This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Serrin–type regularity criteria for the 3D MHD equations via one velocity component and one magnetic component

Hui Chen School of Science, Zhejiang University of Science and Technology, Hangzhou, 310023, People’s Republic of China chenhui@zust.edu.cn Chenyin Qian Department of Mathematics, Zhejiang Normal University Jinhua, 321004, China qcyjcsx@163.com  and  Ting Zhang* School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People’s Republic of China zhangting79@zju.edu.cn
Abstract.

In this paper, we consider the Cauchy problem to the 3D MHD equations. We show that the Serrin–type conditions imposed on one component of the velocity u3u_{3} and one component of magnetic fields b3b_{3} with

u3Lp0,1(1,0;Lq0(B(2))),b3Lp1,1(1,0;Lq1(B(2))),u_{3}\in L^{p_{0},1}(-1,0;L^{q_{0}}(B(2))),\ b_{3}\in L^{p_{1},1}(-1,0;L^{q_{1}}(B(2))),

2p0+3q0=2p1+3q1=1\frac{2}{p_{0}}+\frac{3}{q_{0}}=\frac{2}{p_{1}}+\frac{3}{q_{1}}=1 and 3<q0,q1<+3<q_{0},q_{1}<+\infty imply that the suitable weak solution is regular at (0,0)(0,0). The proof is based on the new local energy estimates introduced by Chae-Wolf (Arch. Ration. Mech. Anal. 2021) and Wang-Wu-Zhang (arXiv:2005.11906).

Corresponding author.

Key words: MHD equations; Serrin–type conditions; suitable weak solution; partial regularity; local energy estimates

AMS Subject Classification (2000): 35Q35; 35Q30; 76D03

1. Introduction

We consider the Cauchy problem to the three-dimensional incompressible magnetohydrodynamics (MHD) equations in 3×(0,)\mathbb{R}^{3}\times(0,\infty)

(1.1) {t𝒖+(𝒖)𝒖μΔ𝒖+π=𝒃𝒃,t𝒃+(𝒖)𝒃νΔ𝒃=𝒃𝒖,𝒖=𝒃=0,\left\{\begin{array}[]{ll}\vspace{4pt}&\partial_{t}\bm{u}+(\bm{u}\cdot\nabla)\bm{u}-\mu\Delta\bm{u}+\nabla\pi=\bm{b}\cdot\nabla\bm{b},\\ \vspace{4pt}&\partial_{t}\bm{b}+(\bm{u}\cdot\nabla)\bm{b}-\nu\Delta\bm{b}=\bm{b}\cdot\nabla\bm{u},\\ &\nabla\cdot\bm{u}=\nabla\cdot\bm{b}=0~{},\end{array}\right.

with initial data

(1.2) 𝒖|t=0=𝒖0,𝒃|t=0=𝒃0.\displaystyle\bm{u}|_{t=0}=\bm{u}_{0},~{}\bm{b}|_{t=0}=\bm{b}_{0}.

Here 𝒖=(u1,u2,u3),𝒃=(b1,b2,b3)\bm{u}=(u_{1},u_{2},u_{3}),\ \bm{b}=(b_{1},b_{2},b_{3}) and π\pi are nondimensional quantities corresponding to the velocity, magnetic fields and a scalar pressure. μ>0\mu>0 is the viscosity coefficient and ν>0\nu>0 is the resistivity coefficient. We require μ=ν=1\mu=\nu=1 in this paper.

Such system (1.1)–(1.2) describes many phenomena such as the geomagnetic dynamo in geophysics, solar winds and solar flares in astrophysics. G. Duvaut and J. L. Lions [8] constructed a global weak solution and the local strong solution to the initial boundary value problem, and the properties of such solutions have been examined by M. Sermange and R. Temam in [20].

If the magnetic fields 𝒃=0\bm{b}=0, the system (1.1) degenerates to the incompressible Navier–Stokes equations. A global weak solution to the Navier–Stokes equations was constructed by J. Leray [16]. However, the uniqueness and regularity of such weak solution is still one of the most challenging open problems in the field of mathematical fluid mechanics. One essential work is usually referred as Serrin–type conditions (see [9, 18, 21, 22] and the references therein.), i.e. if the weak solution 𝒖\bm{u} satisfies

(1.3) 𝒖Lp(0,T;Lq(3)),2p+3q=1, 3q,\bm{u}\in L^{p}(0,T;L^{q}(\mathbb{R}^{3})),\ \ \frac{2}{p}+\frac{3}{q}=1,\ 3\leqslant q\leqslant\infty,

then the weak solution is regular in (0,T](0,T]. There are several notable results [3, 4, 5, 6, 11, 24] to weaken the above criteria by imposing constraints only on partial components or directional derivatives of velocity field. In particular, D. Chae and J. Wolf [3] made an important progress and obtained the regularity of solution under the condition

(1.4) u3Lp(0,T;Lq(3)),2p+3q<1,3<q.\displaystyle u_{3}\in L^{p}\left(0,T;L^{q}\left(\mathbb{R}^{3}\right)\right),\quad\frac{2}{p}+\frac{3}{q}<1,\quad 3<q\leqslant\infty.

W. Wang, D. Wu and Z. Zhang [24] improved to

(1.5) u3Lp,1(0,T;Lq(3)),2p+3q=1,3<q<.\displaystyle u_{3}\in L^{p,1}\left(0,T;L^{q}\left(\mathbb{R}^{3}\right)\right),\quad\frac{2}{p}+\frac{3}{q}=1,\quad 3<q<\infty.

Throughout this paper, Lp,1L^{p,1} denotes the Lorentz space with respect to the time variable.

If the magnetic fields 𝒃0\bm{b}\neq 0, the situation is more complicated due to the coupling effect between the velocity 𝒖\bm{u} and the magnetic fields 𝒃\bm{b}. Some fundamental Serrin–type regularity criteria in term of the velocity only were done in [7, 13, 26, 28]. For instance, if the weak solution (𝒖,𝒃)\left(\bm{u},\bm{b}\right) satisfies

(1.6) 𝒖Lp(0,T;Lq(3)),2p+3q=1, 3<q,\bm{u}\in L^{p}(0,T;L^{q}(\mathbb{R}^{3})),\ \ \frac{2}{p}+\frac{3}{q}=1,\ 3<q\leqslant\infty,

then the solution is regular in (0,T](0,T]. More regularity criteria can be found in [12, 27] and the references therein.

We now recall the notion of suitable weak solution to the MHD equations (1.1).

Definition 1.1.

We say that (𝒖,𝒃,π)(\bm{u},\bm{b},\pi) is a suitable weak solution to the MHD equations (1.1) in an open domain ΩT=Ω×(T,0)\Omega_{T}=\Omega\times(-T,0), if

  1. (1)(1)

    𝒖,𝒃L(T,0;L2(Ω))L2(T,0;H1(Ω))\bm{u},\bm{b}\in L^{\infty}\left(-T,0;L^{2}(\Omega)\right)\cap L^{2}\left(-T,0;H^{1}(\Omega)\right) and πL32(ΩT)\pi\in L^{\frac{3}{2}}\left(\Omega_{T}\right);

  2. (2)(2)

    (1.1) is satisfied in the sense of distribution;

  3. (3)(3)

    the local energy inequality holds: for any nonnegative test function
    φCc(ΩT)\varphi\in C_{c}^{\infty}\left(\Omega_{T}\right) and t(T,0)t\in(-T,0),

    Ω(|𝒖|2+|𝒃|2)φdx+2TtΩ(|𝒖|2+|𝒃|2)φdxds\displaystyle\int_{\Omega}\left(|\bm{u}|^{2}+|\bm{b}|^{2}\right)\varphi\,{\rm d}x+2\int_{-T}^{t}\int_{\Omega}\left(|\nabla\bm{u}|^{2}+|\nabla\bm{b}|^{2}\right)\varphi\,{\rm d}x\,{\rm d}s
    \displaystyle\leqslant TtΩ(|𝒖|2+|𝒃|2)(sφ+Δφ)+𝒖φ(|𝒖|2+|𝒃|2+2π)dxds\displaystyle\int_{-T}^{t}\int_{\Omega}\left(|\bm{u}|^{2}+|\bm{b}|^{2}\right)\cdot\left(\partial_{s}\varphi+\Delta\varphi\right)+\bm{u}\cdot\nabla\varphi\left(|\bm{u}|^{2}+|\bm{b}|^{2}+2\pi\right)\,{\rm d}x\,{\rm d}s
    (1.7) 2TtΩ(𝒖𝒃)𝒃φdxds.\displaystyle-2\int_{-T}^{t}\int_{\Omega}\left(\bm{u}\cdot\bm{b}\right)\bm{b}\cdot\nabla\varphi\,{\rm d}x\,{\rm d}s.

The global existence of suitable weak solution to the MHD equations (1.1) was investigated by C. He and Z. Xin [14]. They also obtained that one-dimensional Hausdorff measure of the possible space-time singular points set for the suitable weak solution is zero.

In this paper, inspired by [3, 24], we focus on the regularity criteria to the MHD equation (1.1) involving the terms u3u_{3} and b3b_{3} only.

Theorem 1.2.

Let (𝐮,𝐛,π)(\bm{u},\bm{b},\pi) be a suitable weak solution of the MHD equations (1.1) in 3×(1,0).\mathbb{R}^{3}\times(-1,0). If 𝐮,𝐛\bm{u},\bm{b} satisfies

(1.8) u3Lp0,1(1,0;Lq0(B(2)))u_{3}\in L^{p_{0},1}\left(-1,0;L^{q_{0}}(B(2))\right)

and

(1.9) b3Lp1,1(1,0;Lq1(B(2)))b_{3}\in L^{p_{1},1}\left(-1,0;L^{q_{1}}(B(2))\right)

with 2p0+3q0=2p1+3q1=1,3<q0,q1<+\frac{2}{p_{0}}+\frac{3}{q_{0}}=\frac{2}{p_{1}}+\frac{3}{q_{1}}=1,~{}3<q_{0},q_{1}<+\infty, then the solution (𝐮,𝐛)(\bm{u},\bm{b}) is regular at (0,0)(0,0). Here B(r)B(r) is the ball in 3\mathbb{R}^{3} with center at origin and radius rr.

Remark 1.3.

It should be pointed out that the condition μ=ν\mu=\nu in the MHD equations (1.1) is essential in our estimates. Actually, we adopt the Elsässer variables 𝒁+=𝒖+𝒃\bm{Z}^{+}=\bm{u}+\bm{b} and 𝒁=𝒖𝒃\bm{Z}^{-}=\bm{u}-\bm{b} to obtain the crucial lemma 4.1 that if u3=b3=0u_{3}=b_{3}=0, the solution is regular at (0,0)(0,0). However, it is not trivial in the case μν\mu\neq\nu. We will discuss it in our future work.

Remark 1.4.

If we replace (1.8) with the subcritical regularity criteria

(1.10) u3Lp0(1,0;Lq0(B(2))),2p0+3q0<1, 3<q0+,u_{3}\in L^{p_{0}}\left(-1,0;L^{q_{0}}(B(2))\right),\ \frac{2}{p_{0}}+\frac{3}{q_{0}}<1,\ 3<q_{0}\leqslant+\infty,

Theorem 1.2 still holds. Actually, we can pick 2<p2<p02<{p}_{2}<p_{0} and 3<q2<q03<q_{2}<q_{0} with 2p2+3q2=1\frac{2}{p_{2}}+\frac{3}{q_{2}}=1. Therefore, we can prove it directly by the embedding inequality

u3Lp2,1(1,0;Lq2(B(2)))Cu3Lp0(1,0;Lq0(B(2))).\left\|u_{3}\right\|_{L^{p_{2},1}\left(-1,0;L^{q_{2}}(B(2))\right)}\leqslant C\left\|u_{3}\right\|_{L^{p_{0}}\left(-1,0;L^{q_{0}}(B(2))\right)}.

Analogously, we can replace (1.9) with the regularity criteria

(1.11) b3Lp1(1,0;Lq1(B(2))),2p1+3q1<1, 3<q1+.b_{3}\in L^{p_{1}}\left(-1,0;L^{q_{1}}(B(2))\right),\ \frac{2}{p_{1}}+\frac{3}{q_{1}}<1,\ 3<q_{1}\leqslant+\infty.
Remark 1.5.

By the standard interpolation theory, it is possible to extend the regularity criteria in Theorem 1.2 to weaker one, such as

(1.12) u3Lp0,1(1,0;Lq0,(B(2))),b3Lp1,1(1,0;Lq1,(B(2))),u_{3}\in L^{p_{0},1}\left(-1,0;L^{q_{0},\infty}(B(2))\right),\ b_{3}\in L^{p_{1},1}\left(-1,0;L^{q_{1},\infty}(B(2))\right),

with 2p0+3q0=2p1+3q1=1,3<q0,q1<+\frac{2}{p_{0}}+\frac{3}{q_{0}}=\frac{2}{p_{1}}+\frac{3}{q_{1}}=1,~{}3<q_{0},q_{1}<+\infty. We leave the details to the interested readers.

Thanks to Theorem 1.2 and Remark 1.4, we obtain the following theorem.

Theorem 1.6.

Assume that 𝐮0,𝐛0H1(3)\bm{u}_{0},\ \bm{b}_{0}\in H^{1}(\mathbb{R}^{3}) with div𝐮0=div𝐛0=0\textrm{div}\ \bm{u}_{0}=\textrm{div}\ \bm{b}_{0}=0 and (𝐮,𝐛)(\bm{u},\bm{b}) is the weak solution to the MHD equations (1.1)–(1.2). Then the solution is regular in 3×(0,T]\mathbb{R}^{3}\times(0,T], provided that

  1. (1)\mathrm{(1)}

    u3Lp0,1(0,T;Lq0(3))u_{3}\in L^{p_{0},1}(0,T;L^{q_{0}}(\mathbb{R}^{3})) with 2p0+3q0=1\frac{2}{p_{0}}+\frac{3}{q_{0}}=1, 3<q0<3<q_{0}<\infty , or

    u3Lp0(0,T;Lq0(3))u_{3}\in L^{p_{0}}(0,T;L^{q_{0}}(\mathbb{R}^{3})) with 2p0+3q0<1\frac{2}{p_{0}}+\frac{3}{q_{0}}<1, 3<q0+3<q_{0}\leqslant+\infty;

  2. (2)\mathrm{(2)}

    b3Lp1,1(0,T;Lq1(3))b_{3}\in L^{p_{1},1}(0,T;L^{q_{1}}(\mathbb{R}^{3})) with 2p1+3q1=1\frac{2}{p_{1}}+\frac{3}{q_{1}}=1, 3<q1<3<q_{1}<\infty , or

    b3Lp1(0,T;Lq1(3))b_{3}\in L^{p_{1}}(0,T;L^{q_{1}}(\mathbb{R}^{3})) with 2p1+3q1<1\frac{2}{p_{1}}+\frac{3}{q_{1}}<1, 3<q1+3<q_{1}\leqslant+\infty.

