This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharp Global well-posedness and scattering for the radial conformal nonlinear wave equation

Benjamin Dodson
Abstract.

In this paper we prove global well-posedness and scattering for the conformal, defocusing, nonlinear wave equation with radial initial data in the critical Sobolev space, for dimensions d4d\geq 4. This result extends a previous result proving sharp scattering in the three dimensional case.

1. Introduction

In this paper we prove global well-posedness and scattering for the conformal wave equation

(1.1) uttΔu+|u|4d1u=0,u(0,x)=u0,ut(0,x)=u1,u:×d,u_{tt}-\Delta u+|u|^{\frac{4}{d-1}}u=0,\qquad u(0,x)=u_{0},\qquad u_{t}(0,x)=u_{1},\qquad u:\mathbb{R}\times\mathbb{R}^{d}\rightarrow\mathbb{R},

with radially symmetric initial data in dimensions d4d\geq 4. This continues an earlier study we began in [Dod18b], [Dod21], [Dod18c], and [Dod22]. See also [MYZ20].

Specifically, we prove a sharp scattering result for radially symmetric initial data.

Theorem 1.

The initial value problem (1.1)(\ref{1.1}) is globally well-posed and scattering for any radially symmetric initial data u0H˙1/2(d)u_{0}\in\dot{H}^{1/2}(\mathbb{R}^{d}) and u1H˙1/2(d)u_{1}\in\dot{H}^{-1/2}(\mathbb{R}^{d}). Moreover, there exists a function C(d,u0H˙1/2,u1H˙1/2)C(d,\|u_{0}\|_{\dot{H}^{1/2}},\|u_{1}\|_{\dot{H}^{-1/2}}),

(1.2) C:4×[0,)×[0,)[0,),C:\mathbb{Z}_{\geq 4}\times[0,\infty)\times[0,\infty)\rightarrow[0,\infty),

such that if uu is the solution to (1.1)(\ref{1.1}) with radially symmetric initial data in u0u_{0}, u1u_{1},

(1.3) uLt,x2(d+1)d1(×d)C(d,u0H˙1/2,u1H˙1/2).\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\leq C(d,\|u_{0}\|_{\dot{H}^{1/2}},\|u_{1}\|_{\dot{H}^{-1/2}}).
Definition 1 (Global well-posedness and scattering).

Here we use the standard definitions of global well-posedness and scattering. Specifically, global well-posedness means that a solution to (1.1)(\ref{1.1}) exists, the solution is unique, and the solution depends continuously on the initial data. In this paper, a solution means a solution uLt,loc2(d+1)d1Lx2(d+1)d1u\in L_{t,loc}^{\frac{2(d+1)}{d-1}}L_{x}^{\frac{2(d+1)}{d-1}} which satisfies Duhamel’s principle,

(1.4) u(t)=cos(tΔ)u0+sin(tΔ)Δu10tsin((tτ)ΔΔ|u(τ)|4d1u(τ)𝑑τ.u(t)=\cos(t\sqrt{-\Delta})u_{0}+\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}u_{1}-\int_{0}^{t}\frac{\sin((t-\tau)\sqrt{-\Delta}}{\sqrt{-\Delta}}|u(\tau)|^{\frac{4}{d-1}}u(\tau)d\tau.

By scattering, we mean that there exist u0+,u0H˙1/2u_{0}^{+},u_{0}^{-}\in\dot{H}^{1/2}, u1+,u1H˙1/2u_{1}^{+},u_{1}^{-}\in\dot{H}^{-1/2}, such that,

(1.5) limtu(t)cos(tΔ)u0+sin(tΔ)Δu1+H˙1/2=0,\lim_{t\rightarrow\infty}\|u(t)-\cos(t\sqrt{-\Delta})u_{0}^{+}-\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}u_{1}^{+}\|_{\dot{H}^{1/2}}=0,
(1.6) limtt(u(t)cos(tΔ)u0+sin(tΔ)Δu1+)H˙1/2=0,\lim_{t\rightarrow\infty}\|\partial_{t}(u(t)-\cos(t\sqrt{-\Delta})u_{0}^{+}-\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}u_{1}^{+})\|_{\dot{H}^{-1/2}}=0,
(1.7) limtu(t)cos(tΔ)u0sin(tΔ)Δu1H˙1/2=0,\lim_{t\rightarrow-\infty}\|u(t)-\cos(t\sqrt{-\Delta})u_{0}^{-}-\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}u_{1}^{-}\|_{\dot{H}^{1/2}}=0,

and

(1.8) limtt(u(t)cos(tΔ)u0sin(tΔ)Δu1)H˙1/2=0.\lim_{t\rightarrow-\infty}\|\partial_{t}(u(t)-\cos(t\sqrt{-\Delta})u_{0}^{-}-\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}u_{1}^{-})\|_{\dot{H}^{-1/2}}=0.

Theorem 1 is sharp due to the scaling symmetry. Specifically, if uu solves (1.1)(\ref{1.1}), then for any λ>0\lambda>0,

(1.9) v(t,x)=λd12u(λt,λx),v(t,x)=\lambda^{\frac{d-1}{2}}u(\lambda t,\lambda x),

also solves (1.1)(\ref{1.1}) with initial data

(1.10) v(0,x)=λd12u0(λx),vt(0,x)=λd+12u1(λx).v(0,x)=\lambda^{\frac{d-1}{2}}u_{0}(\lambda x),\qquad v_{t}(0,x)=\lambda^{\frac{d+1}{2}}u_{1}(\lambda x).

Note that v(0,x)H˙1/2=u0H˙1/2\|v(0,x)\|_{\dot{H}^{1/2}}=\|u_{0}\|_{\dot{H}^{1/2}} and vt(0,x)H˙1/2=u1H˙1/2\|v_{t}(0,x)\|_{\dot{H}^{-1/2}}=\|u_{1}\|_{\dot{H}^{-1/2}} for any λ>0\lambda>0. This fact was well-exploited by [LS95] to prove ill-posedness for initial data in H˙s×H˙s1\dot{H}^{s}\times\dot{H}^{s-1} for s<12s<\frac{1}{2}. See also [CCT03].

1.1. Outline of previous results

Previous interest in the conformal wave equation, (1.1)(\ref{1.1}), has mainly focused on the d=3d=3 case. In this case, (1.1)(\ref{1.1}) is the cubic wave equation,

(1.11) uttΔu+u3=0.u_{tt}-\Delta u+u^{3}=0.

It has been known for a long time that global well-posedness and scattering hold for initial data in H˙1×L2\dot{H}^{1}\times L^{2} that decays sufficiently fast as |x||x|\rightarrow\infty, see [Str81] and [Str68]. Observe that such initial data has the conserved energy,

(1.12) E(u)=12|u(t,x)|2𝑑x+12|ut(t,x)|2𝑑x+d12(d+1)|u(t,x)|2(d+1)d1𝑑x.E(u)=\frac{1}{2}\int|\nabla u(t,x)|^{2}dx+\frac{1}{2}\int|u_{t}(t,x)|^{2}dx+\frac{d-1}{2(d+1)}\int|u(t,x)|^{\frac{2(d+1)}{d-1}}dx.

Conservation of the conformal energy gives scattering, which will be shown in section three.

For initial data in H˙1H˙1/2×L2H˙1/2\dot{H}^{1}\cap\dot{H}^{1/2}\times L^{2}\cap\dot{H}^{-1/2}, global well-posedness follows easily from (1.12)(\ref{1.7}) and the local well-posedness result of [LS95].

Theorem 2.

The initial value problem (1.1)(\ref{1.1}) is locally well-posed on some interval (T,T)(-T,T) for any (u0,u1)H˙1/2×H˙1/2(u_{0},u_{1})\in\dot{H}^{1/2}\times\dot{H}^{-1/2}, where T=T(u0,u1)T=T(u_{0},u_{1}). Global well-posedness and scattering hold for small initial data.

Moreover, the solution satisfies

(1.13) uLtH˙1/2((T,T)×d),utLtH˙1/2((T,T)×d),uLt,loc2(d+1)d1Lx2(d+1)d1((T,T)×d).u\in L_{t}^{\infty}\dot{H}^{1/2}((-T,T)\times\mathbb{R}^{d}),\qquad u_{t}\in L_{t}^{\infty}\dot{H}^{-1/2}((-T,T)\times\mathbb{R}^{d}),\qquad u\in L_{t,loc}^{\frac{2(d+1)}{d-1}}L_{x}^{\frac{2(d+1)}{d-1}}((-T,T)\times\mathbb{R}^{d}).

Furthermore, if the solution only exists on an interval [0,T+)[0,T_{+}) for some T+<T_{+}<\infty, then

(1.14) limTT+uLt,x2(d+1)d1([0,T]×d)=.\lim_{T\nearrow T_{+}}\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}([0,T]\times\mathbb{R}^{d})}=\infty.

By time reversal symmetry, the analogous result holds on (T,0](-T_{-},0].

Therefore, (1.1)(\ref{1.1}) has a local solution, and by (1.12)(\ref{1.7}), blowup cannot occur in finite time.

Using the Fourier truncation method, [KPV00] proved global well-posedness for (1.11)(\ref{1.6}) for initial data in Hs×Hs1H^{s}\times H^{s-1} for any s>34s>\frac{3}{4}. This method, introduced by [Bou98] for the nonlinear Schrödinger equation, utilizes the smoothing effect of the Duhamel term

(1.15) 0tsin((tτ)Δ)Δu(τ)3𝑑τ.\int_{0}^{t}\frac{\sin((t-\tau)\sqrt{-\Delta})}{\sqrt{-\Delta}}u(\tau)^{3}d\tau.

The data was then split into a high frequency piece that was small and a low frequency piece that is in H˙1×L2\dot{H}^{1}\times L^{2}. Global well-posedness holds for (1.11)(\ref{1.6}) with either piece as the initial data (from Theorem 2 and (1.12)(\ref{1.7})). For s>34s>\frac{3}{4}, it is possible to “paste” the two solutions together and obtain a solution to (1.11)(\ref{1.6}) for initial data in Hs×Hs1H^{s}\times H^{s-1}.

This work was subsequently extended by many authors. See [GP03], [BC06], [Roy09], [Roy08], [Dod18a], [Dod19] for subsequent improvements on this result.

A second approach that has proven to be very fruitful is the study of type two blowup. There are two different ways in which scattering can fail. The first way is if the H˙1/2\dot{H}^{1/2} norm is unbounded. Since the solution to the linear wave equation is a unitary operator, it is clear that one of (1.4)(\ref{1.3.1})(1.8)(\ref{1.3.4}) would fail. This is called “type one blowup”.

Scattering could also fail and yet the H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} norm remain bounded. This behavior is frequently observed for a soliton, although see also the pseudoconformal transformation of the soliton for the nonlinear Schrödinger equation (see for example [Mer93]).

In [DL15b] we proved global well-posedness and scattering for radially symmetric solutions to (1.11)(\ref{1.6}) with u(t)H˙1/2+ut(t)H˙1/2\|u(t)\|_{\dot{H}^{1/2}}+\|u_{t}(t)\|_{\dot{H}^{-1/2}} uniformly bounded on the entire time of its existence. See also [She14], [DL15a], and [DLMM20]. The proof in [DL15b] uses the concentration compactness argument, excluding the existence of a non-scattering solution of minimal size.

It is worth noting that the result in [DL15b] (and in [She14], [DL15a]) holds for both the defocusing and the focusing case. This is because, unlike in the energy-critical case, there does not exist a soliton solution to (1.11)(\ref{1.6}) that lies in H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2}.

Still, for the focusing, cubic wave equation,

(1.16) uttΔuu3=0,u_{tt}-\Delta u-u^{3}=0,

there do exist solutions for which the H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} is unbounded. Indeed, for this equation, the energy is given by

(1.17) E(u)=12|u(t,x)|2𝑑x+12|ut(t,x)|2𝑑xd12(d+1)|u(t,x)|2(d+1)d1𝑑x,E(u)=\frac{1}{2}\int|\nabla u(t,x)|^{2}dx+\frac{1}{2}\int|u_{t}(t,x)|^{2}dx-\frac{d-1}{2(d+1)}\int|u(t,x)|^{\frac{2(d+1)}{d-1}}dx,

which unlike (1.12)(\ref{1.7}) does not prevent any norms of a solution to (1.16)(\ref{1.11}) from getting arbitrarily large. In fact, it is well known that there exist solutions to (1.1)(\ref{1.1}) for which the H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} norm is unbounded. See [DN23] for the state of the art in this direction and a description of prior results.

1.2. Outline of the argument

Theorem 1 is proved using the Fourier truncation method and conservation of the conformal energy. Specifically, inspired by [KPV00], we split the initial data into two pieces,

(1.18) u0=v0+w0,u1=v1+w1,u_{0}=v_{0}+w_{0},\qquad u_{1}=v_{1}+w_{1},

where (v0,v1)(v_{0},v_{1}) has finite conformal energy and (w0,w1)(w_{0},w_{1}) has small H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} norm.

Following [Str81] and [LS95], we know that (1.1)(\ref{1.1}) is scattering with initial data (v0,v1)(v_{0},v_{1}) and (w0,w1)(w_{0},w_{1}). Therefore, it remains to handle the cross-terms. The contribution of the cross terms FF is of the form

(1.19) (t+|x|)Lv+(d1)v,(t+|x|)F,L=t+x|x|,\langle(t+|x|)Lv+(d-1)v,(t+|x|)F\rangle,\qquad L=\partial_{t}+\frac{x}{|x|}\cdot\nabla,

where FF contains terms of the form |w|4d1|v||w|^{\frac{4}{d-1}}|v|. In [Dod22],

(1.20) (1.19)(t+|x|)Lv+(d1)vL2(t+|x|)|w|2d1LwL2(d+1)d1d3d1v||L2(d+1)d14d1.(\ref{1.14})\lesssim\|(t+|x|)Lv+(d-1)v\|_{L^{2}}\|(t+|x|)|w|^{\frac{2}{d-1}}\|_{L^{\infty}}\|w\|_{L^{\frac{2(d+1)}{d-1}}}^{\frac{d-3}{d-1}}\|v||_{L^{\frac{2(d+1)}{d-1}}}^{\frac{4}{d-1}}.

Combining the radially symmetric Sobolev embedding theorem and the dispersive estimate,

(1.21) (t+|x|)|w|2d1L1,\|(t+|x|)|w|^{\frac{2}{d-1}}\|_{L^{\infty}}\lesssim 1,

and therefore (1.20)(\ref{1.15}) implies a bound on the integral of (t)t2\frac{\mathcal{E}(t)}{t^{2}}, where (t)\mathcal{E}(t) is the conformal energy.

For initial data in H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2}, we still have the bound

(1.22) |x||w|2d1L1,\||x||w|^{\frac{2}{d-1}}\|_{L^{\infty}}\lesssim 1,

from the radial Sobolev embedding theorem, along with the bound

(1.23) t|w|2d1L(|x|δ|t|)1δ.\|t|w|^{\frac{2}{d-1}}\|_{L^{\infty}(|x|\geq\delta|t|)}\lesssim\frac{1}{\delta}.
Remark 1.

For the discussion in this section, it is reasonable to ignore the logarithmic divergence of the radial Sobolev embedding that arises from the Littlewood–Paley projection in LL^{\infty}.

On the other hand, for general initial data in H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2}, there is no reason to think that the dispersive estimate t|w|2d1L\|t|w|^{\frac{2}{d-1}}\|_{L^{\infty}} will hold, since the H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} norm is invariant under the operator

(1.24) (cos(tΔ)sin(tΔ)ΔΔsin(tΔ)cos(tΔ)).\begin{pmatrix}\cos(t\sqrt{-\Delta})&\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}\\ -\sqrt{-\Delta}\sin(t\sqrt{-\Delta})&\cos(t\sqrt{-\Delta})\end{pmatrix}.

Instead, we use that the square L2L^{2} norm of t,xv\nabla_{t,x}v is bounded by the conformal energy divided by 1t2\frac{1}{t^{2}}, which gives us good decay to cancel out the contribution of t|w|4d1|v|t|w|^{\frac{4}{d-1}}|v|. We use the Morawetz estimate and the local energy decay to do this, which gives a bound on the scattering size.

In section two, we recall some Strichartz estimates and the small data result of [LS95]. In section three we recall the scattering result of [Str81]. In section four, we prove scattering in the d=4d=4 case. In section five, we prove a modified small data result in dimensions d>5d>5. In section six, we prove scattering in the d>4d>4 case. Finally, in section seven we complete the proof of Theorem 1 using the profile decomposition.

2. Strichartz estimates and small data results

Global well-posedness and scattering for (1.1)(\ref{1.1}) with small initial data is a direct result of Strichartz estimates.

Theorem 3 (Strichartz estimates).

Let II be a time interval and let u:I×du:I\times\mathbb{R}^{d}\rightarrow\mathbb{C} be a Schwartz solution to the wave equation,

(2.1) uttΔu+F=0,u(t0,)=u0,ut(t0,)=u1,for somet0I.u_{tt}-\Delta u+F=0,\qquad u(t_{0},\cdot)=u_{0},\qquad u_{t}(t_{0},\cdot)=u_{1},\qquad\text{for some}\qquad t_{0}\in I.

Then for s0s\geq 0, 2p,p~2\leq p,\tilde{p}\leq\infty, 2q,q~<2\leq q,\tilde{q}<\infty obeying the scaling conditions

(2.2) 1p+dq=d2s=1p~+dq~2,\frac{1}{p}+\frac{d}{q}=\frac{d}{2}-s=\frac{1}{\tilde{p}^{\prime}}+\frac{d}{\tilde{q}^{\prime}}-2,

and the wave admissibility conditions

(2.3) 1p+d12q,1p~+d12r~d14,\frac{1}{p}+\frac{d-1}{2q},\frac{1}{\tilde{p}}+\frac{d-1}{2\tilde{r}}\qquad\leq\qquad\frac{d-1}{4},
(2.4) uLtpLxq(I×d)+uLtH˙xs(I×d)+tuLtH˙xs1(I×d)s,p,q,p~,q~,s,du0H˙xs(d)+u1H˙xs1(d)+FLtp~Lxq~(I×d).\|u\|_{L_{t}^{p}L_{x}^{q}(I\times\mathbb{R}^{d})}+\|u\|_{L_{t}^{\infty}\dot{H}_{x}^{s}(I\times\mathbb{R}^{d})}+\|\partial_{t}u\|_{L_{t}^{\infty}\dot{H}_{x}^{s-1}(I\times\mathbb{R}^{d})}\lesssim_{s,p,q,\tilde{p},\tilde{q},s,d}\|u_{0}\|_{\dot{H}_{x}^{s}(\mathbb{R}^{d})}+\|u_{1}\|_{\dot{H}_{x}^{s-1}(\mathbb{R}^{d})}+\|F\|_{L_{t}^{\tilde{p}^{\prime}}L_{x}^{\tilde{q}^{\prime}}(I\times\mathbb{R}^{d})}.
Proof.

This theorem was copied from [Tao06]. See [Kat94], [GV95], [Kap89], [LS95], [Sog95], [SS93], and [KT98] for references. ∎

Of particular importance to this paper is the conformal Strichartz estimate,

(2.5) uLt,x2(d+1)d1(×d)du(0)H˙x1/2(d)+ut(0)H˙x1/2(d)+FLt,x2(d+1)d+3(×d),\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim_{d}\|u(0)\|_{\dot{H}_{x}^{1/2}(\mathbb{R}^{d})}+\|u_{t}(0)\|_{\dot{H}_{x}^{-1/2}(\mathbb{R}^{d})}+\|F\|_{L_{t,x}^{\frac{2(d+1)}{d+3}}(\mathbb{R}\times\mathbb{R}^{d})},

which was proved in the original paper [Str77]. A straightforward application of (2.5)(\ref{4.5}) gives global well-posedness and scattering for (1.1)(\ref{1.1}) with small initial data, for both radially symmetric initial data and general initial data, see [LS95].

