This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Semileptonic B(s)B_{(s)} meson decays to D0(2300),Ds0(2317),Ds1(2460),Ds1(2536),D1(2420)D_{0}^{\ast}(2300),D_{s0}^{\ast}(2317),D_{s1}(2460),D_{s1}(2536),D_{1}(2420) and D1(2430)D_{1}(2430) within the covariant light-front approach

You-Ya Yang,1 Zhi-Qing Zhang,1,111 zhangzhiqing@haut.edu.cn (corresponding author) and Hao Yang1 1 School of Physics, Henan University of Technology, Zhengzhou, Henan 450001, China
Abstract

In this work, we investigate the semileptonic decays of B(s)B_{(s)} meson to D0(2300)D_{0}^{\ast}(2300), Ds0(2317)D_{s0}^{\ast}(2317), Ds1(2460)D_{s1}(2460), Ds1(2536)D_{s1}(2536), D1(2420)D_{1}(2420) and D1(2430)D_{1}(2430) in the covariant light-front quark model (CLFQM). We combine the helicity amplitudes via the corresponding form factors to obtain the branching ratios of the semileptonic decays B(s)D(s)νB_{(s)}\to D^{**}_{(s)}\ell\nu_{\ell} with D(s)D^{**}_{(s)} referring to a P-wave exicted charmed meson D0(2300)D_{0}^{\ast}(2300), Ds0(2317)D_{s0}^{\ast}(2317), Ds1(2460)D_{s1}(2460), Ds1(2536)D_{s1}(2536), D1(2420)D_{1}(2420) or D1(2430)D_{1}(2430) and =e,μ,τ\ell=e,\mu,\tau. Furthermore, we also take into account another two physical observables, namely the longitudinal polarization fraction fLf_{L} and the forward-backward asymmetry AFBA_{FB}. Most of our predictions are comparable to the results given by other theoretical approaches and the present available data. The branching ratios of the semileptonic decay channels BsDs1(2460)νB_{s}\to D_{s1}(2460)\ell\nu_{\ell} and BD1(2420)νB\to D_{1}(2420)\ell\nu_{\ell} are larger than those of the semileptonic decays BsDs1(2536)νB_{s}\to D_{s1}(2536)\ell\nu_{\ell} and BD1(2430)νB\to D_{1}(2430)\ell\nu_{\ell}, respectively. We find that the long-standing ’1/21/2 vs 3/23/2 puzzle’ in the decays B+D¯1()0+νB^{+}\to\bar{D}_{1}^{(\prime)0}\ell^{\prime+}\nu_{\ell^{\prime}} (=e,μ)(\ell^{\prime}=e,\mu) can be solved by taking some negative mixing angle θs\theta_{s} values within a range from 30.3-30.3^{\circ} to 24.9-24.9^{\circ}, corresponding to θ\theta of about 510.45^{\circ}\sim 10.4^{\circ}. While Belle collaboration updated their measurements for the decays B0D0+νB^{0}\to D^{*-}_{0}\ell^{\prime+}\nu_{\ell^{\prime}} with only a small upper limit Br(B0D0+ν)<0.44×103Br(B^{0}\to D^{*-}_{0}\ell^{\prime+}\nu_{\ell^{\prime}})<0.44\times 10^{-3} obtained, which is much larger than most theoretical predictions and causes a new puzzle.

pacs:
13.25.Hw, 12.38.Bx, 14.40.Nd

I Introduction

In the conventional quark model, these P-wave orbitally excited charmed mesons D0(2300)D_{0}^{\ast}(2300), Ds0(2317)D_{s0}^{\ast}(2317), Ds1(2460)D_{s1}(2460), Ds1(2536)D_{s1}(2536), D1(2420)D_{1}(2420) and D1(2430)D_{1}(2430) can be view as constituent quark-antiquark pairs. They are usually classified according to the quantum numbers LJ(2S+1){}^{(2S+1)}L_{J}: the scalar mesons D0(2300)D_{0}^{\ast}(2300) and Ds0(2317)D_{s0}^{\ast}(2317) correspond to P03{}^{3}P_{0}. While there exist two different kinds of axial-vector mesons, namely P11{}^{1}P_{1} and P13{}^{3}P_{1}, which can undergo mixing when the two constituent quarks are different. In the heavy quark limit, the heavy quark spin and the total angular momentum of the light quark are good quantum numbers, it is more convenient to use the LJjL^{j}_{J} configurations 222j(L)j(L) being the total (orbital) angular momentum of the light quark. to classify them: the scalar mesons D0(2300)D_{0}^{\ast}(2300) and Ds0(2317)D_{s0}^{\ast}(2317) belong to P01/2P^{1/2}_{0}, D1(2430)(Ds1(2536))D_{1}(2430)(D_{s1}(2536)) and D1(2420)(Ds1(2460))D_{1}(2420)(D_{s1}(2460)) correspond to P13/2P^{3/2}_{1} and P11/2P^{1/2}_{1}, respectively. However, beyond the heavy quark limit, there is a mixing between P13/2P^{3/2}_{1} and P11/2P^{1/2}_{1}, denoted by D13/2D^{3/2}_{1} and D11/2D^{1/2}_{1}, respectively333Here we take the physical states D1(2430)D_{1}(2430) and D1(2420)D_{1}(2420) as an example to explain, it is similar to the states Ds1(2536)D_{s1}(2536) and Ds1(2460)D_{s1}(2460)., that is

|D1(2420)\displaystyle|D_{1}(2420)\rangle =\displaystyle= |D11/2sinθs+|D13/2cosθs,\displaystyle|D_{1}^{1/2}\rangle\sin\theta_{s}+|D_{1}^{3/2}\rangle\cos\theta_{s},
|D1(2430)\displaystyle|D_{1}(2430)\rangle =\displaystyle= |D13/2sinθs+|D11/2cosθs.\displaystyle-|D_{1}^{3/2}\rangle\sin\theta_{s}+|D_{1}^{1/2}\rangle\cos\theta_{s}. (1)

While the states D11/2D_{1}^{1/2} and D13/2D_{1}^{3/2} are expected to be a mixture of states P11{}^{1}P_{1} and P13{}^{3}P_{1} denoted by D11{}^{1}D_{1} and D13{}^{3}D_{1}, respectively,

|D13/2\displaystyle|D^{3/2}_{1}\rangle =\displaystyle= 23|1D1+13|3D1,\displaystyle\sqrt{\frac{2}{3}}|^{1}D_{1}\rangle+\sqrt{\frac{1}{3}}|^{3}D_{1}\rangle,
|D11/2\displaystyle|D^{1/2}_{1}\rangle =\displaystyle= 13|1D1+23|3D1.\displaystyle-\sqrt{\frac{1}{3}}|^{1}D_{1}\rangle+\sqrt{\frac{2}{3}}|^{3}D_{1}\rangle. (2)

Combining Eq. (1) and Eq. (2), one can find that the physical states D1(2420)D_{1}(2420) and D1(2430)D_{1}(2430) can be written as

|D1(2420)\displaystyle|D_{1}(2420)\rangle =\displaystyle= |1D1cosθ+|3D1sinθ,\displaystyle|^{1}D_{1}\rangle\cos\theta+|^{3}D_{1}\rangle\sin\theta,
|D1(2430)\displaystyle|D_{1}(2430)\rangle =\displaystyle= |1D1sinθ+|3D1cosθ.\displaystyle-|^{1}D_{1}\rangle\sin\theta+|^{3}D_{1}\rangle\cos\theta. (3)

where θs=7\theta_{s}=7^{\circ} and θ=θs+35.3\theta=\theta_{s}+35.3^{\circ} zhw . There exist many puzzles in these several P-wave excited states, such as the low mass puzzle for the states D0(2300),Ds0(2317)D^{*}_{0}(2300),D^{*}_{s0}(2317) and Ds1(2460)D_{s1}(2460) belle ; quark ; babar2 ; godfrey2 , the SU(3) mass hierarchy puzzle between D0(2300)D^{*}_{0}(2300) and Ds0(2317)D^{*}_{s0}(2317), large width difference between them Gubernari , especially, the long-standing ’1/21/2 vs 3/23/2 puzzle’ morenas ; bigi ; scora ; colangelo , that is the theoretical predictions for the branching ratios of semileptonic B decays into D1/2+D^{1/2+} are much smaller than those into D3/2+D^{3/2+}, which conflicts with the experimental measurements belle ; babar2 ; Belle:2022yzd . These unexpected disparities between theory and experiment have sparked many explanations about their inner structures, such as the molecular states, the compact tetraquark states, the states of c¯s\bar{c}s mixed with four-quark states, and so on guo ; cleven ; close ; guofk ; lutz ; lutz2 ; ylma ; maiani ; wangzg ; hycheng2 ; yqchen ; kim ; bardeen ; nowak ; browder ; vijande .

In this paper we investigate the semileptonic B(s)B_{(s)} meson decays to D0(2300)D_{0}^{\ast}(2300), Ds0(2317)D_{s0}^{\ast}(2317), Ds1(2460)D_{s1}(2460), Ds1(2536)D_{s1}(2536), D1(2420)D_{1}(2420) and D1(2430)D_{1}(2430) by using the covariant light-front quark model (CLFQM). For the semileptonic decays, the hadronic transition matrix element between the initial and final mesons is most crucial for theoretical calculations, which can be characterized by several form factors. The form factors can be extracted from data or relied on some non-perturbative methods. The B(s)D(s)B_{(s)}\to D^{**}_{(s)} transition form factors were initially calculated in the improved version of the Isgur-Scora-Ginstein-Wise (ISGW) quark model, the so-called ISGW2 hycheng . Some of them were calculated using the CLFQM Cheng , QCD sum rules (QCDSR) Y.B. ; M. Q. ; Zuo:2023ksq and light-cone sum rules (LCSRs) Gubernari . Additionally, with the available experimental data as inputs, the form factors of the B(s)B_{(s)} to these excited charmed meson transitions and the corresponding semileptonic decays were also investigated based on the heavy quark effective theory (HQET), including the next-to-leading order corrections of heavy quark expansion and new physics (NP) effects A.K.1 ; A.K.2 ; F.U. ; F.U.1 . As one of the popular non-perturbative methods, the CLFQM has been used successfully to study the form factors Cheng ; Cheng1 ; Hwang ; Lu ; Wang . Based on the form factors and helicity formalisms, we also calculate another two physical observables: the forward-backward asymmetry AFBA_{FB} and the longitudinal polarization fraction fLf_{L}, respectively.

The arrangement of this paper is as follows: In Section II, the formalism of the CLFQM, the hadronic matrix elements and the helicity amplitudes combined via form factors are presented. The numerical results for the B(s)B_{(s)} meson to D0(2300)D_{0}^{\ast}(2300), Ds0(2317)D_{s0}^{\ast}(2317), Ds1(2460)D_{s1}(2460), Ds1(2536)D_{s1}(2536), D1(2420)D_{1}(2420) and D1(2430)D_{1}(2430) transition form factors, the branching ratios, the forward-backward asymmetries AFBA_{FB} and the longitudinal polarization fractions fLf_{L} for the corresponding decays are presented in Section III. In addition, the detailed numerical analysis and discussion, including comparisons with the data and other model calculations, are carried out. The conclusions are presented in the final part.

II Formalism

II.1 The covariant light-front quark model

Under the covariant light-front quark model, the light-front coordinates of a momentum pp are defined as p=(p,p+,p)p=(p^{-},p^{+},p_{\perp}) with p±=p0±pzp^{\pm}=p^{0}\pm p_{z} and p2=p+pp2p^{2}=p^{+}p^{-}-p^{2}_{\perp}. If the momenta of the quark and antiquark with masses m1(′′)m_{1}^{\prime(\prime\prime)} and m2m_{2} in the incoming (outgoing) meson are denoted as p1(′′)p_{1}^{\prime(\prime\prime)} and p2p_{2}, respectively, the momentum of the incoming (outgoing) meson with mass M(M′′)M^{\prime}(M^{\prime\prime}) can be written as P=p1+p2(P′′=p1′′+p2)P^{\prime}=p_{1}^{\prime}+p_{2}(P^{\prime\prime}=p_{1}^{\prime\prime}+p_{2}). Here, we use the same notation as those in Refs. Jaus ; Cheng and MM^{\prime} refers to mBm_{B} for BB meson decays. These momenta can be related each other through the internal variables (xi,p)(x_{i},p{\prime}_{\perp})

p1,2+=x1,2P+,p1,2=x1,2P±p,\displaystyle p_{1,2}^{\prime+}=x_{1,2}P^{\prime+},\quad p_{1,2\perp}^{\prime}=x_{1,2}P_{\perp}^{\prime}\pm p_{\perp}^{\prime}, (4)

with x1+x2=1x_{1}+x_{2}=1. Using these internal variables, we can define some quantities for the incoming meson which will be used in the following calculations

M02\displaystyle M_{0}^{\prime 2} =\displaystyle= (e1+e2)2=p2+m12x1+p2+m22x2,M~0=M02(m1m2)2,\displaystyle\left(e_{1}^{\prime}+e_{2}\right)^{2}=\frac{p_{\perp}^{\prime 2}+m_{1}^{\prime 2}}{x_{1}}+\frac{p_{\perp}^{2}+m_{2}^{2}}{x_{2}},\quad\widetilde{M}_{0}^{\prime}=\sqrt{M_{0}^{\prime 2}-\left(m_{1}^{\prime}-m_{2}\right)^{2}},
ei()\displaystyle e_{i}^{(\prime)} =\displaystyle= mi()2+p2+pz2,pz=x2M02m22+p22x2M0,\displaystyle\sqrt{m_{i}^{(\prime)2}+p_{\perp}^{\prime 2}+p_{z}^{\prime 2}},\quad\quad p_{z}^{\prime}=\frac{x_{2}M_{0}^{\prime}}{2}-\frac{m_{2}^{2}+p_{\perp}^{\prime 2}}{2x_{2}M_{0}^{\prime}}, (5)

where the kinetic invariant mass of the incoming meson M0M^{\prime}_{0} can be expressed as the energies of the quark and the antiquark ei()e^{(\prime)}_{i}. It is similar to the case of the outgoing meson.

Refer to caption
Refer to caption
Figure 1: Feynman diagrams for B(s)B_{(s)} decay (left) and transition (right) amplitudes, where P(′′)P^{\prime(\prime\prime)} is the incoming (outgoing) meson momentum, p1(′′)p^{\prime(\prime\prime)}_{1} is the quark momentum and p2p_{2} is the anti-quark momentum. The X in the diagrams denotes the vector or axial-vector transition vertex.

