This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Semileptonic DD Meson Decays DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell} with the SU(3) Flavor Symmetry/Breaking

Ru-Min Wang1,†,    Yue-Xin Liu1,   Chong Hua1,   Jin-Huan Sheng2,§,   Yuan-Guo Xu1,♯
1College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
2School of Physics and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
ruminwang@sina.com
   §jinhuanwuli@126.com   yuanguoxu@jxnu.edu.cn
Abstract

Many exclusive cd/s+ν(=e,μ,τ)c\to d/s\ell^{+}\nu_{\ell}\leavevmode\nobreak\ (\ell=e,\mu,\tau) transitions have been well measured, and they can be used to test the theoretical calculations. Motivated by this, we study the DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell} decays induced by the cd/s+νc\to d/s\ell^{+}\nu_{\ell} transitions with the SU(3) flavor symmetry approach, where PP denotes the pseudoscalar meson, VV denotes the vector meson, and SS denotes the scalar meson with a mass below 11 GeVGeV. The different decay amplitudes of the DP+νD\to P\ell^{+}\nu_{\ell}, DV+νD\to V\ell^{+}\nu_{\ell} or DS+νD\to S\ell^{+}\nu_{\ell} decays can be related by using the SU(3) flavor symmetry and by considering the SU(3) flavor breaking. Using the present data of DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell}, we predict the not yet measured or not yet well measured processes in the DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell} decays. We find that the SU(3) flavor symmetry approach works well in the semileptonic DP/V+νD\to P/V\ell^{+}\nu_{\ell} decays. For the DS+νD\to S\ell^{+}\nu_{\ell} decays, only the decay Ds+f0(980)e+νeD^{+}_{s}\to f_{0}(980)e^{+}\nu_{e} has been measured, the branching ratios of the Ds+f0(980)e+νeD^{+}_{s}\to f_{0}(980)e^{+}\nu_{e} and DS(SP1P2)+νD\to S(S\to P_{1}P_{2})\ell^{+}\nu_{\ell} decays are used to constrain the nonperturbative parameters and then predict not yet measured DS+νD\to S\ell^{+}\nu_{\ell} decays, in addition, the two quark and the four quark scenarios for the light scalar mesons are analyzed. The SU(3) flavor symmetry predictions of the DS+νD\to S\ell^{+}\nu_{\ell} decays need to be further tested, and our predictions of the DS+νD\to S\ell^{+}\nu_{\ell} decays are useful for probing the structure of light scalar mesons. Our results in this work could be used to test the SU(3) flavor symmetry approach in the semileptonic DD decays by the future experiments at BESIII, LHCb and BelleII.

I Introduction

Semileptonic heavy meson decays dominated by tree-level exchange of WW-bosons in the standard model have attracted a lot of attention in testing the stand model and in searching for the new physics beyond the stand model. Many semileptonic DP/V+νD\to P/V\ell^{+}\nu_{\ell} decays and one DS+νD\to S\ell^{+}\nu_{\ell} decay have been observed PDG2022 , and present experimental measurements give us an opportunity to additionally test theoretical approaches.

In theory, the description of semileptonic decays are relatively simple, and the weak and strong dynamics can be separated in these processes since leptons do not participate in the strong interaction. All the strong dynamics in the initial and final hadrons is included in the hadronic form factors, which are important for testing the theoretical calculations of the involved strong interaction. The form factors of the DD decays have been calculated, for examples, by quark model Melikhov:2000yu ; Cheng:2017pcq ; Soni:2018adu ; Faustov:2019mqr ; Chang:2020wvs ; Chang:2018zjq , QCD sum rules Ball:1993tp , light-cone sum rules Bhattacharyya:2017wxk ; Fu:2018yin ; Fu:2020vqd , covariant light-front quark models Grach:1996nz ; Cheng:2003sm ; Chang:2019mmh , and lattice QCD Lubicz:2018rfs ; Lubicz:2017syv .

The SU(3) flavor symmetry approach is independent of the detailed dynamics offering us an opportunity to relate different decay modes, nevertheless, it cannot determine the sizes of the amplitudes or the form factors by itself. However, if experimental data are enough, one may use the data to extract the amplitudes or the form factors, which can be viewed as predictions based on symmetry, has a smaller dependency on estimated form factors, and can provide some very useful information about the decays. The SU(3) flavor symmetry works well in the bb-hadron decays He:1998rq ; He:2000ys ; Fu:2003fy ; Hsiao:2015iiu ; He:2015fwa ; He:2015fsa ; Deshpande:1994ii ; Gronau:1994rj ; Gronau:1995hm ; Shivashankara:2015cta ; Zhou:2016jkv ; Cheng:2014rfa ; Wang:2021uzi ; Wang:2020wxn , and the cc-hadron decays Wang:2021uzi ; Wang:2020wxn ; Grossman:2012ry ; Pirtskhalava:2011va ; Cheng:2012xb ; Savage:1989qr ; Savage:1991wu ; Altarelli:1975ye ; Lu:2016ogy ; Geng:2017esc ; Geng:2018plk ; Geng:2017mxn ; Geng:2019bfz ; Wang:2017azm ; Wang:2019dls ; Wang:2017gxe ; Muller:2015lua .

Semileptonic decays of DD mesons have been studied extensively in the standard model and its various extensions, for instance, in Refs. Cheng:2017pcq ; Ivanov:2019nqd ; Barranco:2014bva ; Barranco:2013tba ; Akeroyd:2009tn ; Dobrescu:2008er ; Akeroyd:2007eh ; Fajfer:2006uy ; Fajfer:2005ug ; Fajfer:2004mv ; Akeroyd:2003jb ; Akeroyd:2002pi . In this work, we will systematically study the DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell} decays with the SU(3) flavor symmetry. We will firstly construct the amplitude relations between different decay modes of DP+νD\to P\ell^{+}\nu_{\ell}, DV+νD\to V\ell^{+}\nu_{\ell} or DS+νD\to S\ell^{+}\nu_{\ell} decays by the SU(3) flavor symmetry and the SU(3) flavor breaking. We use the available data to extract the SU(3) flavor symmetry/breaking amplitudes and the form factors, and then predict the not yet measured modes for further tests in experiments. The forward-backward asymmetries AFBA^{\ell}_{FB}, the lepton-side convexity parameters CFC^{\ell}_{F}, the longitudinal polarizations of the final charged lepton PLP^{\ell}_{L}, the transverse polarizations of the final charged lepton PTP^{\ell}_{T}, the lepton spin asymmetries AλA_{\lambda} and the longitudinal polarization fractions FLF_{L} of the final vector mesons with two ways of integration have also been predicted in the DP/V+νD\to P/V\ell^{+}\nu_{\ell} decays. In addition, the q2q^{2} dependence of some differential observables for the DP/V+νD\to P/V\ell^{+}\nu_{\ell} decays are shown in figures.

This paper will be organized as follows. In Sec. II, the theoretical framework in this work is presented, including the effective hamiltonian, the hadronic helicity amplitude relations, the observables and the form factors. The numerical results of the DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell} semileptonic decays will be given in Sec. III. Finally, we give the summary and conclusion in Sec. IV.

II Theoretical Frame

II.1 The effective Hamiltonian

In the standard model, the four-fermion charged-current effective Hamiltonian below the electroweak scale for the decays DM+ν(M=P,V,S)D\rightarrow M\ell^{+}\nu_{\ell}\leavevmode\nobreak\ (M=P,V,S) can be written as

eff(cq+ν)\displaystyle\mathcal{H}_{eff}(c\rightarrow q\ell^{+}\nu_{\ell}) =\displaystyle= GF2Vcqq¯γμ(1γ5)cν¯γμ(1γ5),\displaystyle\frac{G_{F}}{\sqrt{2}}V^{*}_{cq}\bar{q}\gamma^{\mu}(1-\gamma_{5})c\leavevmode\nobreak\ \bar{\nu_{\ell}}\gamma_{\mu}(1-\gamma_{5})\ell, (1)

with q=s,dq=s,d.

The helicity amplitudes of the decays DM+νD\rightarrow M\ell^{+}\nu_{\ell} can be written as

(DM+ν)\displaystyle\mathcal{M}(D\rightarrow M\ell^{+}\nu_{\ell}) =\displaystyle= GF2VcbmmgmmLmλλνHmλM,\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cb}\sum_{mm^{\prime}}g_{mm^{\prime}}L^{\lambda_{\ell}\lambda_{\nu}}_{m}H^{\lambda_{M}}_{m^{\prime}}, (2)

with

Lmλλν\displaystyle L^{\lambda_{\ell}\lambda_{\nu}}_{m} =\displaystyle= ϵα(m)ν¯γα(1γ5),\displaystyle\epsilon_{\alpha}(m)\bar{\nu_{\ell}}\gamma^{\alpha}(1-\gamma_{5})\ell, (3)
HmλM\displaystyle H^{\lambda_{M}}_{m^{\prime}} =\displaystyle= {ϵ(m)βP/S(pP/S)|q¯γβ(1γ5)c|D(pD)ϵβ(m)V(pV,ϵ)|q¯γβ(1γ5)c|D(pD),\displaystyle\left\{\begin{array}[]{l}\epsilon{{}^{*}_{\beta}}(m^{\prime})\langle{P/S}(p_{P/S})|\bar{q}\gamma^{\beta}(1-\gamma_{5})c|D(p_{D})\rangle\\ \epsilon^{*}_{\beta}(m^{\prime})\langle{V}(p_{V},\epsilon^{*})|\bar{q}\gamma^{\beta}(1-\gamma_{5})c|D(p_{D})\rangle\end{array}\right.,\ (6)

where the particle helicities λM=0\lambda_{M}=0 for M=P/SM=P/S, λM=0,±1\lambda_{M}=0,\pm 1 for M=V,λ=±12M=V,\lambda_{\ell}=\pm\frac{1}{2} and λν=+12\lambda_{\nu}=+\frac{1}{2}, as well as ϵμ(m)\epsilon_{\mu}(m) is the polarization vectors of the virtual WW with m=0,t,±1m=0,t,\pm 1.

The form factors of the DPD\to P, DSD\to S and DVD\to V transitions are given by Melikhov:2000yu ; Cheng:2017pcq ; Cheng:2003sm

P(p)|d¯kγμc|D(pD)\displaystyle\left<P(p)\left|\bar{d}_{k}\gamma_{\mu}c\right|D(p_{D})\right> =\displaystyle= f+P(q2)(p+pD)μ+[f0P(q2)f+P(q2)]mD2mP2q2qμ,\displaystyle f^{P}_{+}(q^{2})(p+p_{D})_{\mu}+\left[f^{P}_{0}(q^{2})-f^{P}_{+}(q^{2})\right]\frac{m^{2}_{D}-m^{2}_{P}}{q^{2}}q_{\mu}, (7)
S(p)|d¯kγμγ5c|D(pD)\displaystyle\left<S(p)\left|\bar{d}_{k}\gamma_{\mu}\gamma_{5}c\right|D(p_{D})\right> =\displaystyle= i(f+S(q2)(p+pD)μ+[f0S(q2)f+S(q2)]mD2mS2q2qμ),\displaystyle-i\Big{(}f^{S}_{+}(q^{2})(p+p_{D})_{\mu}+\left[f^{S}_{0}(q^{2})-f^{S}_{+}(q^{2})\right]\frac{m^{2}_{D}-m^{2}_{S}}{q^{2}}q_{\mu}\Big{)}, (8)
V(p,ε)|d¯kγμ(1γ5)c|D(pD)\displaystyle\left<V(p,\varepsilon^{*})\left|\bar{d}_{k}\gamma_{\mu}(1-\gamma_{5})c\right|D(p_{D})\right> =\displaystyle= 2VV(q2)mD+mVϵμναβενpDαpβ\displaystyle\frac{2V^{V}(q^{2})}{m_{D}+m_{V}}\epsilon_{\mu\nu\alpha\beta}\varepsilon^{*\nu}p^{\alpha}_{D}p^{\beta} (9)
i[εμ(mD+mV)A1V(q2)(pD+p)μ(ε.pD)A2V(q2)mD+mV]\displaystyle-i\left[\varepsilon^{*}_{\mu}(m_{D}+m_{V})A^{V}_{1}(q^{2})-(p_{D}+p)_{\mu}(\varepsilon^{*}.p_{D})\frac{A^{V}_{2}(q^{2})}{m_{D}+m_{V}}\right]
+iqμ(ε.pD)2mVq2[A3V(q2)A0V(q2)],\displaystyle+iq_{\mu}(\varepsilon^{*}.p_{D})\frac{2m_{V}}{q^{2}}[A^{V}_{3}(q^{2})-A^{V}_{0}(q^{2})],

where s=q2s=q^{2} (q=pDpMq=p_{D}-p_{M}), and ε\varepsilon^{*} is the polarization of vector meson. The hadronic helicity amplitudes can be written as

H±\displaystyle H_{\pm} =\displaystyle= 0,\displaystyle 0, (10)
H0\displaystyle H_{0} =\displaystyle= 2mDq|pP|q2f+P(q2),\displaystyle\frac{2m_{D_{q}}|\vec{p}_{P}|}{\sqrt{q^{2}}}f^{P}_{+}(q^{2}), (11)
Ht\displaystyle H_{t} =\displaystyle= mDq2mP2q2f0P(q2),\displaystyle\frac{m_{D_{q}}^{2}-m_{P}^{2}}{\sqrt{q^{2}}}f^{P}_{0}(q^{2}), (12)

for DP+νD\to P\ell^{+}\nu_{\ell} decays,

H±\displaystyle H_{\pm} =\displaystyle= 0,\displaystyle 0, (13)
H0\displaystyle H_{0} =\displaystyle= i2mDq|pS|q2f+S(q2),\displaystyle\frac{i2m_{D_{q}}|\vec{p}_{S}|}{\sqrt{q^{2}}}f^{S}_{+}(q^{2}), (14)
Ht\displaystyle H_{t} =\displaystyle= imDq2mS2q2f0S(q2),\displaystyle\frac{im_{D_{q}}^{2}-m_{S}^{2}}{\sqrt{q^{2}}}f^{S}_{0}(q^{2}), (15)

for DS+νD\to S\ell^{+}\nu_{\ell} decays, and

H±\displaystyle H_{\pm} =\displaystyle= (mDq+mV)A1(q2)2mDq|pV|(mDq+mV)V(q2),\displaystyle(m_{D_{q}}+m_{V})A_{1}(q^{2})\mp\frac{2m_{D_{q}}|\vec{p}_{V}|}{(m_{D_{q}}+m_{V})}V(q^{2}), (16)
H0\displaystyle H_{0} =\displaystyle= 12mVq2[(mDq2mV2q2)(mDq+mV)A1(q2)4mDq2|pV|2mDq+mVA2(q2)],\displaystyle\frac{1}{2m_{V}\sqrt{q^{2}}}\left[(m_{D_{q}}^{2}-m_{V}^{2}-q^{2})(m_{D_{q}}+m_{V})A_{1}(q^{2})-\frac{4m_{D_{q}}^{2}|\vec{p}_{V}|^{2}}{m_{D_{q}}+m_{V}}A_{2}(q^{2})\right], (17)
Ht\displaystyle H_{t} =\displaystyle= 2mDq|pV|q2A0(q2),\displaystyle\frac{2m_{D_{q}}|\vec{p}_{V}|}{\sqrt{q^{2}}}A_{0}(q^{2}), (18)

for DV+νD\to V\ell^{+}\nu_{\ell} decays, where |pM|λ(mDq2,mM2,q2)/2mDq|\vec{p}_{M}|\equiv\sqrt{\lambda(m_{D_{q}}^{2},m_{M}^{2},q^{2})}/2m_{D_{q}} with λ(a,b,c)=a2+b2+c22ab2ac2bc\lambda(a,b,c)=a^{2}+b^{2}+c^{2}-2ab-2ac-2bc.

II.2 Hadronic helicity amplitude relations by the SU(3) flavor symmetry

Charmed mesons containing one heavy cc quark are flavor SU(3) anti-triplets

Di=(D0(cu¯),D+(cd¯),Ds+(cs¯)).\displaystyle D_{i}=\Big{(}D^{0}(c\bar{u}),\leavevmode\nobreak\ D^{+}(c\bar{d}),\leavevmode\nobreak\ D^{+}_{s}(c\bar{s})\Big{)}. (19)

Light pseudoscalar PP and vector VV meson octets and singlets under the SU(3)SU(3) flavor symmetry of u,d,su,d,s quarks are He:2018joe

P\displaystyle P =\displaystyle= (π02+η86+η13π+K+ππ02+η86+η13K0KK¯02η86+η13),\displaystyle\left(\begin{array}[]{ccc}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}&\pi^{+}&K^{+}\\ \pi^{-}&-\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}&K^{0}\\ K^{-}&\overline{K}^{0}&-\frac{2\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}\end{array}\right)\,, (23)
V\displaystyle V =\displaystyle= (ρ02+ω86+ω13ρ+K+ρρ02+ω86+ω13K0KK¯02ω86+ω13),\displaystyle\left(\begin{array}[]{ccc}\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega_{8}}{\sqrt{6}}+\frac{\omega_{1}}{\sqrt{3}}&\rho^{+}&K^{*+}\\ \rho^{-}&-\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega_{8}}{\sqrt{6}}+\frac{\omega_{1}}{\sqrt{3}}&K^{*0}\\ K^{*-}&\overline{K}^{*0}&-\frac{2\omega_{8}}{\sqrt{6}}+\frac{\omega_{1}}{\sqrt{3}}\end{array}\right)\,, (27)

where ω\omega and ϕ\phi mix in an ideal form, and the η\eta and η\eta^{\prime} ( ω\omega and ϕ\phi) are mixtures of η1(ω1)=uu¯+dd¯+ss¯3\eta_{1}(\omega_{1})=\frac{u\bar{u}+d\bar{d}+s\bar{s}}{\sqrt{3}} and η8(ω8)=uu¯+dd¯2ss¯6\eta_{8}(\omega_{8})=\frac{u\bar{u}+d\bar{d}-2s\bar{s}}{\sqrt{6}} with the mixing angle θP\theta_{P} (θV\theta_{V}). η\eta and η\eta^{\prime} (ω\omega and ϕ\phi) are given by

(ηη)=(cosθPsinθPsinθPcosθP)(η8η1),(ϕω)=(cosθVsinθVsinθVcosθV)(ω8ω1),\displaystyle\left(\begin{array}[]{c}\eta\\ \eta^{\prime}\end{array}\right)\,=\left(\begin{array}[]{cc}cos\theta_{P}&-sin\theta_{P}\\ sin\theta_{P}&cos\theta_{P}\end{array}\right)\,\left(\begin{array}[]{c}\eta_{8}\\ \eta_{1}\end{array}\right),\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \left(\begin{array}[]{c}\phi\\ \omega\end{array}\right)\,=\left(\begin{array}[]{cc}cos\theta_{V}&-sin\theta_{V}\\ sin\theta_{V}&cos\theta_{V}\end{array}\right)\,\left(\begin{array}[]{c}\omega_{8}\\ \omega_{1}\end{array}\right), (40)

where θP=[20,10]\theta_{P}=[-20^{\circ},-10^{\circ}] and θV=36.4\theta_{V}=36.4^{\circ} from Particle Data Group (PDG) PDG2022 will be used in our numerical analysis.