Theorem 4.

For any d>3d>3, there exists some ϵ0(d)>0\epsilon_{0}(d)>0 such that if

(2.6) u(0,)H˙1/2(d)+ut(0,)H˙1/2(d)ϵ0(d),\|u(0,\cdot)\|_{\dot{H}^{1/2}(\mathbb{R}^{d})}+\|u_{t}(0,\cdot)\|_{\dot{H}^{-1/2}(\mathbb{R}^{d})}\leq\epsilon_{0}(d),

then (2.1)(\ref{4.1}) is globally well-posed and the solution satisfies

(2.7) uLt,x2(d+1)d1(×d)u(0,)H˙1/2(d)+ut(0,)H˙1/2(d).\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\|u(0,\cdot)\|_{\dot{H}^{1/2}(\mathbb{R}^{d})}+\|u_{t}(0,\cdot)\|_{\dot{H}^{-1/2}(\mathbb{R}^{d})}.

Moreover, if uu solves (1.1)(\ref{1.1}), uLt,x2(d+1)d1(×d)<\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}<\infty is equivalent to scattering to a free solution both forward and backward in time.

Remark 2.

This theorem is proved in many places and in far more generality, see for example [Tao06]. Still, for the large data result in dimensions d5d\geq 5, it will be useful to prove a slight modification of the small data result. Because of this, it is instructive to give a short proof of the small data result here.

Proof.

The theorem is proved using Picard iteration. Define the sequence

(2.8) u(0)(t)=cos(tΔ)u0+sin(tΔ)Δu1,u^{(0)}(t)=\cos(t\sqrt{-\Delta})u_{0}+\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}u_{1},

and for n1n\geq 1,

(2.9) u(n)(t)=u(0)(t)0tsin((tτ)Δ)Δ|u(n1)(τ)|4d1u(n1)(τ)𝑑τ.u^{(n)}(t)=u^{(0)}(t)-\int_{0}^{t}\frac{\sin((t-\tau)\sqrt{-\Delta})}{\sqrt{-\Delta}}|u^{(n-1)}(\tau)|^{\frac{4}{d-1}}u^{(n-1)}(\tau)d\tau.

Then, by (2.5)(\ref{4.5}),

(2.10) u(n)(t)Lt,x2(d+1)d1(×d)u0H˙1/2+u1H˙1/2+u(n1)Lt,x2(d+1)d1(×d)1+4d1.\|u^{(n)}(t)\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\|u_{0}\|_{\dot{H}^{1/2}}+\|u_{1}\|_{\dot{H}^{-1/2}}+\|u^{(n-1)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}^{1+\frac{4}{d-1}}.

Therefore, for ϵ0(d)>0\epsilon_{0}(d)>0 sufficiently small and some constant C(d)C(d) sufficiently large,

(2.11) u(n1)Lt,x2(d+1)d1(×d)C(d)ϵ0u(n)Lt,x2(d+1)d1(×d)C(d)ϵ0,\|u^{(n-1)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\leq C(d)\epsilon_{0}\hskip 14.22636pt\Rightarrow\hskip 14.22636pt\|u^{(n)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\leq C(d)\epsilon_{0},

and therefore, by induction,

(2.12) u(n)Lt,x2(d+1)d1(×d)C(d)ϵ0,n.\|u^{(n)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\leq C(d)\epsilon_{0},\qquad\forall n.

Also, by (2.5)(\ref{4.5}) and (2.12)(\ref{4.11}),

(2.13) u(n)u(n1)Lt,x2(d+1)d1(×d)[C(d)ϵ0]4d1u(n1)u(n2)Lt,x2(d+1)d1(×d),\|u^{(n)}-u^{(n-1)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim[C(d)\epsilon_{0}]^{\frac{4}{d-1}}\|u^{(n-1)}-u^{(n-2)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})},

which by the contraction mapping theorem proves that u(n)(t)u^{(n)}(t) converges in Lt,x2(d+1)d1(×d)L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d}) to a unique solution. ∎

While global well-posedness and scattering hold for small nonradial data, the proof in this paper of global well-posedness and scattering for (1.1)(\ref{1.1}) with large initial data relies heavily on radial symmetry. In particular, the proof relies heavily on the radial Strichartz estimate of [Ste05]. See also [RS04].

Theorem 5 (Strichartz estimates for radially symmetric initial data).

Let uu be a radially symmetric function on d+1\mathbb{R}^{d+1} such that uttΔu=0u_{tt}-\Delta u=0. Then, the following estimates hold,

(2.14) uLtpLxq(×d)u(0)H˙γ+ut(0)H˙γ1,\|u\|_{L_{t}^{p}L_{x}^{q}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\|u(0)\|_{\dot{H}^{\gamma}}+\|u_{t}(0)\|_{\dot{H}^{\gamma-1}},

where

(2.15) 1p+d1q<d12,and1p+dq=d2γ.\frac{1}{p}+\frac{d-1}{q}<\frac{d-1}{2},\qquad\text{and}\qquad\frac{1}{p}+\frac{d}{q}=\frac{d}{2}-\gamma.

Observe that after doing some algebra with (2.15)(\ref{4.14}), if p=2p=2,

(2.16) 1q<12d2d1.\frac{1}{q}<\frac{1}{2}\cdot\frac{d-2}{d-1}.

Note that one particular case of (2.14)(\ref{4.13}) is

(2.17) uLt2Lx2dd2(×d)u(0)H˙1/2+ut(0)H˙1/2.\|u\|_{L_{t}^{2}L_{x}^{\frac{2d}{d-2}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\|u(0)\|_{\dot{H}^{1/2}}+\|u_{t}(0)\|_{\dot{H}^{-1/2}}.

Moreover, we combining Theorem 5 with the radial Sobolev embedding theorem implies

Lemma 1.

For any 0<θ10<\theta\leq 1, d3d\geq 3,

(2.18) |x|d22(1θ)uLt2Lx2d(d2)θ(×d)d,θu(0)H˙1/2+ut(0)H˙1/2.\||x|^{\frac{d-2}{2}(1-\theta)}u\|_{L_{t}^{2}L_{x}^{\frac{2d}{(d-2)\theta}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim_{d,\theta}\|u(0)\|_{\dot{H}^{1/2}}+\|u_{t}(0)\|_{\dot{H}^{-1/2}}.
Proof.

Choose some qq very close to 12d2d1\frac{1}{2}\cdot\frac{d-2}{d-1}. For γ=d12dq\gamma=\frac{d-1}{2}-\frac{d}{q}, Theorem 5 implies that

(2.19) ||γuLt2Lxq(×d)u(0)H˙1/2+ut(0)H˙1/2.\||\nabla|^{\gamma}u\|_{L_{t}^{2}L_{x}^{q}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\|u(0)\|_{\dot{H}^{1/2}}+\|u_{t}(0)\|_{\dot{H}^{-1/2}}.

Then, by the radial Sobolev embedding theorem,

(2.20) |x|d12γuLt2Lxr(×d)u(0)H˙1/2+ut(0)H˙1/2,1r=1qγ.\||x|^{\frac{d-1}{2}\gamma}u\|_{L_{t}^{2}L_{x}^{r}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\|u(0)\|_{\dot{H}^{1/2}}+\|u_{t}(0)\|_{\dot{H}^{-1/2}},\qquad\frac{1}{r}=\frac{1}{q}-\gamma.

Interpolating (2.17)(\ref{4.16}) and (2.20)(\ref{4.19}) gives (2.18)(\ref{4.17}). ∎

The Christ–Kiselev lemma implies that Theorem 5 and Lemma 1 also hold for a small data solution to (1.1)(\ref{1.1}).

Lemma 2 (Christ–Kiselev lemma).

Let X,YX,Y be Banach spaces, let II be a time interval, and let KC0(I×IB(XY))K\in C^{0}(I\times I\rightarrow B(X\rightarrow Y)) be a kernel taking values in the space of bounded operators from XX to YY. If 1p<q1\leq p<q\leq\infty is such that

(2.21) IK(t,s)f(s)𝑑sLtq(IY)AfLtp(IX),\|\int_{I}K(t,s)f(s)ds\|_{L_{t}^{q}(I\rightarrow Y)}\leq A\|f\|_{L_{t}^{p}(I\rightarrow X)},

for all fLtp(IX)f\in L_{t}^{p}(I\rightarrow X) and some A>0A>0, then we also have

(2.22) sI:s<tK(t,s)f(s)𝑑sLtq(IY)p,qAfLtp(IX).\|\int_{s\in I:s<t}K(t,s)f(s)ds\|_{L_{t}^{q}(I\rightarrow Y)}\lesssim_{p,q}A\|f\|_{L_{t}^{p}(I\rightarrow X)}.
Proof.

This lemma was copied out of [Tao06]. This lemma was proved in [CK01]. See also [SS00] or [Tao00].

3. Conformal energy and Morawetz estimates

For large initial data, global well-posedness and scattering for (1.1)(\ref{1.1}) is equivalent to proving that (1.1)(\ref{1.1}) has a solution which satisfies

(3.1) uLt,x2(d+1)d1(×d)<.\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}<\infty.

Indeed, if (3.1)(\ref{5.1}) holds, \mathbb{R} can be partitioned into finitely many subintervals IjI_{j} for which

(3.2) uLt,x2(d+1)d1(Ij×d)1.\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(I_{j}\times\mathbb{R}^{d})}\ll 1.

One can then use the Picard iteration argument from Theorem 4 to prove global well-posedness and scattering.

On the other hand, if scattering is known to occur, then by (2.5)(\ref{4.5}) and the Picard iteration argument from Theorem 4, (3.1)(\ref{5.1}) holds.

For large data, [Str81] and [Str68] proved global well-posedness and scattering for (1.1)(\ref{1.1}) with large initial data with sufficient regularity and decay.

Theorem 6.

Suppose u0u_{0} and u1u_{1} are initial data that satisfy

(3.3) xu0L2+u0L2+xu1L2+xd1d+1u0Lx2(d+1)d1<.\|\langle x\rangle\nabla u_{0}\|_{L^{2}}+\|u_{0}\|_{L^{2}}+\|\langle x\rangle u_{1}\|_{L^{2}}+\|\langle x\rangle^{\frac{d-1}{d+1}}u_{0}\|_{L_{x}^{\frac{2(d+1)}{d-1}}}<\infty.

Here, x=(1+|x|2)1/2\langle x\rangle=(1+|x|^{2})^{1/2}. Then the solution to (1.1)(\ref{1.1}) is globally well-posed and scattering.

Proof.

The conformal energy,

(3.4) (u)=14d|(t+|x|)Lu+(d1)u|2+|(t|x|)L¯u+(d1)u|2dx\displaystyle\mathcal{E}(u)=\frac{1}{4}\int_{\mathbb{R}^{d}}|(t+|x|)Lu+(d-1)u|^{2}+|(t-|x|)\underline{L}u+(d-1)u|^{2}dx
+12(t2+|x|2)|u|2𝑑x+d14(d+1)(t2+|x|2)|u|2(d+1)d1𝑑x,\displaystyle+\frac{1}{2}\int(t^{2}+|x|^{2})|\cancel{\nabla}u|^{2}dx+\frac{d-1}{4(d+1)}\int(t^{2}+|x|^{2})|u|^{\frac{2(d+1)}{d-1}}dx,

is a conserved quantity, where L=(t+x|x|)L=(\partial_{t}+\frac{x}{|x|}\cdot\nabla) and L¯=(tx|x|)\underline{L}=(\partial_{t}-\frac{x}{|x|}\cdot\nabla).

Indeed, define the tensors

(3.5) T00(t,x)\displaystyle T^{00}(t,x) =12|tu|2+12|u|2+d12(d+1)|u|2(d+1)d1,\displaystyle=\frac{1}{2}|\partial_{t}u|^{2}+\frac{1}{2}|\nabla u|^{2}+\frac{d-1}{2(d+1)}|u|^{\frac{2(d+1)}{d-1}},
T0j(t,x)\displaystyle T^{0j}(t,x) =Tj0(t,x)=(tu)(xju),\displaystyle=T^{j0}(t,x)=-(\partial_{t}u)(\partial_{x_{j}}u),
Tjk(t,x)\displaystyle T^{jk}(t,x) =(xjuxku)δjk2(|u|2|tu|2)δjkd12(d+1)|u|2(d+1)d1.\displaystyle=(\partial_{x_{j}}u\partial_{x_{k}}u)-\frac{\delta_{jk}}{2}(|\nabla u|^{2}-|\partial_{t}u|^{2})-\delta_{jk}\frac{d-1}{2(d+1)}|u|^{\frac{2(d+1)}{d-1}}.

The tensor functions satisfy the differential equations

(3.6) tT00(t,x)+xjT0j(t,x)=0,tT0j(t,x)+xkTjk(t,x)=0.\partial_{t}T^{00}(t,x)+\partial_{x_{j}}T^{0j}(t,x)=0,\qquad\partial_{t}T^{0j}(t,x)+\partial_{x_{k}}T^{jk}(t,x)=0.

The Einstein summation convention is observed. The differential equations (3.6)(\ref{5.6}) imply that the quantity

(3.7) Q(t)=(t2+|x|2)T00(t,x)2txjT0j(t,x)+(d1)tu(tu)d12|u|2dx,Q(t)=\int(t^{2}+|x|^{2})T^{00}(t,x)-2tx_{j}T^{0j}(t,x)+(d-1)tu(\partial_{t}u)-\frac{d-1}{2}|u|^{2}dx,

is conserved. Indeed, by (3.6)(\ref{5.6}),

(3.8) ddtQ(t)=2tT00(t,x)𝑑x(t2+|x|2)xjT0j(t,x)dx2txjT0j(t,x)𝑑x+2txjxkTjk(t,x)dx\displaystyle\frac{d}{dt}Q(t)=2t\int T^{00}(t,x)dx-\int(t^{2}+|x|^{2})\partial_{x_{j}}T^{0j}(t,x)dx-2t\int x_{j}T^{0j}(t,x)dx+2t\int x_{j}\partial_{x_{k}}T^{jk}(t,x)dx
+(d1)u(tu)𝑑x+(d1)t(tu)2𝑑x+(d1)tu(Δu|u|4d1u)𝑑x(d1)u(tu)𝑑x.\displaystyle+(d-1)\int u(\partial_{t}u)dx+(d-1)t\int(\partial_{t}u)^{2}dx+(d-1)t\int u(\Delta u-|u|^{\frac{4}{d-1}}u)dx-(d-1)\int u(\partial_{t}u)dx.

Integrating the second term in (3.8)(\ref{5.8}) by parts,

(3.9) =2tT00(t,x)𝑑x2tδjkTjk(t,x)𝑑x+(d1)t(tu)2𝑑x+(d1)tu(Δu|u|4d1u)𝑑x.\displaystyle=2t\int T^{00}(t,x)dx-2t\int\delta_{jk}T^{jk}(t,x)dx+(d-1)t\int(\partial_{t}u)^{2}dx+(d-1)t\int u(\Delta u-|u|^{\frac{4}{d-1}}u)dx.

Since δjkδjk=d\delta_{jk}\delta_{jk}=d,

(3.10) =2tT00(t,x)𝑑x2t|u|2+dt(|u|2|tu|2)𝑑x+d(d1)td+1|u|2(d+1)d1𝑑x\displaystyle=2t\int T^{00}(t,x)dx-2t\int|\nabla u|^{2}+dt\int(|\nabla u|^{2}-|\partial_{t}u|^{2})dx+\frac{d(d-1)t}{d+1}\int|u|^{\frac{2(d+1)}{d-1}}dx
+(d1)t|tu|2𝑑x(d1)t|u|2𝑑x(d1)t|u|2(d+1)d1𝑑x.\displaystyle+(d-1)t\int|\partial_{t}u|^{2}dx-(d-1)t\int|\nabla u|^{2}dx-(d-1)t\int|u|^{\frac{2(d+1)}{d-1}}dx.

Doing some algebra,

(3.11) =2tT00(t,x)𝑑xt|u|2𝑑xt|tu|2𝑑xd1d+1t|u|2(d+1)d1𝑑x=0.=2t\int T^{00}(t,x)dx-t\int|\nabla u|^{2}dx-t\int|\partial_{t}u|^{2}dx-\frac{d-1}{d+1}t\int|u|^{\frac{2(d+1)}{d-1}}dx=0.

Therefore, Q(t)Q(t) is conserved.

Now then,

(3.12) (t2+|x|2)T00(t,x)𝑑x2txjT0j(t,x)𝑑x\displaystyle\int(t^{2}+|x|^{2})T^{00}(t,x)dx-\int 2tx_{j}T^{0j}(t,x)dx
=(t2+|x|2)(12|tu|2+12|x|x|u|2+12|u|2+d12(d+1)|u|2(d+1)d1)𝑑x\displaystyle=\int(t^{2}+|x|^{2})(\frac{1}{2}|\partial_{t}u|^{2}+\frac{1}{2}|\frac{x}{|x|}\cdot\nabla u|^{2}+\frac{1}{2}|\cancel{\nabla}u|^{2}+\frac{d-1}{2(d+1)}|u|^{\frac{2(d+1)}{d-1}})dx
=14(t+|x|)2|Lu|2𝑑x+14(t|x|)2|L¯u|2𝑑x\displaystyle=\frac{1}{4}\int(t+|x|)^{2}|Lu|^{2}dx+\frac{1}{4}\int(t-|x|)^{2}|\underline{L}u|^{2}dx
+12(t2+|x|2)|u|2𝑑x+d12(d+1)(t2+|x|2)|u|2(d+1)d1𝑑x.\displaystyle+\frac{1}{2}\int(t^{2}+|x|^{2})|\cancel{\nabla}u|^{2}dx+\frac{d-1}{2(d+1)}\int(t^{2}+|x|^{2})|u|^{\frac{2(d+1)}{d-1}}dx.

Next, integrating by parts,

(3.13) 12(t+|x|)Lu,(d1)uL2+12(t|x|)Lu,(d1)uL2\displaystyle\frac{1}{2}\langle(t+|x|)Lu,(d-1)u\rangle_{L^{2}}+\frac{1}{2}\langle(t-|x|)Lu,(d-1)u\rangle_{L^{2}}
=(d1)t(tu)u𝑑x+(d1)u(xu)𝑑x=(d1)t(tu)u𝑑xd(d1)2|u|2𝑑x.\displaystyle=(d-1)t\int(\partial_{t}u)udx+(d-1)\int u(x\cdot\nabla u)dx=(d-1)t\int(\partial_{t}u)udx-\frac{d(d-1)}{2}\int|u|^{2}dx.

Since

(3.14) d(d1)2|u|2𝑑x+(d1)22|u|2𝑑x=d12|u|2𝑑x,-\frac{d(d-1)}{2}\int|u|^{2}dx+\frac{(d-1)^{2}}{2}\int|u|^{2}dx=-\frac{d-1}{2}\int|u|^{2}dx,

(3.12)(\ref{5.12})(3.14)(\ref{5.14}) imply that Q(t)Q(t) is equal to the right hand side of (3.4)(\ref{5.4}).

Now then, translating in time so that the initial data is at time t=1t=1, (3.3)(\ref{5.3}) implies that (1)<\mathcal{E}(1)<\infty. Since (t)\mathcal{E}(t) is a conserved quantity,

(3.15) 1|u|2(d+1)d1𝑑x𝑑t1(1)t2𝑑t<.\int_{1}^{\infty}\int|u|^{\frac{2(d+1)}{d-1}}dxdt\lesssim\int_{1}^{\infty}\frac{\mathcal{E}(1)}{t^{2}}dt<\infty.

Time reversal symmetry of (1.1)(\ref{1.1}) implies (3.1)(\ref{5.1}). ∎

The computations using the stress-energy tensor also yield a Morawetz estimate.

Proposition 1.