To calculate the amplitudes for the transition form factors, we need the Feynman rules for the meson-quark-antiquark vertices iΓMi\Gamma^{\prime}_{M} 444In the following we take the transitions BD0B\to D^{*}_{0} and B3D1,1D1B\to^{3}D_{1},^{1}D_{1} as examples. It is similar for the transitions BsDs0B_{s}\to D^{*}_{s0} and Bs3Ds1,1Ds1B_{s}\to^{3}D_{s1},^{1}D_{s1}. From now on, we will use D0,Ds0,Ds1,Ds1,D1D^{*}_{0},D^{*}_{s0},D_{s1},D_{s1}^{\prime},D_{1} and D1D_{1}^{\prime} to represent D0(2300),Ds0(2317),Ds1(2460),Ds1(2536),D1(2420)D^{*}_{0}(2300),D^{*}_{s0}(2317),D_{s1}(2460),D_{s1}(2536),D_{1}(2420) and D1(2430)D_{1}(2430), respectively, for simplicity. , which are listed as

iΓD0\displaystyle i\Gamma_{D^{*}_{0}}^{\prime} =\displaystyle= iHD0,\displaystyle-iH_{D^{*}_{0}}^{\prime}, (6)
iΓD13\displaystyle i\Gamma_{\;{}^{3}D_{1}}^{\prime} =\displaystyle= iHD13[γμ+1WD13(p1p2)μ]γ5,\displaystyle-iH_{\;{}^{3}D_{1}}^{\prime}\left[\gamma_{\mu}+\frac{1}{W_{\;{}^{3}D_{1}}^{\prime}}\left(p_{1}^{\prime}-p_{2}\right)_{\mu}\right]\gamma_{5}, (7)
iΓD11\displaystyle i\Gamma_{\;{}^{1}D_{1}}^{\prime} =\displaystyle= iHD11[1WD11(p1p2)μ]γ5.\displaystyle-iH_{\;{}^{1}D_{1}}^{\prime}\left[\frac{1}{W_{\;{}^{1}D_{1}}^{\prime}}\left(p_{1}^{\prime}-p_{2}\right)_{\mu}\right]\gamma_{5}. (8)

The form factors of the transitions BD0B\to D^{*}_{0} and BiD1(i=1,3)B\to\ ^{i}D_{1}(i=1,3) induced by the vector and aixal-vector currents are defined as

D0(P′′)|Aμ|B(P)\displaystyle\left\langle D^{*}_{0}\left(P^{\prime\prime}\right)\left|A_{\mu}\right|B\left(P^{\prime}\right)\right\rangle =\displaystyle= i[u+(q2)Pμ+u(q2)qμ],\displaystyle i\left[u_{+}(q^{2})P_{\mu}+u_{-}(q^{2})q_{\mu}\right], (9)
D1i(P′′,ε)|Aμ|B(P)\displaystyle\left\langle\;{}^{i}D_{1}\left(P^{\prime\prime},\varepsilon\right)\left|A_{\mu}\right|B\left(P^{\prime}\right)\right\rangle =\displaystyle=- q(q2)ϵμναβενPαqβ,\displaystyle q(q^{2})\epsilon_{\mu\nu\alpha\beta}\varepsilon^{*\nu}P^{\alpha}q^{\beta}, (10)
D1i(P′′,ε)|Vμ|B(P)\displaystyle\left\langle\;{}^{i}D_{1}\left(P^{\prime\prime},\varepsilon\right)\left|V_{\mu}\right|B\left(P^{\prime}\right)\right\rangle =\displaystyle= i{l(q2)εμ+εP[Pμc+(q2)+qμc(q2)]}.\displaystyle i\left\{l(q^{2})\varepsilon_{\mu}^{*}+\varepsilon^{*}\cdot P\left[P_{\mu}c_{+}(q^{2})+q_{\mu}c_{-}(q^{2})\right]\right\}. (11)

In calculations, the Bauer-Stech-Wirbel (BSW) bsw transition form factors are more frequently used and defined by

D0(P′′)|Aμ|B(P)\displaystyle\left\langle D^{*}_{0}\left(P^{\prime\prime}\right)\left|A_{\mu}\right|B\left(P^{\prime}\right)\right\rangle =\displaystyle= (PμmB2mD02q2qμ)F1BD0(q2)+mB2mD02q2qμF0BD0(q2),\displaystyle\left(P_{\mu}-\frac{m_{B}^{2}-m_{D^{*}_{0}}^{2}}{q^{2}}q_{\mu}\right)F_{1}^{BD^{*}_{0}}\left(q^{2}\right)+\frac{m_{B}^{2}-m_{D^{*}_{0}}^{2}}{q^{2}}q_{\mu}F_{0}^{BD^{*}_{0}}\left(q^{2}\right),\;\;\;\;\;\;\;\; (12)
D1i(P′′,εμ)|Vμ|B(P)\displaystyle\left\langle{}^{i}D_{1}\left(P^{\prime\prime},\varepsilon^{\mu*}\right)\left|V_{\mu}\right|B\left(P^{\prime}\right)\right\rangle =\displaystyle= i{(mBmD1i)εμV1BiD1(q2)εPmBmD1iPμV2BiD1(q2)\displaystyle-i\left\{\left(m_{B}-m_{{}^{i}D_{1}}\right)\varepsilon_{\mu}^{*}V_{1}^{B\ ^{i}D_{1}}\left(q^{2}\right)-\frac{\varepsilon^{*}\cdot P}{m_{B}-m_{{}^{i}D_{1}}}P_{\mu}V_{2}^{B\ ^{i}D_{1}}\left(q^{2}\right)\right. (13)
2mD1iεPq2qμ[V3BiD1(q2)V0BiD1(q2)]},\displaystyle\left.-2m_{{}^{i}D_{1}}\frac{\varepsilon^{*}\cdot P}{q^{2}}q_{\mu}\left[V_{3}^{B\ ^{i}D_{1}}\left(q^{2}\right)-V_{0}^{B\ ^{i}D_{1}}\left(q^{2}\right)\right]\right\},
D1i(P′′,εμ)|Aμ|B(P)\displaystyle\left\langle{}^{i}D_{1}\left(P^{\prime\prime},\varepsilon^{\mu*}\right)\left|A_{\mu}\right|B\left(P^{\prime}\right)\right\rangle =\displaystyle= 1mBmD1iϵμναβενPαqβABiD1(q2),\displaystyle-\frac{1}{m_{B}-m_{{}^{i}D_{1}}}\epsilon_{\mu\nu\alpha\beta}\varepsilon^{*\nu}P^{\alpha}q^{\beta}A^{B\ ^{i}D_{1}}\left(q^{2}\right), (14)

where P=P+P′′,q=PP′′P=P^{\prime}+P^{\prime\prime},q=P^{\prime}-P^{\prime\prime} and the convention ϵ0123=1\epsilon_{0123}=1 is adopted.

To smear the singularity at q2=0q^{2}=0 in Eq. (13), the following relations are required

V3BiD1(0)\displaystyle V^{B\ ^{i}D_{1}}_{3}(0) =\displaystyle= V0BiD1(0),\displaystyle V^{B\ ^{i}D_{1}}_{0}(0), (15)
V3BiD1(q2)\displaystyle V^{B\ ^{i}D_{1}}_{3}(q^{2}) =\displaystyle= mBmD1i2mD1iV1BiD1(q2)mB+mD1i2mD1iV2BD1i(q2).\displaystyle\frac{m_{B}-m_{{}^{i}D_{1}}}{2m_{{}^{i}D_{1}}}V^{B\ ^{i}D_{1}}_{1}(q^{2})-\frac{m_{B}+m_{{}^{i}D_{1}}}{2m_{{}^{i}D_{1}}}V^{B\ {{}^{i}D_{1}}}_{2}(q^{2}). (16)

These two kinds of form factors are related to each other via

F1BD0(q2)\displaystyle F^{BD^{*}_{0}}_{1}(q^{2}) =\displaystyle= u+(q2),F0BD0(q2)=u+(q2)q2qPu(q2),\displaystyle-u_{+}(q^{2}),F^{BD^{*}_{0}}_{0}(q^{2})=-u_{+}(q^{2})-\frac{q^{2}}{q\cdot P}u_{-}(q^{2}), (17)
ABiD1(q2)\displaystyle A^{B\ ^{i}D_{1}}(q^{2}) =\displaystyle= (mBmD1i)q(q2),V1BiD1(q2)=l(q2)mBmD1i,\displaystyle-(m_{B}-m_{{}^{i}D_{1}})q(q^{2}),V^{B\ ^{i}D_{1}}_{1}(q^{2})=-\frac{l(q^{2})}{m_{B}-m_{{}^{i}D_{1}}}, (18)
V2BiD1(q2)\displaystyle V^{B\ ^{i}D_{1}}_{2}(q^{2}) =\displaystyle= (mBmD1i)c+(q2),V3BiD1(q2)V0BiDs1(q2)=q22mD1ic(q2).\displaystyle(m_{B}-m_{{}^{i}D_{1}})c_{+}(q^{2}),V^{B\ ^{i}D_{1}}_{3}(q^{2})-V^{B\ ^{i}D_{s1}}_{0}(q^{2})=\frac{q^{2}}{2m_{{}^{i}D_{1}}}c_{-}(q^{2}). (19)

For the general BMB\rightarrow M transitions with MM being a scalar or axial-vector meson, the decay amplitude at the lowest order is Cheng:2003sm

BM=i3Nc(2π)4d4p1HB(HM′′)N1N1′′N2SμBM,\displaystyle\mathcal{M}^{BM}=-i^{3}\frac{N_{c}}{(2\pi)^{4}}\int d^{4}p_{1}^{\prime}\frac{H_{B}^{\prime}\left(H_{M}^{\prime\prime}\right)}{N_{1}^{\prime}N_{1}^{\prime\prime}N_{2}}S_{\mu}^{BM}, (20)

where N1(′′)=p1(′′)2m1(′′)2N_{1}^{\prime(\prime\prime)}=p_{1}^{\prime(\prime\prime)2}-m_{1}^{\prime(\prime\prime)2} and N2=p22m22N_{2}=p_{2}^{2}-m_{2}^{2} arise from the quark propagators. For our considered transitions BD0B\rightarrow D^{*}_{0} and B1D1,3D1B\to\ ^{1}D_{1},\ ^{3}D_{1}, the traces SμBD0,SμνB1D1S_{\mu}^{BD^{*}_{0}},S_{\mu\nu}^{B\;^{1}D_{1}} and SμνB3D1S_{\mu\nu}^{B\;^{3}D_{1}} can be directly written out by using the Lorentz contraction as follows

SμBD0\displaystyle S_{\mu}^{BD^{*}_{0}} =\displaystyle= Tr[(1′′+m1′′)γμγ5(1+m1)γ5(2+m2)],\displaystyle Tr\left[\left(\not p_{1}^{\prime\prime}+m_{1}^{\prime\prime}\right)\gamma_{\mu}\gamma_{5}\left(\not p_{1}^{\prime}+m_{1}^{\prime}\right)\gamma_{5}\left(-\not p_{2}+m_{2}\right)\right], (21)
SμνB1D1\displaystyle S_{\mu\nu}^{B\;^{1}D_{1}} =\displaystyle= (SVB1D1SAB1D1)μν\displaystyle\left(S_{V}^{B\;^{1}D_{1}}-S_{A}^{B\;^{1}D_{1}}\right)_{\mu\nu} (22)
=\displaystyle= Tr[(1WD11′′(p1′′p2)ν)γ5(1′′+m1′′)(γμγμγ5)(1+m1)γ5(2+m2)],\displaystyle\operatorname{Tr}\left[\left(-\frac{1}{W_{\;{}^{1}D_{1}}^{\prime\prime}}\left(p_{1}^{\prime\prime}-p_{2}\right)_{\nu}\right)\gamma_{5}\left(\not p_{1}^{\prime\prime}+m_{1}^{\prime\prime}\right)\left(\gamma_{\mu}-\gamma_{\mu}\gamma_{5}\right)\left(\not p_{1}^{\prime}+m_{1}^{\prime}\right)\gamma_{5}\left(-\not p_{2}+m_{2}\right)\right],\;\;\;
SμνB3D1\displaystyle S_{\mu\nu}^{B\;^{3}D_{1}} =\displaystyle= (SVB3D1SAB3D1)μν\displaystyle\left(S_{V}^{B\;^{3}D_{1}}-S_{A}^{B\;^{3}D_{1}}\right)_{\mu\nu} (23)
=\displaystyle= Tr[(γν1WD13′′(p1′′p2)ν)γ5(1′′+m1′′)(γμγμγ5)(1+m1)γ5(2+m2)].\displaystyle\operatorname{Tr}\left[\left(\gamma_{\nu}-\frac{1}{W_{\;{}^{3}D_{1}}^{\prime\prime}}\left(p_{1}^{\prime\prime}-p_{2}\right)_{\nu}\right)\gamma_{5}\left(\not p_{1}^{\prime\prime}+m_{1}^{\prime\prime}\right)\left(\gamma_{\mu}-\gamma_{\mu}\gamma_{5}\right)\left(\not p_{1}^{\prime}+m_{1}^{\prime}\right)\gamma_{5}\left(-\not p_{2}+m_{2}\right)\right].\;\;\;

The form factors can be obtained by matching the coefficients listed in Eqs. (9)-(11) with the corresponding amplitudes given Eq. (20). The specific expressions for these transition form factors are collected in Appendix B. It is noticed that the form factors of the transitions BD1B\to D_{1} and BD1B\to D_{1}^{\prime} can be obtained from those of the transitions B1D1B\to\ ^{1}D_{1} and B3D1B\to\ ^{3}D_{1} through Eq. (3).

II.2 Wave functions and decay constants

The light-front wave functions (LFWFs) are needed in the form factor calculations. Although the LFWFs can be derived from solving the relativistic Schro¨\ddot{o}dinger equation theoretically, it is difficult to obtain their exact solutions in many cases. Consequently, we will use the phenomenological Gaussian-type wave functions in this work,

φ\displaystyle\varphi^{\prime} =\displaystyle= φ(x2,p)=4(πβ2)34dpzdx2exp(pz2+p22β2),\displaystyle\varphi^{\prime}\left(x_{2},p_{\perp}^{\prime}\right)=4\left(\frac{\pi}{\beta^{\prime 2}}\right)^{\frac{3}{4}}\sqrt{\frac{dp_{z}^{\prime}}{dx_{2}}}\exp\left(-\frac{p_{z}^{\prime 2}+p_{\perp}^{\prime 2}}{2\beta^{\prime 2}}\right),
φp\displaystyle\varphi_{p}^{\prime} =\displaystyle= φp(x2,p)=2β2φ,dpzdx2=e1e2x1x2M0,\displaystyle\varphi_{p}^{\prime}\left(x_{2},p_{\perp}^{\prime}\right)=\sqrt{\frac{2}{\beta^{\prime 2}}}\varphi^{\prime},\quad\frac{dp_{z}^{\prime}}{dx_{2}}=\frac{e_{1}^{\prime}e_{2}}{x_{1}x_{2}M_{0}^{\prime}}, (24)

where the parameter β\beta^{\prime} describes the momentum distribution and is approximately of order ΛQCD\Lambda_{QCD}. It can be usually determined by the decay constants through the following analytic expressions Jaus ; Cheng ,

fD0\displaystyle f_{D^{*}_{0}} =\displaystyle= Nc16π3𝑑x2d2phD0x1x2(M2M02)4(m1x2m2x1),\displaystyle\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{D^{*}_{0}}^{\prime}}{x_{1}x_{2}\left(M^{\prime 2}-M_{0}^{\prime 2}\right)}4\left(m_{1}^{\prime}x_{2}-m_{2}x_{1}\right), (25)
fD13\displaystyle f_{\;{}^{3}D_{1}} =\displaystyle= Nc4π3M𝑑x2d2phD13x1x2(M2M02)\displaystyle-\frac{N_{c}}{4\pi^{3}M^{\prime}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{{}^{3}D_{1}}^{\prime}}{x_{1}x_{2}\left(M^{\prime 2}-M_{0}^{\prime 2}\right)} (26)
×[x1M02m1(m1+m2)p2m1m2wD13p2],\displaystyle\times\left[x_{1}M_{0}^{\prime 2}-m_{1}^{\prime}\left(m_{1}^{\prime}+m_{2}\right)-p_{\perp}^{\prime 2}-\frac{m_{1}^{\prime}-m_{2}}{w_{\;{}^{3}D_{1}}^{\prime}}p_{\perp}^{\prime 2}\right],
fD11\displaystyle f_{\;{}^{1}D_{1}} =\displaystyle= Nc4π3M𝑑x2d2phD11x1x2(M2M02)(m1m2wD11p2),\displaystyle\frac{N_{c}}{4\pi^{3}M^{\prime}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{\;{}^{1}D_{1}}^{\prime}}{x_{1}x_{2}\left(M^{\prime 2}-M_{0}^{\prime 2}\right)}\left(\frac{m_{1}^{\prime}-m_{2}}{w_{\;{}^{1}D_{1}}^{\prime}}p_{\perp}^{\prime 2}\right), (27)

where m1m_{1}^{\prime} and m2m_{2} represent the constituent quarks of the states D0,3D1D^{*}_{0},\ ^{3}D_{1} and D11{}^{1}D_{1}. The decay constants can be obtained through experimental measurements for the purely leptonic decays or theoretical calculations. The explicit forms of hMh^{\prime}_{M} are given by Cheng:2003sm

hD0\displaystyle h_{D^{*}_{0}}^{\prime} =\displaystyle= 23hD13=(M2M02)x1x2Nc12M~0M~0223M0φp,\displaystyle\sqrt{\frac{2}{3}}h_{\;{}^{3}D_{1}}^{\prime}=\left(M^{\prime 2}-M_{0}^{\prime 2}\right)\sqrt{\frac{x_{1}x_{2}}{N_{c}}}\frac{1}{\sqrt{2}\widetilde{M}_{0}^{\prime}}\frac{\widetilde{M}_{0}^{\prime 2}}{2\sqrt{3}M_{0}^{\prime}}\varphi_{p}^{\prime}, (28)
hD11\displaystyle h_{\;{}^{1}D_{1}}^{\prime} =\displaystyle= (M2M02)x1x2Nc12M~0φp.\displaystyle\left(M^{\prime 2}-M_{0}^{\prime 2}\right)\sqrt{\frac{x_{1}x_{2}}{N_{c}}}\frac{1}{\sqrt{2}\widetilde{M}_{0}^{\prime}}\varphi_{p}^{\prime}. (29)