Our paper is organized as follows: we recall some notations and preliminary results in Section 2, and establish a key lemma in Section 3; finally, we will complete the proof of Theorem 1.2 in Section 4.

2. Notations and Preliminary

In this preparation section, we recall some usual notations and preliminary results.

For two comparable quantities, the inequality XYX\lesssim Y stands for XCYX\leqslant CY for some positive constant CC. The dependence of the constant CC on other parameters or constants are usually clear from the context, and we will often suppress this dependence.

We use the following standard notations in the literature: Given matrix 𝑨=(Aij)m×n\bm{A}=(A_{ij})\in\mathbb{R}^{m\times n}, we denote the norm |𝑨|=(Σi=1mΣj=1nAij2)12|\bm{A}|=\left(\Sigma_{i=1}^{m}\Sigma_{j=1}^{n}A_{ij}^{2}\right)^{\frac{1}{2}}; for two vectors 𝒂=(a1,a2,a3),𝒃=(b1,b2,b3)\bm{a}=(a_{1},a_{2},a_{3}),\bm{b}=(b_{1},b_{2},b_{3}), 𝒂𝒃\bm{a}\cdot\bm{b} and |𝒂||\bm{a}| are the usual scalar product and norm in 3\mathbb{R}^{3} respectively, and 𝒂𝒃\bm{a}\otimes\bm{b} is a matrix with (𝒂𝒃)ij=aibj\left(\bm{a}\otimes\bm{b}\right)_{ij}=a_{i}b_{j}, (𝒂,𝒃)=(a1,a2,a3,b1,b2,b3)\left(\bm{a},\bm{b}\right)=(a_{1},a_{2},a_{3},b_{1},b_{2},b_{3}); for x=(x1,x2,x3)x=(x_{1},x_{2},x_{3}) 3\in\mathbb{R}^{3}, x=(x1,x2)x^{\prime}=(x_{1},x_{2}) is the horizontal variable; B(x0,R)B(x_{0},R) is the ball in 3\mathbb{R}^{3} with center at x0x_{0} and radius RR, and B(R):=B(0,R)B(R):=B(0,R); B(x0,R)2B^{\prime}(x^{\prime}_{0},R)\subset\mathbb{R}^{2} is the ball in the horizontal plane with center at x0x^{\prime}_{0} and radius RR, and B(R):=B(0,R)B^{\prime}(R):=B^{\prime}(0,R); Q(z0,R)=B(x0,R)×(t0R2,t0)Q(z_{0},R)=B(x_{0},R)\times(t_{0}-R^{2},t_{0}) with z0=(x0,t0)z_{0}=(x_{0},t_{0}) and Q(R):=Q(0,R)Q(R):=Q(0,R); we denote the integral mean value (f(t))B(r)=B(r)f(y,t)dy\left(f(t)\right)_{B(r)}=\mathchoice{{\vbox{\hbox{$\textstyle-$}}\kern-4.86108pt}}{{\vbox{\hbox{$\scriptstyle-$}}\kern-3.25pt}}{{\vbox{\hbox{$\scriptscriptstyle-$}}\kern-2.29166pt}}{{\vbox{\hbox{$\scriptscriptstyle-$}}\kern-1.875pt}}\!\int_{B(r)}f(y,t)\,{\rm d}y.

We also shall use the same notation as that in Chae-Wolf [3]. Set

Un(R)=defB(R)×(rn,rn),Qn(R)=defUn(R)×(rn2,0),U_{n}(R)\buildrel\hbox{\footnotesize def}\over{=}B^{\prime}(R)\times(-r_{n},r_{n}),\ \ Q_{n}(R)\buildrel\hbox{\footnotesize def}\over{=}U_{n}(R)\times(-r_{n}^{2},0),

and

An(R)=defQn(R)\Qn+1(R),A_{n}(R)\buildrel\hbox{\footnotesize def}\over{=}Q_{n}(R)\backslash Q_{n+1}(R),

where rn=2n,nr_{n}=2^{-n},\ n\in\mathbb{N}. We consider Φn\mathrm{\Phi}_{n} given by

Φn(x,t)=def14π(t+rn2)ex324(t+rn2),(x,t)3×(,0),\mathrm{\Phi}_{n}(x,t)\buildrel\hbox{\footnotesize def}\over{=}\frac{1}{\sqrt{4\pi(-t+r_{n}^{2})}}e^{-\frac{x_{3}^{2}}{4(-t+r_{n}^{2})}},\quad(x,t)\in\mathbb{R}^{3}\times(-\infty,0),

which satisfies the fundamental solution of the backward heat equation

tΦn+32Φn=0.\partial_{t}\mathrm{\Phi}_{n}+\partial_{3}^{2}\mathrm{\Phi}_{n}=0.

There exist absolute constants c1,c2>0c_{1},c_{2}>0 such that for j=1,,n1j=1,\ldots,n-1, it holds

(2.1) Φnc2rj1,|3Φn|c2rj2,inAj(R),c1rn1Φnc2rn1,c1rn2|3Φn|c2rn2,inQn(R).\begin{split}&\mathrm{\Phi}_{n}\leqslant c_{2}r_{j}^{-1},\qquad\qquad\ \ |\partial_{3}\mathrm{\Phi}_{n}|\leqslant c_{2}r_{j}^{-2},\qquad\quad\text{in}\quad A_{j}(R),\\ c_{1}r_{n}^{-1}\leqslant&\mathrm{\Phi}_{n}\leqslant c_{2}r_{n}^{-1},\quad c_{1}r_{n}^{-2}\leqslant|\partial_{3}\mathrm{\Phi}_{n}|\leqslant c_{2}r_{n}^{-2},\quad\qquad\text{in}\quad Q_{n}(R).\end{split}

We denote the energy

En(R)\displaystyle E_{n}(R) =defsupt(rn2,0)Un(R)|(𝒖,𝒃)|2dx+rn20Un(R)|(𝒖,𝒃)|2dxdt,\displaystyle\buildrel\hbox{\footnotesize def}\over{=}\sup_{t\in(-r_{n}^{2},0)}\int_{U_{n}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x+\int_{-r^{2}_{n}}^{0}\int_{U_{n}(R)}|\nabla\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}t,
\displaystyle\mathcal{E} =defsupt(1,0)3|(𝒖,𝒃)|2dx+103|(𝒖,𝒃)|2dxdt.\displaystyle\buildrel\hbox{\footnotesize def}\over{=}\sup_{t\in(-1,0)}\int_{\mathbb{R}^{3}}|\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x+\int_{-1}^{0}\int_{\mathbb{R}^{3}}|\nabla\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}t.

The following lemma ensures the energy estimates.

Lemma 2.1.

[3, Lemma 3.1] Let R12R\geqslant\frac{1}{2}. For 2p2\leqslant p\leqslant\infty, 2q62\leqslant q\leqslant 6, 2p+3q=32\frac{2}{p}+\frac{3}{q}=\frac{3}{2}, we have

(2.2) 𝒖Lp(rn2,0;Lq(Un(R)))2+𝒃Lp(rn2,0;Lq(Un(R)))2CEn(R).\|\bm{u}\|_{L^{p}\left(-r_{n}^{2},0;L^{q}\left(U_{n}(R)\right)\right)}^{2}+\|\bm{b}\|_{L^{p}\left(-r_{n}^{2},0;L^{q}\left(U_{n}(R)\right)\right)}^{2}\leqslant CE_{n}(R).

3. A Key Lemma

In this section, we apply a similar argument in Cafferalli-Kohn-Nirenberg [1], Chae-Wolf [3], or Wang-Wu-Zhang [24] to prove the following lemma.

Lemma 3.1.

Let (𝐮,𝐛,π)(\bm{u},\bm{b},\pi) be a suitable weak solution of (1.1) in 3×(1,0).\mathbb{R}^{3}\times(-1,0). If 𝐮,𝐛\bm{u},\bm{b} satisfies

(3.1) u3Lp0,1(1,0;Lq0(B(2))),b3Lp1,1(1,0;Lq1(B(2))),u_{3}\in L^{p_{0},1}\left(-1,0;L^{q_{0}}(B(2))\right),\ b_{3}\in L^{p_{1},1}\left(-1,0;L^{q_{1}}(B(2))\right),

with 2p0+3q0=2p1+3q1=1,3<q0,q1<+\frac{2}{p_{0}}+\frac{3}{q_{0}}=\frac{2}{p_{1}}+\frac{3}{q_{1}}=1,~{}3<q_{0},q_{1}<+\infty, then

r2𝒖L3(Q(r))3+r2𝒃L3(Q(r))3C,\displaystyle r^{-2}\|\bm{u}\|_{L^{3}\left(Q(r)\right)}^{3}+r^{-2}\|\bm{b}\|_{L^{3}\left(Q(r)\right)}^{3}\leqslant C,

for any 0<r10<r\leqslant 1.

For fixed p0,p1p_{0},p_{1}, we can pick 4q02q05<p0<p0\frac{4q_{0}}{2q_{0}-5}<p_{0}^{*}<p_{0} and 2<p1<p12<p_{1}^{*}<p_{1}. Set

(3.2) i=ri12p03q0u3Lp0(ri2,0;Lq0(B(2)))+ri12p13q1b3Lp1(ri2,0;Lq1(B(2))).\displaystyle\mathscr{B}_{i}=r_{i}^{1-\frac{2}{p_{0}^{*}}-\frac{3}{q_{0}}}\|u_{3}\|_{L^{p_{0}^{*}}\left(-r_{i}^{2},0;L^{q_{0}}(B(2))\right)}+r_{i}^{1-\frac{2}{p_{1}^{*}}-\frac{3}{q_{1}}}\|b_{3}\|_{L^{p_{1}^{*}}\left(-r_{i}^{2},0;L^{q_{1}}(B(2))\right)}.

By Lemma A.5, we have

(3.3) i=0+iC(u3Lp0,1(1,0;Lq0(B(2)))+b3Lp1,1(1,0;Lq1(B(2)))).\displaystyle\sum_{i=0}^{+\infty}\mathscr{B}_{i}\leqslant C\left(\left\|u_{3}\right\|_{L^{p_{0},1}\left(-1,0;L^{q_{0}}(B(2))\right)}+\left\|b_{3}\right\|_{L^{p_{1},1}\left(-1,0;L^{q_{1}}(B(2))\right)}\right).

Let η(x3,t)Cc((1,1)×(1,0])\eta\left(x_{3},t\right)\in C_{c}^{\infty}((-1,1)\times(-1,0]) denotes a cut-off function, 0η10\leqslant\eta\leqslant 1, and η=1\eta=1 on (12,12)×(14,0)\left(-\frac{1}{2},\frac{1}{2}\right)\times\left(-\frac{1}{4},0\right).

In addition, let 12ρ<R1\frac{1}{2}\leqslant\rho<R\leqslant 1 be arbitrarily chosen, but |Rρ|12.|R-\rho|\leqslant\frac{1}{2}. Let ψ=ψ(x)C(2)\psi=\psi\left(x^{\prime}\right)\in C^{\infty}\left(\mathbb{R}^{2}\right) with 0ψ10\leqslant\psi\leqslant 1 in B(R)B^{\prime}(R) satisfying

(3.4) ψ(x)=ψ(|x|)={1 in B(ρ)0 in 2\B(R+ρ2),\psi(x^{\prime})=\psi(|x^{\prime}|)=\left\{\begin{array}[]{l}1\text{ in }B^{\prime}(\rho)\\ 0\text{ in }\mathbb{R}^{2}\backslash B^{\prime}\left(\frac{R+\rho}{2}\right)\end{array}\right.,

and

|Dψ|CRρ,|D2ψ|C(Rρ)2.|D\psi|\leqslant\frac{C}{R-\rho},\quad\left|D^{2}\psi\right|\leqslant\frac{C}{(R-\rho)^{2}}.

For j=0,1,,nj=0,1,\cdots,n, denote χj=χB(R)(x)η(2jx3,22jt)\chi_{j}=\chi_{B^{\prime}(R)}(x^{\prime})\cdot\eta(2^{j}\cdot x_{3},2^{2j}\cdot t), where χB(R)\chi_{B^{\prime}(R)} is the indicator function of the set B(R)B^{\prime}(R). Let

(3.5) ϕj={χjχj+1, if j=0,,n1,χn, if j=n.\begin{array}[]{lll}\phi_{j}=\left\{\begin{array}[]{ll}\chi_{j}-\chi_{j+1},&\text{ if }\quad j=0,\ldots,n-1,\\ \chi_{n},&\text{ if }\quad j=n.\end{array}\right.\end{array}

Taking the test function φ=Φnηψ\varphi=\mathrm{\Phi}_{n}\eta\psi in ((3)(3)), we have

U0(R)|(𝒖,𝒃)|2Φnηψdx+21tU0(R)|(𝒖,𝒃)|2Φnηψdxds\displaystyle\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ \mathrm{\Phi}_{n}\eta\psi\,{\rm d}x+2\int_{-1}^{t}\int_{U_{0}(R)}|\nabla\left(\bm{u},\bm{b}\right)|^{2}\ \mathrm{\Phi}_{n}\eta\psi\,{\rm d}x\,{\rm d}s
\displaystyle\leqslant 1tU0(R)|(𝒖,𝒃)|2(s+Δ)(Φnηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\cdot\left(\partial_{s}+\Delta\right)\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
+1tU0(R)|(𝒖,𝒃)|2𝒖(Φnηψ)2(𝒖𝒃)𝒃(Φnηψ)dxds\displaystyle+\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ \bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)-2\left(\bm{u}\cdot\bm{b}\right)\bm{b}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
(3.6) +21tU0(R)π𝒖(Φnηψ)dxds.\displaystyle+2\int_{-1}^{t}\int_{U_{0}(R)}\pi\bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s.

