j} for which iki\neq k, qi+qk<2n+1<pi+pkq_{i}+q_{k}<2n+1<p_{i}+p_{k}, and 2n+1pkj2n+1qk2n+1-p_{k}\leq j\leq 2n+1-q_{k}. This matrix has one row for each row correlated to the kk-th row of MPQM_{P}^{Q}. For example, if AA is the matrix of Example 8.3, then the submatrix of constraints on row 22 is the matrix

A[2]=[001a3,9a3,100001a4,10].A[2]=\begin{bmatrix}0&0&1&a_{3,9}&a_{3,10}\\ 0&0&0&1&a_{4,10}\end{bmatrix}\,.

The constraints (6) on row kk in AA imposed by the other rows depend only on the entries of A[k]A[k]. We will say that the vector v=(vqk,,vpk)pkqk+1v=(v_{q_{k}},\dots,v_{p_{k}})\in{\mathbb{C}}^{p_{k}-q_{k}+1} is perpendicular to A[k]A[k] if the entries of vv satisfy the quadratic equations (6) imposed on the kk-th row in AA, that is,

t=1n(ai,tv2n+1tai,2n+1tvt)=0\sum_{t=1}^{n}(a_{i,t}\,v_{2n+1-t}-a_{i,2n+1-t}\,v_{t})=0

for all iki\neq k with qi+qk<2n+1<pi+pkq_{i}+q_{k}<2n+1<p_{i}+p_{k}, where we set vt=0v_{t}=0 for t[qk,pk]t\notin[q_{k},p_{k}].

Set Q=Q{qk}Q^{\prime}=Q\smallsetminus\{q_{k}\}, P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}, and Y=SG(m1,2n)Y^{\prime}=\operatorname{SG}(m-1,2n). Motivated by Proposition 8.1 and Theorem 8.5, we will say that the kk-th row of MPQM_{P}^{Q} is solvable if dim(YPQ)dim(YPQ)\dim({Y^{\prime}}_{P^{\prime}}^{Q^{\prime}})\leq\dim(Y_{P}^{Q}). By Remark 8.4, this means that there are at most pkqkp_{k}-q_{k} constraints on the kk-th row of MPQM_{P}^{Q}. The kk-th row of MPQM_{P}^{Q} is movable if dim(YPQ)<dim(YPQ)\dim({Y^{\prime}}_{P^{\prime}}^{Q^{\prime}})<\dim(Y_{P}^{Q}), that is, there are fewer than pkqkp_{k}-q_{k} constraints on the kk-th row. If the kk-th row of MPQM_{P}^{Q} is movable, then for each matrix AMPQA\in M_{P}^{Q}, we can vary the kk-th row of AA in a positive dimensional parameter space while fixing the remaining rows.

Corollary 8.6.

Let QPQ\leq P be Schubert symbols for SG(m,2n)\operatorname{SG}(m,2n), and assume that the kk-th row of MPQM_{P}^{Q} is solvable. Then MPQM_{P}^{Q} contains a dense open subset of points AA for which the submatrix A[k]A[k] of constraints on row kk has linearly independent rows.

Proof.

Set Q=Q{qk}Q^{\prime}=Q\smallsetminus\{q_{k}\} and P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}. Given AMPQA\in M_{P}^{Q}, let AMPQA^{\prime}\in M_{P^{\prime}}^{Q^{\prime}} denote the result of removing the kk-th row from AA. It follows from Proposition 8.1 and Theorem 8.5 that AAA\mapsto A^{\prime} defines a dominant morphism MPQMPQM_{P}^{Q}\to M_{P^{\prime}}^{Q^{\prime}}. This implies that, for all points AA in a dense open subset of MPQM_{P}^{Q}, the fiber over AA^{\prime} in MPQM_{P}^{Q} is non-empty of dimension dim(MPQ)dim(MPQ)\dim(M_{P}^{Q})-\dim(M_{P^{\prime}}^{Q^{\prime}}). This fiber can be identified with the set of vectors v=(1,vqk+1,,vpk)v=(1,v_{q_{k}+1},\dots,v_{p_{k}}), with vpk0v_{p_{k}}\neq 0, that are perpendicular to A[k]A[k]. We deduce that the rows of A[k]A[k] are linearly independent by Remark 8.4. ∎

8.4. Perpendicular incidence varieties

Let Y=SG(m,2n)Y=\operatorname{SG}(m,2n) and define the perpendicular incidence variety

S={(V,L)Y×(E)VL}.S=\{(V,L)\in Y\times{\mathbb{P}}(E)\mid V\subset L^{\perp}\}\,.

Let f:S(E)f:S\to{\mathbb{P}}(E) and g:SYg:S\to Y be the projections. Given Schubert symbols QPQ\leq P for YY, we set SPQ=g1(YPQ)S_{P}^{Q}=g^{-1}(Y_{P}^{Q}). Since gg is locally trivial with fibers g1(V)=(V)g^{-1}(V)={\mathbb{P}}(V^{\perp}) by [BCMP13, Prop. 2.3], it follows that SPQS_{P}^{Q} is irreducible with dim(SPQ)=dim(YPQ)+2nm1\dim(S_{P}^{Q})=\dim(Y_{P}^{Q})+2n-m-1.

Following [BKT09, Rav15], we define a cut of MPQM_{P}^{Q} to be an integer c[0,2n]c\in[0,2n] such that picp_{i}\leq c or c<qic<q_{i} holds for each i[1,m]i\in[1,m]. This implies that no row of MPQM_{P}^{Q} contains non-zero entries in both column cc and column c+1c+1. A lone star is an integer s[1,2n]s\in[1,2n] such that qi=pi=sq_{i}=p_{i}=s for some i[1,m]i\in[1,m]. This implies that s1s-1 and ss are cuts of MPQM_{P}^{Q}. The integer cc is a double-cut of MPQM_{P}^{Q} if both cc and 2nc2n-c are cuts. A component of MPQM_{P}^{Q} is a pair of integers (a,b)(a,b), with 0a<bn0\leq a<b\leq n, such that (i) aa is a double-cut, (ii) bb is a double-cut or b=nb=n, and (iii) no double-cut belongs to [a+1,b1][a+1,b-1]. We will say that row ii of MPQM_{P}^{Q} is contained in the component (a,b)(a,b) if a<qipiba<q_{i}\leq p_{i}\leq b, or 2nb<qipi2na2n-b<q_{i}\leq p_{i}\leq 2n-a, or b=nb=n and a<qipi2naa<q_{i}\leq p_{i}\leq 2n-a. Each row of MPQM_{P}^{Q} belongs to a unique component, and two rows can be correlated only if they belong to the same component. Any component (a,b)(a,b) contains at most bab-a rows. The component (a,b)(a,b) is called a quadratic component if bb is a double-cut, ba2b-a\geq 2, and (a,b)(a,b) contains bab-a rows.

Let PQ(E){\mathbb{P}}_{P}^{Q}\subset{\mathbb{P}}(E) denote the closed subvariety defined by the linear equations x2n+1s=0x_{2n+1-s}=0 for all lone stars ss of MPQM_{P}^{Q}, as well as the quadratic equations

xa+1x2na++xbx2n+1b=0x_{a+1}x_{2n-a}+\dots+x_{b}x_{2n+1-b}=0

given by all quadratic components (a,b)(a,b) of MPQM_{P}^{Q}. Using that the quadratic equations involve pairwise disjoint sets of variables, it follows that PQ{\mathbb{P}}_{P}^{Q} is an irreducible complete intersection in (E){\mathbb{P}}(E) with rational singularities.

Example 8.7.

Let Y=SG(8,20)Y=\operatorname{SG}(8,20) and define Q={1,2,4,6,9,11,16,18}Q=\{1,2,4,6,9,11,16,18\} and P={2,3,7,8,11,12,16,20}P=\{2,3,7,8,11,12,16,20\}. The shape of non-zero entries in MPQM_{P}^{Q} is given by the diagram:

[]\left[\begin{array}[]{ccc|ccccc|cccc|ccccc|ccc}\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\star&\star&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star\\ \end{array}\right]

Here we ignore that the lone star in column 1616 forces the entry in column 55 to vanish. The double-cuts of MPQM_{P}^{Q} are indicated with vertical lines. The components of MPQM_{P}^{Q} are (0,3)(0,3), (3,8)(3,8), and (8,10)(8,10), and we have

PQ=Z(x5,x1x20+x2x19+x3x18)(E).{\mathbb{P}}_{P}^{Q}\,=\,Z(x_{5}\,,\,x_{1}x_{20}+x_{2}x_{19}+x_{3}x_{18})\,\subset\,{\mathbb{P}}(E)\,.

Our main result about perpendicular incidences is the following theorem, which will be proved at the end of this section.

Theorem 8.8.

Let QPQ\leq P be Schubert symbols for Y=SG(m,2n)Y=\operatorname{SG}(m,2n). Then ff restricts to a surjective morphism f:SPQPQf:S_{P}^{Q}\to{\mathbb{P}}_{P}^{Q} with rational general fibers.

The analogue of Theorem 8.8 with SY×(E)S\subset Y\times{\mathbb{P}}(E) defined by the condition LVL\subset V has been established in [BKT09, BR12, Rav15]. When Y=LG(n,2n)Y=\operatorname{LG}(n,2n) is a Lagrangian Grassmannian, the conditions VLV\subset L^{\perp} and LVL\subset V are equivalent, so this case of Theorem 8.8 is equivalent to [BR12, Lemma 5.2]. One new complication in our case is that SS is not a flag variety, so the map f:SPQPQf:S_{P}^{Q}\to{\mathbb{P}}_{P}^{Q} is not a projection from a Richardson variety, as studied in e.g. [BC12, KLS14, BCMP22].

Lemma 8.9.

Let QPQ\leq P be Schubert symbols for SG(m,2n)\operatorname{SG}(m,2n) and let 1km1\leq k\leq m. If qkn<pkq_{k}\leq n<p_{k}, then row kk of MPQM_{P}^{Q} is movable.

Proof.

Assume that row jj is correlated to row kk. If j<kj<k, then 2n+1pk<pj<pk2n+1-p_{k}<p_{j}<p_{k}, which holds for at most pkn1p_{k}-n-1 rows jj. If j>kj>k, then qk<qj<2n+1qkq_{k}<q_{j}<2n+1-q_{k}, which holds for at most nqkn-q_{k} rows jj. It follows that row kk is correlated to at most pkqk1p_{k}-q_{k}-1 rows. ∎

Proposition 8.10.

Let QPQ\leq P be Schubert symbols for Y=SG(m,2n)Y=\operatorname{SG}(m,2n), and let (a,b)(a,b) be a component of MPQM_{P}^{Q} with ba2b-a\geq 2. Then (a,b)(a,b) is a quadratic component if and only if no row contained in (a,b)(a,b) is movable. In this case all rows contained in (a,b)(a,b) are solvable, and MPQM_{P}^{Q} has no cuts cc with a<c<ba<c<b or  2nb<c<2na\,2n-b<c<2n-a.

Proof.

Since two rows of MPQM_{P}^{Q} can be correlated only if they belong to the same component, we may assume that (a,b)=(0,n)(a,b)=(0,n) is the only component of MPQM_{P}^{Q}. By Lemma 8.9 we may further assume that nn is a cut. By replacing MPQM_{P}^{Q} with MQPM_{Q^{\vee}}^{P^{\vee}}, if necessary, we may also assume that pm=2np_{m}=2n. Set r=pmqm1r=p_{m}-q_{m}\geq 1. If row mm of MPQM_{P}^{Q} is not movable, then since 1P1\notin P and r+1=2n+1qmQr+1=2n+1-q_{m}\notin Q, we must have qi=i<piq_{i}=i<p_{i} for 1ir1\leq i\leq r. The same conclusion holds if (0,n)(0,n) is a quadratic component of MPQM_{P}^{Q}, since in this case we have xQx\in Q or 2n+1xQ2n+1-x\in Q for all x[1,n]x\in[1,n]. Set Q=(Q{r,qm}){r+1,qm+1}Q^{\prime}=(Q\smallsetminus\{r,q_{m}\})\cup\{r+1,q_{m}+1\}, so that the shape of MPQM_{P}^{Q^{\prime}} is obtained from the shape of MPQM_{P}^{Q} by removing the leftmost entry from rows rr and mm. Then MPQM_{P}^{Q} and MPQM_{P}^{Q^{\prime}} have the same pairs of correlated rows, except that rows rr and mm are correlated in MPQM_{P}^{Q} but not in MPQM_{P}^{Q^{\prime}}. It follows that any row is movable in MPQM_{P}^{Q} if and only if it is movable in MPQM_{P}^{Q^{\prime}}, and the same holds with movable replaced by solvable. The component (0,n)(0,n) is quadratic if and only if m=nm=n. Since MPQM_{P}^{Q^{\prime}} has no empty components, m=nm=n holds if and only if all components of MPQM_{P}^{Q^{\prime}} are quadratic or lone stars. By induction on i=1m(piqi)\sum_{i=1}^{m}(p_{i}-q_{i}), this holds if and only if MPQM_{P}^{Q^{\prime}} has no movable rows, which proves the first claim. Assuming that (0,n)(0,n) is a quadratic component, it also follows by induction that all rows of MPQM_{P}^{Q} are solvable. Noting that all double-cuts of MPQM_{P}^{Q^{\prime}} belong to the set {0,r,n}\{0,r,n\}, it follows by induction that all cuts of MPQM_{P}^{Q^{\prime}} belong to {0,r,n,2nr,2n}\{0,r,n,2n-r,2n\}. The last claim follows from this since rr and 2nr2n-r are not cuts of MPQM_{P}^{Q}. ∎

Corollary 8.11.

Let QPQ\leq P be Schubert symbols, and assume that row kk in MPQM_{P}^{Q} is movable. Then PQ=QP{\mathbb{P}}_{P}^{Q}={\mathbb{P}}_{Q^{\prime}}^{P^{\prime}}, where Q=Q{qk}Q^{\prime}=Q\smallsetminus\{q_{k}\} and P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}.

Proof.