II.3 Helicity amplitudes and observables

Since the form factors involving the fitted parameters for most of the transitions B(s)D(s)B_{(s)}\to D_{(s)}^{**} have been investigated in our recent work Zhang:2023ypl , so it is convenient to obtain the differential decay widths of these semileptontic BB decays by the combination of the helicity amplitudes via form factors, which are listed as following

dΓ(BD0ν)dq2\displaystyle\frac{d\Gamma(B\to D^{*}_{0}\ell\nu_{\ell})}{dq^{2}} =\displaystyle= (q2m2q2)2λ(mB2,mD02,q2)GF2|Vcb|2384mB3π3×1q2\displaystyle(\frac{q^{2}-m_{\ell}^{2}}{q^{2}})^{2}\frac{{\sqrt{\lambda(m_{B}^{2},m_{D^{*}_{0}}^{2},q^{2})}}G_{F}^{2}|V_{cb}|^{2}}{384m_{B}^{3}\pi^{3}}\times\frac{1}{q^{2}} (30)
×{(m2+2q2)λ(mB2,mD02,q2)F12(q2)+3m2(mB2mD02)2F02(q2)},\displaystyle\;\;\;\times\left\{(m_{\ell}^{2}+2q^{2})\lambda(m_{B}^{2},m_{D^{*}_{0}}^{2},q^{2})F_{1}^{2}(q^{2})+3m_{\ell}^{2}(m_{B}^{2}-m_{D^{*}_{0}}^{2})^{2}F_{0}^{2}(q^{2})\right\},
dΓL(BD1()ν)dq2\displaystyle\frac{d\Gamma_{L}(B\to D^{(\prime)}_{1}\ell\nu_{\ell})}{dq^{2}} =\displaystyle= (q2m2q2)2λ(mB2,mD1()2,q2)GF2|Vcb|2384mB3π3×1q2{3m2λ(mB2,mD1()2,q2)V02(q2)+(m2+2q2)\displaystyle(\frac{q^{2}-m_{\ell}^{2}}{q^{2}})^{2}\frac{{\sqrt{\lambda(m_{B}^{2},m_{D^{(\prime)}_{1}}^{2},q^{2})}}G_{F}^{2}|V_{cb}|^{2}}{384m_{B}^{3}\pi^{3}}\times\frac{1}{q^{2}}\left\{3m_{\ell}^{2}\lambda(m_{B}^{2},m_{D^{(\prime)}_{1}}^{2},q^{2})V_{0}^{2}(q^{2})+(m_{\ell}^{2}+2q^{2})\right. (31)
×|12mD1()[(mB2mD1()2q2)(mBmD1())V1(q2)λ(mB2,mD1()2,q2)mBmD1()V2(q2)]|2},\displaystyle\times\left.\left|\frac{1}{2m_{D^{(\prime)}_{1}}}\left[(m_{B}^{2}-m_{D^{(\prime)}_{1}}^{2}-q^{2})(m_{B}-m_{D^{(\prime)}_{1}})V_{1}(q^{2})-\frac{\lambda(m_{B}^{2},m_{D^{(\prime)}_{1}}^{2},q^{2})}{m_{B}-m_{D^{(\prime)}_{1}}}V_{2}(q^{2})\right]\right|^{2}\right\},
dΓ±(BD1()ν)dq2\displaystyle\frac{d\Gamma_{\pm}(B\to{D^{(\prime)}_{1}}\ell\nu_{\ell})}{dq^{2}} =\displaystyle= (q2m2q2)2λ(mB2,mD1()2,q2)GF2|Vcb|2384mB3π3\displaystyle(\frac{q^{2}-m_{\ell}^{2}}{q^{2}})^{2}\frac{{\sqrt{\lambda(m_{B}^{2},m_{D^{(\prime)}_{1}}^{2},q^{2})}}G_{F}^{2}|V_{cb}|^{2}}{384m_{B}^{3}\pi^{3}} (32)
×{(m2+2q2)λ(mB2,mD1()2,q2)|A(q2)mBmD1()(mBmD1())V1(q2)λ(mB2,mD1()2,q2)|2},\displaystyle\;\;\times\left\{(m_{\ell}^{2}+2q^{2})\lambda(m_{B}^{2},m_{D^{(\prime)}_{1}}^{2},q^{2})\left|\frac{A(q^{2})}{m_{B}-m_{D^{(\prime)}_{1}}}\mp\frac{(m_{B}-m_{D^{(\prime)}_{1}})V_{1}(q^{2})}{\sqrt{\lambda(m_{B}^{2},m_{D^{(\prime)}_{1}}^{2},q^{2})}}\right|^{2}\right\},

where λ(a,b,c)=(a+bc)24ab\lambda(a,b,c)=(a+b-c)^{2}-4ab and mm_{\ell} is the mass of the lepton \ell with =e,μ,τ\ell=e,\mu,\tau555For now on, we will use \ell to represent e,μ,τe,\mu,\tau and use \ell^{\prime} to represent e,μe,\mu for simplicity. . The helicity amplitudes for the decays BsDs0νB_{s}\to D^{*}_{s0}\ell\nu_{\ell} and BsDs1()νB_{s}\to D^{(\prime)}_{s1}\ell\nu_{\ell} can be obtained from Eqs. (30), (31) and (32), respectively, with simple replacement. The combined transverse and total differential decay widths are defined as

dΓTdq2=dΓ+dq2+dΓdq2,dΓdq2=dΓLdq2+dΓTdq2.\displaystyle\frac{d\Gamma_{T}}{dq^{2}}=\frac{d\Gamma_{+}}{dq^{2}}+\frac{d\Gamma_{-}}{dq^{2}},\quad\frac{d\Gamma}{dq^{2}}=\frac{d\Gamma_{L}}{dq^{2}}+\frac{d\Gamma_{T}}{dq^{2}}. (33)

For the decays with D1()D^{(\prime)}_{1} and Ds1()D^{(\prime)}_{s1} involved, it is meaningful to define the polarization fraction due to the existence of different polarizations

fL=ΓLΓL+Γ++Γ.\displaystyle f_{L}=\frac{\Gamma_{L}}{\Gamma_{L}+\Gamma_{+}+\Gamma_{-}}. (34)

As to the forward-backward asymmetry, the analytical expression is defined as ptau3 ,

AFB=01dΓdcosθ𝑑cosθ10dΓdcosθ𝑑cosθ11dΓdcosθ𝑑cosθ=bθ(q2)𝑑q2ΓBDν,\displaystyle A_{FB}=\frac{\int^{1}_{0}{d\Gamma\over dcos\theta}dcos\theta-\int^{0}_{-1}{d\Gamma\over dcos\theta}dcos\theta}{\int^{1}_{-1}{d\Gamma\over dcos\theta}dcos\theta}=\frac{\int b_{\theta}(q^{2})dq^{2}}{\Gamma_{B\to D^{**}\ell\nu_{\ell}}}, (35)

where θ\theta is the angle between the 3-momenta of the lepton \ell and the initial BB meson in the ν\ell\nu rest frame. The the angular coefficient bθ(q2)b_{\theta}(q^{2}) for the decays BD0νB\to D^{*}_{0}\ell\nu_{\ell} is given as ptau3

bθ(q2)=GF2|Vcb|2128π3mB3q2λ(q2)(1m2q2)2m2q2(HV,0sHV,ts),\displaystyle b_{\theta}(q^{2})={G_{F}^{2}|V_{cb}|^{2}\over 128\pi^{3}m_{B}^{3}}q^{2}\sqrt{\lambda(q^{2})}\left(1-{m_{\ell}^{2}\over q^{2}}\right)^{2}{m_{\ell}^{2}\over q^{2}}(H^{s}_{V,0}H^{s}_{V,t}), (36)

with the helicity amplitudes

HV,0s(q2)=λ(q2)q2F1(q2),HV,ts(q2)=mB2mD02q2F0(q2).\displaystyle H^{s}_{V,0}\left(q^{2}\right)=\sqrt{\frac{\lambda\left(q^{2}\right)}{q^{2}}}F_{1}\left(q^{2}\right),H^{s}_{V,t}\left(q^{2}\right)=\frac{m_{B}^{2}-m_{{D^{*}_{0}}}^{2}}{\sqrt{q^{2}}}F_{0}\left(q^{2}\right). (37)

Here λ(q2)=((mBmD0)2q2)((mB+mD0)2q2)\lambda(q^{2})=((m_{B}-m_{{D^{*}_{0}}})^{2}-q^{2})((m_{B}+m_{{D^{*}_{0}}})^{2}-q^{2}). While for the decays BD1()νB\to D^{(\prime)}_{1}\ell\nu_{\ell}, the function bθ(q2)b_{\theta}(q^{2}) is written as

bθ(q2)=GF2|Vcb|2128π3mB3q2λ(q2)(1m2q2)2[12(HV,+2HV,2)+m2q2(HV,0HV,t)],\displaystyle b_{\theta}(q^{2})={G_{F}^{2}|V_{cb}|^{2}\over 128\pi^{3}m_{B}^{3}}q^{2}\sqrt{\lambda(q^{2})}\left(1-{m_{\ell}^{2}\over q^{2}}\right)^{2}\left[{1\over 2}(H_{V,+}^{2}-H_{V,-}^{2})+{m_{\ell}^{2}\over q^{2}}(H_{V,0}H_{V,t})\right], (38)

where the corresponding helicity amplitudes are listed as

HV,±(q2)\displaystyle H_{V,\pm}\left(q^{2}\right) =\displaystyle= (mBsmD1)V1(q2)λ(q2)mBmD1A(q2),\displaystyle\left(m_{B_{s}}-{m_{D_{1}}}\right)V_{1}\left(q^{2}\right)\mp\frac{\sqrt{\lambda\left(q^{2}\right)}}{m_{B}-m_{D_{1}}}A\left(q^{2}\right),
HV,0(q2)\displaystyle H_{V,0}\left(q^{2}\right) =\displaystyle= mBmD12mD1q2[(mB2mD12q2)V1(q2)+λ(q2)V2(q2)(mBmD1)2],\displaystyle\frac{m_{B}-m_{D_{1}}}{2m_{D_{1}}\sqrt{q^{2}}}\left[-\left(m_{B}^{2}-m_{D_{1}}^{2}-q^{2}\right)V_{1}\left(q^{2}\right)+\frac{\lambda\left(q^{2}\right)V_{2}\left(q^{2}\right)}{\left(m_{B}-m_{D_{1}}\right)^{2}}\right],
HV,t(q2)\displaystyle H_{V,t}\left(q^{2}\right) =\displaystyle= λ(q2)q2V0(q2),\displaystyle-\sqrt{\frac{\lambda\left(q^{2}\right)}{q^{2}}}V_{0}\left(q^{2}\right), (39)

It is noticed that the subscript VV in each helicity amplitude refers to the γμ(1γ5)\gamma_{\mu}(1-\gamma_{5}) current.

III Numerical results and discussions

Table 1: The values of the input parameters BN ; pdg22 ; Cheng:2003id ; Becirevic:1998ua ; Li:2009wq .
Mass(GeV) mb=4.8m_{b}=4.8 mc=1.4m_{c}=1.4 mu=0.25m_{u}=0.25 ms=0.37m_{s}=0.37
me=0.000511m_{e}=0.000511 mμ=0.106m_{\mu}=0.106 mτ=1.78m_{\tau}=1.78 mBs=5.367m_{B_{s}}=5.367
mB=5.279m_{B}=5.279 mD0=2.343m_{D_{0}^{\ast}}=2.343 mDs0=2.317m_{D_{s0}^{\ast}}=2.317 mDs1=2.460m_{D_{s1}}=2.460
mDs1=2.536m_{D_{s1}^{\prime}}=2.536 mD1=2.422m_{D_{1}}=2.422 mD1=2.412m_{D^{\prime}_{1}}=2.412
CKM Vcb=(40.8±1.4)×103V_{cb}=(40.8\pm 1.4)\times 10^{-3}
shape parameters(GeV) βB=0.5550.048+0.048\beta^{\prime}_{B}=0.555^{+0.048}_{-0.048} βBs=0.6280.034+0.035\beta^{\prime}_{B_{s}}=0.628^{+0.035}_{-0.034} βD0=0.3730.059+0.063\beta^{\prime}_{D_{0}^{\ast}}=0.373^{+0.063}_{-0.059}
βDs0=0.3250.043+0.043\beta^{\prime}_{D_{s0}^{\ast}}=0.325^{+0.043}_{-0.043} βDs13=0.3420.034+0.030\beta^{\prime}_{{}^{3}D_{s1}}=0.342^{+0.030}_{-0.034} βDs11=0.3420.039+0.039\beta^{\prime}_{{}^{1}D_{s1}^{\prime}}=0.342^{+0.039}_{-0.039}
βD13=0.3320.034+0.031\beta^{\prime}_{{}^{3}D_{1}}=0.332^{+0.031}_{-0.034} βD11=0.3290.040+0.038\beta^{\prime}_{{}^{1}D_{1}^{\prime}}=0.329^{+0.038}_{-0.040}
Lifetimes(s) τBs=(1.520±0.005)×1012\tau_{B_{s}}=(1.520\pm 0.005)\times 10^{-12} τB±=(1.638±0.004)×1012\tau_{B^{\pm}}=(1.638\pm 0.004)\times 10^{-12}
τB0=(1.519±0.004)×1012\tau_{B^{0}}=(1.519\pm 0.004)\times 10^{-12}

The adopted input parameters pdg22 , such as the constituent quark masses, the hadron and lepton masses, the BB meson lifetime and the Cabibbo-Kobayashi-Maskawa (CKM) matrix element VcbV_{cb}, in our numerical calculations are listed in Table 1. In the calculations of the helicity amplitudes, the transition form factors are the most important inputs, some of which have been calculated in our previous work Zhang:2023ypl . The parameterized form factors are extrapolated from the space-like region to the time-like region by using following expression,

F(q2)=F(0)1aq2/m2+bq4/m4,\displaystyle F\left(q^{2}\right)=\frac{F(0)}{1-aq^{2}/m^{2}+bq^{4}/m^{4}}, (40)

where mm represents the initial meson mass and F(q2)F(q^{2}) denotes the different form factors. The values of aa and bb can be obtained by performing a 3-parameter fit to the form factors in the range 15GeV2q20-15\text{GeV}^{2}\leq q^{2}\leq 0, which are collected in Table 2. The uncertainties arise from the decay constants of the initial B(s)B_{(s)} meson and the final state mesons. Certainly, in order to compare with the results given in other works, we also give the form factors of the transitions B(s)D(s)13/2,D(s)11/2B_{(s)}\to D^{3/2}_{(s)1},D^{1/2}_{(s)1} under the heavy quark limit, which are shown in Table 3. Obviously, our results are consistent with the previous CLFQM Cheng:2003sm and ISGW2 Verma:2011yw calculations. The signs of the form factors of the transitions B(s)D(s)11/2B_{(s)}\to D^{1/2}_{(s)1} between ours and the other two theoretical predictions Verma:2011yw ; Cheng:2003sm are opposite because the definations for the D(s)11/2D^{1/2}_{(s)1} mixing formula shown in Eq. (2) are different.