Next, we shall handle the right side of (3) term by term.

3.1. Estimates for nonlinear terms

Lemma 3.2.

Under the assumptions of Lemma 3.1, we have

(3.7) 1tU0(R)|(𝒖,𝒃)|2(s+Δ)(Φnηψ)dxdsC(Rρ)2.\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\cdot\left(\partial_{s}+\Delta\right)\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s\leqslant C\frac{\mathcal{E}}{(R-\rho)^{2}}.
Proof.

By the estimates (2.1) for Φn\mathrm{\Phi}_{n} and the fact that suppηA0,suppϕjQj\Qj+2supp\ \nabla\eta\subseteq A_{0},supp\ \phi_{j}\subseteq Q_{j}\backslash Q_{j+2}, we have

1tU0(R)|(𝒖,𝒃)|2(s+Δ)(Φnηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\cdot\left(\partial_{s}+\Delta\right)\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
=\displaystyle= 1tU0(R)|(𝒖,𝒃)|2(Φnsηψ+23Φn3ηψ+ΦnΔ(ηψ))dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\cdot\left(\mathrm{\Phi}_{n}\partial_{s}\eta\psi+2\partial_{3}\mathrm{\Phi}_{n}\partial_{3}\eta\psi+\mathrm{\Phi}_{n}\Delta(\eta\psi)\right)\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim 10U0(R)|(𝒖,𝒃)|2dxds+(Rρ)2i=0n10U0(R)|(𝒖,𝒃)|2Φnϕidxds\displaystyle\int_{-1}^{0}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}s+(R-\rho)^{-2}\sum_{i=0}^{n}\int_{-1}^{0}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ \mathrm{\Phi}_{n}\phi_{i}\,{\rm d}x\,{\rm d}s
\displaystyle\leqslant +(Rρ)2i=0nri1ri20Ui(R)|(𝒖,𝒃)|2dxds\displaystyle\mathcal{E}+(R-\rho)^{-2}\sum_{i=0}^{n}r_{i}^{-1}\int_{-r_{i}^{2}}^{0}\int_{U_{i}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim +(Rρ)2i=0nri\displaystyle\mathcal{E}+(R-\rho)^{-2}\sum_{i=0}^{n}r_{i}\mathcal{E}
\displaystyle\lesssim (Rρ)2.\displaystyle(R-\rho)^{-2}\mathcal{E}.

∎∎

Lemma 3.3.

Under the assumptions of Lemma 3.1, we have

1tU0(R)|(𝒖,𝒃)|2𝒖(Φnηψ)2(𝒖𝒃)𝒃(Φnηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ \bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)-2\left(\bm{u}\cdot\bm{b}\right)\bm{b}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
(3.8) \displaystyle\leqslant Ci=0ni(ri1Ei(R))+C32+C(Rρ)112i=0nri12(ri1Ei(R)),\displaystyle C\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right)+C\mathcal{E}^{\frac{3}{2}}+C(R-\rho)^{-1}\ \mathcal{E}^{\frac{1}{2}}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right),

where i\mathscr{B}_{i} is defined in (3.2).

Proof.

We first note that

1tU0(R)|(𝒖,𝒃)|2𝒖(Φnηψ)2(𝒖𝒃)𝒃(Φnηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ \bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)-2\left(\bm{u}\cdot\bm{b}\right)\bm{b}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
=\displaystyle= 1tU0(R)|(𝒖,𝒃)|2u33Φn(ηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\cdot\left(\eta\psi\right)\,{\rm d}x\,{\rm d}s
+1tU0(R)|(𝒖,𝒃)|2𝒖Φn(ηψ)dxds\displaystyle+\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ \bm{u}\cdot\mathrm{\Phi}_{n}\nabla\left(\eta\psi\right)\,{\rm d}x\,{\rm d}s
21tU0(R)(𝒖𝒃)b33Φn(ηψ)dxds\displaystyle-2\int_{-1}^{t}\int_{U_{0}(R)}\left(\bm{u}\cdot\bm{b}\right)b_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\cdot\left(\eta\psi\right)\,{\rm d}x\,{\rm d}s
21tU0(R)(𝒖𝒃)𝒃Φn(ηψ)dxds\displaystyle-2\int_{-1}^{t}\int_{U_{0}(R)}\left(\bm{u}\cdot\bm{b}\right)\bm{b}\cdot\mathrm{\Phi}_{n}\nabla\left(\eta\psi\right)\,{\rm d}x\,{\rm d}s
(3.9) =def\displaystyle\buildrel\hbox{\footnotesize def}\over{=} I1+I2+I3+I4.\displaystyle I_{1}+I_{2}+I_{3}+I_{4}.

By the estimates (2.1) for Φn\mathrm{\Phi}_{n}, Hölder inequality and Lemma 2.1, we have

I1=\displaystyle I_{1}= i=0n1tU0(R)|(𝒖,𝒃)|2u33Φn(ϕiψ)dxds\displaystyle\sum_{i=0}^{n}\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\cdot\left(\phi_{i}\psi\right)\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim i=0nri2ri20(𝒖,𝒃)L2q0q01(Ui(R))2u3Lq0(Ui(R))ds\displaystyle\sum_{i=0}^{n}r_{i}^{-2}\int_{-r_{i}^{2}}^{0}\|\left(\bm{u},\bm{b}\right)\|_{L^{\frac{2q_{0}}{q_{0}-1}}(U_{i}(R))}^{2}\|u_{3}\|_{L^{q_{0}}(U_{i}(R))}\,{\rm d}s
\displaystyle\lesssim i=0nri2p03q0(𝒖,𝒃)L4q03(ri2,0;L2q0q01(Ui(R)))2u3Lp0(ri2,0;Lq0(Ui(R)))\displaystyle\sum_{i=0}^{n}r_{i}^{-\frac{2}{p_{0}^{*}}-\frac{3}{q_{0}}}\|\left(\bm{u},\bm{b}\right)\|_{L^{\frac{4q_{0}}{3}}\left(-r_{i}^{2},0;L^{\frac{2q_{0}}{q_{0}-1}}(U_{i}(R))\right)}^{2}\|u_{3}\|_{L^{p_{0}^{*}}\left(-r_{i}^{2},0;L^{q_{0}}(U_{i}(R))\right)}
(3.10) \displaystyle\lesssim i=0ni(ri1Ei(R)).\displaystyle\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right).

For the second term, by (2.1) and Lemma 2.1 again, we have

I2=\displaystyle I_{2}= 1tU0(R)|(𝒖,𝒃)|2𝒖Φnηψ+|(𝒖,𝒃)|2𝒖Φnηψdxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{2}\ \bm{u}\cdot\mathrm{\Phi}_{n}\nabla\eta\psi+|\left(\bm{u},\bm{b}\right)|^{2}\ \bm{u}\cdot\mathrm{\Phi}_{n}\eta\nabla\psi\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim 10U0(R)|(𝒖,𝒃)|3dxds+1(Rρ)i=0nri1ri20Ui(R)|(𝒖,𝒃)|3dxds\displaystyle\int_{-1}^{0}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{3}\,{\rm d}x\,{\rm d}s+\frac{1}{(R-\rho)}\sum_{i=0}^{n}r_{i}^{-1}\int_{-r_{i}^{2}}^{0}\int_{U_{i}(R)}|\left(\bm{u},\bm{b}\right)|^{3}\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim 32+1(Rρ)i=0nri1ri12(𝒖,𝒃)L4(ri2,0;L3(Ui(R)))3\displaystyle\mathcal{E}^{\frac{3}{2}}+\frac{1}{(R-\rho)}\sum_{i=0}^{n}r_{i}^{-1}r_{i}^{\frac{1}{2}}\ \|\left(\bm{u},\bm{b}\right)\|_{L^{4}\left(-r_{i}^{2},0;L^{3}\left(U_{i}(R)\right)\right)}^{3}
(3.11) \displaystyle\lesssim 32+12(Rρ)i=0nri12(ri1Ei(R)).\displaystyle\mathcal{E}^{\frac{3}{2}}+\frac{\mathcal{E}^{\frac{1}{2}}}{(R-\rho)}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right).

As to I3,I4I_{3},I_{4} , we have

I3\displaystyle I_{3}\lesssim i=0nri2ri20(𝒖,𝒃)L2q1q11(Ui(R))2b3Lq1(Ui(R))ds\displaystyle\sum_{i=0}^{n}r_{i}^{-2}\int_{-r_{i}^{2}}^{0}\ \|\left(\bm{u},\bm{b}\right)\|_{L^{\frac{2q_{1}}{q_{1}-1}}(U_{i}(R))}^{2}\|b_{3}\|_{L^{q_{1}}(U_{i}(R))}\,{\rm d}s
\displaystyle\lesssim i=0nri2p13q1(𝒖,𝒃)L4q13(ri2,0;L2q1q11(Ui(R)))2b3Lp1(ri2,0;Lq1(Ui(R)))\displaystyle\sum_{i=0}^{n}r_{i}^{-\frac{2}{p_{1}^{*}}-\frac{3}{q_{1}}}\ \|\left(\bm{u},\bm{b}\right)\|_{L^{\frac{4q_{1}}{3}}\left(-r_{i}^{2},0;L^{\frac{2q_{1}}{q_{1}-1}}(U_{i}(R))\right)}^{2}\|b_{3}\|_{L^{p_{1}^{*}}\left(-r_{i}^{2},0;L^{q_{1}}(U_{i}(R))\right)}
(3.12) \displaystyle\lesssim i=0ni(ri1Ei(R)),\displaystyle\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right),

which is analogous to (3.1), and

I4\displaystyle I_{4}\lesssim 10U0(R)|(𝒖,𝒃)|3dxds+1(Rρ)i=0nri1ri20Ui(R)|(𝒖,𝒃)|3dxds\displaystyle\int_{-1}^{0}\int_{U_{0}(R)}|\left(\bm{u},\bm{b}\right)|^{3}\,{\rm d}x\,{\rm d}s+\frac{1}{(R-\rho)}\sum_{i=0}^{n}r_{i}^{-1}\int_{-r_{i}^{2}}^{0}\int_{U_{i}(R)}|\left(\bm{u},\bm{b}\right)|^{3}\,{\rm d}x\,{\rm d}s
(3.13) \displaystyle\lesssim 32+12(Rρ)i=0nri12(ri1Ei(R)),\displaystyle\mathcal{E}^{\frac{3}{2}}+\frac{\mathcal{E}^{\frac{1}{2}}}{(R-\rho)}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right),

which is analogous to (3.1). Combining (3.1) with (3.1), (3.1), (3.1) and (3.1), we obtain (3.3). ∎∎

3.2. Estimates for the pressure

This part is devoted to the estimates regarding the pressure term on the right side of (3). We will give a similar argument in [24] here.

Given 3×33\times 3 matrix valued function f=(fjk)f=\left(f_{jk}\right), we set

𝒥(f)^(ξ)=j,k=1,2,3ξjξk|ξ|2fjk,\displaystyle\widehat{\mathscr{J}(f)}(\xi)=\sum_{j,k=1,2,3}\frac{\xi_{j}\xi_{k}}{|\xi|^{2}}\mathcal{F}f_{jk},

where the Fourier transform is defined by

g(ξ)=g^(ξ)=3ei(xξ)g(x)dx.\mathcal{F}g(\xi)=\hat{g}(\xi)=\int_{\mathbb{R}^{3}}e^{-i(x\cdot\xi)}g(x)\,{\rm d}x.

Therefore, 𝒥:Lq(3)Lq(3)\mathscr{J}:L^{q}\left(\mathbb{R}^{3}\right)\rightarrow L^{q}\left(\mathbb{R}^{3}\right), 1<q<+1<q<+\infty defines a bounded linear operator with

(3.14) 𝒥(f)Lq(3)CfLq(3).\displaystyle\|\mathscr{J}(f)\|_{L^{q}\left(\mathbb{R}^{3}\right)}\leqslant C\ \|f\|_{L^{q}\left(\mathbb{R}^{3}\right)}.

Denote f=(fjk)=(𝒖𝒖𝒃𝒃)χ0f=(f_{jk})=\left(\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\right)\cdot\chi_{0},

(3.15) π0=𝒥(f),πh=ππ0.\displaystyle\pi_{0}=\mathscr{J}\left(f\right),\ \pi_{h}=\pi-\pi_{0}.

It follows that

Δπ0=f=Σj,k=13jkfjk in 3×(1,0)\displaystyle\Delta\pi_{0}=\nabla\cdot\nabla\cdot f=\mathrm{\Sigma}_{j,k=1}^{3}\ \partial_{j}\partial_{k}f_{jk}\quad\text{ in }\quad\mathbb{R}^{3}\times(-1,0)

in the sense of distributions and πh\pi_{h} is harmonic in Q1(R)Q_{1}(R). Then we have

1tU0(R)π𝒖(Φnηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}\pi\bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
=\displaystyle= 1tU0(R)π0𝒖(Φnηψ)dxds+1tU0(R)πh𝒖(Φnηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s+\int_{-1}^{t}\int_{U_{0}(R)}\pi_{h}\bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
=\displaystyle= 1tU0(R)π0u33Φnηψdxds+1tU0(R)π0𝒖Φn(ηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\eta\psi\,{\rm d}x\,{\rm d}s+\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\bm{u}\cdot\mathrm{\Phi}_{n}\nabla\left(\eta\psi\right)\,{\rm d}x\,{\rm d}s
1tU0(R)πh𝒖(Φnηψ)dxds\displaystyle-\int_{-1}^{t}\int_{U_{0}(R)}\nabla\pi_{h}\cdot\bm{u}\cdot\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x\,{\rm d}s
(3.16) =def\displaystyle\buildrel\hbox{\footnotesize def}\over{=} J+K+H.\displaystyle J+K+H.
Lemma 3.4.

Under the assumptions of Lemma 3.1, we have

1tU0(R)π𝒖(Φnηψ)dxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}\pi\bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\eta\psi\right)\,{\rm d}x{\,{\rm d}s}
(3.17) \displaystyle\leqslant Ci=0ni(ri1Ei(R))+C12Rρi=0nri12(ri1Ei(R))+C(Rρ)332.\displaystyle C\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right)+C\frac{\mathcal{E}^{\frac{1}{2}}}{R-\rho}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right)+\frac{C}{(R-\rho)^{3}}\mathcal{E}^{\frac{3}{2}}.
Proof.

