This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharp inequalities for maximal operators on finite graphs, II

Cristian González-Riquelme and José Madrid IMPA - Instituto de Matemática Pura e Aplicada
Rio de Janeiro - RJ, Brazil, 22460-320.
cristian@impa.br Department of Mathematics, University of California, Los Angeles (UCLA), Portola Plaza 520, Los Angeles, California, 90095, USA jmadrid@math.ucla.edu
Abstract.

Let MGM_{G} be the centered Hardy-Littlewood maximal operator on a finite graph GG. We find limpMGpp\underset{p\to\infty}{\lim}\|M_{G}\|_{p}^{p} when GG is the start graph (SnS_{n}) and the complete graph (KnK_{n}), and we fully describe MSnp\|M_{S_{n}}\|_{p} and the corresponding extremizers for p(1,2)p\in(1,2). We prove that limpMSnpp=1+n2\underset{p\to\infty}{\lim}\|M_{S_{n}}\|_{p}^{p}=\frac{1+\sqrt{n}}{2} when n25n\geq 25. Also, we compute the best constant 𝐂Sn,2{\bf C}_{S_{n},2} such that for every f:Vf:V\to\mathbb{R} we have Var2MSnf𝐂Sn,2Var2f{\rm Var\,}_{2}M_{S_{n}}f\leq{\bf C}_{S_{n},2}{\rm Var\,}_{2}f. We prove that 𝐂Sn,2=(n2n1)1/2n{\bf C}_{S_{n},2}=\frac{(n^{2}-n-1)^{1/2}}{n} for all n3n\geq 3 and characterize the extremizers. Moreover, when MM is the Hardy-Littlewood maximal operator on \mathbb{Z}, we compute the best constant 𝐂p{\bf C}_{p} such that VarpMf𝐂pfp{\rm Var\,}_{p}Mf\leq{\bf C}_{p}\|f\|_{p} for p(12,1)p\in(\frac{1}{2},1) and we describe the extremizers.

Key words and phrases:
Maximal operators; finite graphs; p-bounded variation; sharp constants.
2010 Mathematics Subject Classification:
26A45, 42B25, 39A12, 46E35, 46E39, 05C12.

1. Introduction

Maximal operators are classical objects in analysis. They have applications in several areas of mathematics and have attracted interest since the beginning of the past century. In this manuscript we are interest in these operators acting on graphs. Given a locally finite connected graph G=(V,E)G=(V,E), endowed with the metric dGd_{G} induced by the edges, and f:Vf:V\to\mathbb{R}, we define

MGf(v)=supr0 B(v,r)|f|,M_{G}f(v)=\underset{r\geq 0}{\sup}\ \mathchoice{\mathop{\vrule width=6.0pt,height=3.0pt,depth=-2.5pt\kern-8.0pt\intop}\nolimits_{\kern-6.0ptB(v,r)}}{\mathop{\vrule width=5.0pt,height=3.0pt,depth=-2.6pt\kern-6.0pt\intop}\nolimits_{B(v,r)}}{\mathop{\vrule width=5.0pt,height=3.0pt,depth=-2.6pt\kern-6.0pt\intop}\nolimits_{B(v,r)}}{\mathop{\vrule width=5.0pt,height=3.0pt,depth=-2.6pt\kern-6.0pt\intop}\nolimits_{B(v,r)}}|f|,

where B(v,r)={v1V;dG(v1,v)r}B(v,r)=\{v_{1}\in V;d_{G}(v_{1},v)\leq r\} and  B(v,r)|f|=uB(v,r)|f(u)|μ(B(v,r))\mathchoice{\mathop{\vrule width=6.0pt,height=3.0pt,depth=-2.5pt\kern-8.0pt\intop}\nolimits_{\kern-6.0ptB(v,r)}}{\mathop{\vrule width=5.0pt,height=3.0pt,depth=-2.6pt\kern-6.0pt\intop}\nolimits_{B(v,r)}}{\mathop{\vrule width=5.0pt,height=3.0pt,depth=-2.6pt\kern-6.0pt\intop}\nolimits_{B(v,r)}}{\mathop{\vrule width=5.0pt,height=3.0pt,depth=-2.6pt\kern-6.0pt\intop}\nolimits_{B(v,r)}}|f|=\frac{\sum_{u\in B(v,r)}|f(u)|}{\mu(B(v,r))}. Here μ\mu is the counting measure.

1.1. The pp-norm of maximal functions on finite graphs

The pp-norm (quasi-norm in the range 0<p<10<p<1) of these operators is defined as

MGp:=supf:Vf0MGfpfp,\|M_{G}\|_{p}:=\underset{\underset{f\neq 0}{f:V\to\mathbb{R}}}{\sup}\frac{\|M_{G}f\|_{p}}{\|f\|_{p}},

where gp=(vV|g(v)|p)1p,\|g\|_{p}=\left(\displaystyle\sum_{v\in V}|g(v)|^{p}\right)^{\frac{1}{p}}, for any g:V.g:V\to\mathbb{R}.

The study of the pp-norm of maximal operators acting on finite graphs was initiated by Soria and Tradacete in [10]. They established optimal bounds for MGp\|M_{G}\|_{p} in the range 0<p10<p\leq 1, and showed that the complete graph KnK_{n} and the star graph SnS_{n} are the extremal graphs attaining, respectively, the lower and upper bounds. Since then, the study of maximal operators acting on graphs, specially on the complete MKnM_{K_{n}} and star graphs MSnM_{S_{n}} has attracted the attention of many authors. One of the main goals of this manuscript is to try to extend this notions to the range p>1.p>1.

The case p>1p>1 presents several difficulties. For instance, in the case p1p\leq 1 the concavity of the function xxpx\mapsto x^{p} was used in [10, Lemma 2.5] in order to prove that MGp\|M_{G}\|_{p} is attained by taking some Dirac’s delta. That reduction simplifies matters in that case and it is not available for p>1p>1. In fact, the known extemizers for p>1p>1 are quite different (see Section 2 and 3).

The first progress in this direction was achieved in the authors previous work [6]. There, we obtained the precise values of the 22-norm of MKnM_{K_{n}} and MSnM_{S_{n}}. Moreover, we found extremizers in these cases. The techniques used in such results do not work for general p>1p>1. In Section 2 we address this problem, we fully characterize the extremizers for MSnp\|M_{S_{n}}\|_{p} for all p(1,2]p\in(1,2]. Moreover, we obtain some partial characterization for this objects for all p>2p>2, and we obtain a similar result for the extremizers of MKnp\|M_{K_{n}}\|_{p} in the range p>1p>1.

For a given p>1p>1 and GG, it could be difficult to determine the value of MGp.\|M_{G}\|_{p}. That happens even in the model cases G=KnG=K_{n} and G=SnG=S_{n}. However, it was proved by Soria and Tradacete (see Proposition 3.4 in [10]) that

(1+n12p)MSnpp(n+52).\left(1+\frac{n-1}{2^{p}}\right)\leq\|M_{S_{n}}\|^{p}_{p}\leq\left(\frac{n+5}{2}\right).

They also presented similar bounds for MKnpp\|M_{K_{n}}\|_{p}^{p}. We notice that both lower bounds go to 11 when p.p\to\infty.

In Section 3 we discuss the behavior of both MSnpp\|M_{S_{n}}\|_{p}^{p} and MKnpp\|M_{K_{n}}\|_{p}^{p}. In particular, we prove that

infp>0MGnpp>1,\inf_{p>0}\|M_{G_{n}}\|_{p}^{p}>1,

for any graph GG of nn vertices. This improves qualitatively the aforementioned estimates of Soria and Tradacete. Also, in Section 3 we prove that for all n25n\geq 25 we have

limpMSnpp=1+n2.\lim_{p\to\infty}\|M_{S_{n}}\|^{p}_{p}=\frac{1+\sqrt{n}}{2}.

Moreover, we obtain a similar result for MKnM_{K_{n}}.

1.2. The p-variation of maximal functions

Given a locally finite connected simple graph G=(V,E)G=(V,E) and p>0p>0 we define, for every g:V,g:V\to\mathbb{R},

Varpg=(eE(v1,v2)=e|g(v1)g(v2)|p)1p,{\rm Var\,}_{p}g=\left(\underset{\underset{(v_{1},v_{2})=e}{e\in E}}{\sum}|g(v_{1})-g(v_{2})|^{p}\right)^{\frac{1}{p}},

where we write (v1,v2)=e(v_{1},v_{2})=e if the edge ee joins v1v_{1} and v2v_{2}. As in the definition of MGp\|M_{G}\|_{p}, it is natural to define

𝐂G,p:=supf:V;Varpf>0VarMGfVarpf.{\bf C}_{G,p}:=\sup_{f:V\to\mathbb{R};{\rm Var\,}_{p}f>0}\frac{{\rm Var\,}M_{G}f}{{\rm Var\,}_{p}f}.

Motivated by a large family of regularity results for maximal operators acting on Sobolev spaces (see [3]), in [8] Liu and Xue computed 𝐂Kn{\bf C}_{K_{n}} and 𝐂𝐒𝐧{\bf C_{S_{n}}} in the case n3n\leq 3. Also, they made some conjectures for these values for n>3n>3. These conjectures were largely establish by the authors in [6]. There, the authors proved that

𝐂Kn,p=11nfor allplog4log6and𝐂Sn,p=11nfor allp[1/2,1].{\bf C}_{K_{n},p}=1-\frac{1}{n}\ \ \text{for all}\ p\geq\frac{\log 4}{\log 6}\ \ \text{and}\ \ {\bf C}_{S_{n},p}=1-\frac{1}{n}\ \ \text{for all}\ \ p\in[1/2,1].

Moreover, in all the previous situations the extremizers are delta functions. In the case p>1p>1, delta functions are not extremizers for the pp-variation of MSnM_{S_{n}}. In Section 4 we find the precise value of 𝐂Sn,2{{\bf C}_{S_{n},2}}. Moreover, we fully describe the extremizers in this case.

The study of the regularity properties of the discrete Hardy-Littlewood maximal operators acting on real valued functions defined on the integers was initiated by Bober, Carneiro, Hughes and Pierce in [2], some other interesting results were later obtained in [4], [5] and [9]. In Section 5, we obtain some complementary results extending [9, Theorem 1] to the range p[12,1)p\in[\frac{1}{2},1). In [9, Theorem 1] the second author proved that

Var1Mf2f1,{\rm Var\,}_{1}M_{\mathbb{Z}}f\leq 2\|f\|_{1},

when considering \mathbb{Z} as a graph where consecutive numbers are joined by an edge. This inequality is sharp. The motivation behind this inequality is to try to get an intuition about which is the optimal constant CC in the estimate

Var1MfCVar1f,{\rm Var\,}_{1}M_{\mathbb{Z}}f\leq C{\rm Var\,}_{1}f,

that was proved to be true for C=(2120212300+4)C=(2\cdot 120\cdot 2^{12}\cdot 300+4) in [11]. Since 2f1Var1f2\|f\|_{1}\geq{\rm Var\,}_{1}f it is believed that C=1C=1 is the optimal constant, but this remains an open problem. In Section 5 we find the best constant CpC_{p} such that

VarpMfCpfp{\rm Var\,}_{p}M_{\mathbb{Z}}f\leq C_{p}\|f\|_{p}

for p[12,1].p\in[\frac{1}{2},1]. This motivates us to make some conjectures. We also establish the analogous optimal result for p=p=\infty.

2. Extremizers for the pp-norm of maximal operators on graphs

In this section we prove the existence of extremizers for the pp-norm and provide some further properties about these functions.

Proposition 1.

Let G=(V,E)G=(V,E) be a connected finite graph and p>0p>0. We have that there exists f:V0f:V\to\mathbb{R}_{\geq 0} such that

MGfpfp=MGp\frac{\|M_{G}f\|_{p}}{\|f\|_{p}}=\|M_{G}\|_{p}
Proof.

We write |V|=n|V|=n and V=:{a1,,an}V=:\{a_{1},\dots,a_{n}\}. Given y:=(y1,,yn)[0,1]n{maxi=1,,nyi=1}=:Ay:=(y_{1},\dots,y_{n})\in[0,1]^{n}\cap\{\underset{{i=1,\dots,n}}{\max}y_{i}=1\}=:A we define fy:V0f_{y}:V\to\mathbb{R}_{\geq 0} by fy(ai)=yif_{y}(a_{i})=y_{i}. We observe that MGfy(ai)M_{G}f_{y}(a_{i}) is continuous with respect to yy in AA (since is the maximum of continuous functions). Then, the function MGfypfyp\frac{\|M_{G}f_{y}\|_{p}}{\|f_{y}\|_{p}} is continuous with respect to yy in AA. Thus it achieves its maximum at a point y0Ay_{0}\in A. We claim that

MGfy0fy0p=MGp.\frac{\|M_{G}f_{y_{0}}\|}{\|f_{y_{0}}\|_{p}}=\|M_{G}\|_{p}.

In fact, for every g:V0g:V\to\mathbb{R}_{\geq 0} we have that the quantity

MGgpgp\frac{\|M_{G}g\|_{p}}{\|g\|_{p}}

remains unchanged by applying the transformation

ggmaxi=1,,ng(ai).g\mapsto\frac{g}{\max_{i=1,\dots,n}g(a_{i})}.

This last function is equal to fyf_{y} for some yAy\in A, from where we conclude.

Our next results intend to characterize the extremizers when G=KnG=K_{n} and G=SnG=S_{n}.

Proposition 2.

Let Kn=(V,E)K_{n}=(V,E) be the complete graph with nn vertices where V={a1,a2,an}V=\{a_{1},a_{2}\dots,a_{n}\} and let p>1p>1. If

MKnfpfp=MKnp,\frac{\|M_{K_{n}}f\|_{p}}{\|f\|_{p}}=\|M_{K_{n}}\|_{p},

then ff only takes two values.

Proof.

First, by taking a Dirac’s delta is easy to see that MKnp>1.\|M_{K_{n}}\|_{p}>1. Now, assume that ff attains the supremum. We have then that

i=1rf(ai)p+(nr)mp=MKnp(i=1nf(ai)p).\sum_{i=1}^{r}f(a_{i})^{p}+(n-r)m^{p}={\|M_{K_{n}}\|}^{p}\left(\sum_{i=1}^{n}f(a_{i})^{p}\right).

Therefore, by Hölder’s inequality we have that

(nr)mp\displaystyle(n-r)m^{p} =(MKnpp1)(i=1rf(ai)p)+MKnpp(i=r+1nf(ai)p)\displaystyle=\left(\|M_{K_{n}}\|_{p}^{p}-1\right)\left(\sum_{i=1}^{r}f(a_{i})^{p}\right)+\|M_{K_{n}}\|_{p}^{p}\left(\sum_{i=r+1}^{n}f(a_{i})^{p}\right)
r(MKnpp1)(i=1rf(ai)r)p+(nr)MKnpp(i=r+1nf(ai)nr)p.\displaystyle\geq r(\|M_{K_{n}}\|_{p}^{p}-1)\left(\frac{\sum_{i=1}^{r}f(a_{i})}{r}\right)^{p}+(n-r)\|M_{K_{n}}\|_{p}^{p}\left(\frac{\sum_{i=r+1}^{n}f(a_{i})}{n-r}\right)^{p}.