This holds because a movable row cannot be a lone star and cannot belong to a quadratic component by Proposition 8.10. ∎

Given Schubert symbols QPQ\leq P for Y=SG(m,2n)Y=\operatorname{SG}(m,2n), define the variety

M^PQ={(A,u)MPQ×EAu},\widehat{M}_{P}^{Q}=\{(A,u)\in M_{P}^{Q}\times E\mid A\perp u\}\,,

where AuA\perp u indicates that uu is perpendicular to all rows of AA. The variety M^PQ\widehat{M}_{P}^{Q} is irreducible with dim(M^PQ)=dim(MPQ)+2nm\dim(\widehat{M}_{P}^{Q})=\dim(M_{P}^{Q})+2n-m.

Proposition 8.12.

Let QPQ\leq P be Schubert symbols for Y=SG(m,2n)Y=\operatorname{SG}(m,2n) and assume that the kk-th row of MPQM_{P}^{Q} is movable. Set Q=Q{qk}Q^{\prime}=Q\smallsetminus\{q_{k}\}, P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}, and r=dim(MPQ)dim(MPQ)>0r=\dim(M_{P}^{Q})-\dim(M_{P^{\prime}}^{Q^{\prime}})>0. Let π:M^PQM^PQ\pi:\widehat{M}_{P}^{Q}\to\widehat{M}_{P^{\prime}}^{Q^{\prime}} be the projection that forgets row kk in its first argument. There exists a morphism ϕ:M^PQr1\phi:\widehat{M}_{P}^{Q}\to{\mathbb{C}}^{r-1}, given by projection to r1r-1 of the entries of the kk-th row of MPQM_{P}^{Q}, such that the morphism π×ϕ:M^PQM^PQ×r1\pi\times\phi:\widehat{M}_{P}^{Q}\to\widehat{M}_{P^{\prime}}^{Q^{\prime}}\times{\mathbb{C}}^{r-1} is birational.

Proof.

By Corollary 8.6 we can choose AMPQA\in M_{P}^{Q} such that the submatrix A[k]A[k] of constraints on row kk has linearly independent rows. The number of rows in A[k]A[k] is equal to pkqkrp_{k}-q_{k}-r by Remark 8.4. We can therefore choose a vector

(u2n+1pk,,u2n+1qk)pkqk+1(u_{2n+1-p_{k}},\dots,u_{2n+1-q_{k}})\in{\mathbb{C}}^{p_{k}-q_{k}+1}

which is perpendicular to the kk-th row of AA and not in the row span of A[k]A[k]. Using that ai,qi=1a_{i,q_{i}}=1 and ai,pi0a_{i,p_{i}}\neq 0 for each row ii, we can extend this vector to uEu\in E, such that uu is perpendicular to all rows of AA. Let AMPQA^{\prime}\in M_{P^{\prime}}^{Q^{\prime}} be the result of removing the kk-th row from AA. Then the fiber of π:M^PQM^PQ\pi:\widehat{M}_{P}^{Q}\to\widehat{M}_{P^{\prime}}^{Q^{\prime}} over (A,u)(A^{\prime},u) contains (A,u)(A,u), so it is not empty. This fiber can be identified with the set of vectors (1,vqk+1,,vpk)(1,v_{q_{k}+1},\dots,v_{p_{k}}), with vpk0v_{p_{k}}\neq 0, which are perpendicular to both A[k]A[k] and (u2n+1pk,,u2n+1qk)(u_{2n+1-p_{k}},\dots,u_{2n+1-q_{k}}). Therefore the fiber has dimension r1=dim(M^PQ)dim(M^PQ)r-1=\dim(\widehat{M}_{P}^{Q})-\dim(\widehat{M}_{P^{\prime}}^{Q^{\prime}}). Since M^PQ\widehat{M}_{P^{\prime}}^{Q^{\prime}} is irreducible, this implies that π:M^PQM^PQ\pi:\widehat{M}_{P}^{Q}\to\widehat{M}_{P^{\prime}}^{Q^{\prime}} is dominant. It also follows that (A,u)(A,u) is determined by (A,u)(A^{\prime},u) together with some collection of r1r-1 entries ak,ja_{k,j} from the kk-th row of AA. Since this holds whenever a particular minor in (A,u)(A^{\prime},u) is non-zero, we deduce that (A,u)(A,u) is determined by (A,u)(A^{\prime},u) and the same r1r-1 entries from row kk, for all points (A,u)(A,u) in a dense open subset of M^PQ\widehat{M}_{P}^{Q}. The result follows from this. ∎

Assume that c[1,n1]c\in[1,n-1] is a double-cut of MPQM_{P}^{Q}, and set Q=Q[c+1,2nc]Q^{\prime}=Q\cap[c+1,2n-c], P=P[c+1,2nc]P^{\prime}=P\cap[c+1,2n-c], Q′′=QQQ^{\prime\prime}=Q\smallsetminus Q^{\prime}, and P′′=PPP^{\prime\prime}=P\smallsetminus P^{\prime}. Set m=#Pm^{\prime}=\#P^{\prime}, Y=SG(m,2n)Y^{\prime}=\operatorname{SG}(m^{\prime},2n), m′′=#P′′m^{\prime\prime}=\#P^{\prime\prime}, Y′′=SG(m′′,2n)Y^{\prime\prime}=\operatorname{SG}(m^{\prime\prime},2n), and let SY×(E)S^{\prime}\subset Y^{\prime}\times{\mathbb{P}}(E) and S′′Y′′×(E)S^{\prime\prime}\subset Y^{\prime\prime}\times{\mathbb{P}}(E) be the corresponding perpendicular incidence varieties, with projections f:S(E)f^{\prime}:S^{\prime}\to{\mathbb{P}}(E) and f′′:S′′(E)f^{\prime\prime}:S^{\prime\prime}\to{\mathbb{P}}(E). Since we have PQ=PQP′′Q′′{\mathbb{P}}_{P}^{Q}={\mathbb{P}}_{P^{\prime}}^{Q^{\prime}}\cap{\mathbb{P}}_{P^{\prime\prime}}^{Q^{\prime\prime}}, the following lemma shows that Theorem 8.8 can be proved under the assumption that MPQM_{P}^{Q} has only one component (0,n)(0,n).

Lemma 8.13.

The map (V,V′′)VV′′(V^{\prime},V^{\prime\prime})\mapsto V^{\prime}\oplus V^{\prime\prime} is an isomorphism YPQ×Y′′P′′Q′′YPQ{Y^{\prime}}_{P^{\prime}}^{Q^{\prime}}\times{Y^{\prime\prime}}_{P^{\prime\prime}}^{Q^{\prime\prime}}\cong Y_{P}^{Q}, and we have f(SPQ)=f(SPQ)f′′(S′′P′′Q′′)f(S_{P}^{Q})=f^{\prime}({S^{\prime}}_{P^{\prime}}^{Q^{\prime}})\cap f^{\prime\prime}({S^{\prime\prime}}_{P^{\prime\prime}}^{Q^{\prime\prime}}). For all points Lf(SPQ)L\in f(S_{P}^{Q}), the fiber of f:SPQf(SPQ)f:S_{P}^{Q}\to f(S_{P}^{Q}) over LL is the product of the fibers of f:SPQf(SPQ)f^{\prime}:{S^{\prime}}_{P^{\prime}}^{Q^{\prime}}\to f^{\prime}({S^{\prime}}_{P^{\prime}}^{Q^{\prime}}) and f′′:S′′P′′Q′′f′′(S′′P′′Q′′)f^{\prime\prime}:{S^{\prime\prime}}_{P^{\prime\prime}}^{Q^{\prime\prime}}\to f^{\prime\prime}({S^{\prime\prime}}_{P^{\prime\prime}}^{Q^{\prime\prime}}) over LL.

Proof.

Set E=E[c+1,2nc]E^{\prime}=E_{[c+1,2n-c]} and E′′=E[1,c][2nc+1,2n]E^{\prime\prime}=E_{[1,c]\cup[2n-c+1,2n]}. Using that VEV^{\prime}\subset E^{\prime} holds for all VYPQV^{\prime}\in{Y^{\prime}}_{P^{\prime}}^{Q^{\prime}}, and V′′E′′V^{\prime\prime}\subset E^{\prime\prime} holds for all V′′Y′′P′′Q′′V^{\prime\prime}\in{Y^{\prime\prime}}_{P^{\prime\prime}}^{Q^{\prime\prime}}, it follows that the map YPQ×Y′′P′′Q′′YPQ{Y^{\prime}}_{P^{\prime}}^{Q^{\prime}}\times{Y^{\prime\prime}}_{P^{\prime\prime}}^{Q^{\prime\prime}}\to Y_{P}^{Q} is well defined. The inverse map V(VE,VE′′)V\mapsto(V\cap E^{\prime},V\cap E^{\prime\prime}) is well defined because dim(VE)=m\dim(V\cap E^{\prime})=m^{\prime}, dim(VE[1,c])=#(P[1,c])\dim(V\cap E_{[1,c]})=\#(P\cap[1,c]), and dim(VE[2nc+1,2n])=#(P[2nc+1,2n])\dim(V\cap E_{[2n-c+1,2n]})=\#(P\cap[2n-c+1,2n]) holds for all VYPQV\in Y_{P}^{Q}. This proves the first claim. The remaining claims follow because VV′′LV^{\prime}\oplus V^{\prime\prime}\subset L^{\perp} is equivalent to VLV^{\prime}\subset L^{\perp} and V′′LV^{\prime\prime}\subset L^{\perp}. ∎

Proof of Theorem 8.8.

We may assume that (0,n)(0,n) is the only component of MPQM_{P}^{Q} by Lemma 8.13. If MPQM_{P}^{Q} has no movable rows, then Proposition 8.10 implies that m=nm=n, so the claim follows from [BR12, Lemma 5.2]. Otherwise MPQM_{P}^{Q} has at least one movable row, say row kk. Set Y=SG(m1,2n)Y^{\prime}=\operatorname{SG}(m-1,2n), Q=Q{qk}Q^{\prime}=Q\smallsetminus\{q_{k}\}, P=P{pk}P^{\prime}=P\smallsetminus\{p_{k}\}, and r=dim(MPQ)dim(MPQ)r=\dim(M_{P}^{Q})-\dim(M_{P^{\prime}}^{Q^{\prime}}). Let SY×(E)S\subset Y\times{\mathbb{P}}(E) and SY×(E)S^{\prime}\subset Y^{\prime}\times{\mathbb{P}}(E) be the perpendicular incidence varieties, with projections f:S(E)f:S\to{\mathbb{P}}(E) and f:S(E)f^{\prime}:S^{\prime}\to{\mathbb{P}}(E). It follows from Proposition 8.12 that f(SPQ)=f(SPQ)f(S_{P}^{Q})=f^{\prime}({S^{\prime}}_{P^{\prime}}^{Q^{\prime}}), and for all points LL in a dense open subset of f(SPQ)f(S_{P}^{Q}), the fiber f1(L)SPQf^{-1}(L)\cap S_{P}^{Q} is birational to (f1(L)SPQ)×r1({f^{\prime}}^{-1}(L)\cap{S^{\prime}}_{P^{\prime}}^{Q^{\prime}})\times{\mathbb{C}}^{r-1}. The result therefore follows by induction on mm. ∎

9. Gromov-Witten invariants of Pieri type

9.1. Incidences of projected Richardson varieties

Let X=LG(n,2n)X=\operatorname{LG}(n,2n) be a Lagrangian Grassmannian and Y=SG(m,2n)Y=\operatorname{SG}(m,2n) a symplectic Grassmannian. Set Z=SF(m,n;2n)Z=\operatorname{SF}(m,n;2n) and let p:ZXp:Z\to X and q:ZYq:Z\to Y be the projections. We also set X^=SF(1,n;2n)\widehat{X}=\operatorname{SF}(1,n;2n), with projections η:X^2n1\eta:\widehat{X}\to{\mathbb{P}}^{2n-1} and π:X^X\pi:\widehat{X}\to X. Our computation of Gromov-Witten invariants of XX is based on the following result.

Theorem 9.1.

Let QPQ\leq P be Schubert symbols for Y=SG(m,2n)Y=\operatorname{SG}(m,2n), and let XPQ=p(q1(YPQ))X_{P}^{Q}=p(q^{-1}(Y_{P}^{Q})) be the corresponding projected Richardson variety in X=LG(n,2n)X=\operatorname{LG}(n,2n). Then η\eta restricts to a cohomologically trivial morphism η:π1(XPQ)PQ\eta:\pi^{-1}(X_{P}^{Q})\to{\mathbb{P}}_{P}^{Q}.

Proof.

Define Z^=Z×XX^={(K,V,L)Y×X×2n1KVL}\widehat{Z}=Z\times_{X}\widehat{X}=\{(K,V,L)\in Y\times X\times{\mathbb{P}}^{2n-1}\mid K\subset V\supset L\} and S={(K,L)Y×2n1KL}S=\{(K,L)\in Y\times{\mathbb{P}}^{2n-1}\mid K\subset L^{\perp}\}. Consider the following commutative diagram, where all morphisms are the natural projections.

S\textstyle{S\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}g\scriptstyle{g}Z^\textstyle{\widehat{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p^\scriptstyle{\widehat{p}}τ\scriptstyle{\tau}σ\scriptstyle{\sigma}X^\textstyle{\widehat{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta\ \ \ }π\scriptstyle{\pi}2n1\textstyle{{\mathbb{P}}^{2n-1}}Z\textstyle{Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}q\scriptstyle{q}X\textstyle{X}Y\textstyle{Y}

Since the morphisms of this diagram are equivariant for the action of Sp(2n)\operatorname{Sp}(2n), and all targets other than SS are flag varieties of Sp(2n)\operatorname{Sp}(2n), it follows that all morphisms other than σ\sigma are locally trivial fibrations with non-singular fibers [BCMP13, Prop. 2.3]. Let ZPQZ_{P}^{Q}, Z^PQ\widehat{Z}_{P}^{Q}, and SPQS_{P}^{Q} be the inverse images of YPQY_{P}^{Q} in ZZ, Z^\widehat{Z}, and SS, respectively, and set X^PQ=π1(XPQ)\widehat{X}_{P}^{Q}=\pi^{-1}(X_{P}^{Q}). Since YPQY_{P}^{Q} and XPQX_{P}^{Q} have rational singularities [Bri02, BC12, KLS14], it follows that ZPQZ_{P}^{Q}, Z^PQ\widehat{Z}_{P}^{Q}, SPQS_{P}^{Q}, and X^PQ\widehat{X}_{P}^{Q} have rational singularities as well.