Combining the estimates (3.2), (A.2), (A.7) and (A.12), we have (3.4).∎∎

3.3. The proof of Lemma 3.1

On the basis of the estimates of the nonlinear term and the pressure in subsection 3.1–3.2, we are in position to give the detail proof of Lemma 3.1.

Proof.

Gathering (3) and the estimates in Lemma 3.2, 3.3 and 3.4, we have

rn1En(ρ)\displaystyle r_{n}^{-1}E_{n}(\rho)\leqslant Ci=0ni(ri1Ei(R))+C12Rρi=0nri12(ri1Ei(R))+C1+32(Rρ)3\displaystyle C\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right)+C\frac{\mathcal{E}^{\frac{1}{2}}}{R-\rho}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right)+C\frac{1+\mathcal{E}^{\frac{3}{2}}}{(R-\rho)^{3}}
\displaystyle\leqslant Ci=0ni(ri1Ei(R))+C34Rρi=0nri58Ei(R)34ri18+C1+32(Rρ)3\displaystyle C\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right)+C\frac{\mathcal{E}^{\frac{3}{4}}}{R-\rho}\sum_{i=0}^{n}r_{i}^{-\frac{5}{8}}E_{i}(R)^{\frac{3}{4}}r_{i}^{\frac{1}{8}}+C\frac{1+\mathcal{E}^{\frac{3}{2}}}{(R-\rho)^{3}}
\displaystyle\leqslant Ci=0ni(ri1Ei(R))+C34Rρ(i=0nri56Ei(R))34(i=0nri12)14\displaystyle C\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right)+C\frac{\mathcal{E}^{\frac{3}{4}}}{R-\rho}\left(\sum_{i=0}^{n}r_{i}^{-\frac{5}{6}}E_{i}(R)\right)^{\frac{3}{4}}\left(\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\right)^{\frac{1}{4}}
+C1+32(Rρ)3\displaystyle+C\frac{1+\mathcal{E}^{\frac{3}{2}}}{(R-\rho)^{3}}
\displaystyle\leqslant C0i=0n(i+ri16)(ri1Ei(R))+C01+3(Rρ)4.\displaystyle C_{0}\sum_{i=0}^{n}\left(\mathscr{B}_{i}+r_{i}^{\frac{1}{6}}\right)\left(r_{i}^{-1}E_{i}(R)\right)+C_{0}\frac{1+\mathcal{E}^{3}}{(R-\rho)^{4}}.

In view of (3.3), there exists a sufficient large integer n01n_{0}\geqslant 1 such that

(3.18) C0i=n0(i+ri16)12.C_{0}\sum_{i=n_{0}}^{\infty}\left(\mathscr{B}_{i}+r_{i}^{\frac{1}{6}}\right)\leqslant\frac{1}{2}.

Then for nn0n\geqslant n_{0} we have

rn1En(ρ)\displaystyle r_{n}^{-1}E_{n}(\rho)\leqslant C0i=n0n(i+ri16)(ri1Ei(R))\displaystyle C_{0}\sum_{i=n_{0}}^{n}\left(\mathscr{B}_{i}+r_{i}^{\frac{1}{6}}\right)\left(r_{i}^{-1}E_{i}(R)\right)
+C0i=0n01(i+ri16)(ri1Ei(R))+C01+3(Rρ)4\displaystyle\quad+C_{0}\sum_{i=0}^{n_{0}-1}\left(\mathscr{B}_{i}+r_{i}^{\frac{1}{6}}\right)\left(r_{i}^{-1}E_{i}(R)\right)+C_{0}\frac{1+\mathcal{E}^{3}}{(R-\rho)^{4}}
(3.19) \displaystyle\leqslant C0i=n0n(i+ri16)(ri1Ei(R))+A0(Rρ)4,\displaystyle C_{0}\sum_{i=n_{0}}^{n}\left(\mathscr{B}_{i}+r_{i}^{\frac{1}{6}}\right)\left(r_{i}^{-1}E_{i}(R)\right)+\frac{A_{0}}{(R-\rho)^{4}},

where the constant

A0=C12n0(1+u3Lp0,1(1,0;Lq0(B(2)))2+b3Lp1,1(1,0;Lq1(B(2)))2+3).A_{0}=C_{1}\cdot 2^{n_{0}}\left(1+\left\|u_{3}\right\|_{L^{p_{0},1}\left(-1,0;L^{q_{0}}(B(2))\right)}^{2}+\left\|b_{3}\right\|_{L^{p_{1},1}\left(-1,0;L^{q_{1}}(B(2))\right)}^{2}+\mathcal{E}^{3}\right).

As the iteration argument in [10, V. Lemma 3.1], we introduce the sequence {ρk}k=0+\{\rho_{k}\}_{k=0}^{+\infty} which satisfy

ρ0=12,ρk+1ρk=1θ2θk,\rho_{0}=\frac{1}{2},\quad\rho_{k+1}-\rho_{k}=\frac{1-\theta}{2}\theta^{k},

with 12<θ4<1\frac{1}{2}<\theta^{4}<1 and limkρk=1\lim_{k\rightarrow\infty}\rho_{k}=1. For n0jnn_{0}\leqslant j\leqslant n and k1k\geqslant 1, we have

rj1Ej(ρk)\displaystyle r_{j}^{-1}E_{j}(\rho_{k})\leqslant C0i=n0j(i+ri16)(ri1Ei(ρk+1))+A016(1θ)4θ4k\displaystyle C_{0}\sum_{i=n_{0}}^{j}\left(\mathscr{B}_{i}+r_{i}^{\frac{1}{6}}\right)\left(r_{i}^{-1}E_{i}(\rho_{k+1})\right)+A_{0}\cdot\frac{16}{(1-\theta)^{4}}\theta^{-4k}
(3.20) \displaystyle\leqslant C0i=n0n(i+ri16)(ri1Ei(ρk+1))+A016(1θ)4θ4k.\displaystyle C_{0}\sum_{i=n_{0}}^{n}\left(\mathscr{B}_{i}+r_{i}^{\frac{1}{6}}\right)\left(r_{i}^{-1}E_{i}(\rho_{k+1})\right)+A_{0}\cdot\frac{16}{(1-\theta)^{4}}\theta^{-4k}.

Applying (3.18) and (3.3) to the iteration argument from (3.3), we obtain that for nn0n\geqslant n_{0},

rn1En(ρ0)\displaystyle r_{n}^{-1}E_{n}(\rho_{0})\leqslant C0j=n0n(j+rj16)(rj1Ej(ρ1))+A016(1θ)4\displaystyle C_{0}\sum_{j=n_{0}}^{n}\left(\mathscr{B}_{j}+r_{j}^{\frac{1}{6}}\right)\left(r_{j}^{-1}E_{j}(\rho_{1})\right)+A_{0}\cdot\frac{16}{(1-\theta)^{4}}
\displaystyle\leqslant 12C0j=n0n(j+rj16)(rj1Ej(ρ2))+A016(1θ)4(1+12θ4)\displaystyle\frac{1}{2}C_{0}\sum_{j=n_{0}}^{n}\left(\mathscr{B}_{j}+r_{j}^{\frac{1}{6}}\right)\left(r_{j}^{-1}E_{j}(\rho_{2})\right)+A_{0}\cdot\frac{16}{(1-\theta)^{4}}\left(1+\frac{1}{2\theta^{4}}\right)
\displaystyle\leqslant 12k1C0j=n0n(j+rj16)(rj1Ej(ρk))+A016(1θ)4j=0k1(12θ4)j\displaystyle\frac{1}{2^{k-1}}C_{0}\sum_{j=n_{0}}^{n}\left(\mathscr{B}_{j}+r_{j}^{\frac{1}{6}}\right)\left(r_{j}^{-1}E_{j}(\rho_{k})\right)+A_{0}\cdot\frac{16}{(1-\theta)^{4}}\sum_{j=0}^{k-1}\left(\frac{1}{2\theta^{4}}\right)^{j}
\displaystyle\leqslant 12k1C0j=n0n(j+rj16)(rj1Ej(1))+A016(1θ)42θ42θ41.\displaystyle\frac{1}{2^{k-1}}C_{0}\sum_{j=n_{0}}^{n}\left(\mathscr{B}_{j}+r_{j}^{\frac{1}{6}}\right)\left(r_{j}^{-1}E_{j}(1)\right)+A_{0}\cdot\frac{16}{(1-\theta)^{4}}\cdot\frac{2\theta^{4}}{2\theta^{4}-1}.

Let kk\rightarrow\infty, we obtain that for nn0n\geqslant n_{0},

(3.21) rn1En(ρ0)A016(1θ)42θ42θ41.r_{n}^{-1}E_{n}(\rho_{0})\leqslant A_{0}\cdot\frac{16}{(1-\theta)^{4}}\cdot\frac{2\theta^{4}}{2\theta^{4}-1}.

For 0<rrn00<r\leqslant r_{n_{0}}, there exists an integer jn0j\geqslant n_{0}, such that

rj+1<rrj,r_{j+1}<r\leqslant r_{j},

which together with (3.21) ensures that

r1supt(r2,0)B(r)|(𝒖,𝒃)|2dx+r1Q(r)|(𝒖,𝒃)|2dxdt2rj1Ej(ρ0)C.\displaystyle r^{-1}\sup_{t\in(-r^{2},0)}\int_{B(r)}|\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x+r^{-1}\int_{Q(r)}|\nabla\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}t\leqslant 2\ r_{j}^{-1}E_{j}(\rho_{0})\leqslant C.

For rn0<r1r_{n_{0}}<r\leqslant 1,

r1supt(r2,0)B(r)|(𝒖,𝒃)|2dx+r1Q(r)|(𝒖,𝒃)|2dxdt2n0C.\displaystyle r^{-1}\sup_{t\in(-r^{2},0)}\int_{B(r)}|\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x+r^{-1}\int_{Q(r)}|\nabla\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}t\leqslant 2^{n_{0}}\mathcal{E}\leqslant C.

Hence for 0<r10<r\leqslant 1,

(3.22) r1supt(r2,0)B(r)|(𝒖,𝒃)|2dx+r1Q(r)|(𝒖,𝒃)|2dxdtC.\displaystyle r^{-1}\sup_{t\in(-r^{2},0)}\int_{B(r)}|\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x+r^{-1}\int_{Q(r)}|\nabla\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}t\leqslant C.

By Sobolev embedding theorem, we have that for 0<r10<r\leqslant 1,

(3.23) r2(𝒖,𝒃)L3(Q(r))3Cr32(𝒖,𝒃)L4(r2,0;L3(B(r)))3C.\displaystyle r^{-2}\|\left(\bm{u},\bm{b}\right)\|_{L^{3}(Q(r))}^{3}\leqslant Cr^{-\frac{3}{2}}\|\left(\bm{u},\bm{b}\right)\|_{L^{4}\left(-r^{2},0;L^{3}(B(r))\right)}^{3}\leqslant C.

The proof is completed.∎∎

4. Proof of Theorem 1.2

Before starting the proof, we give an essential lemma for the 3D MHD equation (1.1).

Lemma 4.1.

Let μ=ν=1\mu=\nu=1 in the MHD equations (1.1). Assume that (𝐮,𝐛,π)\left(\bm{u},\bm{b},\pi\right) is a suitable weak solution in Q(1)Q(1) with u3=b3=0u_{3}=b_{3}=0. Then the solution is regular in Q(12)¯\overline{Q(\frac{1}{2})}.

Proof.

Denote 𝒮MHD\mathcal{S}_{\mathrm{MHD}} the singular set of the suitable weak solution, the cylinder U(x,r)=B(x,r)×(x3r,x3+r)U(x,r)=B^{\prime}(x^{\prime},r)\times(x_{3}-r,x_{3}+r) and U(r):=U(0,r)U(r):=U(0,r). By [14] or [23, Theorem 1.4], we know that the one-dimensional Hausdorff measure of 𝒮MHD\mathcal{S}_{\mathrm{MHD}} is zero.

Assume that the assertion does not hold, i.e. 𝒮MHDQ(12)¯\mathcal{S}_{\mathrm{MHD}}\cap\overline{Q(\frac{1}{2})}\neq\varnothing. By a similar argument in [15, Lemma 3.2], there exists (x0,t0)Q(12)¯(x_{0},t_{0})\in\overline{Q(\frac{1}{2})} and some ε,ρ\varepsilon,\rho with 0<ε<ρ<120<\varepsilon<\rho<\frac{1}{2}, such that

(x0,t0)𝒮MHDU(x0,ρ)×(t0ρ2,t0)¯U(x0,ρε)×{t0}.\displaystyle(x_{0},t_{0})\in\mathcal{S}_{\mathrm{MHD}}\cap\overline{U(x_{0},\rho)\times(t_{0}-\rho^{2},t_{0})}\subseteq U\left(x_{0},\rho-\varepsilon\right)\times\left\{t_{0}\right\}.

Without loss of generality, we may assume (x0,t0)=(0,0)(x_{0},t_{0})=(0,0). Thus, the solution (𝒖,𝒃,π)C(U(ρ)¯×[ρ2,0))(\bm{u},\bm{b},\nabla\pi)\in C^{\infty}(\overline{U(\rho)}\times[-\rho^{2},0)) and is singular at (0,0)(0,0). Moreover, there exists a constant CC, such that

(4.1) sup1<t<0(𝒖,𝒃)L2(B(1))2+(𝒖,𝒃)L2(Q(1))2+πL32(Q(1))C,\displaystyle\sup_{-1<t<0}\|\left(\bm{u},\bm{b}\right)\|_{L^{2}(B(1))}^{2}+\|\nabla\left(\bm{u},\bm{b}\right)\|_{L^{2}(Q(1))}^{2}+\|\pi\|_{L^{\frac{3}{2}}(Q(1))}\leqslant C,

and for (x,t)U(ρ)\U(ρε)×[ρ2,0)(x,t)\in U(\rho)\backslash U(\rho-\varepsilon)\times[-\rho^{2},0) or (x,t)U(ρ)×{ρ2}(x,t)\in U(\rho)\times\{-\rho^{2}\},

(4.2) |𝒖|+|𝒃|C.\displaystyle|\bm{u}|+|\bm{b}|\leqslant C.