For any T>0T>0, if uu solves (1.1)(\ref{1.1}),

(3.16) 0T[1|x|3u2+1|x||u|2(d+1)d1]𝑑x𝑑tsupt[0,T]t,xuL22.\displaystyle\int_{0}^{T}\int[\frac{1}{|x|^{3}}u^{2}+\frac{1}{|x|}|u|^{\frac{2(d+1)}{d-1}}]dxdt\lesssim\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}}^{2}.
Proof.

Since uu is radially symmetric, we compute in polar coordinates. Let M(t)M(t) denote the Morawetz potential,

(3.17) M(t)=uturrd1𝑑r+d12uturd2𝑑r.M(t)=\int u_{t}u_{r}r^{d-1}dr+\frac{d-1}{2}\int u_{t}ur^{d-2}dr.

Using Hardy’s inequality,

(3.18) sup0tT|M(t)|supt[0,T]uL22+utL22.\sup_{0\leq t\leq T}|M(t)|\lesssim\sup_{t\in[0,T]}\|\nabla u\|_{L^{2}}^{2}+\|u_{t}\|_{L^{2}}^{2}.

Next, by the product rule,

(3.19) ddtM(t)=uturtrd1𝑑r+d12ut2rd2𝑑r+utturrd1𝑑r+d12utturd2𝑑r.\frac{d}{dt}M(t)=\int u_{t}u_{rt}r^{d-1}dr+\frac{d-1}{2}\int u_{t}^{2}r^{d-2}dr+\int u_{tt}u_{r}r^{d-1}dr+\frac{d-1}{2}\int u_{tt}ur^{d-2}dr.

Integrating by parts,

(3.20) uturtrd1𝑑r+d12ut2rd2𝑑r=0.\int u_{t}u_{rt}r^{d-1}dr+\frac{d-1}{2}\int u_{t}^{2}r^{d-2}dr=0.

Next, integrating by parts, since Δu=urr+d1rur\Delta u=u_{rr}+\frac{d-1}{r}u_{r},

(3.21) Δuurrd1𝑑r+d12Δuurd2𝑑r=(d1)(d3)2u2rd4𝑑r.\displaystyle\int\Delta uu_{r}r^{d-1}dr+\frac{d-1}{2}\int\Delta uur^{d-2}dr=-\frac{(d-1)(d-3)}{2}\int u^{2}r^{d-4}dr.

Next, integrating by parts,

(3.22) |u|4d1uurrd1d12|u|2(d+1)d1rd2𝑑r=d1d+1|u|2(d+1)d1rd2𝑑r.\displaystyle-\int|u|^{\frac{4}{d-1}}uu_{r}r^{d-1}-\frac{d-1}{2}\int|u|^{\frac{2(d+1)}{d-1}}r^{d-2}dr=-\frac{d-1}{d+1}\int|u|^{\frac{2(d+1)}{d-1}}r^{d-2}dr.

Since (3.21)(\ref{5.21}) and (3.22)(\ref{5.22}) have the same sign, the proof is complete. ∎

Finite propagation speed also allows us to cut-off in space, which will be important to the proof of scattering. The reason for this is that examining the conformal energy in (3.4)(\ref{5.4}) implies that

(3.23) t2|x|12|t||t,xu(t,x)|2𝑑x(t)+|x|12|t||u(t,x)|2𝑑x.t^{2}\int_{|x|\leq\frac{1}{2}|t|}|\nabla_{t,x}u(t,x)|^{2}dx\lesssim\mathcal{E}(t)+\int_{|x|\leq\frac{1}{2}|t|}|u(t,x)|^{2}dx.

Thus, a cut-off in space yields a better bound on (3.18)(\ref{5.18}).

Proposition 2.

Suppose uu solves (1.1)(\ref{1.1}). For any T>0T>0, if χC0(d)\chi\in C_{0}^{\infty}(\mathbb{R}^{d}), χ(x)=1\chi(x)=1 for |x|1|x|\leq 1, χ(x)=0\chi(x)=0 for |x|2|x|\geq 2, then for any δ>0\delta>0,

(3.24) 0Tχ(xδT)[1|x|3u2+1|x||u|2(d+1)d1]𝑑x𝑑tδsupt[0,T]t,xuL2(|x|2δT)2+supt[0,T]1δ2T2uL2(|x|2δT)2.\displaystyle\int_{0}^{T}\int\chi(\frac{x}{\delta T})[\frac{1}{|x|^{3}}u^{2}+\frac{1}{|x|}|u|^{\frac{2(d+1)}{d-1}}]dxdt\lesssim_{\delta}\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}(|x|\leq 2\delta T)}^{2}+\sup_{t\in[0,T]}\frac{1}{\delta^{2}T^{2}}\|u\|_{L^{2}(|x|\leq 2\delta T)}^{2}.
Proof.

This time use

(3.25) M(t)=χ(xδT)uturrd1𝑑r+d12χ(xδT)uutrd2𝑑r.M(t)=\int\chi(\frac{x}{\delta T})u_{t}u_{r}r^{d-1}dr+\frac{d-1}{2}\int\chi(\frac{x}{\delta T})uu_{t}r^{d-2}dr.

We can use the same computations in (3.17)(\ref{5.17})(3.22)(\ref{5.22}), only we also have to take into account the fact that when integrating by parts, derivatives can hit χ(xδT)\chi(\frac{x}{\delta T}). Now then, since

(3.26) |(k)χ(xδT)|k1δkTk,fork=1,2,3,and is supported onδT|x|2δT.|\nabla^{(k)}\chi(\frac{x}{\delta T})|\lesssim_{k}\frac{1}{\delta^{k}T^{k}},\qquad\text{for}\qquad k=1,2,3,\qquad\text{and is supported on}\qquad\delta T\leq|x|\leq 2\delta T.

Moreover, for any l0l\geq 0,

(3.27) 1rl|(k)χ(xδT)|k,l1δk+lTk+l,fork=1,2,3,and is supported onδT|x|2δT.\frac{1}{r^{l}}|\nabla^{(k)}\chi(\frac{x}{\delta T})|\lesssim_{k,l}\frac{1}{\delta^{k+l}T^{k+l}},\qquad\text{for}\qquad k=1,2,3,\qquad\text{and is supported on}\qquad\delta T\leq|x|\leq 2\delta T.

Therefore, the contribution of the additional terms coming from χ(xδT)\chi(\frac{x}{\delta T}) is bounded by

(3.28) 1δT0TδT|x|2δT|t,xu|2𝑑x𝑑t+1δ3T30TδT|x|2δT|u|2𝑑x𝑑t\displaystyle\frac{1}{\delta T}\int_{0}^{T}\int_{\delta T\leq|x|\leq 2\delta T}|\nabla_{t,x}u|^{2}dxdt+\frac{1}{\delta^{3}T^{3}}\int_{0}^{T}\int_{\delta T\leq|x|\leq 2\delta T}|u|^{2}dxdt
δsupt[0,T]t,xuL2(|x|2δT)2+supt[0,T]1δ2T2uL2(|x|2δT)2.\displaystyle\lesssim_{\delta}\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}(|x|\leq 2\delta T)}^{2}+\sup_{t\in[0,T]}\frac{1}{\delta^{2}T^{2}}\|u\|_{L^{2}(|x|\leq 2\delta T)}^{2}.

Next, we prove a local energy decay estimate.

Proposition 3.

For any T>0T>0, R>0R>0, if uu solves (1.1)(\ref{1.1}),

(3.29) R10T|x|Rχ(xδT)[|u|2+ut2]𝑑x𝑑tδsupt[0,T]t,xuL2(|x|2δT)2\displaystyle R^{-1}\int_{0}^{T}\int_{|x|\leq R}\chi(\frac{x}{\delta T})[|\nabla u|^{2}+u_{t}^{2}]dxdt\lesssim_{\delta}\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}(|x|\leq 2\delta T)}^{2}
+supt[0,T]1δ2T2uL2(|x|2δT)2+supt[0,T]uL2(d+1)d1(|x|2δT)2(d+1)d1.\displaystyle+\sup_{t\in[0,T]}\frac{1}{\delta^{2}T^{2}}\|u\|_{L^{2}(|x|\leq 2\delta T)}^{2}+\sup_{t\in[0,T]}\|u\|_{L^{\frac{2(d+1)}{d-1}}(|x|\leq 2\delta T)}^{\frac{2(d+1)}{d-1}}.
Proof.

Define ψ(r)C0(d)\psi(r)\in C_{0}^{\infty}(\mathbb{R}^{d}) and suppose ψ(r)=1\psi(r)=1 for 0r10\leq r\leq 1, ψ(r)=32r\psi(r)=\frac{3}{2r} for r>2r>2, and r(rψ(r))=ϕ(r)0\partial_{r}(r\psi(r))=\phi(r)\geq 0 for r0r\geq 0. Now, define the Morawetz potential

(3.30) M(t)=R1χ(rδT)ψ(rR)uturrd𝑑r+d12R1χ(rδT)ψ(rR)uturd1𝑑r.M(t)=R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{t}u_{r}r^{d}dr+\frac{d-1}{2}R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{t}ur^{d-1}dr.

As in (3.25)(\ref{5.25}),

(3.31) sup0tTM(t)δsupt[0,T]t,xuL2(|x|2δT)2+supt[0,T]1δ2T2uL2(|x|2δT)2.\sup_{0\leq t\leq T}M(t)\lesssim_{\delta}\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}(|x|\leq 2\delta T)}^{2}+\sup_{t\in[0,T]}\frac{1}{\delta^{2}T^{2}}\|u\|_{L^{2}(|x|\leq 2\delta T)}^{2}.

Next, by direct computation,

(3.32) ddtM(t)=R1χ(rδT)ψ(rR)ututrrd𝑑r+d12R1χ(rδT)ψ(rR)ut2rd1𝑑r\displaystyle\frac{d}{dt}M(t)=R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{t}u_{tr}r^{d}dr+\frac{d-1}{2}R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{t}^{2}r^{d-1}dr
+R1χ(rδT)ψ(rR)utturrd𝑑r+d12R1χ(rδT)ψ(rR)utturd1𝑑r.\displaystyle+R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{tt}u_{r}r^{d}dr+\frac{d-1}{2}R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{tt}ur^{d-1}dr.

Integrating by parts in rr, by (3.27)(\ref{5.27}),

(3.33) R1χ(rδT)ψ(rR)ututrrd𝑑r+d12R1χ(rδT)ψ(rR)ut2rd1𝑑r\displaystyle R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{t}u_{tr}r^{d}dr+\frac{d-1}{2}R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u_{t}^{2}r^{d-1}dr
=12χ(rδT)ϕ(rR)ut2rd1𝑑r+1δTδT|x|2δTut2𝑑x.\displaystyle=-\frac{1}{2}\int\chi(\frac{r}{\delta T})\phi(\frac{r}{R})u_{t}^{2}r^{d-1}dr+\frac{1}{\delta T}\int_{\delta T\leq|x|\leq 2\delta T}u_{t}^{2}dx.

Next, integrating by parts and using (3.27)(\ref{5.27}),

(3.34) R1χ(rδT)ψ(rR)(urr+d1rur)urrd𝑑r+d12R1χ(rδT)ψ(rR)(urr+d1rur)urd1dr\displaystyle R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})(u_{rr}+\frac{d-1}{r}u_{r})u_{r}r^{d}dr+\frac{d-1}{2}R^{-1}\chi(\frac{r}{\delta T})\psi(\frac{r}{R})(u_{rr}+\frac{d-1}{r}u_{r})ur^{d-1}dr
=12χ(rδT)ϕ(rR)ur2r3𝑑r+1δTδT|x|2δT|u|2𝑑x+1Rχ(rδT)ψ(rR)u2rd3𝑑r+1δ3T3δT|x|2δTu2𝑑x.\displaystyle=-\frac{1}{2}\int\chi(\frac{r}{\delta T})\phi(\frac{r}{R})u_{r}^{2}r^{3}dr+\frac{1}{\delta T}\int_{\delta T\leq|x|\leq 2\delta T}|\nabla u|^{2}dx+\frac{1}{R}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u^{2}r^{d-3}dr+\frac{1}{\delta^{3}T^{3}}\int_{\delta T\leq|x|\leq 2\delta T}u^{2}dx.

Now then,

(3.35) 1δT0TδT|x|2δT|u|2𝑑x𝑑t+1δ3T30TδT|x|2δTu2𝑑x𝑑t\displaystyle\frac{1}{\delta T}\int_{0}^{T}\int_{\delta T\leq|x|\leq 2\delta T}|\nabla u|^{2}dxdt+\frac{1}{\delta^{3}T^{3}}\int_{0}^{T}\int_{\delta T\leq|x|\leq 2\delta T}u^{2}dxdt
δsupt[0,T]t,xuL2(|x|2δT)2+supt[0,T]1δ2T2uL2(|x|2δT)2.\displaystyle\lesssim_{\delta}\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}(|x|\leq 2\delta T)}^{2}+\sup_{t\in[0,T]}\frac{1}{\delta^{2}T^{2}}\|u\|_{L^{2}(|x|\leq 2\delta T)}^{2}.

Also,

(3.36) 1R0Tχ(rδT)ψ(rR)u2rd3𝑑r𝑑t0Tχ(rδT)1|x|3u2𝑑x𝑑t,\frac{1}{R}\int_{0}^{T}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})u^{2}r^{d-3}drdt\lesssim\int_{0}^{T}\int\chi(\frac{r}{\delta T})\frac{1}{|x|^{3}}u^{2}dxdt,

and we can use Proposition 2 to estimate this term.

Next, integrating by parts,

(3.37) R1χ(rδT)ψ(rR)|u|4d1uurrd𝑑rd12R1χ(rδT)ψ(rR)|u|2(d+1)d1rd1𝑑r\displaystyle-R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})|u|^{\frac{4}{d-1}}uu_{r}r^{d}dr-\frac{d-1}{2}R^{-1}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})|u|^{\frac{2(d+1)}{d-1}}r^{d-1}dr
=d12(d+1)Rχ(rδT)ψ(rR)|u|2(d+1)d1r3𝑑r+1R2χ(rδT)ψ(rR)|u|2(d+1)d1r4+1δTδT|x|2δT|u|2(d+1)d1𝑑x\displaystyle=-\frac{d-1}{2(d+1)R}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})|u|^{\frac{2(d+1)}{d-1}}r^{3}dr+\frac{1}{R^{2}}\int\chi(\frac{r}{\delta T})\psi^{\prime}(\frac{r}{R})|u|^{\frac{2(d+1)}{d-1}}r^{4}+\frac{1}{\delta T}\int_{\delta T\leq|x|\leq 2\delta T}|u|^{\frac{2(d+1)}{d-1}}dx
d12R(d+1)χ(rδT)ψ(rR)|u|2(d+1)d1rd1𝑑r+1δTδT|x|2δT|u|2(d+1)d1𝑑x.\displaystyle\leq-\frac{d-1}{2R(d+1)}\int\chi(\frac{r}{\delta T})\psi(\frac{r}{R})|u|^{\frac{2(d+1)}{d-1}}r^{d-1}dr+\frac{1}{\delta T}\int_{\delta T\leq|x|\leq 2\delta T}|u|^{\frac{2(d+1)}{d-1}}dx.

The last inequality uses the fact that ψ(r)0\psi^{\prime}(r)\leq 0 for all rr. This completes the proof of the theorem. ∎

4. Scattering in the d=4d=4 case

The proofs of global well-posedness and scattering are slightly different in the d=4d=4 and d>4d>4 cases. We start with the d=4d=4 case.

Theorem 7.

If uu is a solution to the conformal wave equation,

(4.1) uttΔu+|u|43u=0,u(0,x)=u0H˙1/2,ut(0,x)=u1H˙1/2,u0,u1radial,u_{tt}-\Delta u+|u|^{\frac{4}{3}}u=0,\qquad u(0,x)=u_{0}\in\dot{H}^{1/2},\qquad u_{t}(0,x)=u_{1}\in\dot{H}^{-1/2},\qquad u_{0},u_{1}\qquad\text{radial},

u:×4u:\mathbb{R}\times\mathbb{R}^{4}\rightarrow\mathbb{R}, then uu is a global solution to (4.1)(\ref{2.2}) and scatters, that is

(4.2) uLt,x103(×4)C(u0,u1)<.\|u\|_{L_{t,x}^{\frac{10}{3}}(\mathbb{R}\times\mathbb{R}^{4})}\leq C(u_{0},u_{1})<\infty.
Remark 3.

Note that Theorem 7 does not state that the bound on (4.2)(\ref{2.3}) depends on the H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} norm of the initial data, but rather depends on the actual initial data (u0,u1)(u_{0},u_{1}). The proof that a bound exists that is a function of the H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} norm will utilize the profile decomposition.

Proof.

In this case, it will be helpful to begin with a more detailed explanation of the approximation analysis that will be used in every subsequent proof.

By time reversal symmetry, it is enough to show that uLt,x10/3([0,)×4)<\|u\|_{L_{t,x}^{10/3}([0,\infty)\times\mathbb{R}^{4})}<\infty. Furthermore, we can translate in time so that the initial data is at t=1t=1 and show that uLt,x10/3([1,)×4)<\|u\|_{L_{t,x}^{10/3}([1,\infty)\times\mathbb{R}^{4})}<\infty. This means that we do not need to worry about t<1t<1.

Again let χC0(4)\chi\in C_{0}^{\infty}(\mathbb{R}^{4}) be a smooth, cutoff function, χ(x)=1\chi(x)=1 for |x|1|x|\leq 1 and χ(x)=0\chi(x)=0 for |x|2|x|\geq 2. Then, split the initial data,

(4.3) u0=v0+w0,u1=v1+w1,u_{0}=v_{0}+w_{0},\qquad u_{1}=v_{1}+w_{1},

where

(4.4) v0=χ(xR)PNu0,v1=χ(xR)PNu1,v_{0}=\chi(\frac{x}{R})P_{\leq N}u_{0},\qquad v_{1}=\chi(\frac{x}{R})P_{\leq N}u_{1},

for some 0<R<0<R<\infty and 0<N<0<N<\infty. Here PNP_{\leq N} is the standard Littlewood–Paley projection to frequencies N\leq N. By the dominated convergence theorem, there exists some N<N<\infty such that

(4.5) P>Nu0H˙1/2+P>Nu1H˙1/2ϵ2.\|P_{>N}u_{0}\|_{\dot{H}^{1/2}}+\|P_{>N}u_{1}\|_{\dot{H}^{-1/2}}\leq\frac{\epsilon}{2}.

It is convenient to rescale the initial data so that N=1N=1.

After rescaling, by the dominated convergence theorem implies that there exists some R<R<\infty such that

(4.6) χ(xR)P1u0H˙1/2+χ(xR)P1u1H˙1/2ϵ2.\|\chi(\frac{x}{R})P_{\leq 1}u_{0}\|_{\dot{H}^{1/2}}+\|\chi(\frac{x}{R})P_{\leq 1}u_{1}\|_{\dot{H}^{-1/2}}\leq\frac{\epsilon}{2}.

Therefore, if (t)\mathcal{E}(t) is the conformal energy of vv,

(4.7) (t)=14d|(t+|x|)Lv+(d1)v|2+|(t|x|)L¯v+(d1)v|2dx\displaystyle\mathcal{E}(t)=\frac{1}{4}\int_{\mathbb{R}^{d}}|(t+|x|)Lv+(d-1)v|^{2}+|(t-|x|)\underline{L}v+(d-1)v|^{2}dx
+12(t2+|x|2)|v|2𝑑x+d14(d+1)(t2+|x|2)|v|2(d+1)d1𝑑x,\displaystyle+\frac{1}{2}\int(t^{2}+|x|^{2})|\cancel{\nabla}v|^{2}dx+\frac{d-1}{4(d+1)}\int(t^{2}+|x|^{2})|v|^{\frac{2(d+1)}{d-1}}dx,

where L=(t+x|x|)L=(\partial_{t}+\frac{x}{|x|}\cdot\nabla) and L¯=(tx|x|)\underline{L}=(\partial_{t}-\frac{x}{|x|}\cdot\nabla). Then by direct computation using the Fourier and spatial support of v0v_{0} and v1v_{1},

(4.8) (t)|t=1R2v0H˙12+R2v1L22+R2v0L10/310/3+v0L22R2(v0H˙1/22+v1H˙1/22).\mathcal{E}(t)|_{t=1}\lesssim R^{2}\|v_{0}\|_{\dot{H}^{1}}^{2}+R^{2}\|v_{1}\|_{L^{2}}^{2}+R^{2}\|v_{0}\|_{L^{10/3}}^{10/3}+\|v_{0}\|_{L^{2}}^{2}\lesssim R^{2}(\|v_{0}\|_{\dot{H}^{1/2}}^{2}+\|v_{1}\|_{\dot{H}^{-1/2}}^{2}).