The structures of the light scalar mesons are not fully understood yet. Many suggestions are discussed, such as ordinary two quark states, four quark states, meson-meson bound states, molecular states, glueball states or hybrid states, for examples, in Refs. Dai:2018fmx ; Maiani:2004uc ; tHooft:2008rus ; Pelaez:2003dy ; Sun:2010nv ; Oller:1997ti ; Baru:2003qq ; Cheng:2005nb ; Achasov:1996ei . In this work, we will consider the two quark and the four quark scenarios for the scalar mesons below or near 1 GeVGeV. In the two quark picture, the light scalar mesons can be written as Momeni:2022gqb

S\displaystyle S =\displaystyle= (a002+σ2a0+K0+a0a002+σ2K00K0K¯00f0).\displaystyle\left(\begin{array}[]{ccc}\frac{a^{0}_{0}}{\sqrt{2}}+\frac{\sigma}{\sqrt{2}}&a^{+}_{0}&K^{+}_{0}\\ a_{0}^{-}&-\frac{a_{0}^{0}}{\sqrt{2}}+\frac{\sigma}{\sqrt{2}}&K^{0}_{0}\\ K^{-}_{0}&\overline{K}^{0}_{0}&f_{0}\end{array}\right)\,. (44)

The two isoscalars f0(980)f_{0}(980) and f0(500)f_{0}(500) are obtained by the mixing of σ=uu¯+dd¯2\sigma=\frac{u\bar{u}+d\bar{d}}{\sqrt{2}} and f0=ss¯f_{0}=s\bar{s}

(f0(980)f0(500))=(cosθSsinθSsinθScosθS)(f0σ),\displaystyle\left(\begin{array}[]{c}f_{0}(980)\\ f_{0}(500)\end{array}\right)\,=\left(\begin{array}[]{cc}\mbox{cos}\theta_{S}&\mbox{sin}\theta_{S}\\ -\mbox{sin}\theta_{S}&\mbox{cos}\theta_{S}\end{array}\right)\,\left(\begin{array}[]{c}f_{0}\\ \sigma\end{array}\right)\,, (51)

where the three possible ranges of the mixing angle, 25<θS<4025^{\circ}<\theta_{S}<40^{\circ}, 140<θS<165140^{\circ}<\theta_{S}<165^{\circ} and 30<θS<30\leavevmode\nobreak\ -30^{\circ}<\theta_{S}<30^{\circ} Cheng:2005nb ; LHCb:2013dkk will be analyzed in our numerical results. In the four quark picture, the light scalar mesons are given as Jaffe:1976ig ; PDG2022

σ=uu¯dd¯,f0=(uu¯+dd¯)ss¯/2,\displaystyle\sigma=u\bar{u}d\bar{d},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ f_{0}=(u\bar{u}+d\bar{d})s\bar{s}/\sqrt{2},
a00=(uu¯dd¯)ss¯/2,a0+=ud¯ss¯,a0=du¯ss¯,\displaystyle a^{0}_{0}=(u\bar{u}-d\bar{d})s\bar{s}/\sqrt{2},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ a^{+}_{0}=u\bar{d}s\bar{s},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ a^{-}_{0}=d\bar{u}s\bar{s},
K0+=us¯dd¯,K00=ds¯uu¯,K¯00=sd¯uu¯,K0+=su¯dd¯,\displaystyle K^{+}_{0}=u\bar{s}d\bar{d},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ K^{0}_{0}=d\bar{s}u\bar{u},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \bar{K}^{0}_{0}=s\bar{d}u\bar{u},\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ K^{+}_{0}=s\bar{u}d\bar{d}, (52)

and the two isoscalars are expressed as

(f0(980)f0(500))=(cosϕSsinϕSsinϕScosϕS)(f0σ),\displaystyle\left(\begin{array}[]{c}f_{0}(980)\\ f_{0}(500)\end{array}\right)\,=\left(\begin{array}[]{cc}\mbox{cos}\phi_{S}&\mbox{sin}\phi_{S}\\ -\mbox{sin}\phi_{S}&\mbox{cos}\phi_{S}\end{array}\right)\,\left(\begin{array}[]{c}f_{0}\\ \sigma\end{array}\right)\,, (59)

where the constrained mixing angle ϕS=(174.63.2+3.4)\phi_{S}=(174.6^{+3.4}_{-3.2})^{\circ} Maiani:2004uc .

In terms of the SU(3) flavor symmetry, meson states and quark operators can be parameterized into SU(3) tensor forms, while the leptonic helicity amplitudes Lmλ,λνL^{\lambda_{\ell},\lambda_{\nu}}_{m} are invariant under the SU(3) flavor symmetry. And the hadronic helicity amplitude relations of the DM+ν(M=P,V,S)D\rightarrow M\ell^{+}\nu_{\ell}(M=P,V,S) decays can be parameterized as

H(DM+ν)=c0MDiMjiHj,\displaystyle H(D\rightarrow M\ell^{+}\nu_{\ell})=c_{0}^{M}D_{i}M^{i}_{j}H^{j}, (60)

where H2VcdH^{2}\equiv V^{*}_{cd} and H3VcsH^{3}\equiv V^{*}_{cs} are the CKM matrix elements, and c0Mc_{0}^{M} are the nonperturbative coefficients of the DM+νD\rightarrow M\ell^{+}\nu_{\ell} decays under the SU(3) flavor symmetry. Noted that the hadronic helicity amplitudes for the DS+νD\rightarrow S\ell^{+}\nu_{\ell} decays in Eq. (60) are given in the two quark picture of the light scalar mesons, and ones in the four quark picture of the light scalar mesons will be given later.

The SU(3) flavor breaking effects mainly come from different masses of uu, dd and ss quarks. Following Ref. Xu:2013dta , the SU(3) breaking amplitudes of the DM+νD\rightarrow M\ell^{+}\nu_{\ell} decays can be give as

ΔH(DM+ν)=c1MDaWiaMjiHj+c2MDiMaiWjaHj,\displaystyle\Delta H(D\rightarrow M\ell^{+}\nu_{\ell})=c_{1}^{M}D_{a}W^{a}_{i}M^{i}_{j}H^{j}+c_{2}^{M}D_{i}M^{i}_{a}W^{a}_{j}H^{j}, (61)

with

W=(Wji)=(100010002),\displaystyle W=\big{(}W^{i}_{j}\big{)}=\left(\begin{array}[]{ccc}1&0&0\\ 0&1&0\\ 0&0&-2\end{array}\right), (65)

where c1,2Mc_{1,2}^{M} are the nonperturbative SU(3) flavor breaking coefficients.

In the four quark picture of the light scalar mesons, the hadronic helicity amplitudes of the DS+νD\rightarrow S\ell^{+}\nu_{\ell} decays under the SU(3) flavor symmetry are

H(DS+ν)4q=c0SDiSjmimHj.\displaystyle H(D\rightarrow S\ell^{+}\nu_{\ell})^{4q}=c^{\prime S}_{0}D_{i}S^{im}_{jm}H^{j}. (66)

And the corresponding SU(3) flavor breaking amplitudes of the DS+νD\rightarrow S\ell^{+}\nu_{\ell} decays are

ΔH(DS+ν)4q=c1SDaWiaSjmimHj+c2SDiSamimWjaHj+c1SDiSjaimWmaHj.\displaystyle\Delta H(D\rightarrow S\ell^{+}\nu_{\ell})^{4q}=c^{\prime S}_{1}D_{a}W^{a}_{i}S^{im}_{jm}H^{j}+c^{\prime S}_{2}D_{i}S^{im}_{am}W^{a}_{j}H^{j}+c^{\prime S}_{1}D_{i}S^{im}_{ja}W^{a}_{m}H^{j}. (67)

In terms of the SU(3) flavor symmetry, the hadronic helicity amplitude relations for the DP+νD\rightarrow P\ell^{+}\nu_{\ell}, DV+νD\rightarrow V\ell^{+}\nu_{\ell} and DS+νD\rightarrow S\ell^{+}\nu_{\ell} decays are summarized in later Tab. 1, Tab. 4 and Tab. 8, respectively.

II.3 Observables for the DM+νD\to M\ell^{+}\nu_{\ell} decays

The double differential branching ratios of the DM+νD\to M\ell^{+}\nu_{\ell} decays are Ivanov:2019nqd

d(DM+ν)dq2d(cosθ)\displaystyle\frac{d\mathcal{B}(D\to M\ell^{+}\nu_{\ell})}{dq^{2}d(\cos\theta)} =\displaystyle= τDGF2|Vcq|2λ1/2(q2m2)264(2π)3MD(s)3q2[(1+cos2θ)U+2sin2θL+2cosθP\displaystyle\frac{\tau_{D}G_{F}^{2}|V_{cq}|^{2}\lambda^{1/2}(q^{2}-m_{\ell}^{2})^{2}}{64(2\pi)^{3}M_{D_{(s)}}^{3}q^{2}}\Biggl{[}(1+\cos^{2}\theta){\cal H}_{U}+2\sin^{2}\theta{\cal H}_{L}+2\cos\theta{\cal H}_{P} (69)
+m2q2(sin2θU+2cos2θL+2S4cosθSL)],\displaystyle+\frac{m_{\ell}^{2}}{q^{2}}(\sin^{2}\theta{\cal H}_{U}+2\cos^{2}\theta{\cal H}_{L}+2{\cal H}_{S}-4\cos\theta{\cal H}_{SL})\Bigr{]},

where λλ(mDq2,mM2,q2)\lambda\equiv\lambda(m_{D_{q}}^{2},m_{M}^{2},q^{2}), m2q2(mDqmM)2m_{\ell}^{2}\leq q^{2}\leq(m_{D_{q}}-m_{M})^{2}, and

U=|H+|2+|H|2,L=|H0|2,P=|H+|2|H|2,S=|Ht|2,SL=(H0Ht).{\cal H}_{U}=|H_{+}|^{2}+|H_{-}|^{2},\quad{\cal H}_{L}=|H_{0}|^{2},\quad{\cal H}_{P}=|H_{+}|^{2}-|H_{-}|^{2},\quad{\cal H}_{S}=|H_{t}|^{2},\quad{\cal H}_{SL}=\Re(H_{0}H_{t}^{\dagger}). (70)

The differential branching ratios integrated over cosθ\cos\theta are Ivanov:2019nqd

d(D(s)M+ν)dq2=τDGF2|Vcq|2λ1/2(q2m2)224(2π)3MD(s)3q2total,\frac{d\mathcal{B}(D_{(s)}\to M\ell^{+}\nu_{\ell})}{dq^{2}}=\frac{\tau_{D}G_{F}^{2}|V_{cq}|^{2}\lambda^{1/2}(q^{2}-m_{\ell}^{2})^{2}}{24(2\pi)^{3}M_{D_{(s)}}^{3}q^{2}}{\cal H}_{\rm total}, (71)

with

total(U+L)(1+m22q2)+3m22q2S.{\cal H}_{\rm total}\equiv({\cal H}_{U}+{\cal H}_{L})\left(1+\frac{m_{\ell}^{2}}{2q^{2}}\right)+\frac{3m_{\ell}^{2}}{2q^{2}}{\cal H}_{S}. (72)

The lepton flavor universality in D(s)M+νD_{(s)}\to M\ell^{+}\nu_{\ell} is defined in a manner identical Rμ/eR^{\mu/e} as

Rμ/e=qminqmax𝑑(D(s)Mμ+νμ)/𝑑q2qminqmax𝑑(D(s)Me+νe)/𝑑q2.\displaystyle R^{\mu/e}=\frac{\int^{q_{max}}_{q_{min}}d\mathcal{B}(D_{(s)}\to M\mu^{+}\nu_{\mu})/dq^{2}}{\int^{q_{max}}_{q_{min}}d\mathcal{B}(D_{(s)}\to Me^{+}\nu_{e})/dq^{2}}. (73)

The forward-backward asymmetries are defined as Ivanov:2019nqd

AFB(q2)\displaystyle A_{FB}^{\ell}(q^{2}) =\displaystyle= 10𝑑cosθd(DMν)dq2dcosθ01𝑑cosθd(DMν)dq2dcosθ10𝑑cosθd(DMν)dq2dcosθ+01𝑑cosθd(DMν)dq2dcosθ\displaystyle\frac{\int^{0}_{-1}d\mbox{cos}\theta_{\ell}\leavevmode\nobreak\ \frac{d\mathcal{B}(D\to M\ell\nu)}{dq^{2}d\mbox{cos}\theta_{\ell}}-\int^{1}_{0}d\mbox{cos}\theta_{\ell}\frac{d\mathcal{B}(D\to M\ell\nu)}{dq^{2}d\mbox{cos}\theta_{\ell}}}{\int^{0}_{-1}d\mbox{cos}\theta_{\ell}\leavevmode\nobreak\ \frac{d\mathcal{B}(D\to M\ell\nu)}{dq^{2}d\mbox{cos}\theta_{\ell}}+\int^{1}_{0}d\mbox{cos}\theta_{\ell}\frac{d\mathcal{B}(D\to M\ell\nu)}{dq^{2}d\mbox{cos}\theta_{\ell}}} (74)
=\displaystyle= 34P2m2q2SLtotal.\displaystyle\frac{3}{4}\frac{{\cal H}_{P}-\frac{2m_{\ell}^{2}}{q^{2}}{\cal H}_{SL}}{{\cal H}_{\rm total}}. (75)

The lepton-side convexity parameters are given by Ivanov:2019nqd

CF(q2)=34(1m2q2)U2Ltotal.C^{\ell}_{F}(q^{2})=\frac{3}{4}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)\frac{{\cal H}_{U}-2{\cal H}_{L}}{{\cal H}_{\rm total}}. (76)

The longitudinal polarizations of the final charged lepton \ell are defined by Ivanov:2019nqd

PL(q2)=(U+L)(1m22q2)3m22q2Stotal,P_{L}^{\ell}(q^{2})=\frac{({\cal H}_{U}+{\cal H}_{L})\left(1-\frac{m_{\ell}^{2}}{2q^{2}}\right)-\frac{3m_{\ell}^{2}}{2q^{2}}{\cal H}_{S}}{{\cal H}_{\rm total}}, (77)

and its transverse polarizations are

PT(q2)=3πm8q2P+2SLtotal.P_{T}^{\ell}(q^{2})=-\frac{3\pi m_{\ell}}{8\sqrt{q^{2}}}\frac{{\cal H}_{P}+2{\cal H}_{SL}}{{\cal H}_{\rm total}}. (78)

The lepton spin asymmetry in the ν¯\ell-\bar{\nu}_{\ell} center of mass frame is defined by Fajfer:2012vx ; Tanaka:1994ay ; Celis:2012dk ; Tanaka:2010se

Aλ(q2)\displaystyle A_{\lambda}(q^{2}) =\displaystyle= d(DM+ν)[λ=12]/dq2d(DM+ν)[λ=+12]/dq2d(DM+ν)[λ=12]/dq2+d(DM+ν)[λ=+12]/dq2\displaystyle\frac{d\mathcal{B}(D\to M\ell^{+}\nu_{\ell})[\lambda_{\ell}=-\frac{1}{2}]/dq^{2}-d\mathcal{B}(D\to M\ell^{+}\nu_{\ell})[\lambda_{\ell}=+\frac{1}{2}]/dq^{2}}{d\mathcal{B}(D\to M\ell^{+}\nu_{\ell})[\lambda_{\ell}=-\frac{1}{2}]/dq^{2}+d\mathcal{B}(D\to M\ell^{+}\nu_{\ell})[\lambda_{\ell}=+\frac{1}{2}]/dq^{2}} (79)
=\displaystyle= total6m22q2Stotal.\displaystyle\frac{{\cal H}_{\rm total}-\frac{6m_{\ell}^{2}}{2q^{2}}{\cal H}_{\rm S}}{{\cal H}_{\rm total}}. (80)

For the DV+νD\to V\ell^{+}\nu_{\ell} decays, the longitudinal polarization fractions of the final vector mesons are given by Ivanov:2019nqd

FL(q2)=L(1+m22q2)+3m22q2Stotal,F_{L}(q^{2})=\frac{{\cal H}_{L}\left(1+\frac{m_{\ell}^{2}}{2q^{2}}\right)+\frac{3m_{\ell}^{2}}{2q^{2}}{\cal H}_{S}}{{\cal H}_{\rm total}}, (81)

then its transverse polarization fraction FT(q2)=1FL(q2)F_{T}(q^{2})=1-F_{L}(q^{2}).

Noted that, for q2q^{2}-integration of X(q2)=AFB,CF,PL,PT,AλX(q^{2})=A^{\ell}_{FB},\leavevmode\nobreak\ C^{\ell}_{F},\leavevmode\nobreak\ P^{\ell}_{L},\leavevmode\nobreak\ P^{\ell}_{T},\leavevmode\nobreak\ A_{\lambda} and FLF_{L}, following Ref. Bobeth:2010wg , two ways of integration are considered. The normalized q2q^{2}-integrated observables X\langle X\rangle are calculated by separately integrating the numerators and denominators with the same q2q^{2} bins. The “naively integrated” observables are obtained by

X¯=1qmax2qmin2qmin2qmax2𝑑q2X(q2).\displaystyle\overline{X}=\frac{1}{q^{2}_{max}-q^{2}_{min}}\int^{q^{2}_{max}}_{q^{2}_{min}}dq^{2}X(q^{2}). (82)

II.4 Form factors

In order to obtain more precise observables, one also need considering the q2q^{2} dependence of the form factors for the DP+νD\to P\ell^{+}\nu_{\ell}, DV+νD\to V\ell^{+}\nu_{\ell} and DS+νD\to S\ell^{+}\nu_{\ell} decays. The following cases will be considered in our analysis of DP/V+νD\to P/V\ell^{+}\nu_{\ell} decays.

  • C1C_{1}:

    All form factors are treated as constants without the hadronic momentum-transfer q2q^{2} dependence, and different form factors are related by the SU(3) flavor symmetry, i.e.i.e., the SU(3) flavor breaking terms such as c1,2Mc^{M}_{1,2} and c1,2,3Sc^{\prime S}_{1,2,3} in later Tabs. 1, 4 and 8 are ignored.

  • C2C_{2}:

    With the SU(3) flavor symmetry, the modified pole model for the q2q^{2}-dependence of Fi(q2)F_{i}(q^{2}) is used Li:2020ylu

    Fi(q2)=Fi(0)(1q2mpole2)(1αiq4mpole4),\displaystyle F_{i}(q^{2})=\frac{F_{i}(0)}{\left(1-\frac{q^{2}}{m^{2}_{pole}}\right)\left(1-\alpha_{i}\frac{q^{4}}{m^{4}_{pole}}\right)}, (83)

    where mpole=mD+m_{pole}=m_{D^{*+}} for cd+νc\to d\ell^{+}\nu_{\ell} transitions and mpole=mDs+m_{pole}=m_{D^{*+}_{s}} for cs+νc\to s\ell^{+}\nu_{\ell} transitions, and αi\alpha_{i} are free parameters and are different for f+P(q2)f^{P}_{+}(q^{2}), f0P(q2)f^{P}_{0}(q^{2}), V(q2)V(q^{2}), A1(q2)A_{1}(q^{2}) and A2(q2)A_{2}(q^{2}), we will take αi[1,1]\alpha_{i}\in[-1,1] in our analysis.

  • C3C_{3}:

    With the SU(3) flavor symmetry, following Ref. Melikhov:2000yu

    Fi(q2)\displaystyle F_{i}(q^{2}) =\displaystyle= Fi(0)(1q2mpole2)(1σ1iq2mpole2+σ2iq4mpole4)for f+P(q2) and V(q2),\displaystyle\frac{F_{i}(0)}{\left(1-\frac{q^{2}}{m^{2}_{pole}}\right)\left(1-\sigma_{1i}\frac{q^{2}}{m^{2}_{pole}}+\sigma_{2i}\frac{q^{4}}{m^{4}_{pole}}\right)}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{for $f^{P}_{+}(q^{2})$ and $V(q^{2})$}, (84)
    Fi(q2)\displaystyle F_{i}(q^{2}) =\displaystyle= Fi(0)(1σ1iq2mpole2+σ2iq4mpole4)for f0P(q2)A1(q2) and A2(q2),\displaystyle\frac{F_{i}(0)}{\left(1-\sigma_{1i}\frac{q^{2}}{m^{2}_{pole}}+\sigma_{2i}\frac{q^{4}}{m^{4}_{pole}}\right)}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{for $f^{P}_{0}(q^{2})$, $A_{1}(q^{2})$ and $A_{2}(q^{2})$}, (85)

    where σ1,2\sigma_{1,2} for the DπD\to\pi and DKD\to K^{*} transitions from Ref. Melikhov:2000yu will be used in our results.