Refer to caption
Refer to caption
Figure 2: The dependencies of the form factors of the transition BD0B\to D^{*}_{0} (left) and the branching ratios of the semileptonic decays BD0νB\to D^{*}_{0}\ell\nu_{\ell} (right) on the decay constant fD0f_{D^{*}_{0}}.
Table 2: The form factors of the transtions B(s)D0,Ds0,Ds1,Ds1,D1B_{(s)}\to D^{*}_{0},D^{*}_{s0},D_{s1},D^{\prime}_{s1},D_{1} and D1D_{1}^{\prime} in the CLFQM. The uncertainties are from the decay constants of B(s)B_{(s)} and the final state mesons.
Fi(q2=0)F_{i}(q^{2}=0) Fi(qmax2)F_{i}(q^{2}_{max}) a b
F1BD0F_{1}^{BD^{\ast}_{0}} 0.250.020.05+0.03+0.050.25^{+0.03+0.05}_{-0.02-0.05} 0.300.030.07+0.03+0.060.30^{+0.03+0.06}_{-0.03-0.07} 0.700.050.11+0.04+0.030.70^{+0.04+0.03}_{-0.05-0.11} 0.650.070.07+0.08+0.030.65^{+0.08+0.03}_{-0.07-0.07}
F0BD0F_{0}^{BD^{\ast}_{0}} 0.250.020.05+0.03+0.050.25^{+0.03+0.05}_{-0.02-0.05} 0.220.010.04+0.02+0.040.22^{+0.02+0.04}_{-0.01-0.04} 0.380.040.02+0.04+0.05-0.38^{+0.04+0.05}_{-0.04-0.02} 0.210.070.08+0.07+0.080.21^{+0.07+0.08}_{-0.07-0.08}
F1BsDs0F_{1}^{B_{s}D^{*}_{s0}} 0.210.010.04+0.02+0.040.21^{+0.02+0.04}_{-0.01-0.04} 0.240.010.05+0.02+0.050.24^{+0.02+0.05}_{-0.01-0.05} 0.630.060.12+0.05+0.070.63^{+0.05+0.07}_{-0.06-0.12} 0.780.090.04+0.08+0.010.78^{+0.08+0.01}_{-0.09-0.04}
F0BsDs0F_{0}^{B_{s}D^{*}_{s0}} 0.210.010.04+0.02+0.040.21^{+0.02+0.04}_{-0.01-0.04} 0.180.010.03+0.02+0.030.18^{+0.02+0.03}_{-0.01-0.03} 0.430.000.02+0.01+0.01-0.43^{+0.01+0.01}_{-0.00-0.02} 0.280.060.04+0.03+0.010.28^{+0.03+0.01}_{-0.06-0.04}
ABsDs1A^{B_{s}D_{s1}} 0.200.010.02+0.01+0.020.20^{+0.01+0.02}_{-0.01-0.02} 0.180.010.02+0.02+0.030.18^{+0.02+0.03}_{-0.01-0.02} 0.270.070.09+0.06+0.8-0.27^{+0.06+0.8}_{-0.07-0.09} 0.110.020.03+0.02+0.020.11^{+0.02+0.02}_{-0.02-0.03}
V0BsDs1V^{B_{s}D_{s1}}_{0} 0.400.020.04+0.02+0.040.40^{+0.02+0.04}_{-0.02-0.04} 0.420.020.05+0.02+0.050.42^{+0.02+0.05}_{-0.02-0.05} 0.170.040.06+0.02+0.04-0.17^{+0.02+0.04}_{-0.04-0.06} 0.020.000.01+0.01+0.00-0.02^{+0.01+0.00}_{-0.00-0.01}
V1BsDs1V^{B_{s}D_{s1}}_{1} 0.580.020.04+0.01+0.030.58^{+0.01+0.03}_{-0.02-0.04} 0.570.020.04+0.01+0.030.57^{+0.01+0.03}_{-0.02-0.04} 0.050.010.01+0.01+0.01-0.05^{+0.01+0.01}_{-0.01-0.01} 0.020.000.00+0.00+0.010.02^{+0.00+0.01}_{-0.00-0.00}
V2BsDs1V^{B_{s}D_{s1}}_{2} 0.050.000.01+0.01+0.02-0.05^{+0.01+0.02}_{-0.00-0.01} 0.050.000.02+0.01+0.03-0.05^{+0.01+0.03}_{-0.00-0.02} 0.560.060.25+0.06+0.220.56^{+0.06+0.22}_{-0.06-0.25} 2.500.201.30+0.25+1.672.50^{+0.25+1.67}_{-0.20-1.30}
ABsDs1A^{B_{s}D^{\prime}_{s1}} 0.080.010.02+0.01+0.020.08^{+0.01+0.02}_{-0.01-0.02} 0.030.020.03+0.01+0.010.03^{+0.01+0.01}_{-0.02-0.03} 2.050.100.35+0.13+0.352.05^{+0.13+0.35}_{-0.10-0.35} 5.570.200.41+0.25+0.505.57^{+0.25+0.50}_{-0.20-0.41}
V0BsDs1V^{B_{s}D^{\prime}_{s1}}_{0} 0.080.010.04+0.01+0.04-0.08^{+0.01+0.04}_{-0.01-0.04} 0.050.010.04+0.02+0.05-0.05^{+0.02+0.05}_{-0.01-0.04} 1.240.060.25+0.05+0.231.24^{+0.05+0.23}_{-0.06-0.25} 0.740.020.17+0.02+0.210.74^{+0.02+0.21}_{-0.02-0.17}
V1BsDs1V^{B_{s}D^{\prime}_{s1}}_{1} 0.170.030.03+0.02+0.040.17^{+0.02+0.04}_{-0.03-0.03} 0.150.030.03+0.01+0.020.15^{+0.01+0.02}_{-0.03-0.03} 0.520.050.06+0.06+0.06-0.52^{+0.06+0.06}_{-0.05-0.06} 0.360.000.08+0.01+0.030.36^{+0.01+0.03}_{-0.00-0.08}
V2BsDs1V^{B_{s}D^{\prime}_{s1}}_{2} 0.110.020.02+0.01+0.010.11^{+0.01+0.01}_{-0.02-0.02} 0.100.020.02+0.01+0.010.10^{+0.01+0.01}_{-0.02-0.02} 0.250.070.07+0.06+0.060.25^{+0.06+0.06}_{-0.07-0.07} 0.070.040.03+0.03+0.01-0.07^{+0.03+0.01}_{-0.04-0.03}
ABD1A^{BD_{1}} 0.210.010.01+0.02+0.020.21^{+0.02+0.02}_{-0.01-0.01} 0.200.020.02+0.02+0.020.20^{+0.02+0.02}_{-0.02-0.02} 0.230.090.09+0.10+0.09-0.23^{+0.10+0.09}_{-0.09-0.09} 0.090.020.02+0.02+0.020.09^{+0.02+0.02}_{-0.02-0.02}
V0BD1V^{BD_{1}}_{0} 0.420.020.04+0.03+0.040.42^{+0.03+0.04}_{-0.02-0.04} 0.440.020.05+0.04+0.050.44^{+0.04+0.05}_{-0.02-0.05} 0.160.020.05+0.02+0.030.16^{+0.02+0.03}_{-0.02-0.05} 0.020.000.01+0.00+0.01-0.02^{+0.00+0.01}_{-0.00-0.01}
V1BD1V^{BD_{1}}_{1} 0.570.010.04+0.03+0.030.57^{+0.03+0.03}_{-0.01-0.04} 0.560.020.04+0.03+0.030.56^{+0.03+0.03}_{-0.02-0.04} 0.070.010.00+0.00+0.01-0.07^{+0.00+0.01}_{-0.01-0.00} 0.020.000.00+0.00+0.000.02^{+0.00+0.00}_{-0.00-0.00}
V2BD1V^{BD_{1}}_{2} 0.060.010.02+0.01+0.02-0.06^{+0.01+0.02}_{-0.01-0.02} 0.060.010.03+0.01+0.04-0.06^{+0.01+0.04}_{-0.01-0.03} 0.570.070.20+0.06+0.170.57^{+0.06+0.17}_{-0.07-0.20} 2.130.181.17+0.21+1.302.13^{+0.21+1.30}_{-0.18-1.17}
ABD1A^{BD^{\prime}_{1}} 0.070.020.02+0.02+0.020.07^{+0.02+0.02}_{-0.02-0.02} 0.020.020.02+0.03+0.010.02^{+0.03+0.01}_{-0.02-0.02} 1.900.100.14+0.09+0.12-1.90^{+0.09+0.12}_{-0.10-0.14} 5.640.181.29+0.22+1.595.64^{+0.22+1.59}_{-0.18-1.29}
V0BD1V^{BD^{\prime}_{1}}_{0} 0.080.020.03+0.02+0.04-0.08^{+0.02+0.04}_{-0.02-0.03} 0.060.020.03+0.02+0.06-0.06^{+0.02+0.06}_{-0.02-0.03} 0.110.040.11+0.01+0.06-0.11^{+0.01+0.06}_{-0.04-0.11} 3.670.050.51+0.05+0.513.67^{+0.05+0.51}_{-0.05-0.51}
V1BD1V^{BD^{\prime}_{1}}_{1} 0.140.040.03+0.04+0.030.14^{+0.04+0.03}_{-0.04-0.03} 0.130.040.02+0.03+0.030.13^{+0.03+0.03}_{-0.04-0.02} 0.360.060.06+0.04+0.04-0.36^{+0.04+0.04}_{-0.06-0.06} 0.090.010.01+0.01+0.010.09^{+0.01+0.01}_{-0.01-0.01}
V2BD1V^{BD^{\prime}_{1}}_{2} 0.100.020.02+0.03+0.020.10^{+0.03+0.02}_{-0.02-0.02} 0.110.040.04+0.03+0.020.11^{+0.03+0.02}_{-0.04-0.04} 0.190.090.09+0.06+0.060.19^{+0.06+0.06}_{-0.09-0.09} 0.000.000.01+0.01+0.010.00^{+0.01+0.01}_{-0.00-0.01}

The branching ratios of the decays B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell{\nu}_{\ell} are shown in Table 4. For comparison, the values given by other theoretical approaches and the current experiments are also listed. One can find that the branching ratios of the decays B+D¯00+νB^{+}\to\bar{D}^{*0}_{0}\ell^{+}{\nu}_{\ell} are larger than the results from the QCD sum rules (QCDSRs) Zuo:2023ksq and the heavy quark effective field theory (HQEFT) W.Y. . Obviously, our predictions are consistent with the previous CLFQM calculations Kang:2018jzg and the differences are mainly due to the different values of the decay constant fD0f_{D^{*}_{0}}. In Figure 2, the changing trends of the form factors F1BD0(q2=0)(F0BD0(q2=0))F^{BD^{*}_{0}}_{1}(q^{2}=0)(F^{BD^{*}_{0}}_{0}(q^{2}=0)) and the branching ratios of the decays B+D¯00+νB^{+}\to\bar{D}^{*0}_{0}\ell^{+}\nu_{\ell} with fD0f_{D^{*}_{0}} are plotted, respectively. Both of them increase with fD0f_{D^{*}_{0}}. The branching ratios of the decays B0D0+νB^{0}\to D^{*-}_{0}\ell^{+}{\nu}_{\ell} can agree with QCD LCSRs under scenario 2 (S2), where the broad resonance D0D^{*}_{0} was considered as consisting of the two resonances D0(2105)D^{*}_{0}(2105) and D0(2451)D^{*}_{0}(2451) Gubernari:2023rfu . While it seems to be too large in scenario 1 (S1), where D0D^{*}_{0} was considered as a single resonance Gubernari:2023rfu . Certainly, there still exist large errors in both S1 and S2. Our predictions are much smaller than those given in the LCSRs approach Shen:2012mm , where a very large form factor F0BD0(q2=0)=0.94F_{0}^{BD^{*}_{0}}(q^{2}=0)=0.94 was used in the calculations. There exists a similar situation for the decays Bs0Ds0+νB_{s}^{0}\to D^{*-}_{s0}\ell^{+}{\nu}_{\ell}. It is surprising that a large value (2.2±0.86)×102(2.2\pm 0.86)\times 10^{-2} was measured by Belle Belle:2007uwr in 2008, latter a more large one (4.4±1.0)×102(4.4\pm 1.0)\times 10^{-2} was given by BaBar BaBar:2008ozy , while Belle updated their measurement with only a small upper limit <0.44×103<0.44\times 10^{-3} obtained. In theory, the branching ratios of the decays B+D¯00+νB^{+}\to\bar{D}^{*0}_{0}\ell^{\prime+}\nu_{\ell^{\prime}} and B0D0+νB^{0}\to D^{*-}_{0}\ell^{\prime+}\nu_{\ell^{\prime}} should be not much difference. In order to clarifying this puzzle, we urge our experimental colleagues to perform further more precise measurements. In Ref. A.L. , the authors calculated the branching ratios based on the general HQET expansion, the so called the Leibovich-Ligeti-Stewart-Wise (LLSW) scheme, combining other theoretical results and the constrains from experimental measurements, which are smaller than nearly all the present avaiable predictions.

Table 3: Form factors of the transitions B(s)Ds13/2,Ds11/2,D13/2B_{(s)}\to D^{3/2}_{s1},D^{1/2}_{s1},D^{3/2}_{1} and D11/2D^{1/2}_{1} at q2=0q^{2}=0 together with other theoretical results.
Transitions References A(0)A(0) V0(0)V_{0}(0) V1(0)V_{1}(0) V2(0)V_{2}(0)
BsDs13/2B_{s}\to D^{3/2}_{s1} This work 0.190.19 0.410.41 0.550.55 0.07-0.07
CLFQMa Verma:2011yw 0.240.24 0.490.49 0.570.57 0.09-0.09
BsDs11/2B_{s}\to D^{1/2}_{s1} This work 0.100.10 0.03-0.03 0.240.24 0.110.11
CLFQMa Verma:2011yw 0.17-0.17 0.130.13 0.25-0.25 0.17-0.17
BD13/2B\to D^{3/2}_{1} This work 0.200.20 0.430.43 0.550.55 0.07-0.07
CLFQM Cheng:2003sm 0.230.23 0.470.47 0.550.55 0.09-0.09
ISGW2 Cheng:2003sm 0.160.16 0.430.43 0.400.40 0.12-0.12
CLFQM Verma:2011yw 0.250.25 0.520.52 0.580.58 0.10-0.10
BD11/2B\to D^{1/2}_{1} This work 0.090.09 0.02-0.02 0.210.21 0.090.09
CLFQMa Cheng:2003sm 0.12-0.12 0.080.08 0.19-0.19 0.12-0.12
ISGW2aCheng:2003sm 0.16-0.16 0.180.18 0.19-0.19 0.18-0.18
CLFQMa Verma:2011yw 0.13-0.13 0.110.11 0.19-0.19 0.14-0.14

a Due to the signs of the D(s)11/2D^{1/2}_{(s)1} mixing formula Eq. (2) between this work and Refs. Cheng:2003sm ; Verma:2011yw are opposite, the corresponding results are just contrary with our predictions.