Now, for any σ>0\sigma>0, define

(4.9) w0σ=χ(σxR)P1σw0,w1σ=χ(σxR)P1σw1.w_{0}^{\sigma}=\chi(\frac{\sigma x}{R})P_{\leq\frac{1}{\sigma}}w_{0},\qquad w_{1}^{\sigma}=\chi(\frac{\sigma x}{R})P_{\leq\frac{1}{\sigma}}w_{1}.

For any σ>0\sigma>0,

(4.10) (v0+w0σ,v1+w1σ)<.\mathcal{E}(v_{0}+w_{0}^{\sigma},v_{1}+w_{1}^{\sigma})<\infty.

Therefore, by Theorem 6, if uσu^{\sigma} solves (4.1)(\ref{2.2}) with initial data

(4.11) u0σ=v0+w0σ,u1σ=v1+w1σ,u_{0}^{\sigma}=v_{0}+w_{0}^{\sigma},\qquad u_{1}^{\sigma}=v_{1}+w_{1}^{\sigma},

then

(4.12) uσLt,x10/3C(σ,u0,u1)<,\|u^{\sigma}\|_{L_{t,x}^{10/3}}\leq C(\sigma,u_{0},u_{1})<\infty,

and therefore uσu^{\sigma} is globally well-posed and scattering.

To prove Theorem 7, it suffices to prove (4.12)(\ref{2.13}) holds with a bound that does not depend on σ\sigma, that is,

(4.13) uσLt,x10/3C(u0,u1)<.\|u^{\sigma}\|_{L_{t,x}^{10/3}}\leq C(u_{0},u_{1})<\infty.

Then, since

(4.14) limσ0u0σ=u0,inH˙1/2,andlimσ0u1σ=u1,inH˙1/2,\lim_{\sigma\searrow 0}u_{0}^{\sigma}=u_{0},\qquad\text{in}\qquad\dot{H}^{1/2},\qquad\text{and}\qquad\lim_{\sigma\searrow 0}u_{1}^{\sigma}=u_{1},\qquad\text{in}\qquad\dot{H}^{-1/2},

in that case (4.2)(\ref{2.3}) follows directly from standard perturbation theory. The reason for making the approximation of the initial data in (4.11)(\ref{2.12}) is to guarantee that the solution uσu^{\sigma} is global and scattering, so that we can make a bootstrap argument. We suppress the σ\sigma’s for the rest of the argument.

Remark 4.

Please note that it is perfectly fine to prove a bound on uLt,x10/3\|u\|_{L_{t,x}^{10/3}} that does depend on RR, since RR is fixed as σ0\sigma\searrow 0.

Now decompose (4.1)(\ref{2.2}) into a system of equations,

(4.15) wttΔw+|w|43w\displaystyle w_{tt}-\Delta w+|w|^{\frac{4}{3}}w =0,w(0,x)=w0,wt(0,x)=w1,\displaystyle=0,\qquad w(0,x)=w_{0},\qquad w_{t}(0,x)=w_{1},
vttΔv+F\displaystyle v_{tt}-\Delta v+F =0,F=|u|43u|w|43w,v(0,x)=v0,vt(0,x)=v1.\displaystyle=0,\qquad F=|u|^{\frac{4}{3}}u-|w|^{\frac{4}{3}}w,\qquad v(0,x)=v_{0},\qquad v_{t}(0,x)=v_{1}.

By (4.5)(\ref{2.6}), (2.5)(\ref{4.5}), Theorems 4, 5 and Lemmas 1 and 2,

(4.16) wLt2Lx4(×4)+wLt,x10/3(×4)+|x|3/5wLt2Lx10(×4)+|x|11/10wLtLx10(×4)+|x|wLt,x10(×4)ϵ.\|w\|_{L_{t}^{2}L_{x}^{4}(\mathbb{R}\times\mathbb{R}^{4})}+\|w\|_{L_{t,x}^{10/3}(\mathbb{R}\times\mathbb{R}^{4})}+\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}(\mathbb{R}\times\mathbb{R}^{4})}+\||x|^{11/10}w\|_{L_{t}^{\infty}L_{x}^{10}(\mathbb{R}\times\mathbb{R}^{4})}+\||x|w\|_{L_{t,x}^{10}(\mathbb{R}\times\mathbb{R}^{4})}\lesssim\epsilon.

By direct computation,

(4.17) ddt(v)=(t+|x|)Lv+3v,(t+|x|)(|u|43u|w|43w|v|43v)(t|x|)L¯v+3v,(t|x|)(|u|43u|w|43w|v|43v).\frac{d}{dt}\mathcal{E}(v)=-\langle(t+|x|)Lv+3v,(t+|x|)(|u|^{\frac{4}{3}}u-|w|^{\frac{4}{3}}w-|v|^{\frac{4}{3}}v)\rangle-\langle(t-|x|)\underline{L}v+3v,(t-|x|)(|u|^{\frac{4}{3}}u-|w|^{\frac{4}{3}}w-|v|^{\frac{4}{3}}v)\rangle.

Also by direct computation,

(4.18) ||u|43u|w|43w|v|43v||w||v|(|v|1/3+|w|1/3).||u|^{\frac{4}{3}}u-|w|^{\frac{4}{3}}w-|v|^{\frac{4}{3}}v|\lesssim|w||v|(|v|^{1/3}+|w|^{1/3}).

Therefore,

(4.19) |x|(|u|43u|v|43v|w|43w)Lx2|x|wLx10vLx10/34/3+|x|wLx10wLx10/31/3vLx10/3,\||x|(|u|^{\frac{4}{3}}u-|v|^{\frac{4}{3}}v-|w|^{\frac{4}{3}}w)\|_{L_{x}^{2}}\lesssim\||x|w\|_{L_{x}^{10}}\|v\|_{L_{x}^{10/3}}^{4/3}+\||x|w\|_{L_{x}^{10}}\|w\|_{L_{x}^{10/3}}^{1/3}\|v\|_{L_{x}^{10/3}},

and

(4.20) t|w|Lx10(|x|>δ|t|)1δ|x|wLx10,\|t|w|\|_{L_{x}^{10}(|x|>\delta|t|)}\lesssim\frac{1}{\delta}\||x|w\|_{L_{x}^{10}},

so

(4.21) |t|((|u|43u|v|43v|w|43w)Lx2(|x|>δ|t|)1δ|x|wLx10vLx10/34/3+1δ|x|wLx101/3wLx10/31/3vLx10/3.\||t|((|u|^{\frac{4}{3}}u-|v|^{\frac{4}{3}}v-|w|^{\frac{4}{3}}w)\|_{L_{x}^{2}(|x|>\delta|t|)}\lesssim\frac{1}{\delta}\||x|w\|_{L_{x}^{10}}\|v\|_{L_{x}^{10/3}}^{4/3}+\frac{1}{\delta}\||x|w\|_{L_{x}^{10}}^{1/3}\|w\|_{L_{x}^{10/3}}^{1/3}\|v\|_{L_{x}^{10/3}}.

Since vLx10/310/3(t)t2\|v\|_{L_{x}^{10/3}}^{10/3}\lesssim\frac{\mathcal{E}(t)}{t^{2}},

(4.22) ddt(t)=t|x|δ|t|[(t+|x|)Lv+3v](|u|43u|w|43w|v|43v)𝑑x\displaystyle\frac{d}{dt}\mathcal{E}(t)=-t\int_{|x|\leq\delta|t|}[(t+|x|)Lv+3v](|u|^{\frac{4}{3}}u-|w|^{\frac{4}{3}}w-|v|^{\frac{4}{3}}v)dx
t|x|δ|t|[(t|x|)L¯v+3v](|u|43u|w|43w|v|43v)𝑑x\displaystyle-t\int_{|x|\leq\delta|t|}[(t-|x|)\underline{L}v+3v](|u|^{\frac{4}{3}}u-|w|^{\frac{4}{3}}w-|v|^{\frac{4}{3}}v)dx
+1δ(v)9/10t4/5|x|wLx10+1δ(v)4/5t3/5|x|wLx10wLx10/31/3.\displaystyle+\frac{1}{\delta}\frac{\mathcal{E}(v)^{9/10}}{t^{4/5}}\||x|w\|_{L_{x}^{10}}+\frac{1}{\delta}\frac{\mathcal{E}(v)^{4/5}}{t^{3/5}}\||x|w\|_{L_{x}^{10}}\|w\|_{L_{x}^{10/3}}^{1/3}.

Now then, by the fundamental theorem of calculus, for t>1δ1/2t>\frac{1}{\delta^{1/2}},

(4.23) (t)=(δ1/2t)+δ1/2ttddτ(τ)𝑑τ,\mathcal{E}(t)=\mathcal{E}(\delta^{1/2}t)+\int_{\delta^{1/2}t}^{t}\frac{d}{d\tau}\mathcal{E}(\tau)d\tau,

and for 1<t<1δ1/21<t<\frac{1}{\delta^{1/2}},

(4.24) (t)=(1)+1tddτ(τ)𝑑τ.\mathcal{E}(t)=\mathcal{E}(1)+\int_{1}^{t}\frac{d}{d\tau}\mathcal{E}(\tau)d\tau.

Now, by a change of variables,

(4.25) δ1/2(δ1/2t)t2𝑑t=δ1/2δ1/2δ1/2δt2(δt)δ1/2𝑑t=δ1/21(t)t2𝑑t,\int_{\delta^{-1/2}}^{\infty}\frac{\mathcal{E}(\delta^{1/2}t)}{t^{2}}dt=\delta^{1/2}\int_{\delta^{-1/2}}^{\infty}\frac{\delta^{1/2}}{\delta t^{2}}\mathcal{E}(\delta t)\delta^{1/2}dt=\delta^{1/2}\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt,

and

(4.26) 1δ1/2(0)t2𝑑t(0).\int_{1}^{\delta^{-1/2}}\frac{\mathcal{E}(0)}{t^{2}}dt\leq\mathcal{E}(0).

Next, by Fubini’s theorem, letting t=sup{1,δ1/2t}t^{\prime}=\sup\{1,\delta^{1/2}t\} to simplify notation,

(4.27) 11t2tt1δ(s)9/10s4/5|x|w(s)Lx10𝑑s𝑑t+11t2tt1δ(s)4/5s3/5|x|w(s)Lx10wLx10/31/3𝑑s𝑑t\displaystyle\int_{1}^{\infty}\frac{1}{t^{2}}\int_{t^{\prime}}^{t}\frac{1}{\delta}\frac{\mathcal{E}(s)^{9/10}}{s^{4/5}}\||x|w(s)\|_{L_{x}^{10}}dsdt+\int_{1}^{\infty}\frac{1}{t^{2}}\int_{t^{\prime}}^{t}\frac{1}{\delta}\frac{\mathcal{E}(s)^{4/5}}{s^{3/5}}\||x|w(s)\|_{L_{x}^{10}}\|w\|_{L_{x}^{10/3}}^{1/3}dsdt
11δ(t)9/10t9/5|x|w(t)Lx10𝑑t+01δ(t)4/5t8/5|x|w(t)Lx10w(t)Lx10/31/3𝑑t\displaystyle\lesssim\int_{1}^{\infty}\frac{1}{\delta}\frac{\mathcal{E}(t)^{9/10}}{t^{9/5}}\||x|w(t)\|_{L_{x}^{10}}dt+\int_{0}^{\infty}\frac{1}{\delta}\frac{\mathcal{E}(t)^{4/5}}{t^{8/5}}\||x|w(t)\|_{L_{x}^{10}}\|w(t)\|_{L_{x}^{10/3}}^{1/3}dt
1δ(0(t)t2𝑑t)9/10|x|wLt,x10+1δ(0(t)t2𝑑t)4/5|x|wLt,x10wLt,x10/31/3\displaystyle\lesssim\frac{1}{\delta}(\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{9/10}\||x|w\|_{L_{t,x}^{10}}+\frac{1}{\delta}(\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{4/5}\||x|w\|_{L_{t,x}^{10}}\|w\|_{L_{t,x}^{10/3}}^{1/3}
ϵδ(0(t)t2𝑑t)9/10+ϵ4/3δ(0(t)t2𝑑t)4/5.\displaystyle\lesssim\frac{\epsilon}{\delta}(\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{9/10}+\frac{\epsilon^{4/3}}{\delta}(\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{4/5}.

The terms with (t+|x|)Lv(t+|x|)Lv and (t|x|)L¯v(t-|x|)\underline{L}v may be handled in exactly the same way, so using (4.18)(\ref{2.17}) and (4.22)(\ref{2.22}), it remains to compute

(4.28) tt|x|δ|t|τ[(τ+|x|)Lv+3v]|w||v|4/3𝑑x𝑑τ,andtt|x|δ|t|τ[(τ+|x|)Lv+3v]|w|4/3|v|𝑑x𝑑τ,\int_{t^{\prime}}^{t}\int_{|x|\leq\delta|t|}\tau[(\tau+|x|)Lv+3v]|w||v|^{4/3}dxd\tau,\qquad\text{and}\qquad\int_{t^{\prime}}^{t}\int_{|x|\leq\delta|t|}\tau[(\tau+|x|)Lv+3v]|w|^{4/3}|v|dxd\tau,

separately.

It is convenient to replace ~(t)\tilde{\mathcal{E}}(t) by

(4.29) ~(t)=sup0st(t).\tilde{\mathcal{E}}(t)=\sup_{0\leq s\leq t}\mathcal{E}(t).

Note that ddt~(t)\frac{d}{dt}\tilde{\mathcal{E}}(t) is bounded by the right hand side of the absolute value of (4.22)(\ref{2.22}). We abuse notation and let (t)\mathcal{E}(t) denote ~(t)\tilde{\mathcal{E}}(t).

Now, let =inf{((t)t2+t2/5(t)3/5t2)1,δ|t|}\mathcal{R}=\inf\{(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{2/5}\mathcal{E}(t)^{3/5}}{t^{2}})^{-1},\delta|t|\}. By Hölder’s inequality,

(4.30) ttt|x|[(τ+|x|)Lv+3v]|w||v|4/3𝑑x𝑑τ\displaystyle t\int_{t^{\prime}}^{t}\int_{|x|\leq\mathcal{R}}[(\tau+|x|)Lv+3v]|w||v|^{4/3}dxd\tau
t[(τ+|x|)Lv+3vLτLx2(|x|)1/2|x|1/6{(τ+|x|)Lv+3v}Lτ,x2(|x|)1/2\displaystyle\lesssim t\|[(\tau+|x|)Lv+3v\|_{L_{\tau}^{\infty}L_{x}^{2}(|x|\leq\mathcal{R})}^{1/2}\||x|^{-1/6}\{(\tau+|x|)Lv+3v\}\|_{L_{\tau,x}^{2}(|x|\leq\mathcal{R})}^{1/2}
×wLτ2Lx41|x|3/2vLτ,x2(|x|)1/2|x|vLt,x(|x|)5/6\displaystyle\times\|w\|_{L_{\tau}^{2}L_{x}^{4}}\|\frac{1}{|x|^{3/2}}v\|_{L_{\tau,x}^{2}(|x|\leq\mathcal{R})}^{1/2}\||x|v\|_{L_{t,x}^{\infty}(|x|\leq\mathcal{R})}^{5/6}
t(t)1/4|x|1/6{(τ+|x|)Lv+3v}Lτ,x2(|x|)1/2wLτ2Lx41|x|3/2vLτ,x2(|x|)1/2|x|vLt,x(|x|)5/6,\displaystyle\lesssim t\mathcal{E}(t)^{1/4}\||x|^{-1/6}\{(\tau+|x|)Lv+3v\}\|_{L_{\tau,x}^{2}(|x|\leq\mathcal{R})}^{1/2}\|w\|_{L_{\tau}^{2}L_{x}^{4}}\|\frac{1}{|x|^{3/2}}v\|_{L_{\tau,x}^{2}(|x|\leq\mathcal{R})}^{1/2}\||x|v\|_{L_{t,x}^{\infty}(|x|\leq\mathcal{R})}^{5/6},
Remark 5.

All time intervals are [t,t][t^{\prime},t] where t=sup{1,δ1/2t}t^{\prime}=\sup\{1,\delta^{1/2}t\}.

and

(4.31) tδ1/2tt|x|δ|t|[(τ+|x|)Lv+3v]|w||v|4/3𝑑x𝑑τ\displaystyle t\int_{\delta^{1/2}t}^{t}\int_{\mathcal{R}\leq|x|\leq\delta|t|}[(\tau+|x|)Lv+3v]|w||v|^{4/3}dxd\tau
t[(τ+|x|)Lv+3vLτLx2(|x|δ|t|)4/5|x|1(τ+|x|)Lv+3vLτ,x2(|x|δ|t|)1/5|x|3/5wLτ2Lx101|x|3/10vLτ,x10/3(|x|δ|t|)4/3\displaystyle\lesssim t\|[(\tau+|x|)Lv+3v\|_{L_{\tau}^{\infty}L_{x}^{2}(|x|\leq\delta|t|)}^{4/5}\||x|^{-1}(\tau+|x|)Lv+3v\|_{L_{\tau,x}^{2}(|x|\leq\delta|t|)}^{1/5}\||x|^{3/5}w\|_{L_{\tau}^{2}L_{x}^{10}}\|\frac{1}{|x|^{3/10}}v\|_{L_{\tau,x}^{10/3}(|x|\leq\delta|t|)}^{4/3}
t(t)2/5|x|1{(τ+|x|)Lv+3v}Lτ,x2(|x|δ|t|)1/5|x|3/5wLτ2Lx101|x|3/10vLτ,x10/3(|x|δ|t|)4/3.\displaystyle\lesssim t\mathcal{E}(t)^{2/5}\||x|^{-1}\{(\tau+|x|)Lv+3v\}\|_{L_{\tau,x}^{2}(\mathcal{R}\leq|x|\leq\delta|t|)}^{1/5}\||x|^{3/5}w\|_{L_{\tau}^{2}L_{x}^{10}}\|\frac{1}{|x|^{3/10}}v\|_{L_{\tau,x}^{10/3}(|x|\leq\delta|t|)}^{4/3}.

Next,

(4.32) tδ1/2tt|x|δ|t|[(τ+|x|)Lv+3v]|w|4/3|v|𝑑x𝑑τ\displaystyle t\int_{\delta^{1/2}t}^{t}\int_{|x|\leq\delta|t|}[(\tau+|x|)Lv+3v]|w|^{4/3}|v|dxd\tau
t|x|3/5wLt2Lx104/3|x|3/2vLt,x22/3(τ+|x|)Lv+3vLτLx2|x|3/5vLτLx101/3\displaystyle\lesssim t\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}}^{4/3}\||x|^{-3/2}v\|_{L_{t,x}^{2}}^{2/3}\|(\tau+|x|)Lv+3v\|_{L_{\tau}^{\infty}L_{x}^{2}}\||x|^{3/5}v\|_{L_{\tau}^{\infty}L_{x}^{10}}^{1/3}
t(t)1/2|x|3/5wLt2Lx104/3|x|3/2vLt,x22/3|x|vLτ,x(|x|δ|t|)1/5vLτLx4(|x|δ|t|)2/15.\displaystyle\lesssim t\mathcal{E}(t)^{1/2}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}}^{4/3}\||x|^{-3/2}v\|_{L_{t,x}^{2}}^{2/3}\||x|v\|_{L_{\tau,x}^{\infty}(|x|\leq\delta|t|)}^{1/5}\|v\|_{L_{\tau}^{\infty}L_{x}^{4}(|x|\leq\delta|t|)}^{2/15}.