  • C4C_{4}:

    Considering the SU(3) flavor breaking terms such as c1,2Mc^{M}_{1,2} and c1,2,3Sc^{\prime S}_{1,2,3} in later Tabs. 1, 4 and 8, the form factors in C3C_{3} case are used.

As for the form factors of the DS+νD\to S\ell^{+}\nu_{\ell} decays, we find that the vector dominance model Achasov:2012kk and the double pole model Soni:2020sgn give the similar SU(3) flavor symmetry predictions for the branching ratios of the DS+νD\to S\ell^{+}\nu_{\ell} decays. The following form factors from the vector dominance model will be used in the numerical results,

Fi(q2)=Fi(0)(1q2/mpole2) for f+S(q2) and f0S(q2).\displaystyle F_{i}(q^{2})=\frac{F_{i}(0)}{\left(1-q^{2}/m^{2}_{pole}\right)}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{ for $f^{S}_{+}(q^{2})$ and $f^{S}_{0}(q^{2})$}. (86)

After considering above q2q^{2} dependence, we only need to focus on the Fi(0)F_{i}(0). Since these form factors Fi(0)F_{i}(0) also preserve the SU(3) flavor symmetry, the same relations in Tabs. 1, 4 and 8 will be used for Fi(0)F_{i}(0). If considering the form factors ratios f+(0)/f0(0)=1f_{+}(0)/f_{0}(0)=1 for DP/S+νD\to P/S\ell^{+}\nu_{\ell} decays, rVV(0)/A1(0)=1.46±0.07r_{V}\equiv V(0)/A_{1}(0)=1.46\pm 0.07, r2A2(0)/A1(0)=0.68±0.06r_{2}\equiv A_{2}(0)/A_{1}(0)=0.68\pm 0.06 in D0K+νD^{0}\to K^{*-}\ell^{+}\nu_{\ell} decays from PDG PDG2022 and the SU(3) flavor symmetry, there is only one free form factor f+P,S(0)f^{P,S}_{+}(0) and A1(0)A_{1}(0) for the DP/S+νD\to P/S\ell^{+}\nu_{\ell} and DV+νD\to V\ell^{+}\nu_{\ell} decays, respectively. As a result, the branching ratios only depend on one form factor f+P(0)f^{P}_{+}(0), f+S(0)f^{S}_{+}(0) or A1(0)A_{1}(0) and the CKM matrix element VcqV_{cq}.

III Numerical results

The theoretical input parameters and the experimental data within the 2σ2\sigma errors from PDG PDG2022 will be used in our numerical results.

III.1 DP+νD\to P\ell^{+}\nu_{\ell} decays

Considering both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions, the hadronic helicity amplitudes for the DP+νD\rightarrow P\ell^{+}\nu_{\ell} decays are given in Tab. 1, in which we keep the CKM matrix element VcsV_{cs} and VcdV_{cd} information for comparing conveniently. In addition, H(Ds+π0+ν)H(D^{+}_{s}\to\pi^{0}\ell^{+}\nu_{\ell}) are obtained by neutral meson mixing with δ2=(5.18±0.71)×104\delta^{2}=(5.18\pm 0.71)\times 10^{-4} in Ref. Li:2020ylu . From Tab. 1, we can easily see the hadronic helicity amplitude relations of the DP+νD\rightarrow P\ell^{+}\nu_{\ell} decays. There are four nonperturbative parameters A1,2,3,4A_{1,2,3,4} in the DP+νD\rightarrow P\ell^{+}\nu_{\ell} decays with A1c0P+c1P2c2PA_{1}\equiv c^{P}_{0}+c^{P}_{1}-2c^{P}_{2}, A2c0P2c1P2c2PA_{2}\equiv c^{P}_{0}-2c^{P}_{1}-2c^{P}_{2}, A3c0P+c1P+c2PA_{3}\equiv c^{P}_{0}+c^{P}_{1}+c^{P}_{2} and A4c0P2c1P+c2PA_{4}\equiv c^{P}_{0}-2c^{P}_{1}+c^{P}_{2}. If neglecting the SU(3) flavor breaking c1Pc^{P}_{1} and c2Pc^{P}_{2} terms, A1=A2=A3=A4=c0PA_{1}=A_{2}=A_{3}=A_{4}=c^{P}_{0}, and then all hadronic helicity amplitudes are related by only one parameter c0Pc^{P}_{0}.

Table 1: The hadronic helicity amplitudes for the DP+νD\to P\ell^{+}\nu decays including both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions. A1c0P+c1P2c2PA_{1}\equiv c^{P}_{0}+c^{P}_{1}-2c^{P}_{2}, A2c0P2c1P2c2PA_{2}\equiv c^{P}_{0}-2c^{P}_{1}-2c^{P}_{2}, A3c0P+c1P+c2PA_{3}\equiv c^{P}_{0}+c^{P}_{1}+c^{P}_{2}, A4c0P2c1P+c2PA_{4}\equiv c^{P}_{0}-2c^{P}_{1}+c^{P}_{2}. A1=A2=A3=A4=c0PA_{1}=A_{2}=A_{3}=A_{4}=c^{P}_{0} if neglecting the SU(3) flavor breaking c1Pc^{P}_{1} and c2Pc^{P}_{2} terms.
Hadronic helicity amplitudes SU(3) flavor amplitudes
H(D0K+ν)H(D^{0}\to K^{-}\ell^{+}\nu_{\ell}) A1VcsA_{1}V^{*}_{cs}
H(D+K¯0+ν)H(D^{+}\to\overline{K}^{0}\ell^{+}\nu_{\ell}) A1VcsA_{1}V^{*}_{cs}
H(Ds+η+ν)H(D^{+}_{s}\to\eta\ell^{+}\nu_{\ell}) (cosθP2/3sinθP/3)A2Vcs\big{(}-cos\theta_{P}\sqrt{2/3}-sin\theta_{P}/\sqrt{3}\big{)}A_{2}V^{*}_{cs}
H(Ds+η+ν)H(D^{+}_{s}\to\eta^{\prime}\ell^{+}\nu_{\ell}) (sinθP2/3+cosθP/3)A2Vcs\big{(}-sin\theta_{P}\sqrt{2/3}+cos\theta_{P}/\sqrt{3}\big{)}A_{2}V^{*}_{cs}
H(Ds+π0+ν)H(D^{+}_{s}\to\pi^{0}\ell^{+}\nu_{\ell}) δ(cosθP2/3sinθP/3)A2Vcs-\delta\big{(}-cos\theta_{P}\sqrt{2/3}-sin\theta_{P}/\sqrt{3}\big{)}A_{2}V^{*}_{cs}
H(D0π+ν)H(D^{0}\to\pi^{-}\ell^{+}\nu_{\ell}) A3VcdA_{3}V^{*}_{cd}
H(D+π0+ν)H(D^{+}\to\pi^{0}\ell^{+}\nu_{\ell}) 12A3Vcd-\frac{1}{\sqrt{2}}A_{3}V^{*}_{cd}
H(D+η+ν)H(D^{+}\to\eta\ell^{+}\nu_{\ell}) (cosθP/6sinθP/3)A3Vcd\big{(}cos\theta_{P}/\sqrt{6}-sin\theta_{P}/\sqrt{3}\big{)}A_{3}V^{*}_{cd}
H(D+η+ν)H(D^{+}\to\eta^{\prime}\ell^{+}\nu_{\ell}) (sinθP/6+cosθP/3)A3Vcd\big{(}sin\theta_{P}/\sqrt{6}+cos\theta_{P}/\sqrt{3}\big{)}A_{3}V^{*}_{cd}
H(Ds+K0+ν)H(D^{+}_{s}\to K^{0}\ell^{+}\nu_{\ell}) A4VcdA_{4}V^{*}_{cd}

Many decay modes of the DPe+νe,Pμ+νμD\rightarrow Pe^{+}\nu_{e},P\mu^{+}\nu_{\mu} decays have been measured, and the experimental data with 2σ2\sigma errors are listed in the second column of Tab. 2. One can constrain the parameters AiA_{i} by the present experimental data within 2σ2\sigma errors and then predict other not yet measured branching ratios. Four cases C1,2,3,4C_{1,2,3,4} will be considered in our analysis. The numerical results of (DP+ν)\mathcal{B}(D\to P\ell^{+}\nu_{\ell}) in the C1C_{1}, C2C_{2}, C3C_{3} and C4C_{4} cases are given in the third, forth, fifth and sixth columns of Tab. 2, respectively. And our comments on the results are as follows.

Table 2: Branching ratios of the DP+νD\to P\ell^{+}\nu decays. Denotes that the corresponding experimental data from PDG PDG2022 are not used to constrain AiA_{i} in this case.
Branching ratios Exp. data Ones in C1C_{1} Ones in C2C_{2} Ones in C3C_{3} Ones in C4C_{4} Previous ones
(D+K¯0e+νe)(×102)\mathcal{B}(D^{+}\to\overline{K}^{0}e^{+}\nu_{e})(\times 10^{-2}) 8.72±0.188.72\pm 0.18 8.84±0.068.84\pm 0.06 8.83±0.078.83\pm 0.07 8.84±0.068.84\pm 0.06 8.83±0.078.83\pm 0.07
(D+π0e+νe)(×103)\mathcal{B}(D^{+}\to\pi^{0}e^{+}\nu_{e})(\times 10^{-3}) 3.72±0.343.72\pm 0.34 3.75±0.053.75\pm 0.05 5.40±1.335.40\pm 1.33^{\dagger} 5.04±0.125.04\pm 0.12^{\dagger} 3.70±0.113.70\pm 0.11
(D+ηe+νe)(×103)\mathcal{B}(D^{+}\to\eta e^{+}\nu_{e})(\times 10^{-3}) 1.11±0.141.11\pm 0.14 1.15±0.051.15\pm 0.05 1.20±0.051.20\pm 0.05 1.20±0.051.20\pm 0.05 0.92±0.080.92\pm 0.08
(D+ηe+νe)(×104)\mathcal{B}(D^{+}\to\eta^{\prime}e^{+}\nu_{e})(\times 10^{-4}) 2.0±0.82.0\pm 0.8 2.59±0.142.59\pm 0.14 2.22±0.342.22\pm 0.34 2.09±0.142.09\pm 0.14 1.50±0.201.50\pm 0.20
(D0Ke+νe)(×102)\mathcal{B}(D^{0}\to K^{-}e^{+}\nu_{e})(\times 10^{-2}) 3.549±0.0523.549\pm 0.052 3.52±0.023.52\pm 0.02 3.52±0.033.52\pm 0.03 3.52±0.033.52\pm 0.03 3.52±0.023.52\pm 0.02
(D0πe+νe)(×103)\mathcal{B}(D^{0}\to\pi^{-}e^{+}\nu_{e})(\times 10^{-3}) 2.91±0.082.91\pm 0.08 2.95±0.032.95\pm 0.03 4.23±1.034.23\pm 1.03^{\dagger} 3.97±0.093.97\pm 0.09^{\dagger} 2.89±0.062.89\pm 0.06
(Ds+ηe+νe)(×102)\mathcal{B}(D^{+}_{s}\to\eta e^{+}\nu_{e})(\times 10^{-2}) 2.32±0.162.32\pm 0.16 2.37±0.112.37\pm 0.11 2.34±0.142.34\pm 0.14 2.36±0.122.36\pm 0.12 2.32±0.162.32\pm 0.16
(Ds+ηe+νe)(×103)\mathcal{B}(D^{+}_{s}\to\eta^{\prime}e^{+}\nu_{e})(\times 10^{-3}) 8.0±1.48.0\pm 1.4 9.05±0.049.05\pm 0.04 8.25±1.138.25\pm 1.13 8.04±0.438.04\pm 0.43 8.02±1.388.02\pm 1.38
(Ds+K0e+νe)(×103)\mathcal{B}(D^{+}_{s}\to K^{0}e^{+}\nu_{e})(\times 10^{-3}) 3.4±0.83.4\pm 0.8 3.10±0.083.10\pm 0.08 3.56±0.393.56\pm 0.39 3.54±0.123.54\pm 0.12 3.40±0.803.40\pm 0.80
(Ds+π0e+νe)(×105)\mathcal{B}(D^{+}_{s}\to\pi^{0}e^{+}\nu_{e})(\times 10^{-5}) \cdots 1.51±0.071.51\pm 0.07 2.10±0.562.10\pm 0.56 1.96±0.101.96\pm 0.10 1.92±0.131.92\pm 0.13 2.65±0.382.65\pm 0.38 Li:2020ylu
(D+K¯0μ+νμ)(×102)\mathcal{B}(D^{+}\to\overline{K}^{0}\mu^{+}\nu_{\mu})(\times 10^{-2}) 8.76±0.388.76\pm 0.38 8.56±0.068.56\pm 0.06 8.69±0.158.69\pm 0.15 8.61±0.068.61\pm 0.06 8.61±0.068.61\pm 0.06
(D+π0μ+νμ)(×103)\mathcal{B}(D^{+}\to\pi^{0}\mu^{+}\nu_{\mu})(\times 10^{-3}) 3.50±0.303.50\pm 0.30 3.67±0.053.67\pm 0.05 5.32±1.315.32\pm 1.31^{\dagger} 4.96±0.124.96\pm 0.12^{\dagger} 3.64±0.103.64\pm 0.10
(D+ημ+νμ)(×103)\mathcal{B}(D^{+}\to\eta\mu^{+}\nu_{\mu})(\times 10^{-3}) 1.04±0.221.04\pm 0.22 1.11±0.051.11\pm 0.05 1.18±0.071.18\pm 0.07 1.17±0.051.17\pm 0.05 0.90±0.080.90\pm 0.08 0.75±0.15Leng:2020fei 1.21Faustov:2019mqr {}^{1.21\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Faustov:2019mqr}{\@@citephrase{(}}{\@@citephrase{)}}}}}_{0.75\pm 0.15\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Leng:2020fei}{\@@citephrase{(}}{\@@citephrase{)}}}}}
(D+ημ+νμ)(×104)\mathcal{B}(D^{+}\to\eta^{\prime}\mu^{+}\nu_{\mu})(\times 10^{-4}) \cdots 2.42±0.132.42\pm 0.13 2.10±0.332.10\pm 0.33 1.96±0.131.96\pm 0.13 1.41±0.191.41\pm 0.19 1.06±0.20Leng:2020fei 2.11Faustov:2019mqr {}^{2.11\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Faustov:2019mqr}{\@@citephrase{(}}{\@@citephrase{)}}}}}_{1.06\pm 0.20\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Leng:2020fei}{\@@citephrase{(}}{\@@citephrase{)}}}}}
(D0Kμ+νμ)(×102)\mathcal{B}(D^{0}\to K^{-}\mu^{+}\nu_{\mu})(\times 10^{-2}) 3.41±0.083.41\pm 0.08 3.41±0.023.41\pm 0.02 3.44±0.053.44\pm 0.05 3.43±0.023.43\pm 0.02 3.43±0.023.43\pm 0.02
(D0πμ+νμ)(×103)\mathcal{B}(D^{0}\to\pi^{-}\mu^{+}\nu_{\mu})(\times 10^{-3}) 2.67±0.242.67\pm 0.24 2.89±0.022.89\pm 0.02 4.17±1.014.17\pm 1.01^{\dagger} 3.90±0.093.90\pm 0.09^{\dagger} 2.85±0.062.85\pm 0.06
(Ds+ημ+νμ)(×102)\mathcal{B}(D^{+}_{s}\to\eta\mu^{+}\nu_{\mu})(\times 10^{-2}) 2.4±1.02.4\pm 1.0 2.30±0.102.30\pm 0.10 2.30±0.172.30\pm 0.17 2.31±0.122.31\pm 0.12 2.26±0.162.26\pm 0.16
(Ds+ημ+νμ)(×102)\mathcal{B}(D^{+}_{s}\to\eta^{\prime}\mu^{+}\nu_{\mu})(\times 10^{-2}) 1.1±1.01.1\pm 1.0 0.86±0.030.86\pm 0.03 0.79±0.110.79\pm 0.11 0.77±0.040.77\pm 0.04 0.76±0.130.76\pm 0.13
(Ds+K0μ+νμ)(×103)\mathcal{B}(D^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu})(\times 10^{-3}) \cdots 3.01±0.083.01\pm 0.08 3.51±0.383.51\pm 0.38 3.46±0.113.46\pm 0.11 3.33±0.783.33\pm 0.78 3.85±0.76Leng:2020fei 3.9Faustov:2019mqr {}^{3.9\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Faustov:2019mqr}{\@@citephrase{(}}{\@@citephrase{)}}}}}_{3.85\pm 0.76\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Leng:2020fei}{\@@citephrase{(}}{\@@citephrase{)}}}}}
(Ds+π0μ+νμ)(×105)\mathcal{B}(D^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu})(\times 10^{-5}) \cdots 1.48±0.071.48\pm 0.07 2.09±0.532.09\pm 0.53 1.93±0.101.93\pm 0.10 1.89±0.131.89\pm 0.13
(Ds+π0τ+ντ)(×1010)\mathcal{B}(D^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau})(\times 10^{-10}) \cdots 3.45±0.213.45\pm 0.21 160.34±149.53160.34\pm 149.53 4.20±0.264.20\pm 0.26 4.08±0.344.08\pm 0.34 (2736)Li:2020ylu (27\sim 36)\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Li:2020ylu}{\@@citephrase{(}}{\@@citephrase{)}}}}
Rμ/e(D+K¯0+ν)R^{\mu/e}(D^{+}\to\overline{K}^{0}\ell^{+}\nu_{\ell}) 0.9690.969 0.984±0.0130.984\pm 0.013 0.9740.974 0.9740.974
Rμ/e(D+π0+ν)R^{\mu/e}(D^{+}\to\pi^{0}\ell^{+}\nu_{\ell}) 0.9770.977 1.009±0.0261.009\pm 0.026 0.9840.984 0.9840.984
Rμ/e(D+η+ν)R^{\mu/e}(D^{+}\to\eta\ell^{+}\nu_{\ell}) 0.9670.967 0.984±0.0140.984\pm 0.014 0.9730.973 0.9730.973
Rμ/e(D+η+ν)R^{\mu/e}(D^{+}\to\eta^{\prime}\ell^{+}\nu_{\ell}) 0.9350.935 0.948±0.0120.948\pm 0.012 0.9400.940 0.9400.940
Rμ/e(D0K+ν)R^{\mu/e}(D^{0}\to K^{-}\ell^{+}\nu_{\ell}) 0.9690.969 0.984±0.0130.984\pm 0.013 0.9740.974 0.9740.974
Rμ/e(D0π+ν)R^{\mu/e}(D^{0}\to\pi^{-}\ell^{+}\nu_{\ell}) 0.9770.977 1.008±0.0261.008\pm 0.026 0.9840.984 0.9840.984
Rμ/e(Ds+η+ν)R^{\mu/e}(D^{+}_{s}\to\eta\ell^{+}\nu_{\ell}) 0.9710.971 0.987±0.0130.987\pm 0.013 0.9760.976 0.9760.976
Rμ/e(Ds+η+ν)R^{\mu/e}(D^{+}_{s}\to\eta^{\prime}\ell^{+}\nu_{\ell}) 0.9460.946 0.958±0.0110.958\pm 0.011 0.9520.952 0.9520.952
Rμ/e(Ds+K0+ν)R^{\mu/e}(D^{+}_{s}\to K^{0}\ell^{+}\nu_{\ell}) 0.9730.973 0.992±0.0160.992\pm 0.016 0.9780.978 0.9780.978
Rμ/e(Ds+π0+ν)R^{\mu/e}(D^{+}_{s}\to\pi^{0}\ell^{+}\nu_{\ell}) 0.9800.980 1.010±0.0251.010\pm 0.025 0.9850.985 0.9850.985
  • Results in C1C_{1} case: From the third column of Tab. 2, one can see that the SU(3) flavor symmetry predictions of (DP+ν)\mathcal{B}(D\to P\ell^{+}\nu_{\ell}) in the C1C_{1} case are entirely consistent with all present experiential data. The not yet measured branching ratios of the Ds+π0e+νeD^{+}_{s}\to\pi^{0}e^{+}\nu_{e}, Ds+π0μ+νμD^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu}, D+ημ+νμD^{+}\to\eta^{\prime}\mu^{+}\nu_{\mu} and Ds+K0μ+νμD^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu} decays are predicted on the order of 𝒪(103105)\mathcal{O}(10^{-3}-10^{-5}), nevertheless, (Ds+π0τ+ντ)\mathcal{B}(D^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau}) is predicted on the order of 𝒪(1010)\mathcal{O}(10^{-10}) due to its narrow phase space and (q2mτ2)2(q^{2}-m_{\tau}^{2})^{2} suppression of the differential branching ratios in Eq. (71).