Table 4: Branching ratios (10310^{-3}) of the semileptonic decays B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell\nu_{\ell}.
References B+D¯00e+νeB^{+}\to\bar{D}^{*0}_{0}e^{+}\nu_{e} B+D¯00μ+νμB^{+}\to\bar{D}^{*0}_{0}\mu^{+}\nu_{\mu} B+D¯00τ+ντB^{+}\to\bar{D}^{*0}_{0}\tau^{+}\nu_{\tau}
This work 1.660.270.62+0.43+0.741.66^{+0.43+0.74}_{-0.27-0.62} 1.650.260.62+0.43+0.741.65^{+0.43+0.74}_{-0.26-0.62} 0.210.030.08+0.06+0.100.21^{+0.06+0.10}_{-0.03-0.08}
QCDSRs Zuo:2023ksq 0.610.210.05+0.28+0.040.61^{+0.28+0.04}_{-0.21-0.05} 0.610.210.05+0.28+0.040.61^{+0.28+0.04}_{-0.21-0.05} 0.040.010.00+0.02+0.000.04^{+0.02+0.00}_{-0.01-0.00}
CLFQM Kang:2018jzg 2.31±0.252.31\pm 0.25 2.31±0.252.31\pm 0.25 0.30±0.030.30\pm 0.03
HQEFT W.Y. 0.50±0.160.50\pm 0.16 0.50±0.160.50\pm 0.16 -
PDG pdg22 1.35±0.751.35\pm 0.75 1.35±0.751.35\pm 0.75 -
References B0D0e+νeB^{0}\to D^{*-}_{0}e^{+}\nu_{e} B0D0μ+νμB^{0}\to D^{*-}_{0}\mu^{+}\nu_{\mu} B0D0τ+ντB^{0}\to D^{*-}_{0}\tau^{+}\nu_{\tau}
This work 1.540.250.57+0.40+0.691.54^{+0.40+0.69}_{-0.25-0.57} 1.530.250.57+0.40+0.691.53^{+0.40+0.69}_{-0.25-0.57} 0.190.030.07+0.05+0.090.19^{+0.05+0.09}_{-0.03-0.07}
QCD LCSRs Gubernari:2023rfu a 3.63.0+5.13.6^{+5.1}_{-3.0} 3.63.0+5.13.6^{+5.1}_{-3.0} 0.390.31+0.510.39^{+0.51}_{-0.31}
QCD LCSRs Gubernari:2023rfu b 1.61.4+3.21.6^{+3.2}_{-1.4} 1.61.4+3.21.6^{+3.2}_{-1.4} 0.240.21+0.470.24^{+0.47}_{-0.21}
LCSRs Shen:2012mm 8.72.8+5.18.7^{+5.1}_{-2.8} 8.72.8+5.18.7^{+5.1}_{-2.8} 1.10.3+0.61.1^{+0.6}_{-0.3}
LLSW A.L. 0.51±0.120.51\pm 0.12 0.51±0.120.51\pm 0.12 0.050±0.0130.050\pm 0.013
BaBar BaBar:2008ozy 4.4±1.04.4\pm 1.0 4.4±1.04.4\pm 1.0 -
Belle Belle:2007uwr 2.0±0.862.0\pm 0.86 2.0±0.862.0\pm 0.86 -
Belle Belle2023 <0.44<0.44 <0.44<0.44 -
References Bs0Ds0e+νeB_{s}^{0}\to D^{*-}_{s0}e^{+}\nu_{e} Bs0Ds0μ+νμB_{s}^{0}\to D^{*-}_{s0}\mu^{+}\nu_{\mu} Bs0Ds0τ+ντB_{s}^{0}\to D^{*-}_{s0}\tau^{+}\nu_{\tau}
This work 1.260.130.45+0.26+0.551.26^{+0.26+0.55}_{-0.13-0.45} 1.250.130.45+0.26+0.551.25^{+0.26+0.55}_{-0.13-0.45} 0.180.020.07+0.04+0.080.18^{+0.04+0.08}_{-0.02-0.07}
QCDSRs Zuo:2023ksq 0.720.260.06+0.30+0.040.72^{+0.30+0.04}_{-0.26-0.06} 0.710.250.05+0.33+0.040.71^{+0.33+0.04}_{-0.25-0.05} 0.060.020.00+0.03+0.000.06^{+0.03+0.00}_{-0.02-0.00}
CUM Navarra:2015iea 1.31.3 1.31.3 -
QCD LCSRs Gubernari:2023rfu 1.91.7+3.81.9^{+3.8}_{-1.7} 1.91.7+3.81.9^{+3.8}_{-1.7} 0.260.22+0.490.26^{+0.49}_{-0.22}
QCDSRs M. Q. 0.92.00.9\sim 2.0 0.92.00.9\sim 2.0 -
QCDSRs T. M. 1.01.0 1.01.0 0.10.1
LCSRs Li:2009wq 2.31.0+1.22.3^{+1.2}_{-1.0} 2.31.0+1.22.3^{+1.2}_{-1.0} 0.570.23+0.280.57^{+0.28}_{-0.23}
CQM Zhao:2006at 4.905.714.90\sim 5.71 4.95.714.9\sim 5.71 -
RQM Faustov:2012mt 3.6±0.43.6\pm 0.4 3.6±0.43.6\pm 0.4 0.19±0.020.19\pm 0.02
LSCRs Shen:2012mm 6.0±1.96.0\pm 1.9 6.0±1.96.0\pm 1.9 0.820.20+0.180.82^{+0.18}_{-0.20}

a Results obtained in scenario 1 (S1), where D0D^{*}_{0} was considered as a single broad resonance with mass being (2343±10)(2343\pm 10) MeV and width (229±16)(229\pm 16) MeV.
b Results obtained in scenario 2 (S2), where D0D^{*}_{0} was assumed to consist of two scalar resonances D0(2105)D^{*}_{0}(2105) and D0(2451)D^{*}_{0}(2451).

Then we compare our predictions for the branching ratios of the decays Bs0Ds0+νB_{s}^{0}\to D^{*-}_{s0}\ell^{+}{\nu}_{\ell} with the results obtained from other approaches. One can find that our results are consistent with those given in the chiral unitary approach (CUA) Navarra:2015iea , the QCDSRs Zuo:2023ksq , the QCD LCSRs Gubernari:2023rfu and the LCSRs Li:2009wq within errors. While they are much smaller than the constituent quark meson (CQM) Zhao:2006at and the LCSRs Shen:2012mm calculations. Although the LCSRs was used in both Ref. Li:2009wq and Ref. Shen:2012mm , their results are very different. It is because of the different correlation function, which is taken between the vacuum and Ds0(B)D^{*}_{s0}(B) with the B(Ds0)B(D^{*}_{s0}) meson being interploated by a local current for the former (the latter). The form factor of the transition BsDs0B_{s}\to D^{*}_{s0} obtained in the latter (the so called B-meson LCSRs) is about 0.800.80, which is larger than 0.530.53 calculated by the former (the so called the conventional light meson LCSRs). Further experimental and theoretical researches are needed to clarify these divergences and puzzles.

Table 5: Branching ratios (10310^{-3}) of the semileptonic decays BD1()νB\to D^{(\prime)}_{1}\ell\nu_{\ell} and BsDs1()νB_{s}\to D^{(\prime)}_{s1}\ell\nu_{\ell}.
References B+D¯10e+νeB^{+}\to\bar{D}_{1}^{0}e^{+}\nu_{e} B+D¯10μ+νμB^{+}\to\bar{D}_{1}^{0}\mu^{+}\nu_{\mu} B+D¯10τ+ντB^{+}\to\bar{D}_{1}^{0}\tau^{+}\nu_{\tau}
This work 6.210.670.280.90+0.94+0.43+1.006.21^{+0.94+0.43+1.00}_{-0.67-0.28-0.90} 6.160.660.270.89+0.93+0.42+0.996.16^{+0.93+0.42+0.99}_{-0.66-0.27-0.89} 0.570.050.040.07+0.08+0.03+0.070.57^{+0.08+0.03+0.07}_{-0.05-0.04-0.07}
QCDSRs Zuo:2023ksq 7.262.870.49+3.60+0.517.26^{+3.60+0.51}_{-2.87-0.49} 7.192.840.48+3.56+0.507.19^{+3.56+0.50}_{-2.84-0.48} 0.460.170.03+0.22+0.030.46^{+0.22+0.03}_{-0.17-0.03}
LLSW A.L. 6.40±0.446.40\pm 0.44 6.40±0.446.40\pm 0.44 0.63±0.060.63\pm 0.06
HQEFT W.Y.2 5.9±1.65.9\pm 1.6 5.9±1.65.9\pm 1.6 -
PDG pdg22 4.26±0.264.26\pm 0.26 4.26±0.264.26\pm 0.26 -
References B+D¯10e+νeB^{+}\to\bar{D}_{1}^{\prime 0}e^{+}\nu_{e} B+D¯10μ+νμB^{+}\to\bar{D}_{1}^{\prime 0}\mu^{+}\nu_{\mu} B+D¯10τ+ντB^{+}\to\bar{D}_{1}^{\prime 0}\tau^{+}\nu_{\tau}
This work 0.150.090.030.06+0.15+0.07+0.080.15^{+0.15+0.07+0.08}_{-0.09-0.03-0.06} 0.150.090.030.06+0.15+0.07+0.080.15^{+0.15+0.07+0.08}_{-0.09-0.03-0.06} 0.020.010.020.00+0.01+0.00+0.000.02^{+0.01+0.00+0.00}_{-0.01-0.02-0.00}
QCDSRs Zuo:2023ksq 0.680.240.05+0.31+0.040.68^{+0.31+0.04}_{-0.24-0.05} 0.670.230.05+0.31+0.040.67^{+0.31+0.04}_{-0.23-0.05} 0.050.020.00+0.05+0.000.05^{+0.05+0.00}_{-0.02-0.00}
LLSW A.L. 0.46±0.370.46\pm 0.37 0.46±0.370.46\pm 0.37 0.03±0.030.03\pm 0.03
HQEFT W.Y. 0.48±0.160.48\pm 0.16 0.48±0.160.48\pm 0.16 -
PDG pdg22 2.55±0.902.55\pm 0.90 2.55±0.902.55\pm 0.90 -
References Bs0Ds1e+νeB_{s}^{0}\to D_{s1}^{-}e^{+}\nu_{e} Bs0Ds1μ+νμB_{s}^{0}\to D_{s1}^{-}\mu^{+}\nu_{\mu} Bs0Ds1τ+ντB_{s}^{0}\to D_{s1}^{-}\tau^{+}\nu_{\tau}
This work 6.170.910.620.52+0.94+0.21+0.426.17^{+0.94+0.21+0.42}_{-0.91-0.62-0.52} 6.130.940.610.52+0.91+0.21+0.426.13^{+0.91+0.21+0.42}_{-0.94-0.61-0.52} 0.630.050.060.00+0.03+0.04+0.000.63^{+0.03+0.04+0.00}_{-0.05-0.06-0.00}
QCDSRs Zuo:2023ksq 6.312.440.43+3.07+0.446.31^{+3.07+0.44}_{-2.44-0.43} 6.252.420.42+3.03+0.446.25^{+3.03+0.44}_{-2.42-0.42} 0.380.140.03+0.18+0.030.38^{+0.18+0.03}_{-0.14-0.03}
CQM Zhao:2006at 7.528.697.52\sim 8.69 7.528.697.52\sim 8.69 -
QCDSRs T.M.2 4.904.90 4.904.90 -
RQM Faustov:2012mt 8.40±0.908.40\pm 0.90 8.40±0.908.40\pm 0.90 0.49±0.050.49\pm 0.05
References Bs0Ds1e+νeB_{s}^{0}\to D_{s1}^{\prime-}e^{+}\nu_{e} Bs0Ds1μ+νμB_{s}^{0}\to D_{s1}^{\prime-}\mu^{+}\nu_{\mu} Bs0Ds1τ+ντB_{s}^{0}\to D_{s1}^{\prime-}\tau^{+}\nu_{\tau}
This work 0.180.070.070.09+0.06+0.07+0.070.18^{+0.06+0.07+0.07}_{-0.07-0.07-0.09} 0.180.070.070.09+0.06+0.07+0.070.18^{+0.06+0.07+0.07}_{-0.07-0.07-0.09} 0.020.000.010.00+0.01+0.01+0.000.02^{+0.01+0.01+0.00}_{-0.00-0.01-0.00}
QCDSRs Zuo:2023ksq 0.650.230.05+0.30+0.040.65^{+0.30+0.04}_{-0.23-0.05} 0.640.230.05+0.30+0.040.64^{+0.30+0.04}_{-0.23-0.05} 0.050.020.00+0.03+0.000.05^{+0.03+0.00}_{-0.02-0.00}
RQM Faustov:2012mt 1.90±0.021.90\pm 0.02 1.90±0.021.90\pm 0.02 0.15±0.020.15\pm 0.02

We calculate the branching ratios of the decays Bs0Ds1()+νB^{0}_{s}\to D^{(\prime)-}_{s1}\ell^{+}\nu_{\ell} and B+D¯1()0+νB^{+}\to\bar{D}^{(\prime)0}_{1}\ell^{+}\nu_{\ell}, which are listed in Table 5 with other theoretical predictions and data for comparison. All the theoretical predictions show that the branching ratios of the decays Bs0Ds1+νB^{0}_{s}\to D^{-}_{s1}\ell^{+}{\nu}_{\ell} are (much) lager than those of the decays Bs0Ds1+νB^{0}_{s}\to D^{\prime-}_{s1}\ell^{+}\nu_{\ell}. This is because that the related form factors of the transition BsDs1B_{s}\to D_{s1} are much larger than those of the transition BsDs1B_{s}\to D^{\prime}_{s1}. There exists a similar situation between the decays B+D¯10+νB^{+}\to\bar{D}^{0}_{1}\ell^{+}\nu_{\ell} and B+D¯10+νB^{+}\to\bar{D}^{\prime 0}_{1}\ell^{+}\nu_{\ell}. One can find that the branching ratios of the decays B(s)D(s)1νB_{(s)}\to D_{(s)1}\ell\nu_{\ell} are comparable with the results given by most theoretical calculations, such as the QCDSRs Zuo:2023ksq ; T.M.2 , the CQM Zhao:2006at , the relativistic quark model (RQM) Faustov:2012mt , the LLSW A.L. , the HQEFT W.Y. , and so on. Certainly, they are also consistent well with the present avalable data pdg22 . While for the decays B+D¯10+νB^{+}\to\bar{D}^{\prime 0}_{1}\ell^{+}\nu_{\ell}, their branching ratios given by all the theoretical predictions are smaller than the data measured by Belle Belle:2022yzd . Therefore we urge our experimental colleagues to accurately measure these decays. It is very helpful to probe the inner structures of the resonant states D(s)1D_{(s)1} and D(s)1D^{\prime}_{(s)1} by clarifying the tension between theory and experiment, which is the so called ‘1/2 vs 3/2 puzzle’. In order to explain this puzzle, we calculate the dependences of the branching ratios of the decays BD1()νB\to D^{(\prime)}_{1}\ell^{\prime}\nu_{\ell^{\prime}} on the mixing angle θs\theta_{s}, which are shown in Figure 3, where the branching ratios for the decays B+D1()0νB^{+}\to D^{(\prime)0}_{1}\ell^{\prime}\nu_{\ell^{\prime}} increase (decrease) with the mixing angle θs\theta_{s}. The upper (lower) shadow band and its horizontal image center line refers to the experimentally achievable range and the center value for the branching ratios of the decays B+D10ν(B+D¯10ν)B^{+}\to D^{0}_{1}\ell^{\prime}\nu_{\ell^{\prime}}(B^{+}\to\bar{D}^{\prime 0}_{1}\ell^{\prime}\nu_{\ell^{\prime}}), respectively. One can find that taking some negative mixing angle θs\theta_{s} values within a range from 30.3-30.3^{\circ} to 24.9-24.9^{\circ} can explain the data, which correspond to θ\theta within the range 510.45^{\circ}\sim 10.4^{\circ}. It is similar for the decays Bs0Ds1()+νB^{0}_{s}\to{D}^{(\prime)-}_{s1}\ell^{+}\nu_{\ell} and B+D¯1()0τ+ντ,Bs0Ds1()τ+ντB^{+}\to\bar{D}^{(\prime)0}_{1}\tau^{+}\nu_{\tau},B^{0}_{s}\to{D}^{(\prime)-}_{s1}\tau^{+}\nu_{\tau}, the dependencies of their branching ratios on the mixing angle θs\theta_{s} are shown in Figure 4. All of these decays shown that the branching ratios of the decays with D(s)1D_{(s)1} involved increase with the mixing angle θs\theta_{s}, while it is contrary for those of the decays with D(s)1D^{\prime}_{(s)1} involved.