By the Sobolev embedding theorem and radial Sobolev embedding theorem,

(4.33) |x|vLx(|x|δ|t|),vLx4(|x|δ|t|)χ(xδ|t|)vH˙1χ(xδ|t|)vL2+1δ|t|vLx2(|x|2δ|t|).\||x|v\|_{L_{x}^{\infty}(|x|\leq\delta|t|)},\|v\|_{L_{x}^{4}(|x|\leq\delta|t|)}\lesssim\|\chi(\frac{x}{\delta|t|})v\|_{\dot{H}^{1}}\lesssim\|\chi(\frac{x}{\delta|t|})\nabla v\|_{L^{2}}+\frac{1}{\delta|t|}\|v\|_{L_{x}^{2}(|x|\leq 2\delta|t|)}.

Now, for δ1/2tτt\delta^{1/2}t\leq\tau\leq t,

(4.34) τχ(xδt)t,xv(τ)L2χ(xδt){(τ+|x|)Lv+3v}L2+χ(xδt){(τ|x|)L¯v+3v}L2+χ(xδt)vL2.\tau\|\chi(\frac{x}{\delta t})\nabla_{t,x}v(\tau)\|_{L^{2}}\lesssim\|\chi(\frac{x}{\delta t})\{(\tau+|x|)Lv+3v\}\|_{L^{2}}+\|\chi(\frac{x}{\delta t})\{(\tau-|x|)\underline{L}v+3v\}\|_{L^{2}}+\|\chi(\frac{x}{\delta t})v\|_{L^{2}}.

Now, by Hölder’s inequality and the conformal energy,

(4.35) χ(xδt)v(τ)L2(δt)4/5vLx10/3(δt)4/5(τ)3/10τ3/5δ1/2t1/5(τ)3/10.\|\chi(\frac{x}{\delta t})v(\tau)\|_{L^{2}}\lesssim(\delta t)^{4/5}\|v\|_{L_{x}^{10/3}}\lesssim(\delta t)^{4/5}\frac{\mathcal{E}(\tau)^{3/10}}{\tau^{3/5}}\lesssim\delta^{1/2}t^{1/5}\mathcal{E}(\tau)^{3/10}.

Plugging (4.35)(\ref{2.33}) into (4.34)(\ref{2.32}),

(4.36) τχ(xδt)t,xv(τ)L2(τ)1/2+δ1/2t1/5(τ)3/10.\tau\|\chi(\frac{x}{\delta t})\nabla_{t,x}v(\tau)\|_{L^{2}}\lesssim\mathcal{E}(\tau)^{1/2}+\delta^{1/2}t^{1/5}\mathcal{E}(\tau)^{3/10}.

Plugging (4.36)(\ref{2.34}) into (4.33)(\ref{2.31}),

(4.37) |x|v(τ)Lx(|x|δ|t|),v(τ)Lx4(|x|δ|t|)1τ(τ)1/2+δ1/2t1/5(τ)3/10τ+δ1/2t1/5(τ)3/10δt.\||x|v(\tau)\|_{L_{x}^{\infty}(|x|\leq\delta|t|)},\|v(\tau)\|_{L_{x}^{4}(|x|\leq\delta|t|)}\lesssim\frac{1}{\tau}\mathcal{E}(\tau)^{1/2}+\frac{\delta^{1/2}t^{1/5}\mathcal{E}(\tau)^{3/10}}{\tau}+\frac{\delta^{1/2}t^{1/5}\mathcal{E}(\tau)^{3/10}}{\delta t}.

Again using the fact that δ1/2tτt\delta^{1/2}t\leq\tau\leq t and (t)\mathcal{E}(t) is increasing,

(4.38) |x|v(τ)Lx(|x|δt),v(τ)Lx4(|x|δt)δ(t)1/2t+t1/5(t)3/10t.\||x|v(\tau)\|_{L_{x}^{\infty}(|x|\leq\delta t)},\|v(\tau)\|_{L_{x}^{4}(|x|\leq\delta t)}\lesssim_{\delta}\frac{\mathcal{E}(t)^{1/2}}{t}+\frac{t^{1/5}\mathcal{E}(t)^{3/10}}{t}.

Next, we utilize the Morawetz estimate in Proposition 2 and the local energy estimate in Proposition 3.

Proposition 4.

For any T>1T>1, T=sup{1,δ1/2T}T^{\prime}=\sup\{1,\delta^{1/2}T\},

(4.39) TTχ(xδT)[1|x|3v2+1|x||v|10/3]𝑑x𝑑tδ(T)T2+T2/5(T)3/5T2\displaystyle\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})[\frac{1}{|x|^{3}}v^{2}+\frac{1}{|x|}|v|^{10/3}]dxdt\lesssim_{\delta}\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{2/5}\mathcal{E}(T)^{3/5}}{T^{2}}
+TTχ(xδT)|v||v||w|(|v|1/3+|w|1/3)𝑑x𝑑t+TTχ(xδT)|v|2|w|(|v|1/3+|w|1/3)1|x|𝑑x𝑑t.\displaystyle+\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|\nabla v||v||w|(|v|^{1/3}+|w|^{1/3})dxdt+\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|v|^{2}|w|(|v|^{1/3}+|w|^{1/3})\frac{1}{|x|}dxdt.
Proof.

Recalling (4.4)(\ref{2.5}) and the proof of Proposition 2,

(4.40) vttΔv+|v|43v+[F|v|43v]=0,v_{tt}-\Delta v+|v|^{\frac{4}{3}}v+[F-|v|^{\frac{4}{3}}v]=0,
(4.41) TTχ(xδT)[1|x|3v2+1|x||v|10/3]𝑑x𝑑tδsupt[0,T]t,xuL2(|x|2δT)2+supt[0,T]1δ2T2uL2(|x|2δT)2\displaystyle\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})[\frac{1}{|x|^{3}}v^{2}+\frac{1}{|x|}|v|^{10/3}]dxdt\lesssim_{\delta}\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}(|x|\leq 2\delta T)}^{2}+\sup_{t\in[0,T]}\frac{1}{\delta^{2}T^{2}}\|u\|_{L^{2}(|x|\leq 2\delta T)}^{2}
+TTχ(xδT)|v|[F|v|43v]𝑑x𝑑t+TTχ(xδT)|v|[F|v|43v]1|x|𝑑x𝑑t.\displaystyle+\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|\nabla v|[F-|v|^{\frac{4}{3}}v]dxdt+\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|v|[F-|v|^{\frac{4}{3}}v]\frac{1}{|x|}dxdt.

Now then, by (4.33)(\ref{2.31})(4.36)(\ref{2.34}),

(4.42) supt[0,T]t,xuL2(|x|2δT)2+supt[0,T]1δ2T2uL2(|x|2δT)2δ(T)T2+T2/5(T)3/5T2.\sup_{t\in[0,T]}\|\nabla_{t,x}u\|_{L^{2}(|x|\leq 2\delta T)}^{2}+\sup_{t\in[0,T]}\frac{1}{\delta^{2}T^{2}}\|u\|_{L^{2}(|x|\leq 2\delta T)}^{2}\lesssim_{\delta}\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{2/5}\mathcal{E}(T)^{3/5}}{T^{2}}.

Finally, plugging in the bounds in (4.18)(\ref{2.17}) to the final two terms in the right hand side of (4.41)(\ref{2.39}) proves the theorem. ∎

Next we prove a local energy decay estimate.

Proposition 5 (Local energy decay).

For any T>1T>1, R>0R>0, if T=sup{1,δ1/2T}T^{\prime}=\sup\{1,\delta^{1/2}T\},

(4.43) R1TT|x|Rχ(xδT)[|v|2+vt2]𝑑x𝑑tδ(T)T2+T2/5(T)3/5T2\displaystyle R^{-1}\int_{T^{\prime}}^{T}\int_{|x|\leq R}\chi(\frac{x}{\delta T})[|\nabla v|^{2}+v_{t}^{2}]dxdt\lesssim_{\delta}\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{2/5}\mathcal{E}(T)^{3/5}}{T^{2}}
+TTχ(xδT)ψ(rR)rR|v||v||w|(|v|1/3+|w|1/3)𝑑x𝑑t\displaystyle+\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})\psi(\frac{r}{R})\frac{r}{R}|\nabla v||v||w|(|v|^{1/3}+|w|^{1/3})dxdt
+1RTTχ(xδT)ψ(rR)|v|2|w|(|v|1/3+|w|1/3)𝑑x𝑑t.\displaystyle+\frac{1}{R}\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})\psi(\frac{r}{R})|v|^{2}|w|(|v|^{1/3}+|w|^{1/3})dxdt.
Proof.

As in Proposition 4, the proof follows directly from the proof of Proposition 3, (4.18)(\ref{2.17}), (4.40)(\ref{2.38}), and (4.42)(\ref{2.40}). ∎

Next, we show that we can actually ignore absorb the error terms in Propositions 4 and 5 into the left hand side.

Proposition 6.

For T>1T>1, T=sup{1,δ1/2T}T^{\prime}=\sup\{1,\delta^{1/2}T\},

(4.44) supR>0R1TT|x|Rχ(xδT)[|v|2+vt2]𝑑x𝑑t+TTχ(xδT)[1|x|3v2+1|x||v|10/3]𝑑x𝑑tδ(T)T2+T2/5(T)3/5T2.\displaystyle\sup_{R>0}R^{-1}\int_{T^{\prime}}^{T}\int_{|x|\leq R}\chi(\frac{x}{\delta T})[|\nabla v|^{2}+v_{t}^{2}]dxdt+\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})[\frac{1}{|x|^{3}}v^{2}+\frac{1}{|x|}|v|^{10/3}]dxdt\lesssim_{\delta}\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{2/5}\mathcal{E}(T)^{3/5}}{T^{2}}.
Proof.

By Propositions 4 and 5, it only remains to estimate the error terms. First, for any η>0\eta>0, by (4.17)(\ref{2.16}),

(4.45) TTχ(xδT)|v|2|w|(|v|1/3+|w|1/3)1|x|𝑑x𝑑t\displaystyle\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|v|^{2}|w|(|v|^{1/3}+|w|^{1/3})\frac{1}{|x|}dxdt
(χ(xδT)1|x||v|10/3)1/4(χ(xδT)1|x|3|v|2)1/4wLt2Lx4χ(xδT)1/2vLtLx4\displaystyle\lesssim(\int\int\chi(\frac{x}{\delta T})\frac{1}{|x|}|v|^{10/3})^{1/4}(\int\int\chi(\frac{x}{\delta T})\frac{1}{|x|^{3}}|v|^{2})^{1/4}\|w\|_{L_{t}^{2}L_{x}^{4}}\|\chi(\frac{x}{\delta T})^{1/2}v\|_{L_{t}^{\infty}L_{x}^{4}}
η(TTχ(xδT)|v|10/3𝑑x𝑑t)+η(TTχ(xδT)1|x|3v2𝑑x𝑑t)+C(η)ϵ2vLtLx4(|x|2δT)2.\displaystyle\lesssim\eta(\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|v|^{10/3}dxdt)+\eta(\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})\frac{1}{|x|^{3}}v^{2}dxdt)+C(\eta)\epsilon^{2}\|v\|_{L_{t}^{\infty}L_{x}^{4}(|x|\leq 2\delta T)}^{2}.

For η(δ)1\eta(\delta)\ll 1 the first two terms in (4.45)(\ref{2.66}) can be absorbed into the left hand side of (4.59)(\ref{2.65}). Now, by (4.38)(\ref{2.36}),

(4.46) C(η)vLtLx4(|x|2δT)2wLt2Lx42C(η)ϵ2((T)T2+T2/5(T)3/5T2).C(\eta)\|v\|_{L_{t}^{\infty}L_{x}^{4}(|x|\leq 2\delta T)}^{2}\|w\|_{L_{t}^{2}L_{x}^{4}}^{2}\lesssim C(\eta)\epsilon^{2}(\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{2/5}\mathcal{E}(T)^{3/5}}{T^{2}}).

Next, for any R>0R>0,

(4.47) 1Rψ(rR)1r,\frac{1}{R}\psi(\frac{r}{R})\lesssim\frac{1}{r},

so as in (4.45)(\ref{2.66}),

(4.48) supR>01RTTχ(xδT)ψ(rR)|v|2|w|(|v|1/3+|w|1/3)𝑑x𝑑t\displaystyle\sup_{R>0}\frac{1}{R}\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})\psi(\frac{r}{R})|v|^{2}|w|(|v|^{1/3}+|w|^{1/3})dxdt
η(TTχ(xδT)|v|10/3𝑑x𝑑t)+η(TT1|x|3v2𝑑x𝑑t)+C(η)vLtLx4(|x|2δT)2wLt2Lx42.\displaystyle\lesssim\eta(\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|v|^{10/3}dxdt)+\eta(\int_{T^{\prime}}^{T}\int\frac{1}{|x|^{3}}v^{2}dxdt)+C(\eta)\|v\|_{L_{t}^{\infty}L_{x}^{4}(|x|\leq 2\delta T)}^{2}\|w\|_{L_{t}^{2}L_{x}^{4}}^{2}.

Next, using (4.30)(\ref{2.28})(4.32)(\ref{2.30}) and splitting into the cases |x||x|\leq\mathcal{R} and |x|>|x|>\mathcal{R} separately,

(4.49) TTχ(xδT)|v||v||w|(|v|1/3+|w|1/3)𝑑x𝑑t\displaystyle\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})|\nabla v||v||w|(|v|^{1/3}+|w|^{1/3})dxdt
χ(xδT)1/2vLtLx21/21/6(supR>0R1/2χ(xδT)1/2vLt,x2(|x|R))1/2wLt2Lx4\displaystyle\lesssim\|\chi(\frac{x}{\delta T})^{1/2}\nabla v\|_{L_{t}^{\infty}L_{x}^{2}}^{1/2}\mathcal{R}^{1/6}(\sup_{R>0}R^{-1/2}\|\chi(\frac{x}{\delta T})^{1/2}\nabla v\|_{L_{t,x}^{2}(|x|\leq R)})^{1/2}\|w\|_{L_{t}^{2}L_{x}^{4}}
×χ(xδT)1/21|x|3/2vLt,x21/2χ(xδT)1/4|x|5/6v5/6Lt,x\displaystyle\times\|\chi(\frac{x}{\delta T})^{1/2}\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}}^{1/2}\|\chi(\frac{x}{\delta T})^{1/4}|x|^{5/6}v^{5/6}\|_{L_{t,x}^{\infty}}
+χ(xδT)1/2vLtLx24/51/10(supR>0R1/2χ(xδT)1/2vLt,x2(|x|R))1/5|x|3/5wLt2Lx10χ(xδT)3/101|x|3/10vLt,x10/34/3\displaystyle+\|\chi(\frac{x}{\delta T})^{1/2}\nabla v\|_{L_{t}^{\infty}L_{x}^{2}}^{4/5}\mathcal{R}^{-1/10}(\sup_{R>0}R^{-1/2}\|\chi(\frac{x}{\delta T})^{1/2}\nabla v\|_{L_{t,x}^{2}(|x|\leq R)})^{1/5}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}}\|\chi(\frac{x}{\delta T})^{3/10}\frac{1}{|x|^{3/10}}v\|_{L_{t,x}^{10/3}}^{4/3}
+vLtLx2(|x|2δT)χ(xδT)1/21|x|3/2vLt,x22/3|x|3/5wLt2Lx104/3|x|3/5vLtLx101/3\displaystyle+\|\nabla v\|_{L_{t}^{\infty}L_{x}^{2}(|x|\leq 2\delta T)}\|\chi(\frac{x}{\delta T})^{1/2}\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}}^{2/3}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}}^{4/3}\||x|^{3/5}v\|_{L_{t}^{\infty}L_{x}^{10}}^{1/3}
(4.50) η(supR>0R1χ(xδT)1/2vLt,x22)+η(TTχ(xδT)1|x|3|v|2𝑑x𝑑t)\displaystyle\lesssim\eta(\sup_{R>0}R^{-1}\|\chi(\frac{x}{\delta T})^{1/2}\nabla v\|_{L_{t,x}^{2}}^{2})+\eta(\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})\frac{1}{|x|^{3}}|v|^{2}dxdt)
+η(TTχ(xδT)1|x||v|10/3𝑑x𝑑t)+C(η)ϵ2((T)T2+T2/5(T)3/5T2).\displaystyle+\eta(\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})\frac{1}{|x|}|v|^{10/3}dxdt)+C(\eta)\epsilon^{2}(\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{2/5}\mathcal{E}(T)^{3/5}}{T^{2}}).

For η(δ)>0\eta(\delta)>0 sufficiently small, we can absorb the first three terms of (4.50)(\ref{2.71}) into the left hand side of (4.59)(\ref{2.65}), which implies that (4.50)(\ref{2.71}) is controlled by the right hand side of (4.59)(\ref{2.65}).

Finally, since ψ(rR)rR1\psi(\frac{r}{R})\frac{r}{R}\lesssim 1, so

(4.51) supR>01Rδ1/2TTχ(xδT)ψ(rR)|v|2|w|(|v|1/3+|w|1/3)r𝑑x𝑑t(4.49),\sup_{R>0}\frac{1}{R}\int_{\delta^{1/2}T}^{T}\int\chi(\frac{x}{\delta T})\psi(\frac{r}{R})|v|^{2}|w|(|v|^{1/3}+|w|^{1/3})rdxdt\lesssim(\ref{2.70}),

which proves the theorem. ∎

The above computations may also be used to estimate (4.30)(\ref{2.28})(4.32)(\ref{2.30}). First, by Proposition 5,

(4.52) (4.32)δ(t)|x|3/5wLt2Lx10([δ1/2t,t]×4)+t1/5(t)4/5|x|3/5wLt2Lx10([δ1/2t,t]×4).(\ref{2.30})\lesssim_{\delta}\mathcal{E}(t)\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}+t^{1/5}\mathcal{E}(t)^{4/5}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}.

Multiplying this term by 1t2\frac{1}{t^{2}} and integrating in time, choosing ϵδ\epsilon\ll\delta, by (4.17)(\ref{2.16}),

(4.53) 1C(δ)(t)t2|x|3/5wLt2Lx10([δ1/2t,δt]×4)C(δ)ϵ1(t)t2𝑑t0(t)t2𝑑t.\int_{1}^{\infty}C(\delta)\frac{\mathcal{E}(t)}{t^{2}}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}([\delta^{1/2}t,\delta t]\times\mathbb{R}^{4})}\lesssim C(\delta)\epsilon\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt\ll\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt.

Also,

(4.54) 1C(δ)(t)4/5t9/5|x|3/5wLt2Lx10([δ1/2t,δt]×4)𝑑t\displaystyle\int_{1}^{\infty}C(\delta)\frac{\mathcal{E}(t)^{4/5}}{t^{9/5}}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}([\delta^{1/2}t,\delta t]\times\mathbb{R}^{4})}dt
C(δ)(1(t)t2𝑑t)4/5(11t|x|3/5wLt2Lx10([δ1/2t,t]×4)5𝑑t)1/5\displaystyle\lesssim C(\delta)(\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{4/5}(\int_{1}^{\infty}\frac{1}{t}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}^{5}dt)^{1/5}
ϵC(δ)(1(t)t2𝑑t)4/51(t)t2𝑑t+1.\displaystyle\lesssim\epsilon C(\delta)(\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{4/5}\ll\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt+1.