  • Results in C2,3C_{2,3} cases: The numerical results in C2,3C_{2,3} cases are similar. The experimental upper limits of (D+π0+ν)\mathcal{B}(D^{+}\to\pi^{0}\ell^{+}\nu_{\ell}) and (D0π+ν)\mathcal{B}(D^{0}\to\pi^{-}\ell^{+}\nu_{\ell}) have not been used to constrain the predictions of (DP+ν)\mathcal{B}(D\to P\ell^{+}\nu_{\ell}), since the upper limits of the predictions of (D+π0+ν)\mathcal{B}(D^{+}\to\pi^{0}\ell^{+}\nu_{\ell}) and (D0π+ν)\mathcal{B}(D^{0}\to\pi^{-}\ell^{+}\nu_{\ell}) by the SU(3) flavor symmetry in C2,3C_{2,3} cases are slightly larger than their experimental data. Other SU(3) flavor symmetry predictions are consistent with their experimental data within 2σ2\sigma errors.

  • Results in C4C_{4} case: As given in the sixth column of Tab. 2, if considering both the hadronic momentum-transfer q2q^{2} dependence of the form factors and the SU(3) flavor breaking contributions, all SU(3) flavor symmetry predictions are consistent with their experimental data within 2σ2\sigma errors. For some decays, the errors of the theoretical predictions are much smaller than ones of their experimental data.

  • The previous predictions for the not yet measured branching ratios are listed in the last column of Tab. 2, our predictions are in the same order of magnitude as previous ones for the DPe+νe,Pμ+νμD\to Pe^{+}\nu_{e},P\mu^{+}\nu_{\mu} decays. And our prediction of (Ds+π0τ+ντ)\mathcal{B}(D^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau}) is one order smaller than previous one in Ref. Li:2020ylu .

  • In addition, the lepton flavor universality parameters Rμ/e(DP+ν)R^{\mu/e}(D\to P\ell^{+}\nu_{\ell}) are also given in Tab. 2, since many terms are canceled in the ratios, these predictions are quite accurate, and all processes have similar results.

For the q2q^{2} dependence of the differential branching ratios of the DP+νD\to P\ell^{+}\nu_{\ell} decays with present experimental bounds, we only show the not yet measured processes D+ημ+νμ,Ds+K0μ+νμ,Ds+π0μ+νμD^{+}\to\eta^{\prime}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ D^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ D^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu} and Ds+π0τ+ντD^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau} in Fig. 1.

Refer to caption
Figure 1: The q2q^{2} dependence of the differential branching ratios for some DP+νD\to P\ell^{+}\nu_{\ell} with present experimental bounds.

We do not show d(Ds+π0e+νe)/dq2d\mathcal{B}(D^{+}_{s}\to\pi^{0}e^{+}\nu_{e})/dq^{2}, since it is similar to d(Ds+π0μ+νμ)/dq2d\mathcal{B}(D^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu})/dq^{2} in Fig. 1 (c). From Fig. 1, one can see that present experimental measurements give quite strong bounds on the differential branching ratios of D+ημ+νμ,Ds+π0μ+νμD^{+}\to\eta^{\prime}\mu^{+}\nu_{\mu},\leavevmode\nobreak\ D^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu} and Ds+π0τ+ντD^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau} decays in the C1C_{1}, C3C_{3} and C4C_{4} cases as well as Ds+K0μ+νμD^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu} decays in the C1C_{1} and C3C_{3} cases, and all predictions of the four differential branching ratios in the C2C_{2} case have large error due to the form factor choice. Comparing with d(Ds+π0μ+νμ)/dq2d\mathcal{B}(D^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu})/dq^{2} in Fig. 1 (c), as shown in Fig. 1 (d), d(Ds+π0τ+ντ)/dq2d\mathcal{B}(D^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau})/dq^{2} is suppressed about the order of 𝒪(104)\mathcal{O}(10^{-4}) by mτm_{\tau}.

The forward-backward asymmetries AFBA^{\ell}_{FB}, the lepton-side convexity parameters CFC^{\ell}_{F}, the longitudinal polarizations of the final charged leptons PLP^{\ell}_{L} and the transverse polarizations of the final charged leptons PTP^{\ell}_{T} with two ways of integration for the DP+νD\to P\ell^{+}\nu_{\ell} decays could also be obtained. These predictions are very accurate, and they are similar to each other in the four C1,2,3,4C_{1,2,3,4} cases. So we only give the predictions within the C3C_{3} case in Tab. 3 for examples. From Tab. 3, one can see that the predictions are obviously different between two ways of q2q^{2} integration, and the slight difference in the same way of q2q^{2} integration is due to the different decay phase spaces. For displaying the differences between the DPe+νeD\to Pe^{+}\nu_{e} and DPμ+νμD\to P\mu^{+}\nu_{\mu} decays, we take Ds+K0e+νeD^{+}_{s}\to K^{0}e^{+}\nu_{e} and Ds+K0μ+νμD^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu} as examples. The differential forward-backward asymmetries, the differential lepton-side convexity parameters, the differential longitudinal lepton polarizations and the differential transverse lepton polarizations of Ds+K0e+νeD^{+}_{s}\to K^{0}e^{+}\nu_{e} and Ds+K0μ+νμD^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu} decays within the C3C_{3} case are displayed in Fig. 2. And one can see that differential observables between =e\ell=e and =μ\ell=\mu are obviously different, specially in the low and high q2q^{2} ranges.

Table 3: Quantities X\langle X\rangle and X¯\overline{X} of the DP+νD\to P\ell^{+}\nu in C3C_{3} case.
Decay modes AFB\langle A^{\ell}_{FB}\rangle AFBμ,τ¯(×102)AFBe¯(×106){}^{\overline{A^{e}_{FB}}(\times 10^{-6})}_{\overline{A^{\mu,\tau}_{FB}}(\times 10^{-2})} CF\langle C^{\ell}_{F}\rangle CF¯\overline{C^{\ell}_{F}} PL\langle P^{\ell}_{L}\rangle PL¯\overline{P^{\ell}_{L}} PT\langle P^{\ell}_{T}\rangle PTμ,τ¯PTe¯(×103){}^{\overline{P^{e}_{T}}(\times 10^{-3})}_{\overline{P^{\mu,\tau}_{T}}}
D+K¯0e+νeD^{+}\to\overline{K}^{0}e^{+}\nu_{e}     0.087-0.087 3.254±0.001-3.254\pm 0.001 1.239-1.239 1.500-1.500 0.7680.768 1.0001.000 0.273-0.273 2.442±0.001-2.442\pm 0.001
D+π0e+νeD^{+}\to\pi^{0}e^{+}\nu_{e} 0.083-0.083 2.054±0.000-2.054\pm 0.000 1.252-1.252 1.500-1.500 0.7800.780 1.0001.000 0.260-0.260 1.730±0.000-1.730\pm 0.000
D+ηe+νeD^{+}\to\eta e^{+}\nu_{e} 0.087-0.087 3.476±0.001-3.476\pm 0.001 1.239-1.239 1.500-1.500 0.7680.768 1.0001.000 0.273-0.273 2.490±0.000-2.490\pm 0.000
D+ηe+νeD^{+}\to\eta^{\prime}e^{+}\nu_{e} 0.093-0.093 7.075±0.003-7.075\pm 0.003 1.222-1.222 1.500-1.500 0.7530.753 1.0001.000 0.290-0.290 3.890±0.001-3.890\pm 0.001
D0Ke+νeD^{0}\to K^{-}e^{+}\nu_{e} 0.087-0.087 3.259±0.001-3.259\pm 0.001 1.239-1.239 1.500-1.500 0.7680.768 1.0001.000 0.273-0.273 2.446±0.001-2.446\pm 0.001
D0πe+νeD^{0}\to\pi^{-}e^{+}\nu_{e} 0.083-0.083 2.077±0.000-2.077\pm 0.000 1.252-1.252 1.500-1.500 0.7790.779 1.0001.000 0.260-0.260 1.751±0.000-1.751\pm 0.000
Ds+ηe+νeD^{+}_{s}\to\eta e^{+}\nu_{e} 0.086-0.086 3.033±0.001-3.033\pm 0.001 1.242-1.242 1.500-1.500 0.7700.770 1.0001.000 0.270-0.270 2.300±0.001-2.300\pm 0.001
Ds+ηe+νeD^{+}_{s}\to\eta^{\prime}e^{+}\nu_{e} 0.091-0.091 5.829±0.003-5.829\pm 0.003 1.226-1.226 1.500-1.500 0.7570.757 1.0001.000 0.286-0.286 3.484±0.001-3.484\pm 0.001
Ds+K0e+νeD^{+}_{s}\to K^{0}e^{+}\nu_{e} 0.085-0.085 2.814±0.001-2.814\pm 0.001 1.245-1.245 1.500-1.500 0.7730.773 1.0001.000 0.267-0.267 2.118±0.000-2.118\pm 0.000
Ds+π0e+νeD^{+}_{s}\to\pi^{0}e^{+}\nu_{e} 0.082-0.082 1.850±0.001-1.850\pm 0.001 1.254-1.254 1.500-1.500 0.7810.781 1.0001.000 0.258-0.258 1.634±0.001-1.634\pm 0.001
D+K¯0μ+νμD^{+}\to\overline{K}^{0}\mu^{+}\nu_{\mu} 0.226-0.226 4.278±0.001-4.278\pm 0.001 0.822-0.822 1.352-1.352 0.3940.394 0.8510.851 0.655-0.655 0.414-0.414
D+π0μ+νμD^{+}\to\pi^{0}\mu^{+}\nu_{\mu} 0.201-0.201 2.810±0.000-2.810\pm 0.000 0.897-0.897 1.405-1.405 0.4620.462 0.9070.907 0.602-0.602 0.310-0.310
D+ημ+νμD^{+}\to\eta\mu^{+}\nu_{\mu} 0.227-0.227 4.490±0.001-4.490\pm 0.001 0.819-0.819 1.347-1.347 0.3910.391 0.8460.846 0.657-0.657 0.419-0.419
D+ημ+νμD^{+}\to\eta^{\prime}\mu^{+}\nu_{\mu} 0.263-0.263 8.097±0.003-8.097\pm 0.003 0.708-0.708 1.213-1.213 0.2870.287 0.7030.703 0.725-0.725 0.581-0.581
D0Kμ+νμD^{0}\to K^{-}\mu^{+}\nu_{\mu} 0.226-0.226 4.285±0.001-4.285\pm 0.001 0.822-0.822 1.352-1.352 0.3930.393 0.8500.850 0.656-0.656 0.414-0.414
D0πμ+νμD^{0}\to\pi^{-}\mu^{+}\nu_{\mu} 0.201-0.201 2.844±0.001-2.844\pm 0.001 0.895-0.895 1.407-1.407 0.4610.461 0.9100.910 0.603-0.603 0.313-0.313
Ds+ημ+νμD^{+}_{s}\to\eta\mu^{+}\nu_{\mu} 0.221-0.221 4.001±0.001-4.001\pm 0.001 0.836-0.836 1.364-1.364 0.4060.406 0.8640.864 0.646-0.646 0.394-0.394
Ds+ημ+νμD^{+}_{s}\to\eta^{\prime}\mu^{+}\nu_{\mu} 0.254-0.254 6.952±0.003-6.952\pm 0.003 0.736-0.736 1.254-1.254 0.3140.314 0.7470.747 0.709-0.709 0.540-0.540
Ds+K0μ+νμD^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu} 0.215-0.215 3.701±0.001-3.701\pm 0.001 0.856-0.856 1.377-1.377 0.4250.425 0.8790.879 0.632-0.632 0.367-0.367
Ds+π0μ+νμD^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu} 0.197-0.197 2.571±0.001-2.571\pm 0.001 0.907-0.907 1.417-1.417 0.4720.472 0.9200.920 0.594-0.594 0.295-0.295
Ds+π0τ+ντD^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau} 0.281-0.281 27.429±0.105-27.429\pm 0.105 0.211±0.003-0.211\pm 0.003 0.212±0.003-0.212\pm 0.003 0.868±0.001-0.868\pm 0.001 0.873±0.001-0.873\pm 0.001 0.447±0.002-0.447\pm 0.002 0.437±0.002-0.437\pm 0.002
Refer to caption
Figure 2: The differential forward-backward asymmetries, differential lepton-side convexity parameters, differential longitudinal lepton polarizations and differential transverse lepton polarizations for the Ds+K0+νD^{+}_{s}\to K^{0}\ell^{+}\nu_{\ell} decays in the C3C_{3} case.

III.2 DV+νD\to V\ell^{+}\nu_{\ell} decays

The hadronic helicity amplitudes for the DV+νD\rightarrow V\ell^{+}\nu_{\ell} decays are given in Tab. 4. There are four nonperturbative parameters B1,2,3,4B_{1,2,3,4} in the DV+νD\rightarrow V\ell^{+}\nu_{\ell} decay modes. If neglecting the SU(3) flavor breaking c1Vc^{V}_{1} and c2Vc^{V}_{2} terms, B1=B2=B3=B4=c0VB_{1}=B_{2}=B_{3}=B_{4}=c^{V}_{0}, and then all hadronic helicity amplitudes of DV+νD\rightarrow V\ell^{+}\nu_{\ell} are related by only one parameter c0Vc^{V}_{0}.

Table 4: The hadronic helicity amplitudes for DV+νD\to V\ell^{+}\nu decays including both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions. B1=c0V+c1V2c2VB_{1}=c^{V}_{0}+c^{V}_{1}-2c^{V}_{2}, B2=c0V2c1V2c2VB_{2}=c^{V}_{0}-2c^{V}_{1}-2c^{V}_{2}, B3=c0V+c1V+c2VB_{3}=c^{V}_{0}+c^{V}_{1}+c^{V}_{2}, B4=c0V2c1V+c2VB_{4}=c^{V}_{0}-2c^{V}_{1}+c^{V}_{2}. If neglecting the SU(3) flavor breaking c1Vc^{V}_{1} and c2Vc^{V}_{2} terms, B1=B2=B3=B4=c0VB_{1}=B_{2}=B_{3}=B_{4}=c^{V}_{0}.
Hadronic helicity amplitudes SU(3) IRA amplitudes
H(D0K+ν)H(D^{0}\to K^{*-}\ell^{+}\nu_{\ell}) B1VcsB_{1}V^{*}_{cs}
H(D+K¯0+ν)H(D^{+}\to\overline{K}^{*0}\ell^{+}\nu_{\ell}) B1VcsB_{1}V^{*}_{cs}
H(Ds+ϕ+ν)H(D^{+}_{s}\to\phi\ell^{+}\nu_{\ell}) (cosθV2/3sinθV/3)B2Vcs\big{(}-cos\theta_{V}\sqrt{2/3}-sin\theta_{V}/\sqrt{3}\big{)}B_{2}V^{*}_{cs}
H(Ds+ω+ν)H(D^{+}_{s}\to\omega\ell^{+}\nu_{\ell}) (sinθV2/3+cosθV/3)B2Vcs\big{(}-sin\theta_{V}\sqrt{2/3}+cos\theta_{V}/\sqrt{3}\big{)}B_{2}V^{*}_{cs}
H(D0ρ+ν)H(D^{0}\to\rho^{-}\ell^{+}\nu_{\ell}) B3VcdB_{3}V^{*}_{cd}
H(D+ρ0+ν)H(D^{+}\to\rho^{0}\ell^{+}\nu_{\ell}) 12B3Vcd-\frac{1}{\sqrt{2}}B_{3}V^{*}_{cd}
H(D+ϕ+ν)H(D^{+}\to\phi\ell^{+}\nu_{\ell}) (cosθV/6sinθV/3)B3Vcd\big{(}cos\theta_{V}/\sqrt{6}-sin\theta_{V}/\sqrt{3}\big{)}B_{3}V^{*}_{cd}
H(D+ω+ν)H(D^{+}\to\omega\ell^{+}\nu_{\ell}) (sinθV/6+cosθV/3)B3Vcd\big{(}sin\theta_{V}/\sqrt{6}+cos\theta_{V}/\sqrt{3}\big{)}B_{3}V^{*}_{cd}
H(Ds+K0+ν)H(D^{+}_{s}\to K^{*0}\ell^{+}\nu_{\ell}) B4VcdB_{4}V^{*}_{cd}

Among the DV+νD\rightarrow V\ell^{+}\nu_{\ell} decay modes, 13 branching ratios have been measured, and 2 branching ratios have been upper limited by the experiments. The experimental data with 2σ2\sigma errors are listed in the second column of Tab. 5. Now we use the listed experimental data to constrain the parameters BiB_{i} and then predict other not yet measured and not yet well measured branching ratios. The numerical results of (DV+ν)\mathcal{B}(D\to V\ell^{+}\nu_{\ell}) in the C1C_{1}, C2C_{2}, C3C_{3} and C4C_{4} cases are given in the third, forth, fifth and sixth columns of Tab. 5, respectively.