Refer to caption
Figure 3: The mixing angle θs\theta_{s} dependencies of the branching ratios for the semileptonic decays B+D¯10+νB^{+}\to\bar{D}^{0}_{1}\ell^{\prime+}\nu_{\ell^{\prime}} (the red solid line) and B+D¯10+νB^{+}\to\bar{D}^{\prime 0}_{1}\ell^{\prime+}\nu_{\ell^{\prime}} (the blue dash-dotted line). The upper (lower) shadow band and its horizontal image center line refers to the experimentally achievable range and the center value for the branching ratios of the decays B+D10ν(B+D¯10ν)B^{+}\to D^{0}_{1}\ell^{\prime}\nu_{\ell^{\prime}}(B^{+}\to\bar{D}^{\prime 0}_{1}\ell^{\prime}\nu_{\ell^{\prime}}), respectively.
Refer to caption
Refer to caption
Figure 4: The mixing angle θs\theta_{s} dependencies of the branching ratios for the semileptonic decays Bs0Ds1()+νB^{0}_{s}\to{D}^{(\prime)-}_{s1}\ell^{+}\nu_{\ell} (a) and B+D¯1()0τ+ντ,Bs0Ds1()τ+ντB^{+}\to\bar{D}^{(\prime)0}_{1}\tau^{+}\nu_{\tau},B^{0}_{s}\to{D}^{(\prime)-}_{s1}\tau^{+}\nu_{\tau} (b).

In Table 6, we also calculate the lepton flavor universality ratios, which are defined as

R(D(s))=Γ(BD(s)τντ)Γ(BD(s)ν),\displaystyle R(D^{**}_{(s)})=\frac{\Gamma\left(B\rightarrow D^{**}_{(s)}\tau\nu_{\tau}\right)}{\Gamma\left(B\rightarrow D^{**}_{(s)}\ell^{\prime}\nu_{\ell^{\prime}}\right)}, (41)

where a large part of the theoretical and experimental uncertainties, especially the errors from the form factors, can be canceled. One can find that most of our predictions are comparable with other theoretical results. Compared to the S1 and S2 values given in the QCD LCSRs Gubernari:2023rfu , our prediction for R(D0)R(D^{*}_{0}) gives a moderate value.

III.1 Physical observables

In our study of semileptonic decays, we define two additional physical observables, namely the longitudinal polarization fraction fLf_{L} and the forward-backward asymmetry AFBA_{FB}, to account for the impact of lepton mass and provide a more detailed physical picture. The results of these two physical observables are listed in Tables 7 and 8, respectively. In Table 7, we can clearly find that the longitudinal polarization fractions fLf_{L} between the decays B(s)D(s)1()e+νeB_{(s)}\to{D}^{(\prime)}_{(s)1}e^{+}\nu_{e} and B(s)D(s)1()μ+νμB_{(s)}\to{D}^{(\prime)}_{(s)1}\mu^{+}\nu_{\mu} are very close to each other, which reflect the lepton flavor universality (LFU). In order to investigate the dependences of the polarizations on the different q2q^{2}, we divide the full energy region into two segments for each decay and calculate the longitudinal polarization fractions accordingly. Region 1 is defined as m2<q2<(mB(s)mD(s1)())2+m22m_{\ell}^{2}<q^{2}<\frac{(m_{B_{(s)}}-m_{D^{(\prime)}_{(s1)}})^{2}+m_{\ell}^{2}}{2} and Region 2 is (mB(s)mD(s)1())2+m22<q2<(mB(s)mD(s)1())2\frac{(m_{B_{(s)}}-m_{D_{(s)1}^{(\prime)}})^{2}+m_{\ell}^{2}}{2}<q^{2}<(m_{B_{(s)}}-m_{D_{(s)1}^{(\prime)}})^{2}. Obviously, the longitudinal polarization fraction in Region 1 is larger than that in Region 2 for each decay. Furthermore, for the decays with D(s)1D_{(s)1} involved in the final states the longitudinal polarization is dominant, while it is contrary for the decays with D(s)1D^{\prime}_{(s)1} involved. These results can be validated by the future high-luminosity experiments.

Table 6: The lepton flavor universality ratios of the transitions B(s)D0B_{(s)}\to D^{*}_{0}, Ds0D^{*}_{s0}, Ds1()D^{(\prime)}_{s1}, D1()D^{(\prime)}_{1}.
Decays Ratios Predicted values Decays Ratios Predicted values
B+D¯00+νB^{+}\to\bar{D}_{0}^{*0}\ell^{+}\nu_{\ell} R(D¯0)R(\bar{D}^{*}_{0}) 0.1270.0010.000+0.003+0.0030.127^{+0.003+0.003}_{-0.001-0.000} Bs0Ds1+νB_{s}^{0}\to D_{s1}^{-}\ell^{+}\nu_{\ell} R(Ds1)R(D_{s1}) 0.1020.0090.001+0.007+0.0030.102^{+0.007+0.003}_{-0.009-0.001}
0.0630.002+0.0010.063^{+0.001}_{-0.002} Zuo:2023ksq 0.061±0.0030.061\pm 0.003 Zuo:2023ksq
0.08±0.030.08\pm 0.03 F.U. 0.09±0.020.09\pm 0.02 F.U.1
B0D0+νB^{0}\to D_{0}^{*-}\ell^{+}\nu_{\ell} R(D0)R(D^{*}_{0}) 0.1270.0010.002+0.001+0.0020.127^{+0.001+0.002}_{-0.001-0.002} Bs0Ds1+νB_{s}^{0}\to D_{s1}^{\prime-}\ell^{+}\nu_{\ell} R(Ds1)R(D^{\prime}_{s1}) 0.1110.0290.020+0.014+0.0090.111^{+0.014+0.009}_{-0.029-0.020}
0.099±0.0150.099\pm 0.015 A.L. 0.0840.002+0.0010.084^{+0.001}_{-0.002} Zuo:2023ksq
0.110.01+0.03(S1),0.160.02+0.04(S2)10.11^{+0.03}_{-0.01}\textnormal{(S1)},0.16^{+0.04}_{-0.02}\textnormal{(S2)}^{1} Gubernari:2023rfu 0.07±0.030.07\pm 0.03 F.U.1
Bs0Ds0+νB^{0}_{s}\to D_{s0}^{*}\ell^{+}\nu_{\ell} R(Ds0)R(D^{*}_{s0}) 0.1470.0040.003+0.003+0.0010.147^{+0.003+0.001}_{-0.004-0.003} B+D¯10+νB^{+}\to\bar{D}_{1}^{0}\ell^{+}\nu_{\ell} R(D1)R(D_{1}) 0.0910.0020.004+0.001+0.0030.091^{+0.001+0.003}_{-0.002-0.004}
0.0800.002+0.0010.080^{+0.001}_{-0.002} Zuo:2023ksq 0.0640.003+0.0030.064^{+0.003}_{-0.003} Zuo:2023ksq
0.09±0.040.09\pm 0.04 F.U.1 0.10±0.020.10\pm 0.02 F.U.
0.140.02+0.070.14^{+0.07}_{-0.02} Gubernari:2023rfu 0.098±0.0070.098\pm 0.007 A.L.
B+D¯10+νB^{+}\to\bar{D}_{1}^{\prime 0}\ell^{+}\nu_{\ell} R(D1)R(D^{\prime}_{1}) 0.1100.0100.025+0.030+0.0510.110^{+0.030+0.051}_{-0.010-0.025}
0.0760.002+0.0010.076^{+0.001}_{-0.002} Zuo:2023ksq
0.05±0.020.05\pm 0.02 F.U.
0.074±0.0120.074\pm 0.012 A.L.

1 The definitions of S1 and S2 are given in Table 4.

Table 7: The longitudinal polarization fractions fLf_{L} for the decays BsDs1()+νB_{s}\to D^{(\prime)-}_{s1}\ell^{+}\nu_{\ell} and B+D¯1()0+νB^{+}\to\bar{D}^{(\prime)0}_{1}\ell^{+}\nu_{\ell} in Region 1 and Region 2.
Observables Region 1 Region 2 Total Observables Region 1 Region 2 Total
fL(Bs0Ds1e+νe)f_{L}(B_{s}^{0}\to D_{s1}^{-}e^{+}\nu_{e}) 0.810.81 0.500.50 0.710.71 fL(Bs0Ds1e+νe)f_{L}(B_{s}^{0}\to D_{s1}^{\prime-}e^{+}\nu_{e}) 0.420.42 0.120.12 0.310.31
fL(Bs0Ds1μ+νμ)f_{L}(B_{s}^{0}\to D_{s1}^{-}\mu^{+}\nu_{\mu}) 0.810.81 0.500.50 0.710.71 fL(Bs0Ds1μ+νμ)f_{L}(B_{s}^{0}\to D_{s1}^{\prime-}\mu^{+}\nu_{\mu}) 0.420.42 0.120.12 0.310.31
fL(Bs0Ds1τ+ντ)f_{L}(B_{s}^{0}\to D_{s1}^{-}\tau^{+}\nu_{\tau}) 0.660.66 0.480.48 0.560.56 fL(Bs0Ds1τ+ντ)f_{L}(B_{s}^{0}\to D_{s1}^{\prime-}\tau^{+}\nu_{\tau}) 0.230.23 0.240.24 0.240.24
fL(B+D¯10e+νe)f_{L}(B^{+}\to\bar{D}_{1}^{0}e^{+}\nu_{e}) 0.810.81 0.500.50 0.720.72 fL(B+D¯10e+νe)f_{L}(B^{+}\to\bar{D}_{1}^{\prime 0}e^{+}\nu_{e}) 0.540.54 0.110.11 0.390.39
fL(B+D¯10μ+νμ)f_{L}(B^{+}\to\bar{D}_{1}^{0}\mu^{+}\nu_{\mu}) 0.810.81 0.500.50 0.720.72 fL(B+D¯10μ+νμ)f_{L}(B^{+}\to\bar{D}_{1}^{\prime 0}\mu^{+}\nu_{\mu}) 0.540.54 0.110.11 0.390.39
fL(B+D¯10τ+ντ)f_{L}(B^{+}\to\bar{D}_{1}^{0}\tau^{+}\nu_{\tau}) 0.670.67 0.490.49 0.560.56 fL(B+D¯10τ+ντ)f_{L}(B^{+}\to\bar{D}_{1}^{\prime 0}\tau^{+}\nu_{\tau}) 0.320.32 0.250.25 0.280.28

In Figure 5, we plot the q2q^{2} dependencies of the differential decay rates for the channels B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell{\nu}_{\ell} and B(s)D(s)1()νB_{(s)}\to{D}^{(\prime)}_{(s)1}\ell\nu_{\ell}. One can find that the line shapes of these differential distributions are constrained by the phase space, in other words, the lepton mass. The polarization needs to be considered in the decays BsDs1()νB_{s}\to{D}^{(\prime)}_{s1}\ell\nu_{\ell} and BD1()νB\to D^{(\prime)}_{1}\ell\nu_{\ell}, which is shown in Figures 5(c)-5(h). It is obvious that for the decays with D(s)1D_{(s)1} involved the longitudinal polarization is dominant in small q2q^{2} region and comparable with the transverse ones in large q2q^{2} region. While for the decays with D(s)1D^{\prime}_{(s)1} involved the transverse polarizations are dominant, especially in large q2q^{2} region. It is interesting that taking some special q2q^{2} values for the decays BD1νB\to{D}^{\prime}_{1}\ell^{\prime}\nu_{\ell^{\prime}} and BsDs1νB_{s}\to{D}^{\prime}_{s1}\ell^{\prime}\nu_{\ell^{\prime}}, we can find that the contribution from the longitudinal polarization almost disappears with only the transverse polarizations left, which is shown in Figures 5(d) and 5(f). Maybe such a phenomenon can be checked in the future LHC and Super KEKB experiments to test the present mixing mechanism.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: The q2q^{2} dependencies of differential decay rates dΓ/dq2d\Gamma/dq^{2} and dΓL/dq2d\Gamma^{L}/dq^{2} for the decays B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell{\nu}_{\ell} and B(s)D(s)1()νB_{(s)}\to{D}^{(\prime)}_{(s)1}\ell\nu_{\ell}.
Table 8: The forward-backward asymmetries AFBA_{FB} for the decays B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell{\nu}_{\ell} and B(s)D(s)1()νB_{(s)}\to{D}^{(\prime)}_{(s)1}\ell\nu_{\ell}.
Channels B+D¯0e+νeB^{+}\to\bar{D}^{*}_{0}e^{+}\nu_{e} B+D¯0μ+νμB^{+}\to\bar{D}^{*}_{0}\mu^{+}\nu_{\mu} B+D¯0τ+ντB^{+}\to\bar{D}^{*}_{0}\tau^{+}\nu_{\tau}
AFBA_{FB} This work (5.8200.9042.108+1.494+2.582)×107(5.820^{+1.494+2.582}_{-0.904-2.108})\times 10^{-7} 0.0200.0030.007+0.005+0.0090.020^{+0.005+0.009}_{-0.003-0.007} 0.3830.0630.143+0.102+0.1770.383^{+0.102+0.177}_{-0.063-0.143}
Channels Bs0Ds0e+νeB_{s}^{0}\to D^{*-}_{s0}e^{+}\nu_{e} Bs0Ds0μ+νμB_{s}^{0}\to D^{*-}_{s0}\mu^{+}\nu_{\mu} Bs0Ds0τ+ντB_{s}^{0}\to D^{*-}_{s0}\tau^{+}\nu_{\tau}
AFBA_{FB} This work (5.4650.5151.898+1.100+2.298)×107(5.465^{+1.100+2.298}_{-0.515-1.898})\times 10^{-7} 0.0190.0020.007+0.004+0.0100.019^{+0.004+0.010}_{-0.002-0.007} 0.3810.0380.138+0.079+0.1680.381^{+0.079+0.168}_{-0.038-0.138}
Albertus:2014bfa 8.22×1078.22\times 10^{-7} 0.0160.016 0.390.39
Channel Bs0Ds1e+νeB_{s}^{0}\to D_{s1}^{-}e^{+}\nu_{e} Bs0Ds1μ+νμB_{s}^{0}\to D_{s1}^{-}\mu^{+}\nu_{\mu} Bs0Ds1τ+ντB_{s}^{0}\to D_{s1}^{-}\tau^{+}\nu_{\tau}
AFBA_{FB} This work 0.1750.0140.0160.017+0.016+0.027+0.011-0.175^{+0.016+0.027+0.011}_{-0.014-0.016-0.017} 0.1740.0140.0170.017+0.016+0.026+0.010-0.174^{+0.016+0.026+0.010}_{-0.014-0.017-0.017} 0.1290.0150.0170.016+0.010+0.021+0.003-0.129^{+0.010+0.021+0.003}_{-0.015-0.017-0.016}
Albertus:2014bfa 0.19-0.19 0.18-0.18 0.100.10
Channels Bs0Ds1e+νeB_{s}^{0}\to D_{s1}^{\prime-}e^{+}\nu_{e} Bs0Ds1μ+νμB_{s}^{0}\to D_{s1}^{\prime-}\mu^{+}\nu_{\mu} Bs0Ds1τ+ντB_{s}^{0}\to D_{s1}^{\prime-}\tau^{+}\nu_{\tau}
AFBA_{FB} This work 0.4070.1010.1850.029+0.104+0.129+0.020-0.407^{+0.104+0.129+0.020}_{-0.101-0.185-0.029} 0.4050.1020.1860.029+0.104+0.129+0.020-0.405^{+0.104+0.129+0.020}_{-0.102-0.186-0.029} 0.2480.0640.0270.007+0.026+0.080+0.048-0.248^{+0.026+0.080+0.048}_{-0.064-0.027-0.007}
Albertus:2014bfa 0.41-0.41 0.40-0.40 0.20-0.20
Channels B+D¯10e+νeB^{+}\to\bar{D}_{1}^{0}e^{+}\nu_{e} B+D¯10μ+νμB^{+}\to\bar{D}_{1}^{0}\mu^{+}\nu_{\mu} B+D¯10τ+ντB^{+}\to\bar{D}_{1}^{0}\tau^{+}\nu_{\tau}
AFBA_{FB} This work 0.1780.0300.0250.017+0.014+0.018+0.008-0.178^{+0.014+0.018+0.008}_{-0.030-0.025-0.017} 0.1770.0320.0280.019+0.012+0.016+0.006-0.177^{+0.012+0.016+0.006}_{-0.032-0.028-0.019} 0.1310.0340.0360.025+0.024+0.037+0.014-0.131^{+0.024+0.037+0.014}_{-0.034-0.036-0.025}
Channels B+D¯10e+νeB^{+}\to\bar{D}_{1}^{\prime 0}e^{+}\nu_{e} B+D¯10μ+νμB^{+}\to\bar{D}_{1}^{\prime 0}\mu^{+}\nu_{\mu} B+D¯10τ+ντB^{+}\to\bar{D}_{1}^{\prime 0}\tau^{+}\nu_{\tau}
AFBA_{FB} This work 0.3160.1900.0900.048+0.115+0.085+0.083-0.316^{+0.115+0.085+0.083}_{-0.190-0.090-0.048} 0.3140.0960.0950.043+0.111+0.081+0.079-0.314^{+0.111+0.081+0.079}_{-0.096-0.095-0.043} 0.1860.0320.0130.0170.013+0.041+0.024-0.186^{-0.013+0.041+0.024}_{-0.032-0.013-0.017}
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: The q2q^{2} dependencies of the forward-backward asymmetries AFBA_{FB} for the decays B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell{\nu}_{\ell} and B(s)D(s)1()νB_{(s)}\to{D}^{(\prime)}_{(s)1}\ell\nu_{\ell}.