We introduce the Elsässer variables 𝒁+=(Z1+,Z2+,0)=𝒖+𝒃\bm{Z}^{+}=\left(Z_{1}^{+},Z_{2}^{+},0\right)=\bm{u}+\bm{b} and 𝒁=(Z1,Z2,0)=𝒖𝒃\bm{Z}^{-}=\left(Z_{1}^{-},Z_{2}^{-},0\right)=\bm{u}-\bm{b}, which satisfy

t𝒁++𝒁𝒁+Δ𝒁++π=0,\displaystyle\partial_{t}\bm{Z}^{+}+\bm{Z}^{-}\cdot\nabla\bm{Z}^{+}-\Delta\bm{Z}^{+}+\nabla\pi=0,
t𝒁+𝒁+𝒁Δ𝒁+π=0.\displaystyle\partial_{t}\bm{Z}^{-}+\bm{Z}^{+}\cdot\nabla\bm{Z}^{-}-\Delta\bm{Z}^{-}+\nabla\pi=0.

As in [2], we introduce 𝒁+¯=ρρ𝒁+β(x3)dx3,𝒁¯=ρρ𝒁β(x3)dx3\overline{\bm{Z}^{+}}=\int_{-\rho}^{\rho}\bm{Z}^{+}\cdot\beta(x_{3})\,{\rm d}x_{3},\ \overline{\bm{Z}^{-}}=\int_{-\rho}^{\rho}\bm{Z}^{-}\cdot\beta(x_{3})\,{\rm d}x_{3}, where the non-negative cut-off function β(x3)Cc((ρ,ρ))\beta(x_{3})\in C_{c}^{\infty}((-\rho,\rho)), β=12ρε\beta=\frac{1}{2\rho-\varepsilon} on (ρ+ε,ρε)(-\rho+\varepsilon,\rho-\varepsilon) and ρρβ(x3)dx3=1\int_{-\rho}^{\rho}\beta(x_{3})\,{\rm d}x_{3}=1. It is easy to find that 3π=0\partial_{3}\pi=0, and

t𝒁+¯+ρρ𝒁𝒁+βdx3Δ𝒁+¯+π\displaystyle\partial_{t}\overline{\bm{Z}^{+}}+\int_{-\rho}^{\rho}\bm{Z}^{-}\cdot\nabla\bm{Z}^{+}\cdot\beta\,{\rm d}x_{3}-\Delta\overline{\bm{Z}^{+}}+\nabla\pi =ρρ𝒁+32βdx3,\displaystyle=\int_{-\rho}^{\rho}\bm{Z}^{+}\cdot\partial_{3}^{2}\beta\,{\rm d}x_{3},
t𝒁¯+ρρ𝒁+𝒁βdx3Δ𝒁¯+π\displaystyle\partial_{t}\overline{\bm{Z}^{-}}+\int_{-\rho}^{\rho}\bm{Z}^{+}\cdot\nabla\bm{Z}^{-}\cdot\beta\,{\rm d}x_{3}-\Delta\overline{\bm{Z}^{-}}+\nabla\pi =ρρ𝒁32βdx3.\displaystyle=\int_{-\rho}^{\rho}\bm{Z}^{-}\cdot\partial_{3}^{2}\beta\,{\rm d}x_{3}.

Define 𝒁+~=𝒁+𝒁+¯\widetilde{\bm{Z}^{+}}=\bm{Z}^{+}-\overline{\bm{Z}^{+}}, 𝒁~=𝒁𝒁¯\widetilde{\bm{Z}^{-}}=\bm{Z}^{-}-\overline{\bm{Z}^{-}}, which satisfy

(4.3) t𝒁+~+𝒁𝒁+~+𝒁~𝒁+¯ρρ𝒁~𝒁+~βdx3Δ𝒁+~=\displaystyle\partial_{t}\widetilde{\bm{Z}^{+}}+\bm{Z}^{-}\cdot\nabla\widetilde{\bm{Z}^{+}}+\widetilde{\bm{Z}^{-}}\cdot\nabla\overline{\bm{Z}^{+}}-\int_{-\rho}^{\rho}\widetilde{\bm{Z}^{-}}\cdot\nabla\widetilde{\bm{Z}^{+}}\cdot\beta\,{\rm d}x_{3}-\Delta\widetilde{\bm{Z}^{+}}= ρρ𝒁+32βdx3\displaystyle-\int_{-\rho}^{\rho}\bm{Z}^{+}\cdot\partial_{3}^{2}\beta\,{\rm d}x_{3}
(4.4) t𝒁~+𝒁+𝒁~+𝒁+~𝒁¯ρρ𝒁+~𝒁~βdx3Δ𝒁~=\displaystyle\partial_{t}\widetilde{\bm{Z}^{-}}+\bm{Z}^{+}\cdot\nabla\widetilde{\bm{Z}^{-}}+\widetilde{\bm{Z}^{+}}\cdot\nabla\overline{\bm{Z}^{-}}-\int_{-\rho}^{\rho}\widetilde{\bm{Z}^{+}}\cdot\nabla\widetilde{\bm{Z}^{-}}\cdot\beta\,{\rm d}x_{3}-\Delta\widetilde{\bm{Z}^{-}}= ρρ𝒁32βdx3.\displaystyle-\int_{-\rho}^{\rho}\bm{Z}^{-}\cdot\partial_{3}^{2}\beta\,{\rm d}x_{3}.

Let α(x1,x2)Cc(B(ρ))\alpha(x_{1},x_{2})\in C_{c}^{\infty}(B^{\prime}(\rho)) be a cut-off function with 0α10\leqslant\alpha\leqslant 1, α=1\alpha=1 on B(ρε)B^{\prime}(\rho-\varepsilon). Multiplying (4.3) by 4|𝒁+~|2𝒁+~φ44|\widetilde{\bm{Z}^{+}}|^{2}\widetilde{\bm{Z}^{+}}\cdot\varphi^{4} with φ(x)=α(x1,x2)β(x3)\varphi(x)=\alpha(x_{1},x_{2})\cdot\beta(x_{3}), and integrating the resulting equations over 3\mathbb{R}^{3}, applying (4.1), (4.2), Hölder’s inequality and Sobolev embedding theorem, we have

ddt𝒁+~φL4(U(ρ))4+43|𝒁+~|2|𝒁+~|2φ4dx+23|(|𝒁+~|2φ2)|2dx\displaystyle\frac{d}{dt}\|\widetilde{\bm{Z}^{+}}\varphi\|_{L^{4}(U(\rho))}^{4}+4\int_{\mathbb{R}^{3}}|\nabla\widetilde{\bm{Z}^{+}}|^{2}|\widetilde{\bm{Z}^{+}}|^{2}\varphi^{4}\,{\rm d}x+2\int_{\mathbb{R}^{3}}|\nabla\left(|\widetilde{\bm{Z}^{+}}|^{2}\varphi^{2}\right)|^{2}\,{\rm d}x
=\displaystyle= 3𝒁α4β4|𝒁+~|44𝒁~𝒁+¯|𝒁+~|2𝒁+~φ4dx\displaystyle\int_{\mathbb{R}^{3}}\bm{Z}^{-}\cdot\nabla\alpha^{4}\cdot\beta^{4}|\widetilde{\bm{Z}^{+}}|^{4}-4\widetilde{\bm{Z}^{-}}\cdot\nabla\overline{\bm{Z}^{+}}\cdot|\widetilde{\bm{Z}^{+}}|^{2}\widetilde{\bm{Z}^{+}}\varphi^{4}\,{\rm d}x
+43(ρρ𝒁~𝒁+~β𝒁+32βdx3)|𝒁+~|2𝒁+~φ4dx+23|𝒁+~|4|φ2|2dx\displaystyle+4\int_{\mathbb{R}^{3}}\left(\int_{-\rho}^{\rho}\widetilde{\bm{Z}^{-}}\cdot\nabla\widetilde{\bm{Z}^{+}}\cdot\beta-\bm{Z}^{+}\cdot\partial_{3}^{2}\beta\,{\rm d}x_{3}\right)\cdot|\widetilde{\bm{Z}^{+}}|^{2}\widetilde{\bm{Z}^{+}}\varphi^{4}\,{\rm d}x+2\int_{\mathbb{R}^{3}}|\widetilde{\bm{Z}^{+}}|^{4}|\nabla\varphi^{2}|^{2}\,{\rm d}x
\displaystyle\lesssim 1+(𝒁+¯L2(B(ρ))+𝒁+~L2(U(ρ)))𝒁~φL4(U(ρ))𝒁+~φL4(U(ρ))\displaystyle 1+\left(\|\nabla\overline{\bm{Z}^{+}}\|_{L^{2}(B^{\prime}(\rho))}+\|\nabla\widetilde{\bm{Z}^{+}}\|_{L^{2}(U(\rho))}\right)\cdot\|\widetilde{\bm{Z}^{-}}\varphi\|_{L^{4}(U(\rho))}\|\widetilde{\bm{Z}^{+}}\varphi\|_{L^{4}(U(\rho))}
×(|𝒁+~|2φ2)L2(U(ρ))+𝒁+~φL4(U(ρ))3\displaystyle\times\|\nabla\left(|\widetilde{\bm{Z}^{+}}|^{2}\varphi^{2}\right)\|_{L^{2}(U(\rho))}+\|\widetilde{\bm{Z}^{+}}\varphi\|_{L^{4}(U(\rho))}^{3}
\displaystyle\leqslant C+C(1+𝒁+L2(U(ρ))2)(𝒁+~φL4(U(ρ))4+𝒁~φL4(U(ρ))4)\displaystyle C+C\left(1+\|\nabla\bm{Z}^{+}\|_{L^{2}(U(\rho))}^{2}\right)\cdot\left(\|\widetilde{\bm{Z}^{+}}\varphi\|_{L^{4}(U(\rho))}^{4}+\|\widetilde{\bm{Z}^{-}}\varphi\|_{L^{4}(U(\rho))}^{4}\right)
(4.5) (|𝒁+~|2φ2)L2(U(ρ))2.\displaystyle-\|\nabla\left(|\widetilde{\bm{Z}^{+}}|^{2}\varphi^{2}\right)\|_{L^{2}(U(\rho))}^{2}.

Analogously, multiplying (4.4) by 4|𝒁~|2𝒁~φ44|\widetilde{\bm{Z}^{-}}|^{2}\widetilde{\bm{Z}^{-}}\cdot\varphi^{4}, and integrating the resulting equations over 3\mathbb{R}^{3}, we have

ddt𝒁~φL4(U(ρ))4+43|𝒁~|2|𝒁~|2φ4dx+23|(|𝒁~|2φ2)|2dx\displaystyle\frac{d}{dt}\|\widetilde{\bm{Z}^{-}}\varphi\|_{L^{4}(U(\rho))}^{4}+4\int_{\mathbb{R}^{3}}|\nabla\widetilde{\bm{Z}^{-}}|^{2}|\widetilde{\bm{Z}^{-}}|^{2}\varphi^{4}\,{\rm d}x+2\int_{\mathbb{R}^{3}}|\nabla\left(|\widetilde{\bm{Z}^{-}}|^{2}\varphi^{2}\right)|^{2}\,{\rm d}x
=\displaystyle= 3𝒁+α4β4|𝒁~|44𝒁+~𝒁¯|𝒁~|2𝒁~φ4dx\displaystyle\int_{\mathbb{R}^{3}}\bm{Z}^{+}\cdot\nabla\alpha^{4}\cdot\beta^{4}|\widetilde{\bm{Z}^{-}}|^{4}-4\widetilde{\bm{Z}^{+}}\cdot\nabla\overline{\bm{Z}^{-}}\cdot|\widetilde{\bm{Z}^{-}}|^{2}\widetilde{\bm{Z}^{-}}\varphi^{4}\,{\rm d}x
+43(ρρ𝒁+~𝒁~β𝒁32βdx3)|𝒁~|2𝒁~φ4dx+23|𝒁~|4|φ2|2dx\displaystyle+4\int_{\mathbb{R}^{3}}\left(\int_{-\rho}^{\rho}\widetilde{\bm{Z}^{+}}\cdot\nabla\widetilde{\bm{Z}^{-}}\cdot\beta-\bm{Z}^{-}\cdot\partial_{3}^{2}\beta\,{\rm d}x_{3}\right)\cdot|\widetilde{\bm{Z}^{-}}|^{2}\widetilde{\bm{Z}^{-}}\varphi^{4}\,{\rm d}x+2\int_{\mathbb{R}^{3}}|\widetilde{\bm{Z}^{-}}|^{4}|\nabla\varphi^{2}|^{2}\,{\rm d}x
\displaystyle\leqslant C+C(1+𝒁L2(U(ρ))2)(𝒁+~φL4(U(ρ))4+𝒁~φL4(U(ρ))4)\displaystyle C+C\left(1+\|\nabla\bm{Z}^{-}\|_{L^{2}(U(\rho))}^{2}\right)\cdot\left(\|\widetilde{\bm{Z}^{+}}\varphi\|_{L^{4}(U(\rho))}^{4}+\|\widetilde{\bm{Z}^{-}}\varphi\|_{L^{4}(U(\rho))}^{4}\right)
(4.6) (|𝒁~|2φ2)L2(U(ρ))2.\displaystyle-\|\nabla\left(|\widetilde{\bm{Z}^{-}}|^{2}\varphi^{2}\right)\|_{L^{2}(U(\rho))}^{2}.

Summing up (4) and (4) and applying Gronwall’s inequality, we have that for all ρ2<t<0-\rho^{2}<t<0,

(4.7) 𝒁+~L4(U(ρε))4+𝒁~L4(U(ρε))4C𝒁+~φL4(U(ρ))4+C𝒁~φL4(U(ρ))4C.\displaystyle\|\widetilde{\bm{Z}^{+}}\|_{L^{4}(U(\rho-\varepsilon))}^{4}+\|\widetilde{\bm{Z}^{-}}\|_{L^{4}(U(\rho-\varepsilon))}^{4}\leqslant C\|\widetilde{\bm{Z}^{+}}\varphi\|_{L^{4}(U(\rho))}^{4}+C\|\widetilde{\bm{Z}^{-}}\varphi\|_{L^{4}(U(\rho))}^{4}\leqslant C.