Turning now to (4.30)(\ref{2.28}) and (4.31)(\ref{2.29}),

(4.55) t(t)1/4|x|1/6{(τ+|x|)Lv+3v}Lτ,x2(|x|)1/2wLτ2Lx41|x|3/2vLτ,x2(|x|)1/2|x|vLt,x(|x|)5/6\displaystyle t\mathcal{E}(t)^{1/4}\||x|^{-1/6}\{(\tau+|x|)Lv+3v\}\|_{L_{\tau,x}^{2}(|x|\leq\mathcal{R})}^{1/2}\|w\|_{L_{\tau}^{2}L_{x}^{4}}\|\frac{1}{|x|^{3/2}}v\|_{L_{\tau,x}^{2}(|x|\leq\mathcal{R})}^{1/2}\||x|v\|_{L_{t,x}^{\infty}(|x|\leq\mathcal{R})}^{5/6}
δt3/2(t)1/41/6((t)t2+t2/5(t)3/5t2)11/12wLt2Lx4\displaystyle\lesssim_{\delta}t^{3/2}\mathcal{E}(t)^{1/4}\mathcal{R}^{1/6}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{2/5}\mathcal{E}(t)^{3/5}}{t^{2}})^{11/12}\|w\|_{L_{t}^{2}L_{x}^{4}}
=t3/2(t)1/4((t)t2+t2/5(t)3/5t2)3/4wLt2Lx4((t)+t2/5(t)3/5)wLt2Lx4.\displaystyle=t^{3/2}\mathcal{E}(t)^{1/4}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{2/5}\mathcal{E}(t)^{3/5}}{t^{2}})^{3/4}\|w\|_{L_{t}^{2}L_{x}^{4}}\lesssim(\mathcal{E}(t)+t^{2/5}\mathcal{E}(t)^{3/5})\|w\|_{L_{t}^{2}L_{x}^{4}}.

Now then,

(4.56) C(δ)0(t)t2wLt2Lx4𝑑t+C(δ)0(t)3/5t8/5wLt2Lx4([δ1/2t,t]×4)𝑑t\displaystyle C(\delta)\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}\|w\|_{L_{t}^{2}L_{x}^{4}}dt+C(\delta)\int_{0}^{\infty}\frac{\mathcal{E}(t)^{3/5}}{t^{8/5}}\|w\|_{L_{t}^{2}L_{x}^{4}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}dt
C(δ)ϵ0(t)t2𝑑t+C(δ)(0(t)t2𝑑t)3/5(01twLt2Lx4([δ1/2t,t]×4)5/2𝑑t)2/5\displaystyle\lesssim C(\delta)\epsilon\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt+C(\delta)(\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{3/5}(\int_{0}^{\infty}\frac{1}{t}\|w\|_{L_{t}^{2}L_{x}^{4}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}^{5/2}dt)^{2/5}
0(t)t2𝑑t+1.\displaystyle\ll\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt+1.
(4.57) t(t)2/5|x|1{(τ+|x|)Lv+3v}Lτ,x2(|x|δ|t|)1/5|x|3/5wLτ2Lx101|x|3/10vLτ,x10/3(|x|δ|t|)4/3\displaystyle t\mathcal{E}(t)^{2/5}\||x|^{-1}\{(\tau+|x|)Lv+3v\}\|_{L_{\tau,x}^{2}(\mathcal{R}\leq|x|\leq\delta|t|)}^{1/5}\||x|^{3/5}w\|_{L_{\tau}^{2}L_{x}^{10}}\|\frac{1}{|x|^{3/10}}v\|_{L_{\tau,x}^{10/3}(|x|\leq\delta|t|)}^{4/3}
δt6/51/10(t)2/5((t)t2+t2/5(t)3/5t2)1/2|x|3/5wLt2Lx10((t)+t1/5(t)4/5)|x|3/5wLt2Lx10.\displaystyle\lesssim_{\delta}t^{6/5}\mathcal{R}^{-1/10}\mathcal{E}(t)^{2/5}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{2/5}\mathcal{E}(t)^{3/5}}{t^{2}})^{1/2}\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}}\lesssim(\mathcal{E}(t)+t^{1/5}\mathcal{E}(t)^{4/5})\||x|^{3/5}w\|_{L_{t}^{2}L_{x}^{10}}.

Then,

(4.58) C(δ)0(t)t2wLτ2Lx4([δ1/2t,t]×4)𝑑t+C(δ)0t1/5(t)4/5t2wLτ2Lx4([δ1/2t,t]×4)𝑑t\displaystyle C(\delta)\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}\|w\|_{L_{\tau}^{2}L_{x}^{4}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}dt+C(\delta)\int_{0}^{\infty}\frac{t^{1/5}\mathcal{E}(t)^{4/5}}{t^{2}}\|w\|_{L_{\tau}^{2}L_{x}^{4}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}dt
C(δ)ϵ0(t)t2𝑑t+C(δ)(0(t)t2𝑑t)4/5(01t|x|3/5wLτ2Lx10([δ1/2t,t]×4)5𝑑t)1/50(t)t2𝑑t+1.\displaystyle\lesssim C(\delta)\epsilon\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt+C(\delta)(\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt)^{4/5}(\int_{0}^{\infty}\frac{1}{t}\||x|^{3/5}w\|_{L_{\tau}^{2}L_{x}^{10}([\delta^{1/2}t,t]\times\mathbb{R}^{4})}^{5}dt)^{1/5}\ll\int_{0}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt+1.

Therefore, combining (4.55)(\ref{2.61})(4.58)(\ref{2.64}) with (4.23)(\ref{2.23})(4.27)(\ref{2.25}) implies

(4.59) 1(t)t2𝑑t(1)+η1(t)t2𝑑t,\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt\leq\mathcal{E}(1)+\eta\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt,

for some 0<η10<\eta\ll 1. Observe that (1)\mathcal{E}(1) depends on RR, and R(ϵ)1R(\epsilon)\gg 1 for ϵ1\epsilon\ll 1, but crucially the norm in (4.59)(\ref{2.65}) does not depend on the σ>0\sigma>0 in (4.10)(\ref{2.11}). ∎

5. A modified small data argument

Extending the argument for the d=4d=4 case to dimensions d>4d>4 has a number of technical complications due to the low power of the nonlinearity |u|4d1u|u|^{\frac{4}{d-1}}u when d>4d>4.

Indeed, for d>4d>4, if u=v+wu=v+w,

(5.1) |u|4d1u|v|4d1v|w|4d1winf{|w||v|4d1,|v||w|4d1}.|u|^{\frac{4}{d-1}}u-|v|^{\frac{4}{d-1}}v-|w|^{\frac{4}{d-1}}w\lesssim\inf\{|w||v|^{\frac{4}{d-1}},|v||w|^{\frac{4}{d-1}}\}.

Therefore, when computing the first two lines of (4.22)(\ref{2.22}) for d>5d>5, if we place wLt2Xw\in L_{t}^{2}X, where XX is some weighted LpL^{p} space and vLt2Yv\in L_{t}^{2}Y, where YY is some weighted LqL^{q} space, we would need to place (t|x|)LvLtrZ(t-|x|)Lv\in L_{t}^{r}Z for some r<r<\infty and ZZ another weighted Banach space.

The obvious candidate for this would be to use the local energy decay estimate in (4.43)(\ref{2.50}). However, (4.43)(\ref{2.50}) does not quite give a bound on a weighted L2L^{2} space. Instead, (4.43)(\ref{2.50}) only implies

(5.2) |x|1/2{(t|x|)Lv}Lt,x2(1T|x|δT)2ln(T)((T)T2+T2/5(T)3/5T2).\||x|^{-1/2}\{(t-|x|)Lv\}\|_{L_{t,x}^{2}(\frac{1}{T}\leq|x|\leq\delta T)}^{2}\lesssim\ln(T)(\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{2/5}\mathcal{E}(T)^{3/5}}{T^{2}}).
Remark 6.

In dimensions d>4d>4, T2/5(T)3/5T^{2/5}\mathcal{E}(T)^{3/5} will be Tα(d)(T)1α(d)T^{\alpha(d)}\mathcal{E}(T)^{1-\alpha(d)} for some α(d)0\alpha(d)\searrow 0 as dd\rightarrow\infty, but this is not too important to the discussion right now.

To work around the logarithmic divergence, we would like to use an argument similar to the argument in (4.30)(\ref{2.28}) and (4.31)(\ref{2.29}), namely to set

(5.3) =((T)T2+Tα(T)1αT2)1,\mathcal{R}=(\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{\alpha}\mathcal{E}(T)^{1-\alpha}}{T^{2}})^{-1},

and consider the cases |x||x|\leq\mathcal{R} and |x|>|x|>\mathcal{R} separately.

When |x|>|x|>\mathcal{R}, the computations are pretty similar to the d=4d=4 case. Taking |w||v|4d1|w||v|^{\frac{4}{d-1}} in (5.1)(\ref{7.1}) gives ((T)T2+Tα(T)1αT2)β(\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{\alpha}\mathcal{E}(T)^{1-\alpha}}{T^{2}})^{\beta} for some 0<β<10<\beta<1 along with β1\mathcal{R}^{\beta-1}, and then we can proceed as in the d=4d=4 case. However, for |x||x|\leq\mathcal{R}, by (5.1)(\ref{7.1}) we at most have a second order power of vv. Therefore, in that case we cannot copy the analysis for (4.30)(\ref{2.28}) and obtain ((T)T2+Tα(T)1αT2)1+βRβ\mathcal{(}\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{\alpha}\mathcal{E}(T)^{1-\alpha}}{T^{2}})^{1+\beta^{\prime}}R^{\beta^{\prime}} for some β>0\beta^{\prime}>0.

Remark 7.

Observe for example that the computations in (4.55)(\ref{2.61}) relied very heavily on the fact that the error term considered was of the form |v|43|w||v|^{\frac{4}{3}}|w| and 43>1\frac{4}{3}>1.

What comes to the rescue is that, since ww is a solution to the small data problem, vv should usually be larger than ww, and when it is not, we can put that part with the equation for ww at minimal cost. Instead split u=v+wu=v+w, where

(5.4) vttΔv+(1χ(uw))|u|4d1u\displaystyle v_{tt}-\Delta v+(1-\chi(\frac{u}{w}))|u|^{\frac{4}{d-1}}u =0,v(0,x)=v0,vt(0,x)=v1,\displaystyle=0,\qquad v(0,x)=v_{0},\qquad v_{t}(0,x)=v_{1},
wttΔw+χ(uw)|u|4d1u\displaystyle w_{tt}-\Delta w+\chi(\frac{u}{w})|u|^{\frac{4}{d-1}}u =0,w(0,x)=w0,wt(0,x)=w1,\displaystyle=0,\qquad w(0,x)=w_{0},\qquad w_{t}(0,x)=w_{1},

(v0,v1)(v_{0},v_{1}) and (w0,w1)(w_{0},w_{1}) satisfy (4.3)(\ref{2.4})(4.6)(\ref{2.7}), and χC0()\chi\in C_{0}^{\infty}(\mathbb{R}), χ(x)=1\chi(x)=1 for |x|3|x|\leq 3 and χ(x)=0\chi(x)=0 for |x|>6|x|>6.

Theorem 8 (Small data result).

The initial value problem

(5.5) wttΔw+χ(uw)|u|4d1u=0,w(0,x)=w0,wt(0,x)=w1,w_{tt}-\Delta w+\chi(\frac{u}{w})|u|^{\frac{4}{d-1}}u=0,\qquad w(0,x)=w_{0},\qquad w_{t}(0,x)=w_{1},

is globally well-posed and scattering. Moreover,

(5.6) wLt,x2(d+1)d1(×d)+wLt2Lx2dd2(×d)ϵ,\|w\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}+\|w\|_{L_{t}^{2}L_{x}^{\frac{2d}{d-2}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\epsilon,

and for any 0<θ10<\theta\leq 1,

(5.7) |x|d22(1θ)wLt2Lx2d(d2)θ(×d)θϵ.\||x|^{\frac{d-2}{2}(1-\theta)}w\|_{L_{t}^{2}L_{x}^{\frac{2d}{(d-2)\theta}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim_{\theta}\epsilon.
Proof.

First note that by the approximation analysis in (4.9)(\ref{2.10})(4.14)(\ref{2.14}) and persistence of regularity, uu and ww are smooth, so χ(uw(n))\chi(\frac{u}{w^{(n)}}) is well-defined.

Define the Picard iteration scheme

(5.8) w(0)(t)=cos(tΔ)w0+sin(tΔ)Δw1,w^{(0)}(t)=\cos(t\sqrt{-\Delta})w_{0}+\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}w_{1},

and for n1n\geq 1,

(5.9) w(n)(t)=w(0)(t)0tsin((tτ)ΔΔχ(uw(n1))|u(τ)|4d1u(τ)𝑑τ.w^{(n)}(t)=w^{(0)}(t)-\int_{0}^{t}\frac{\sin((t-\tau)\sqrt{-\Delta}}{\sqrt{-\Delta}}\chi(\frac{u}{w^{(n-1)}})|u(\tau)|^{\frac{4}{d-1}}u(\tau)d\tau.

First, since |uw(n1)|6|\frac{u}{w^{(n-1)}}|\leq 6 on the support of χ(uw(n1))\chi(\frac{u}{w^{(n-1)}}),

(5.10) w(n)Lt,x2(d+1)d1(×d)ϵ+w(n1)Lt,x2(d+1)d1(×d)1+4d1.\|w^{(n)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\epsilon+\|w^{(n-1)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}^{1+\frac{4}{d-1}}.

Therefore, for ϵ>0\epsilon>0 sufficiently small,

(5.11) w(n)Lt,x2(d+1)d1(×d)ϵ.\|w^{(n)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\epsilon.

Next,

(5.12) w(n+1)(t)w(n)(t)=0tsin((tτ)ΔΔ[χ(uw(n))χ(uw(n1))]|u(τ)|4d1u(τ)𝑑τ.w^{(n+1)}(t)-w^{(n)}(t)=\int_{0}^{t}\frac{\sin((t-\tau)\sqrt{-\Delta}}{\sqrt{-\Delta}}[\chi(\frac{u}{w^{(n)}})-\chi(\frac{u}{w^{(n-1)}})]|u(\tau)|^{\frac{4}{d-1}}u(\tau)d\tau.

We show

(5.13) [χ(uw(n))χ(uw(n1)]|u(τ)|4d1u(τ)|w(n)w(n1)|(|w(n)|4d1+|w(n1)|4d1).[\chi(\frac{u}{w^{(n)}})-\chi(\frac{u}{w^{(n-1)}}]|u(\tau)|^{\frac{4}{d-1}}u(\tau)\lesssim|w^{(n)}-w^{(n-1)}|(|w^{(n)}|^{\frac{4}{d-1}}+|w^{(n-1)}|^{\frac{4}{d-1}}).

Indeed, when |w(n)w(n1)||w(n)|+|w(n1)||w^{(n)}-w^{(n-1)}|\gtrsim|w^{(n)}|+|w^{(n-1)}|,

(5.14) [χ(uw(n))χ(uw(n1))]|u(τ)|4d1u(τ)|w(n)|1+4d1+|w(n1)|1+4d1|w(n)w(n1)|(|w(n)|4d1+|w(n1)|4d1).[\chi(\frac{u}{w^{(n)}})-\chi(\frac{u}{w^{(n-1)}})]|u(\tau)|^{\frac{4}{d-1}}u(\tau)\lesssim|w^{(n)}|^{1+\frac{4}{d-1}}+|w^{(n-1)}|^{1+\frac{4}{d-1}}\lesssim|w^{(n)}-w^{(n-1)}|(|w^{(n)}|^{\frac{4}{d-1}}+|w^{(n-1)}|^{\frac{4}{d-1}}).

For |w(n)w(n1)||w(n)|+|w(n1)||w^{(n)}-w^{(n-1)}|\ll|w^{(n)}|+|w^{(n-1)}|, by the fundamental theorem of calculus,

(5.15) χ(uw(n))χ(uw(n1))=01ddτχ(uτw(n)+(1τ)w(n1))𝑑τ\displaystyle\chi(\frac{u}{w^{(n)}})-\chi(\frac{u}{w^{(n-1)}})=\int_{0}^{1}\frac{d}{d\tau}\chi(\frac{u}{\tau w^{(n)}+(1-\tau)w^{(n-1)}})d\tau
=01χ(uτw(n)+(1τ)w(n1))u(τw(n)+(1τ)w(n1))2(w(n)w(n1))𝑑τ.\displaystyle=-\int_{0}^{1}\chi^{\prime}(\frac{u}{\tau w^{(n)}+(1-\tau)w^{(n-1)}})\frac{u}{(\tau w^{(n)}+(1-\tau)w^{(n-1)})^{2}}\cdot(w^{(n)}-w^{(n-1)})d\tau.

By the support properties of χ\chi,

(5.16) χ(uτw(n)+(1τ)w(n1))u(τw(n)+(1τ)w(n1))21u,\chi^{\prime}(\frac{u}{\tau w^{(n)}+(1-\tau)w^{(n-1)}})\frac{u}{(\tau w^{(n)}+(1-\tau)w^{(n-1)})^{2}}\lesssim\frac{1}{u},

so (5.13)(\ref{7.13}) also holds. Therefore, by (5.12)(\ref{7.12}),

(5.17) w(n+1)w(n)Lt,x2(d+1)d1(×d)ϵ4d1w(n)w(n1)Lt,x2(d+1)d1(×d),\|w^{(n+1)}-w^{(n)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\epsilon^{\frac{4}{d-1}}\|w^{(n)}-w^{(n-1)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})},

which by the contraction mapping principle implies that w(n)w^{(n)} converges in Lt,x2(d+1)d1L_{t,x}^{\frac{2(d+1)}{d-1}}. By Theorem 5 and Lemmas 1 and 2, (5.6)(\ref{7.6}) and (5.7)(\ref{7.7}) hold. ∎

6. Scattering when d>4d>4

Now we are ready to prove scattering when d>4d>4.

Theorem 9.

If d>4d>4 and uu is a solution to the conformal wave equation,

(6.1) uttΔu+|u|4d1u=0,u(0,x)=u0H˙1/2,ut(0,x)=u1H˙1/2,u0,u1radial,u_{tt}-\Delta u+|u|^{\frac{4}{d-1}}u=0,\qquad u(0,x)=u_{0}\in\dot{H}^{1/2},\qquad u_{t}(0,x)=u_{1}\in\dot{H}^{-1/2},\qquad u_{0},u_{1}\qquad\text{radial},

then uu is a global solution to (6.1)(\ref{3.1}) and scatters, that is

(6.2) uLt,x2(d+1)d1(×d)C(u0,u1)<.\|u\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\leq C(u_{0},u_{1})<\infty.
Proof.

Let

(6.3) F=(1χ(uw))|u|4d1u|v|4d1v.F=(1-\chi(\frac{u}{w}))|u|^{\frac{4}{d-1}}u-|v|^{\frac{4}{d-1}}v.

As in (4.8)(\ref{2.9}),

(6.4) (1)R2(v0H˙1/22+v1H˙1/22+v0H˙1/22(d+1)d1).\mathcal{E}(1)\lesssim R^{2}(\|v_{0}\|_{\dot{H}^{1/2}}^{2}+\|v_{1}\|_{\dot{H}^{-1/2}}^{2}+\|v_{0}\|_{\dot{H}^{1/2}}^{\frac{2(d+1)}{d-1}}).

Also, as in (4.17)(\ref{2.16}),

(6.5) ddt(v)=(t+|x|)Lv+(d1)v,(t+|x|)F(t|x|)L¯v+(d1)v,(t|x|)F.\frac{d}{dt}\mathcal{E}(v)=-\langle(t+|x|)Lv+(d-1)v,(t+|x|)F\rangle-\langle(t-|x|)\underline{L}v+(d-1)v,(t-|x|)F\rangle.

Since 1χ(uw)1-\chi(\frac{u}{w}) is supported on the set |u|3|w||u|\geq 3|w|, and therefore, |v||w||v|\gtrsim|w| on the support of (1χ(uw))(1-\chi(\frac{u}{w})). Therefore,

(6.6) F|v|d+3d1.F\lesssim|v|^{\frac{d+3}{d-1}}.