Table 5: Branching ratios of the DV+νD\to V\ell^{+}\nu within 2σ2\sigma errors. The experimental data of (D+ωe+νe)\mathcal{B}(D^{+}\to\omega e^{+}\nu_{e}) and (D0ρμ+νμ)\mathcal{B}(D^{0}\to\rho^{-}\mu^{+}\nu_{\mu}) from PDG PDG2022 are not used in the C1,2,3C_{1,2,3} cases.
Branching ratios Exp. data Ones in C1C_{1} Ones in C2C_{2} Ones in C3C_{3} Ones in C4C_{4}
(D+K¯0e+νe)(×102)\mathcal{B}(D^{+}\to\overline{K}^{*0}e^{+}\nu_{e})(\times 10^{-2}) 5.40±0.205.40\pm 0.20 5.44±0.155.44\pm 0.15 5.42±0.185.42\pm 0.18 5.36±0.085.36\pm 0.08 5.44±0.165.44\pm 0.16
(D+ρ0e+νe)(×103)\mathcal{B}(D^{+}\to\rho^{0}e^{+}\nu_{e})(\times 10^{-3}) 2.180.50+0.342.18^{+0.34}_{-0.50} 2.31±0.072.31\pm 0.07 2.39±0.132.39\pm 0.13 2.33±0.052.33\pm 0.05 1.83±0.151.83\pm 0.15
(D+ωe+νe)(×103)\mathcal{B}(D^{+}\to\omega e^{+}\nu_{e})(\times 10^{-3}) 1.69±0.221.69\pm 0.22 2.24±0.072.24\pm 0.07^{\dagger} 2.33±0.122.33\pm 0.12^{\dagger} 2.26±0.042.26\pm 0.04^{\dagger} 1.77±0.141.77\pm 0.14
(D+ϕe+νe)(×107)\mathcal{B}(D^{+}\to\phi e^{+}\nu_{e})(\times 10^{-7}) <130<130 3.13±0.123.13\pm 0.12 3.11±0.193.11\pm 0.19 3.07±0.073.07\pm 0.07 2.38±0.232.38\pm 0.23
(D0Ke+νe)(×102)\mathcal{B}(D^{0}\to K^{*-}e^{+}\nu_{e})(\times 10^{-2}) 2.15±0.322.15\pm 0.32 2.12±0.092.12\pm 0.09 2.13±0.102.13\pm 0.10 2.08±0.062.08\pm 0.06 2.13±0.102.13\pm 0.10
(D0ρe+νe)(×103)\mathcal{B}(D^{0}\to\rho^{-}e^{+}\nu_{e})(\times 10^{-3}) 1.50±0.241.50\pm 0.24 1.79±0.081.79\pm 0.08 1.86±0.111.86\pm 0.11 1.80±0.061.80\pm 0.06 1.41±0.131.41\pm 0.13
(Ds+ϕe+νe)(×102)\mathcal{B}(D^{+}_{s}\to\phi e^{+}\nu_{e})(\times 10^{-2}) 2.39±0.322.39\pm 0.32 2.46±0.122.46\pm 0.12 2.43±0.142.43\pm 0.14 2.40±0.102.40\pm 0.10 2.39±0.322.39\pm 0.32
(Ds+ωe+νe)(×105)\mathcal{B}(D^{+}_{s}\to\omega e^{+}\nu_{e})(\times 10^{-5}) <200<200 2.45±0.132.45\pm 0.13 2.56±0.202.56\pm 0.20 2.47±0.102.47\pm 0.10 2.49±0.382.49\pm 0.38
(Ds+K0e+νe)(×103)\mathcal{B}(D^{+}_{s}\to K^{*0}e^{+}\nu_{e})(\times 10^{-3}) 2.15±0.562.15\pm 0.56 2.17±0.102.17\pm 0.10 2.25±0.132.25\pm 0.13 2.17±0.082.17\pm 0.08 2.15±0.562.15\pm 0.56
(D+K¯0μ+νμ)(×102)\mathcal{B}(D^{+}\to\overline{K}^{*0}\mu^{+}\nu_{\mu})(\times 10^{-2}) 5.27±0.305.27\pm 0.30 5.12±0.155.12\pm 0.15 5.13±0.165.13\pm 0.16 5.05±0.085.05\pm 0.08 5.12±0.155.12\pm 0.15
(D+ρ0μ+νμ)(×103)\mathcal{B}(D^{+}\to\rho^{0}\mu^{+}\nu_{\mu})(\times 10^{-3}) 2.4±0.82.4\pm 0.8 2.19±0.072.19\pm 0.07 2.29±0.132.29\pm 0.13 2.22±0.042.22\pm 0.04 1.74±0.141.74\pm 0.14
(D+ωμ+νμ)(×103)\mathcal{B}(D^{+}\to\omega\mu^{+}\nu_{\mu})(\times 10^{-3}) 1.77±0.421.77\pm 0.42 2.13±0.062.13\pm 0.06 2.23±0.122.23\pm 0.12 2.15±0.042.15\pm 0.04 1.68±0.131.68\pm 0.13
(D+ϕμ+νμ)(×107)\mathcal{B}(D^{+}\to\phi\mu^{+}\nu_{\mu})(\times 10^{-7}) \cdots 2.89±0.112.89\pm 0.11 2.89±0.172.89\pm 0.17 2.84±0.072.84\pm 0.07 2.20±0.212.20\pm 0.21
(D0Kμ+νμ)(×102)\mathcal{B}(D^{0}\to K^{*-}\mu^{+}\nu_{\mu})(\times 10^{-2}) 1.89±0.481.89\pm 0.48 1.99±0.091.99\pm 0.09 2.01±0.092.01\pm 0.09 1.96±0.061.96\pm 0.06 2.01±0.102.01\pm 0.10
(D0ρμ+νμ)(×103)\mathcal{B}(D^{0}\to\rho^{-}\mu^{+}\nu_{\mu})(\times 10^{-3}) 1.35±0.261.35\pm 0.26 1.70±0.071.70\pm 0.07^{\dagger} 1.78±0.111.78\pm 0.11^{\dagger} 1.72±0.061.72\pm 0.06^{\dagger} 1.34±0.131.34\pm 0.13
(Ds+ϕμ+νμ)(×102)\mathcal{B}(D^{+}_{s}\to\phi\mu^{+}\nu_{\mu})(\times 10^{-2}) 1.9±1.01.9\pm 1.0 2.30±0.122.30\pm 0.12 2.29±0.122.29\pm 0.12 2.25±0.092.25\pm 0.09 2.24±0.302.24\pm 0.30
(Ds+ωμ+νμ)(×105)\mathcal{B}(D^{+}_{s}\to\omega\mu^{+}\nu_{\mu})(\times 10^{-5}) \cdots 2.34±0.122.34\pm 0.12 2.47±0.192.47\pm 0.19 2.37±0.092.37\pm 0.09 2.38±0.362.38\pm 0.36
(Ds+K0μ+νμ)(×103)\mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu})(\times 10^{-3}) \cdots 2.06±0.102.06\pm 0.10 2.15±0.132.15\pm 0.13 2.07±0.082.07\pm 0.08 2.05±0.532.05\pm 0.53
Rμ/e(D+K¯0+ν)R^{\mu/e}(D^{+}\to\overline{K}^{*0}\ell^{+}\nu_{\ell}) 0.939±0.0010.939\pm 0.001 0.944±0.0040.944\pm 0.004 0.941±0.0010.941\pm 0.001 0.941±0.0010.941\pm 0.001
Rμ/e(D+ρ0+ν)R^{\mu/e}(D^{+}\to\rho^{0}\ell^{+}\nu_{\ell}) 0.950±0.0010.950\pm 0.001 0.956±0.0050.956\pm 0.005 0.952±0.0010.952\pm 0.001 0.952±0.0010.952\pm 0.001
Rμ/e(D+ω+ν)R^{\mu/e}(D^{+}\to\omega\ell^{+}\nu_{\ell}) 0.950±0.0010.950\pm 0.001 0.956±0.0050.956\pm 0.005 0.952±0.0010.952\pm 0.001 0.952±0.0010.952\pm 0.001
Rμ/e(D+ϕ+ν)R^{\mu/e}(D^{+}\to\phi\ell^{+}\nu_{\ell}) 0.923±0.0010.923\pm 0.001 0.928±0.0050.928\pm 0.005 0.925±0.0010.925\pm 0.001 0.925±0.0010.925\pm 0.001
Rμ/e(D0K+ν)R^{\mu/e}(D^{0}\to K^{*-}\ell^{+}\nu_{\ell}) 0.939±0.0010.939\pm 0.001 0.944±0.0040.944\pm 0.004 0.941±0.0010.941\pm 0.001 0.941±0.0010.941\pm 0.001
Rμ/e(D0ρ+ν)R^{\mu/e}(D^{0}\to\rho^{-}\ell^{+}\nu_{\ell}) 0.950±0.0010.950\pm 0.001 0.956±0.0050.956\pm 0.005 0.952±0.0010.952\pm 0.001 0.952±0.0010.952\pm 0.001
Rμ/e(Ds+ϕ+ν)R^{\mu/e}(D^{+}_{s}\to\phi\ell^{+}\nu_{\ell}) 0.937±0.0010.937\pm 0.001 0.942±0.0040.942\pm 0.004 0.939±0.0010.939\pm 0.001 0.939±0.0010.939\pm 0.001
Rμ/e(Ds+ω+ν)R^{\mu/e}(D^{+}_{s}\to\omega\ell^{+}\nu_{\ell}) 0.957±0.0010.957\pm 0.001 0.963±0.0040.963\pm 0.004 0.959±0.0010.959\pm 0.001 0.959±0.0010.959\pm 0.001
Rμ/e(Ds+K0+ν)R^{\mu/e}(D^{+}_{s}\to K^{*0}\ell^{+}\nu_{\ell}) 0.949±0.0010.949\pm 0.001 0.955±0.0050.955\pm 0.005 0.951±0.0010.951\pm 0.001 0.951±0.0010.951\pm 0.001

The results in the C1C_{1}, C2C_{2} and C3C_{3} cases are very similar. Since the SU(3) flavor symmetry predictions of (D+ωe+νe)\mathcal{B}(D^{+}\to\omega e^{+}\nu_{e}) and (D0ρμ+νμ)\mathcal{B}(D^{0}\to\rho^{-}\mu^{+}\nu_{\mu}) are slightly larger than their experimental data within 2σ2\sigma errors in the three cases, we do not use them to constrain the nonperturbative parameter c0Vc^{V}_{0}. One can see that the prediction of (D0ρμ+νμ)\mathcal{B}(D^{0}\to\rho^{-}\mu^{+}\nu_{\mu}) is agree with its experimental data within 3σ3\sigma errors, nevertheless, the prediction of (D+ωe+νe)\mathcal{B}(D^{+}\to\omega e^{+}\nu_{e}) still slightly larger than experimental data within 3σ3\sigma errors. (Ds+K0μ+νμ)\mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu}) and (Ds+ωe+νe,ωμ+νμ)\mathcal{B}(D^{+}_{s}\to\omega e^{+}\nu_{e},\omega\mu^{+}\nu_{\mu}) are predicted on the order of 𝒪(103)\mathcal{O}(10^{-3}) and 𝒪(105)\mathcal{O}(10^{-5}), respectively. And they could be measured in BESIII, LHCb and BelleII experiments. In the C4C_{4} case, as given in the sixth column of Tab. 5, after considering both the hadronic momentum-transfer q2q^{2} dependence of the form factors and the SU(3) flavor breaking contributions, all SU(3) flavor symmetry predictions are consistent with their experimental data within 2σ2\sigma errors. Among relevant not yet measured decays, (Ds+K0μ+νμ)\mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu}) is calculated in the SM using light-cone sum rules Leng:2020fei and in the relativistic quark model Faustov:2019mqr , (Ds+K0μ+νμ)=(2.23±0.32)×103Leng:2020fei and 2.0×103Faustov:2019mqr \mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu})=(2.23\pm 0.32)\times 10^{-3}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Leng:2020fei}{\@@citephrase{(}}{\@@citephrase{)}}}}\leavevmode\nobreak\ \mbox{and}\leavevmode\nobreak\ 2.0\times 10^{-3}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Faustov:2019mqr}{\@@citephrase{(}}{\@@citephrase{)}}}}, and our predictions of (Ds+K0μ+νμ)\mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu}) in the C1C_{1}, C2C_{2}, C3C_{3} and C4C_{4} cases are coincident with previous ones in Refs. Leng:2020fei ; Faustov:2019mqr . In addition, the lepton flavor universality parameters Rμ/e(DV+ν)R^{\mu/e}(D\to V\ell^{+}\nu_{\ell}) are also given in Tab. 5. Since many terms are canceled in the ratios, these predictions of the lepton flavor universality parameters are quite accurate, and our predictions in all four cases are similar to each other.

For the q2q^{2} dependence of the differential branching ratios of the DV+νD\to V\ell^{+}\nu_{\ell} decays with present experimental bounds, we only show the not yet measured processes D+ϕμ+νμ,Ds+ωμ+νμD^{+}\to\phi\mu^{+}\nu_{\mu},\leavevmode\nobreak\ D^{+}_{s}\to\omega\mu^{+}\nu_{\mu} and Ds+K0μ+νμD^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu} in Fig. 4. The differential branching ratios of D+ϕe+νe(Ds+ωe+νe)D^{+}\to\phi e^{+}\nu_{e}\leavevmode\nobreak\ (D^{+}_{s}\to\omega e^{+}\nu_{e}) is similar to D+ϕμ+νμ(Ds+ωμ+νμ)D^{+}\to\phi\mu^{+}\nu_{\mu}\leavevmode\nobreak\ (D^{+}_{s}\to\omega\mu^{+}\nu_{\mu}), so we do not shown them in Fig. 4. From Fig. 4, one can see that present experiment data give quite strong bounds on all differential branching ratios of D+ϕμ+νμ,Ds+ωμ+νμD^{+}\to\phi\mu^{+}\nu_{\mu},\leavevmode\nobreak\ D^{+}_{s}\to\omega\mu^{+}\nu_{\mu} and Ds+K0μ+νμD^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu} decays in the C1C_{1}, C2C_{2} and C3C_{3} cases. The prediction of d(D+ϕμ+νμ)/dq2d\mathcal{B}(D^{+}\to\phi\mu^{+}\nu_{\mu})/dq^{2} in the C4C_{4} case could be distinguished from ones in the C1,2,3C_{1,2,3} cases within the middle range of q2q^{2}. And the error of d(Ds+K0μ+νμ)/dq2d\mathcal{B}(D^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu})/dq^{2} in the C4C_{4} case is obviously larger than ones in C1,2,3C_{1,2,3} cases.

Refer to caption
Figure 3: The q2q^{2} dependence of the differential branching ratios for some not yet measured DVμ+νμD\to V\mu^{+}\nu_{\mu} decays with present experimental bounds.
Refer to caption
Figure 4: The differential forward-backward asymmetries, differential lepton-side convexity parameters, differential longitudinal lepton polarizations and differential transverse lepton polarizations for the Ds+K0+νD^{+}_{s}\to K^{0}\ell^{+}\nu_{\ell} decays in the C3C_{3} case.

The forward-backward asymmetries AFBA^{\ell}_{FB}, the lepton-side convexity parameters CFC^{\ell}_{F}, the longitudinal polarizations PLP^{\ell}_{L}, the transverse polarizations PTP^{\ell}_{T}, the lepton spin asymmetries AλA_{\lambda} and the longitudinal polarization fractions of the final vector mesons FLF_{L} with two ways of integration have also been predicted in the four cases. Since many theoretical uncertainties are canceled in the ratios, these predictions are very accurate. These predictions are similar to each other in the four cases, and we only list the results in the C3C_{3} case in Tabs. 7-7 for examples. One can see that the predictions are obviously different between two ways of q2q^{2} integration, and they are also quite different between DVe+νeD\to Ve^{+}\nu_{e} and DVμ+νμD\to V\mu^{+}\nu_{\mu} decays.