All fibers of σ\sigma are rational. In fact, for (K,L)S(K,L)\in S we have σ1(K,L)=LG(m,(K+L)/(K+L))\sigma^{-1}(K,L)=\operatorname{LG}(m^{\prime},(K+L)^{\perp}/(K+L)), where m=ndim(K+L)m^{\prime}=n-\dim(K+L). Since Z^PQ=σ1(SPQ)\widehat{Z}_{P}^{Q}=\sigma^{-1}(S_{P}^{Q}), this implies that σ:Z^PQSPQ\sigma:\widehat{Z}_{P}^{Q}\to S_{P}^{Q} is cohomologically trivial [BM11, Thm. 3.1]. Since f:SPQf(SPQ)f:S_{P}^{Q}\to f(S_{P}^{Q}) is cohomologically trivial by Theorem 8.8, it follows that ηp^=fσ:Z^PQf(SPQ)\eta\widehat{p}=f\sigma:\widehat{Z}_{P}^{Q}\to f(S_{P}^{Q}) is cohomologically trivial [BCMP18b, Lemma 2.4].

Using that the outer rectangle and the right square of the following diagram are fiber squares, it follows that p^:Z^PQX^PQ\widehat{p}:\widehat{Z}_{P}^{Q}\to\widehat{X}_{P}^{Q} is the base extension of p:ZPQXPQp:Z_{P}^{Q}\to X_{P}^{Q} along π\pi.

Z^PQ\textstyle{\widehat{Z}_{P}^{Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p^\scriptstyle{\widehat{p}}τ\scriptstyle{\tau}X^PQ\textstyle{\widehat{X}_{P}^{Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subset}π\scriptstyle{\pi}X^\textstyle{\widehat{X}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}ZPQ\textstyle{Z_{P}^{Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}XPQ\textstyle{X_{P}^{Q}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\subset}X\textstyle{X}

This implies that p^:Z^PQX^PQ\widehat{p}:\widehat{Z}_{P}^{Q}\to\widehat{X}_{P}^{Q} is cohomologically trivial, for example because its general fibers are Richardson varieties by [BCMP22, Cor. 2.11]. It follows that η:X^PQf(SPQ)\eta:\widehat{X}_{P}^{Q}\to f(S_{P}^{Q}) is cohomologically trivial. In particular, η(X^PQ)=f(SPQ)\eta(\widehat{X}_{P}^{Q})=f(S_{P}^{Q}) is a complete intersection of the required form. This completes the proof. ∎

9.2. Gromov-Witten invariants of Pieri type

The Schubert varieties in X=LG(n,2n)X=\operatorname{LG}(n,2n) are indexed by shapes λ𝒫X{\lambda}\subset{\mathcal{P}}_{X}. The Schubert symbol PP corresponding to λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} is obtained as follows. The border of λ{\lambda} forms a path from the upper-right corner of 𝒫X{\mathcal{P}}_{X} to the diagonal. Number the steps of this path from 11 to nn, starting from the upper-right corner. Then PP consists of the integers ii for which the ii-th step is horizontal, and the integers 2n+1i2n+1-i for which the ii-th step is vertical. By observing that the map from shapes to Schubert symbols is compatible with the Bruhat order, this description of the Schubert varieties in XX follows from e.g. [BS16, Lemma 2.9].

Example 9.2.

Let X=LG(7,14)X=\operatorname{LG}(7,14) and λ=(7,4,2,1){\lambda}=(7,4,2,1). Then λ{\lambda} corresponds to the Schubert symbol P={2,3,5,8,9,11,14}P=\{2,3,5,8,9,11,14\}.

Recall that a classical shape λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} is identified with the quantum shape I([Xλ])=λI(1)I([X^{\lambda}])={\lambda}\cup I(1) in 𝒫^X\widehat{\mathcal{P}}_{X}, and λ[d]{\lambda}[d] is the result of shifting this shape by dd diagonal steps for each dd\in{\mathbb{Z}}.

Let λ,μ𝒫X{\lambda},\mu\subset{\mathcal{P}}_{X} be shapes and d0d\geq 0 a degree. Then Γd(Xλ,Xμ)\Gamma_{d}(X_{\lambda},X^{\mu})\neq\emptyset if and only if μλ[d]\mu\subset{\lambda}[d]. When this holds, we let λ[d]/μ{\lambda}[d]/\mu be the skew shape in 𝒫^X\widehat{\mathcal{P}}_{X} of boxes in λ[d]{\lambda}[d] that are not contained in μ\mu. Let R(λ[d]/μ)R({\lambda}[d]/\mu) denote the size of a maximal rim in this skew shape, and let N(λ[d]/μ)N({\lambda}[d]/\mu) be the number of connected components of λ[d]/μ{\lambda}[d]/\mu that are disjoint from both of the diagonals in 𝒫^X\widehat{\mathcal{P}}_{X}. The following result interprets Theorem 9.1 when the projected Richardson variety in XX is a curve neighborhood Γd(Xλ,Xμ)\Gamma_{d}(X_{\lambda},X^{\mu}).

Corollary 9.3.

Let X=LG(n,2n)X=\operatorname{LG}(n,2n) and let λ,μ𝒫X{\lambda},\mu\subset{\mathcal{P}}_{X} be shapes such thatΓd(Xλ,Xμ)\Gamma_{d}(X_{\lambda},X^{\mu})\neq\emptyset. Set θ=λ[d]/μ\theta={\lambda}[d]/\mu. If R(θ)=n+1R(\theta)=n+1, then η(π1(Γd(Xλ,Xμ)))=2n1\eta(\pi^{-1}(\Gamma_{d}(X_{\lambda},X^{\mu})))={\mathbb{P}}^{2n-1}. Otherwise η(π1(Γd(Xλ,Xμ)))\eta(\pi^{-1}(\Gamma_{d}(X_{\lambda},X^{\mu}))) is a complete intersection in 2n1{\mathbb{P}}^{2n-1} ofdimension n+R(θ)1n+R(\theta)-1, defined by N(θ)N(\theta) quadratic equations and nR(θ)N(θ)n-R(\theta)-N(\theta) linear equations. Moreover, the restricted map η:π1(Γd(Xλ,Xμ))η(π1(Γd(Xλ,Xμ)))\eta:\pi^{-1}(\Gamma_{d}(X_{\lambda},X^{\mu}))\to\eta(\pi^{-1}(\Gamma_{d}(X_{\lambda},X^{\mu}))) is cohomologically trivial.

Proof.

Write Xλ=XPX_{\lambda}=X_{P} and Xμ=XQX^{\mu}=X^{Q}, where P={p1<<pn}P=\{p_{1}<\dots<p_{n}\} and Q={q1<<qn}Q=\{q_{1}<\dots<q_{n}\} are the Schubert symbols corresponding to λ{\lambda} and μ\mu. Then q(p1(Xλ))=YPq(p^{-1}(X_{\lambda}))=Y_{P^{\prime}} and q(p1(Xμ))=YQq(p^{-1}(X^{\mu}))=Y^{Q^{\prime}}, where P={pd+1,,pn}P^{\prime}=\{p_{d+1},\dots,p_{n}\} and Q={q1,,qnd}Q^{\prime}=\{q_{1},\dots,q_{n-d}\}, so we have Γd(Xλ,Xμ)=XPQ\Gamma_{d}(X_{\lambda},X^{\mu})=X_{P^{\prime}}^{Q^{\prime}}. Theorem 9.1 shows that

η:π1(Γd(Xλ,Xμ))PQ\eta:\pi^{-1}(\Gamma_{d}(X_{\lambda},X^{\mu}))\to{\mathbb{P}}_{P^{\prime}}^{Q^{\prime}}

is cohomologically trivial. It remains to show that PQ{\mathbb{P}}_{P^{\prime}}^{Q^{\prime}} is a complete intersection defined by the expected equations. If R(θ)=n+1R(\theta)=n+1, then we can make dd and λ{\lambda} smaller and μ\mu larger until we obtain R(θ)=nR(\theta)=n and N(θ)=0N(\theta)=0. This will make Γd(Xλ,Xμ)\Gamma_{d}(X_{\lambda},X^{\mu}) smaller, while the corollary still asserts that η(π1(Γd(Xλ,Xμ)))=2n1\eta(\pi^{-1}(\Gamma_{d}(X_{\lambda},X^{\mu})))={\mathbb{P}}^{2n-1}. We may therefore assume that R(θ)nR(\theta)\leq n, which implies that the borders of μ\mu and λ[d]{\lambda}[d] meet somewhere. In particular, μ\mu has at least dd vertical steps, and λ[d]{\lambda}[d] has at least dd horizontal steps.

Let (μ)\ell(\mu) be the number of vertical steps of μ\mu. Then μ\mu has n(μ)n-\ell(\mu) horizontal steps. Notice that, if 1kn(μ)1\leq k\leq n-\ell(\mu), then qkq_{k} is the step number of the kk-th horizontal step of μ\mu, while if n(μ)<knn-\ell(\mu)<k\leq n, then 2n+1qk2n+1-q_{k} is the step number of the (n+1k)(n+1-k)-th vertical step of μ\mu. Since the starting point of μ\mu is dd boxes north-west of the starting point of λ{\lambda}, and the endpoint of μ\mu is north-west of the endpoint of λ[d]{\lambda}[d], we have (μ)(λ)+d\ell(\mu)\leq\ell({\lambda})+d. The condition R(θ)nR(\theta)\leq n implies that (μ)d\ell(\mu)\geq d and (λ)nd\ell({\lambda})\leq n-d.

Write P={p1,,pnd}P^{\prime}=\{p^{\prime}_{1},\dots,p^{\prime}_{n-d}\} and Q={q1,,qnd}Q^{\prime}=\{q^{\prime}_{1},\dots,q^{\prime}_{n-d}\}, where pi=pi+dp^{\prime}_{i}=p_{i+d} and qi=qiq^{\prime}_{i}=q_{i}. It follows from the construction of PP and QQ from λ{\lambda} and μ\mu that the rows in MPQM_{P^{\prime}}^{Q^{\prime}} are in bijection with some of the steps of λ[d]{\lambda}[d], and also with some of the steps of μ\mu. We will explain how to obtain the resulting bijection between steps of λ[d]{\lambda}[d] and μ\mu, and how to obtain the rows of MPQM_{P^{\prime}}^{Q^{\prime}} from the corresponding pairs of steps in λ[d]{\lambda}[d] and μ\mu. This will include drawing connectors between the paired steps of λ[d]{\lambda}[d] and μ\mu, see Example 9.4.

Consider row kk of MPQM_{P^{\prime}}^{Q^{\prime}}. Assume first that d+kn(λ)d+k\leq n-\ell({\lambda}). Then kn(μ)k\leq n-\ell(\mu), qkq^{\prime}_{k} is the step number of the kk-th horizontal step of μ\mu, and pkp^{\prime}_{k} is the step number of the (d+k)(d+k)-th horizontal step of λ[d]{\lambda}[d]. These steps of μ\mu and λ[d]{\lambda}[d] are in the same column, and pkqkp^{\prime}_{k}-q^{\prime}_{k} is the distance (number of boxes) between the two steps. We draw a vertical line segment (connector) from the kk-th horizontal step of μ\mu to the (d+k)(d+k)-th horizontal step of λ[d]{\lambda}[d].

Assume next that k>n(μ)k>n-\ell(\mu). Then d+k>n(λ)d+k>n-\ell({\lambda}), 2n+1qk2n+1-q^{\prime}_{k} is the step number of the (n+1k)(n+1-k)-th vertical step of μ\mu, and 2n+1pk2n+1-p^{\prime}_{k} is the step number of the (nd+1k)(n-d+1-k)-th vertical step of λ[d]{\lambda}[d]. These steps of μ\mu and λ[d]{\lambda}[d] are in the same row, and pkqkp^{\prime}_{k}-q^{\prime}_{k} is the distance between the two steps. We draw a horizontal line segment (connector) from the (n+1k)(n+1-k)-th vertical step of μ\mu to the (nd+1k)(n-d+1-k)-th vertical step of λ[d]{\lambda}[d].

We finally assume that d+k>n(λ)d+k>n-\ell({\lambda}) and kn(μ)k\leq n-\ell(\mu). Then qkq^{\prime}_{k} is the step number of the kk-th horizontal step of μ\mu, and 2n+1pk2n+1-p^{\prime}_{k} is the step number of the (nd+1k)(n-d+1-k)-th vertical step of λ[d]{\lambda}[d]. In this case, if we draw a vertical line segment going down from the horizontal step of μ\mu, and a horizontal line segment going to the left from the vertical step of λ[d]{\lambda}[d], then these line segments meet in a diagonal box of 𝒫^X\widehat{\mathcal{P}}_{X}. In this case the connector representing row kk of MPQM_{P^{\prime}}^{Q^{\prime}} is obtained by connecting the two line segments, and pkqkp^{\prime}_{k}-q^{\prime}_{k} is the number of boxes this connector passes through.

It follows from this description that the lone stars of MPQM_{P^{\prime}}^{Q^{\prime}} correspond to steps shared by μ\mu and λ[d]{\lambda}[d], and there are exactly nR(θ)N(θ)n-R(\theta)-N(\theta) such steps. It also follows that, if μ\mu and λ[d]{\lambda}[d] meet after cc steps, then cc is a double-cut of MPQM_{P^{\prime}}^{Q^{\prime}}. The only other cuts of MPQM_{P^{\prime}}^{Q^{\prime}} are the integers in the set [0,q11][pnd,2n][0,q^{\prime}_{1}-1]\cup[p^{\prime}_{n-d},2n]. We deduce that any component of θ\theta that is disjoint from both diagonals in 𝒫^X\widehat{\mathcal{P}}_{X} produces a quadratic component of MPQM_{P^{\prime}}^{Q^{\prime}}. If a component of θ\theta meets the SW diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}, then the corresponding component of MPQM_{P^{\prime}}^{Q^{\prime}} contains a row that crosses the middle, so this component is not quadratic. Finally, if a component of θ\theta intersects the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}, then the corresponding component (a,b)(a,b) of MPQM_{P^{\prime}}^{Q^{\prime}} has fewer than bab-a rows, so it is not quadratic. It follows that MPQM_{P^{\prime}}^{Q^{\prime}} has exactly N(θ)N(\theta) quadratic components. ∎

Example 9.4.