Accordingly, by (4.2) and (4.7), we have that for 0<r<ρε0<r<\rho-\varepsilon,

r2(𝒖L3(Q(r))3+𝒃L3(Q(r))3)\displaystyle r^{-2}\left(\|\bm{u}\|_{L^{3}(Q(r))}^{3}+\|\bm{b}\|_{L^{3}(Q(r))}^{3}\right)
\displaystyle\leqslant Cr2(𝒁+L3(Q(r))3+𝒁L3(Q(r))3)\displaystyle Cr^{-2}\left(\|\bm{Z}^{+}\|_{L^{3}(Q(r))}^{3}+\|\bm{Z}^{-}\|_{L^{3}(Q(r))}^{3}\right)
\displaystyle\leqslant Cr2(𝒁+~L3(Q(r))3+𝒁~L3(Q(r))3)+Cr2(𝒁+¯L3(Q(r))3+𝒁¯L3(Q(r))3)\displaystyle Cr^{-2}\left(\|\widetilde{\bm{Z}^{+}}\|_{L^{3}(Q(r))}^{3}+\|\widetilde{\bm{Z}^{-}}\|_{L^{3}(Q(r))}^{3}\right)+Cr^{-2}\left(\|\overline{\bm{Z}^{+}}\|_{L^{3}(Q(r))}^{3}+\|\overline{\bm{Z}^{-}}\|_{L^{3}(Q(r))}^{3}\right)
\displaystyle\leqslant Cr34+Cr1r20B(r)(|𝒁+¯|3+|𝒁¯|3)dx1dx2dt\displaystyle Cr^{\frac{3}{4}}+Cr^{-1}\int_{-r^{2}}^{0}\int_{B^{\prime}(r)}\left(|\overline{\bm{Z}^{+}}|^{3}+|\overline{\bm{Z}^{-}}|^{3}\right)\,{\rm d}x_{1}\,{\rm d}x_{2}\,{\rm d}t
\displaystyle\leqslant Cr34+Csup1<t<0(𝒖,𝒃)L2(B(1))2(r20ρρB(r)|(𝒖,𝒃)|2dxdt)12.\displaystyle Cr^{\frac{3}{4}}+C\sup_{-1<t<0}\|\left(\bm{u},\bm{b}\right)\|_{L^{2}(B(1))}^{2}\cdot\left(\int_{-r^{2}}^{0}\int_{-\rho}^{\rho}\int_{B^{\prime}(r)}|\nabla\left(\bm{u},\bm{b}\right)|^{2}\,{\rm d}x\,{\rm d}t\right)^{\frac{1}{2}}.

We can pick a sufficient small 0<R0<10<R_{0}<1, such that for all 0<r<R00<r<R_{0},

r2(𝒖L3(Q(r))3+𝒃L3(Q(r))3)<ε1.\displaystyle r^{-2}\left(\|\bm{u}\|_{L^{3}(Q(r))}^{3}+\|\bm{b}\|_{L^{3}(Q(r))}^{3}\right)<\varepsilon_{1}.

By Lemma A.9, we have that the solution is regular at (0,0)(0,0), which leads to a contradiction.∎∎

Now, we are in position to prove Theorem 1.2 by standard rigid methods.

For rk=2k,k1r_{k}=2^{-k},\ k\geqslant 1 and (x,t)Q(1)(x,t)\in Q(1), we denote the following scaling

𝒖k(x,t)=rk𝒖(rkx,rk2t),𝒃k(x,t)=rk𝒃(rkx,rk2t)\displaystyle\bm{u}_{k}(x,t)=r_{k}\bm{u}\left(r_{k}x,r_{k}^{2}t\right),\ \bm{b}_{k}(x,t)=r_{k}\bm{b}\left(r_{k}x,r_{k}^{2}t\right)
πk(x,t)=rk2π(rkx,rk2t).\displaystyle\pi_{k}(x,t)=r_{k}^{2}\pi\left(r_{k}x,r_{k}^{2}t\right).

By (3.22), we obtain that for k1k\geqslant 1,

(4.8) supt(1,0)(𝒖k,𝒃k)L2(B(1))2+(𝒖k,𝒃k)L2(Q(1))2C.\displaystyle\sup_{t\in(-1,0)}\|(\bm{u}_{k},\bm{b}_{k})\|^{2}_{L^{2}(B(1))}+\|\nabla(\bm{u}_{k},\bm{b}_{k})\|^{2}_{L^{2}(Q(1))}\leqslant C.

Applying Lemma 3.1 and Lemma A.6, we obtain that for 0<r10<r\leqslant 1,

r2πL32(Q(r))32C,\displaystyle r^{-2}\|\pi\|_{L^{\frac{3}{2}}(Q(r))}^{\frac{3}{2}}\leqslant C,

which implies that

(4.9) πkL32(Q(1))C.\displaystyle\|\pi_{k}\|_{L^{\frac{3}{2}}(Q(1))}\leqslant C.

Moreover, (𝒖k,𝒃k,πk)\left(\bm{u}_{k},\bm{b}_{k},\pi_{k}\right) is a suitable weak solution to the MHD equations (1.1) in Q(1)Q(1), which converges weakly (by taking subsequences if needed) to some (𝒗,𝑩,Π)\left(\bm{v},\bm{B},\Pi\right),

(4.10) supt(1,0)(𝒗,𝑩)L2(B(1))2+(𝒗,𝑩)L2(Q(1))2+ΠL32(Q(1))C.\displaystyle\sup_{t\in(-1,0)}\|\left(\bm{v},\bm{B}\right)\|^{2}_{L^{2}(B(1))}+\|\nabla\left(\bm{v},\bm{B}\right)\|^{2}_{L^{2}(Q(1))}+\|\Pi\|_{L^{\frac{3}{2}}(Q(1))}\leqslant C.

By a similar argument as [17, Theorem 2.2], we can prove that (𝒗,𝑩,Π)\left(\bm{v},\bm{B},\Pi\right) is a suitable weak solution to the MHD equations in Q(1)Q(1) and (𝒖k,𝒃k)k(𝒗,𝑩)\left(\bm{u}_{k},\bm{b}_{k}\right)\underset{k\rightarrow\infty}{\longrightarrow}\left(\bm{v},\bm{B}\right) strongly in L3(Q(1))L^{3}(Q(1)). By (1.8)–(1.9), we have

(4.11) v3=B3=0.\displaystyle v_{3}=B_{3}=0.

By Lemma 4.1, the solution (𝒗,𝑩)(\bm{v},\bm{B}) is regular at (0,0)(0,0). If we assume that the solution (𝒖,𝒃)(\bm{u},\bm{b}) is singular at (0,0)(0,0), (𝒖k,𝒃k)(\bm{u}_{k},\bm{b}_{k}) is also singular at (0,0)(0,0). It leads to a contradiction by Lemma A.8.

The proof of Theorem 1.2 is completed.∎

Appendix A

Lemma A.1.

[3, Lemma A.2] Let 0<rR<+0<r\leqslant R<+\infty and h:B(2R)×(r,r)h:B^{\prime}(2R)\times(-r,r)\rightarrow\mathbb{R} be harmonic. Then for all 0<ρr40<\rho\leqslant\frac{r}{4} and 1q<+1\leqslant\ell\leqslant q<+\infty, we get

(A.1) hLq(B(R)×(ρ,ρ))qCρr23qhL(B(2R)×(r,r))q,\displaystyle\|h\|_{L^{q}\left(B^{\prime}(R)\times(-\rho,\rho)\right)}^{q}\leqslant C\rho r^{2-\frac{3q}{\ell}}\|h\|_{L^{\ell}\left(B^{\prime}(2R)\times(-r,r)\right)}^{q},

where CC stands for a positive constant depending only on qq and \ell.

We will present the estimates of JJ, KK and HH, which is defined in (3.2), in the following several lemmas.

Lemma A.2.

Under the assumptions of Lemma 3.1, we have

(A.2) JCi=0ni(ri1Ei(R))+C32.\displaystyle J\leqslant C\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right)+C\mathcal{E}^{\frac{3}{2}}.
Proof.

Let π0,j=𝒥((𝒖𝒖𝒃𝒃)ϕj)\pi_{0,j}=\mathscr{J}\left(\left(\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\right)\cdot\phi_{j}\right).

J=\displaystyle J= k=0n1tU0(R)π0u33Φnϕkψdxds\displaystyle\sum_{k=0}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\,{\rm d}s
=\displaystyle= k=4nj=0n1tU0(R)π0,ju33Φnϕkψdxds\displaystyle\sum_{k=4}^{n}\sum_{j=0}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\text{d}s
+k=031tU0(R)π0u33Φnϕkψdxds\displaystyle+\sum_{k=0}^{3}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\text{d}s
=\displaystyle= k=4nj=0k41tU0(R)π0,ju33Φnϕkψdxds\displaystyle\sum_{k=4}^{n}\sum_{j=0}^{k-4}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\text{d}s
+k=4nj=k3n1tU0(R)π0,ju33Φnϕkψdxds\displaystyle+\sum_{k=4}^{n}\sum_{j=k-3}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\text{d}s
+k=031tU0(R)π0u33Φnϕkψdxds\displaystyle+\sum_{k=0}^{3}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\text{d}s
(A.3) =def\displaystyle\buildrel\hbox{\footnotesize def}\over{=} J1+J2+J3.\displaystyle J_{1}+J_{2}+J_{3}.

By (2.1), (3.14), Lemma 2.1 and Lemma A.1 with ρ=rk,r=rj+2\rho=r_{k},r=r_{j+2}, we have

J1=\displaystyle J_{1}= j=0n4k=j+4n1tU0(R)π0,ju33Φnϕkψdxds\displaystyle\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim j=0n4k=j+4nrk2rk20π0,jLq0q01(Uk(R))u3Lq0(Uk(R))ds\displaystyle\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}r_{k}^{-2}\int_{-r_{k}^{2}}^{0}\|\pi_{0,j}\|_{L^{\frac{q_{0}}{q_{0}-1}}(U_{k}(R))}\|u_{3}\|_{L^{q_{0}}(U_{k}(R))}\,{\rm d}s
\displaystyle\lesssim j=0n4k=j+4nrk11q0rj112q0rk20(𝒖,𝒃)L4q02q01(Uj(R))2u3Lq0(Uj(R))ds\displaystyle\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}r_{k}^{-1-\frac{1}{q_{0}}}r_{j}^{-1-\frac{1}{2q_{0}}}\int_{-r_{k}^{2}}^{0}\|\left(\bm{u},\bm{b}\right)\|_{L^{\frac{4q_{0}}{2q_{0}-1}}(U_{j}(R))}^{2}\|u_{3}\|_{L^{q_{0}}(U_{j}(R))}\,{\rm d}s
\displaystyle\lesssim j=0n4k=j+4nrk12p052q0rj112q0(𝒖,𝒃)L8q03(rj2,0;L4q02q01(Uj(R)))2\displaystyle\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}r_{k}^{1-\frac{2}{p_{0}^{*}}-\frac{5}{2q_{0}}}r_{j}^{-1-\frac{1}{2q_{0}}}\|\left(\bm{u},\bm{b}\right)\|_{L^{\frac{8q_{0}}{3}}\left(-r_{j}^{2},0;L^{\frac{4q_{0}}{2q_{0}-1}}(U_{j}(R))\right)}^{2}
×u3Lp0(rj2,0;Lq0(Uj(R)))\displaystyle\qquad\qquad\quad\times\|u_{3}\|_{L^{p_{0}^{*}}\left(-r_{j}^{2},0;L^{q_{0}}(U_{j}(R))\right)}
(A.4) \displaystyle\lesssim i=0ni(ri1Ei(R)).\displaystyle\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right).

By (2.1), (3.14) and Lemma 2.1, we have

J2=\displaystyle J_{2}= k=4n1tU0(R)𝒥((𝒖𝒖𝒃𝒃)χk3)u33Φnϕkψdxds\displaystyle\sum_{k=4}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\mathscr{J}\left(\left(\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\right)\cdot\chi_{k-3}\right)\cdot u_{3}\cdot\partial_{3}\mathrm{\Phi}_{n}\phi_{k}\psi\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim k=4nrk2rk20𝒥((𝒖𝒖𝒃𝒃)χk3)Lq0q01(Uk(R))u3Lq0(Uk(R))ds\displaystyle\sum_{k=4}^{n}r_{k}^{-2}\int_{-r_{k}^{2}}^{0}\|\mathscr{J}\left(\left(\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\right)\cdot\chi_{k-3}\right)\|_{L^{\frac{q_{0}}{q_{0}-1}}(U_{k}(R))}\|u_{3}\|_{L^{q_{0}}(U_{k}(R))}\,{\rm d}s
\displaystyle\lesssim k=0nrk2rk20(𝒖,𝒃)L2q0q01(Uk(R))2u3Lq0(Uk(R))ds\displaystyle\sum_{k=0}^{n}r_{k}^{-2}\int_{-r_{k}^{2}}^{0}\|\left(\bm{u},\bm{b}\right)\|_{L^{\frac{2q_{0}}{q_{0}-1}}(U_{k}(R))}^{2}\|u_{3}\|_{L^{q_{0}}(U_{k}(R))}\,{\rm d}s
(A.5) \displaystyle\lesssim i=0ni(ri1Ei(R)),\displaystyle\sum_{i=0}^{n}\mathscr{B}_{i}\left(r_{i}^{-1}E_{i}(R)\right),

which is analogous to (3.1). By (2.1) and (3.14), we have

(A.6) J310π0L32(U0(R))u3L3(U0(R))ds10(𝒖,𝒃)L3(U0(R))3ds32.\displaystyle J_{3}\lesssim\int_{-1}^{0}\|\pi_{0}\|_{L^{\frac{3}{2}}(U_{0}(R))}\|u_{3}\|_{L^{3}(U_{0}(R))}\,{\rm d}s\lesssim\int_{-1}^{0}\|\left(\bm{u},\bm{b}\right)\|_{L^{3}(U_{0}(R))}^{3}\,{\rm d}s\lesssim\mathcal{E}^{\frac{3}{2}}.

Summing up all the estimates of (A), (A), (A) and (A.6), we have (A.2).∎∎

Lemma A.3.