From Table 8, we find that the ratios of the forward-backward asymmetries AFBμA^{\mu}_{FB}/ AFBeA^{e}_{FB} between the semileptonic decays B(s)D(s)0μ+νμB_{(s)}\to{D}^{*}_{(s)0}\mu^{+}\nu_{\mu} and B(s)D(s)0e+νeB_{(s)}\to{D}^{*}_{(s)0}e^{+}\nu_{e} are about 3.5×1043.5\times 10^{4}. The reason is that the forward-backward asymmetries AFBA_{FB} for the decays B(s)D(s)0+νB_{(s)}\to{D}^{*}_{(s)0}\ell^{+}\nu_{\ell} are proportional to the square of the lepton mass. Undoubtedly, the effect of lepton mass can be well checked in such decay mode with a scalar meson involved in the final states. While for the decays B(s)D(s)1()νB_{(s)}\to{D}^{(\prime)}_{(s)1}\ell^{\prime}\nu_{\ell^{\prime}}, the values of the forward-backward asymmetries AFBμA^{\mu}_{FB} and AFBeA^{e}_{FB} are almost equal to each other. The magnitudes of the AFBA_{FB} for the decays B(s)D(s)1νB_{(s)}\to{D}^{\prime}_{(s)1}\ell\nu_{\ell} are larger than those for the decays B(s)D(s)1νB_{(s)}\to{D}_{(s)1}\ell\nu_{\ell}. It is worth mentioning that our results are consistent well with those calculated in the nonrelativistic constituent quark models Albertus:2014bfa , which are shown in Table 8. In Figure 6, we also display the q2q^{2}-dependencies of the forward-backward asymmetries AFBA_{FB} for the decays B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell{\nu}_{\ell} and B(s)D(s)1()νB_{(s)}\to{D}^{(\prime)}_{(s)1}\ell\nu_{\ell}. Obviously, the signs of the AFBA_{FB} for the decays B(s)D(s)0νB_{(s)}\to D^{*}_{(s)0}\ell{\nu}_{\ell} are contrary with those for the decays B(s)D(s)1()νB_{(s)}\to{D}^{(\prime)}_{(s)1}\ell\nu_{\ell}. The lepton mass effects can be easily observed in these figures.

IV Summary

In this work, we used the covariant light-front quark method to comprehensively investigate the semileptonic B(s)B_{(s)} decays to D0D_{0}^{\ast}, Ds0D_{s0}^{\ast}, Ds1()D^{(\prime)}_{s1} and D1()D^{(\prime)}_{1}, which can provide an important reference for future experiments. We calculated the branching ratios, the longitudinal polarization fractions fLf_{L}, and the forward-backward asymmetries AFBA_{FB} for these semileptonic B(s)B_{(s)} decays using the helicity amplitudes combined with form factors. We found the following points:

  1. 1.

    The small form factors of the transitions B(s)D0,Ds0B_{(s)}\to D_{0}^{\ast},D_{s0}^{\ast} are related to the small decay constants fD0f_{D_{0}^{\ast}} and fDs0f_{D_{s0}^{\ast}}. Unfortunately, there are large uncertainties in these two decay constants. Combined with the data, our predictions for the branching ratios of the semileptonic B(s)B_{(s)} meson decays with D0D_{0}^{\ast} and Ds0D_{s0}^{\ast} involved are helpful in probing the inner structures of these two resonances. Recently, Belle updated their measurement for the decays B0D0+νB^{0}\to D^{*-}_{0}\ell^{\prime+}\nu_{\ell^{\prime}} with only a small upper limit Br(B0D0+ν)<0.44×103Br(B^{0}\to D^{*-}_{0}\ell^{\prime+}\nu_{\ell^{\prime}})<0.44\times 10^{-3} obtained, which is much larger than most theoretical predictions. We urge our experimental colleagues to perform further more precise measurements to clarify this new puzzle.

  2. 2.

    In our considered decays, the branching ratios of the channels Bs0Ds1+νB^{0}_{s}\to D^{-}_{s1}\ell^{+}{\nu}_{\ell} are (much) lager than those of the decays Bs0Ds1+νB^{0}_{s}\to D^{\prime-}_{s1}\ell^{+}\nu_{\ell}. This is because the related form factors of the transition BsDs1B_{s}\to D_{s1} are much larger than those of the transition BsDs1B_{s}\to D^{\prime}_{s1}. There exists a similar situation between the decays B+D¯10+νB^{+}\to\bar{D}^{0}_{1}\ell^{+}\nu_{\ell} and B+D¯10+νB^{+}\to\bar{D}^{\prime 0}_{1}\ell^{+}\nu_{\ell}. In addition, we calculated the dependencies of the branching ratios of the decays BD1()νB\to D^{(\prime)}_{1}\ell\nu_{\ell} and BsDs1()νB_{s}\to D^{(\prime)}_{s1}\ell\nu_{\ell} on the mixing angle θs\theta_{s}. One can find that taking some negative mixing angle θs\theta_{s} values within a range from 30.3-30.3^{\circ} to 24.9-24.9^{\circ} can explain the data, which correspond to θ\theta within the range 510.45^{\circ}\sim 10.4^{\circ}.

  3. 3.

    In these semileptonic decays B(s)D(s)1()νB_{(s)}\to D^{(\prime)}_{(s)1}\ell\nu_{\ell}, the longitudinal polarization fractions in small q2q^{2} region are always larger than those in large q2q^{2} region. Furthermore, the longitudinal polarization for the decays with D(s)1D_{(s)1} involved in the final states is dominant, while it is contrary for the decays with D(s)1D^{\prime}_{(s)1} involved. It is interesting that taking some special q2q^{2} values for the decays BD1νB\to D^{\prime}_{1}\ell^{\prime}\nu_{\ell^{\prime}} and BsDs1νB_{s}\to{D}^{\prime}_{s1}\ell^{\prime}\nu_{\ell^{\prime}}, we find that the contribution from the longitudinal polarization almost disappears with only the transverse polarizations left. Maybe such a phenomenon can be searched for in the future LHC and Super KEKB experiments to test the present mixing mechanism.

Acknowledgment

We thank Prof. Guo-Li Wang for helpful discussions. This work is partly supported by the National Natural Science Foundation of China under Grant No. 11347030, the Program of Science and Technology Innovation Talents in Universities of Henan Province 14HASTIT037, as well as the Natural Science Foundation of Henan Province under Grant No. 232300420116.

Appendix A Some specific rules under the pp^{-} intergration

When preforming the integraion, we need to include the zero-mode contributions. It amounts to performing the integration in a proper way in the CLFQM. Specificlly we use the following rules given in Refs. Cheng:2003sm ; Jaus

p^1μ\displaystyle\hat{p}_{1\mu}^{\prime} \displaystyle\doteq PμA1(1)+qμA2(1),\displaystyle P_{\mu}A_{1}^{(1)}+q_{\mu}A_{2}^{(1)}, (42)
p^1μp^1ν\displaystyle\hat{p}_{1\mu}^{\prime}\hat{p}_{1\nu}^{\prime} \displaystyle\doteq gμνA1(2)+PμPνA2(2)+(Pμqν+qμPν)A3(2)+qμqνA4(2),\displaystyle g_{\mu\nu}A_{1}^{(2)}+P_{\mu}P_{\nu}A_{2}^{(2)}+\left(P_{\mu}q_{\nu}+q_{\mu}P_{\nu}\right)A_{3}^{(2)}+q_{\mu}q_{\nu}A_{4}^{(2)}, (43)
Z2\displaystyle Z_{2} =\displaystyle= N^1+m12m22+(12x1)M2+(q2+qP)pqq2,\displaystyle\hat{N}_{1}^{\prime}+m_{1}^{\prime 2}-m_{2}^{2}+\left(1-2x_{1}\right)M^{\prime 2}+\left(q^{2}+q\cdot P\right)\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}}, (44)
A1(1)\displaystyle A_{1}^{(1)} =\displaystyle= x12,A2(1)=A1(1)pqq2,A3(2)=A1(1)A2(1),\displaystyle\frac{x_{1}}{2},\quad A_{2}^{(1)}=A_{1}^{(1)}-\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}},\quad A_{3}^{(2)}=A_{1}^{(1)}A_{2}^{(1)}, (45)
A4(2)\displaystyle A_{4}^{(2)} =\displaystyle= (A2(1))21q2A1(2),A1(2)=p2(pq)2q2,A2(2)=(A1(1))2.\displaystyle\left(A_{2}^{(1)}\right)^{2}-\frac{1}{q^{2}}A_{1}^{(2)},\quad A_{1}^{(2)}=-p_{\perp}^{\prime 2}-\frac{\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{2}},\quad A_{2}^{(2)}=\left(A_{1}^{(1)}\right)^{2}. (46)