Let X=LG(12,24)X=\operatorname{LG}(12,24), μ=(12,11,9,6,5)\mu=(12,11,9,6,5), and λ=(11,8,6,3,1){\lambda}=(11,8,6,3,1), and d=2d=2. Then θ=λ[d]/μ\theta={\lambda}[d]/\mu is the skew shape between the two thick black paths in the following picture. The connectors of θ\theta are colored pink. We have R(θ)=10R(\theta)=10 and N(θ)=1N(\theta)=1.

The shapes μ\mu and λ{\lambda} correspond to Q={3,5,6,9,10,11,12,17,18,21,23,24}Q=\{3,5,6,9,10,11,12,17,18,21,23,24\} and P={1,3,4,6,8,9,11,13,15,18,20,23}P=\{1,3,4,6,8,9,11,13,15,18,20,23\}. We obtain Γd(Xλ,Xμ)=XPQ\Gamma_{d}(X_{\lambda},X^{\mu})=X_{P^{\prime}}^{Q^{\prime}}, where QQ^{\prime} and PP^{\prime} are determined by the shape of MPQM_{P^{\prime}}^{Q^{\prime}}:

[]\left[\begin{array}[]{c|c|cc|cccc|c|cccccc|c|cccc|ccc|c}\cdot&\cdot&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star&\cdot&\cdot&\cdot&\cdot\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\star&\star&\star&\cdot\\ \end{array}\right]\vskip 3.0pt plus 1.0pt minus 1.0pt

This diagram has 12R(θ)N(θ)=112-R(\theta)-N(\theta)=1 lone stars, and N(θ)=1N(\theta)=1 quadratic components. The unique quadratic component is (4,8)(4,8). The rows of MPQM_{P^{\prime}}^{Q^{\prime}} correspond to the connectors in θ\theta, see the proof of Corollary 9.3. Rows 6, 7, and 10 are movable.

Consider a complete intersection Ya+bY\subset{\mathbb{P}}^{a+b} of dimension bb, defined by aa quadratic equations. The KK-theory class of YY is [𝒪Y]=(2HH2)a[{\mathcal{O}}_{Y}]=(2H-H^{2})^{a}, where HK(a+b)H\in K({\mathbb{P}}^{a+b}) is the hyperplane class. It follows that the sheaf Euler characteristic of YY is given by χ(𝒪Y)=h(a,b)\chi({\mathcal{O}}_{Y})=h(a,b), where h:×h:{\mathbb{N}}\times{\mathbb{Z}}\to{\mathbb{Z}} is defined by [BR12, §4]

(7) h(a,b)=j=0b(1)j 2aj(aj).h(a,b)\,=\,\sum_{j=0}^{b}(-1)^{j}\,2^{a-j}\binom{a}{j}\,.

Here we set (aj)=0\binom{a}{j}=0 unless 0ja0\leq j\leq a. Notice that for bab\geq a we have h(a,b)=(21)a=1h(a,b)=(2-1)^{a}=1, and h(a,b)=0h(a,b)=0 for b<0b<0. We record for later the identity

(8) h(a+1,b)+h(a,b1)=2h(a,b),h(a+1,b)+h(a,b-1)=2\,h(a,b)\,,

which follows from the binomial formula. The following result is the quantum generalization of [BR12, Prop. 5.3].

Corollary 9.5.

The KK-theoretic Gromov-Witten invariants of X=LG(n,2n)X=\operatorname{LG}(n,2n) of Pieri type are given by Id(𝒪λ,𝒪μ,𝒪p)=h(N(θ),R(θ)p)I_{d}({\mathcal{O}}_{\lambda},{\mathcal{O}}^{\mu},{\mathcal{O}}^{p})=h(N(\theta),R(\theta)-p), with θ=λ[d]/μ\theta={\lambda}[d]/\mu.

Proof.

Let L2n1L\subset{\mathbb{P}}^{2n-1} be the BB^{-}-stable linear subspace of dimension npn-p. Then π:η1(L)Xp\pi:\eta^{-1}(L)\to X^{p} is a birational isomorphism, so 𝒪p=π(η([𝒪L])){\mathcal{O}}^{p}=\pi_{*}(\eta^{*}([{\mathcal{O}}_{L}])). Using [BCMP18b, Thm. 4.1], the projection formula, and Corollary 9.3, we obtain

Id(𝒪λ,𝒪μ,𝒪p)=χX([𝒪Γd(Xλ,Xμ)]πη[𝒪L])=χ2n1([𝒪η(π1(Γd(Xλ,Xμ)))][𝒪L]).\begin{split}I_{d}({\mathcal{O}}_{\lambda},{\mathcal{O}}^{\mu},{\mathcal{O}}^{p})\ &=\ \chi_{{}_{X}}([{\mathcal{O}}_{\Gamma_{d}(X_{\lambda},X^{\mu})}]\cdot\pi_{*}\eta^{*}[{\mathcal{O}}_{L}])\\ &=\ \chi_{{}_{{\mathbb{P}}^{2n-1}}}([{\mathcal{O}}_{\eta(\pi^{-1}(\Gamma_{d}(X_{\lambda},X^{\mu})))}]\cdot[{\mathcal{O}}_{L}])\,.\end{split}

If R(θ)nR(\theta)\leq n, then this is the sheaf Euler characteristic of a complete intersection of dimension R(θ)pR(\theta)-p defined by N(θ)N(\theta) quadratic equations as well as linear equations in 2n1{\mathbb{P}}^{2n-1}, which proves the result. Finally, if R(θ)=n+1R(\theta)=n+1, then Id(𝒪λ,𝒪μ,𝒪p)=h(N(θ),R(θ)p)=1I_{d}({\mathcal{O}}_{\lambda},{\mathcal{O}}^{\mu},{\mathcal{O}}^{p})=h(N(\theta),R(\theta)-p)=1, so the corollary also holds in this case. ∎

9.3. Quantum multiplication by special Schubert classes

We finish this section by proving some preliminary formulas for quantum products with special Schubert classes. We start with the undeformed product 𝒪p𝒪μ{\mathcal{O}}^{p}\odot{\mathcal{O}}^{\mu}, see Section 2.5 or [BCMP18a, §2.5].

Given a skew shape θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X}, let θθ\theta^{\circ}\subset\theta be the skew shape obtained by removing all maximal boxes from θ\theta that do not belong to the north-east diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}.

For pp\in{\mathbb{Z}} we then define

(9) (θ,p)=θφθ(1)|θ||φ|h(N(φ),R(φ)p),{\mathcal{H}}(\theta,p)\,=\,\sum_{\theta^{\circ}\subset\varphi\subset\theta}(-1)^{|\theta|-|\varphi|}\,h(N(\varphi),R(\varphi)-p)\,,

the sum over all subsets φ\varphi of θ\theta that contain θ\theta^{\circ}.

Proposition 9.6.

For any shape μ𝒫^X\mu\subset\widehat{\mathcal{P}}_{X} and 1pn1\leq p\leq n, we have

𝒪p𝒪μ=ν(ν/μ,p)𝒪ν{\mathcal{O}}^{p}\odot{\mathcal{O}}^{\mu}\,=\,\sum_{\nu}{\mathcal{H}}(\nu/\mu,p)\,{\mathcal{O}}^{\nu}

in QK(X)q\operatorname{QK}(X)_{q}, where the sum is over all shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing μ\mu.

Proof.

Given a shape ν𝒫X\nu\subset{\mathcal{P}}_{X} we let νK(X){\mathcal{I}}_{\nu}\in K(X) denote the dual element of 𝒪ν{\mathcal{O}}^{\nu}, defined by χX(ν𝒪λ)=δν,λ\chi_{{}_{X}}({\mathcal{I}}_{\nu}\cdot{\mathcal{O}}^{\lambda})=\delta_{\nu,{\lambda}} for all shapes λ𝒫X{\lambda}\subset{\mathcal{P}}_{X}. We have [BR12, Lemma 3.5]

ν=ν/κ rook strip(1)|ν/κ|𝒪κ,{\mathcal{I}}_{\nu}=\sum_{\nu/{\kappa}\text{ rook strip}}(-1)^{|\nu/{\kappa}|}\,{\mathcal{O}}_{\kappa}\,,

where the sum is over all shapes κν{\kappa}\subset\nu such that ν/κ\nu/{\kappa} is a rook strip, that is, ν/κ\nu/{\kappa} has at most one box in each row and column. Assume that μ𝒫X\mu\subset{\mathcal{P}}_{X} is a classical shape. By Corollary 9.5 and equation (9) we have

Id(𝒪p,𝒪μ,ν)=ν/κ rook strip(1)|ν/κ|Id(𝒪p,𝒪μ,𝒪κ)=ν/κ rook strip(1)|ν/κ|h(N(κ[d]/μ),R(κ[d]/μ)p)=(ν[d]/μ,p),\begin{split}I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{\mu},{\mathcal{I}}_{\nu})&=\sum_{\nu/{\kappa}\text{ rook strip}}(-1)^{|\nu/{\kappa}|}\,I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{\mu},{\mathcal{O}}_{\kappa})\\ &=\sum_{\nu/{\kappa}\text{ rook strip}}(-1)^{|\nu/{\kappa}|}\,h\big{(}N({\kappa}[d]/\mu),R({\kappa}[d]/\mu)-p\big{)}\\ &=\,{\mathcal{H}}(\nu[d]/\mu,p)\,,\end{split}

where the sums are over all shapes κ𝒫X{\kappa}\subset{\mathcal{P}}_{X} such that μκ[d]ν[d]\mu\subset{\kappa}[d]\subset\nu[d] and ν/κ\nu/{\kappa} is a rook strip. By the definition of the undeformed product [BCMP18a, §2.5], we obtain

𝒪p𝒪μ=ν,dId(𝒪p,𝒪μ,ν)qd𝒪ν=ν,d(ν[d]/μ,p)𝒪ν[d],{\mathcal{O}}^{p}\odot{\mathcal{O}}^{\mu}=\sum_{\nu,d}I_{d}({\mathcal{O}}^{p},{\mathcal{O}}^{\mu},{\mathcal{I}}_{\nu})\,q^{d}\,{\mathcal{O}}^{\nu}=\sum_{\nu,d}{\mathcal{H}}(\nu[d]/\mu,p)\,{\mathcal{O}}^{\nu[d]}\,,

with the sum over ν𝒫X\nu\subset{\mathcal{P}}_{X} and d0d\geq 0 such that μν[d]\mu\subset\nu[d]. The proposition is equivalent to this identity. ∎

We next consider the associative quantum product 𝒪p𝒪μ{\mathcal{O}}^{p}\star{\mathcal{O}}^{\mu}. Given a skew shape θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X}, let θθ\theta^{-}\subset\theta be the skew shape obtained by removing the maximal box on the north-east diagonal, if any, as well as any boxes in the same row that do not have a box immediately below them in θ\theta.

For pp\in{\mathbb{Z}} we then define

(10) 𝒩^(θ,p)=(θ,p)θφθ(φ,p),\widehat{\mathcal{N}}(\theta,p)\,=\,{\mathcal{H}}(\theta,p)-\sum_{\theta^{-}\subset\varphi\subsetneq\theta}{\mathcal{H}}(\varphi,p)\,,

the sum over all proper lower order ideals φ\varphi in θ\theta that contain θ\theta^{-}.

We will prove in Corollary 10.11 that 𝒩^(θ,p)=𝒩(θ,p)\widehat{\mathcal{N}}(\theta,p)={\mathcal{N}}(\theta,p) holds for all skew shapes θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} and pp\in{\mathbb{Z}}, that is, 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) is equal to (1)|θ|p(-1)^{|\theta|-p} times the number of QKLG-tableaux of shape θ\theta with content {1,2,,p}\{1,2,\dots,p\}. Theorem 7.4 is therefore equivalent to the following statement.

Proposition 9.7.

For any shape μ𝒫^X\mu\subset\widehat{\mathcal{P}}_{X} and 1pn1\leq p\leq n, we have

𝒪p𝒪μ=ν𝒩^(ν/μ,p)𝒪ν{\mathcal{O}}^{p}\star{\mathcal{O}}^{\mu}\,=\,\sum_{\nu}\widehat{\mathcal{N}}(\nu/\mu,p)\,{\mathcal{O}}^{\nu}

in QK(X)q\operatorname{QK}(X)_{q}, where the sum is over all shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing μ\mu.

Proof.

For any shape λ𝒫^X{\lambda}\subset\widehat{\mathcal{P}}_{X}, set λ+=λI(qd+1){\lambda}^{+}={\lambda}\cup I(q^{d+1}), where dd\in{\mathbb{Z}} is maximal with I(qd)λI(q^{d})\subset{\lambda}. In other words, λ+𝒫^X{\lambda}^{+}\subset\widehat{\mathcal{P}}_{X} is the smallest shape that contains λ{\lambda} and contains one more box than λ{\lambda} on the north-east diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}. We then have qψ(𝒪λ)=𝒪λ+q\,\psi({\mathcal{O}}^{\lambda})={\mathcal{O}}^{{\lambda}^{+}}, where ψ\psi is the line neighborhood operator from Section 2.5. It therefore follows from Proposition 9.6 that the coefficient of 𝒪ν{\mathcal{O}}^{\nu} in the product

(11) 𝒪p𝒪μ=𝒪p𝒪μqψ(𝒪p𝒪μ){\mathcal{O}}^{p}\star{\mathcal{O}}^{\mu}\,=\,{\mathcal{O}}^{p}\odot{\mathcal{O}}^{\mu}-q\,\psi({\mathcal{O}}^{p}\odot{\mathcal{O}}^{\mu})

is equal to

(ν/μ,p)λ:μλ and λ+=ν(λ/μ,p)=𝒩^(ν/μ,p),{\mathcal{H}}(\nu/\mu,p)-\sum_{{\lambda}:\,\mu\subset{\lambda}\text{ and }{\lambda}^{+}=\nu}{\mathcal{H}}({\lambda}/\mu,p)\ =\ \widehat{\mathcal{N}}(\nu/\mu,p)\,,

as required. ∎

Remark 9.8.

The constants 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) have alternating signs by Corollary 10.11, but the constants (θ,p){\mathcal{H}}(\theta,p) do not have easily predictable signs.