Table 6: The forward-backward asymmetries AFBA^{\ell}_{FB}, the lepton-side convexity parameters CFC^{\ell}_{F}, the longitudinal polarizations PLP^{\ell}_{L} of the DV+νD\to V\ell^{+}\nu decays in the C3C_{3} case.
Decay modes AFB\langle A^{\ell}_{FB}\rangle AFB¯\overline{A^{\ell}_{FB}} CF\langle C^{\ell}_{F}\rangle CF¯\overline{C^{\ell}_{F}} PL\langle P^{\ell}_{L}\rangle PL¯\overline{P^{\ell}_{L}}
D+K¯0e+νeD^{+}\to\overline{K}^{*0}e^{+}\nu_{e} 0.125±0.006-0.125\pm 0.006 0.190±0.020-0.190\pm 0.020 1.046±0.019-1.046\pm 0.019 0.500±0.032-0.500\pm 0.032 0.786±0.0040.786\pm 0.004 1.0001.000
D+ρ0e+νeD^{+}\to\rho^{0}e^{+}\nu_{e} 0.130±0.008-0.130\pm 0.008 0.222±0.024-0.222\pm 0.024 1.052±0.023-1.052\pm 0.023 0.496±0.041-0.496\pm 0.041 0.789±0.0040.789\pm 0.004 1.0001.000
D+ωe+νeD^{+}\to\omega e^{+}\nu_{e} 0.130±0.008-0.130\pm 0.008 0.220±0.024-0.220\pm 0.024 1.052±0.023-1.052\pm 0.023 0.497±0.041-0.497\pm 0.041 0.789±0.0040.789\pm 0.004 1.0001.000
D+ϕe+νeD^{+}\to\phi e^{+}\nu_{e} 0.121±0.005-0.121\pm 0.005 0.164±0.017-0.164\pm 0.017 1.037±0.015-1.037\pm 0.015 0.500±0.025-0.500\pm 0.025 0.784±0.0030.784\pm 0.003 1.0001.000
D0Ke+νeD^{0}\to K^{*-}e^{+}\nu_{e} 0.125±0.006-0.125\pm 0.006 0.191±0.020-0.191\pm 0.020 1.046±0.019-1.046\pm 0.019 0.500±0.032-0.500\pm 0.032 0.786±0.0040.786\pm 0.004 1.0001.000
D0ρe+νeD^{0}\to\rho^{-}e^{+}\nu_{e} 0.130±0.008-0.130\pm 0.008 0.221±0.024-0.221\pm 0.024 1.052±0.023-1.052\pm 0.023 0.497±0.041-0.497\pm 0.041 0.789±0.0040.789\pm 0.004 1.0001.000
Ds+ϕe+νeD^{+}_{s}\to\phi e^{+}\nu_{e} 0.122±0.006-0.122\pm 0.006 0.176±0.018-0.176\pm 0.018 1.043±0.016-1.043\pm 0.016 0.500±0.028-0.500\pm 0.028 0.786±0.0030.786\pm 0.003 1.0001.000
Ds+ωe+νeD^{+}_{s}\to\omega e^{+}\nu_{e} 0.130±0.008-0.130\pm 0.008 0.229±0.025-0.229\pm 0.025 1.057±0.025-1.057\pm 0.025 0.496±0.044-0.496\pm 0.044 0.790±0.0040.790\pm 0.004 1.0001.000
Ds+K0e+νeD^{+}_{s}\to K^{*0}e^{+}\nu_{e} 0.128±0.007-0.128\pm 0.007 0.207±0.022-0.207\pm 0.022 1.049±0.021-1.049\pm 0.021 0.495±0.036-0.495\pm 0.036 0.789±0.0040.789\pm 0.004 1.0001.000
D+K¯0μ+νμD^{+}\to\overline{K}^{*0}\mu^{+}\nu_{\mu} 0.284±0.009-0.284\pm 0.009 0.226±0.019-0.226\pm 0.019 0.466±0.021-0.466\pm 0.021 0.395±0.028-0.395\pm 0.028 0.514±0.0170.514\pm 0.017 0.886±0.0020.886\pm 0.002
D+ρ0μ+νμD^{+}\to\rho^{0}\mu^{+}\nu_{\mu} 0.292±0.011-0.292\pm 0.011 0.252±0.023-0.252\pm 0.023 0.491±0.027-0.491\pm 0.027 0.405±0.037-0.405\pm 0.037 0.524±0.0200.524\pm 0.020 0.903±0.0020.903\pm 0.002
D+ωμ+νμD^{+}\to\omega\mu^{+}\nu_{\mu} 0.292±0.011-0.292\pm 0.011 0.251±0.022-0.251\pm 0.022 0.490±0.027-0.490\pm 0.027 0.405±0.037-0.405\pm 0.037 0.524±0.0200.524\pm 0.020 0.902±0.0020.902\pm 0.002
D+ϕμ+νμD^{+}\to\phi\mu^{+}\nu_{\mu} 0.277±0.008-0.277\pm 0.008 0.206±0.016-0.206\pm 0.016 0.433±0.016-0.433\pm 0.016 0.376±0.021-0.376\pm 0.021 0.503±0.0140.503\pm 0.014 0.864±0.0020.864\pm 0.002
D0Kμ+νμD^{0}\to K^{*-}\mu^{+}\nu_{\mu} 0.284±0.009-0.284\pm 0.009 0.226±0.019-0.226\pm 0.019 0.466±0.021-0.466\pm 0.021 0.395±0.029-0.395\pm 0.029 0.514±0.0170.514\pm 0.017 0.886±0.0020.886\pm 0.002
D0ρμ+νμD^{0}\to\rho^{-}\mu^{+}\nu_{\mu} 0.292±0.011-0.292\pm 0.011 0.252±0.023-0.252\pm 0.023 0.490±0.027-0.490\pm 0.027 0.405±0.037-0.405\pm 0.037 0.524±0.0200.524\pm 0.020 0.902±0.0020.902\pm 0.002
Ds+ϕμ+νμD^{+}_{s}\to\phi\mu^{+}\nu_{\mu} 0.277±0.008-0.277\pm 0.008 0.213±0.017-0.213\pm 0.017 0.459±0.018-0.459\pm 0.018 0.391±0.024-0.391\pm 0.024 0.514±0.0150.514\pm 0.015 0.882±0.0020.882\pm 0.002
Ds+ωμ+νμD^{+}_{s}\to\omega\mu^{+}\nu_{\mu} 0.291±0.012-0.291\pm 0.012 0.257±0.024-0.257\pm 0.024 0.509±0.029-0.509\pm 0.029 0.414±0.041-0.414\pm 0.041 0.531±0.0210.531\pm 0.021 0.913±0.0020.913\pm 0.002
Ds+K0μ+νμD^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu} 0.286±0.010-0.286\pm 0.010 0.239±0.021-0.239\pm 0.021 0.485±0.024-0.485\pm 0.024 0.402±0.033-0.402\pm 0.033 0.525±0.0180.525\pm 0.018 0.900±0.0020.900\pm 0.002
Table 7: The transverse polarizations PTP^{\ell}_{T}, the lepton spin asymmetries AλA_{\lambda} and the longitudinal polarization fractions of the final vector mesons FLF_{L} of the DV+νD\to V\ell^{+}\nu decays in the C3C_{3} case.
Decay modes PT\langle P^{\ell}_{T}\rangle PTμ¯PTe¯(×103){}^{\overline{P^{e}_{T}}(\times 10^{-3})}_{\overline{P^{\mu}_{T}}} Aλ\langle A_{\lambda}\rangle Aλ¯\overline{A_{\lambda}} FL\langle F_{L}\rangle FL¯\overline{F_{L}}
D+K¯0e+νeD^{+}\to\overline{K}^{*0}e^{+}\nu_{e} 0.251±0.004-0.251\pm 0.004 1.205±0.066-1.205\pm 0.066 1.0001.000 1.0001.000 0.905±0.0100.905\pm 0.010 0.556±0.0140.556\pm 0.014
D+ρ0e+νeD^{+}\to\rho^{0}e^{+}\nu_{e} 0.249±0.005-0.249\pm 0.005 1.040±0.072-1.040\pm 0.072 1.0001.000 1.0001.000 0.907±0.0120.907\pm 0.012 0.554±0.0180.554\pm 0.018
D+ωe+νeD^{+}\to\omega e^{+}\nu_{e} 0.249±0.005-0.249\pm 0.005 1.049±0.073-1.049\pm 0.073 1.0001.000 1.0001.000 0.907±0.0120.907\pm 0.012 0.554±0.0180.554\pm 0.018
D+ϕe+νeD^{+}\to\phi e^{+}\nu_{e} 0.254±0.003-0.254\pm 0.003 1.417±0.061-1.417\pm 0.061 1.0001.000 1.0001.000 0.902±0.0080.902\pm 0.008 0.556±0.0110.556\pm 0.011
D0Ke+νeD^{0}\to K^{*-}e^{+}\nu_{e} 0.251±0.004-0.251\pm 0.004 1.206±0.067-1.206\pm 0.067 1.0001.000 1.0001.000 0.905±0.0100.905\pm 0.010 0.556±0.0140.556\pm 0.014
D0ρe+νeD^{0}\to\rho^{-}e^{+}\nu_{e} 0.249±0.005-0.249\pm 0.005 1.045±0.073-1.045\pm 0.073 1.0001.000 1.0001.000 0.907±0.0120.907\pm 0.012 0.554±0.0180.554\pm 0.018
Ds+ϕe+νeD^{+}_{s}\to\phi e^{+}\nu_{e} 0.251±0.004-0.251\pm 0.004 1.255±0.060-1.255\pm 0.060 1.0001.000 1.0001.000 0.904±0.0090.904\pm 0.009 0.555±0.0120.555\pm 0.012
Ds+ωe+νeD^{+}_{s}\to\omega e^{+}\nu_{e} 0.247±0.005-0.247\pm 0.005 0.953±0.071-0.953\pm 0.071 1.0001.000 1.0001.000 0.908±0.0130.908\pm 0.013 0.554±0.0200.554\pm 0.020
Ds+K0e+νeD^{+}_{s}\to K^{*0}e^{+}\nu_{e} 0.248±0.004-0.248\pm 0.004 1.075±0.066-1.075\pm 0.066 1.0001.000 1.0001.000 0.905±0.0110.905\pm 0.011 0.553±0.0160.553\pm 0.016
D+K¯0μ+νμD^{+}\to\overline{K}^{*0}\mu^{+}\nu_{\mu} 0.454±0.022-0.454\pm 0.022 0.156±0.012-0.156\pm 0.012 0.935±0.0050.935\pm 0.005 0.928±0.0020.928\pm 0.002 0.775±0.0190.775\pm 0.019 0.557±0.0140.557\pm 0.014
D+ρ0μ+νμD^{+}\to\rho^{0}\mu^{+}\nu_{\mu} 0.452±0.026-0.452\pm 0.026 0.139±0.014-0.139\pm 0.014 0.944±0.0060.944\pm 0.006 0.937±0.0020.937\pm 0.002 0.782±0.0230.782\pm 0.023 0.555±0.0180.555\pm 0.018
D+ωμ+νμD^{+}\to\omega\mu^{+}\nu_{\mu} 0.452±0.026-0.452\pm 0.026 0.140±0.014-0.140\pm 0.014 0.944±0.0060.944\pm 0.006 0.937±0.0020.937\pm 0.002 0.782±0.0230.782\pm 0.023 0.555±0.0180.555\pm 0.018
D+ϕμ+νμD^{+}\to\phi\mu^{+}\nu_{\mu} 0.455±0.018-0.455\pm 0.018 0.175±0.011-0.175\pm 0.011 0.924±0.0050.924\pm 0.005 0.915±0.0020.915\pm 0.002 0.763±0.0150.763\pm 0.015 0.557±0.0110.557\pm 0.011
D0Kμ+νμD^{0}\to K^{*-}\mu^{+}\nu_{\mu} 0.454±0.022-0.454\pm 0.022 0.156±0.012-0.156\pm 0.012 0.935±0.0050.935\pm 0.005 0.927±0.0020.927\pm 0.002 0.775±0.0190.775\pm 0.019 0.557±0.0140.557\pm 0.014
D0ρμ+νμD^{0}\to\rho^{-}\mu^{+}\nu_{\mu} 0.452±0.026-0.452\pm 0.026 0.140±0.014-0.140\pm 0.014 0.944±0.0060.944\pm 0.006 0.937±0.0020.937\pm 0.002 0.782±0.0230.782\pm 0.023 0.555±0.0180.555\pm 0.018
Ds+ϕμ+νμD^{+}_{s}\to\phi\mu^{+}\nu_{\mu} 0.454±0.019-0.454\pm 0.019 0.162±0.011-0.162\pm 0.011 0.934±0.0050.934\pm 0.005 0.925±0.0020.925\pm 0.002 0.771±0.0160.771\pm 0.016 0.557±0.0120.557\pm 0.012
Ds+ωμ+νμD^{+}_{s}\to\omega\mu^{+}\nu_{\mu} 0.452±0.027-0.452\pm 0.027 0.131±0.014-0.131\pm 0.014 0.950±0.0050.950\pm 0.005 0.943±0.0020.943\pm 0.002 0.788±0.0240.788\pm 0.024 0.555±0.0190.555\pm 0.019
Ds+K0μ+νμD^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu} 0.451±0.023-0.451\pm 0.023 0.143±0.012-0.143\pm 0.012 0.943±0.0050.943\pm 0.005 0.936±0.0020.936\pm 0.002 0.779±0.0210.779\pm 0.021 0.555±0.0160.555\pm 0.016

The differential observables of Ds+K0+νD^{+}_{s}\to K^{*0}\ell^{+}\nu_{\ell} decays in the C3C_{3} case are displayed in Fig. 4. One can see that, in the low q2q^{2} ranges, the differential observables expect dFL(Ds+K0+ν)/dq2dF_{L}(D^{+}_{s}\to K^{*0}\ell^{+}\nu_{\ell})/dq^{2} are obviously different between decays with =e\ell=e and =μ\ell=\mu.

III.3 DS+νD\to S\ell^{+}\nu_{\ell} decays

For DS+νD\to S\ell^{+}\nu_{\ell} decays, the two quark and the four quark scenarios for the scalar mesons below or near 1 GeVGeV are considered. The hadronic helicity amplitudes for the DS+νD\rightarrow S\ell^{+}\nu_{\ell} decays are given in Tab. 8, in which the CKM matrix element VcsV_{cs} and VcdV_{cd} information are kept for comparing conveniently. There are four (five) nonperturbative parameters E1,2,3,4E_{1,2,3,4} (E1,2,3,4,5E^{\prime}_{1,2,3,4,5}) in the two quark (four quark) picture. After ignoring the SU(3) flavor breaking contributions, only one nonperturbative parameter E1=E2=E3=E4=c0SE_{1}=E_{2}=E_{3}=E_{4}=c^{S}_{0} or E1=E2=E3=E4=E5=c0SE^{\prime}_{1}=E^{\prime}_{2}=E^{\prime}_{3}=E^{\prime}_{4}=E^{\prime}_{5}=c^{\prime S}_{0} relates all decay amplitudes in the two quark or the four quark picture, respectively.

Table 8: The hadronic helicity amplitudes for DS+νD\to S\ell^{+}\nu decays including both the SU(3) flavor symmetry and the SU(3) flavor breaking contributions. In the two quark picture of the scalar mesons, E1c0S+c1S2c2SE_{1}\equiv c^{S}_{0}+c^{S}_{1}-2c^{S}_{2}, E2c0S2c1S2c2SE_{2}\equiv c^{S}_{0}-2c^{S}_{1}-2c^{S}_{2}, E3c0S+c1S+c2SE_{3}\equiv c^{S}_{0}+c^{S}_{1}+c^{S}_{2}, E4c0S2c1S+c2SE_{4}\equiv c^{S}_{0}-2c^{S}_{1}+c^{S}_{2}. E1=E2=E3=E4=c0SE_{1}=E_{2}=E_{3}=E_{4}=c^{S}_{0} if neglecting the SU(3) flavor breaking c1Sc^{S}_{1} and c2Sc^{S}_{2} terms. In the four quark picture of the scalar mesons, E1c0S+c1S2c2S+c3SE^{\prime}_{1}\equiv c^{\prime S}_{0}+c^{\prime S}_{1}-2c^{\prime S}_{2}+c^{\prime S}_{3}, E2c0S2c1S2c2S+c3SE^{\prime}_{2}\equiv c^{\prime S}_{0}-2c^{\prime S}_{1}-2c^{\prime S}_{2}+c^{\prime S}_{3}, E3c0S+c1S+c2S2c3SE^{\prime}_{3}\equiv c^{\prime S}_{0}+c^{\prime S}_{1}+c^{\prime S}_{2}-2c^{\prime S}_{3}, E4c0S+c1S+c2S+c3SE^{\prime}_{4}\equiv c^{\prime S}_{0}+c^{\prime S}_{1}+c^{\prime S}_{2}+c^{\prime S}_{3}, E5c0S2c1S+c2S+c3SE^{\prime}_{5}\equiv c^{\prime S}_{0}-2c^{\prime S}_{1}+c^{\prime S}_{2}+c^{\prime S}_{3}, E1=E2=E3=E4=E5=c0SE^{\prime}_{1}=E^{\prime}_{2}=E^{\prime}_{3}=E^{\prime}_{4}=E^{\prime}_{5}=c^{\prime S}_{0} if neglecting the SU(3) flavor breaking c1Sc^{\prime S}_{1}, c2Sc^{\prime S}_{2} and c3Sc^{\prime S}_{3} terms.
Hadronic helicity amplitudes ones for two-quark scenario ones for four-quark scenario
H(D0K0+ν)H(D^{0}\to K^{-}_{0}\ell^{+}\nu_{\ell}) E1VcsE_{1}V^{*}_{cs} E1VcsE^{\prime}_{1}V^{*}_{cs}
H(D+K¯00+ν)H(D^{+}\to\overline{K}_{0}^{0}\ell^{+}\nu_{\ell}) E1VcsE_{1}V^{*}_{cs} E1VcsE^{\prime}_{1}V^{*}_{cs}
H(Ds+f0+ν)H(D^{+}_{s}\to f_{0}\ell^{+}\nu_{\ell}) E2VcsE_{2}V^{*}_{cs} 2E2Vcs\sqrt{2}E^{\prime}_{2}V^{*}_{cs}
H(Ds+f0(980)+ν)H(D^{+}_{s}\to f_{0}(980)\ell^{+}\nu_{\ell}) cosθSE2Vcscos\theta_{S}\leavevmode\nobreak\ E_{2}V^{*}_{cs} 2cosϕSE2Vcs\sqrt{2}cos\phi_{S}\leavevmode\nobreak\ E^{\prime}_{2}V^{*}_{cs}
H(Ds+f0(500)+ν)H(D^{+}_{s}\to f_{0}(500)\ell^{+}\nu_{\ell}) sinθSE2Vcs-sin\theta_{S}\leavevmode\nobreak\ E_{2}V^{*}_{cs} 2sinϕSE2Vcs-\sqrt{2}sin\phi_{S}\leavevmode\nobreak\ E^{\prime}_{2}V^{*}_{cs}
H(D0a0+ν)H(D^{0}\to a^{-}_{0}\ell^{+}\nu_{\ell}) E3VcdE_{3}V^{*}_{cd} E3VcdE^{\prime}_{3}V^{*}_{cd}
H(D+a00+ν)H(D^{+}\to a^{0}_{0}\ell^{+}\nu_{\ell}) 12E3Vcd-\frac{1}{\sqrt{2}}E_{3}V^{*}_{cd} 12E3Vcd-\frac{1}{\sqrt{2}}E^{\prime}_{3}V^{*}_{cd}
H(D+f0+ν)H(D^{+}\to f_{0}\ell^{+}\nu_{\ell}) 0 12E3Vcd\frac{1}{\sqrt{2}}E^{\prime}_{3}V^{*}_{cd}
H(D+σ+ν)H(D^{+}\to\sigma\ell^{+}\nu_{\ell}) 12E3Vcd\frac{1}{\sqrt{2}}E_{3}V^{*}_{cd} E4VcdE^{\prime}_{4}V^{*}_{cd}
H(D+f0(980)+ν)H(D^{+}\to f_{0}(980)\ell^{+}\nu_{\ell}) 12sinθSE3Vcd\frac{1}{\sqrt{2}}sin\theta_{S}\leavevmode\nobreak\ E_{3}V^{*}_{cd} (12E3cosϕS+E4sinϕS)Vcd(\frac{1}{\sqrt{2}}E^{\prime}_{3}cos\phi_{S}+E^{\prime}_{4}sin\phi_{S})V^{*}_{cd}
H(D+f0(500)+ν)H(D^{+}\to f_{0}(500)\ell^{+}\nu_{\ell}) 12cosθSE3Vcd\frac{1}{\sqrt{2}}cos\theta_{S}\leavevmode\nobreak\ E_{3}V^{*}_{cd} (12E3sinϕS+E4cosϕS)Vcd(-\frac{1}{\sqrt{2}}E^{\prime}_{3}sin\phi_{S}+E^{\prime}_{4}cos\phi_{S})V^{*}_{cd}
H(Ds+K00+ν)H(D^{+}_{s}\to K^{0}_{0}\ell^{+}\nu_{\ell}) E4VcdE_{4}V^{*}_{cd} E5VcdE^{\prime}_{5}V^{*}_{cd}

Unlike many measured decay modes in the DP+νD\rightarrow P\ell^{+}\nu_{\ell} and DV+νD\rightarrow V\ell^{+}\nu_{\ell} decays, among these DS+νD\rightarrow S\ell^{+}\nu_{\ell} decays, only Ds+f0(980)e+νeD^{+}_{s}\to f_{0}(980)e^{+}\nu_{e} decay has been measured, and its branching ratio with 2σ2\sigma errors is PDG2022

(Ds+f0(980)e+νe)=(2.3±0.8)×103.\displaystyle\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e})=(2.3\pm 0.8)\times 10^{-3}. (87)

In addition, the branching ratios of the DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} decays with the light scalar resonances can be obtained by using (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu_{\ell}) and (SP1P2)\mathcal{B}(S\to P_{1}P_{2}), and the detail analysis can been found in Ref. wang:2022ourwork . Five branching ratios and two upper limits of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},\leavevmode\nobreak\ S\to P_{1}P_{2}) have been measured, and the data within 2σ2\sigma errors are

(Ds+f0(980)e+νe,f0(980)π+π)=(1.30±0.63)×103Hietala:2015jqa ,\displaystyle\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to\pi^{+}\pi^{-})=(1.30\pm 0.63)\times 10^{-3}\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Hietala:2015jqa}{\@@citephrase{(}}{\@@citephrase{)}}}},
(Ds+f0(980)e+νe,f0(980)π0π0)=(7.9±2.9)×104BESIII:2021pdt ,\displaystyle\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to\pi^{0}\pi^{0})=(7.9\pm 2.9)\times 10^{-4}\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{BESIII:2021pdt}{\@@citephrase{(}}{\@@citephrase{)}}}},
(D0a0(980)e+νe,a0(980)ηπ)=(1.330.60+0.68)×104 PDG2022 ,\displaystyle\mathcal{B}(D^{0}\to a_{0}(980)^{-}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{-}\to\eta\pi^{-})=(1.33^{+0.68}_{-0.60})\times 10^{-4}\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{ \cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PDG2022}{\@@citephrase{(}}{\@@citephrase{)}}}},
(D+a0(980)0e+νe,a0(980)0ηπ0)=(1.71.4+1.6)×104 PDG2022 ,\displaystyle\mathcal{B}(D^{+}\to a_{0}(980)^{0}e^{+}\nu_{e},\leavevmode\nobreak\ a_{0}(980)^{0}\to\eta\pi^{0})=(1.7^{+1.6}_{-1.4})\times 10^{-4}\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{ \cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PDG2022}{\@@citephrase{(}}{\@@citephrase{)}}}},
(D+f0(500)e+νe,f0(500)π+π)=(6.3±1.0)×104 PDG2022 ,\displaystyle\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{+}\pi^{-})=(6.3\pm 1.0)\times 10^{-4}\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{ \cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{PDG2022}{\@@citephrase{(}}{\@@citephrase{)}}}},
(D+f0(980)e+νe,f0(980)π+π)<2.8×105 BESIII:2018qmf ,\displaystyle\mathcal{B}(D^{+}\to f_{0}(980)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(980)\to\pi^{+}\pi^{-})<2.8\times 10^{-5}\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{ \cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{BESIII:2018qmf}{\@@citephrase{(}}{\@@citephrase{)}}}},
(Ds+f0(500)e+νe,f0(500)π0π0)<6.4×104BESIII:2021pdt .\displaystyle\mathcal{B}(D^{+}_{s}\to f_{0}(500)e^{+}\nu_{e},\leavevmode\nobreak\ f_{0}(500)\to\pi^{0}\pi^{0})<6.4\times 10^{-4}\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{BESIII:2021pdt}{\@@citephrase{(}}{\@@citephrase{)}}}}. (88)

Two cases S1S_{1} and S2S_{2} will be considered in the DS+νD\rightarrow S\ell^{+}\nu_{\ell} decays. In S1S_{1} case, only experimental datum of (Ds+f0(980)e+νe)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e}) is used to constrain one parameter c0Sc^{S}_{0} or c0Sc^{\prime S}_{0} and then predict other not yet measured branching ratios. The numerical results of (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu) in S1S_{1} case are given in the 2-4th and 8th columns of Tab. 9. In the S2S_{2} case, the experimental data of both (Ds+f0(980)e+νe)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e}) in Eq. (87) and (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},\leavevmode\nobreak\ S\to P_{1}P_{2}) in Eq. (88) will be used to constrain the parameter c0Sc^{S}_{0} or c0Sc^{\prime S}_{0}. The predictions of (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu) in S2S_{2} case are listed in the 5-7th and 9th columns of Tab. 9. Our comments on the results in the S1,2S_{1,2} cases are as follows.