Then, if we take the function f~(ai)=i=1rf(ai)r\widetilde{f}(a_{i})=\frac{\sum_{i=1}^{r}f(a_{i})}{r} for i=1,,r,i=1,\dots,r, and f~(ai)=i=r+1nf(ai)nr\widetilde{f}(a_{i})=\frac{\sum_{i=r+1}^{n}f(a_{i})}{n-r} for i=r+1,,n,i=r+1,\dots,n, we have

MKnf~pf~pMKnp,\frac{\|M_{K_{n}}\widetilde{f}\|_{p}}{\|\widetilde{f}\|_{p}}\geq\|M_{K_{n}}\|_{p},

with equality if and only if f(ai)=f~(ai)f(a_{i})=\widetilde{f}(a_{i}) for every i=1,n.i=1,\dots n. So, we conclude. ∎

We also get the following result.

Proposition 3.

Let Sn=(V,E)S_{n}=(V,E) be the star graph with nn vertices V={a1,a2,,an}V=\{a_{1},a_{2},\dots,a_{n}\} with center at a1a_{1} and let p1p\geq 1. There exists f:Vf:V\to\mathbb{R} with

MSnfpfp=MSnp,\frac{\|M_{S_{n}}f\|_{p}}{\|f\|_{p}}=\|M_{S_{n}}\|_{p},

such that f(a1)=maxff(a_{1})=\max{f} and f|Va1f_{|V\setminus{a_{1}}} takes (at most) two values.

Proof.

By Proposition 1 there exists g0g\geq 0 such that

MSngpgp=MSnp.\frac{\|M_{S_{n}}g\|_{p}}{\|g\|_{p}}=\|M_{S_{n}}\|_{p}.

Now, we proceed in three steps.
Step 1: We can assume that g(a1)g(aj)g(a_{1})\geq g(a_{j}) for all j{2,3,,n}j\in\{2,3,\dots,n\}. We assume without loss of generality that g(a2)g(ar)g(a1)g(an),g(a_{2})\geq\dots\geq g(a_{r})\geq g(a_{1})\geq\dots\geq g(a_{n}), consider g~(x):=g(x)\widetilde{g}(x):=g(x) for xV{a2,a1}x\in V\setminus\{a_{2},a_{1}\}, g~(a2):=g(a1)\widetilde{g}(a_{2}):=g(a_{1}) and g~(a1):=g(a2).\widetilde{g}(a_{1}):=g(a_{2}). We observe that

MSng~(a1)p+MSng~(a2)p=g(a2)+max{mp,(g(a2)+g(a1)2)p}MSng(a2)p+MSng(a1)p.M_{S_{n}}\widetilde{g}(a_{1})^{p}+M_{S_{n}}\widetilde{g}(a_{2})^{p}=g(a_{2})+\max\left\{m^{p},\left(\frac{g(a_{2})+g(a_{1})}{2}\right)^{p}\right\}\geq M_{S_{n}}g(a_{2})^{p}+M_{S_{n}}g(a_{1})^{p}.

Also, for xV{a1,a2},x\in V\setminus\{a_{1},a_{2}\}, we have that MSng~(x)MSng(x)M_{S_{n}}\widetilde{g}(x)\geq M_{S_{n}}g(x) since

max{m,g(x)+g~(a1)2,g(x)}max{m,g(x)+g(a1)2,g(x)}.\max\left\{m,\frac{g(x)+\widetilde{g}(a_{1})}{2},g(x)\right\}\geq\max\left\{m,\frac{g(x)+g(a_{1})}{2},g(x)\right\}.

Therefore, we get

i=1nMSng~(a1)pi=1nMSng(ai)p,\sum_{i=1}^{n}M_{S_{n}}\widetilde{g}(a_{1})^{p}\geq\sum_{i=1}^{n}M_{S_{n}}g(a_{i})^{p},

since clearly we have that g~p=gp\|\widetilde{g}\|_{p}=\|g\|_{p}. We conclude that

MSng~pg~p=MSnp.\frac{\|M_{S_{n}}\widetilde{g}\|_{p}}{\|\widetilde{g}\|_{p}}=\|M_{S_{n}}\|_{p}.

So, we can assume that g(a1)g(aj)g(a_{1})\geq g(a_{j}) for every j.j.

Then, we assume without loss of generality that g(a1)g(ar)2mg(a1)>g(ar+1)g(an)g(a_{1})\geq\dots\geq g(a_{r})\geq 2m-g(a_{1})>g(a_{r+1})\geq\dots g(a_{n}).

Step 2: We can assume that g(ar+1)=g(ar+2)==g(an)g(a_{r+1})=g(a_{r+2})=\dots=g(a_{n}). We consider the function g~:V\widetilde{g}:V\to\mathbb{R} defined by g~(ai)=i=r+1ng(ai)nr\widetilde{g}(a_{i})=\frac{\sum_{i=r+1}^{n}g(a_{i})}{n-r} for every i=r+1ni=r+1\dots n and g~=g\widetilde{g}=g otherwise. We have (similarly as in the previous proposition) that

MSng~pg~pMSnp.\frac{\|M_{S_{n}}\widetilde{g}\|_{p}}{\|\widetilde{g}\|_{p}}\geq\|M_{S_{n}}\|_{p}.

Therefore, we can assume that g(ai)=g(an)g(a_{i})=g(a_{n}) for every ir+1.i\geq r+1.

Step 3: We can assume that g(a2)=g(a3)==g(ar)g(a_{2})=g(a_{3})=\dots=g(a_{r}). Now consider

g~(ai)=(j=2rg(aj)pr1)1p\widetilde{g}(a_{i})=\left(\frac{\sum_{j=2}^{r}g(a_{j})^{p}}{r-1}\right)^{\frac{1}{p}}

for i=2,,ri=2,\dots,r and g~=g\widetilde{g}=g elsewhere. Since i=1n|g~(ai)|p=i=1n|g(ai)|p\sum_{i=1}^{n}|\widetilde{g}(a_{i})|^{p}=\sum_{i=1}^{n}|g(a_{i})|^{p} is enough to prove that

i=1n|MSng~(ai)|pi=1n|MSng(ai)|p.\sum_{i=1}^{n}|M_{S_{n}}\widetilde{g}(a_{i})|^{p}\geq\sum_{i=1}^{n}|M_{S_{n}}g(a_{i})|^{p}.

Let us observe first that

m~:=i=1ng~(ai)ni=1ng(ai)n=m,\widetilde{m}:=\frac{\sum_{i=1}^{n}\widetilde{g}(a_{i})}{n}\geq\frac{\sum_{i=1}^{n}g(a_{i})}{n}=m,

since

(r1)(i=2rg(ai)pr1)1/pi=2rg(ai)(r-1)\left(\frac{\sum_{i=2}^{r}g(a_{i})^{p}}{r-1}\right)^{1/p}\geq\sum_{i=2}^{r}g(a_{i})

by Hölder’s inequality. Thus, for i=r+1,,ni=r+1,\dots,n we have that MSng~(ai)m~m=MSng(ai).M_{S_{n}}\widetilde{g}(a_{i})\geq\widetilde{m}\geq m=M_{S_{n}}g(a_{i}). Also, we observe that for all i{2,,r}i\in\{2,\dots,r\} we have

MSng~(ai)g(a1)+g~(ai)2.M_{S_{n}}\widetilde{g}(a_{i})\geq\frac{g(a_{1})+\widetilde{g}(a_{i})}{2}.

So, it is enough to prove that

(r1)(g(a1)+(j=2rg(aj)pr1)1/p2)p=i=2r(g(a1)+g~(ai)2)pi=2rMSng(ai)p=i=2r(g(a1)+g(ai)2)p,(r-1)\left(\frac{g(a_{1})+\left(\frac{\sum_{j=2}^{r}g(a_{j})^{p}}{r-1}\right)^{1/p}}{2}\right)^{p}=\sum_{i=2}^{r}\left(\frac{g(a_{1})+\widetilde{g}(a_{i})}{2}\right)^{p}\geq\sum_{i=2}^{r}M_{S_{n}}g(a_{i})^{p}=\sum_{i=2}^{r}\left(\frac{g(a_{1})+g(a_{i})}{2}\right)^{p},

but that is equivalent to

g(a1)+(j=2rg(aj)pr1)1/p(i=2r(g(a1)+g(ai))pr1)1/p,g(a_{1})+\left(\frac{\sum_{j=2}^{r}g(a_{j})^{p}}{r-1}\right)^{1/p}\geq\left(\frac{\sum_{i=2}^{r}(g(a_{1})+g(a_{i}))^{p}}{r-1}\right)^{1/p},

which is a consequence of Minkowsky’s inequality. From where we conclude our required result.

Theorem 4.

For all n3n\geq 3, let Sn=(V,E)S_{n}=(V,E) be the star graph with nn vertices V={a1,a2,,an}V=\{a_{1},a_{2},\dots,a_{n}\} with center at a1a_{1}. For all p(1,2]p\in(1,2] we have that

MSnp=(supx[0,1)1+(n1)(x+12)p1+(n1)xp)1p.\|M_{S_{n}}\|_{p}=\left(\sup_{x\in[0,1)}\frac{1+(n-1)(\frac{x+1}{2})^{p}}{1+(n-1)x^{p}}\right)^{\frac{1}{p}}.
Proof.

First, let us assume that n>3n>3. Let f:Vf:V\to\mathbb{R} be a function such that MSnfpfp=MSnp\frac{\|M_{S_{n}}f\|_{p}}{\|f\|_{p}}=\|M_{S_{n}}\|_{p} as in Proposition 3. After a normalization (if necessary) we can assume that f(a1)=1f(a_{1})=1. By Proposition 3 we have that f|Va1f_{|V\setminus{a_{1}}} only takes two values, let us say xy1x\leq y\leq 1, xx s-times and yy t-times. We will prove that x=yx=y. We observe that if both xx and yy satisfy x,y2mf1x,y\geq 2m_{f}-1 by the same argument as in Proposition 3 we conclude that x=y.x=y. The same happens if x,y2mf1.x,y\leq 2m_{f}-1. So, the only case remaining is when x<2mf1<yx<2m_{f}-1<y. Then, we observe that by taking a Dirac’s delta in a1a_{1} we have that MSnpp1+n12pn+34.\|M_{S_{n}}\|_{p}^{p}\geq 1+\frac{n-1}{2^{p}}\geq\frac{n+3}{4}. Let us first assume that y<1,y<1, given ε\varepsilon such that

1>y+ε>2(1+t(y+ε)+sxn)1,1>y+\varepsilon>2\left(\frac{1+t(y+\varepsilon)+sx}{n}\right)-1,

we consider fε:Vf_{\varepsilon}:V\to\mathbb{R} defined by fε(ai)=f(ai)+εf_{\varepsilon}(a_{i})=f(a_{i})+\varepsilon for all aia_{i} such that f(ai)=yf(a_{i})=y and fε=ff_{\varepsilon}=f elsewhere. If we consider the function (defined in a neighborhood of 0)

L(ε):=MSnfεppMSnppfεpp,L(\varepsilon):=\|M_{S_{n}}f_{\varepsilon}\|_{p}^{p}-\|M_{S_{n}}\|_{p}^{p}\|f_{\varepsilon}\|_{p}^{p},

we have L(0)=0L(0)=0 and L(ε)0L(\varepsilon)\leq 0 in a neighborhood of 0. Therefore L(0)=0L^{\prime}(0)=0, that is

0\displaystyle 0 =(1+t(1+y+ε2)p+s(1+sx+t(y+ε)n)pMSnpp(1+t(y+ε)p+sxp))\displaystyle=\left(1+t\left(\frac{1+y+\varepsilon}{2}\right)^{p}+s\left(\frac{1+sx+t(y+\varepsilon)}{n}\right)^{p}-\|M_{S_{n}}\|_{p}^{p}(1+t(y+\varepsilon)^{p}+sx^{p})\right)^{\prime}
=tp(1+y2)p12+stpn(1+sx+tyn)p1tpMSnpp(yp1).\displaystyle=\frac{tp(\frac{1+y}{2})^{p-1}}{2}+s\frac{tp}{n}\left(\frac{1+sx+ty}{n}\right)^{p-1}-tp\|M_{S_{n}}\|_{p}^{p}(y^{p-1}). (2.1)

We observe that in fact y1+x2,y\geq\frac{1+x}{2}, if not we would have mf1+x2,m_{f}\leq\frac{1+x}{2}, a contradiction. However, that implies that ymfy\geq m_{f} since is equivalent to (s+1)y=(nt)ysx+1,(s+1)y=(n-t)y\geq sx+1, which is true because (s+1)(1+x2)sx+1(s+1)\left(\frac{1+x}{2}\right)\geq sx+1. Then

n+34yp1MSnppyp1(1+y2)p12+n2n(1+sx+tyn)p1<(1+y2)p12+n2nyp1.\frac{n+3}{4}y^{p-1}\leq\|M_{S_{n}}\|_{p}^{p}y^{p-1}\leq\frac{(\frac{1+y}{2})^{p-1}}{2}+\frac{n-2}{n}\left(\frac{1+sx+ty}{n}\right)^{p-1}<\frac{(\frac{1+y}{2})^{p-1}}{2}+\frac{n-2}{n}y^{p-1}.

Then

n12+4n<(1+y2y)p11+y2y.\displaystyle\frac{n-1}{2}+\frac{4}{n}<\left(\frac{1+y}{2y}\right)^{p-1}\leq\frac{1+y}{2y}. (2.2)

Also, we observe that since 2mf1>x>0,2m_{f}-1>x>0, we have mf>12,m_{f}>\frac{1}{2}, so if x<y14,x<y\leq\frac{1}{4}, we have

12<mf=1+sx+tyn<1+s+t4n=1+n14n.\frac{1}{2}<m_{f}=\frac{1+sx+ty}{n}<\frac{1+\frac{s+t}{4}}{n}=\frac{1+\frac{n-1}{4}}{n}.

Therefore, n4<34,\frac{n}{4}<\frac{3}{4}, a contradiction. So y>14,y>\frac{1}{4}, then

1+y2y<104=52.\frac{1+y}{2y}<\frac{10}{4}=\frac{5}{2}.

Then, by (2.2), we obtain n12+4n<52,\frac{n-1}{2}+\frac{4}{n}<\frac{5}{2}, that is false for n4.n\geq 4. We conclude this case. The only remaining case is when y=1.y=1. In this case, we have that (where LL is defined in an interval (δ,0](\delta,0], with δ\delta close to 0)

L(0)L(ε)ε0.\frac{L(0)-L(-\varepsilon)}{\varepsilon}\geq 0.

Therefore taking ε0-\varepsilon\to 0^{-}, similarly as we obtained (2), we have that 0tp2+stpnmp1tpMSnpp0\leq\frac{tp}{2}+s\frac{tp}{n}m^{p-1}-tp\|M_{S_{n}}\|_{p}^{p} and that implies n+3412+1,\frac{n+3}{4}\leq\frac{1}{2}+1, which is false for n>3.n>3. Therefore we conclude this case. The remaining case n=3n=3 is treated as follows. By the same argument (and notation) above, if x<2mf1<yx<2m_{f}-1<y, we have MS3pp1+22p32\|M_{S_{3}}\|_{p}^{p}\geq 1+\frac{2}{2^{p}}\geq\frac{3}{2} and y12.y\geq\frac{1}{2}. Proceeding as before, similarly as we obtained (2), we have that

MS3ppyp1(1+y2)p12+13(mf)p1(1+y2)p12+13yp1,\|M_{S_{3}}\|_{p}^{p}y^{p-1}\leq\frac{(\frac{1+y}{2})^{p-1}}{2}+\frac{1}{3}(m_{f})^{p-1}\leq\frac{(\frac{1+y}{2})^{p-1}}{2}+\frac{1}{3}y^{p-1},

therefore 73(1+y2y)p1(32)p132,\frac{7}{3}\leq(\frac{1+y}{2y})^{p-1}\leq(\frac{3}{2})^{p-1}\leq\frac{3}{2}, a contradiction. So, we conclude. ∎

Remark 5.