10. Combinatorial Identities

In this section we complete the proof of Theorem 7.4. Let X=LG(n,2n)X=\operatorname{LG}(n,2n) be a Lagrangian Grassmannian. Any shape λ𝒫X{\lambda}\subset{\mathcal{P}}_{X} and integer 1pn1\leq p\leq n define three products

𝒪p𝒪λ=ν𝒞(ν/λ,p)𝒪νK(X),𝒪p𝒪λ=ν(ν/λ,p)𝒪νQK(X), and𝒪p𝒪λ=ν𝒩^(ν/λ,p)𝒪νQK(X).\begin{split}{\mathcal{O}}^{p}\cdot{\mathcal{O}}^{\lambda}\,&=\,\sum_{\nu}{\mathcal{C}}(\nu/{\lambda},p)\,{\mathcal{O}}^{\nu}\ \in K(X)\,,\\ {\mathcal{O}}^{p}\odot{\mathcal{O}}^{\lambda}\,&=\,\sum_{\nu}{\mathcal{H}}(\nu/{\lambda},p)\,{\mathcal{O}}^{\nu}\ \in\operatorname{QK}(X)\,,\text{ \ and}\\ {\mathcal{O}}^{p}\star{\mathcal{O}}^{\lambda}\,&=\,\sum_{\nu}\widehat{\mathcal{N}}(\nu/{\lambda},p)\,{\mathcal{O}}^{\nu}\ \in\operatorname{QK}(X)\,.\end{split}

The first sum is over all shapes ν𝒫X\nu\subset{\mathcal{P}}_{X} containing λ{\lambda}, and the two last sums are over all quantum shapes ν𝒫^X\nu\subset\widehat{\mathcal{P}}_{X} containing λ{\lambda}. The constants (θ,p){\mathcal{H}}(\theta,p) and 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) are defined whenever θ\theta is a skew shape in 𝒫^X\widehat{\mathcal{P}}_{X}, and these constants depend on where θ\theta is located in 𝒫^X\widehat{\mathcal{P}}_{X}, including whether θ\theta meets the two diagonals in 𝒫^X\widehat{\mathcal{P}}_{X}. The constants (θ,p){\mathcal{H}}(\theta,p) and 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) are therefore bound to our chosen Lagrangian Grassmannian X=LG(n,2n)X=\operatorname{LG}(n,2n). On the other hand, the constant 𝒞(θ,p){\mathcal{C}}(\theta,p) does not depend on any NE diagonal, and its definition extends naturally to any (finite) skew shape θ\theta in the partially ordered set 𝒫X=m𝒫^LG(m,2m){\mathcal{P}}_{X}^{\infty}=\bigcup_{m}\widehat{\mathcal{P}}_{\operatorname{LG}(m,2m)}, which is unbounded in north-east direction. This is equivalent to considering 𝒞(θ,p){\mathcal{C}}(\theta,p) as a structure constant of limK(LG(m,2m))\varprojlim K(\operatorname{LG}(m,2m)). Notice that 𝒞(θ,p)=(θ,p)=𝒩^(θ,p){\mathcal{C}}(\theta,p)={\mathcal{H}}(\theta,p)=\widehat{\mathcal{N}}(\theta,p) holds whenever θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} is disjoint from the NE diagonal.

Theorem 7.4 states that each quantum structure constant 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) is equal to the (signed) number 𝒩(θ,p){\mathcal{N}}(\theta,p) of QKLG-tableaux. We prove this by showing that 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) and 𝒩(θ,p){\mathcal{N}}(\theta,p) are determined by the same recursive identities. These identities simultaneously provide an alternative definition of these constants. We also prove an analogous recursive definition of the undeformed structure constants (θ,p){\mathcal{H}}(\theta,p) when θ\theta contains at most one box on the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}. Our recursive definitions refer to (quantum or undeformed) structure constants computed in the quantum KK-theory of smaller Lagrangian Grassmannians X=LG(n,2n)X^{\prime}=\operatorname{LG}(n^{\prime},2n^{\prime}). For this reason we will introduce additional notation to make it easier to refer to the constants (θ,p){\mathcal{H}}(\theta,p) and 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) when θ\theta is regarded as a skew shape in 𝒫^X\widehat{\mathcal{P}}_{X^{\prime}}. We summarize this notation here and give precise definitions below. We will regard any skew shape θ\theta as a subset of 𝒫X{\mathcal{P}}_{X}^{\infty}. Suppose θ\theta is contained in a specific set 𝒫^X\widehat{\mathcal{P}}_{X^{\prime}}, and we wish to refer to the constants (θ,p){\mathcal{H}}(\theta,p) and 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) computed in QK(X)\operatorname{QK}(X^{\prime}). If θ\theta is disjoint from the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X^{\prime}}, then we can use the structure constant 𝒞(θ,p){\mathcal{C}}(\theta,p) of the ordinary KK-theory ring K(X)K(X). On the other hand, if θ\theta meets the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X^{\prime}}, then the values of (θ,p){\mathcal{H}}(\theta,p) and 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) computed in QK(X)\operatorname{QK}(X^{\prime}) will be denoted q(θ,p){\mathcal{H}}_{q}(\theta,p) and 𝒩q(θ,p){\mathcal{N}}_{q}(\theta,p). Equivalently, given any skew shape θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty}, we can define q(θ,p){\mathcal{H}}_{q}(\theta,p) and 𝒩q(θ,p){\mathcal{N}}_{q}(\theta,p) as the values of (θ,p){\mathcal{H}}(\theta,p) and 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) computed in QK(X)\operatorname{QK}(X^{\prime}), where X=LG(n,2n)X^{\prime}=\operatorname{LG}(n^{\prime},2n^{\prime}) is the smallest Lagrangian Grassmannian for which θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X^{\prime}}.

Define 𝒫X={(i,j)2ij}{\mathcal{P}}_{X}^{\infty}=\{(i,j)\in{\mathbb{Z}}^{2}\mid i\leq j\}, and equip this set with the partial order defined by (i,j)(i′′,j′′)(i^{\prime},j^{\prime})\leq(i^{\prime\prime},j^{\prime\prime}) if and only if ii′′i^{\prime}\leq i^{\prime\prime} and jj′′j^{\prime}\leq j^{\prime\prime}. We will consider 𝒫X{\mathcal{P}}_{X} and 𝒫^X\widehat{\mathcal{P}}_{X} as subsets of 𝒫X{\mathcal{P}}_{X}^{\infty}. Define a skew shape in 𝒫X{\mathcal{P}}_{X}^{\infty} to be any finite subset obtained as the difference between two lower order ideals. Given a skew shape θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty}, let R(θ)R(\theta) denote the size of a maximal rim contained in θ\theta, and let N(θ)N^{\prime}(\theta) be the number of components of θ\theta that are disjoint from the SW diagonal. Let θ\theta^{\prime} denote the skew shape obtained by removing all south-east corners from θ\theta. Given an integer pp\in{\mathbb{Z}}, it was proved in [BR12] that the constant 𝒞(θ,p){\mathcal{C}}(\theta,p) from Definition 7.2 is given by

𝒞(θ,p)=θφθ(1)|θ||φ|h(N(φ),R(φ)p),{\mathcal{C}}(\theta,p)=\sum_{\theta^{\prime}\subset\varphi\subset\theta}(-1)^{|\theta|-|\varphi|}\,h(N^{\prime}(\varphi),R(\varphi)-p)\,,

where the function h:×h:{\mathbb{N}}\times{\mathbb{Z}}\to{\mathbb{Z}} is defined by (7).

Let θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} be a non-empty skew shape. Then θ\theta contains a unique north-east box QQ. A skew shape in 𝒫X{\mathcal{P}}_{X}^{\infty} will be called a line if its boxes are contained in a single row or a single column. The north-east arm of θ\theta is the largest line ψ\psi that can be obtained by intersecting θ\theta with a square whose upper-right box is QQ.

We will say that the north-east arm ψ\psi is a row if θ\theta contains no box immediately below QQ, and ψ\psi is a column if θ\theta contains no box immediately to the left of QQ. Notice that ψ\psi can be both a row and a column (if it is a disconnected single box), and it can be neither a row nor a column (only if θ\theta is not a rim). We let θ^=θψ\widehat{\theta}=\theta\smallsetminus\psi denote the complement of the north-east arm. This set θ^\widehat{\theta} is a skew shape if and only if ψ\psi is a row or a column. If ψ\psi is not connected to θ^\widehat{\theta}, then ψ\psi is not a row if and only if ψ\psi is a column with at least two boxes, and ψ\psi is not a column if and only if ψ\psi is a row with at least two boxes. We set χ(true)=1\chi(\text{true})=1 and χ(false)=0\chi(\text{false})=0.

Proposition 10.1 ([BR12]).

Let θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} be any skew shape and let pp\in{\mathbb{Z}}. If θ\theta is not a rim, then 𝒞(θ,p)=0{\mathcal{C}}(\theta,p)=0, and 𝒞(,p)=χ(p0){\mathcal{C}}(\emptyset,p)=\chi(p\leq 0). If θ\theta is a non-empty rim with north-east arm ψ=θθ^\psi=\theta\smallsetminus\widehat{\theta} of size aa, then 𝒞(θ,p){\mathcal{C}}(\theta,p) is determined by the following rules.

(i) If θ^=\widehat{\theta}=\emptyset and θ\theta meets the SW diagonal, then 𝒞(θ,p)=δp,|θ|{\mathcal{C}}(\theta,p)=\delta_{p,|\theta|} if θ\theta is a row, and 𝒞(θ,p)=δp,|θ|δp,|θ|1{\mathcal{C}}(\theta,p)=\delta_{p,|\theta|}-\delta_{p,|\theta|-1} if θ\theta is not a row.

(ii) If θ^=\widehat{\theta}=\emptyset and θ\theta is disjoint from the SW diagonal, then 𝒞(θ,p)=2δp,|θ|χ(p1)δp,|θ|1{\mathcal{C}}(\theta,p)=2\,\delta_{p,|\theta|}-\chi(p\geq 1)\,\delta_{p,|\theta|-1}.

(iii) If θ^\widehat{\theta}\neq\emptyset and ψ\psi is connected to θ^\widehat{\theta}, then 𝒞(θ,p)=𝒞(θ^,pa)𝒞(θ^,pa+1){\mathcal{C}}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{C}}(\widehat{\theta},p-a+1).

(iv) If θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}, then 𝒞(θ,p)=2𝒞(θ^,pa)2𝒞(θ^,pa+1){\mathcal{C}}(\theta,p)=2\,{\mathcal{C}}(\widehat{\theta},p-a)-2\,{\mathcal{C}}(\widehat{\theta},p-a+1) if a=1a=1, and 𝒞(θ,p)=2𝒞(θ^,pa)3𝒞(θ^,pa+1)+𝒞(θ^,pa+2){\mathcal{C}}(\theta,p)=2\,{\mathcal{C}}(\widehat{\theta},p-a)-3\,{\mathcal{C}}(\widehat{\theta},p-a+1)+{\mathcal{C}}(\widehat{\theta},p-a+2) if a2a\geq 2.

Given a non-empty skew shape θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} with north-east box QQ, let Nq(θ)=max(N(θ)1,0)N^{\prime}_{q}(\theta)=\max(N^{\prime}(\theta)-1,0) be the number of components of θ\theta that do not meet the SW diagonal and do not contain QQ, and let θq=θQ\theta^{\prime}_{q}=\theta^{\prime}\cup Q be the result of removing all south-east corners except QQ (in case QQ is a south-east corner). For pp\in{\mathbb{Z}} we define

(12) q(θ,p)=θqφθ(1)|θ||φ|h(Nq(φ),R(φ)p).{\mathcal{H}}_{q}(\theta,p)=\sum_{\theta^{\prime}_{q}\subset\varphi\subset\theta}(-1)^{|\theta|-|\varphi|}\,h(N^{\prime}_{q}(\varphi),R(\varphi)-p)\,.
Remark 10.2.

Assume that θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} is a skew shape containing at most one box from the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}, for example a rim. Then the constant (θ,p){\mathcal{H}}(\theta,p) defined by equation (9) is given by

(θ,p)={𝒞(θ,p)if θ is disjoint from the NE diagonal,q(θ,p)if θ contains one box on the NE diagonal.{\mathcal{H}}(\theta,p)=\begin{cases}{\mathcal{C}}(\theta,p)&\text{if $\theta$ is disjoint from the NE diagonal,}\\ {\mathcal{H}}_{q}(\theta,p)&\text{if $\theta$ contains one box on the NE diagonal.}\end{cases}

If θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} contains two or more boxes from the NE diagonal, then θ\theta is not a skew shape in 𝒫X{\mathcal{P}}_{X}^{\infty} and q(θ,p){\mathcal{H}}_{q}(\theta,p) is not defined. Our next result together with Proposition 10.1 provides a recursive definition of the constants q(θ,p){\mathcal{H}}_{q}(\theta,p).

Proposition 10.3.

Let θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} be any non-empty skew shape and let pp\in{\mathbb{Z}}. If θ\theta is not a rim, then q(θ,p)=0{\mathcal{H}}_{q}(\theta,p)=0. If θ\theta is a rim with north-east arm ψ=θθ^\psi=\theta\smallsetminus\widehat{\theta} of size aa, then q(θ,p){\mathcal{H}}_{q}(\theta,p) is determined by the following rules.

(i′′) If θ^=\widehat{\theta}=\emptyset, then q(θ,p)=χ(p|θ|){\mathcal{H}}_{q}(\theta,p)=\chi(p\leq|\theta|) if θ\theta is a row, and q(θ,p)=δp,|θ|{\mathcal{H}}_{q}(\theta,p)=\delta_{p,|\theta|} if θ\theta is not a row.

(iii′′) If θ^\widehat{\theta}\neq\emptyset and ψ\psi is connected to θ^\widehat{\theta}, then q(θ,p)=q(θ^,pa){\mathcal{H}}_{q}(\theta,p)={\mathcal{H}}_{q}(\widehat{\theta},p-a) if ψ\psi is a row or p|θ|p\geq|\theta|, and q(θ,p)=𝒞(θ^,pa)q(θ^,pa)+q(θ^,pa+1){\mathcal{H}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{H}}_{q}(\widehat{\theta},p-a)+{\mathcal{H}}_{q}(\widehat{\theta},p-a+1) if ψ\psi is a column and p<|θ|p<|\theta|.