Under the assumptions of Lemma 3.1, we have

(A.7) KC12Rρi=0nri12(ri1Ei(R))+CRρ32.\displaystyle K\leqslant\frac{C\mathcal{E}^{\frac{1}{2}}}{R-\rho}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right)+\frac{C}{R-\rho}\mathcal{E}^{\frac{3}{2}}.
Proof.
K=\displaystyle K= 1tU0(R)π0𝒖Φnηψdxds+1tU0(R)π0𝒖Φnηψdxds\displaystyle\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\bm{u}\cdot\mathrm{\Phi}_{n}\eta\nabla\psi\,{\rm d}x\,{\rm d}s+\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\bm{u}\cdot\mathrm{\Phi}_{n}\nabla\eta\psi\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim k=0n1tU0(R)π0𝒖Φnϕkψdxds+10U0(R)|π0||𝒖|dxds\displaystyle\sum_{k=0}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\bm{u}\cdot\mathrm{\Phi}_{n}\phi_{k}\nabla\psi\,{\rm d}x\,{\rm d}s+\int_{-1}^{0}\int_{U_{0}(R)}|\pi_{0}||\bm{u}|\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim k=4nj=0n1tU0(R)π0,j𝒖Φnϕkψdxds\displaystyle\sum_{k=4}^{n}\sum_{j=0}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\ \bm{u}\cdot\mathrm{\Phi}_{n}\phi_{k}\nabla\psi\,{\rm d}x\,{\rm d}s
+k=031tU0(R)π0𝒖Φnϕkψdxds+10U0(R)|π0||𝒖|dxds\displaystyle+\sum_{k=0}^{3}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0}\bm{u}\cdot\mathrm{\Phi}_{n}\phi_{k}\nabla\psi\,{\rm d}x\,{\rm d}s+\int_{-1}^{0}\int_{U_{0}(R)}|\pi_{0}||\bm{u}|\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim k=4nj=0k41tU0(R)π0,j𝒖Φnϕkψdxds\displaystyle\sum_{k=4}^{n}\sum_{j=0}^{k-4}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\ \bm{u}\cdot\mathrm{\Phi}_{n}\phi_{k}\nabla\psi\,{\rm d}x\,{\rm d}s
+k=4nj=k3n1tU0(R)π0,j𝒖Φnϕkψdxds+1Rρ10U0(R)|π0||𝒖|dxds\displaystyle+\sum_{k=4}^{n}\sum_{j=k-3}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\ \bm{u}\cdot\mathrm{\Phi}_{n}\phi_{k}\nabla\psi\,{\rm d}x\,{\rm d}s+\frac{1}{R-\rho}\int_{-1}^{0}\int_{U_{0}(R)}|\pi_{0}||\bm{u}|\,{\rm d}x\,{\rm d}s
(A.8) =def\displaystyle\buildrel\hbox{\footnotesize def}\over{=} K1+K2+K3.\displaystyle K_{1}+K_{2}+K_{3}.

Analogously with (A), we have

K1=\displaystyle K_{1}= j=0n4k=j+4n1tU0(R)π0,j𝒖Φnϕkψdxds\displaystyle\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{0,j}\ \bm{u}\cdot\mathrm{\Phi}_{n}\phi_{k}\nabla\psi\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim 1Rρj=0n4k=j+4nrk1rk20π0,jL32(Uk(R))𝒖L3(Uk(R))ds\displaystyle\frac{1}{R-\rho}\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}r_{k}^{-1}\int_{-r_{k}^{2}}^{0}\|\pi_{0,j}\|_{L^{\frac{3}{2}}(U_{k}(R))}\|\bm{u}\|_{L^{3}(U_{k}(R))}\,{\rm d}s
\displaystyle\lesssim 1Rρj=0n4k=j+4nrk13rj23rk20(𝒖,𝒃)L3(Uj(R))3ds\displaystyle\frac{1}{R-\rho}\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}r_{k}^{-\frac{1}{3}}r_{j}^{-\frac{2}{3}}\int_{-r_{k}^{2}}^{0}\|\left(\bm{u},\bm{b}\right)\|_{L^{3}(U_{j}(R))}^{3}\,{\rm d}s
\displaystyle\lesssim 1Rρj=0n4k=j+4nrk16rj23(𝒖,𝒃)L4(rk2,0;L3(Uj(R)))3\displaystyle\frac{1}{R-\rho}\sum_{j=0}^{n-4}\sum_{k=j+4}^{n}r_{k}^{\frac{1}{6}}r_{j}^{-\frac{2}{3}}\|\left(\bm{u},\bm{b}\right)\|_{L^{4}\left(-r_{k}^{2},0;L^{3}(U_{j}(R))\right)}^{3}
(A.9) \displaystyle\lesssim 12Rρi=0nri12(ri1Ei(R)).\displaystyle\frac{\mathcal{E}^{\frac{1}{2}}}{R-\rho}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right).

Analogously with (A), we have

K2=\displaystyle K_{2}= k=4n1tU0(R)𝒥((𝒖𝒖𝒃𝒃)χk3)𝒖Φnϕkψdxds\displaystyle\sum_{k=4}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\mathscr{J}\left(\left(\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\right)\cdot\chi_{k-3}\right)\ \bm{u}\cdot\mathrm{\Phi}_{n}\phi_{k}\nabla\psi\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim 1Rρk=0nrk1rk20(𝒖,𝒃)L3(Uk(R))3ds\displaystyle\frac{1}{R-\rho}\sum_{k=0}^{n}r_{k}^{-1}\int_{-r_{k}^{2}}^{0}\|\left(\bm{u},\bm{b}\right)\|_{L^{3}(U_{k}(R))}^{3}\,{\rm d}s
(A.10) \displaystyle\lesssim 12Rρi=0nri12(ri1Ei(R)).\displaystyle\frac{\mathcal{E}^{\frac{1}{2}}}{R-\rho}\sum_{i=0}^{n}r_{i}^{\frac{1}{2}}\left(r_{i}^{-1}E_{i}(R)\right).

Analogously with (A.6), we have

(A.11) K31Rρ10(𝒖,𝒃)L3(U0(R))3ds1Rρ32.\displaystyle K_{3}\lesssim\frac{1}{R-\rho}\int_{-1}^{0}\|\left(\bm{u},\bm{b}\right)\|_{L^{3}(U_{0}(R))}^{3}\,{\rm d}s\lesssim\frac{1}{R-\rho}\mathcal{E}^{\frac{3}{2}}.

Summing up (A), (A), (A) and (A.11), we have (A.7).∎∎

Lemma A.4.

Under the assumptions of Lemma 3.1, we have

(A.12) HC(Rρ)332.H\leqslant\frac{C}{(R-\rho)^{3}}\mathcal{E}^{\frac{3}{2}}.
Proof.
H=\displaystyle H= k=0n1tU0(R)πh𝒖(Φnϕkψ)dxds\displaystyle-\sum_{k=0}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\nabla\pi_{h}\cdot\bm{u}\cdot\left(\mathrm{\Phi}_{n}\phi_{k}\psi\right)\,{\rm d}x\,{\rm d}s
=\displaystyle= k=031tU0(R)πh𝒖(Φnϕkψ)dxdsk=4n1tU0(R)πh𝒖(Φnϕkψ)dxds\displaystyle\sum_{k=0}^{3}\int_{-1}^{t}\int_{U_{0}(R)}\pi_{h}\cdot\bm{u}\cdot\nabla\left(\mathrm{\Phi}_{n}\phi_{k}\psi\right)\,{\rm d}x\,{\rm d}s-\sum_{k=4}^{n}\int_{-1}^{t}\int_{U_{0}(R)}\nabla\pi_{h}\cdot\bm{u}\cdot\left(\mathrm{\Phi}_{n}\phi_{k}\psi\right)\,{\rm d}x\,{\rm d}s
(A.13) =def\displaystyle\buildrel\hbox{\footnotesize def}\over{=} H1+H2.\displaystyle H_{1}+H_{2}.

Applying (2.1), Hölder’s inequality and the fact that

(A.14) πhL32(3)\displaystyle\|\pi_{h}\|_{L^{\frac{3}{2}}(\mathbb{R}^{3})}\leqslant πL32(3)+π0L32(3)(𝒖,𝒃)L3(3)2,\displaystyle\|\pi\|_{L^{\frac{3}{2}}(\mathbb{R}^{3})}+\|\pi_{0}\|_{L^{\frac{3}{2}}(\mathbb{R}^{3})}\lesssim\|\left(\bm{u},\bm{b}\right)\|_{L^{3}(\mathbb{R}^{3})}^{2},

we have

(A.15) H11Rρ1tU0(R)|πh||𝒖|dxds1RρπhL32(Q0(1))𝒖L3(Q0(1))1Rρ32.\displaystyle H_{1}\lesssim\frac{1}{R-\rho}\int_{-1}^{t}\int_{U_{0}(R)}|\pi_{h}||\bm{u}|\,{\rm d}x\,{\rm d}s\lesssim\frac{1}{R-\rho}\|\pi_{h}\|_{L^{\frac{3}{2}}\left(Q_{0}(1)\right)}\cdot\|\bm{u}\|_{L^{3}\left(Q_{0}(1)\right)}\lesssim\frac{1}{R-\rho}\mathcal{E}^{\frac{3}{2}}.

Moreover,

H2\displaystyle H_{2}\lesssim k=4nrk1Qk(R+ρ2)|πh||𝒖|dxds\displaystyle\sum_{k=4}^{n}r_{k}^{-1}\int_{Q_{k}(\frac{R+\rho}{2})}|\nabla\pi_{h}|\cdot|\bm{u}|\,{\rm d}x\,{\rm d}s
\displaystyle\lesssim k=4nrk1πhL32(Qk(R+ρ2))𝒖L3(Qk(R))\displaystyle\sum_{k=4}^{n}r_{k}^{-1}\left\|\nabla\pi_{h}\right\|_{L^{\frac{3}{2}}\left(Q_{k}(\frac{R+\rho}{2})\right)}\|\bm{u}\|_{L^{3}\left(Q_{k}(R)\right)}
(A.16) \displaystyle\lesssim k=4nrk13πhL32(rk2,0;L(Uk(R+ρ2)))𝒖L3(Qk(R)).\displaystyle\sum_{k=4}^{n}r_{k}^{-\frac{1}{3}}\left\|\nabla\pi_{h}\right\|_{L^{\frac{3}{2}}\left(-r_{k}^{2},0;L^{\infty}\left(U_{k}(\frac{R+\rho}{2})\right)\right)}\|\bm{u}\|_{L^{3}\left(Q_{k}(R)\right)}.

For any xUk(R+ρ2)x^{*}\in U_{k}(\frac{R+\rho}{2}), we have B(x,Rρ4)U1(R)B\left(x^{*},\frac{R-\rho}{4}\right)\subset U_{1}(R) due to k4k\geqslant 4 and |Rρ|12.|R-\rho|\leqslant\frac{1}{2}. Since πh\pi_{h} is harmonic in U1(R),U_{1}(R), using the mean value property, we have

|πh|(x)1|Rρ|4B(x,Rρ4)|πh|dx1(Rρ)3πhL32(U1(R)).\displaystyle\left|\nabla\pi_{h}\right|\left(x^{*}\right)\lesssim\frac{1}{|R-\rho|^{4}}\int_{B\left(x^{*},\frac{R-\rho}{4}\right)}|\pi_{h}|\,{\rm d}x\lesssim\frac{1}{(R-\rho)^{3}}\left\|\pi_{h}\right\|_{L^{\frac{3}{2}}\left(U_{1}(R)\right)}.

Hence,

H2\displaystyle H_{2}\lesssim 1(Rρ)3k=4nrk13πhL32(rk2,0;L32(U1(R)))𝒖L3(Qk(R))\displaystyle\frac{1}{(R-\rho)^{3}}\sum_{k=4}^{n}r_{k}^{-\frac{1}{3}}\left\|\pi_{h}\right\|_{L^{\frac{3}{2}}\left(-r_{k}^{2},0;L^{\frac{3}{2}}\left(U_{1}(R)\right)\right)}\|\bm{u}\|_{L^{3}\left(Q_{k}(R)\right)}
\displaystyle\lesssim 1(Rρ)3k=4nrk16(𝒖,𝒃)L4(rk2,0;L3(3))3\displaystyle\frac{1}{(R-\rho)^{3}}\sum_{k=4}^{n}r_{k}^{\frac{1}{6}}\ \|\left(\bm{u},\bm{b}\right)\|_{L^{4}\left(-r_{k}^{2},0;L^{3}\left(\mathbb{R}^{3}\right)\right)}^{3}
(A.17) \displaystyle\lesssim 1(Rρ)332.\displaystyle\frac{1}{(R-\rho)^{3}}\ \mathcal{E}^{\frac{3}{2}}.

Summing up (A), (A.15) and (A) , we have (A.12).∎∎

Lemma A.5.

[24, Lemma A.3] For any

1p<p=2qq3,3<q<+,\displaystyle 1\leqslant p_{*}<p=\frac{2q}{q-3},\quad 3<q<+\infty,

we have

k=0+rk12p3q(rk20f(,s)Lq(B(2))p𝑑s)1pCfLp,1(1,0;Lq(B(2))).\displaystyle\sum_{k=0}^{+\infty}r_{k}^{1-\frac{2}{p_{*}}-\frac{3}{q}}\left(\int_{-r_{k}^{2}}^{0}\left\|f(\cdot,s)\right\|_{L^{q}(B(2))}^{p_{*}}~{}ds\right)^{\frac{1}{p_{*}}}\leqslant C\left\|f\right\|_{L^{p,1}\left(-1,0;L^{q}(B(2))\right)}.

For the sake of simplicity, we define

(A.18) D(π,z0,r)=r2Q(z0,r)|π|32dxdt,F(𝒖,𝒃,z0,r)=r2Q(z0,r)|𝒖|3+|𝒃|3dxdt,\displaystyle D(\pi,z_{0},r)=r^{-2}\int_{Q(z_{0},r)}\left|\pi\right|^{\frac{3}{2}}\,{\rm d}x\,{\rm d}t,\ F(\bm{u},\bm{b},z_{0},r)=r^{-2}\int_{Q(z_{0},r)}|\bm{u}|^{3}+|\bm{b}|^{3}\,{\rm d}x\,{\rm d}t,
(A.19) D(π,r)=defD(π,(0,0),r),F(𝒖,𝒃,r)=defC(𝒖,𝒃,(0,0),r).\displaystyle D(\pi,r)\buildrel\hbox{\footnotesize def}\over{=}D(\pi,(0,0),r),\ F(\bm{u},\bm{b},r)\buildrel\hbox{\footnotesize def}\over{=}C(\bm{u},\bm{b},(0,0),r).
Lemma A.6.