An adaptation of the proof above also shows that for any p>1p>1 there exists a positive constant N(p)N(p) such that for any n>N(p)n>N(p) we have

𝐂Sn,p=(supx[0,1)1+(n1)(x+12)p1+(n1)xp)1p.{\bf C}_{S_{n},p}=\left(\sup_{x\in[0,1)}\frac{1+(n-1)(\frac{x+1}{2})^{p}}{1+(n-1)x^{p}}\right)^{\frac{1}{p}}.

3. Asymptotic behavior of MGp\|M_{G}\|_{p}

In the next propositions we study the behavior of MKnp\|M_{K_{n}}\|_{p} and MSnp\|M_{S_{n}}\|_{p} as p.p\to\infty. We start with an useful elementary lemma.

Lemma 6.

Assume that for {pk}k[1,)\{p_{k}\}_{k\in\mathbb{N}}\subset[1,\infty) such that pkp_{k}\to\infty we have x1,pk,,xn,pk0x_{1,p_{k}},\dots,x_{n,p_{k}}\geq 0 such that limkxi,pkpkxi<\underset{k\to\infty}{\lim}x_{i,p_{k}}^{p_{k}}\to x_{i}<\infty, for every i=1,,ni=1,\dots,n. Then we have that

limk(i=1nxi,pkn)pk=(x1x2xn)1n.\displaystyle\lim_{k\to\infty}\left(\frac{\sum_{i=1}^{n}x_{i,p_{k}}}{n}\right)^{p_{k}}=(x_{1}x_{2}\dots x_{n})^{\frac{1}{n}}.
Proof.

By AM-GM inequality we have

(i=1nxi,pkn)pk(x1,pkpkx2,pkpkxn,pkpk)1n(x1x2xn)1n.\left(\frac{\sum_{i=1}^{n}x_{i,p_{k}}}{n}\right)^{p_{k}}\geq\left(x_{1,p_{k}}^{p_{k}}x_{2,p_{k}}^{p_{k}}\dots x_{n,p_{k}}^{p_{k}}\right)^{\frac{1}{n}}\to(x_{1}x_{2}\dots x_{n})^{\frac{1}{n}}.

So, we just need to prove that

limsupk(i=1nxi,pkn)pk(x1x2xn)1n.\underset{k\to\infty}{\lim\sup}\left(\frac{\sum_{i=1}^{n}x_{i,p_{k}}}{n}\right)^{p_{k}}\leq(x_{1}x_{2}\dots x_{n})^{\frac{1}{n}}.

Given ε>0\varepsilon>0, for kk big enough we have that xi,pk(xi+ε)1pkx_{i,p_{k}}\leq(x_{i}+\varepsilon)^{\frac{1}{p_{k}}} for every i=1,,ni=1,\dots,n. Then, we observe that

limk(i=1n(xi+ε)1pkn)pk=((x1+ε)(x2+ε)(xn+ε))1n\lim_{k\to\infty}\left(\frac{\sum_{i=1}^{n}(x_{i}+\varepsilon)^{\frac{1}{p_{k}}}}{n}\right)^{p_{k}}=((x_{1}+\varepsilon)(x_{2}+\varepsilon)\dots(x_{n}+\varepsilon))^{\frac{1}{n}}

by the L’Hospital rule after applying log\log in both sides. Therefore, for every given ε>0\varepsilon>0 we have

limsupk(i=1nxi,pin)pk((x1+ε)(x2+ε)(xn+ε))1n,\underset{k\to\infty}{\lim\sup}\left(\frac{\sum_{i=1}^{n}x_{i,p_{i}}}{n}\right)^{p_{k}}\leq((x_{1}+\varepsilon)(x_{2}+\varepsilon)\dots(x_{n}+\varepsilon))^{\frac{1}{n}},

from where we conclude. ∎

Now we continue by analyzing the behavior of MKnpp\|M_{K_{n}}\|_{p}^{p} when pp goes to \infty. In the following lemma we construct an example that helps us to achieve that goal.

Lemma 7.

Let Kn=(V,E)K_{n}=(V,E) be the complete graph with nn vertices V={a1,a2,an}V=\{a_{1},a_{2}\dots,a_{n}\}. Then,

liminfpMKnppsupα>1,k{1,,n}kαnk+α(nk)kαnk+nk.\underset{p\to\infty}{\lim\inf}\ \|M_{K_{n}}\|_{p}^{p}\geq\underset{\alpha>1,k\in\{1,\dots,n\}}{\sup}\frac{k\alpha^{\frac{n}{k}}+\alpha(n-k)}{k\alpha^{\frac{n}{k}}+n-k}.
Proof of Lemma 7.

For fixed kk and α>1\alpha>1 we define the function f:V0f:V\to\mathbb{R}_{\geq 0} fiven by fp(ai)=nα1p(nk)kf_{p}(a_{i})=\frac{n\alpha^{\frac{1}{p}}-(n-k)}{k} for ik,i\leq k, and fp(ai)=1f_{p}(a_{i})=1 elsewhere. Thus we have mp:=i=1nfp(ai)n=α1p.m_{p}:=\frac{\sum_{i=1}^{n}f_{p}(a_{i})}{n}=\alpha^{\frac{1}{p}}. Moreover, we observe that

limp(nα1p(nk)k)p=αnk,\lim_{p\to\infty}\left(\frac{n\alpha^{\frac{1}{p}}-(n-k)}{k}\right)^{p}=\alpha^{\frac{n}{k}},

therefore

liminfpMKnpp\displaystyle\underset{p\to\infty}{\lim\inf}\ \|M_{K_{n}}\|_{p}^{p} limpk(nα1p(nk)k)p+(nk)mppk(nα1p(nk)k)p+(nk)\displaystyle\geq\lim_{p\to\infty}\frac{k\left(\frac{n\alpha^{\frac{1}{p}}-(n-k)}{k}\right)^{p}+(n-k)m_{p}^{p}}{k\left(\frac{n\alpha^{\frac{1}{p}}-(n-k)}{k}\right)^{p}+(n-k)}
=kαnk+(nk)αkαnk+(nk),\displaystyle=\frac{k\alpha^{\frac{n}{k}}+(n-k)\alpha}{k\alpha^{\frac{n}{k}}+(n-k)},

from where we conclude. ∎

We observe that the previous proof gives us the lower bound

MKnppsupα>1,k{1,,n}k(nα1p(nk)k)p+(nk)αk(nα1p(nk)k)p+(nk),\|M_{K_{n}}\|_{p}^{p}\geq\underset{\alpha>1,k\in\{1,\dots,n\}}{\sup}\frac{k\left(\frac{n\alpha^{\frac{1}{p}}-(n-k)}{k}\right)^{p}+(n-k)\alpha}{k\left(\frac{n\alpha^{\frac{1}{p}}-(n-k)}{k}\right)^{p}+(n-k)},

for every p1.p\geq 1. Now we claim that this lower bound gives essentially the behavior when pp\to\infty for MKnpp.\|M_{K_{n}}\|_{p}^{p}. This is the content of the following theorem.

Theorem 8.

Let n3n\geq 3 and let Kn=(V,E)K_{n}=(V,E) be the complete graph with nn vertices V={a1,a2,an}V=\{a_{1},a_{2}\dots,a_{n}\}. Then,

limpMKnpp=supα>1,k{1,,n}kαnk+α(nk)kαnk+nk.\lim_{p\to\infty}\|M_{K_{n}}\|_{p}^{p}=\underset{\alpha>1,k\in\{1,\dots,n\}}{\sup}\frac{k\alpha^{\frac{n}{k}}+\alpha(n-k)}{k\alpha^{\frac{n}{k}}+n-k}.
Proof of Theorem 8.

By the previous lemma we just need to prove that

limsuppMKnppsupα>1,k{1,,n}kαnk+α(nk)kαnk+nk:=Cn.\lim\sup_{p\to\infty}\|M_{K_{n}}\|_{p}^{p}\leq\underset{\alpha>1,k\in\{1,\dots,n\}}{\sup}\frac{k\alpha^{\frac{n}{k}}+\alpha(n-k)}{k\alpha^{\frac{n}{k}}+n-k}:=C_{n}.

Observe that Cn>1C_{n}>1 since α>1\alpha>1. Moreover, by Proposition 1 for all p>1p>1 there exists a function fp:Vf_{p}:V\to\mathbb{R} such that MKnp=MKnfppfpp\|M_{K_{n}}\|_{p}=\frac{\|M_{K_{n}}f_{p}\|_{p}}{\|f_{p}\|_{p}}. Let us assume that there exists a sequence pi,p_{i}\to\infty, such that:

MKnfpipipifpipipi>c,\frac{\|M_{K_{n}}f_{p_{i}}\|_{p_{i}}^{p_{i}}}{\|f_{p_{i}}\|_{p_{i}}^{p_{i}}}>c, (3.1)

for a fixed constant c>Cnc>C_{n}. We assume without lose of generality that f(a1)f(a2)f(an)f(a_{1})\geq f(a_{2})\dots\geq f(a_{n}). By Proposition 2, we know that fpif_{p_{i}} only takes two values, if the minimum of this two values is 0, after a normalization (if necessary) we could assume fpi(aj)=1f_{p_{i}}(a_{j})=1 for jk0<nj\leq k_{0}<n and fpi=0f_{p_{i}}=0 elsewhere, then

MKnfpipipifpipipi=k0+(nk0)(k0n)pik01+(n1)(n1n)pi1,\displaystyle\frac{\|M_{K_{n}}f_{p_{i}}\|_{p_{i}}^{p_{i}}}{\|f_{p_{i}}\|_{p_{i}}^{p_{i}}}=\frac{k_{0}+(n-k_{0})(\frac{k_{0}}{n})^{p_{i}}}{k_{0}}\leq 1+(n-1)\left(\frac{n-1}{n}\right)^{p_{i}}\to 1,

a contradiction for pip_{i} big enough. So we can assume without loss of generality that fpif_{p_{i}} takes two different positive values, and after a normalization, we can assume that the minimum value of fpif_{p_{i}} is 11. Let us call the other value by ypi>1y_{p_{i}}>1. Let us take a subsequence of pip_{i} (that we also call pip_{i}) such that fpi(ar)=ypif_{p_{i}}(a_{r})=y_{p_{i}} for rkr\leq k (for some fixed k{1,,n}k\in\{1,\dots,n\}) and fpi(ar)=1f_{p_{i}}(a_{r})=1 elsewhere. We claim that ypi1.y_{p_{i}}\to 1. In fact, if there exist a subsequence (that we also call pip_{i}) such that ypiρ>,1y_{p_{i}}\geq\rho>,1 we have

mpiypi=k+(nk)1ypink+(nk)1ρn<1.\frac{m_{p_{i}}}{y_{p_{i}}}=\frac{k+(n-k)\frac{1}{y_{p_{i}}}}{n}\leq\frac{k+(n-k)\frac{1}{\rho}}{n}<1.

Therefore

MKnfpipipifpipipi=kypipi+(nk)mpipikypipi+(nk)\displaystyle\frac{\|M_{K_{n}}f_{p_{i}}\|_{p_{i}}^{p_{i}}}{\|f_{p_{i}}\|_{p_{i}}^{p_{i}}}=\frac{ky_{p_{i}}^{p_{i}}+(n-k)m_{p_{i}}^{p_{i}}}{ky_{p_{i}}^{p_{i}}+(n-k)} 1+(nk)(mpiypi)pi\displaystyle\leq 1+(n-k)\left(\frac{m_{p_{i}}}{y_{p_{i}}}\right)^{p_{i}}
1+(nk)(k+(nk)1ρn)pi1,\displaystyle\leq 1+(n-k)\left(\frac{k+(n-k)\frac{1}{\rho}}{n}\right)^{p_{i}}\to 1,

a contradiction. Now we claim that the ypipiy_{p_{i}}^{p_{i}} are uniformly bounded. Assume that for a subsequence (that we also call ypiy_{p_{i}}) we have ypipiy_{p_{i}}^{p_{i}}\to\infty. We consider the function g(x)=nxn12nkx(nk)=0,g(x)=nx^{\frac{n-\frac{1}{2}}{n}}-kx-(n-k)=0, we observe that g(x)0g(x)\geq 0 for x[1,((n12)k)2n].x\in\left[1,\left(\frac{(n-\frac{1}{2})}{k}\right)^{2n}\right]. In fact g(1)=0g(1)=0 and gg is increasing in [1,((n12)k)2n]\left[1,\left(\frac{\left(n-\frac{1}{2}\right)}{k}\right)^{2n}\right] since g(x)=(n12)x12nk0.g^{\prime}(x)=\left(n-\frac{1}{2}\right)x^{\frac{-1}{2n}}-k\geq 0. Now, for pip_{i} big enough we have ypi[1,((n12)k)2n]y_{p_{i}}\in\left[1,\left(\frac{\left(n-\frac{1}{2}\right)}{k}\right)^{2n}\right]. Thus nypin12nkypi(nk)0ny_{p_{i}}^{\frac{n-\frac{1}{2}}{n}}-ky_{p_{i}}-(n-k)\geq 0 and then

mpi=kypi+nknypin12n.m_{p_{i}}=\frac{ky_{p_{i}}+n-k}{n}\leq y_{p_{i}}^{\frac{n-\frac{1}{2}}{n}}.

Therefore

MKnfpipipifpipipi=kypipi+(nk)mpipikypipi+(nk)\displaystyle\frac{\|M_{K_{n}}f_{p_{i}}\|_{p_{i}}^{p_{i}}}{\|f_{p_{i}}\|_{p_{i}}^{p_{i}}}=\frac{ky_{p_{i}}^{p_{i}}+(n-k)m_{p_{i}}^{p_{i}}}{ky_{p_{i}}^{p_{i}}+(n-k)} 1+(nk)(mpiypi)pi\displaystyle\leq 1+(n-k)\left(\frac{m_{p_{i}}}{y_{p_{i}}}\right)^{p_{i}}
1+(nk)(ypi12n)pi1,\displaystyle\leq 1+(n-k)\left(y_{p_{i}}^{-\frac{1}{2n}}\right)^{p_{i}}\to 1,

reaching a contradiction. So, we have that ypipiy_{p_{i}}^{p_{i}} are uniformly bounded. Let us take a subsequence of pip_{i} (that we also denote pip_{i} for simplicity) such that ypipiy_{p_{i}}^{p_{i}} and mpipim_{p_{i}}^{p_{i}} converges. Let us write limpiypipi=α1\underset{p_{i}\to\infty}{\lim}y_{p_{i}}^{p_{i}}=\alpha_{1} and limpimpkpk=α2\underset{p_{i}\to\infty}{\lim}m_{p_{k}}^{p_{k}}=\alpha_{2}. Then, by Lemma 6 we have (taking xs,pk=ypkx_{s,p_{k}}=y_{p_{k}} for sks\leq k and xs,pk=1x_{s,p_{k}}=1 for s>1s>1) α2=α1kn.\alpha_{2}=\alpha_{1}^{\frac{k}{n}}.