(iv′′) If θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}, then q(θ,p)=𝒞(θ^,pa){\mathcal{H}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a) if ψ\psi is a row, and q(θ,p)=𝒞(θ^,pa)𝒞(θ^,pa+1){\mathcal{H}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{C}}(\widehat{\theta},p-a+1) if ψ\psi is not a row.

Proof.

If θ\theta is not a rim, then let BθB\in\theta be a south-east corner such that θ\theta contains a box strictly north and strictly west of BB. For any skew shape φ\varphi with θqφθB\theta^{\prime}_{q}\subset\varphi\subset\theta\smallsetminus B we have h(Nq(φ),R(φ)p)=h(Nq(φB),R(φB)p)h(N^{\prime}_{q}(\varphi),R(\varphi)-p)=h(N^{\prime}_{q}(\varphi\cup B),R(\varphi\cup B)-p), which implies that q(θ,p)=0{\mathcal{H}}_{q}(\theta,p)=0. We can therefore assume that θ\theta is a non-empty rim. If θ=ψ\theta=\psi is a row, then q(θ,p)=h(0,|θ|p)=χ(p|θ|){\mathcal{H}}_{q}(\theta,p)=h(0,|\theta|-p)=\chi(p\leq|\theta|). If θ=ψ\theta=\psi is not a row, and BB is the bottom box of θ\theta, then q(θ,p)=h(0,|θ|p)h(0,|θB|p)=δp,|θ|{\mathcal{H}}_{q}(\theta,p)=h(0,|\theta|-p)-h(0,|\theta\smallsetminus B|-p)=\delta_{p,|\theta|}.

Assume that θ^\widehat{\theta}\neq\emptyset and ψ\psi is a row connected to θ^\widehat{\theta}. Then the skew shapes occurring in (12) have the form φψ\varphi\cup\psi, where θ^=(θ^)φθ^\widehat{\theta}^{\prime}=(\widehat{\theta})^{\prime}\subset\varphi\subset\widehat{\theta}. Since h(Nq(φψ),|φψ|p)=h(Nq(φ),|φ|p+a)h(N^{\prime}_{q}(\varphi\cup\psi),|\varphi\cup\psi|-p)=h(N^{\prime}_{q}(\varphi),|\varphi|-p+a), we obtain q(θ,p)=q(θ^,pa){\mathcal{H}}_{q}(\theta,p)={\mathcal{H}}_{q}(\widehat{\theta},p-a).

Assume that θ^\widehat{\theta}\neq\emptyset and ψ\psi is a column connected to θ^\widehat{\theta}. If p|θ|p\geq|\theta|, then since h(Nq(φ),|φ|p)h(N^{\prime}_{q}(\varphi),|\varphi|-p) is non-zero only when p|φ|p\leq|\varphi|, we obtain

q(θ,p)=h(Nq(θ),|θ|p)=h(Nq(θ^),|θ^|p+a)=q(θ^,pa).{\mathcal{H}}_{q}(\theta,p)=h(N^{\prime}_{q}(\theta),|\theta|-p)=h(N^{\prime}_{q}(\widehat{\theta}),|\widehat{\theta}|-p+a)={\mathcal{H}}_{q}(\widehat{\theta},p-a)\,.

Assume that p<|θ|p<|\theta| and let BB be the north-east box of θ^\widehat{\theta}. Then

q(θ,p)𝒞(θ^,pa)+q(θ^,pa)q(θ^,pa+1){\mathcal{H}}_{q}(\theta,p)-{\mathcal{C}}(\widehat{\theta},p-a)+{\mathcal{H}}_{q}(\widehat{\theta},p-a)-{\mathcal{H}}_{q}(\widehat{\theta},p-a+1)

is equal to the sum over all skew shapes φ\varphi, with θ^φθ^B\widehat{\theta}^{\prime}\subset\varphi\subset\widehat{\theta}\smallsetminus B, of (1)|θ^||φ|(-1)^{|\widehat{\theta}|-|\varphi|} times

(13) h(Nq(φψ),|φψ|p)h(Nq(φBψ),|φBψ|p)h(N(φ),|φ|p+a)+h(N(φB),|φB|p+a)h(Nq(φB),|φB|p+a)+h(Nq(φB),|φB|p+a1).\begin{split}&h(N^{\prime}_{q}(\varphi\cup\psi),|\varphi\cup\psi|-p)-h(N^{\prime}_{q}(\varphi\cup B\cup\psi),|\varphi\cup B\cup\psi|-p)\\ &-h(N^{\prime}(\varphi),|\varphi|-p+a)+h(N^{\prime}(\varphi\cup B),|\varphi\cup B|-p+a)\\ &-h(N^{\prime}_{q}(\varphi\cup B),|\varphi\cup B|-p+a)+h(N^{\prime}_{q}(\varphi\cup B),|\varphi\cup B|-p+a-1)\,.\end{split}

Using that

Nq(φψ)=N(φB)=N(φ) and Nq(φBψ)=Nq(φB)=Nq(φ),N^{\prime}_{q}(\varphi\cup\psi)=N^{\prime}(\varphi\cup B)=N^{\prime}(\varphi)\text{ \ \ and \ \ }N^{\prime}_{q}(\varphi\cup B\cup\psi)=N^{\prime}_{q}(\varphi\cup B)=N^{\prime}_{q}(\varphi)\,,

it follows that (13) is equal to

h(N(φ),|φ|p+a+1)+h(Nq(φ),|φ|p+a)2h(Nq(φ),|φ|p+a+1).h(N^{\prime}(\varphi),|\varphi|-p+a+1)+h(N^{\prime}_{q}(\varphi),|\varphi|-p+a)-2\,h(N^{\prime}_{q}(\varphi),|\varphi|-p+a+1)\,.

If N(φ)>0N^{\prime}(\varphi)>0, then this expression is zero by identity (8). Otherwise we have N(φ)=Nq(φ)=0N^{\prime}(\varphi)=N^{\prime}_{q}(\varphi)=0, which implies φ=θ^B\varphi=\widehat{\theta}\smallsetminus B, so the expression is zero because |φ|p+a0|\varphi|-p+a\geq 0.

We finally assume that θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}. If ψ\psi is a row, then

q(θ,p)=θ^φθ^(1)|θ||φψ|h(Nq(φψ),|φψ|p)=θ^φθ^(1)|θ^||φ|h(N(φ),|φ|p+a)=𝒞(θ^,pa).\begin{split}{\mathcal{H}}_{q}(\theta,p)\ &=\ \sum_{\widehat{\theta}^{\prime}\subset\varphi\subset\widehat{\theta}}(-1)^{|\theta|-|\varphi\cup\psi|}\,h(N^{\prime}_{q}(\varphi\cup\psi),|\varphi\cup\psi|-p)\\ &=\ \sum_{\widehat{\theta}^{\prime}\subset\varphi\subset\widehat{\theta}}(-1)^{|\widehat{\theta}|-|\varphi|}\,h(N^{\prime}(\varphi),|\varphi|-p+a)\ =\ {\mathcal{C}}(\widehat{\theta},p-a)\,.\end{split}

If ψ\psi is not a row, BB is the bottom box of ψ\psi, and ψ=ψB\psi^{\prime}=\psi\smallsetminus B, then

q(θ,p)=θ^φθ^(1)|θ||φψ|(h(Nq(φψ),|φψ|p)h(Nq(φψ),|φψ|p))=θ^φθ^(1)|θ^||φ|(h(N(φ),|φ|p+a)h(N(φ),|φ|p+a1))=𝒞(θ^,pa)𝒞(θ^,pa+1).\begin{split}&{\mathcal{H}}_{q}(\theta,p)\\ &\ =\sum_{\widehat{\theta}^{\prime}\subset\varphi\subset\widehat{\theta}}(-1)^{|\theta|-|\varphi\cup\psi|}\left(h(N^{\prime}_{q}(\varphi\cup\psi),|\varphi\cup\psi|-p)-h(N^{\prime}_{q}(\varphi\cup\psi^{\prime}),|\varphi\cup\psi^{\prime}|-p)\right)\\ &\ =\sum_{\widehat{\theta}^{\prime}\subset\varphi\subset\widehat{\theta}}(-1)^{|\widehat{\theta}|-|\varphi|}\left(h(N^{\prime}(\varphi),|\varphi|-p+a)-h(N^{\prime}(\varphi),|\varphi|-p+a-1)\right)\\ &\ =\ {\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{C}}(\widehat{\theta},p-a+1)\,.\end{split}

This completes the proof. ∎

Example 10.4.

For any skew shape θ= 𝒫X\theta=\vbox{\vbox{\halign{&\tabcellify{#}\cr\vbox to6.0pt{\hbox to6.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(6.0,6.0) \put(0.0,6.0){\line(1,0){6.0}} \put(0.0,0.0){\line(1,0){6.0}} \put(0.0,0.0){\line(0,1){6.0}} \put(6.0,0.0){\line(0,1){6.0}} \end{picture}}\hss}\vbox to6.0pt{\vss\hbox to6.0pt{\hss$$\hss}\vss\\\vbox to6.0pt{\hbox to6.0pt{\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to6.0pt{\vss\hbox to6.0pt{\hss$$\hss}\vss\\\hbox to0.0pt{\leavevmode\hss}\vbox to6.0pt{\vss\hbox to6.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to6.0pt{\vss\hbox to6.0pt{\hss$$\hss}\vss\crcr}}}\subset{\mathcal{P}}_{X}^{\infty}}}}}}} and p2p\leq 2, we obtain θ^= \widehat{\theta}=\vbox{\vbox{\halign{&\tabcellify{#}\cr\hbox to0.0pt{\leavevmode\hbox{\set@color\begin{picture}(6.0,6.0) \put(0.0,6.0){\line(1,0){6.0}} \put(0.0,0.0){\line(1,0){6.0}} \put(0.0,0.0){\line(0,1){6.0}} \put(6.0,0.0){\line(0,1){6.0}} \end{picture}}\hss}\vbox to6.0pt{\vss\hbox to6.0pt{\hss$$\hss}\vss&\hbox to0.0pt{\leavevmode\hss}\vbox to6.0pt{\vss\hbox to6.0pt{\hss$$\hss}\vss\crcr}}}}} and

q(θ,p)=𝒞(θ^,p2)q(θ^,p2)+q(θ^,p1)=01+1=0.{\mathcal{H}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-2)-{\mathcal{H}}_{q}(\widehat{\theta},p-2)+{\mathcal{H}}_{q}(\widehat{\theta},p-1)=0-1+1=0\,.

This illustrates that negative values of pp must be allowed in Proposition 10.3 to obtain correct recursive identities without including additional special cases.

Definition 10.5.

Given a non-empty skew shape θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} and pp\in{\mathbb{Z}}, define an integer 𝒩q(θ,p){\mathcal{N}}_{q}(\theta,p) as follows. If θ\theta is not a rim, then 𝒩q(θ,p)=0{\mathcal{N}}_{q}(\theta,p)=0. If θ\theta is a rim with north-east arm ψ=θθ^\psi=\theta\smallsetminus\widehat{\theta} of size aa, then 𝒩q(θ,p){\mathcal{N}}_{q}(\theta,p) is determined by the following rules.

(i) If θ^=\widehat{\theta}=\emptyset and θ\theta meets the SW diagonal, then 𝒩q(θ,p)=δp,|θ|{\mathcal{N}}_{q}(\theta,p)=\delta_{p,|\theta|}.

(ii) If θ^=\widehat{\theta}=\emptyset and θ\theta is disjoint from the SW diagonal, then 𝒩q(θ,p)=δp,|θ|{\mathcal{N}}_{q}(\theta,p)=\delta_{p,|\theta|} if θ\theta is a column, and 𝒩q(θ,p)=δp,|θ|δp,|θ|1{\mathcal{N}}_{q}(\theta,p)=\delta_{p,|\theta|}-\delta_{p,|\theta|-1} if θ\theta is not a column.

(iii) If θ^\widehat{\theta}\neq\emptyset and ψ\psi is connected to θ^\widehat{\theta}, then 𝒩q(θ,p)=𝒩q(θ^,pa){\mathcal{N}}_{q}(\theta,p)={\mathcal{N}}_{q}(\widehat{\theta},p-a) if ψ\psi is a column, and 𝒩q(θ,p)=𝒩q(θ^,pa)𝒞(θ^,pa+1){\mathcal{N}}_{q}(\theta,p)={\mathcal{N}}_{q}(\widehat{\theta},p-a)-{\mathcal{C}}(\widehat{\theta},p-a+1) if ψ\psi is a row.

(iv) If θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}, then 𝒩q(θ,p)=𝒞(θ^,pa)𝒞(θ^,pa+1){\mathcal{N}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{C}}(\widehat{\theta},p-a+1) if ψ\psi is a column, and 𝒩q(θ,p)=𝒞(θ^,pa)2𝒞(θ^,pa+1)+𝒞(θ^,pa+2){\mathcal{N}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a)-2\,{\mathcal{C}}(\widehat{\theta},p-a+1)+{\mathcal{C}}(\widehat{\theta},p-a+2) if ψ\psi is not a column.

Recall from Definition 7.3 that |𝒩(θ,p)||{\mathcal{N}}(\theta,p)| is the number of QKLG-tableaux of shape θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} with content {1,2,,p}\{1,2,\dots,p\}.

Lemma 10.6.

Let θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} be a rim meeting the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X} and let pp\in{\mathbb{Z}}. Then 𝒩q(θ,p)=𝒩(θ,p){\mathcal{N}}_{q}(\theta,p)={\mathcal{N}}(\theta,p).

Proof.

Let ψ=θθ^\psi=\theta\smallsetminus\widehat{\theta} be the north-east arm and set a=|ψ|a=|\psi|. The pictures in this proof will be drawn for the case a=4a=4. Assume first that θ^=\widehat{\theta}=\emptyset. If θ\theta meets the SW diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}, then there exists only one QKLG-tableau of shape θ\theta, which is one of the following cases:

11 22 33 aa
     or      
11^{\prime}
22^{\prime}
33^{\prime}
aa

If θ\theta is disjoint from the SW diagonal, then there is a unique QKLG-tableau of shape θ\theta when θ\theta is a column or a single box, and exactly two QKLG-tableaux of shape θ\theta when θ\theta is a row with at least two boxes:

11^{\prime}
22^{\prime}
33^{\prime}
aa^{\prime}
     or      
11^{\prime} 22 33 aa
  and   
11^{\prime} 11 22 bb
 ,   where b=a1b=a-1.