Also,

(6.7) F=(1χ(uw))|u|4d1u|v|4d1v=[|u|4d1u|v|4d1v]χ(uw)|u|4d1u\displaystyle F=(1-\chi(\frac{u}{w}))|u|^{\frac{4}{d-1}}u-|v|^{\frac{4}{d-1}}v=[|u|^{\frac{4}{d-1}}u-|v|^{\frac{4}{d-1}}v]-\chi(\frac{u}{w})|u|^{\frac{4}{d-1}}u
|w|(|v|4d1+|w|4d1)+|w|d+3d1|w||v|4d1.\displaystyle\lesssim|w|(|v|^{\frac{4}{d-1}}+|w|^{\frac{4}{d-1}})+|w|^{\frac{d+3}{d-1}}\lesssim|w||v|^{\frac{4}{d-1}}.

Next,

(6.8) |x|FLx2(d)|x|wLx2(d+1)d3(d)vLx2(d+1)d1(d)4d1(t)2d+1t4d+1|x|wLx2(d+1)d3(d).\displaystyle\||x|F\|_{L_{x}^{2}(\mathbb{R}^{d})}\lesssim\||x|w\|_{L_{x}^{\frac{2(d+1)}{d-3}}(\mathbb{R}^{d})}\|v\|_{L_{x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}^{d})}^{\frac{4}{d-1}}\lesssim\frac{\mathcal{E}(t)^{\frac{2}{d+1}}}{t^{\frac{4}{d+1}}}\||x|w\|_{L_{x}^{\frac{2(d+1)}{d-3}}(\mathbb{R}^{d})}.

Using (2.18)(\ref{4.17}) and the radial Sobolev embedding theorem,

(6.9) |x|wLt,x2(d+1)d3(×d)|x|wLt2Lx2dd4(×d)d3d+1|x|wLtLx2dd3(×d)4d1ϵ.\||x|w\|_{L_{t,x}^{\frac{2(d+1)}{d-3}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\||x|w\|_{L_{t}^{2}L_{x}^{\frac{2d}{d-4}}(\mathbb{R}\times\mathbb{R}^{d})}^{\frac{d-3}{d+1}}\||x|w\|_{L_{t}^{\infty}L_{x}^{\frac{2d}{d-3}}(\mathbb{R}\times\mathbb{R}^{d})}^{\frac{4}{d-1}}\lesssim\epsilon.

Plugging (6.8)(\ref{3.9}) and (6.9)(\ref{3.9.1}) into (4.27)(\ref{2.25}) gives a similar bound. Next,

(6.10) tFL2(|x|δ|t|)1δ|x|FL2,\displaystyle\|tF\|_{L^{2}(|x|\geq\delta|t|)}\lesssim\frac{1}{\delta}\||x|F\|_{L^{2}},

which we can also plug into (6.8)(\ref{3.9}) and (6.9)(\ref{3.9.1}).

Now define

(6.11) =inf{((t)t2+t2d+1(t)d1d+1t2)1,δ|t|}.\mathcal{R}=\inf\{(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{\frac{2}{d+1}}\mathcal{E}(t)^{\frac{d-1}{d+1}}}{t^{2}})^{-1},\delta|t|\}.

When d>5d>5 let r=2(d1)d5r=\frac{2(d-1)}{d-5}, and then if t=sup{1,δ1/2t}t^{\prime}=\sup\{1,\delta^{1/2}t\},

(6.12) ttt|x|δ|t||(τ+|x|)Lv+(d1)v||F|𝑑x𝑑τ\displaystyle t\int_{t^{\prime}}^{t}\int_{\mathcal{R}\leq|x|\leq\delta|t|}|(\tau+|x|)Lv+(d-1)v||F|dxd\tau
t(t+|x|)Lv+(d1)vLtLx24d1|x|1{(t+|x|)Lv+(d1)v}Lt,x2(|x|δt)d5d11|x|3/2vLt,x24d1|x|d+1d1wLt2Lxr\displaystyle\lesssim t\|(t+|x|)Lv+(d-1)v\|_{L_{t}^{\infty}L_{x}^{2}}^{\frac{4}{d-1}}\||x|^{-1}\{(t+|x|)Lv+(d-1)v\}\|_{L_{t,x}^{2}(\mathcal{R}\leq|x|\leq\delta t)}^{\frac{d-5}{d-1}}\|\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}}^{\frac{4}{d-1}}\||x|^{\frac{d+1}{d-1}}w\|_{L_{t}^{2}L_{x}^{r}}
t(t)2d1|x|1{(t+|x|)Lv+(d1)v}Lt,x2(|x|δt)d5d11|x|3/2vLt,x24d1|x|d+1d1wLt2Lxr.\displaystyle\lesssim t\mathcal{E}(t)^{\frac{2}{d-1}}\||x|^{-1}\{(t+|x|)Lv+(d-1)v\}\|_{L_{t,x}^{2}(\mathcal{R}\leq|x|\leq\delta t)}^{\frac{d-5}{d-1}}\|\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}}^{\frac{4}{d-1}}\||x|^{\frac{d+1}{d-1}}w\|_{L_{t}^{2}L_{x}^{r}}.
Remark 8.

Once again, the terms with (t+|x|)Lv(t+|x|)Lv and (t|x|)L¯v(t-|x|)\underline{L}v can be handled in exactly the same manner.

Then by Hölder’s inequality and (6.11)(\ref{3.11}),

(6.13) t(t)2d1((t)t2+t2d+1(t)d1d+1t2)d52(d1)(supRδt2R1/2tt,xvLt,x2(R|x|2R)+t1|x|3/2vLt,x2(|x|δt))d5d1\displaystyle\lesssim t\mathcal{E}(t)^{\frac{2}{d-1}}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{\frac{2}{d+1}}\mathcal{E}(t)^{\frac{d-1}{d+1}}}{t^{2}})^{\frac{d-5}{2(d-1)}}\cdot(\sup_{\mathcal{R}\leq R\leq\frac{\delta t}{2}}R^{-1/2}t\|\nabla_{t,x}v\|_{L_{t,x}^{2}(R\leq|x|\leq 2R)}+t\|\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}(|x|\leq\delta t)})^{\frac{d-5}{d-1}}
×(tt|x|δt1|x|3v2𝑑x𝑑t)2d1|x|d+1d1wLt2Lxr.\displaystyle\times(\int_{t^{\prime}}^{t}\int_{|x|\leq\delta t}\frac{1}{|x|^{3}}v^{2}dxdt)^{\frac{2}{d-1}}\||x|^{\frac{d+1}{d-1}}w\|_{L_{t}^{2}L_{x}^{r}}.

When d=5d=5,

(6.14) ttt|x|δ|t||(τ+|x|)Lv+(d1)v||F|𝑑x𝑑τ\displaystyle t\int_{t^{\prime}}^{t}\int_{\mathcal{R}\leq|x|\leq\delta|t|}|(\tau+|x|)Lv+(d-1)v||F|dxd\tau
|x|49{|x|w}Lt2Lx6(|x|)1|x|1/3vLt,x3|x|23{(t+|x|)Lv+(d1)v}Lt,x2(|x|)1/3(t+|x|)Lv+(d1)vLtLx22/3\displaystyle\lesssim\||x|^{-\frac{4}{9}}\{|x|w\}\|_{L_{t}^{2}L_{x}^{6}(|x|\geq\mathcal{R})}\|\frac{1}{|x|^{1/3}}v\|_{L_{t,x}^{3}}\||x|^{-\frac{2}{3}}\{(t+|x|)Lv+(d-1)v\}\|_{L_{t,x}^{2}(|x|\geq\mathcal{R})}^{1/3}\|(t+|x|)Lv+(d-1)v\|_{L_{t}^{\infty}L_{x}^{2}}^{2/3}
t(t)13((t)t2+t13(t)23t2)16(tt|x|δt1|x||v|3𝑑x𝑑τ)1/3\displaystyle\lesssim t\mathcal{E}(t)^{\frac{1}{3}}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{\frac{1}{3}}\mathcal{E}(t)^{\frac{2}{3}}}{t^{2}})^{\frac{1}{6}}(\int_{t^{\prime}}^{t}\int_{|x|\leq\delta t}\frac{1}{|x|}|v|^{3}dxd\tau)^{1/3}
×(supRδt2R1/2tt,xvLt,x2(R|x|2R)+t1|x|3/2vLt,x2(|x|δt))13|x|wLt2Lx10.\displaystyle\times(\sup_{\mathcal{R}\leq R\leq\frac{\delta t}{2}}R^{-1/2}t\|\nabla_{t,x}v\|_{L_{t,x}^{2}(R\leq|x|\leq 2R)}+t\|\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}(|x|\leq\delta t)})^{\frac{1}{3}}\||x|w\|_{L_{t}^{2}L_{x}^{10}}.

For |x||x|\leq\mathcal{R}, let

(6.15) s=d22d22d12αd12α,1p=12000d3,α=11000d3,β=1d3(d3d1)(d3d1+α),s=\frac{d-2}{2}-\frac{d-2}{2}\frac{d-1}{2}\alpha-\frac{d-1}{2}\alpha,\qquad\frac{1}{p}=\frac{1}{2000d^{3}},\qquad\alpha=\frac{1}{1000d^{3}},\qquad\beta=\frac{1}{d-3}\frac{(\frac{d-3}{d-1})}{(\frac{d-3}{d-1}+\alpha)},
(6.16) ttt|x||(t+|x|)Lv+(d1)v||F|𝑑x𝑑t\displaystyle t\int_{t^{\prime}}^{t}\int_{|x|\leq\mathcal{R}}|(t+|x|)Lv+(d-1)v||F|dxdt
t(t+|x|)Lv+(d1)vLtLx22d1α|x|12+β{(t+|x|)Lv+(d1)v}Lt,x2(|x|)d3d1+α\displaystyle\lesssim t\|(t+|x|)Lv+(d-1)v\|_{L_{t}^{\infty}L_{x}^{2}}^{\frac{2}{d-1}-\alpha}\||x|^{-\frac{1}{2}+\beta}\{(t+|x|)Lv+(d-1)v\}\|_{L_{t,x}^{2}(|x|\leq\mathcal{R})}^{\frac{d-3}{d-1}+\alpha}
×1|x|3/2vLt,x21α|x|d22vLt,x2d1+α|x|swLt2Lxp2d1\displaystyle\times\|\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}}^{1-\alpha}\||x|^{\frac{d-2}{2}}v\|_{L_{t,x}^{\infty}}^{\frac{2}{d-1}+\alpha}\||x|^{s}w\|_{L_{t}^{2}L_{x}^{p}}^{\frac{2}{d-1}}
t(t)1d1α21d1td3d1+α(sup0<RδtR1/2t,xvLt,x2(|x|R)+1|x|3/2vLt,x2(|x|δt))d3(d1)+α\displaystyle\lesssim t\mathcal{E}(t)^{\frac{1}{d-1}-\frac{\alpha}{2}}\mathcal{R}^{\frac{1}{d-1}}t^{\frac{d-3}{d-1}+\alpha}(\sup_{0<R\leq\delta t}R^{-1/2}\|\nabla_{t,x}v\|_{L_{t,x}^{2}(|x|\leq R)}+\|\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}(|x|\leq\delta t)})^{\frac{d-3}{(d-1)}+\alpha}
×1|x|3/2vLt,x2(|x|δt)1αχ(rδt)vH˙12d1+α|x|swLt2Lxp2d1.\displaystyle\times\|\frac{1}{|x|^{3/2}}v\|_{L_{t,x}^{2}(|x|\leq\delta t)}^{1-\alpha}\|\chi(\frac{r}{\delta t})v\|_{\dot{H}^{1}}^{\frac{2}{d-1}+\alpha}\||x|^{s}w\|_{L_{t}^{2}L_{x}^{p}}^{\frac{2}{d-1}}.

Now, similar to Proposition 6,

Proposition 7.

For d>4d>4, if T>1T>1, T=sup{1,δ1/2T}T^{\prime}=\sup\{1,\delta^{1/2}T\},

(6.17) supR>0R1TT|x|Rχ(xδT)[|v|2+vt2]𝑑x𝑑t\displaystyle\sup_{R>0}R^{-1}\int_{T^{\prime}}^{T}\int_{|x|\leq R}\chi(\frac{x}{\delta T})[|\nabla v|^{2}+v_{t}^{2}]dxdt
+TTχ(xδT)[1|x|3v2+1|x||v|2(d+1)d1]𝑑x𝑑tδ(T)T2+T2d+1(T)d1d+1T2.\displaystyle+\int_{T^{\prime}}^{T}\int\chi(\frac{x}{\delta T})[\frac{1}{|x|^{3}}v^{2}+\frac{1}{|x|}|v|^{\frac{2(d+1)}{d-1}}]dxdt\lesssim_{\delta}\frac{\mathcal{E}(T)}{T^{2}}+\frac{T^{\frac{2}{d+1}}\mathcal{E}(T)^{\frac{d-1}{d+1}}}{T^{2}}.
Proof.

Following (4.33)(\ref{2.31}) and (4.34)(\ref{2.32}), for t[δ1/2t,t]t\in[\delta^{1/2}t,t],

(6.18) χ(xδT)t,xvL22(T)T2+1T2vL2(|x|2δT)2,\|\chi(\frac{x}{\delta T})\nabla_{t,x}v\|_{L^{2}}^{2}\lesssim\frac{\mathcal{E}(T)}{T^{2}}+\frac{1}{T^{2}}\|v\|_{L^{2}(|x|\leq 2\delta T)}^{2},

and by Hölder’s inequality,

(6.19) 1T2vL2(|x|2δT)2T2d+1vLx2(d+1)d12T2d+1(T)d1d+1t2(d1)d+1T2d+1(T)d1d+1T2.\frac{1}{T^{2}}\|v\|_{L^{2}(|x|\leq 2\delta T)}^{2}\lesssim T^{-\frac{2}{d+1}}\|v\|_{L_{x}^{\frac{2(d+1)}{d-1}}}^{2}\lesssim T^{-\frac{2}{d+1}}\frac{\mathcal{E}(T)^{\frac{d-1}{d+1}}}{t^{\frac{2(d-1)}{d+1}}}\lesssim\frac{T^{\frac{2}{d+1}}\mathcal{E}(T)^{\frac{d-1}{d+1}}}{T^{2}}.

By Propositions 2 and 3, it only remains to handle the error terms arising from FF, where FF satisfies (6.6)(\ref{3.8}) and (6.7)(\ref{3.7}). We can do this using (6.12)(\ref{3.12}), (6.13)(\ref{3.13}), and (6.14)(\ref{3.15}) combined with the analysis in (4.59)(\ref{2.65})(4.51)(\ref{2.72}) applied to the d>4d>4 case. ∎

Plugging in (6.17)(\ref{3.17}) to (6.12)(\ref{3.12})(6.14)(\ref{3.15}), if t=sup{1,δ1/2t}t^{\prime}=\sup\{1,\delta^{1/2}t\},

(6.20) (t)(t)+tt(τ)2d+1+12τ4d+1|x|wLx2(d+1)d3(d)𝑑τ\displaystyle\mathcal{E}(t)\lesssim\mathcal{E}(t^{\prime})+\int_{t^{\prime}}^{t}\frac{\mathcal{E}(\tau)^{\frac{2}{d+1}+\frac{1}{2}}}{\tau^{\frac{4}{d+1}}}\||x|w\|_{L_{x}^{\frac{2(d+1)}{d-3}}(\mathbb{R}^{d})}d\tau
+C(δ)t(t)1d1α2td3d1+α((t)t2+t2d+1(t)d1d+1t2)d2d1+α2|x|swLt2Lxp2d1\displaystyle+C(\delta)t\mathcal{E}(t)^{\frac{1}{d-1}-\frac{\alpha}{2}}t^{\frac{d-3}{d-1}+\alpha}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{\frac{2}{d+1}}\mathcal{E}(t)^{\frac{d-1}{d+1}}}{t^{2}})^{\frac{d-2}{d-1}+\frac{\alpha}{2}}\||x|^{s}w\|_{L_{t}^{2}L_{x}^{p}}^{\frac{2}{d-1}}
+C(δ)t4/3(t)1/3((t)t2+t1/3(t)2/3t2)2/3|x|wLt2Lx10,if d=5,\displaystyle+C(\delta)t^{4/3}\mathcal{E}(t)^{1/3}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{1/3}\mathcal{E}(t)^{2/3}}{t^{2}})^{2/3}\||x|w\|_{L_{t}^{2}L_{x}^{10}},\qquad\text{if }d=5,
+C(δ)ttd5d1(t)2d1((t)t2+t2d+1(t)d1d+1t2)|x|d+1d1wLt2Lx2(d1)d5,ifd>5,\displaystyle+C(\delta)tt^{\frac{d-5}{d-1}}\mathcal{E}(t)^{\frac{2}{d-1}}(\frac{\mathcal{E}(t)}{t^{2}}+\frac{t^{\frac{2}{d+1}}\mathcal{E}(t)^{\frac{d-1}{d+1}}}{t^{2}})\||x|^{\frac{d+1}{d-1}}w\|_{L_{t}^{2}L_{x}^{\frac{2(d-1)}{d-5}}},\qquad\text{if}\qquad d>5,

where s,p,α,βs,p,\alpha,\beta are given by (6.15)(\ref{3.16.1}). Following the computations in (4.23)(\ref{2.23})(4.27)(\ref{2.25}) and (4.52)(\ref{2.47})(4.46)(\ref{2.67}), we obtain a uniform bound on

(6.21) 1(t)t2𝑑t<,\int_{1}^{\infty}\frac{\mathcal{E}(t)}{t^{2}}dt<\infty,

which proves the theorem.

7. Profile decomposition

Proof of Theorem 1.

In light of Theorems 7 and 9, to prove Theorem 1, it suffices to prove that if (un0,un1)(u_{n}^{0},u_{n}^{1}) is a sequence of initial data satisfying

(7.1) u0nH˙1/2+u1nH˙1/2A<,\|u_{0}^{n}\|_{\dot{H}^{1/2}}+\|u_{1}^{n}\|_{\dot{H}^{-1/2}}\leq A<\infty,

then

(7.2) supnunLt,x2(d+1)d1(×d)<.\sup_{n}\|u^{n}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}<\infty.

is uniformly bounded, where unu^{n} is the solution to (1.1)(\ref{1.1}) with initial data (u0n,u1n)(u_{0}^{n},u_{1}^{n}).

Indeed, since H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2} is separable, we can take a dense sequence (u0n,u1n)(u_{0}^{n},u_{1}^{n}) in (7.1)(\ref{6.1}). Passing to a subsequence where (7.2)(\ref{6.2}) is increasing, it is enough to show that Theorems 7, 9, and a standard profile decomposition argument imply that (7.2)(\ref{6.2}) is uniformly bounded for any AA. By standard perturbative arguments, Theorem 1 follows.

Remark 9.

Observe that this argument does not give any idea how the function on the right hand side of (1.3)(\ref{1.3}) depends on AA.

The argument proving (7.2)(\ref{6.2}) is identical to the argument in [Dod21] for the cubic wave equation, (1.1)(\ref{1.1}) with d=3d=3, and uses the profile decomposition in [Ram12].

Remark 10.

It is useful to use the notation S(t)(f,g)S(t)(f,g), which denotes the solution to the free wave equation with initial data (f,g)(f,g),

(7.3) S(t)(f,g)=cos(tΔ)f+sin(tΔ)Δg.S(t)(f,g)=\cos(t\sqrt{-\Delta})f+\frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g.
Theorem 10 (Profile decomposition).

Suppose that there is a uniformly bounded, radially symmetric sequence

(7.4) u0nH˙1/2(d)+u1nH˙1/2(d)A<.\|u_{0}^{n}\|_{\dot{H}^{1/2}(\mathbb{R}^{d})}+\|u_{1}^{n}\|_{\dot{H}^{-1/2}(\mathbb{R}^{d})}\leq A<\infty.