This implies

limpiMKnfpipipifpipipi=limpikypipi+(nk)mpipikypipi+(nk)=kα2nk+(nk)α2kα2nk+(nk)Cn.\displaystyle\lim_{p_{i}\to\infty}\frac{\|M_{K_{n}}f_{p_{i}}\|_{p_{i}}^{p_{i}}}{\|f_{p_{i}}\|_{p_{i}}^{p_{i}}}=\lim_{p_{i}\to\infty}\frac{ky_{p_{i}}^{p_{i}}+(n-k)m_{p_{i}}^{p_{i}}}{ky_{p_{i}}^{p_{i}}+(n-k)}=\frac{k\alpha_{2}^{\frac{n}{k}}+(n-k)\alpha_{2}}{k\alpha_{2}^{\frac{n}{k}}+(n-k)}\leq C_{n}.

Then, it is not possible to have a sequence like in (3.1), therefore

limsuppMKnppCn\underset{p\to\infty}{\lim\sup}\ \|M_{K_{n}}\|_{p}^{p}\leq C_{n}

as desired.∎

Now we start analyzing the behavior of MSnpp\|M_{S_{n}}\|_{p}^{p} when pp goes to \infty. In the following lemma we construct an example that helps us to achieve this goal.

Lemma 9.

Let n3n\geq 3 and let Sn=(V,E)S_{n}=(V,E) be the star graph with nn vertices V={a1,a2,,an}V=\{a_{1},a_{2},\dots,a_{n}\} with center at a1a_{1}. Then,

liminfpMSnpp1+n2.\underset{p\to\infty}{\lim\inf}\ \|M_{S_{n}}\|_{p}^{p}\geq\frac{1+\sqrt{n}}{2}.
Proof.

For fixed k>1k>1 we define yk,p=2k1p1,y_{k,p}=2k^{\frac{1}{p}}-1, we observe that (1+yk,p2)p=k.\left(\frac{1+y_{k,p}}{2}\right)^{p}=k. Let us consider the function fk,p:V0f_{k,p}:V\to\mathbb{R}_{\geq 0} by fk,p(a1)=yk,pf_{k,p}(a_{1})=y_{k,p} and fk,p(ai)=1f_{k,p}(a_{i})=1 for i>1i>1. Then, we have

MSnpp(MSnfk,ppfk,pp)p=(2k1p1)p+(n1)k(2k1p1)p+(n1).\displaystyle\|M_{S_{n}}\|_{p}^{p}\geq\left(\frac{\|M_{S_{n}}f_{k,p}\|_{p}}{\|f_{k,p}\|_{p}}\right)^{p}=\frac{\left(2k^{\frac{1}{p}}-1\right)^{p}+(n-1)k}{\left(2k^{\frac{1}{p}}-1\right)^{p}+(n-1)}.

We observe that by L’Hospital limp(2k1p1)p=k2,\underset{p\to\infty}{\lim}\left(2k^{\frac{1}{p}}-1\right)^{p}=k^{2}, therefore we have

liminfpMSnppk2+(n1)kk2+(n1).\underset{p\to\infty}{\lim\inf}\ \|M_{S_{n}}\|_{p}^{p}\geq\frac{k^{2}+(n-1)k}{k^{2}+(n-1)}.

By taking k=n+1k=\sqrt{n}+1 we have k2+(n1)kk2+(n1)=n+12,\frac{k^{2}+(n-1)k}{k^{2}+(n-1)}=\frac{\sqrt{n}+1}{2}, from where we conclude our proposition. ∎

We observe that the proof above gives us the estimate

MSnpp(2(1+n)1p1)p+(n1)(1+n)(2(1+n)1p1)p+(n1)\|M_{S_{n}}\|_{p}^{p}\geq\frac{\left(2(1+\sqrt{n})^{\frac{1}{p}}-1\right)^{p}+(n-1)(1+\sqrt{n})}{\left(2(1+\sqrt{n})^{\frac{1}{p}}-1\right)^{p}+(n-1)}

for every p1.p\geq 1. Moreover, we observe that (2(1+n)1p1)p\left(2(1+\sqrt{n})^{\frac{1}{p}}-1\right)^{p} is an increasing function on pp. This is the case because the derivative of plog(2(1+n)1p1)p\log\left(2(1+\sqrt{n})^{\frac{1}{p}}-1\right) is

log(2(1+n)1p1)(1+n)1plog(1+n)(2(1+n)1p1)plog(2(1+n)1p1)log(1+n)p0.\log\left(2(1+\sqrt{n})^{\frac{1}{p}}-1\right)-\frac{(1+\sqrt{n})^{\frac{1}{p}}\log(1+\sqrt{n})}{(2(1+\sqrt{n})^{\frac{1}{p}}-1)p}\geq\log(2(1+\sqrt{n})^{\frac{1}{p}}-1)-\frac{\log(1+\sqrt{n})}{p}\geq 0.

Thus, we have that

(2(1+n)1p1)p+(n1)(1+n)(2(1+n)1p1)p+(n1)\frac{\left(2(1+\sqrt{n})^{\frac{1}{p}}-1\right)^{p}+(n-1)(1+\sqrt{n})}{\left(2(1+\sqrt{n})^{\frac{1}{p}}-1\right)^{p}+(n-1)}

is decreasing with respect to pp. Then

MSnpplimt(2(1+n)1t1)t+(n1)(1+n)(2(1+n)1t1)t+(n1)=n+12,\|M_{S_{n}}\|_{p}^{p}\geq\lim_{t\to\infty}\frac{\left(2(1+\sqrt{n})^{\frac{1}{t}}-1\right)^{t}+(n-1)(1+\sqrt{n})}{\left(2(1+\sqrt{n})^{\frac{1}{t}}-1\right)^{t}+(n-1)}=\frac{\sqrt{n}+1}{2},

for all p1.p\geq 1. Note that this lower bound is better than the one observed by Soria and Tradacete 1+n12pMSnpp1+\frac{n-1}{2^{p}}\leq\|M_{S_{n}}\|_{p}^{p} (see Proposition 3.4 in [10]) whenever p>log(n+1)log(2)+1.p>\frac{\log(\sqrt{n}+1)}{\log(2)}+1.

Let us define

MSnp:=supy1(yp+(n1)(1+y2)pyp+(n1))1p.\|M_{S_{n}}\|_{p}^{*}:=\sup_{y\geq 1}\left(\frac{y^{p}+(n-1)(\frac{1+y}{2})^{p}}{y^{p}+(n-1)}\right)^{\frac{1}{p}}.

Our next goal is to analyze the relation between this object and MSnp\|M_{S_{n}}\|_{p}. We start observing that by definition MSnpMSnp\|M_{S_{n}}\|_{p}^{*}\leq\|M_{S_{n}}\|_{p}. Also, we have the following.

Lemma 10.

Let n3n\geq 3. The following identity holds

limp(MSnp)p=1+n2.\lim_{p\to\infty}\left(\|M_{S_{n}}\|_{p}^{*}\right)^{p}=\frac{1+\sqrt{n}}{2}.
Proof.

We start observing that the proof of Lemma 9 also works for MSnp\|M_{S_{n}}\|^{*}_{p}. Then, it is enough to prove that

limsupp(MSnp)p1+n2.\underset{p\to\infty}{\lim\sup}\ (\|M_{S_{n}}\|_{p}^{*})^{p}\leq\frac{1+\sqrt{n}}{2}.

Let us assume that there exists a sequence pkp_{k}\to\infty and ypk>1y_{p_{k}}>1 such

ypkpk+(n1)(1+ypk2)pkypkpk+(n1)c>1+n2.\frac{y_{p_{k}}^{p_{k}}+(n-1)\left(\frac{1+y_{p_{k}}}{2}\right)^{p_{k}}}{y_{p_{k}}^{p_{k}}+(n-1)}\geq c>\frac{1+\sqrt{n}}{2}.

We observe that ypk1y_{p_{k}}\to 1. In fact if there exists a subsequence kjk_{j} such that ypkjρ>1y_{p_{k_{j}}}\geq\rho>1, we have 1+ypkj2ypkj12ρ+12<1,\frac{1+y_{p_{k_{j}}}}{2y_{p_{k_{j}}}}\leq\frac{1}{2\rho}+\frac{1}{2}<1, then

ypkjpkj+(n1)(1+ypkj2)pkjypkjpkj+(n1)1+(n1)(12ρ+12)pkj1.\displaystyle\frac{y_{p_{k_{j}}}^{p_{k_{j}}}+(n-1)\left(\frac{1+y_{p_{k_{j}}}}{2}\right)^{p_{k_{j}}}}{y_{p_{k_{j}}}^{p_{k_{j}}}+(n-1)}\leq 1+(n-1)\left(\frac{1}{2\rho}+\frac{1}{2}\right)^{p_{k_{j}}}\to 1.

Therefore, this cannot be the case. Now we prove that the ypkpky_{p_{k}}^{p_{k}} are uniformly bounded. In fact, since ypk<2y_{p_{k}}<2 for kk big enough, we have ypk34ypk+12,y_{p_{k}}^{\frac{3}{4}}\geq\frac{y_{p_{k}}+1}{2}, since 2x34x102x^{\frac{3}{4}}-x-1\geq 0 for x[1,2]x\in[1,2]. Therefore, if ypkjpkjy_{p_{k_{j}}}^{p_{k_{j}}}\to\infty we have

ypkjpkj+(n1)(1+ypkj2)pkjypkjpkj+(n1)ypkjpkj+(n1)(ypkj)3pkj4ypkjpkj+(n1)1.\frac{y_{p_{k_{j}}}^{p_{k_{j}}}+(n-1)(\frac{1+y_{p_{k_{j}}}}{2})^{p_{k_{j}}}}{y_{p_{k_{j}}}^{p_{k_{j}}}+(n-1)}\leq\frac{y_{p_{k_{j}}}^{p_{k_{j}}}+(n-1)(y_{p_{k_{j}}})^{\frac{3p_{k_{j}}}{4}}}{y_{p_{k_{j}}}^{p_{k_{j}}}+(n-1)}\to 1.

So, we have that ypkpky_{p_{k}}^{p_{k}} are uniformly bounded. Let us take a subsequence of {pk}k\{p_{k}\}_{k\in\mathbb{N}} (that we also denote {pk}k\{p_{k}\}_{k\in\mathbb{N}}) such that ypkpky_{p_{k}}^{p_{k}} and (1+ypk2)pk\left(\frac{1+y_{p_{k}}}{2}\right)^{p_{k}} converges. Let us write limkypkpk=α1\underset{k\to\infty}{\lim}y_{p_{k}}^{p_{k}}=\alpha_{1} and limk(1+ypk2)pk=α2\underset{k\to\infty}{\lim}\left(\frac{1+y_{p_{k}}}{2}\right)^{p_{k}}=\alpha_{2}. By Lemma 6 (with n=2n=2, x1,pk=ypkx_{1,p_{k}}=y_{p_{k}} and x2,pk=1x_{2,p_{k}}=1) we have α2=α1\alpha_{2}=\sqrt{\alpha_{1}}. Then, observe that

limkypkpk+(n1)(1+ypk2)pkypkpk+(n1)(1+ypk2)pk=α22+(n1)α2α22+(n1)n+12,\displaystyle\lim_{k\to\infty}\frac{y_{p_{k}}^{p_{k}}+(n-1)(\frac{1+y_{p_{k}}}{2})^{p_{k}}}{y_{p_{k}}^{p_{k}}+(n-1)(\frac{1+y_{p_{k}}}{2})^{p_{k}}}=\frac{\alpha_{2}^{2}+(n-1)\alpha_{2}}{\alpha_{2}^{2}+(n-1)}\leq\frac{\sqrt{n}+1}{2},

since this last inequality is equivalent to α22(n1)2(n1)α2+(n1)(n+1)0,\alpha_{2}^{2}(\sqrt{n}-1)-2(n-1)\alpha_{2}+(n-1)(\sqrt{n}+1)\geq 0, and this is true because α22(n1)2(n1)α2+(n1)(n+1)=(n1)(α2(n+1))2.\alpha_{2}^{2}(\sqrt{n}-1)-2(n-1)\alpha_{2}+(n-1)(\sqrt{n}+1)=(\sqrt{n}-1)(\alpha_{2}-(\sqrt{n}+1))^{2}. This conclude the proof. ∎

We conclude this section describing the asymptotic behavior of MSnpp\|M_{S_{n}}\|_{p}^{p} as pp\to\infty.

Theorem 11.

Fix nn\in\mathbb{N}. Let Sn=(V,E)S_{n}=(V,E) be the star graph with nn vertices V={a1,a2,,an}V=\{a_{1},a_{2},\dots,a_{n}\} with center at a1a_{1}. For n25n\geq 25 we have

limpMSnpp=1+n2.\displaystyle\lim_{p\to\infty}\|M_{S_{n}}\|_{p}^{p}=\frac{1+\sqrt{n}}{2}.
Proof.

We choose fp:V0f_{p}:V\to\mathbb{R}_{\geq 0} such that MSnfpppfppp=MSnpp\frac{\|M_{S_{n}}f_{p}\|_{p}^{p}}{\|f_{p}\|_{p}^{p}}=\|M_{S_{n}}\|_{p}^{p}. First we observe that for all pp sufficiently large we have 1+n12p<n+121+\frac{n-1}{2^{p}}<\frac{\sqrt{n}+1}{2}. Then, by Proposition 3, we can assume that fp(a1)=yp1=fp(a2)=fp(a3)==fp(as+1)xp=fp(as+2)==fp(an)f_{p}(a_{1})=y_{p}\geq 1=f_{p}(a_{2})=f_{p}(a_{3})=\dots=f_{p}(a_{s+1})\geq x_{p}=f_{p}(a_{s+2})=\dots=f_{p}(a_{n}). Moreover, we assume that yp+xp2<i=1nfp(ai)n=:mp\frac{y_{p}+x_{p}}{2}<\frac{\sum_{i=1}^{n}f_{p}(a_{i})}{n}=:m_{p} (otherwise, we would have that xp2mpfp(a1)x_{p}\geq 2m_{p}-f_{p}(a_{1}), and we can proceed as in the Step 3 of the proof of Proposition 3 to conclude that xp=1x_{p}=1). Notice that the case s=1s=1 is not possible since then xp+yp2yp+(n1)xpn=mp\frac{x_{p}+y_{p}}{2}\geq\frac{y_{p}+(n-1)x_{p}}{n}=m_{p}. Let us assume that there exists 1<s<n11<s<n-1 and a sequence pkp_{k}\to\infty such that

MSnfpkpkpkfpkpp=ypkpk+s(1+ypk2)pk+(ns1)mpkpkypkpk+s+(ns1)xpkpk>1+n2.\displaystyle\frac{\|M_{S_{n}}f_{p_{k}}\|_{p_{k}}^{p_{k}}}{\|f_{p_{k}}\|_{p}^{p}}=\frac{y_{p_{k}}^{p_{k}}+s\left(\frac{1+y_{p_{k}}}{2}\right)^{p_{k}}+(n-s-1)m_{p_{k}}^{p_{k}}}{y_{p_{k}}^{p_{k}}+s+(n-s-1)x_{p_{k}}^{p_{k}}}>\frac{1+\sqrt{n}}{2}.