This accounts for cases (i) and (ii) of Definition 10.5.

Assume next that θ^\widehat{\theta}\neq\emptyset and that ψ\psi is connected to θ^\widehat{\theta}. Then any QKLG-tableau of shape θ\theta and content {1,,p}\{1,\dots,p\} must assign the following labels to the boxes of ψ\psi (with bi=pa+ib_{i}=p-a+i):

11^{\prime}
22^{\prime}
33^{\prime}
aa^{\prime}
pp
     or      
11^{\prime} b1b_{1} b2b_{2} b3b_{3} pp

The pictures also show two of the boxes from θ^\widehat{\theta}. If ψ\psi is a column, then aa^{\prime} must be an unrepeated quantum box, so the labels of θ^\widehat{\theta} can be any QKLG-tableau with content {a+1,a+2,,p}\{a+1,a+2,\dots,p\} (with pp considered on the NE diagonal). If ψ\psi is a row, then the labels of θ^\widehat{\theta} must have content either {1,2,,pa}\{1,2,\dots,p-a\} or {1,2,,pa+1}\{1,2,\dots,p-a+1\}. In the first case b1b_{1} is an unrepeated quantum box, so 11^{\prime} is also a quantum box, and the labels of θ^\widehat{\theta} can be any QKLG-tableau with content {1,2,,pa}\{1,2,\dots,p-a\} (with 11^{\prime} considered on the NE diagonal). In the second case b1b_{1} is repeated, 11^{\prime} is not a quantum box, so the labels of θ^\widehat{\theta} can be any KLG-tableau with content {1,2,,pa+1}\{1,2,\dots,p-a+1\}. This accounts for case (iii) of Definition 10.5.

Finally, assume that θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}. Then any QKLG-tableau of shape θ\theta and content {1,,p}\{1,\dots,p\} must assign the following labels to the boxes of ψ\psi (with bi=pa+ib_{i}=p-a+i):

11^{\prime}
22^{\prime}
33^{\prime}
aa^{\prime}
     or      
11^{\prime} b2b_{2} b3b_{3} pp

If ψ\psi is a column or a single box, then the labels of θ^\widehat{\theta} must form a KLG-tableau with content {a+1,a+2,,p}\{a+1,a+2,\dots,p\} or {a,a+1,,p}\{a,a+1,\dots,p\}. If ψ\psi is a row with at least two boxes, then the labels of θ^\widehat{\theta} must form a KLG-tableau with content {2,3,,pa+1}\{2,3,\dots,p-a+1\}, {1,2,,pa+1}\{1,2,\dots,p-a+1\}, {2,3,,pa+2}\{2,3,\dots,p-a+2\}, or {1,3,,pa+2}\{1,3,\dots,p-a+2\}. This accounts for case (iv) of Definition 10.5. ∎

Lemma 10.7.

Let θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} be a non-empty rim and let pp\in{\mathbb{Z}}.

(a)  For p0p\leq 0 we have 𝒞(θ,p)=𝒩q(θ,p)=0{\mathcal{C}}(\theta,p)={\mathcal{N}}_{q}(\theta,p)=0, and

q(θ,p)={1if θ is a single row of boxes,0otherwise.{\mathcal{H}}_{q}(\theta,p)=\begin{cases}1&\text{if $\theta$ is a single row of boxes,}\\ 0&\text{otherwise.}\end{cases}

(b)  We have 𝒞(θ,|θ|)=2N(θ){\mathcal{C}}(\theta,|\theta|)=2^{N^{\prime}(\theta)} and  𝒩q(θ,|θ|)=q(θ,|θ|)=2Nq(θ){\mathcal{N}}_{q}(\theta,|\theta|)={\mathcal{H}}_{q}(\theta,|\theta|)=2^{N^{\prime}_{q}(\theta)}.

(c)  For p>|θ|p>|\theta| we have 𝒞(θ,p)=𝒩q(θ,p)=q(θ,p)=0{\mathcal{C}}(\theta,p)={\mathcal{N}}_{q}(\theta,p)={\mathcal{H}}_{q}(\theta,p)=0.

Proof.

These identities follow from the recursive definitions by induction on |θ||\theta|. ∎

Lemma 10.8.

Let θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} be a non-empty rim, such that the north-east arm ψ=θθ^\psi=\theta\smallsetminus\widehat{\theta} is not a disconnected single box, and let p<|θ|p<|\theta|. Then,

2𝒩q(θ,p)𝒩q(θ,p+1)={𝒞(θ,p)𝒞(θ,p+1)if ψ is a row,𝒞(θ,p)if ψ is a column.2{\mathcal{N}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p+1)\ =\ \begin{cases}{\mathcal{C}}(\theta,p)-{\mathcal{C}}(\theta,p+1)&\text{if $\psi$ is a row,}\\ {\mathcal{C}}(\theta,p)&\text{if $\psi$ is a column.}\end{cases}
Proof.

Assume that θ^=\widehat{\theta}=\emptyset. If ψ\psi meets the SW diagonal or is a column, then both sides of the identity are equal to δp+1,|θ|-\delta_{p+1,|\theta|}, and otherwise both sides are equal to 3δp+1,|θ|+δp+2,|θ|-3\,\delta_{p+1,|\theta|}+\delta_{p+2,|\theta|}.

Assume next that θ^\widehat{\theta}\neq\emptyset and ψ\psi is connected to θ^\widehat{\theta}. Set a=|ψ|a=|\psi|. If ψ\psi is a row, then

2𝒩q(θ,p)𝒩q(θ,p+1)𝒞(θ,p)+𝒞(θ,p+1)= 2𝒩q(θ^,pa)𝒩q(θ^,pa+1)𝒞(θ^,pa),2\,{\mathcal{N}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p+1)-{\mathcal{C}}(\theta,p)+{\mathcal{C}}(\theta,p+1)\\ =\ 2\,{\mathcal{N}}_{q}(\widehat{\theta},p-a)-{\mathcal{N}}_{q}(\widehat{\theta},p-a+1)-{\mathcal{C}}(\widehat{\theta},p-a)\,,

which vanishes by induction on |θ||\theta|, since the north-east arm of θ^\widehat{\theta} is a column. If ψ\psi is a column, then

2𝒩q(θ,p)𝒩q(θ,p+1)𝒞(θ,p)= 2𝒩q(θ^,pa)𝒩q(θ^,pa+1)𝒞(θ^,pa)+𝒞(θ^,pa+1)2\,{\mathcal{N}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p+1)-{\mathcal{C}}(\theta,p)\\ =\ 2\,{\mathcal{N}}_{q}(\widehat{\theta},p-a)-{\mathcal{N}}_{q}(\widehat{\theta},p-a+1)-{\mathcal{C}}(\widehat{\theta},p-a)+{\mathcal{C}}(\widehat{\theta},p-a+1)

which vanishes by induction on |θ||\theta|, since the north-east arm of θ^\widehat{\theta} is a row.

Finally we assume that θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}. If ψ\psi is a column, then both sides are equal to

2𝒞(θ^,pa)3𝒞(θ^,pa+1)+𝒞(θ^,pa+2),2\,{\mathcal{C}}(\widehat{\theta},p-a)-3\,{\mathcal{C}}(\widehat{\theta},p-a+1)+{\mathcal{C}}(\widehat{\theta},p-a+2)\,,

and if ψ\psi is a row, then both sides are equal to

2𝒞(θ^,pa)5𝒞(θ^,pa+1)+4𝒞(θ^,pa+2)𝒞(θ^,pa+3).2\,{\mathcal{C}}(\widehat{\theta},p-a)-5\,{\mathcal{C}}(\widehat{\theta},p-a+1)+4\,{\mathcal{C}}(\widehat{\theta},p-a+2)-{\mathcal{C}}(\widehat{\theta},p-a+3)\,.

The identity follows from this. ∎

Lemma 10.9.

Let θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} be a non-empty rim and let p<|θ|p<|\theta|. Then,

q(θ,p)q(θ,p+1)=𝒞(θ,p)𝒩q(θ,p).{\mathcal{H}}_{q}(\theta,p)-{\mathcal{H}}_{q}(\theta,p+1)\ =\ {\mathcal{C}}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)\,.
Proof.

Let ψ=θθ^\psi=\theta\smallsetminus\widehat{\theta} be the north-east arm of θ\theta and set a=|ψ|a=|\psi|. Assume first that θ^=\widehat{\theta}=\emptyset. If ψ\psi is a row, then both sides of the identity are zero, and otherwise both sides are equal to δp+1,|θ|-\delta_{p+1,|\theta|}.

Assume next that θ^\widehat{\theta}\neq\emptyset and ψ\psi is connected to θ^\widehat{\theta}. If ψ\psi is a row, then it follows by induction on |θ||\theta| that

q(θ,p)q(θ,p+1)=q(θ^,pa)q(θ^,pa+1)=𝒞(θ^,pa)𝒩q(θ^,pa)=𝒞(θ,p)𝒩q(θ,p).{\mathcal{H}}_{q}(\theta,p)-{\mathcal{H}}_{q}(\theta,p+1)={\mathcal{H}}_{q}(\widehat{\theta},p-a)-{\mathcal{H}}_{q}(\widehat{\theta},p-a+1)\\ ={\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{N}}_{q}(\widehat{\theta},p-a)={\mathcal{C}}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)\,.

If ψ\psi is a column and p|θ|2p\leq|\theta|-2, then the recursive definitions and induction on |θ||\theta| yield

q(θ,p)q(θ,p+1)𝒞(θ,p)+𝒩q(θ,p)=q(θ^,pa)+2q(θ^,pa+1)q(θ^,pa+2)+𝒩q(θ^,pa)= 2𝒩q(θ^,pa)𝒩q(θ^,pa+1)𝒞(θ^,pa)+𝒞(θ^,pa+1).\begin{split}&{\mathcal{H}}_{q}(\theta,p)-{\mathcal{H}}_{q}(\theta,p+1)-{\mathcal{C}}(\theta,p)+{\mathcal{N}}_{q}(\theta,p)\\ &\ \ =\ -{\mathcal{H}}_{q}(\widehat{\theta},p-a)+2\,{\mathcal{H}}_{q}(\widehat{\theta},p-a+1)-{\mathcal{H}}_{q}(\widehat{\theta},p-a+2)+{\mathcal{N}}_{q}(\widehat{\theta},p-a)\\ &\ \ =\ 2\,{\mathcal{N}}_{q}(\widehat{\theta},p-a)-{\mathcal{N}}_{q}(\widehat{\theta},p-a+1)-{\mathcal{C}}(\widehat{\theta},p-a)+{\mathcal{C}}(\widehat{\theta},p-a+1)\,.\end{split}

This expression is equal to zero by Lemma 10.8, as the north-east arm of θ^\widehat{\theta} is a row. If ψ\psi is a column and p=|θ|1p=|\theta|-1, then the recursive definitions and induction on |θ||\theta| gives

q(θ,p)q(θ,p+1)𝒞(θ,p)+𝒩q(θ,p)=𝒩q(θ^,pa)q(θ^,pa)+𝒞(θ^,pa+1)= 2𝒩q(θ^,pa)q(θ^,pa+1)𝒞(θ^,pa)+𝒞(θ^,pa+1).\begin{split}&{\mathcal{H}}_{q}(\theta,p)-{\mathcal{H}}_{q}(\theta,p+1)-{\mathcal{C}}(\theta,p)+{\mathcal{N}}_{q}(\theta,p)\\ &\ \ =\ {\mathcal{N}}_{q}(\widehat{\theta},p-a)-{\mathcal{H}}_{q}(\widehat{\theta},p-a)+{\mathcal{C}}(\widehat{\theta},p-a+1)\\ &\ \ =\ 2\,{\mathcal{N}}_{q}(\widehat{\theta},p-a)-{\mathcal{H}}_{q}(\widehat{\theta},p-a+1)-{\mathcal{C}}(\widehat{\theta},p-a)+{\mathcal{C}}(\widehat{\theta},p-a+1)\,.\end{split}

This expression is equal to zero by Lemma 10.7(b) and Lemma 10.8, as pa+1=|θ^|p-a+1=|\widehat{\theta}| and the north-east arm of θ^\widehat{\theta} is a row.

Finally assume that θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}. If ψ\psi is a row, then both sides of the identity are equal to 𝒞(θ^,pa)𝒞(θ^,pa+1){\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{C}}(\widehat{\theta},p-a+1), and otherwise both sides are equal to 𝒞(θ^,pa)2𝒞(θ^,pa+1)+𝒞(θ^,pa+2){\mathcal{C}}(\widehat{\theta},p-a)-2\,{\mathcal{C}}(\widehat{\theta},p-a+1)+{\mathcal{C}}(\widehat{\theta},p-a+2). This proves the identity. ∎

Proposition 10.10.

Let θ𝒫X\theta\subset{\mathcal{P}}_{X}^{\infty} be a non-empty skew shape with north-east arm ψ=θθ^\psi=\theta\smallsetminus\widehat{\theta}, and let pp\in{\mathbb{Z}}. Then,

q(θ,p)𝒩q(θ,p)={θ^φθ𝒞(φ,p)if ψ is a row,0otherwise,{\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)=\begin{cases}\sum_{\widehat{\theta}\subset\varphi\subsetneq\theta}{\mathcal{C}}(\varphi,p)&\text{if $\psi$ is a row,}\\ 0&\text{otherwise,}\end{cases}

where the sum is over all proper lower order ideals φ\varphi of θ\theta that contain θ^\widehat{\theta}.

Proof.

We may assume that θ\theta is a rim, since otherwise θ^\widehat{\theta} is also not a rim, and both sides of the identity vanish. Set a=|ψ|a=|\psi|. Assume first that ψ\psi is not a row. If θ^=\widehat{\theta}=\emptyset, then q(θ,p)=δp,|θ|=𝒩q(θ,p){\mathcal{H}}_{q}(\theta,p)=\delta_{p,|\theta|}={\mathcal{N}}_{q}(\theta,p). If θ^\widehat{\theta}\neq\emptyset and ψ\psi is connected to θ^\widehat{\theta}, then q(θ,p)=𝒩q(θ,p){\mathcal{H}}_{q}(\theta,p)={\mathcal{N}}_{q}(\theta,p) for p|θ|p\geq|\theta| by Lemma 10.7(b,c), and for p<|θ|p<|\theta| we have

q(θ,p)𝒩q(θ,p)=𝒞(θ^,pa)q(θ^,pa)+q(θ^,pa+1)𝒩q(θ^,pa),{\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{H}}_{q}(\widehat{\theta},p-a)+{\mathcal{H}}_{q}(\widehat{\theta},p-a+1)-{\mathcal{N}}_{q}(\widehat{\theta},p-a)\,,

which is equal to zero by Lemma 10.9. Finally, if θ^\widehat{\theta}\neq\emptyset and ψ\psi is not connected to θ^\widehat{\theta}, then q(θ,p)=𝒞(θ^,pa)𝒞(θ^,pa+1)=𝒩q(θ,p){\mathcal{H}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p-a)-{\mathcal{C}}(\widehat{\theta},p-a+1)={\mathcal{N}}_{q}(\theta,p).