Let πL32(Q(1))\pi\in L^{\frac{3}{2}}(Q(1)) solve Δπ=(𝐮𝐮𝐛𝐛)\Delta\pi=\nabla\cdot\nabla\cdot\left(\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\right) in the sense of distributions. If there exists a constant K0K_{0} such that for all 0<rR10<r\leqslant R\leqslant 1,

(A.20) F(𝒖,𝒃,r)K0,\displaystyle F(\bm{u},\bm{b},r)\leqslant K_{0},

then for some α>0\alpha>0 and all 0<rR0<r\leqslant R,

(A.21) D(π,r)C(rR)αD(π,R)+CK0.\displaystyle D(\pi,r)\leqslant C\left(\frac{r}{R}\right)^{\alpha}\cdot D(\pi,R)+CK_{0}.
Proof.

We claim that for 0<2r<ρR0<2r<\rho\leqslant R,

(A.22) D(π,r)C2(rρ)D(π,ρ)+C2(ρr)2F(𝒖,𝒃,ρ).\displaystyle D(\pi,r)\leq C_{2}\left(\frac{r}{\rho}\right)D(\pi,\rho)+C_{2}\left(\frac{\rho}{r}\right)^{2}F(\bm{u},\bm{b},\rho).

Actually, we write π=π0+πh\pi=\pi_{0}+\pi_{h}, where π0=𝒥((𝒖𝒖𝒃𝒃)χB(ρ))\pi_{0}=\mathscr{J}\left(\left(\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\right)\cdot\chi_{B(\rho)}\right) and

(A.23) D(π0,r)r2𝒖𝒖𝒃𝒃L32(Q(ρ))32(ρr)2F(𝒖,𝒃,ρ).\displaystyle D(\pi_{0},r)\lesssim r^{-2}\|\bm{u}\otimes\bm{u}-\bm{b}\otimes\bm{b}\|_{L^{\frac{3}{2}}(Q(\rho))}^{\frac{3}{2}}\lesssim\left(\frac{\rho}{r}\right)^{2}F(\bm{u},\bm{b},\rho).

πh\pi_{h} is harmonic in B(ρ)B(\rho) and the mean value property of πh\pi_{h} implies that

(A.24) D(πh,r)rr20πhL(B(r))32dt(rρ)D(πh,ρ)(rρ)(D(π,ρ)+D(π0,ρ)).\displaystyle D(\pi_{h},r)\lesssim r\int_{-r^{2}}^{0}\|\pi_{h}\|_{L^{\infty}(B(r))}^{\frac{3}{2}}\,{\rm d}t\lesssim\left(\frac{r}{\rho}\right)D(\pi_{h},\rho)\lesssim\left(\frac{r}{\rho}\right)\left(D(\pi,\rho)+D(\pi_{0},\rho)\right).

Summing up (A.23) and (A.24), we have (A.22).

Let θ(0,12)\theta\in(0,\frac{1}{2}). By (A.20) and (A.22), we have that for 0<rR0<r\leqslant R,

(A.25) D(π,θr)C2θD(π,r)+C2K0θ2.\displaystyle D(\pi,\theta r)\leqslant C_{2}\cdot\theta\ D(\pi,r)+C_{2}K_{0}\ \theta^{-2}.

We choose θ\theta such that C2θ=12C_{2}\cdot\theta=\frac{1}{2}. For θR<rR\theta R<r\leq R, we have

(A.26) D(π,r)θ2R2Q(R)|π|32dxdt.\displaystyle D(\pi,r)\leqslant\theta^{-2}R^{-2}\int_{Q(R)}|\pi|^{\frac{3}{2}}\,{\rm d}x\,{\rm d}t.

This together with a standard iteration yields (A.21) with α=ln2lnθ>0\alpha=-\frac{\ln 2}{\ln\theta}>0. ∎∎

Lemma A.7.

[23, Theorem 1.1] There exists an absolute constant ε0>0\varepsilon_{0}>0 with the following property. If (𝐮,𝐛,π)(\bm{u},\bm{b},\pi) is a suitable weak solution to the MHD equations in Q(1)Q(1) satisfying that for some 0<R10<R\leqslant 1, Q(z0,R)Q(1)Q(z_{0},R)\subseteq Q(1) and

(A.27) R2Q(z0,R)(|𝒖|3+|𝒃|3+|π|32)dxdt<ε0,\displaystyle R^{-2}\int_{Q(z_{0},R)}\left(|\bm{u}|^{3}+|\bm{b}|^{3}+|\pi|^{\frac{3}{2}}\right)\,{\rm d}x\,{\rm d}t<\varepsilon_{0},

then the solution is regular at z0=(x0,t0)z_{0}=(x_{0},t_{0}).

Lemma A.8 (stability of singularities).

Let (𝐮k,𝐛k,πk)\left(\bm{u}_{k},\bm{b}_{k},\pi_{k}\right) be a sequence of suitable weak solutions to the MHD equations (1.1) in Q(1)Q(1) such that (𝐮k,𝐛k)(𝐯,𝐁)(\bm{u}_{k},\bm{b}_{k})\rightarrow(\bm{v},\bm{B}) in L3(Q(1))L^{3}(Q(1)), πkΠ\pi_{k}\rightharpoonup\Pi in L32(Q(1))L^{\frac{3}{2}}(Q(1)). Assume (𝐮k,𝐛k)(\bm{u}_{k},\bm{b}_{k}) is singular at zk=(xk,tk)z_{k}=(x_{k},t_{k}), zk(0,0)z_{k}\rightarrow(0,0) as kk\rightarrow\infty. Then (𝐯,𝐁)(\bm{v},\bm{B}) is singular at (0,0)(0,0).

Proof.

The proof is similar with [19, Lemma 2.1]. If (𝒗,𝑩)(\bm{v},\bm{B}) is regular at (0,0)(0,0), then there exists ρ0>0\rho_{0}>0 and for all 0<r<ρ00<r<\rho_{0},

(A.28) r2Q(r)|𝒗|3+|𝑩|3dxdtCr3.\displaystyle r^{-2}\int_{Q(r)}|\bm{v}|^{3}+|\bm{B}|^{3}\,{\rm d}x\,{\rm d}t\leqslant C\ r^{3}.

Since (𝒖k,𝒃k)(\bm{u}_{k},\bm{b}_{k}) is singular at zkz_{k}, by (A.18) and Lemma A.7, we have that for all 0<r<120<r<\frac{1}{2},

(A.29) F(𝒖k,𝒃k,zk,r)+D(πk,zk,r)ε0.\displaystyle F(\bm{u}_{k},\bm{b}_{k},z_{k},r)+D(\pi_{k},z_{k},r)\geqslant\varepsilon_{0}.

For sufficient large N=N(r)N=N(r) and all kNk\geqslant N , we have Q(zk,r)Q(2r)Q(z_{k},r)\in Q(2r) and

(A.30) F(𝒖k,𝒃k,2r)+D(πk,2r)ε04.\displaystyle F(\bm{u}_{k},\bm{b}_{k},2r)+D(\pi_{k},2r)\geqslant\frac{\varepsilon_{0}}{4}.

Denote F~(r)=lim supkF(𝒖k,𝒃k,r)\tilde{F}(r)=\underset{k\rightarrow\infty}{\limsup}\ F(\bm{u}_{k},\bm{b}_{k},r) and D~(r)=lim supkD(πk,r)\tilde{D}(r)=\underset{k\rightarrow\infty}{\limsup}\ D(\pi_{k},r). For all 0<r<10<r<1, we have

(A.31) F~(r)+D~(r)ε04.\displaystyle\tilde{F}(r)+\tilde{D}(r)\geqslant\frac{\varepsilon_{0}}{4}.

By (A.28), we have that for all 0<r<ρ<ρ00<r<\rho<\rho_{0},

(A.32) F~(r)=F(𝒗,𝑩,r)Cr3Cρ3.\displaystyle\tilde{F}(r)=F(\bm{v},\bm{B},r)\leqslant Cr^{3}\leqslant C\rho^{3}.

Applying an analogous argument in Lemma A.6, we have that for all rr with 0<r<ρ0<r<\rho,

(A.33) D~(r)C(rρ)αD~(ρ)+Cρ3.\displaystyle\tilde{D}(r)\leqslant C\left(\frac{r}{\rho}\right)^{\alpha}\cdot\tilde{D}(\rho)+C\rho^{3}.

Accordingly, we have for all 0<r<ρ<ρ00<r<\rho<\rho_{0},

(A.34) C3(rρ)αD~(ρ)+C3ρ3ε04,\displaystyle C_{3}\left(\frac{r}{\rho}\right)^{\alpha}\cdot\tilde{D}(\rho)+C_{3}\rho^{3}\geqslant\frac{\varepsilon_{0}}{4},

where the constant C3C_{3} is independent of rr and ρ\rho. It leads to a contradiction if we let r0r\rightarrow 0 and then ρ0\rho\rightarrow 0. The proof is completed. ∎∎

Lemma A.9.

[25, Theorem 1.1] There is an absolute number ε1>0\varepsilon_{1}>0 with the following property. If (𝐮,𝐛,π)(\bm{u},\bm{b},\pi) is a suitable weak solution of (1.1) in Q(1)Q(1) satisfying that for some 0<R0<10<R_{0}<1 and all 0<r<R00<r<R_{0},

(A.35) r2Q(r)|𝒖|3dxdt<ε1,\displaystyle r^{-2}\int_{Q(r)}|\bm{u}|^{3}\,{\rm d}x\,{\rm d}t<\varepsilon_{1},

then the solution (𝐮,𝐛)(\bm{u},\bm{b}) is regular at (0,0)(0,0).

Acknowledgments

Hui Chen was supported by Natural Science Foundation of Zhejiang Province(LQ19A010002). Chenyin Qian was supported by Natural Science Foundation of Zhejiang Province(LY20A010017). Ting Zhang was in part supported by National Natural Science Foundation of China (11771389, 11931010, 11621101).

References

  • [1] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math., 35(6):771–831, 1982.
  • [2] C. Cao and E. S. Titi. Global well-posedness of the three-dimensional viscous Primitive equations of large scale ocean and atmosphere dynamics. Ann. of Math., 166(1):245–267, 2007.
  • [3] D. Chae and J. Wolf. On the Serrin-type condition on one velocity component for the Navier–Stokes equations. Arch. Ration. Mech. Anal., 2021.
  • [4] J.-Y. Chemin and P. Zhang. On the critical one component regularity for 3–D Navier–Stokes system. Ann. Sci. Éc. Norm. Supér., 49(1):131–167, 2016.
  • [5] J.-Y. Chemin, P. Zhang, and Z. Zhang. On the critical one component regularity for 3–D Navier–Stokes system: general case. Arch. Ration. Mech. Anal., 224(3):871–905, 2017.
  • [6] H. Chen, D. Fang, and T. Zhang. Critical regularity criteria for Navier–Stokes equations in terms of one directional derivative of the velocity. Math. Methods Appl. Sci., 44(6):5123–5132, 2020.
  • [7] Q. Chen, C. Miao, and Z. Zhang. On the regularity criterion of weak solution for the 3D viscous magneto–hydrodynamics equations. Comm. Math. Phys., 284(3):919–930, 2008.
  • [8] G. Duvaut and J. L. Lions. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal., 46(4):241–279, 1972.
  • [9] L. Escauriaza, G. A. Seregin, and V. Šverák. Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal., 169(2):147–157, 2003.
  • [10] M. Giaquinta. Multiple integrals in the calculus of variations and nonlinear elliptic systems, volume 105 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1983.
  • [11] B. Han, Z. Lei, D. Li, and N. Zhao. Sharp one component regularity for Navier–Stokes. Arch. Ration. Mech. Anal., 231(2):939–970, 2019.
  • [12] B. Han and N. Zhao. On the critical blow up criterion with one velocity component for 3D incompressible MHD system. Nonlinear Anal. Real World Appl., 51, 2020.
  • [13] C. He and Z. Xin. On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ., 213(2):235–254, 2005.
  • [14] C. He and Z. Xin. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J. Funct. Anal., 227(1):113–152, 2005.
  • [15] I. Kukavica, W. Rusin, and M. Ziane. An anisotropic partial regularity criterion for the Navier–Stokes equations. J. Math. Fluid Mech., 19(1):123–133, 2017.
  • [16] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math., 63(1):193–248, 1934.
  • [17] F. Lin. A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math., 51(3):241–257, 1998.
  • [18] G. Prodi. Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl., 48(1):173–182, 1959.
  • [19] W. Rusin and V. Šverák. Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal., 260(3):879–891, 2011.
  • [20] M. Sermange and R. Temam. Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math., 36(5):635–664, 1983.
  • [21] J. Serrin. On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal., 9(1):187–195, 1962.
  • [22] S. Takahashi. On interior regularity criteria for weak solutions of the Navier–Stokes equations. Manuscr. Math., 69(3):237–254, 1990.
  • [23] V. Vyalov. Partial regularity of solutions to the magnetohydrodynamic equations. J. Math. Sci., 150(1):1771–1786, 2008.
  • [24] W. Wang, D. Wu, and Z. Zhang. Scaling invariant Serrin criterion via one velocity component for the Navier–Stokes equations. eprint arXiv:2005.11906, 2020.
  • [25] W. Wang and Z. Zhang. On the interior regularity criteria for suitable weak solutions of the magnetohydrodynamics equations. SIAM J. Math. Anal., 45(5):2666–2677, 2013.
  • [26] Y. Wang. BMO and the regularity criterion for weak solutions to the magnetohydrodynamic equations. J. Math. Anal. Appl., 328(2):1082–1086, 2007.
  • [27] Z. Zhang. Remarks on the global regularity criteria for the 3D MHD equations via two components. Z. Angew. Math. Phys., 66(3):977–987, 2015.
  • [28] Y. Zhou. Remarks on regularities for the 3D MHD equations. Discrete Contin. Dyn. Syst., 12(5):881–886, 2005.