First we observe that ypk1y_{p_{k}}\to 1. If not, there exists a subsequence of {pk}k\{p_{k}\}_{k\in\mathbb{N}} (that we also call {pk}k\{p_{k}\}_{k\in\mathbb{N}}) such that ypk>ρ>1y_{p_{k}}>\rho>1. Then

mpkypkypk+12ypk12+12ρ<1\frac{m_{p_{k}}}{y_{p_{k}}}\leq\frac{y_{p_{k}}+1}{2y_{p_{k}}}\leq\frac{1}{2}+\frac{1}{2\rho}<1

and therefore

ypkpk+s(1+ypk2)pk+(ns1)mpkpkypkpk+s+(ns1)xpkpk1,\frac{y_{p_{k}}^{p_{k}}+s\left(\frac{1+y_{p_{k}}}{2}\right)^{p_{k}}+(n-s-1)m_{p_{k}}^{p_{k}}}{y_{p_{k}}^{p_{k}}+s+(n-s-1)x_{p_{k}}^{p_{k}}}\to 1,

a contradiction. Now we claim that the ypkpky_{p_{k}}^{p_{k}} are uniformly bounded. Assume that for a subsequence (that we also call {ypk}k\{y_{p_{k}}\}_{k\in\mathbb{N}}) we have ypkpky_{p_{k}}^{p_{k}}\to\infty. First observe that for kk big enough we have ypk>1y_{p_{k}}>1. Then, as in the proof of Lemma 10, we have that for pkp_{k} big enough

ypk34ypk+12mpk,y_{p_{k}}^{\frac{3}{4}}\geq\frac{y_{p_{k}}+1}{2}\geq m_{p_{k}},

from where we have

MSnfpkpkpkfpkpkpkypkpk+(n1)ypk3pk4ypkpk+s+(ns1)xpkpk1.\frac{\|M_{S_{n}}f_{p_{k}}\|_{p_{k}}^{p_{k}}}{\|f_{p_{k}}\|_{p_{k}}^{p_{k}}}\leq\frac{y_{p_{k}}^{p_{k}}+(n-1)y_{p_{k}}^{\frac{3p_{k}}{4}}}{y_{p_{k}}^{p_{k}}+s+(n-s-1)x_{p_{k}}^{p_{k}}}\to 1.

Reaching a contradiction. Therefore we can take a subsequence (that we also call {pk}k\{p_{k}\}_{k\in\mathbb{N}}) such that limkypkpk=α1\underset{k\to\infty}{\lim}y_{p_{k}}^{p_{k}}=\alpha_{1}, limk(1+ypk2)pk=α2\underset{k\to\infty}{\lim}\left(\frac{1+y_{p_{k}}}{2}\right)^{p_{k}}=\alpha_{2}, limkmpkpk=α3\underset{k\to\infty}{\lim}m_{p_{k}}^{p_{k}}=\alpha_{3} and limkxpkpk=α4\underset{k\to\infty}{\lim}x_{p_{k}}^{p_{k}}=\alpha_{4}. By Lemma 6 we have that α2=α1\alpha_{2}=\sqrt{\alpha_{1}} and α3=α11nα4ns1n.\alpha_{3}=\alpha_{1}^{\frac{1}{n}}\alpha_{4}^{\frac{n-s-1}{n}}. Therefore

limkMSnfpkpkpkfpkpkpkα22+sα2+(ns1)α11nα4ns1nα22+s+(ns1)α4,\lim_{k\to\infty}\frac{\|M_{S_{n}}f_{p_{k}}\|_{p_{k}}^{p_{k}}}{\|f_{p_{k}}\|_{p_{k}}^{p_{k}}}\leq\frac{\alpha_{2}^{2}+s\alpha_{2}+(n-s-1)\alpha_{1}^{\frac{1}{n}}\alpha_{4}^{\frac{n-s-1}{n}}}{\alpha_{2}^{2}+s+(n-s-1)\alpha_{4}},

we claim that this last expression is bounded above by n+12\frac{\sqrt{n}+1}{2} in our setting, from where we would conclude. Since α41\alpha_{4}\leq 1 it is enough to prove that

α22+sα2+(ns1)α22n(n+12)(α22+s+(ns1)α4).\displaystyle\alpha_{2}^{2}+s\alpha_{2}+(n-s-1)\alpha_{2}^{\frac{2}{n}}\leq\left(\frac{\sqrt{n}+1}{2}\right)\left(\alpha_{2}^{2}+s+(n-s-1)\alpha_{4}\right). (3.2)

To this end is sufficient to prove

α22+sα2+(ns1)α22n(n+12)(α22+s).\alpha_{2}^{2}+s\alpha_{2}+(n-s-1)\alpha_{2}^{\frac{2}{n}}\leq\left(\frac{\sqrt{n}+1}{2}\right)\left(\alpha_{2}^{2}+s\right).

We observe now that since mpkypk+xpk2m_{p_{k}}\geq\frac{y_{p_{k}}+x_{p_{k}}}{2} we have 2(ypk+2s+2(ns1)xpk)nypk+nxpk2(y_{p_{k}}+2s+2(n-s-1)x_{p_{k}})\geq ny_{p_{k}}+nx_{p_{k}} and then 2s+(n2(s+1))xpk(n2)ypk2s+(n-2(s+1))x_{p_{k}}\geq(n-2)y_{p_{k}}. Since 1,xpk<ypk1,x_{p_{k}}<y_{p_{k}}, if we assume n2(s+1)0n-2(s+1)\geq 0 we would get

(n2)ypk2sypk+(n2(s+1))ypk>2s+(n2(s+1))xpk(n2)ypk,(n-2)y_{p_{k}}\geq 2sy_{p_{k}}+(n-2(s+1))y_{p_{k}}>2s+(n-2(s+1))x_{p_{k}}\geq(n-2)y_{p_{k}},

a contradiction. Therefore we have n2(s+1)1n-2(s+1)\leq-1 and then

n2s+1.\displaystyle n\leq 2s+1. (3.3)

Now we assume that n25n\geq 25. We distinguish among two cases, first when α2(65)n\alpha_{2}\geq\left(\frac{6}{5}\right)^{n}. Here

α22+sα2+(ns1)α22nα22+(n1)α22α22,\alpha_{2}^{2}+s\alpha_{2}+(n-s-1)\alpha_{2}^{\frac{2}{n}}\leq\alpha_{2}^{2}+(n-1)\alpha_{2}\leq 2\alpha_{2}^{2},

since (n1)(65)nα2,(n-1)\leq(\frac{6}{5})^{n}\leq\alpha_{2}, where we use that n25n\geq 25. Then since 2α22(25+12)α222\alpha_{2}^{2}\leq\left(\frac{\sqrt{25}+1}{2}\right)\alpha_{2}^{2} we conclude this case. Now we consider the case where α2(65)n\alpha_{2}\leq\left(\frac{6}{5}\right)^{n}. Here we have α22n(65)2\alpha_{2}^{\frac{2}{n}}\leq\left(\frac{6}{5}\right)^{2}. Therefore we just need to prove that

α22+sα2+(ns1)(65)2(n+12)(α22+s),\displaystyle\alpha_{2}^{2}+s\alpha_{2}+(n-s-1)\left(\frac{6}{5}\right)^{2}\leq\left(\frac{\sqrt{n}+1}{2}\right)\left(\alpha_{2}^{2}+s\right),

or equivalently

0(n12)α22sα2+s(n+12)(ns1)(65)2.0\leq\left(\frac{\sqrt{n}-1}{2}\right)\alpha_{2}^{2}-s\alpha_{2}+s\left(\frac{\sqrt{n}+1}{2}\right)-(n-s-1)\left(\frac{6}{5}\right)^{2}.

We just need to verify then that the discriminant of that equation is lesser than 0. That is

s2<4(n12)[s(n+12)(ns1)(65)2]=(n1)s2(n1)(ns1)(65)2.s^{2}<4\left(\frac{\sqrt{n}-1}{2}\right)\left[s\left(\frac{\sqrt{n}+1}{2}\right)-(n-s-1)\left(\frac{6}{5}\right)^{2}\right]=(n-1)s-2(\sqrt{n}-1)(n-s-1)\left(\frac{6}{5}\right)^{2}.

Since (n1)s=s2+s(ns1)(n-1)s=s^{2}+s(n-s-1) we just need 2(65)2(n1)<n122\left(\frac{6}{5}\right)^{2}(\sqrt{n}-1)<\frac{n-1}{2} (given that sn12s\geq\frac{n-1}{2} by (3.3)) or equivalently 4(65)21<n4\left(\frac{6}{5}\right)^{2}-1<\sqrt{n}. Since the left hand side is lesser than 55 we conclude this and therefore we conclude (3.2), from where the theorem follows. ∎

Remark 12.

From the previous proof it can be deduced that, if we define

𝒜={(s,α2,α4){1,,n2}×[1,)×[0,1];α22nα4ns1n>α2α4},\mathcal{A}=\left\{(s,\alpha_{2},\alpha_{4})\in\{1,\dots,n-2\}\times[1,\infty)\times[0,1];\alpha_{2}^{\frac{2}{n}}\alpha_{4}^{\frac{n-s-1}{n}}>\alpha_{2}\sqrt{\alpha_{4}}\right\},

for n[3,24]n\in[3,24] we have

limpMSnpp=max{1+n2,sup(s,α2,α4)𝒜α22+sα2+(ns1)α11nα4ns1nα22+s+(ns1)α4}.\underset{p\to\infty}{\lim}\|M_{S_{n}}\|_{p}^{p}=\max\left\{\frac{1+\sqrt{n}}{2},\underset{(s,\alpha_{2},\alpha_{4})\in\mathcal{A}}{\sup}\frac{\alpha_{2}^{2}+s\alpha_{2}+(n-s-1)\alpha_{1}^{\frac{1}{n}}\alpha_{4}^{\frac{n-s-1}{n}}}{\alpha_{2}^{2}+s+(n-s-1)\alpha_{4}}\right\}.

However, for n<25n<25, to compare the inner terms in the right hand side is more difficult.

4. The pp-variation of maximal operators on graphs

In order to compute 𝐂G,p{\bf C}_{G,p} it is useful to study the functions that attain this supremum. Now we prove that actually these extremizers exist.

Proposition 13.

Given any connected simple finite graph G=(V,E)G=(V,E) and p(0,)p\in(0,\infty) there exists f:V0f:V\to\mathbb{R}_{\geq 0} such that

VarpMGfVarpf=𝐂G,p\frac{{\rm Var\,}_{p}M_{G}f}{{\rm Var\,}_{p}f}={\bf C}_{G,p}
Proof.

We write |V|=n|V|=n and V=:{a1,a2,,an}.V=:\{a_{1},a_{2},\dots,a_{n}\}. Given y=:(y1,,yn)[0,1]n{maxi=1,,nyi=1}{mini=1,,nyi=0}=:A,y=:(y_{1},\dots,y_{n})\in[0,1]^{n}\cap\left\{\underset{i=1,\dots,n}{\max}y_{i}=1\right\}\cap\left\{\underset{i=1,\dots,n}{\min}y_{i}=0\right\}=:A, we define fy:V0f_{y}:V\to\mathbb{R}_{\geq 0} by fy(ai)=yif_{y}(a_{i})=y_{i}. We observe that MGfy(ai)M_{G}f_{y}(a_{i}) is continuous in such set for any i=1,,ni=1,\dots,n. Therefore VarpMGfyVarpfy\frac{{\rm Var\,}_{p}M_{G}f_{y}}{{\rm Var\,}_{p}f_{y}} is continuous with respect to yy in AA since the denominator is never 0. Thus it attains its maximum at a point y0Ay_{0}\in A. We claim that

VarpMGfy0Varpfy0=𝐂G,p.\frac{{\rm Var\,}_{p}M_{G}f_{y_{0}}}{{\rm Var\,}_{p}f_{y_{0}}}={\bf C}_{G,p}.

In fact, for every g:V0g:V\to\mathbb{R}_{\geq 0} we have that the value VarpMGgVarpg\frac{{\rm Var\,}_{p}M_{G}g}{{\rm Var\,}_{p}g} remains unchanged by doing the transformation

ggmini=1,,ng(ai)maxi=1,,ng(ai).g\mapsto\frac{g-\min_{i=1,\dots,n}g(a_{i})}{\max_{i=1,\dots,n}g(a_{i})}.

This last function is equal to fyf_{y} for some y,y, from where we conclude. ∎

4.1. The 22-variation of MSnM_{S_{n}}

For all p1p\geq 1, it was proved by the authors in [6] that VarpMKnf(11n)Varpf{\rm Var\,}_{p}M_{K_{n}}f\leq\left(1-\frac{1}{n}\right){\rm Var\,}_{p}f, for any real valued function ff defined on the vertices of KnK_{n}. The equality occurs when ff is a delta function. The analogous problem for the star graph SnS_{n} is more challenging, it was observed by the authors in [6] that in this case, delta functions are not extremizers. Our next result solves this problem for p=2p=2.

Theorem 14.

Let n3n\geq 3 and let Sn=(V,E)S_{n}=(V,E) be the star graph with nn vertices V={a1,a2,,an}V=\{a_{1},a_{2},\dots,a_{n}\} with center at a1a_{1}. The following inequality holds

Var2MSnf([(n1)2+n2]1/2n)Var2f{\rm Var\,}_{2}M_{S_{n}}f\leq\left(\frac{[(n-1)^{2}+n-2]^{1/2}}{n}\right){\rm Var\,}_{2}f

for all f:Vf:V\to\mathbb{R}. Moreover, this result is optimal.

Proof.

The proof of this result is divided in two cases, the case 2 is divided in many steps.

Case 1: f(a1)mff(a_{1})\leq m_{f}. In this case MSnf(a1)=mfM_{S_{n}}f(a_{1})=m_{f}. If MSnf(a1)MSnf(ai)mfM_{S_{n}}f(a_{1})\geq M_{S_{n}}f(a_{i})\geq m_{f} for all 2in2\leq i\leq n then the result is trivial.

Then, we assume without loss of generality that MSnf(ai)>MSnf(a1)M_{S_{n}}f(a_{i})>M_{S_{n}}f(a_{1}) for all i{2,3,,k}i\in\{2,3,\dots,k\} for some 2kn2\leq k\leq n and MSnf(ai)=MSnf(a1)=mfM_{S_{n}}f(a_{i})=M_{S_{n}}f(a_{1})=m_{f} for all i{k+1,k+2,,n}i\in\{k+1,k+2,\dots,n\}.