Appendix B EXPRESSIONS OF BD0,iD1B\rightarrow D^{*}_{0},\;^{i}D_{1} FORM FACTORS

F1BD0(q2)\displaystyle F_{1}^{BD^{*}_{0}}\left(q^{2}\right) =\displaystyle= Nc16π3dx2d2phBhD0′′x2N^1N^1′′[x1(M02+M0′′2)+x2q2\displaystyle\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{B}^{\prime}h_{D^{*}_{0}}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}\left[x_{1}\left(M_{0}^{\prime 2}+M_{0}^{\prime\prime 2}\right)+x_{2}q^{2}\right. (47)
x2(m1+m1′′)2x1(m1m2)2x1(m1′′+m2)2],\displaystyle\left.-x_{2}\left(m_{1}^{\prime}+m_{1}^{\prime\prime}\right)^{2}-x_{1}\left(m_{1}^{\prime}-m_{2}\right)^{2}-x_{1}\left(m_{1}^{\prime\prime}+m_{2}\right)^{2}\right],
F0BD0(q2)\displaystyle F_{0}^{BD^{*}_{0}}\left(q^{2}\right) =\displaystyle= F1BD0(q2)+q2qPNc16π3dx2d2p2hBhD0′′x2N^1N^1′′{x1x2M2p2m1m2\displaystyle F_{1}^{BD^{*}_{0}}\left(q^{2}\right)+\frac{q^{2}}{q\cdot P}\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{2h_{B}^{\prime}h_{D^{*}_{0}}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}\left\{-x_{1}x_{2}M^{\prime 2}-p_{\perp}^{\prime 2}-m_{1}^{\prime}m_{2}\right. (48)
(m1′′+m2)(x2m1+x1m2)+2qPq2(p2+2(pq)2q2)+2(pq)2q2\displaystyle\left.-\left(m_{1}^{\prime\prime}+m_{2}\right)\left(x_{2}m_{1}^{\prime}+x_{1}m_{2}\right)+2\frac{q\cdot P}{q^{2}}\left(p_{\perp}^{\prime 2}+2\frac{\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{2}}\right)+2\frac{\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{2}}\right.
pqq2[M′′2x2(q2+qP)(x2x1)M2+2x1M02\displaystyle\left.-\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}}\left[M^{\prime\prime 2}-x_{2}\left(q^{2}+q\cdot P\right)-\left(x_{2}-x_{1}\right)M^{\prime 2}+2x_{1}M_{0}^{\prime 2}\right.\right.
2(m1m2)(m1m1′′)]},\displaystyle\left.\left.-2\left(m_{1}^{\prime}-m_{2}\right)\left(m_{1}^{\prime}-m_{1}^{\prime\prime}\right)\right]\right\},
ABiD1(q2)\displaystyle A^{B\;^{i}D_{1}}(q^{2}) =\displaystyle= (MM′′)Nc16π3dx2d2p2hBhD1i′′x2N^1N^1′′{x2m1+x1m2+(m1+m1′′)pqq2\displaystyle(M^{\prime}-M^{\prime\prime})\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{2h_{B}^{\prime}h_{\;{}^{i}D_{1}}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}\left\{x_{2}m_{1}^{\prime}+x_{1}m_{2}+\left(m_{1}^{\prime}+m_{1}^{\prime\prime}\right)\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}}\right. (49)
+2wDs1i′′[p2+(pq)2q2]},\displaystyle\left.+\frac{2}{w_{{}^{i}D_{s1}}^{\prime\prime}}\left[p_{\perp}^{\prime 2}+\frac{\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{2}}\right]\right\},
V1BiD1(q2)\displaystyle V_{1}^{B\;^{i}D_{1}}(q^{2}) =\displaystyle= 1MM′′Nc16π3dx2d2phBhD1i′′x2N^1N^1′′{2x1(m2m1)(M02+M0′′2)+4x1m1′′M02\displaystyle-\frac{1}{M^{\prime}-M^{\prime\prime}}\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{B}^{\prime}h_{\;{}^{i}D_{1}}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}\{2x_{1}\left(m_{2}-m_{1}^{\prime}\right)\left(M_{0}^{\prime 2}+M_{0}^{\prime\prime 2}\right)+4x_{1}m_{1}^{\prime\prime}M_{0}^{\prime 2} (50)
+2x2m1qP+2m2q22x1m2(M2+M′′2)+2(m1m2)(m1m1′′)2+8(m1m2)\displaystyle+2x_{2}m_{1}^{\prime}q\cdot P\left.+2m_{2}q^{2}-2x_{1}m_{2}\left(M^{\prime 2}+M^{\prime\prime 2}\right)+2\left(m_{1}^{\prime}-m_{2}\right)\left(m_{1}^{\prime}-m_{1}^{\prime\prime}\right)^{2}+8\left(m_{1}^{\prime}-m_{2}\right)\right.
×[p2+(pq)2q2]+2(m1m1′′)(q2+qP)pqq24q2p2+(pq)2q2wDs1i′′\displaystyle\left.\times\left[p_{\perp}^{\prime 2}+\frac{\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{2}}\right]+2\left(m_{1}^{\prime}-m_{1}^{\prime\prime}\right)\left(q^{2}+q\cdot P\right)\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}}-4\frac{q^{2}p_{\perp}^{\prime 2}+\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{2}w_{{}^{i}D_{s1}}^{\prime\prime}}\right.
×[2x1(M2+M02)q2qP2(q2+qP)pqq22(m1+m1′′)(m1m2)]},\displaystyle\left.\times\left[2x_{1}\left(M^{\prime 2}+M_{0}^{\prime 2}\right)-q^{2}-q\cdot P-2\left(q^{2}+q\cdot P\right)\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}}-2\left(m_{1}^{\prime}+m_{1}^{\prime\prime}\right)\left(m_{1}^{\prime}-m_{2}\right)\right]\right\},\;\;\;\;\;\;\;
V2BiD1(q2)\displaystyle V_{2}^{B\;^{i}D_{1}}(q^{2}) =\displaystyle= (MM′′)Nc16π3dx2d2p2hBhD1i′′x2N^1N^1′′{(x1x2)(x2m1+x1m2)[2x1m2m1′′\displaystyle(M^{\prime}-M^{\prime\prime})\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{2h_{B}^{\prime}h_{\;{}^{i}D_{1}}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}\left\{(x_{1}-x_{2}\right)\left(x_{2}m_{1}^{\prime}+x_{1}m_{2}\right)-[2x_{1}m_{2}-m_{1}^{\prime\prime} (51)
+(x2x1)m1]×pqq22x2q2+pqx2q2wD1i′′[pp′′+(x1m2+x2m1)\displaystyle+\left(x_{2}-x_{1}\right)m_{1}^{\prime}]\times\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}}-2\frac{x_{2}q^{2}+p_{\perp}^{\prime}\cdot q_{\perp}}{x_{2}q^{2}w_{{}^{i}D_{1}}^{\prime\prime}}[p_{\perp}^{\prime}\cdot p_{\perp}^{\prime\prime}+\left(x_{1}m_{2}+x_{2}m_{1}^{\prime}\right)
×(x1m2+x2m1′′)]},\displaystyle\times\left(x_{1}m_{2}+x_{2}m_{1}^{\prime\prime}\right)]\},
V0BiD1(q2)\displaystyle V_{0}^{B\;^{i}D_{1}}(q^{2}) =\displaystyle= MM′′2M′′V1BiD1(q2)M+M′′2M′′V2BiD1(q2)q22M′′Nc16π3𝑑x2d2phBhD1i′′x2N^1N^1′′\displaystyle\frac{M^{\prime}-M^{\prime\prime}}{2M^{\prime\prime}}V_{1}^{B\;^{i}D_{1}}(q^{2})-\frac{M^{\prime}+M^{\prime\prime}}{2M^{\prime\prime}}V_{2}^{B\;^{i}D_{1}}(q^{2})-\frac{q^{2}}{2M^{\prime\prime}}\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{B}^{\prime}h_{\;{}^{i}D_{1}}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}} (52)
×{2(2x13)(x2m1+x1m2)8(m1m2)[p2q2+2(pq)2q4][(1412x1)m1\displaystyle\times\{2\left(2x_{1}-3\right)\left(x_{2}m_{1}^{\prime}+x_{1}m_{2}\right)-8\left(m_{1}^{\prime}-m_{2}\right)\left[\frac{p_{\perp}^{\prime 2}}{q^{2}}+2\frac{\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{4}}\right]-[\left(14-12x_{1}\right)m_{1}^{\prime}
+2m1′′(812x1)m2]pqq2+4wD1i′′([M2+M′′2q2+2(m1m2)(m1′′+m2)]\displaystyle+2m_{1}^{\prime\prime}-\left(8-12x_{1}\right)m_{2}]\frac{p_{\perp}^{\prime}\cdot q_{\perp}}{q^{2}}+\frac{4}{w_{{}^{i}D_{1}}^{\prime\prime}}(\left[M^{\prime 2}+M^{\prime\prime 2}-q^{2}+2\left(m_{1}^{\prime}-m_{2}\right)\left(-m_{1}^{\prime\prime}+m_{2}\right)\right]
×(A3(2)+A4(2)A2(1))+Z2(3A2(1)2A4(2)1)+12[x1(q2+qP)2M22pq\displaystyle\times\left(A_{3}^{(2)}+A_{4}^{(2)}-A_{2}^{(1)}\right)+Z_{2}\left(3A_{2}^{(1)}-2A_{4}^{(2)}-1\right)+\frac{1}{2}[x_{1}\left(q^{2}+q\cdot P\right)-2M^{\prime 2}-2p_{\perp}^{\prime}\cdot q_{\perp}
2m1(m1′′+m2)2m2(m1m2)](A1(1)+A2(1)1)\displaystyle-2m_{1}^{\prime}\left(-m_{1}^{\prime\prime}+m_{2}\right)\left.-2m_{2}\left(m_{1}^{\prime}-m_{2}\right)\right]\left(A_{1}^{(1)}+A_{2}^{(1)}-1\right)
×qP[p2q2+(pq)2q4](4A2(1)3))},\displaystyle\left.\left.\times q\cdot P\left[\frac{p_{\perp}^{\prime 2}}{q^{2}}+\frac{\left(p_{\perp}^{\prime}\cdot q_{\perp}\right)^{2}}{q^{4}}\right]\left(4A_{2}^{(1)}-3\right)\right)\right\},\;\;\;

with i=1,3i=1,3.

References

  • (1) Z. H. Wang, Y. Zhang, T. h. Wang, Y. Jiang, Q. Li and G. L. Wang, Chin. Phys. C 42, 123101 (2018) [arXiv:1803.06822 [hep-ph]].
  • (2) K. Abe, et al. [Belle], Phys. Rev. D 69, 112002 (2004) [arXiv:hep-ex/0307021].
  • (3) S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
  • (4) B. Aubert, et al. [BaBar] , Phys. Rev. D 79, 112004 (2009) [arXiv:hep-ex/0901.1291].
  • (5) S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
  • (6) N. Gubernari, A. Khodjamirian, R. Mandal and T. Mannel, JHEP 05, 029 (2022) [arXiv:2203.08493 [hep-ph]].
  • (7) V. Morenas, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Rev. D 56, 5668 (1997) [arXiv:hep-ph/9706265].
  • (8) I. I. Bigi, B. Blossier, A. Le Yaouanc, L. Oliver, O. Pene, J. C. Raynal, A. Oyanguren and P. Roudeau, Eur. Phys. J. C 52, 975 (2007) [arXiv:0708.1621 [hep-ph]].
  • (9) D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995) [arXiv:hep-ph/9503486].
  • (10) P. Colangelo, F. De Fazio and N. Paver, Phys. Rev. D 58, 116005 (1998) [arXiv:hep-ph/9804377].
  • (11) F.Meier et al. [Belle], Phys. Rev. D 107, 092003 (2023) [arXiv:2211.09833 [hep-ex]].
  • (12) Z. X. Xie, G. Q. Feng and X. H. Guo, Phys. Rev. D 81, 036014 (2010).
  • (13) M. Cleven, H. W. Griehammer, F. K. Guo, C. Hanhart and U. G. Meiner, Eur. Phys. J. A 50, 149 (2014) [arXiv:1405.2242 [hep-ph]].
  • (14) F. K. Guo, P. N. Shen, H. C. Chiang, R. G. Ping and B. S. Zou, Phys. Lett. B 641, 278 (2006) [arXiv:hep-ph/0603072].
  • (15) T. Barnes, F. E. Close and H. J. Lipkin, Phys. Rev. D 68, 054006 (2003) [arXiv:hep-ph/0305025].
  • (16) E. E. Kolomeitsev and M. F. M. Lutz, Phys. Lett. B 582, 39 (2004) [arXiv:hep-ph/0307133].
  • (17) J. Hofmann and M. F. M. Lutz, Nucl. Phys. A 733, 142 (2004) [arXiv:hep-ph/0308263].
  • (18) C. J. Xiao, D. Y. Chen and Y. L. Ma, Phys. Rev. D 93, 094011 (2016) [arXiv:1601.06399 [hep-ph]].
  • (19) L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71, 014028 (2005) [arXiv:hep-ph/0412098].
  • (20) Z. G. Wang and S. L. Wan, Nucl. Phys. A 778, 22 (2006) [arXiv:hep-ph/0602080].
  • (21) H. Y. Cheng and W. S. Hou, Phys. Lett. B 566, 193 (2003) [arXiv:hep-ph/0305038].
  • (22) Y. Q. Chen and X. Q. Li, Phys. Rev. Lett. 93, 232001 (2004) [arXiv:hep-ph/0407062].
  • (23) H. Kim and Y. Oh, Phys. Rev. D 72, 074012 (2005) [arXiv:hep-ph/0508251].
  • (24) W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003) [arXiv:hep-ph/0305049].
  • (25) M. A. Nowak, M. Rho and I. Zahed, Acta Phys. Polon. B 35, 2377 (2004) [arXiv:hep-ph/0307102].
  • (26) T. E. Browder, S. Pakvasa and A. A. Petrov, Phys. Lett. B 578, 365 (2004) [arXiv:hep-ph/0307054].
  • (27) J. Vijande, F. Fernandez and A. Valcarce, Phys. Rev. D 73, 034002 (2006) [arXiv:hep-ph/0601143].
  • (28) H. Y. Cheng, Phys. Rev. D 68, 094005 (2003) [arXiv:hep-ph/0307168].
  • (29) H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69, 074025 (2004) [arXiv:hep-ph/0310359].
  • (30) Y. B. Dai and M. Q. Huang, Phys. Rev. D 59, 034018 (1999) [arXiv:hep-ph/9807461].
  • (31) M. Q. Huang and Y. B. Dai, Phys. Rev. D 64, 014034 (2001) [arXiv:hep-ph/0102299].
  • (32) Y. B. Zuo, H. Y. Jin, J. Y. Tian, J. Yi, H. Y. Gong and T. T. Pan, Chin. Phys. C 47, 103104 (2023) [arXiv:2307.08271 [hep-ph]].
  • (33) A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Phys. Rev. Lett. 78, 3995 (1997) [arXiv:hep-ph/9703213].
  • (34) A. K. Leibovich, Z. Ligeti, I. W. Stewart and M. B. Wise, Phys. Rev. D 57, 308 (1998) [arXiv:hep-ph/9705467].
  • (35) F. U. Bernlochner, Z. Ligeti and D. J. Robinson, Phys. Rev. D 97, 075011 (2018) [arXiv:1711.03110 [hep-ph]].
  • (36) F. U. Bernlochner and Z. Ligeti, Phys. Rev. D 95, 014022 [arXiv:1606.09300 [hep-ph]].
  • (37) H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004) [erratum: Phys. Rev. D 81, 059901 (2010)] [arXiv:hep-ph/0401141].
  • (38) C. W. Hwang and Z. T. Wei, J. Phys. G 34, 687 (2007) [arXiv:hep-ph/0609036].
  • (39) C. D. Lu, W. Wang and Z. T. Wei, Phys. Rev. D 76, 014013 (2007) [arXiv:hep-ph/0701265].
  • (40) W. Wang, Y. L. Shen and C. D. Lu, Eur. Phys. J. C 51, 841 (2007) [arXiv:hep-ph/0704.2493].
  • (41) W. Jaus, Phys. Rev. D 60, 054026 (1999).
  • (42) M. Wirbel, B. Stech and M. Bauer, Z. Phys. C 29, 637 (1985).
  • (43) H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69, 074025 (2004) [arXiv:hep-ph/0310359].
  • (44) Z. Q. Zhang, Z. J. Sun, Y. C. Zhao, Y. Y. Yang and Z. Y. Zhang, Eur. Phys. J. C 83, 477 (2023) [arXiv:2301.11107 [hep-ph]].
  • (45) Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Phys. Rev. D 88, 094012 (2013) [arXiv:1309.0301 [hep-ph]].
  • (46) M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003) [arXiv:hep-ph/0308039].
  • (47) S. Navaset et al. [Particle Data Group], Phys. Rev. D 110, 030001 (2024).
  • (48) D. Becirevic, P. Boucaud, J. P. Leroy, V. Lubicz, G. Martinelli, F. Mescia and F. Rapuano, Phys. Rev. D 60, 074501 (1999) [arXiv:hep-lat/9811003].
  • (49) H. Y. Cheng, Phys. Rev. D 68, 094005 (2003) [arXiv:hep-ph/0307168].
  • (50) R. H. Li and C. D. Lu, Phys. Rev. D 80, 014005 (2009) [arXiv:0905.3259 [hep-ph]].
  • (51) W. Y. Wang, J. Phys. G 37, 045006 (2010) [arXiv:1101.0249 [hep-ph]].
  • (52) X. W. Kang, T. Luo, Y. Zhang, L. Y. Dai and C. Wang, Eur. Phys. J. C 78, 909 (2018) [arXiv:1808.02432 [hep-ph]].
  • (53) N. Gubernari, A. Khodjamirian, R. Mandal and T. Mannel, JHEP 12, 015 (2023) [arXiv:2309.10165 [hep-ph]].
  • (54) Y. L. Shen, Z. J. Yang and X. Yu, Phys. Rev. D 90, 114015 (2014) [arXiv:1207.5912 [hep-ph]].
  • (55) D. Liventsev et al. [Belle], Phys. Rev. D 77, 091503 (2008) [arXiv:0711.3252 [hep-ex]].
  • (56) F. Meier et al. [Belle], Phys. Rev. D 107, 092003 (2023) [arXiv:2211.09833 [hep-ex]].
  • (57) B. Aubert et al. [BaBar], Phys. Rev. Lett. 101, 261802 (2008) [arXiv:0808.0528 [hep-ex]].
  • (58) A. L. Yaouanc, J. P. Leroy and P. Roudeau, Phys. Rev. D 105, 013004 (2022) [arXiv:2102.11608 [hep-ph]].
  • (59) F. S. Navarra, M. Nielsen, E. Oset and T. Sekihara, Phys. Rev. D 92, 014031 (2015) [arXiv:1501.03422 [hep-ph]].
  • (60) S. M. Zhao, X. Liu and S. J. Li, Eur. Phys. J. C 51, 601 (2007) [arXiv:hep-ph/0612008].
  • (61) T. M. Aliev, K. Azizi and A. Ozpineci, Eur.Phys. J. C 51, 593 (2007) [arXiv: hep-ph/0608264].
  • (62) R. N. Faustov and V. O. Galkin, Phys. Rev. D 87, 034033 (2013) [arXiv:1212.3167 [hep-ph]].
  • (63) R. C. Verma, J. Phys. G 39, 025005 (2012) [arXiv:1103.2973 [hep-ph]].
  • (64) M. Q. Huang, Phys. Rev. D 69, 114015 (2004) [arXiv:hep-ph/0404032].
  • (65) T. M. Aliev and M. Savci, Phys. Rev. D 73, 114010 (2006) [arXiv:hep-ph/0604002].
  • (66) W. Y. Wang and Y. L. Wu, Int. J. Mod. Phys. A 16, 2505 (2001) [arXiv:hep-ph/0012240].
  • (67) C. Albertus, Phys. Rev. D 89, 065042 (2014) [arXiv:1401.1791 [hep-ph]].