  • Results in the two quark picture: In the two quark picture, the three possible ranges of the mixing angle, 25<θS<4025^{\circ}<\theta_{S}<40^{\circ}, 140<θS<165140^{\circ}<\theta_{S}<165^{\circ} and 30<θS<30-30^{\circ}<\theta_{S}<30^{\circ} Cheng:2005nb ; LHCb:2013dkk have been analyzed. In S1S_{1} case, using the data of (Ds+f0(980)e+νe)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e}), many predictions of (DS+ν)\mathcal{B}(D\to S\ell^{+}\nu) are obtained. As given in the 2-4th columns of Tab. 9, one can see that the predictions with 25<θS<4025^{\circ}<\theta_{S}<40^{\circ} are similar to ones with 140<θS<165140^{\circ}<\theta_{S}<165^{\circ}, the predictions with 30<θS<30-30^{\circ}<\theta_{S}<30^{\circ} are slightly different from the first two, and the errors of predictions are quite large. After adding the experimental bounds of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},\leavevmode\nobreak\ S\to P_{1}P_{2}), as given in the 5-7th columns of Tab. 9, the three possible ranges of the mixing angle θS\theta_{S} are obviously constrained, and they reduce to 25<θS<3525^{\circ}<\theta_{S}<35^{\circ}, 144<θS<158144^{\circ}<\theta_{S}<158^{\circ} and 22|θS|3022^{\circ}\leq|\theta_{S}|\leq 30^{\circ}, respectively. In addition, the error of every prediction become smaller by adding the experimental bounds of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},\leavevmode\nobreak\ S\to P_{1}P_{2}).

  • Results in the four quark picture: The predictions in the four quark picture are listed in the 8-9th columns of Tab. 9. The majority of predictions in four quark picture are smaller than corresponding ones in two quark picture. Strong coupling constants g4g^{\prime}_{4} and g4g_{4} are appeared in SP1P2S\to P_{1}P_{2} decays with the four quark picture of light scalar mesons. At present, we only can determine |g4g4|\big{|}\frac{g^{\prime}_{4}}{g_{4}}\big{|} from the SP1P2S\to P_{1}P_{2} decays. The results of involved decays with both g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0 and g4g4<0\frac{g^{\prime}_{4}}{g_{4}}<0 are given in the 9th column of Tab. 9, and one can see that, except (Ds+f0(500)e+νe)\mathcal{B}(D^{+}_{s}\to f_{0}(500)e^{+}\nu_{e}) and (Ds+f0(980)μ+νμ)\mathcal{B}(D^{+}_{s}\to f_{0}(980)\mu^{+}\nu_{\mu}), the other involved branching ratios are not obviously affected by the choice of g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0 or g4g4<0\frac{g^{\prime}_{4}}{g_{4}}<0. The errors of the branching ratio predictions are obviously reduced by the experimental bounds of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},\leavevmode\nobreak\ S\to P_{1}P_{2}).

  • Comparing with previous predictions: Previous predictions are listed in the last column of Tab. 9. (Ds+f0(500)e+νe)\mathcal{B}(D^{+}_{s}\to f_{0}(500)e^{+}\nu_{e}), (Ds+f0(500)μ+νμ)\mathcal{B}(D^{+}_{s}\to f_{0}(500)\mu^{+}\nu_{\mu}) and (D+f0(500)μ+νμ)\mathcal{B}(D^{+}\to f_{0}(500)\mu^{+}\nu_{\mu}) are predicted for the first time. Our predictions of (Ds+f0(980)μ+νμ)\mathcal{B}(D^{+}_{s}\to f_{0}(980)\mu^{+}\nu_{\mu}), (D+a00e+νe)\mathcal{B}(D^{+}\to a^{0}_{0}e^{+}\nu_{e}), (D+f0(980)e+νe)\mathcal{B}(D^{+}\to f_{0}(980)e^{+}\nu_{e}), (D+f0(500)e+νe)\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e}) and (D+a00μ+νμ)\mathcal{B}(D^{+}\to a^{0}_{0}\mu^{+}\nu_{\mu}) are consistent with previous predictions in Refs. Soni:2020sgn ; Colangelo:2010bg ; Wang:2009azc . Our other predictions are about one order smaller or one order larger than previous ones in Refs. Momeni:2022gqb ; Cheng:2017fkw .

Table 9: Branching ratios of DS+νD\to S\ell^{+}\nu decays within 2σ2\sigma errors. As given in Ref. wang:2022ourwork , g4g^{\prime}_{4} and g4g_{4} are strong coupling constants obtained by the SU(3) flavor symmetry in SP1P2S\to P_{1}P_{2} decays, adenotes the results with g4g4>0\frac{g^{\prime}_{4}}{g_{4}}>0, and bdenotes ones with g4g4<0\frac{g^{\prime}_{4}}{g_{4}}<0, {\dagger}denotes the results with two quark picture, and {\ddagger}denotes the results with four quark picture.
Branching ratios ones for 2q2q state in S1S_{1} ones for 2q2q state in S2S_{2} ones for 4q4q ones for 4q4q Previous ones
[25,40][25^{\circ},40^{\circ}] [140,165][140^{\circ},165^{\circ}] [30,30][-30^{\circ},30^{\circ}] [25,35][25^{\circ},35^{\circ}] [144,158][144^{\circ},158^{\circ}] 22|θS|3022^{\circ}\leq|\theta_{S}|\leq 30^{\circ} state in S1S_{1} state in S2S_{2}
(D0K0e+νe)(×103)\mathcal{B}(D^{0}\to K^{-}_{0}e^{+}\nu_{e})(\times 10^{-3}) 3.38±2.123.38\pm 2.12 3.18±2.053.18\pm 2.05 2.57±1.582.57\pm 1.58 3.02±1.113.02\pm 1.11 3.00±1.103.00\pm 1.10 2.98±1.052.98\pm 1.05 1.11±0.631.11\pm 0.63 1.25±0.451.25\pm 0.45 0.103±0.1150.103\pm 0.115^{\dagger} Momeni:2022gqb
(D+K¯00e+νe)(×103)\mathcal{B}(D^{+}\to\overline{K}_{0}^{0}e^{+}\nu_{e})(\times 10^{-3}) 8.66±5.558.66\pm 5.55 7.99±5.027.99\pm 5.02 7.02±4.487.02\pm 4.48 7.74±2.887.74\pm 2.88 7.78±2.777.78\pm 2.77 7.68±2.787.68\pm 2.78 2.85±1.652.85\pm 1.65 3.36±1.253.36\pm 1.25 38.8±5.638.8\pm 5.6^{\dagger} Momeni:2022gqb
(Ds+f0(980)e+νe)(×103)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e})(\times 10^{-3}) 2.30±0.802.30\pm 0.80 2.30±0.802.30\pm 0.80 2.30±0.802.30\pm 0.80 2.58±0.522.58\pm 0.52 2.57±0.532.57\pm 0.53 2.71±0.392.71\pm 0.39 2.30±0.802.30\pm 0.80 2.54±0.56b2.49±0.61a{}^{2.49\pm 0.61^{a}}_{2.54\pm 0.56^{b}} 2.1±0.2Soni:2020sgn , 20.4+0.5Colangelo:2010bg 2.1\pm 0.2^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Soni:2020sgn}{\@@citephrase{(}}{\@@citephrase{)}}}},\leavevmode\nobreak\ 2^{+0.5{\dagger}}_{-0.4}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Colangelo:2010bg}{\@@citephrase{(}}{\@@citephrase{)}}}}
(Ds+f0(500)e+νe)(×103)\mathcal{B}(D^{+}_{s}\to f_{0}(500)e^{+}\nu_{e})(\times 10^{-3}) 6.73±6.116.73\pm 6.11 5.98±5.755.98\pm 5.75 3.25±3.253.25\pm 3.25 1.49±0.431.49\pm 0.43 1.45±0.461.45\pm 0.46 1.42±0.501.42\pm 0.50 0.37±0.370.37\pm 0.37 0.17±0.17b0.31±0.31a{}^{0.31\pm 0.31^{a}}_{0.17\pm 0.17^{b}}
(D0K0μ+νμ)(×103)\mathcal{B}(D^{0}\to K^{-}_{0}\mu^{+}\nu_{\mu})(\times 10^{-3}) 2.90±1.842.90\pm 1.84 2.73±1.772.73\pm 1.77 2.20±1.362.20\pm 1.36 2.59±0.972.59\pm 0.97 2.57±0.962.57\pm 0.96 2.56±0.922.56\pm 0.92 0.95±0.540.95\pm 0.54 1.09±0.391.09\pm 0.39 0.103±0.1150.103\pm 0.115^{\dagger} Momeni:2022gqb
(D+K¯00μ+νμ)(×103)\mathcal{B}(D^{+}\to\overline{K}_{0}^{0}\mu^{+}\nu_{\mu})(\times 10^{-3}) 7.46±4.817.46\pm 4.81 6.87±4.336.87\pm 4.33 6.04±3.886.04\pm 3.88 6.65±2.526.65\pm 2.52 6.69±2.436.69\pm 2.43 6.59±2.436.59\pm 2.43 2.45±1.432.45\pm 1.43 2.89±1.092.89\pm 1.09 38.8±5.638.8\pm 5.6^{\dagger} Momeni:2022gqb
(Ds+f0(980)μ+νμ)(×103)\mathcal{B}(D^{+}_{s}\to f_{0}(980)\mu^{+}\nu_{\mu})(\times 10^{-3}) 1.95±0.701.95\pm 0.70 1.95±0.701.95\pm 0.70 1.95±0.691.95\pm 0.69 2.20±0.452.20\pm 0.45 2.20±0.452.20\pm 0.45 2.32±0.332.32\pm 0.33 1.95±0.701.95\pm 0.70 2.16±0.49b2.12±0.54a{}^{2.12\pm 0.54^{a}}_{2.16\pm 0.49^{b}} 2.1±0.22.1\pm 0.2^{\dagger} Soni:2020sgn
(Ds+f0(500)μ+νμ)(×103)\mathcal{B}(D^{+}_{s}\to f_{0}(500)\mu^{+}\nu_{\mu})(\times 10^{-3}) 6.21±5.666.21\pm 5.66 5.53±5.325.53\pm 5.32 3.01±3.013.01\pm 3.01 1.33±0.391.33\pm 0.39 1.31±0.431.31\pm 0.43 1.28±0.461.28\pm 0.46 0.34±0.340.34\pm 0.34 0.16±0.16b0.29±0.29a{}^{0.29\pm 0.29^{a}}_{0.16\pm 0.16^{b}}
(D0a0e+νe)(×105)\mathcal{B}(D^{0}\to a^{-}_{0}e^{+}\nu_{e})(\times 10^{-5}) 9.99±6.549.99\pm 6.54 9.56±6.509.56\pm 6.50 8.34±5.678.34\pm 5.67 9.22±3.989.22\pm 3.98 9.09±3.659.09\pm 3.65 9.17±3.589.17\pm 3.58 3.42±2.063.42\pm 2.06 4.32±1.174.32\pm 1.17 24.4±3.0Momeni:2022gqb 16.8±1.5Soni:2020sgn , 40.812.2+13.7Cheng:2017fkw ,{}^{16.8\pm 1.5^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Soni:2020sgn}{\@@citephrase{(}}{\@@citephrase{)}}}},\leavevmode\nobreak\ 40.8^{+13.7{\dagger}}_{-12.2}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Cheng:2017fkw}{\@@citephrase{(}}{\@@citephrase{)}}}},}_{24.4\pm 3.0^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Momeni:2022gqb}{\@@citephrase{(}}{\@@citephrase{)}}}}}
(D+a00e+νe)(×105)\mathcal{B}(D^{+}\to a^{0}_{0}e^{+}\nu_{e})(\times 10^{-5}) 13.09±8.6213.09\pm 8.62 12.62±8.6712.62\pm 8.67 10.89±7.3510.89\pm 7.35 12.09±5.1912.09\pm 5.19 11.81±4.7111.81\pm 4.71 11.97±4.6611.97\pm 4.66 4.49±2.714.49\pm 2.71 5.68±1.525.68\pm 1.52 68Wang:2009azc , 55.4Wang:2009azc 21.8±3.8Soni:2020sgn , 54.015.9+17.8Cheng:2017fkw {}^{21.8\pm 3.8^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Soni:2020sgn}{\@@citephrase{(}}{\@@citephrase{)}}}},\leavevmode\nobreak\ 54.0^{+17.8{\dagger}}_{-15.9}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Cheng:2017fkw}{\@@citephrase{(}}{\@@citephrase{)}}}}}_{6\sim 8^{{\dagger}}\mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Wang:2009azc}{\@@citephrase{(}}{\@@citephrase{)}}}},\leavevmode\nobreak\ 5\sim 5.4^{{\ddagger}}\mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Wang:2009azc}{\@@citephrase{(}}{\@@citephrase{)}}}}}
(D+f0(980)e+νe)(×105)\mathcal{B}(D^{+}\to f_{0}(980)e^{+}\nu_{e})(\times 10^{-5}) 3.92±2.923.92\pm 2.92 3.48±3.133.48\pm 3.13 1.59±1.591.59\pm 1.59 2.62±0.822.62\pm 0.82 2.52±0.942.52\pm 0.94 2.40±0.802.40\pm 0.80 3.14±1.983.14\pm 1.98 3.89±1.35b3.35±1.80a{}^{3.35\pm 1.80^{a}}_{3.89\pm 1.35^{b}} 0.43.5Wang:2009azc , 1.96.3Wang:2009azc 7.78±0.68Soni:2020sgn , 5.7±1.3Ke:2009ed {}^{7.78\pm 0.68^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Soni:2020sgn}{\@@citephrase{(}}{\@@citephrase{)}}}},\leavevmode\nobreak\ 5.7\pm 1.3^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Ke:2009ed}{\@@citephrase{(}}{\@@citephrase{)}}}}}_{0.4\sim 3.5^{\dagger}\mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Wang:2009azc}{\@@citephrase{(}}{\@@citephrase{)}}}},\leavevmode\nobreak\ 1.9\sim 6.3^{\ddagger}\mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Wang:2009azc}{\@@citephrase{(}}{\@@citephrase{)}}}}}
(D+f0(500)e+νe)(×104)\mathcal{B}(D^{+}\to f_{0}(500)e^{+}\nu_{e})(\times 10^{-4}) 4.05±3.204.05\pm 3.20 4.08±3.104.08\pm 3.10 4.21±3.284.21\pm 3.28 2.16±0.962.16\pm 0.96 2.59±1.382.59\pm 1.38 2.70±1.282.70\pm 1.28 4.97±4.134.97\pm 4.13 4.95±3.36b4.97±3.34a{}^{4.97\pm 3.34^{a}}_{4.95\pm 3.36^{b}} 0.40.60.4\sim 0.6^{\dagger}Wang:2009azc , 0.881.4\leavevmode\nobreak\ 0.88\sim 1.4^{\ddagger}Wang:2009azc
(Ds+K00e+νe)(×104)\mathcal{B}(D^{+}_{s}\to K^{0}_{0}e^{+}\nu_{e})(\times 10^{-4}) 3.73±2.373.73\pm 2.37 3.41±2.133.41\pm 2.13 2.99±1.882.99\pm 1.88 3.35±1.213.35\pm 1.21 3.32±1.203.32\pm 1.20 3.35±1.153.35\pm 1.15 1.25±0.711.25\pm 0.71 1.43±0.511.43\pm 0.51 26.5±2.8Momeni:2022gqb 26.5\pm 2.8^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Momeni:2022gqb}{\@@citephrase{(}}{\@@citephrase{)}}}}
(D0a0μ+νμ)(×105)\mathcal{B}(D^{0}\to a^{-}_{0}\mu^{+}\nu_{\mu})(\times 10^{-5}) 8.25±5.458.25\pm 5.45 7.89±5.427.89\pm 5.42 6.91±4.756.91\pm 4.75 7.61±3.377.61\pm 3.37 7.51±3.107.51\pm 3.10 7.57±3.047.57\pm 3.04 2.83±1.722.83\pm 1.72 3.57±0.993.57\pm 0.99 16.3±1.416.3\pm 1.4^{\dagger} Soni:2020sgn 24.4±3.0Momeni:2022gqb 24.4\pm 3.0^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Momeni:2022gqb}{\@@citephrase{(}}{\@@citephrase{)}}}}
(D+a00μ+νμ)(×105)\mathcal{B}(D^{+}\to a^{0}_{0}\mu^{+}\nu_{\mu})(\times 10^{-5}) 10.83±7.1910.83\pm 7.19 10.44±7.2310.44\pm 7.23 9.04±6.169.04\pm 6.16 10.00±4.4110.00\pm 4.41 9.76±4.009.76\pm 4.00 9.89±3.979.89\pm 3.97 3.73±2.283.73\pm 2.28 4.69±1.304.69\pm 1.30 21.2±3.721.2\pm 3.7^{\dagger} Soni:2020sgn
(D+f0(980)μ+νμ)(×105)\mathcal{B}(D^{+}\to f_{0}(980)\mu^{+}\nu_{\mu})(\times 10^{-5}) 3.23±2.413.23\pm 2.41 2.88±2.602.88\pm 2.60 1.32±1.321.32\pm 1.32 2.15±0.702.15\pm 0.70 2.09±0.782.09\pm 0.78 1.99±0.661.99\pm 0.66 2.56±1.622.56\pm 1.62 3.20±1.14b2.74±1.49a{}^{2.74\pm 1.49^{a}}_{3.20\pm 1.14^{b}} 7.87±0.677.87\pm 0.67^{\dagger} Soni:2020sgn
(D+f0(500)μ+νμ)(×104)\mathcal{B}(D^{+}\to f_{0}(500)\mu^{+}\nu_{\mu})(\times 10^{-4}) 3.69±2.963.69\pm 2.96 3.71±2.863.71\pm 2.86 3.84±3.043.84\pm 3.04 1.92±0.881.92\pm 0.88 2.32±1.272.32\pm 1.27 2.42±1.192.42\pm 1.19 4.54±3.814.54\pm 3.81 4.49±3.12b4.52±3.10a{}^{4.52\pm 3.10^{a}}_{4.49\pm 3.12^{b}}
(Ds+K00μ+νμ)(×104)\mathcal{B}(D^{+}_{s}\to K^{0}_{0}\mu^{+}\nu_{\mu})(\times 10^{-4}) 3.28±2.103.28\pm 2.10 3.00±1.883.00\pm 1.88 2.62±1.662.62\pm 1.66 2.94±1.082.94\pm 1.08 2.91±1.062.91\pm 1.06 2.94±1.022.94\pm 1.02 1.10±0.631.10\pm 0.63 1.26±0.451.26\pm 0.45 26.5±2.8Momeni:2022gqb 26.5\pm 2.8^{\dagger}\leavevmode\nobreak\ \mbox{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Momeni:2022gqb}{\@@citephrase{(}}{\@@citephrase{)}}}}

IV Summary

Many semileptonic DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell} decays have been measured, and these processes could be used to test the SU(3) flavor symmetry approach. In terms of the SU(3) flavor symmetry and the SU(3) flavor breaking, the amplitude relations have been obtained. Then using the present data of (DP/V/S+ν)\mathcal{B}(D\to P/V/S\ell^{+}\nu_{\ell}), we have presented a theoretical analysis of the DP/V/S+νD\to P/V/S\ell^{+}\nu_{\ell} decays. Our main results can be summarized as follows.