We have that

(Var2(MSnf))2=i=2k(f(ai)mf)2.({\rm Var\,}_{2}(M_{S_{n}}f))^{2}=\sum_{i=2}^{k}(f(a_{i})-m_{f})^{2}. (4.1)

Moreover, for all i{2,3,,k}i\in\{2,3,\dots,k\} we have that

0<(f(ai)mf)\displaystyle 0<(f(a_{i})-m_{f}) =1n((n1)f(ai)j=1,jikf(aj)j=k+1nf(aj))\displaystyle=\frac{1}{n}\left((n-1)f(a_{i})-\sum_{j=1,j\neq i}^{k}f(a_{j})-\sum_{j=k+1}^{n}f(a_{j})\right)
=1n((n1)(f(ai)f(a1))j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj)))\displaystyle=\frac{1}{n}\left((n-1)(f(a_{i})-f(a_{1}))-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right) (4.2)

Let

S+:={i{2,3,,k};j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj))>0},S^{+}:=\left\{i\in\{2,3,\dots,k\};-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))>0\right\},

and S:={2,3,,k}S+S^{-}:=\{2,3,\dots,k\}\setminus{S^{+}}. Then by (4.1) and (4.1) we have that

(Var2MSnf)2(n1)2n2iS(f(ai)f(a1))2+iS+(f(ai)mf)2,\displaystyle({\rm Var\,}_{2}M_{S_{n}}f)^{2}\leq\frac{(n-1)^{2}}{n^{2}}\sum_{i\in S^{-}}(f(a_{i})-f(a_{1}))^{2}+\sum_{i\in S^{+}}(f(a_{i})-m_{f})^{2}, (4.3)

and

iS+(f(ai)mf)2=\displaystyle\sum_{i\in S^{+}}(f(a_{i})-m_{f})^{2}= (n1)2n2iS+(f(ai)f(a1))2\displaystyle\frac{(n-1)^{2}}{n^{2}}\sum_{i\in S^{+}}(f(a_{i})-f(a_{1}))^{2}
+2(n1)n2iS+(f(ai)f(a1))(j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj)))\displaystyle+\frac{2(n-1)}{n^{2}}\sum_{i\in S^{+}}(f(a_{i})-f(a_{1}))\left(-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right)
+1n2iS+(j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj)))2.\displaystyle+\frac{1}{n^{2}}\sum_{i\in S^{+}}\left(-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right)^{2}. (4.4)

Also, we observe that, since f(a1)mff(a_{1})\leq m_{f}, then

i=2k(f(ai)f(a1))i=k+1nf(a1)f(ai),\sum_{i=2}^{k}(f(a_{i})-f(a_{1}))\geq\sum_{i=k+1}^{n}f(a_{1})-f(a_{i}),

therefore

iS+(j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj)))2\displaystyle\sum_{i\in S^{+}}\left(-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right)^{2}
[iS+(j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj)))]2\displaystyle\leq\left[\sum_{i\in S^{+}}\left(-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right)\right]^{2}
(|S+|j=k+1n(f(a1)f(aj))(|S+|1)j=2k(f(aj)f(a1)))2\displaystyle\leq\left(|S^{+}|\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))-(|S^{+}|-1)\sum_{j=2}^{k}(f(a_{j})-f(a_{1}))\right)^{2}
(j=k+1n(f(a1)f(aj)))2\displaystyle\leq\left(\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right)^{2}
(nk)j=k+1n(f(a1)f(aj))2.\displaystyle\leq(n-k)\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))^{2}. (4.5)

Moreover, by the AM-GM inequality we have that

2(n1)iS+(f(ai)f(a1))(j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj)))\displaystyle 2(n-1)\sum_{i\in S^{+}}(f(a_{i})-f(a_{1}))\left(-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right)
iS+[(n2)(f(ai)f(a1))2+(n1)2n2(j=2,jik(f(aj)f(a1))+j=k+1n(f(a1)f(aj)))2].\displaystyle\leq\sum_{i\in S^{+}}\left[(n-2)(f(a_{i})-f(a_{1}))^{2}+\frac{(n-1)^{2}}{n-2}\left(-\sum_{j=2,j\neq i}^{k}(f(a_{j})-f(a_{1}))+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))\right)^{2}\right]. (4.6)

Combining (4.1),(4.1), (4.1) and using that k2k\geq 2 we obtain that

iS+(f(ai)mf)2\displaystyle\sum_{i\in S^{+}}(f(a_{i})-m_{f})^{2}\leq (n1)2+(n2)n2iS+(f(ai)f(a1))2\displaystyle\frac{(n-1)^{2}+(n-2)}{n^{2}}\sum_{i\in S^{+}}(f(a_{i})-f(a_{1}))^{2}
+(nk)n2(1+(n1)2n2)j=k+1n(f(a1)f(aj))2\displaystyle+\frac{(n-k)}{n^{2}}(1+\frac{(n-1)^{2}}{n-2})\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))^{2}
(n1)2+(n2)n2[iS+(f(ai)f(a1))2+j=k+1n(f(a1)f(aj))2].\displaystyle\leq\frac{(n-1)^{2}+(n-2)}{n^{2}}\left[\sum_{i\in S^{+}}(f(a_{i})-f(a_{1}))^{2}+\sum_{j=k+1}^{n}(f(a_{1})-f(a_{j}))^{2}\right]. (4.7)

Finally, combining (4.3) and (4.1) we conclude that

(Var2MSnf)2(n1)2+(n2)n2i=2n(f(ai)f(a1))2.\displaystyle({\rm Var\,}_{2}{M_{S_{n}}f})^{2}\leq\frac{(n-1)^{2}+(n-2)}{n^{2}}\sum_{i=2}^{n}(f(a_{i})-f(a_{1}))^{2}.

Moreover, we observe that in order to have an equality in (4.1) we need to have k=2k=2 (this means that there is only one term larger than f(a1)f(a_{1})), in order to have an equality in (4.1) we need to have f(aj)=f(ak+1)=f(a3)f(a_{j})=f(a_{k+1})=f(a_{3}) for all jk+1=3j\geq k+1=3, and in order to have an equality in (4.1) we need to have (f(a2)f(a1))=(n1)(f(a1)f(a3))(f(a_{2})-f(a_{1}))=(n-1)(f(a_{1})-f(a_{3})). We verify that if f(a1)=x>0f(a_{1})=x>0, f(aj)=xcf(a_{j})=x-c for all j3j\geq 3 and some c(0,x)c\in(0,x), and f(a2)=x+c(n1)f(a_{2})=x+c(n-1) then we have an extremizer. In fact, in this case we have that MSnf(a2)=x+c(n1)M_{S_{n}}f(a_{2})=x+c(n-1) and MSnf(aj)=x+c/nM_{S_{n}}f(a_{j})=x+c/n for all j2j\neq 2. Therefore

Var2(MSnf)Var2f=c(n11/n)[c2(n1)2+c2(n2)]1/2=[(n1)2+(n2)]1/2n.\frac{{\rm Var\,}_{2}(M_{S_{n}}f)}{{\rm Var\,}_{2}f}=\frac{c(n-1-1/n)}{[c^{2}(n-1)^{2}+c^{2}(n-2)]^{1/2}}=\frac{[(n-1)^{2}+(n-2)]^{1/2}}{n}.

Case 2: f(a1)>mff(a_{1})>m_{f}. For this case we assume without loss of generality that f(a2)f(a3)f(as)>f(a1)f(as+1)f(ak)>2mff(a1)f(ak+1)f(an).f(a_{2})\geq f(a_{3})\geq\dots f(a_{s})>f(a_{1})\geq f(a_{s+1})\geq\dots f(a_{k})>2m_{f}-f(a_{1})\geq f(a_{k+1})\geq\dots f(a_{n}). We observe that MSnf(ai)=f(ai),M_{S_{n}}f(a_{i})=f(a_{i}), for is;i\leq s; MSnf(ai)=f(a1)+f(ai)2M_{S_{n}}f(a_{i})=\frac{f(a_{1})+f(a_{i})}{2} for s<iks<i\leq k and MSnf(ai)=mfM_{S_{n}}f(a_{i})=m_{f} for i>k.i>k. We write f(ai)f(a1)=xif(a_{i})-f(a_{1})=x_{i} for isi\leq s, f(a1)f(ai)=yif(a_{1})-f(a_{i})=y_{i} for i>si>s and f(a1)mf=u.f(a_{1})-m_{f}=u. Then, our goal is to prove

i=2sxi2+i=s+1k(yi2)2+(nk)u2(1n+1n2)(i=2sxi2+i=s+1nyi2),\displaystyle\sum_{i=2}^{s}x_{i}^{2}+\sum_{i=s+1}^{k}\left(\frac{y_{i}}{2}\right)^{2}+(n-k)u^{2}\leq\left(1-\frac{n+1}{n^{2}}\right)\left(\sum_{i=2}^{s}x_{i}^{2}+\sum_{i=s+1}^{n}y_{i}^{2}\right), (4.8)

since 1n+1n2=(n1)2+(n2)n21-\frac{n+1}{n^{2}}=\frac{(n-1)^{2}+(n-2)}{n^{2}}. Assume that f:V0f:V\to\mathbb{R}_{\geq 0} is such that

Var2(MSnf)Var2(f)=𝐂Sn,p.\frac{Var_{2}(M_{S_{n}}f)}{Var_{2}(f)}={\bf C}_{S_{n},p}.

We prove some properties about ff following the ideas of Propositions 2 and 3. First, we observe that s2.s\geq 2. Otherwise we would have that LHS in (4.8) is less or equal than

i=s+1k(yi2)214Var2(f)2<(1n+1n2)Var2(f)2.\sum_{i=s+1}^{k}\left(\frac{y_{i}}{2}\right)^{2}\leq\frac{1}{4}Var_{2}(f)^{2}<\left(1-\frac{n+1}{n^{2}}\right)Var_{2}(f)^{2}.

So ff could not be an extremizer in that case.

Step 1: s=2s=2. We consider f~:V\widetilde{f}:V\to\mathbb{R} defined by f~(a2)=i=2sf(ai)(s2)f(a1),\widetilde{f}(a_{2})=\sum_{i=2}^{s}f(a_{i})-(s-2)f(a_{1}), f~(ai)=f~(a1)\widetilde{f}(a_{i})=\widetilde{f}(a_{1}) for i=3,,si=3,\dots,s and f~=f\widetilde{f}=f elsewhere. Clearly mf~=mfm_{\widetilde{f}}=m_{f} then, defining x~i\widetilde{x}_{i} and y~i\widetilde{y}_{i} and u~\widetilde{u} analogously to xix_{i}, yiy_{i} and uu, since 𝐂Sn,22<1{\bf C}_{S_{n},2}^{2}<1 we observe that

0=𝐂Sn,22(i=2sxi2+i=s+1nyi2)i=2sxi2i=s+1k(yi2)2(nk)u2=(𝐂Sn,221)i=2sxi2+(𝐂Sn,2214)(i=s+1kyi2)+(𝐂Sn,22)(i=k+1nyi2)(nk)u2(𝐂Sn,221)(i=2sxi)2+(𝐂Sn,2214)(i=s+1kyi2)+(𝐂Sn,22)(i=k+1nyi2)(nk)u2=(𝐂Sn,221)i=2sxi~2+(𝐂Sn,2214)(i=s+1ky~i2)+(𝐂Sn,22)(i=k+1ny~i2)(nk)u~2.\displaystyle\begin{split}0&={\bf C}_{S_{n},2}^{2}\left(\sum_{i=2}^{s}x_{i}^{2}+\sum_{i=s+1}^{n}y_{i}^{2}\right)-\sum_{i=2}^{s}x_{i}^{2}-\sum_{i=s+1}^{k}\left(\frac{y_{i}}{2}\right)^{2}-(n-k)u^{2}\\ &=({\bf C}_{S_{n},2}^{2}-1)\sum_{i=2}^{s}x_{i}^{2}+({\bf C}_{S_{n},2}^{2}-\frac{1}{4})\left(\sum_{i=s+1}^{k}y_{i}^{2}\right)+({\bf C}_{S_{n},2}^{2})\left(\sum_{i=k+1}^{n}y_{i}^{2}\right)-(n-k)u^{2}\\ &\geq\left({\bf C}_{S_{n},2}^{2}-1\right)\left(\sum_{i=2}^{s}x_{i}\right)^{2}+\left({\bf C}_{S_{n},2}^{2}-\frac{1}{4}\right)\left(\sum_{i=s+1}^{k}y_{i}^{2}\right)+({\bf C}_{S_{n},2}^{2})\left(\sum_{i=k+1}^{n}y_{i}^{2}\right)-(n-k)u^{2}\\ &=({\bf C}_{S_{n},2}^{2}-1)\sum_{i=2}^{s}\widetilde{x_{i}}^{2}+\left({\bf C}_{S_{n},2}^{2}-\frac{1}{4}\right)\left(\sum_{i=s+1}^{k}\widetilde{y}_{i}^{2}\right)+({\bf C}_{S_{n},2}^{2})\left(\sum_{i=k+1}^{n}\widetilde{y}_{i}^{2}\right)-(n-k)\widetilde{u}^{2}.\end{split} (4.9)

Therefore

i=2sx~i2+i=s+1k(y~i2)2+(nk)u~2𝐂Sn,22(i=2sx~i2+i=s+1ny~i2).\sum_{i=2}^{s}\widetilde{x}_{i}^{2}+\sum_{i=s+1}^{k}\left(\frac{\widetilde{y}_{i}}{2}\right)^{2}+(n-k)\widetilde{u}^{2}\geq{\bf C}_{S_{n},2}^{2}\left(\sum_{i=2}^{s}\widetilde{x}_{i}^{2}+\sum_{i=s+1}^{n}\widetilde{y}_{i}^{2}\right).

This implies that

Var2(MSnf~)Var2(f~)𝐂Sn,2,\frac{Var_{2}(M_{S_{n}}\widetilde{f})}{Var_{2}(\widetilde{f})}\geq{\bf C}_{S_{n},2},

thus (4.9) has to be an equality. Then i=2sxi2=(i=2sxi)2\sum_{i=2}^{s}x^{2}_{i}=(\sum_{i=2}^{s}x_{i})^{2}, therefore, there exists at most one j{2,,s}j\in\{2,\dots,s\} such that xj0x_{j}\neq 0. Since we have that xj>0x_{j}>0 for all j{2,,s}j\in\{2,\dots,s\} we conclude that s=2s=2.

Step 2: f(aj)=f(a3)f(a_{j})=f(a_{3}) for all j{3,4,,k}j\in\{3,4,\dots,k\}. We define the function f~:V0\widetilde{f}:V\to\mathbb{R}_{\geq 0} as follows: f~(ai)=j=3kf(aj)k2\widetilde{f}(a_{i})=\frac{\sum_{j=3}^{k}f(a_{j})}{k-2} for every i{3,k}i\in\{3,\dots k\} and f~=f\widetilde{f}=f elsewhere. We define x~i,\widetilde{x}_{i}, y~i\widetilde{y}_{i} and u~\widetilde{u} analogously to xi,x_{i}, yiy_{i} and u,u, respectively. We observe that i=3ky~i=i=3kyi,\sum_{i=3}^{k}\widetilde{y}_{i}=\sum_{i=3}^{k}y_{i}, and by Hölder’s inequality we have i=3ky~i2i=3kyi2\sum_{i=3}^{k}\widetilde{y}_{i}^{2}\leq\sum_{i=3}^{k}y_{i}^{2}. So, similarly as in (4.9), since 𝐂Sn,22>14,{\bf C}_{S_{n},2}^{2}>\frac{1}{4}, we conclude that Var2MSnf~Var2(f~)𝐂Sn,2.\frac{Var_{2}M_{S_{n}}\widetilde{f}}{Var_{2}(\widetilde{f})}\geq{\bf C}_{S_{n},2}. Thus f~\widetilde{f} is also an extremizer, and i=3ky~i2=i=3kyi2\sum_{i=3}^{k}\widetilde{y}_{i}^{2}=\sum_{i=3}^{k}y_{i}^{2}. This implies that f~=f.\widetilde{f}=f.

Step 3: f(aj)=f(ak+1)f(a_{j})=f(a_{k+1}) for all j{k+1,k+2,,n}j\in\{k+1,k+2,\dots,n\}. Now we define f~:V\widetilde{f}:V\to\mathbb{R} as follows: f~(ai)=j=k+1nf(aj)nk\widetilde{f}(a_{i})=\frac{\sum_{j=k+1}^{n}f(a_{j})}{n-k} for every ik+1,i\geq k+1, and f=f~f=\widetilde{f} elsewhere. Then, we have that

i=k+1ny~i=i=k+1nyi\sum_{i=k+1}^{n}\widetilde{y}_{i}=\sum_{i=k+1}^{n}y_{i}

and

i=k+1ny~i2i=k+1nyi2.\sum_{i=k+1}^{n}\widetilde{y}_{i}^{2}\leq\sum_{i=k+1}^{n}y_{i}^{2}.

So, by a computation similar than (4.9) we have that

Var2MSnf~Var2(f~)𝐂Sn,2.\frac{Var_{2}M_{S_{n}}\widetilde{f}}{Var_{2}(\widetilde{f})}\geq{\bf C}_{S_{n},2}.