Then there exists a subsequence, also denoted (u0n,u1n)H˙1/2×H˙1/2(u_{0}^{n},u_{1}^{n})\subset\dot{H}^{1/2}\times\dot{H}^{-1/2} such that for any N<N<\infty,

(7.5) S(t)(u0n,u1n)=j=1NΓnjS(t)(ϕ0j,ϕ1j)+S(t)(R0,nN,R1,nN),S(t)(u_{0}^{n},u_{1}^{n})=\sum_{j=1}^{N}\Gamma_{n}^{j}S(t)(\phi_{0}^{j},\phi_{1}^{j})+S(t)(R_{0,n}^{N},R_{1,n}^{N}),

with

(7.6) limNlim supnS(t)(R0,nN,R1,nN)Lt,x2(d+1)d1(×d)=0.\lim_{N\rightarrow\infty}\limsup_{n\rightarrow\infty}\|S(t)(R_{0,n}^{N},R_{1,n}^{N})\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}=0.

Here, Γnj=(λnj,tnj)\Gamma_{n}^{j}=(\lambda_{n}^{j},t_{n}^{j}) belongs to the group (0,)×(0,\infty)\times\mathbb{R}, which acts by

(7.7) ΓnjF(t,x)=(λnj)d12F(λnj(ttnj),λnjx).\Gamma_{n}^{j}F(t,x)=(\lambda_{n}^{j})^{\frac{d-1}{2}}F(\lambda_{n}^{j}(t-t_{n}^{j}),\lambda_{n}^{j}x).

The Γnj\Gamma_{n}^{j} are pairwise orthogonal, that is, for every jkj\neq k,

(7.8) limnλnjλnk+λnkλnj+(λnj)1/2(λnk)1/2|tnjtnk|=.\lim_{n\rightarrow\infty}\frac{\lambda_{n}^{j}}{\lambda_{n}^{k}}+\frac{\lambda_{n}^{k}}{\lambda_{n}^{j}}+(\lambda_{n}^{j})^{1/2}(\lambda_{n}^{k})^{1/2}|t_{n}^{j}-t_{n}^{k}|=\infty.

Furthermore, for every N1N\geq 1,

(7.9) (u0,n,u1,n)H˙1/2×H˙1/22=j=1N(ϕ0j,ϕ0k)H˙1/2×H˙1/22\displaystyle\|(u_{0,n},u_{1,n})\|_{\dot{H}^{1/2}\times\dot{H}^{-1/2}}^{2}=\sum_{j=1}^{N}\|(\phi_{0}^{j},\phi_{0}^{k})\|_{\dot{H}^{1/2}\times\dot{H}^{-1/2}}^{2}
+(R0,nN,R1,nN)H˙1/2×H˙1/22+on(1).\displaystyle+\|(R_{0,n}^{N},R_{1,n}^{N})\|_{\dot{H}^{1/2}\times\dot{H}^{-1/2}}^{2}+o_{n}(1).

In the course of proving Theorem 10, [Ram12] proved

(7.10) S(λnjtnj)(1(λnj)d12u0n(xλnj),1(λnj)d+12u1n(xλnj))ϕ0j(x),S(\lambda_{n}^{j}t_{n}^{j})(\frac{1}{(\lambda_{n}^{j})^{\frac{d-1}{2}}}u_{0}^{n}(\frac{x}{\lambda_{n}^{j}}),\frac{1}{(\lambda_{n}^{j})^{\frac{d+1}{2}}}u_{1}^{n}(\frac{x}{\lambda_{n}^{j}}))\rightharpoonup\phi_{0}^{j}(x),

weakly in H˙1/2(d)\dot{H}^{1/2}(\mathbb{R}^{d}), and

(7.11) tS(t+λnjtnj)(1(λnj)d12u0n(xλnj),1(λnj)d+12u1n(xλnj))|t=0ϕ1j(x)\partial_{t}S(t+\lambda_{n}^{j}t_{n}^{j})(\frac{1}{(\lambda_{n}^{j})^{\frac{d-1}{2}}}u_{0}^{n}(\frac{x}{\lambda_{n}^{j}}),\frac{1}{(\lambda_{n}^{j})^{\frac{d+1}{2}}}u_{1}^{n}(\frac{x}{\lambda_{n}^{j}}))|_{t=0}\rightharpoonup\phi_{1}^{j}(x)

weakly in H˙1/2(d)\dot{H}^{-1/2}(\mathbb{R}^{d}).

Suppose that for some jj, λnjtnj\lambda_{n}^{j}t_{n}^{j} is uniformly bounded. Then after passing to a subsequence, λnjtnj\lambda_{n}^{j}t_{n}^{j} converges to some tjt^{j}. Changing (ϕ0j,ϕ1j)(\phi_{0}^{j},\phi_{1}^{j}) to (S(tj)(ϕ0j,ϕ1j),tS(ttj)(ϕ0j,ϕ1j)|t=0)(S(-t^{j})(\phi_{0}^{j},\phi_{1}^{j}),\partial_{t}S(t-t^{j})(\phi_{0}^{j},\phi_{1}^{j})|_{t=0}) and absorbing the error into (R0,nN,R1,nN)(R_{0,n}^{N},R_{1,n}^{N}),

(7.12) (1(λnj)d12u0n(xλnj),1(λnj)d+12u1n(xλnj))ϕ0j(x),weakly inH˙1/2(\frac{1}{(\lambda_{n}^{j})^{\frac{d-1}{2}}}u_{0}^{n}(\frac{x}{\lambda_{n}^{j}}),\frac{1}{(\lambda_{n}^{j})^{\frac{d+1}{2}}}u_{1}^{n}(\frac{x}{\lambda_{n}^{j}}))\rightharpoonup\phi_{0}^{j}(x),\qquad\text{weakly in}\qquad\dot{H}^{1/2}

and

(7.13) tS(t)(1(λnj)d12u0n(xλnj),1(λnj)d+12u1n(xλnj))|t=0ϕ1j(x),weakly inH˙1/2.\partial_{t}S(t)(\frac{1}{(\lambda_{n}^{j})^{\frac{d-1}{2}}}u_{0}^{n}(\frac{x}{\lambda_{n}^{j}}),\frac{1}{(\lambda_{n}^{j})^{\frac{d+1}{2}}}u_{1}^{n}(\frac{x}{\lambda_{n}^{j}}))|_{t=0}\rightharpoonup\phi_{1}^{j}(x),\qquad\text{weakly in}\qquad\dot{H}^{-1/2}.

If u(j)u^{(j)} is the solution to (1.1)(\ref{1.1}) with initial data (ϕ0j,ϕ1j)(\phi_{0}^{j},\phi_{1}^{j}), then

(7.14) u(j)Lt,x2(d+1)d1(×d)Mj.\|u^{(j)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\leq M_{j}.

Next, suppose that after passing to a subsequence, λnjtnj+\lambda_{n}^{j}t_{n}^{j}\nearrow+\infty. In this case, for any (ϕ0j,ϕ1j)H˙1/2×H˙1/2(\phi_{0}^{j},\phi_{1}^{j})\in\dot{H}^{1/2}\times\dot{H}^{-1/2}, there exists a solution u(j)u^{(j)} to (1.1)(\ref{1.1}) that is globally well-posed and scattering, and furthermore, that uu scatters to S(t)(ϕ0j,ϕ1j)S(t)(\phi_{0}^{j},\phi_{1}^{j}) as tt\searrow-\infty.

(7.15) limtu(j)(t)S(t)(ϕ0j,ϕ1j)H˙1/2×H˙1/2=0.\lim_{t\rightarrow-\infty}\|u^{(j)}(t)-S(t)(\phi_{0}^{j},\phi_{1}^{j})\|_{\dot{H}^{1/2}\times\dot{H}^{-1/2}}=0.

Indeed, by Strichartz estimates, the dominated convergence theorem, and the small data arguments in Theorem 4, for some Tj<T_{j}<\infty sufficiently large, (1.1)(\ref{1.1}) has a solution uu on (,T](-\infty,-T] such that

(7.16) u(j)Lt,x2(d+1)d1((,Tj]×d)ϵ0(d),(u(j)(Tj,x),ut(j)(Tj,x))=S(Tj)(ϕ0j,ϕ1j),\|u^{(j)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}((-\infty,-T_{j}]\times\mathbb{R}^{d})}\lesssim\epsilon_{0}(d),\qquad(u^{(j)}(-T_{j},x),u_{t}^{(j)}(-T_{j},x))=S(-T_{j})(\phi_{0}^{j},\phi_{1}^{j}),

where ϵ0(d)>0\epsilon_{0}(d)>0 is sufficiently small. Also by Strichartz estimates and small data arguments,

(7.17) limt+S(t)(u(j)(t),ut(j)(t))(ϕ0,ϕ1)H˙1/2×H˙1/2ϵ2(d+1)d1.\lim_{t\rightarrow+\infty}\|S(t)(u^{(j)}(-t),u_{t}^{(j)}(-t))-(\phi_{0},\phi_{1})\|_{\dot{H}^{1/2}\times\dot{H}^{-1/2}}\lesssim\epsilon^{\frac{2(d+1)}{d-1}}.

Then by the inverse function theorem, there exists some (u0(j)(Tj),u1(j)(Tj))(u_{0}^{(j)}(-T_{j}),u_{1}^{(j)}(-T_{j})) such that (1.1)(\ref{1.1}) has a solution that scatters backward in time to S(t)(ϕ0j,ϕ1j)S(t)(\phi_{0}^{j},\phi_{1}^{j}). Since u0(j)(Tj)H˙1/2u_{0}^{(j)}(-T_{j})\in\dot{H}^{1/2} and u1(j)(Tj)H˙1/2u_{1}^{(j)}(-T_{j})\in\dot{H}^{-1/2}, (1.1)(\ref{1.1}) has a solution that scatters forward and backward in time,

(7.18) u(j)Lt,x2(d+1)d1(×d)Mj<,\|u^{(j)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\leq M_{j}<\infty,

and u(j)(Tj,x)=u0(j)(Tj,x)u^{(j)}(-T_{j},x)=u_{0}^{(j)}(-T_{j},x), ut(j)(Tj,x)=u1(j)(Tj,x)u_{t}^{(j)}(-T_{j},x)=u_{1}^{(j)}(-T_{j},x). Therefore,

(7.19) S(tnj)((λnj)d12ϕ0j(λnjx),(λnj)d+12ϕ1j(λnjx))S(-t_{n}^{j})((\lambda_{n}^{j})^{\frac{d-1}{2}}\phi_{0}^{j}(\lambda_{n}^{j}x),(\lambda_{n}^{j})^{\frac{d+1}{2}}\phi_{1}^{j}(\lambda_{n}^{j}x))

converges strongly to

(7.20) ((λnj)d12u(j)(λnjtnj,λnjx),(λnj)d+12ut(j)(λnjtnj,λnjx))((\lambda_{n}^{j})^{\frac{d-1}{2}}u^{(j)}(-\lambda_{n}^{j}t_{n}^{j},\lambda_{n}^{j}x),(\lambda_{n}^{j})^{\frac{d+1}{2}}u_{t}^{(j)}(-\lambda_{n}^{j}t_{n}^{j},\lambda_{n}^{j}x))

in H˙1/2×H˙1/2\dot{H}^{1/2}\times\dot{H}^{-1/2}, where uju^{j} is the solution to (1.1)(\ref{1.1}) that scatters backward in time to S(t)(ϕ0j,ϕ1j)S(t)(\phi_{0}^{j},\phi_{1}^{j}), and the remainder may be absorbed into (R0,nN,R1,nN)(R_{0,n}^{N},R_{1,n}^{N}).

The proof for λnjtnj\lambda_{n}^{j}t_{n}^{j}\searrow-\infty is similar.

By (7.9)(\ref{6.8}), there are only finitely many jj, say JJ, such that ϕ0jH˙1/2+ϕ1jH˙1/2>ϵ0(d)\|\phi_{0}^{j}\|_{\dot{H}^{1/2}}+\|\phi_{1}^{j}\|_{\dot{H}^{-1/2}}>\epsilon_{0}(d). For all other jj, small data arguments imply

(7.21) u(j)Lt,x2(d+1)d1(×d)ϕ0jH˙1/2+ϕ1jH˙1/2.\|u^{(j)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}\lesssim\|\phi_{0}^{j}\|_{\dot{H}^{1/2}}+\|\phi_{1}^{j}\|_{\dot{H}^{-1/2}}.

Then by the decoupling property (7.8)(\ref{6.7}), (7.9)(\ref{6.8}), (7.12)(\ref{6.12}), (7.21)(\ref{6.22}), and Theorem 4,

(7.22) lim supnunLt,x2(d+1)d1(×d)2ju(j)Lt,x2(d+1)d1(×d)2j=1JMj2+A2<.\limsup_{n\nearrow\infty}\|u^{n}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}^{2}\lesssim\sum_{j}\|u^{(j)}\|_{L_{t,x}^{\frac{2(d+1)}{d-1}}(\mathbb{R}\times\mathbb{R}^{d})}^{2}\lesssim\sum_{j=1}^{J}M_{j}^{2}+A^{2}<\infty.

This proves that (5.2)(\ref{7.2}) holds. ∎

Acknowledgements

During the time of writing this paper, the author was partially supported by NSF Grant DMS-17643581764358. The author is also grateful to Andrew Lawrie and Walter Strauss for some helpful conversations at MIT on subcritical nonlinear wave equations.

References

  • [BC06] Hajer Bahouri and Jean-Yves Chemin. On global well-posedness for defocusing cubic wave equation. International Mathematics Research Notices, 2006(9):54873–54873, 2006.
  • [Bou98] Jean Bourgain. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. International Mathematics Research Notices, 1998(5):253–283, 1998.
  • [CCT03] Michael Christ, James Colliander, and Terrence Tao. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. American Journal of Mathematics, 125(6):1235–1293, 2003.
  • [CK01] Michael Christ and Alexander Kiselev. Maximal functions associated to filtrations. Journal of Functional Analysis, 179(2):409–425, 2001.
  • [DL15a] Benjamin Dodson and Andrew Lawrie. Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm. Archive for Rational Mechanics and Analysis, 218:1459–1529, 2015.
  • [DL15b] Benjamin Dodson and Andrew Lawrie. Scattering for the radial 3D cubic wave equation. Analysis & PDE, 8(2):467–497, 2015.
  • [DLMM20] Benjamin Dodson, Andrew Lawrie, Dana Mendelson, and Jason Murphy. Scattering for defocusing energy subcritical nonlinear wave equations. Analysis & PDE, 13(7):1995–2090, 2020.
  • [DN23] Thomas Duyckaerts and Giuseppe Negro. Global solutions with asymptotic self-similar behaviour for the cubic wave equation. arXiv preprint arXiv:2304.09567, 2023.
  • [Dod18a] Benjamin Dodson. Global well-posedness and scattering for the radial, defocusing, cubic wave equation with almost sharp initial data. Communications in Partial Differential Equations, 43(10):1413–1455, 2018.
  • [Dod18b] Benjamin Dodson. Global well-posedness and scattering for the radial, defocusing, cubic wave equation with initial data in a critical Besov space. Analysis & PDE, 12(4):1023–1048, 2018.
  • [Dod18c] Benjamin Dodson. Global well-posedness for the radial, defocusing, nonlinear wave equation for 3<p<53<p<5. arXiv preprint arXiv:1810.02879, 2018.
  • [Dod19] Benjamin Dodson. Global well-posedness for the defocusing, cubic, nonlinear wave equation in three dimensions for radial initial data in. Hs×Hs1{H}^{s}\times{H}^{s-1}, s>1/2s>1/2. International Mathematics Research Notices, 2019(21):6797–6817, 2019.
  • [Dod21] Benjamin Dodson. Global well-posedness and scattering for the radial, defocusing, cubic nonlinear wave equation. Duke Math. J., 170(15):3267–3321, 2021.
  • [Dod22] Benjamin Dodson. Global well-posedness of the radial conformal nonlinear wave equation with initial data in a critical space. arXiv preprint arXiv:2206.13586, 2022.
  • [GP03] Isabelle Gallagher and Fabrice Planchon. On global solutions to a defocusing semi-linear wave equation. Revista Matematica Iberoamericana, 19(1):161–177, 2003.
  • [GV95] Jean Ginibre and Giorgio Velo. Generalized Strichartz inequalities for the wave equation. Journal of functional analysis, 133(1):50–68, 1995.
  • [Kap89] Lev Vil’evich Kapitanski. Some generalizations of the Strichartz–Brenner inequality. Algebra i Analiz, 1(3):127–159, 1989.
  • [Kat94] Tosio Kato. An Lq,r{L}^{q,r}-theory for nonlinear Schrödinger equations. Spectral and scattering theory and applications, 23:223–238, 1994.
  • [KPV00] Carlos E Kenig, Gustavo Ponce, and Luis Vega. Global well-posedness for semi-linear wave equations: semi-linear waver equations. Communications in partial differential equations, 25(9-10):1741–1752, 2000.
  • [KT98] Markus Keel and Terence Tao. Endpoint Strichartz estimates. American Journal of Mathematics, 120(5):955–980, 1998.
  • [LS95] Hans Lindblad and Christopher D Sogge. On existence and scattering with minimal regularity for semilinear wave equations. Journal of Functional Analysis, 130(2):357–426, 1995.
  • [Mer93] Frank Merle. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Mathematical Journal, 69(2):427–454, 1993.
  • [MYZ20] Changxing Miao, Jianwei Yang, and Tengfei Zhao. The global well-posedness and scattering for the 5-dimensional defocusing conformal invariant NLW with radial initial data in a critical Besov space. Pacific Journal of Mathematics, 305(1):251–290, 2020.
  • [Ram12] Javier Ramos. A refinement of the Strichartz inequality for the wave equation with applications. Advances in Mathematics, 230(2):649–698, 2012.
  • [Roy08] Tristan Cyrus Roy. Global analysis of the defocusing cubic wave equation in dimension 3. page 81, 2008. Thesis (Ph.D.)–University of California, Los Angeles.
  • [Roy09] Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on 3\mathbb{R}^{3}. Discrete Contin. Dyn. Syst., 24(4):1307–1323, 2009.
  • [RS04] Igor Rodnianski and Jacob Sterbenz. Angular regularity and Strichartz estimates for the wave equation. arXiv:math/0402192, 2004.
  • [She14] Ruipeng Shen. On the energy subcritical, nonlinear wave equation in 3\mathbb{R}^{3} with radial data. Analysis & PDE, 6(8):1929–1987, 2014.
  • [Sog95] Christopher D. Sogge. Lectures on non-linear wave equations, volume 2. International Press Boston, MA, 1995.
  • [SS93] Jalal Shatah and Michael Struwe. Regularity results for nonlinear wave equations. Annals of Mathematics, 138(3):503–518, 1993.
  • [SS00] Hart F Smith and Christopher D Sogge. Global Strichartz estimates for nontrapping perturbations of the Laplacian: Estimates for nonthapping perturbations. Communications in Partial Differential Equations, 25(11-12):2171–2183, 2000.
  • [Ste05] Jacob Sterbenz. Angular regularity and Strichartz estimates for the wave equation. International Mathematics Research Notices, 2005(4):187–231, 2005.
  • [Str68] Walter A Strauss. Decay and asymptotics for box u= f (u). Journal of Functional Analysis, 2(4):409–457, 1968.
  • [Str77] Robert S Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Mathematical Journal, 44(3):705–714, 1977.
  • [Str81] Walter A Strauss. Nonlinear scattering theory at low energy. Journal of Functional Analysis, 41(1):110–133, 1981.
  • [Tao00] Terence Tao. Spherically averaged endpoint Strichartz estimates for the two dimensional Schrödinger equation. Communications in Partial Differential Equations, 25(7-8):1471–1485, 2000.
  • [Tao06] Terence Tao. Nonlinear Dispersive Equations: Local and Global Analysis. Number 106. American Mathematical Soc., 2006.