Assume that ψ\psi is a row. For 0ia10\leq i\leq a-1, we let φi\varphi_{i} be the union of θ^\widehat{\theta} with the leftmost ii boxes of ψ\psi. Then φ0,φ1,,φa1\varphi_{0},\varphi_{1},\dots,\varphi_{a-1} are the proper lower order ideals φ\varphi in θ\theta that contain θ^\widehat{\theta}. If θ^=\widehat{\theta}=\emptyset and ψ\psi meets the SW diagonal, then

q(θ,p)𝒩q(θ,p)=χ(p|θ|)δp,|θ|=χ(p0)+i=1a1δp,i=i=0a1𝒞(φi,p).{\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)=\chi(p\leq|\theta|)-\delta_{p,|\theta|}=\chi(p\leq 0)+\sum_{i=1}^{a-1}\delta_{p,i}=\sum_{i=0}^{a-1}{\mathcal{C}}(\varphi_{i},p)\,.

If θ\theta is a single box not on the SW diagonal, then q(θ,p)𝒩q(θ,p)=χ(p0)=𝒞(φ0,p){\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)=\chi(p\leq 0)={\mathcal{C}}(\varphi_{0},p). If θ^=\widehat{\theta}=\emptyset, |θ|2|\theta|\geq 2, and ψ\psi does not meet the SW diagonal, then

q(θ,p)𝒩q(θ,p)=χ(p<|θ|)+δp,a1=χ(p0)+2δp,1+i=2a1(2δp,iδp,i1)=i=0a1𝒞(φi,p).{\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)\ =\ \chi(p<|\theta|)+\delta_{p,a-1}\\ =\ \chi(p\leq 0)+2\,\delta_{p,1}+\sum_{i=2}^{a-1}(2\,\delta_{p,i}-\delta_{p,i-1})\ =\ \sum_{i=0}^{a-1}{\mathcal{C}}(\varphi_{i},p)\,.

If θ^\widehat{\theta}\neq\emptyset and ψ\psi is connected to θ^\widehat{\theta}, then since the north-east arm of θ^\widehat{\theta} is not a row, we obtain by induction on |θ||\theta| that

q(θ,p)𝒩q(θ,p)=q(θ^,pa)𝒩q(θ^,pa)+𝒞(θ^,pa+1)=𝒞(θ^,pa+1)=𝒞(θ^,p)+i=1a1(𝒞(θ^,pi)𝒞(θ^,pi+1))=i=0a1𝒞(φi,p).{\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)\,=\,{\mathcal{H}}_{q}(\widehat{\theta},p-a)-{\mathcal{N}}_{q}(\widehat{\theta},p-a)+{\mathcal{C}}(\widehat{\theta},p-a+1)\\ =\,{\mathcal{C}}(\widehat{\theta},p-a+1)\,=\,{\mathcal{C}}(\widehat{\theta},p)+\sum_{i=1}^{a-1}({\mathcal{C}}(\widehat{\theta},p-i)-{\mathcal{C}}(\widehat{\theta},p-i+1))\,=\,\sum_{i=0}^{a-1}{\mathcal{C}}(\varphi_{i},p)\,.

If θ^\widehat{\theta}\neq\emptyset and ψ\psi is a single box that is not connected to θ^\widehat{\theta}, then q(θ,p)𝒩q(θ,p)=𝒞(θ^,p){\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)={\mathcal{C}}(\widehat{\theta},p) follows from the definitions. Finally, if θ^\widehat{\theta}\neq\emptyset, ψ\psi is not connected to θ^\widehat{\theta}, and a2a\geq 2, we obtain

q(θ,p)𝒩q(θ,p)= 2𝒞(θ^,pa+1)𝒞(θ^,pa+2)=𝒞(θ^,p)+(2𝒞(θ^,p1)2𝒞(θ^,p))+i=2a1(2𝒞(θ^,pi)3𝒞(θ^,pi+1)+𝒞(θ^,pi+2))=i=0a1𝒞(φi,p).\begin{split}&{\mathcal{H}}_{q}(\theta,p)-{\mathcal{N}}_{q}(\theta,p)\ =\ 2\,{\mathcal{C}}(\widehat{\theta},p-a+1)-{\mathcal{C}}(\widehat{\theta},p-a+2)\\ &\ \ =\ {\mathcal{C}}(\widehat{\theta},p)+\left(2\,{\mathcal{C}}(\widehat{\theta},p-1)-2\,{\mathcal{C}}(\widehat{\theta},p)\right)\\ &\ \ \ \ \ \ \ \ \ +\sum_{i=2}^{a-1}\left(2\,{\mathcal{C}}(\widehat{\theta},p-i)-3\,{\mathcal{C}}(\widehat{\theta},p-i+1)+{\mathcal{C}}(\widehat{\theta},p-i+2)\right)\\ &\ \ =\ \sum_{i=0}^{a-1}{\mathcal{C}}(\varphi_{i},p)\,.\end{split}

The identity follows from these observations. ∎

We finally prove that the Pieri structure constants 𝒩^(θ,p)\widehat{\mathcal{N}}(\theta,p) of QK(X)\operatorname{QK}(X) are signed counts of QKLG-tableaux.

Corollary 10.11.

Let θ𝒫^X\theta\subset\widehat{\mathcal{P}}_{X} be a skew shape and 1pn1\leq p\leq n. Then 𝒩^(θ,p)=𝒩(θ,p)\widehat{\mathcal{N}}(\theta,p)={\mathcal{N}}(\theta,p).

Proof.

If θ\theta is disjoint from the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}, then 𝒩^(θ,p)=𝒞(θ,p)=𝒩(θ,p)\widehat{\mathcal{N}}(\theta,p)={\mathcal{C}}(\theta,p)={\mathcal{N}}(\theta,p) by [BR12]. If θ\theta contains two or more boxes from the NE diagonal, then 𝒩(θ,p)=0{\mathcal{N}}(\theta,p)=0 by definition (since θ\theta is not a rim), and since dmax(p)=1d_{\max}(p)=1, it follows from [BCMP22, Thm. 8.3] that 𝒩^(θ,p)=0\widehat{\mathcal{N}}(\theta,p)=0. Assume that θ\theta contains exactly one box from the NE diagonal of 𝒫^X\widehat{\mathcal{P}}_{X}. Then θ\theta^{-} equals θ^\widehat{\theta} if the north-east arm of θ\theta is a row, and θ=θ\theta^{-}=\theta otherwise. Lemma 10.6 shows that 𝒩(θ,p)=𝒩q(θ,p){\mathcal{N}}(\theta,p)={\mathcal{N}}_{q}(\theta,p), and Proposition 10.10 and the definition (10) show that 𝒩q(θ,p)=𝒩^(θ,p){\mathcal{N}}_{q}(\theta,p)=\widehat{\mathcal{N}}(\theta,p), noting that the condition θφθ\theta^{-}\subset\varphi\subsetneq\theta implies that (φ,p)=𝒞(φ,p){\mathcal{H}}(\varphi,p)={\mathcal{C}}(\varphi,p) by Remark 10.2. ∎

References

  • [BC12] S. Billey and I. Coskun. Singularities of generalized Richardson varieties. Comm. Algebra, 40(4):1466–1495, 2012.
  • [BCFF99] A. Bertram, I. Ciocan-Fontanine, and W. Fulton. Quantum multiplication of Schur polynomials. J. Algebra, 219(2):728–746, 1999.
  • [BCMP13] A. S. Buch, P.-E. Chaput, L. C. Mihalcea, and N. Perrin. Finiteness of cominuscule quantum KK-theory. Ann. Sci. Éc. Norm. Supér. (4), 46(3):477–494 (2013), 2013.
  • [BCMP18a] A. S. Buch, P.-E. Chaput, L. C. Mihalcea, and N. Perrin. A Chevalley formula for the equivariant quantum KK-theory of cominuscule varieties. Algebr. Geom., 5(5):568–595, 2018.
  • [BCMP18b] A. S. Buch, P.-E. Chaput, L. C. Mihalcea, and N. Perrin. Projected Gromov-Witten varieties in cominuscule spaces. Proc. Amer. Math. Soc., 146(9):3647–3660, 2018.
  • [BCMP22] A. S. Buch, P.-E. Chaput, L. C. Mihalcea, and N. Perrin. Positivity of minuscule quantum KK-theory. arXiv:2205.08630, 2022.
  • [Bel04] P. Belkale. Transformation formulas in quantum cohomology. Compos. Math., 140(3):778–792, 2004.
  • [Ber97] A. Bertram. Quantum Schubert calculus. Adv. Math., 128(2):289–305, 1997.
  • [BKT03] A. S. Buch, A. Kresch, and H. Tamvakis. Gromov-Witten invariants on Grassmannians. J. Amer. Math. Soc., 16(4):901–915, 2003.
  • [BKT09] A. S. Buch, A. Kresch, and H. Tamvakis. Quantum Pieri rules for isotropic Grassmannians. Invent. Math., 178(2):345–405, 2009.
  • [BKT15] A. S. Buch, A. Kresch, and H. Tamvakis. A Giambelli formula for even orthogonal Grassmannians. J. Reine Angew. Math., 708:17–48, 2015.
  • [BM11] A. S. Buch and L. C. Mihalcea. Quantum KK-theory of Grassmannians. Duke Math. J., 156(3):501–538, 2011.
  • [BM15] A. S. Buch and L. C. Mihalcea. Curve neighborhoods of Schubert varieties. J. Differential Geom., 99(2):255–283, 2015.
  • [BR12] A. S. Buch and V. Ravikumar. Pieri rules for the KK-theory of cominuscule Grassmannians. J. Reine Angew. Math., 668:109–132, 2012.
  • [Bri02] M. Brion. Positivity in the Grothendieck group of complex flag varieties. volume 258, pages 137–159. 2002. Special issue in celebration of Claudio Procesi’s 60th birthday.
  • [BS16] A. S. Buch and M. J. Samuel. KK-theory of minuscule varieties. J. Reine Angew. Math., 719:133–171, 2016.
  • [Buc03] A. S. Buch. Quantum cohomology of Grassmannians. Compositio Math., 137(2):227–235, 2003.
  • [BW21] A. S. Buch and C. Wang. Positivity determines the quantum cohomology of Grassmannians. Algebra Number Theory, 15(6):1505–1521, 2021.
  • [CMP08] P.-E. Chaput, L. Manivel, and N. Perrin. Quantum cohomology of minuscule homogeneous spaces. Transform. Groups, 13(1):47–89, 2008.
  • [CMP09] P.-E. Chaput, L. Manivel, and N. Perrin. Affine symmetries of the equivariant quantum cohomology ring of rational homogeneous spaces. Math. Res. Lett., 16(1):7–21, 2009.
  • [CP11] P.-E. Chaput and N. Perrin. Rationality of some Gromov-Witten varieties and application to quantum KK-theory. Commun. Contemp. Math., 13(1):67–90, 2011.
  • [FP97] W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In Algebraic geometry—Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 45–96. Amer. Math. Soc., Providence, RI, 1997.
  • [FW04] W. Fulton and C. Woodward. On the quantum product of Schubert classes. J. Algebraic Geom., 13(4):641–661, 2004.
  • [Gre13] R. M. Green. Combinatorics of minuscule representations, volume 199 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2013.
  • [Hag04] M. Hagiwara. Minuscule heaps over Dynkin diagrams of type A~\tilde{A}. Electron. J. Combin., 11(1):Research Paper 3, 20, 2004.
  • [KLS14] A. Knutson, T. Lam, and D. Speyer. Projections of Richardson varieties. J. Reine Angew. Math., 687:133–157, 2014.
  • [KT03] A. Kresch and H. Tamvakis. Quantum cohomology of the Lagrangian Grassmannian. J. Algebraic Geom., 12(4):777–810, 2003.
  • [KT04] A. Kresch and H. Tamvakis. Quantum cohomology of orthogonal Grassmannians. Compos. Math., 140(2):482–500, 2004.
  • [Len00] C. Lenart. Combinatorial aspects of the KK-theory of Grassmannians. Ann. Comb., 4(1):67–82, 2000.
  • [LLSY22] C. Li, Z. Liu, J. Song, and M. Yang. On Seidel representation in quantum KK-theory of Grassmannians. arXiv:2211.16902, 2022.
  • [Per07] N. Perrin. Small resolutions of minuscule Schubert varieties. Compos. Math., 143(5):1255–1312, 2007.
  • [Pos05] A. Postnikov. Affine approach to quantum Schubert calculus. Duke Math. J., 128(3):473–509, 2005.
  • [Pro84] R. A. Proctor. Bruhat lattices, plane partition generating functions, and minuscule representations. European J. Combin., 5(4):331–350, 1984.
  • [Rav13] V. Ravikumar. Triple intersection formulas for isotropic grassmannians. ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick.
  • [Rav15] V. Ravikumar. Triple intersection formulas for isotropic Grassmannians. Algebra Number Theory, 9(3):681–723, 2015.
  • [Ric92] R. W. Richardson. Intersections of double cosets in algebraic groups. Indag. Math. (N.S.), 3(1):69–77, 1992.
  • [Sei97] P. Seidel. π1\pi_{1} of symplectic automorphism groups and invertibles in quantum homology rings. Geom. Funct. Anal., 7(6):1046–1095, 1997.
  • [Tar23] M. Tarigradschi. Curve neighborhoods of Seidel products in quantum cohomology. arXiv:2309.05985, 2023.
  • [Wit95] E. Witten. The Verlinde algebra and the cohomology of the Grassmannian. In Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, pages 357–422. Int. Press, Cambridge, MA, 1995.