  • DP+νD\to P\ell^{+}\nu_{\ell} decays: Our predictions with the SU(3) flavor symmetry in the C1C_{1} case and the predictions after adding SU(3) flavor breaking contributions in the C4C_{4} case are quite consistent with all present experimental data of (DP+ν)\mathcal{B}(D\to P\ell^{+}\nu_{\ell}) within 2σ2\sigma errors. In the C2C_{2} and C3C_{3} cases, our SU(3) flavor symmetry predictions are consistent with all present experimental data except (D+π0+ν)\mathcal{B}(D^{+}\to\pi^{0}\ell^{+}\nu_{\ell}) and (D0π+ν)\mathcal{B}(D^{0}\to\pi^{-}\ell^{+}\nu_{\ell}), which are slight larger than their experiential upper limits. The not yet measured (Ds+π0e+νe),(D+ημ+νμ),(Ds+K0μ+νμ),(Ds+π0μ+νμ),(Ds+π0τ+ντ)\mathcal{B}(D^{+}_{s}\to\pi^{0}e^{+}\nu_{e}),\leavevmode\nobreak\ \mathcal{B}(D^{+}\to\eta^{\prime}\mu^{+}\nu_{\mu}),\leavevmode\nobreak\ \mathcal{B}(D^{+}_{s}\to K^{0}\mu^{+}\nu_{\mu}),\leavevmode\nobreak\ \mathcal{B}(D^{+}_{s}\to\pi^{0}\mu^{+}\nu_{\mu}),\leavevmode\nobreak\ \mathcal{B}(D^{+}_{s}\to\pi^{0}\tau^{+}\nu_{\tau}) and the lepton flavor universality parameters have been obtained. Moreover, the forward-backward asymmetries, the lepton-side convexity parameters, the longitudinal (transverse) polarizations of the final charged leptons with two ways of integration for the DP+νD\to P\ell^{+}\nu_{\ell} decays have been predicted. The q2q^{2} dependence of corresponding differential quantities of the DP+νD\to P\ell^{+}\nu_{\ell} decays in the C3C_{3} case have been displayed.

  • DV+νD\to V\ell^{+}\nu_{\ell} decays: As given in the C1C_{1}, C2C_{2} and C3C_{3} cases, our SU(3) flavor symmetry predictions of (D+ωe+νe)\mathcal{B}(D^{+}\to\omega e^{+}\nu_{e}) and (D0ρμ+νμ)\mathcal{B}(D^{0}\to\rho^{-}\mu^{+}\nu_{\mu}) are slightly larger than its experimental upper limits, and other SU(3) flavor symmetry predictions are consistent with present data. After considering the SU(3) flavor breaking effects, as given in the C4C_{4} case, all predictions are consistent with present data. The not yet measured or not yet well measured branching ratios of D+ϕe+νe,Ds+ωe+νe,D+ϕμ+νμ,Ds+ωμ+νμ,D^{+}\to\phi e^{+}\nu_{e},\leavevmode\nobreak\ D^{+}_{s}\to\omega e^{+}\nu_{e},\leavevmode\nobreak\ D^{+}\to\phi\mu^{+}\nu_{\mu},\leavevmode\nobreak\ D^{+}_{s}\to\omega\mu^{+}\nu_{\mu}, and Ds+K0μ+νμD^{+}_{s}\to K^{*0}\mu^{+}\nu_{\mu} have been predicted. The q2q^{2} dependence of corresponding differential quantities of the DV+νD\to V\ell^{+}\nu_{\ell} decays in the C3C_{3} case have also been displayed.

  • DS+νD\to S\ell^{+}\nu_{\ell} decays: Among 18 DS+νD\to S\ell^{+}\nu_{\ell} decay modes, only (Ds+f0(980)e+νe)\mathcal{B}(D^{+}_{s}\to f_{0}(980)e^{+}\nu_{e}) has been measured, and this experimental datum has been used to constrain the SU(3) flavor symmetry parameter and then predict other not yet measured branching ratios. Furthermore, the relevant experimental bounds of (DS+ν,SP1P2)\mathcal{B}(D\to S\ell^{+}\nu_{\ell},\leavevmode\nobreak\ S\to P_{1}P_{2}) have also been added. The two quark and the four quark scenarios for the light scalar mesons are considered, and the three possible ranges of the mixing angle θS\theta_{S} in the two quark picture have been analyzed.

The SU(3) flavor symmetry is approximate approach, and it can still provide very useful information. We have found that the SU(3) flavor symmetry approach works well in the semileptonic DP/V+νD\to P/V\ell^{+}\nu_{\ell} decays, and the SU(3) flavor symmetry predictions of the DS+νD\to S\ell^{+}\nu_{\ell} decays need to be further tested, and our predictions of the DS+νD\to S\ell^{+}\nu_{\ell} decays are useful for probing the structure of light scalar mesons. According to our predictions, some decay modes could be observed at BESIII, LHCb or BelleII in near future experiments.

ACKNOWLEDGEMENTS

The work was supported by the National Natural Science Foundation of China (12175088).

References

References

  • (1) R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  • (2) D. Melikhov and B. Stech, Phys. Rev. D 62 (2000), 014006 [arXiv:hep-ph/0001113 [hep-ph]].
  • (3) H. Y. Cheng and X. W. Kang, Eur. Phys. J. C 77 (2017) no.9, 587 [erratum: Eur. Phys. J. C 77 (2017) no.12, 863] [arXiv:1707.02851 [hep-ph]].
  • (4) N. R. Soni, M. A. Ivanov, J. G. Körner, J. N. Pandya, P. Santorelli and C. T. Tran, Phys. Rev. D 98 (2018) no.11, 114031 [arXiv:1810.11907 [hep-ph]].
  • (5) Q. Chang, X. N. Li, X. Q. Li, F. Su and Y. D. Yang, Phys. Rev. D 98 (2018) no.11, 114018 [arXiv:1810.00296 [hep-ph]].
  • (6) Q. Chang, X. L. Wang and L. T. Wang, Chin. Phys. C 44 (2020) no.8, 083105 [arXiv:2003.10833 [hep-ph]].
  • (7) R. N. Faustov, V. O. Galkin and X. W. Kang, Phys. Rev. D 101 (2020) no.1, 013004 [arXiv:1911.08209 [hep-ph]].
  • (8) P. Ball, Phys. Rev. D 48 (1993), 3190-3203 [arXiv:hep-ph/9305267 [hep-ph]].
  • (9) S. Bhattacharyya, M. Haiduc, A. Tania Neagu and E. Firu, Eur. Phys. J. Plus 134 (2019) no.1, 37 [arXiv:1709.00882 [nucl-ex]].
  • (10) H. B. Fu, L. Zeng, R. Lü, W. Cheng and X. G. Wu, Eur. Phys. J. C 80 (2020) no.3, 194 [arXiv:1808.06412 [hep-ph]].
  • (11) H. B. Fu, W. Cheng, L. Zeng, D. D. Hu and T. Zhong, Phys. Rev. Res. 2 (2020) no.4, 043129 [arXiv:2003.07626 [hep-ph]].
  • (12) I. L. Grach, I. M. Narodetsky and S. Simula, Phys. Lett. B 385 (1996), 317-323 [arXiv:hep-ph/9605349 [hep-ph]].
  • (13) H. Y. Cheng, C. K. Chua and C. W. Hwang, Phys. Rev. D 69 (2004), 074025 [arXiv:hep-ph/0310359 [hep-ph]].
  • (14) Q. Chang, X. N. Li and L. T. Wang, Eur. Phys. J. C 79 (2019) no.5, 422 [arXiv:1905.05098 [hep-ph]].
  • (15) V. Lubicz et al. [ETM], Phys. Rev. D 98 (2018) no.1, 014516 [arXiv:1803.04807 [hep-lat]].
  • (16) V. Lubicz et al. [ETM], Phys. Rev. D 96 (2017) no.5, 054514 [erratum: Phys. Rev. D 99 (2019) no.9, 099902; erratum: Phys. Rev. D 100 (2019) no.7, 079901] [arXiv:1706.03017 [hep-lat]].
  • (17) X. G. He, Eur. Phys. J. C 9, 443 (1999) [hep-ph/9810397].
  • (18) X. G. He, Y. K. Hsiao, J. Q. Shi, Y. L. Wu and Y. F. Zhou, Phys. Rev. D 64, 034002 (2001) [hep-ph/0011337].
  • (19) H. K. Fu, X. G. He and Y. K. Hsiao, Phys. Rev. D 69, 074002 (2004) [hep-ph/0304242].
  • (20) Y. K. Hsiao, C. F. Chang and X. G. He, Phys. Rev. D 93, no. 11, 114002 (2016) [arXiv:1512.09223 [hep-ph]].
  • (21) X. G. He and G. N. Li, Phys. Lett. B 750, 82 (2015) [arXiv:1501.00646 [hep-ph]].
  • (22) M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994) [hep-ph/9404283].
  • (23) M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 52, 6356 (1995) [hep-ph/9504326].
  • (24) S. H. Zhou, Q. A. Zhang, W. R. Lyu and C. D. Lü, Eur. Phys. J. C 77, no. 2, 125 (2017) [arXiv:1608.02819 [hep-ph]].
  • (25) H. Y. Cheng, C. W. Chiang and A. L. Kuo, Phys. Rev. D 91, no. 1, 014011 (2015) [arXiv:1409.5026 [hep-ph]].
  • (26) M. He, X. G. He and G. N. Li, Phys. Rev. D 92, no. 3, 036010 (2015) [arXiv:1507.07990 [hep-ph]].
  • (27) N. G. Deshpande and X. G. He, Phys. Rev. Lett.  75, 1703 (1995) [hep-ph/9412393].
  • (28) S. Shivashankara, W. Wu and A. Datta, Phys. Rev. D 91, 115003 (2015) [arXiv:1502.07230 [hep-ph]].
  • (29) R. M. Wang, Y. G. Xu, C. Hua and X. D. Cheng, Phys. Rev. D 103 (2021) no.1, 013007 [arXiv:2101.02421 [hep-ph]].
  • (30) R. M. Wang, X. D. Cheng, Y. Y. Fan, J. L. Zhang and Y. G. Xu, J. Phys. G 48 (2021) no.8, 085001 [arXiv:2008.06624 [hep-ph]].
  • (31) Y. Grossman and D. J. Robinson, JHEP 1304, 067 (2013) [arXiv:1211.3361 [hep-ph]].
  • (32) D. Pirtskhalava and P. Uttayarat, Phys. Lett. B 712, 81 (2012) [arXiv:1112.5451 [hep-ph]].
  • (33) H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86, 014014 (2012) [arXiv:1205.0580 [hep-ph]].
  • (34) M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527 (1990).
  • (35) M. J. Savage, Phys. Lett. B 257, 414 (1991).
  • (36) G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett.  57B, 277 (1975).
  • (37) C. D. Lü, W. Wang and F. S. Yu, Phys. Rev. D 93, no. 5, 056008 (2016) [arXiv:1601.04241 [hep-ph]].
  • (38) C. Q. Geng, Y. K. Hsiao, Y. H. Lin and L. L. Liu, Phys. Lett. B 776, 265 (2018) [arXiv:1708.02460 [hep-ph]].
  • (39) C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, Phys. Rev. D 97, no. 7, 073006 (2018) [arXiv:1801.03276 [hep-ph]].
  • (40) C. Q. Geng, Y. K. Hsiao, C. W. Liu and T. H. Tsai, JHEP 1711, 147 (2017) [arXiv:1709.00808 [hep-ph]].
  • (41) C. Q. Geng, C. W. Liu, T. H. Tsai and S. W. Yeh, arXiv:1901.05610 [hep-ph].
  • (42) W. Wang, Z. P. Xing and J. Xu, Eur. Phys. J. C 77, no. 11, 800 (2017) [arXiv:1707.06570 [hep-ph]].
  • (43) D. Wang, arXiv:1901.01776 [hep-ph].
  • (44) D. Wang, P. F. Guo, W. H. Long and F. S. Yu, JHEP 1803, 066 (2018) [arXiv:1709.09873 [hep-ph]].
  • (45) S. Müller, U. Nierste and S. Schacht, Phys. Rev. D 92, no. 1, 014004 (2015) [arXiv:1503.06759 [hep-ph]].
  • (46) J. Barranco, D. Delepine, V. Gonzalez Macias and L. Lopez-Lozano, arXiv:1404.0454 [hep-ph].
  • (47) J. Barranco, D. Delepine, V. Gonzalez Macias and L. Lopez-Lozano, Phys. Lett. B 731, 36 (2014) [arXiv:1303.3896 [hep-ph]].
  • (48) A. G. Akeroyd and F. Mahmoudi, JHEP 0904, 121 (2009) [arXiv:0902.2393 [hep-ph]].
  • (49) B. A. Dobrescu and A. S. Kronfeld, Phys. Rev. Lett.  100, 241802 (2008) [arXiv:0803.0512 [hep-ph]].
  • (50) A. G. Akeroyd and C. H. Chen, Phys. Rev. D 75, 075004 (2007) [hep-ph/0701078].
  • (51) S. Fajfer and J. F. Kamenik, Phys. Rev. D 73, 057503 (2006) [hep-ph/0601028].
  • (52) S. Fajfer and J. F. Kamenik, Phys. Rev. D 72, 034029 (2005) [hep-ph/0506051].
  • (53) S. Fajfer and J. F. Kamenik, Phys. Rev. D 71, 014020 (2005) [hep-ph/0412140].
  • (54) A. G. Akeroyd, Prog. Theor. Phys.  111, 295 (2004) [hep-ph/0308260].
  • (55) A. G. Akeroyd and S. Recksiegel, Phys. Lett. B 554, 38 (2003) [hep-ph/0210376].
  • (56) M. A. Ivanov, J. G. Körner, J. N. Pandya, P. Santorelli, N. R. Soni and C. T. Tran, Front. Phys. (Beijing) 14 (2019) no.6, 64401 [arXiv:1904.07740 [hep-ph]].
  • (57) X. G. He, Y. J. Shi and W. Wang, Eur. Phys. J. C 80, no.5, 359 (2020) [arXiv:1811.03480 [hep-ph]].
  • (58) H. Y. Cheng, C. K. Chua and K. C. Yang, Phys. Rev. D 73 (2006), 014017 [arXiv:hep-ph/0508104 [hep-ph]].
  • (59) L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93 (2004), 212002 [arXiv:hep-ph/0407017 [hep-ph]].
  • (60) L. Y. Dai, X. W. Kang and U. G. Meißner, Phys. Rev. D 98 (2018) no.7, 074033 [arXiv:1808.05057 [hep-ph]].
  • (61) G. ’t Hooft, G. Isidori, L. Maiani, A. D. Polosa and V. Riquer, Phys. Lett. B 662 (2008), 424-430 [arXiv:0801.2288 [hep-ph]].
  • (62) J. R. Pelaez, Phys. Rev. Lett. 92 (2004), 102001 [arXiv:hep-ph/0309292 [hep-ph]].
  • (63) Y. J. Sun, Z. H. Li and T. Huang, Phys. Rev. D 83 (2011), 025024 [arXiv:1011.3901 [hep-ph]].
  • (64) J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997), 438-456 [erratum: Nucl. Phys. A 652 (1999), 407-409] [arXiv:hep-ph/9702314 [hep-ph]].
  • (65) V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova and A. E. Kudryavtsev, Phys. Lett. B 586 (2004), 53-61 [arXiv:hep-ph/0308129 [hep-ph]].
  • (66) N. N. Achasov, V. V. Gubin and V. I. Shevchenko, Phys. Rev. D 56 (1997), 203-211 [arXiv:hep-ph/9605245 [hep-ph]].
  • (67) S. Momeni and M. Saghebfar, Eur. Phys. J. C 82 (2022) no.5, 473
  • (68) R. Aaij et al. [LHCb], Phys. Rev. D 87 (2013) no.5, 052001 [arXiv:1301.5347 [hep-ex]].
  • (69) R. L. Jaffe, Phys. Rev. D 15 (1977), 267
  • (70) D. Xu, G. N. Li and X. G. He, Int. J. Mod. Phys. A 29 (2014), 1450011 [arXiv:1307.7186 [hep-ph]].
  • (71) M. Tanaka and R. Watanabe, Phys. Rev. D 82, 034027 (2010) [arXiv:1005.4306 [hep-ph]].
  • (72) M. Tanaka, Z. Phys. C 67, 321 (1995) [hep-ph/9411405].
  • (73) S. Fajfer, J. F. Kamenik and I. Nisandzic, Phys. Rev. D 85, 094025 (2012) [arXiv:1203.2654 [hep-ph]].
  • (74) A. Celis, M. Jung, X. Q. Li and A. Pich, JHEP 1301, 054 (2013) [arXiv:1210.8443 [hep-ph]].
  • (75) C. Bobeth, G. Hiller and D. van Dyk, JHEP 1007, 098 (2010) [arXiv:1006.5013 [hep-ph]].
  • (76) H. B. Li and M. Z. Yang, Phys. Lett. B 811 (2020), 135879 [arXiv:2006.15798 [hep-ph]].
  • (77) N. N. Achasov and A. V. Kiselev, Phys. Rev. D 86 (2012), 114010 [arXiv:1206.5500 [hep-ph]].
  • (78) N. R. Soni, A. N. Gadaria, J. J. Patel and J. N. Pandya, Phys. Rev. D 102 (2020) no.1, 016013 [arXiv:2001.10195 [hep-ph]].
  • (79) X. Leng, X. L. Mu, Z. T. Zou and Y. Li, Chin. Phys. C 45 (2021) no.6, 063107 [arXiv:2011.01061 [hep-ph]].
  • (80) Ru-Min Wang, Yi-Jie Zhang, Yi Qiao, Xiao-Dong Cheng and Yuan-Guo Xu, Four-body Semileptonic Charm Decays DP1P2+νD\to P_{1}P_{2}\ell^{+}\nu_{\ell} with the SU(3) Flavor Symmetry, in preparation.
  • (81) J. Hietala, D. Cronin-Hennessy, T. Pedlar and I. Shipsey, Phys. Rev. D 92 (2015) no.1, 012009 [arXiv:1505.04205 [hep-ex]].
  • (82) M. Ablikim et al. [BESIII], [arXiv:2110.13994 [hep-ex]].
  • (83) M. Ablikim et al. [BESIII], Phys. Rev. Lett. 122 (2019) no.6, 062001 [arXiv:1809.06496 [hep-ex]].
  • (84) P. Colangelo, F. De Fazio and W. Wang, Phys. Rev. D 81 (2010), 074001 [arXiv:1002.2880 [hep-ph]].
  • (85) W. Wang and C. D. Lü, Phys. Rev. D 82 (2010), 034016 [arXiv:0910.0613 [hep-ph]].
  • (86) X. D. Cheng, H. B. Li, B. Wei, Y. G. Xu and M. Z. Yang, Phys. Rev. D 96 (2017) no.3, 033002 [arXiv:1706.01019 [hep-ph]].
  • (87) H. W. Ke, X. Q. Li and Z. T. Wei, Phys. Rev. D 80 (2009), 074030 [arXiv:0907.5465 [hep-ph]].