Then f~=f.\widetilde{f}=f.

Step 4: Conclusion. So, by now we conclude that ff takes at most 44 values. In fact, we know that yi=y3y_{i}=y_{3} for iki\leq k and yi=yk+1y_{i}=y_{k+1} for ik+1.i\geq k+1. In the following we conclude that y3=yk+1.y_{3}=y_{k+1}. We start observing that if 2mff(a1)=f(aj)2m_{f}-f(a_{1})=f(a_{j}) for all j{k+1,,n}j\in\{k+1,\dots,n\} then we can conclude as in the Step 2. Moreover, since f(a3)f(ak+1)f(a_{3})\geq f(a_{k+1}) we have that y3yk+1y_{3}\leq y_{k+1}.

Let us assume that y3<yk+1.y_{3}<y_{k+1}. and there exists i{k+1,,n}i\in\{k+1,\dots,n\} such that 2mff(a1)>f(ai)2m_{f}-f(a_{1})>f(a_{i}), We consider now f~\widetilde{f} defined as follows, f~(ak)=f(ak)ε,\widetilde{f}(a_{k})=f(a_{k})-\varepsilon, f~(ai)=f(ai)+ε,\widetilde{f}(a_{i})=f(a_{i})+\varepsilon, and f~=f\widetilde{f}=f elsewhere, where ε\varepsilon is small enough such that f(ak)ε>2mff(a1)>f(ai)+εf(a_{k})-\varepsilon>2m_{f}-f(a_{1})>f(a_{i})+\varepsilon. We observe that

Var2MSnfVar2f<Var2MSnf~Var2f~.\frac{Var_{2}M_{S_{n}}f}{Var_{2}f}<\frac{Var_{2}M_{S_{n}}\widetilde{f}}{Var_{2}\widetilde{f}}.

In fact,

Var2MSnf=j=2sxj2+j=s+1kyj24+(nk)u2<j=2sxj2+j=s+1k1yj24+(yk+ε)24+(nk)u2=Var2MSnf~Var_{2}M_{S_{n}}{f}=\sum_{j=2}^{s}x_{j}^{2}+\sum_{j=s+1}^{k}\frac{y_{j}^{2}}{4}+(n-k)u^{2}<\sum_{j=2}^{s}x_{j}^{2}+\sum_{j=s+1}^{k-1}\frac{y_{j}^{2}}{4}+\frac{(y_{k}+\varepsilon)^{2}}{4}+(n-k)u^{2}=Var_{2}M_{S_{n}}\widetilde{f}

and

Var2f~=j=2sxj2+j=s+1k1yj2+(yk+ε)2+(yiε)2+j=k+1,jinyj2<j=2sxj2+j=s+1nyj2=Var2fVar_{2}\widetilde{f}=\sum_{j=2}^{s}x_{j}^{2}+\sum_{j=s+1}^{k-1}y_{j}^{2}+(y_{k}+\varepsilon)^{2}+(y_{i}-\varepsilon)^{2}+\sum_{j=k+1,j\neq i}^{n}y_{j}^{2}<\sum_{j=2}^{s}x_{j}^{2}+\sum_{j=s+1}^{n}y_{j}^{2}=Var_{2}f

for ε\varepsilon small enough, since (yk+ε)2+(yk+1ε)2=yk2+yk+12+2ε(ykyk+1)+2ε2<yk2+yk+12(y_{k}+\varepsilon)^{2}+(y_{k+1}-\varepsilon)^{2}=y_{k}^{2}+y_{k+1}^{2}+2\varepsilon(y_{k}-y_{k+1})+2\varepsilon^{2}<y_{k}^{2}+y_{k+1}^{2} given that ykyk+1+ε=y3yk+1+ε<0y_{k}-y_{k+1}+\varepsilon=y_{3}-y_{k+1}+\varepsilon<0 for ε\varepsilon small enough. Therefore Var2MSnfVar2f<Var2MSnf~Var2f~,\frac{Var_{2}M_{S_{n}}f}{Var_{2}f}<\frac{Var_{2}M_{S_{n}}\widetilde{f}}{Var_{2}\widetilde{f}}, contradicting the fact that ff is an extremizer. Then, y3=yk+1y_{3}=y_{k+1} or equivalently f(a3)=f(ak+1)f(a_{3})=f(a_{k+1}), therefore ff only takes three values. Now we have only two subcases left to analyse:

  • Subcase 1: f(a1)+f(an)2mf.f(a_{1})+f(a_{n})\geq 2m_{f}. In this case f(a1)+f(an)2=MSnf(ai)\frac{f(a_{1})+f(a_{n})}{2}=M_{S_{n}}f(a_{i}) for i=3,,ni=3,\dots,n and y3=yiy_{3}=y_{i} for i=3,,n.i=3,\dots,n. Also, we observe that y3(n2)=x2+nuy_{3}(n-2)=x_{2}+nu and uy32.u\geq\frac{y_{3}}{2}. Then we need to prove that

    x22+(n2)y324(1n+1n2)(x22+(n2)y32),x_{2}^{2}+(n-2)\frac{y_{3}^{2}}{4}\leq\left(1-\frac{n+1}{n^{2}}\right)(x_{2}^{2}+(n-2)y_{3}^{2}),

    or, equivalently,

    n+1n2x22(n2)(3/4n+1n2)y32.\displaystyle\frac{n+1}{n^{2}}x_{2}^{2}\leq(n-2)\left(3/4-\frac{n+1}{n^{2}}\right)y_{3}^{2}.

    Since y3(n2)=x2+nux2+n2y3y_{3}(n-2)=x_{2}+nu\geq x_{2}+\frac{n}{2}y_{3} we have y3(n22)x2,y_{3}\left(\frac{n}{2}-2\right)\geq x_{2}, therefore is enough to prove

    (n22)2n+1n2(n2)(3/4n+1n2),\left(\frac{n}{2}-2\right)^{2}\frac{n+1}{n^{2}}\leq(n-2)\left(3/4-\frac{n+1}{n^{2}}\right),

    and that can be established for n3.n\geq 3.

  • Subcase 2: f(a1)+f(a2)2mf.f(a_{1})+f(a_{2})\leq 2m_{f}. In this case MSnf(ai)=mfM_{S_{n}}f(a_{i})=m_{f} for i=3,,ni=3,\dots,n. Also, we observe that uy32u\leq\frac{y_{3}}{2}. Thus we need to prove that

    x22+(n2)u2(1n+1n2)(x22+(n2)y32),x_{2}^{2}+(n-2)u^{2}\leq\left(1-\frac{n+1}{n^{2}}\right)(x_{2}^{2}+(n-2)y_{3}^{2}),

    or equivalently

    x22(n+1n2)+(n2)u2(n2)(1n+1n2)y32.x_{2}^{2}\left(\frac{n+1}{n^{2}}\right)+(n-2)u^{2}\leq(n-2)\left(1-\frac{n+1}{n^{2}}\right)y_{3}^{2}.

    Indeed, since y3(n2)=x2+nuy_{3}(n-2)=x_{2}+nu we have

    y32x22(n2)2+n2(n2)2u2.y_{3}^{2}\geq\frac{x_{2}^{2}}{(n-2)^{2}}+\frac{n^{2}}{(n-2)^{2}}u^{2}.

    Then is enough to prove n+1n2(1n+1n2)n2\frac{n+1}{n^{2}}\leq\frac{\left(1-\frac{n+1}{n^{2}}\right)}{n-2} and (n2)2n2(1n+1n2).(n-2)^{2}\leq n^{2}\left(1-\frac{n+1}{n^{2}}\right). Since both hold for n3,n\geq 3, we conclude.

4.2. The pp-variation of MGM_{G}.

For a finite connected graph G=(V,E)G=(V,E) with vertices V={a1,a2,,an}V=\{a_{1},a_{2},\dots,a_{n}\} we define d(G)=:max{dG(ai,aj);ai,ajV}d(G)=:\max\{d_{G}(a_{i},a_{j});a_{i},a_{j}\in V\} and ΩG:={aiV;ajVsuch thatd(G)=d(ai,aj)}\Omega_{G}:=\{a_{i}\in V;\exists a_{j}\in V\ \text{such that}\ \ d(G)=d(a_{i},a_{j})\}. For all HGH\subset G we choose a minimum degree element of HH and we denote this by aHa_{H}.

Proposition 15.

Let GG be a finite connected graph with nn vertices, assume that deg(aΩG)=k\deg(a_{\Omega_{G}})=k and there exists a vertex xVx\in V such that d(x,aΩG)d(x,y)d(x,a_{\Omega_{G}})\geq d(x,y) for all yVy\in V and there are kk disjoint paths from aΩGa_{\Omega_{G}} to xx. Then

𝐂G,p11n{\bf C}_{G,p}\geq 1-\frac{1}{n}

for all p(0,1]p\in(0,1].

Proof.

This result follows observing that under these hypothesis we have that

𝐂𝐆,𝐩VarpMGδaΩGVarpδaΩG=VarpMGδaΩGk1/p11n.{\bf C_{G,p}}\geq\frac{{\rm Var\,}_{p}M_{G}\delta_{a_{\Omega_{G}}}}{{\rm Var\,}_{p}\delta_{a_{\Omega_{G}}}}=\frac{{\rm Var\,}_{p}M_{G}\delta_{a_{\Omega_{G}}}}{k^{1/p}}\geq 1-\frac{1}{n}.

In particular this results hold for trees (in that case k=1k=1), cycles (in that case k=2k=2), hypercubes QnQ_{n} (with 2n2^{n} vertices, in that case k=nk=n), whenever k=1k=1, etc.

Remark 16.

For all p(0,1)p\in(0,1) we have that 𝐂Ln,p>11n,{\bf C}_{L_{n},p}>1-\frac{1}{n}, here LnL_{n} is the line graph. This also happens in many other situations. Moreover, it was proved by the authors in a previous work [6] that 𝐂Sn=11n{\bf C}_{S_{n}}=1-\frac{1}{n} for all p[1/2,1]p\in[1/2,1] and similarly 𝐂Kn=11n{\bf C}_{K_{n}}=1-\frac{1}{n} for all pln4ln6p\geq\frac{\ln 4}{\ln 6}

Let Γn\Gamma_{n} the family of all connected simple finite graphs with n vertices. Our previous proposition motivates the following question.

Question A: Let p>0p>0. What are the values

cn,p=infGΓn𝐂G,pandCn,p=supGΓn𝐂G,p?c_{n,p}=\inf_{G\in\Gamma_{n}}{\bf C}_{G,p}\ \ \text{and}\ \ C_{n,p}=\sup_{G\in\Gamma_{n}}{\bf C}_{G,p}?

Moreover, what are the extremizers? i.e what are the graphs GΓnG\in\Gamma_{n} for which 𝐂G,p=Cn,p{\bf C}_{G,p}=C_{n,p} or 𝐂G,p=cn,p{\bf C}_{G,p}=c_{n,p}?

5. Discrete Hardy-Littlewood maximal operator

In this section we write M:=MM:=M_{\mathbb{Z}}. The following result was proved by the second author for p=1p=1 in [9]. This proof follows a similar strategy, we include some details for completeness.

Theorem 17.

Let p(0,1]p\in(0,1] and f:f:\mathbb{Z}\to\mathbb{R} be a function in p().\ell^{p}(\mathbb{Z}). Then

VarpMf(2k=02p(2k+1)p(2k+3)p)1pfp()=:𝐂pfp,{\rm Var\,}_{p}Mf\leq\left(2\sum_{k=0}^{\infty}\frac{2^{p}}{(2k+1)^{p}(2k+3)^{p}}\right)^{\frac{1}{p}}\|f\|_{\ell^{p}(\mathbb{Z})}=:{\bf C}_{p}\|f\|_{p}, (5.1)

and the constant 𝐂p{\bf C}_{p} is the best possible. Moreover, the equality for p(12,1]p\in(\frac{1}{2},1] is attained if and only if ff is a delta function.

Proof of Theorem 17.

We can assume without loss of generality that f0f\geq 0. We observe that for all nn\in\mathbb{Z} there exists rnr_{n}\in\mathbb{Z} such that Mf(n)=Arnf(n)Mf(n)=A_{r_{n}}f(n) (this follows from the fact that flp()f\in l^{p}(\mathbb{Z})), then we consider the sets

X={n;Mf(n)>Mf(n+1)}andX+={n;Mf(n+1)>Mf(n)}.X^{-}=\{n\in\mathbb{Z};Mf(n)>Mf(n+1)\}\ \ \text{and}\ \ X^{+}=\{n\in\mathbb{Z};Mf(n+1)>Mf(n)\}.

Then

(VarpMf)p\displaystyle({\rm Var\,}_{p}Mf)^{p} =\displaystyle= n|Mf(n)Mf(n+1)|p\displaystyle\sum_{n\in\mathbb{Z}}|Mf(n)-Mf(n+1)|^{p} (5.2)
\displaystyle\leq nX(Arnf(n)Arn+1f(n+1))P+nX+(Arn+1f(n+1)Arn+1+1f(n))p.\displaystyle\sum_{n\in X^{-}}(A_{r_{n}}f(n)-A_{r_{n}+1}f(n+1))^{P}+\sum_{n\in X^{+}}(A_{r_{n+1}}f(n+1)-A_{r_{n+1}+1}f(n))^{p}.

Observe that for all nXn\in X^{-} we have that

(Arnf(n)Arn+1f(n+1))p|2(2rn+1)(2rn+3)k=nrnn+rnf(k)|p2p(2rn+1)p(2rn+3)pk=nrnn+rnf(k)p.(A_{r_{n}}f(n)-A_{r_{n}+1}f(n+1))^{p}\leq\left|\frac{2}{(2r_{n}+1)(2r_{n}+3)}\sum_{k=n-r_{n}}^{n+r_{n}}f(k)\right|^{p}\leq\frac{2^{p}}{(2r_{n}+1)^{p}(2r_{n}+3)^{p}}\sum_{k=n-r_{n}}^{n+r_{n}}f(k)^{p}. (5.3)

Then, for any mm\in\mathbb{Z} fixed, we find the maximal contribution of f(m)pf(m)^{p} to the right hand side of (5.3).

Case 1: If nmn\geq m.
Since nXn\in X^{-}. In this case we have that the contribution of f(m)f(m) to the right hand side of (5.3) is 0 (if m<nrnm<n-r_{n}) or 2p(2rn+1)p(2rn+3)p\frac{2^{p}}{(2r_{n}+1)^{p}(2r_{n}+3)^{p}} (if nrnmn-r_{n}\leq m). Thus, the contribution of f(m)f(m) to (Arnf(n)Arn+1f(n+1))p(A_{r_{n}}f(n)-A_{r_{n}+1}f(n+1))^{p} is at most

2p(2rn+1)p(2rn+3)p2p(2(nm)+1)p(2(nm)+3)p.\displaystyle\frac{2^{p}}{(2r_{n}+1)^{p}(2r_{n}+3)^{p}}\leq\frac{2^{p}}{(2(n-m)+1)^{p}(2(n-m)+3)^{p}}.

Here the equality happen if and only if rn=nmr_{n}=n-m.

Case 2: If n<mn<m.
Since nXn\in X^{-}. In this case we have that the contribution of f(m)pf(m)^{p} to the right hand side of (5.3) is 0 (if m>n+rnm>n+r_{n}) or 2p(2rn+1)p(2rn+3)p\frac{2^{p}}{(2r_{n}+1)^{p}(2r_{n}+3)^{p}} (if n+rnmn+r_{n}\geq m). Thus, the contribution of f(m)pf(m)^{p} to the right hand side of (5.3) is at most

2p(2rn+1)p(2rn+3)p\displaystyle\frac{2^{p}}{(2r_{n}+1)^{p}(2r_{n}+3)^{p}} \displaystyle\leq 2p(2(mn)+1)p(2(mn)+3)p<2p(2(mn1)+1)p(2(mn1)+3)p.\displaystyle\frac{2^{p}}{(2(m-n)+1)^{p}(2(m-n)+3)^{p}}<\frac{2^{p}}{(2(m-n-1)+1)^{p}(2(m-n-1)+3)^{p}}.

A similar analysis can be done with the second term of (5.2), in fact, for a fixed nX+n\in X^{+} we start observing that

(Mf(n+1)Mf(n))p\displaystyle(Mf(n+1)-Mf(n))^{p} (Arn+1f(n+1)Arn+1f(n))p\displaystyle\leq(A_{r_{n+1}}f(n+1)-A_{r_{n+1}}f(n))^{p}
|2(2rn+1+1)(2rn+1+3)k=n+1rn+1n+1+rn+1f(k)|p\displaystyle\leq\left|\frac{2}{(2r_{n+1}+1)(2r_{n+1}+3)}\sum_{k=n+1-r_{n+1}}^{n+1+r_{n+1}}f(k)\right|^{p}
2p(2rn+1+1)p(2rn+1+3)pk=n+1rn+1n+1+rn+1f(k)p.\displaystyle\leq\frac{2^{p}}{(2r_{n+1}+1)^{p}(2r_{n+1}+3)^{p}}\sum_{k=n+1-r_{n+1}}^{n+1+r_{n+1}}f(k)^{p}.

Then, if nmn\geq m, the contribution of f(m)pf(m)^{p} to the previous expression is strictly smaller than

2p(2(nm)+1)p(2(nm)+3)p.\frac{2^{p}}{(2(n-m)+1)^{p}(2(n-m)+3)^{p}}.

Moreover, if n<mn<m, the contribution of f(m)pf(m)^{p} is smaller than or equal to

2p(2(mn1)+1)p(2(mn1)+3)p.\frac{2^{p}}{(2(m-n-1)+1)^{p}(2(m-n-1)+3)^{p}}.

Therefore, from (5.2) we conclude that

(VarpMf)p\displaystyle({\rm Var\,}_{p}Mf)^{p} [m=n2p(2(nm)+1)p(2(nm)+3)p+m=n+1+2p(2(mn1)+1)p(2(mn1)+3)p]fpp\displaystyle\leq\left[\sum_{m=-\infty}^{n}\frac{2^{p}}{(2(n-m)+1)^{p}(2(n-m)+3)^{p}}+\sum_{m=n+1}^{+\infty}\frac{2^{p}}{(2(m-n-1)+1)^{p}(2(m-n-1)+3)^{p}}\right]\|f\|^{p}_{p}
=2k=02p(2k+1)p(2k+3)pfpp.\displaystyle=2\sum_{k=0}^{\infty}\frac{2^{p}}{(2k+1)^{p}(2k+3)^{p}}\|f\|^{p}_{p}.

We can easily see that if ff is a delta function then the previous inequality becomes an equality. On the other hand, for a function f:f:\mathbb{Z}\to\mathbb{R} such that (VarpMf)p=2k=02p(2k+1)p(2k+3)pfpp({\rm Var\,}_{p}Mf)^{p}=2\sum_{k=0}^{\infty}\frac{2^{p}}{(2k+1)^{p}(2k+3)^{p}}\|f\|^{p}_{p} and f0f\geq 0, we consider the set P:={s;f(s)0}P:=\{s\in\mathbb{Z};f(s)\neq 0\}, thus

(VarpMf)p=2(k=02p(2k+1)p(2k+3)p)tPf(t)p.({\rm Var\,}_{p}Mf)^{p}=2\left(\sum_{k=0}^{\infty}\frac{2^{p}}{(2k+1)^{p}(2k+3)^{p}}\right)\sum_{t\in P}f(t)^{p}.

Then, given s1Ps_{1}\in P, by the previous analysis we note that for all ns1n\geq s_{1} we must have that nXn\in X^{-} and rn=ns1r_{n}=n-s_{1}. If we take s2Ps_{2}\in P the same has to be true, this implies that s1=s2s_{1}=s_{2}, therefore P={s1}P=\{s_{1}\} which means that ff is a delta function.

Observe that for all p(0,1]p\in(0,1] the following inequality holds

Varpf21/pfp{\rm Var\,}_{p}f\leq 2^{1/p}\|f\|_{p}

for any function f:f:\mathbb{Z}\to\mathbb{R}. This follows from the fact that |f(n)f(n+1)|p|f(n)|p+|f(n+1)|p|f(n)-f(n+1)|^{p}\leq|f(n)|^{p}+|f(n+1)|^{p} for all nn\in\mathbb{Z}. Motivated by this trivial bound and our Theorem 17 we pose the following question

Conjecture 1.

Let p(1/2,1]p\in(1/2,1] and f:f:\mathbb{Z}\to\mathbb{R} be a function in p().\ell^{p}(\mathbb{Z}). Then

VarpMf(k=02p(2k+1)p(2k+3)p)1pVarpf.{\rm Var\,}_{p}Mf\leq\left(\sum_{k=0}^{\infty}\frac{2^{p}}{(2k+1)^{p}(2k+3)^{p}}\right)^{\frac{1}{p}}{\rm Var\,}_{p}f. (5.4)

In general, it would be interesting to answer the following question:
Question B: Let p(0,]p\in(0,\infty]. What is the smallest constant CpC_{p} such that

(Mf)p=VarpMfCpVarf=fp,\|(Mf)^{\prime}\|_{p}={\rm Var\,}_{p}Mf\leq C_{p}{\rm Var\,}f=\|f^{\prime}\|_{p},

for all f:f:\mathbb{Z}\to\mathbb{R}.

We note that for p=p=\infty we have that C=1C_{\infty}=1. The upper bound C1C_{\infty}\leq 1 trivially holds, on the other hand to see that the lower bound C1C_{\infty}\geq 1 holds it is enough to consider the function f:f:\mathbb{Z}\to\mathbb{R} defined by f(n)=max{10|n|,0}f(n)=\max\{10-|n|,0\}. Moreover, observe that for p1/2p\leq 1/2 the right hand side of (5.4) is ++\infty for any no constant function, so the inequality (5.4) trivially holds in that case. However, this is highly not trivial for p(1/2,1]p\in(1/2,1]. If true, this results would be stronger than our Theorem 17. For p>1p>1 even the analogous result to our Theorem 17 remains open.

For p=1p=1, it was proved by Kurka [7] that

VarMf240,004Varf,{\rm Var\,}Mf\leq 240,004{\rm Var\,}f,

where Var1=Var{\rm Var\,}_{1}={\rm Var\,}. In this case Conjecture 1 simplifies to

VarMfVarf,{\rm Var\,}Mf\leq{\rm Var\,}f,

which is believe to be true. This problem, innocent at first sight, has shown to be very challenging, and remains open. Any significant progress reducing the constants towards the conjectural bounds would be very interesting. This problem has also been considered for the uncentered Hardy-Littlewood maximal operator M~\widetilde{M}, in [2] Bober, Carneiro, Hughes and Pierce proved that for all f:f:\mathbb{Z}\to\mathbb{R} the following optimal inequality holds

VarM~fVarf.{\rm Var\,}\widetilde{M}f\leq{\rm Var\,}f.

Then, also would be interesting to answer the following question:
Question C: Let p(0,]p\in(0,\infty]. What is the smallest constant C~p\widetilde{C}_{p} such that

(M~f)p=VarpM~fC~pVarf=C~pfp,\|(\widetilde{M}f)^{\prime}\|_{p}={\rm Var\,}_{p}\widetilde{M}f\leq\widetilde{C}_{p}{\rm Var\,}f=\widetilde{C}_{p}\|f^{\prime}\|_{p},

for all f:f:\mathbb{Z}\to\mathbb{R}. Our next theorem gives an answer to this question for p=p=\infty. An auxiliary tool is the following lemma.

Lemma 18.

Let f:+f:\mathbb{Z}\to\mathbb{R}^{+} be a function such that f<\|f^{\prime}\|_{\infty}<\infty and M~f\widetilde{M}f\not\equiv\infty. Then, we have M~f(n)<\widetilde{M}f(n)<\infty for all nn\in\mathbb{Z}.

Proof.

Assume that there is nn\in\mathbb{Z} such that M~f(n)=\widetilde{M}f(n)=\infty, then, there exists a sequence {rj,sj}\{r_{j},s_{j}\} in +×+\mathbb{Z}^{+}\times\mathbb{Z}^{+}, with rj+sjr_{j}+s_{j}\to\infty such that Arj,sjf(n)A_{r_{j},s_{j}}f(n)\to\infty as jj\to\infty. For any mm\in\mathbb{Z}, defining C=fC=\|f^{\prime}\|_{\infty} we have

Arj,sjf(m)Arj,sjf(n)C|mn|,A_{r_{j},s_{j}}f(m)\geq A_{r_{j},s_{j}}f(n)-C|m-n|\,, (5.5)

therefore M~βf(m)=\widetilde{M}_{\beta}f(m)=\infty, a contradiction. ∎

Theorem 19.

For all f:f:\mathbb{Z}\to\mathbb{R} such that M~f\widetilde{M}f\not\equiv\infty, we have that

(M~f)12f.\|(\widetilde{M}f)^{\prime}\|_{\infty}\leq\frac{1}{2}\|f^{\prime}\|_{\infty}.

Moreover, the equality is attained if ff is a delta function.

Remark 20.

This theorem is a discrete analogue of the main result obtained in [1] on the continuous setting, in that case the optimal constant is 21/212^{1/2}-1. We use an elementary combinatorial argument to establish our result, this technique is completely independent of those in [1].

Proof.

We assume without loss of generality that ff is nonnegative. Let nn\in\mathbb{Z}, by Lemma 18 we have that M~f(n)<\widetilde{M}f(n)<\infty, then, for all ε>0\varepsilon>0 there are rn,ε,sn,ε0r_{n,\varepsilon},s_{n,\varepsilon}\geq 0 such that

M~f(n)<1rn,ϵ+sn,ε+1k=sn,εrn,εf(n+k)+ε.\widetilde{M}f(n)<\frac{1}{r_{n,\epsilon}+s_{n,\varepsilon}+1}\sum_{k=-s_{n,\varepsilon}}^{r_{n,\varepsilon}}f(n+k)+\varepsilon. (5.6)

We analyze two cases, the argument works similarly for both situations. Case 1: (M~f)(n)>0(\widetilde{M}f)^{\prime}(n)>0. In this case we star observing that rn,ε=0r_{n,\varepsilon}=0 for all sufficiently small ε\varepsilon (otherwise, from (5.6) we would obtain M~f(n)M~f(n+1)\widetilde{M}f(n)\leq\widetilde{M}f(n+1)). Then, for all sufficiently small ε\varepsilon we have that

M~f(n)M~f(n+1)\displaystyle\widetilde{M}f(n)-\widetilde{M}f(n+1) 1sn,ε+1k=sn,ε0f(n+k)+ε1sn,ε+2k=sn,ε10f(n+1+k)\displaystyle\leq\frac{1}{s_{n,\varepsilon}+1}\sum_{k=-s_{n,\varepsilon}}^{0}f(n+k)+\varepsilon-\frac{1}{s_{n,\varepsilon}+2}\sum_{k=-s_{n,\varepsilon}-1}^{0}f(n+1+k)
(1sn,ε+11sn,ε+2)k=sn,ε0f(n+k)1sn,ε+2f(n+1)+ε\displaystyle\leq\left(\frac{1}{s_{n,\varepsilon}+1}-\frac{1}{s_{n,\varepsilon}+2}\right)\sum_{k=-s_{n,\varepsilon}}^{0}f(n+k)-\frac{1}{s_{n,\varepsilon}+2}f(n+1)+\varepsilon
=1(sn,ε+2)(sn,ε+1)k=sn,ε0(f(n+k)f(n+1))+ε\displaystyle=\frac{1}{(s_{n,\varepsilon}+2)(s_{n,\varepsilon}+1)}\sum_{k=-s_{n,\varepsilon}}^{0}(f(n+k)-f(n+1))+\varepsilon
1(sn,ε+2)(sn,ε+1)k=1sn,ε+1kf+ε\displaystyle\leq\frac{1}{(s_{n,\varepsilon}+2)(s_{n,\varepsilon}+1)}\sum_{k=1}^{s_{n,\varepsilon}+1}k\|f^{\prime}\|_{\infty}+\varepsilon
=1(sn,ε+2)(sn,ε+1)(sn,ε+1)(sn,ε+2)2f+ε\displaystyle=\frac{1}{(s_{n,\varepsilon}+2)(s_{n,\varepsilon}+1)}\frac{(s_{n,\varepsilon}+1)(s_{n,\varepsilon}+2)}{2}\|f^{\prime}\|_{\infty}+\varepsilon
=12f+ε.\displaystyle=\frac{1}{2}\|f^{\prime}\|_{\infty}+\varepsilon.

Since this holds for any arbitrary ε\varepsilon, sending ε\varepsilon to 0 we conclude that

M~f(n)M~f(n+1)12f.\widetilde{M}f(n)-\widetilde{M}f(n+1)\leq\frac{1}{2}\|f^{\prime}\|_{\infty}.

Case 2: (M~f)(n)<0(\widetilde{M}f)^{\prime}(n)<0. This case follows anlogously. Since these are the only two possible cases the result follows. ∎

References

  • [1] J. M. Aldaz, L. Colzani, and J. Pérez Lázaro, Optimal bounds on the modulus of continuity of the uncentered hardy–littlewood maximal function, Journal of Geometric Analysis 22 (2010), no. 1, 132–167.
  • [2] J. Bober, E. Carneiro, K. Hughes, and L. B. Pierce, On a discrete version of Tanaka’s theorem for maximal functions, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1669–1680. MR 2869151
  • [3] E. Carneiro, Regularity of Maximal Operators: Recent Progress and Some Open Problems, To appear in New Trends in Applied Harmonic Analysis, Volume 2, doi.org/10.1007/978-3-030-32353-0_3 (2019).
  • [4] E. Carneiro and K. Hughes, On the endpoint regularity of discrete maximal operators, Math. Res. Lett. 19 (2012), no. 6, 1245–1262. MR 3091605
  • [5] E. Carneiro and J. Madrid, Derivative bounds for fractional maximal functions, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4063–4092. MR 3624402
  • [6] C. González-Riquelme and J. Madrid, Sharp inequalities for maximal operators on finite graphs, preprint, 2020.
  • [7] O. Kurka, On the variation of the Hardy-Littlewood maximal function, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 109–133. MR 3310075
  • [8] F. Liu and Q. Xue, On the variation of the hardy–littlewood maximal functions on finite graphs, Collect. Math. (2020).
  • [9] J. Madrid, Sharp inequalities for the variation of the discrete maximal function, Bull. Aust. Math. Soc. 95 (2017), no. 1, 94–107. MR 3592548
  • [10] J. Soria and P. Tradacete, Best constants for the hardy–littlewood maximal operator on finite graphs, J. Math. Anal. Appl 436 (2016), no. 2, 661 – 682.
  • [11] F. Temur, On regularity of the discrete hardy-littlewood maximal function, preprint, 2017.