This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharp q(Lp)\ell^{q}(L^{p}) decoupling for paraboloids

Tongou Yang Department of Mathematics, University of California
Los Angeles, CA 90095, United States
tongouyang@math.ucla.edu
Abstract.

In this short expository note, we prove the following result, which is a special case of the main theorem in [GOZZK23]. For each n2n\geq 2 and p,q[2,]p,q\in[2,\infty], we prove upper bounds of q(Lp)\ell^{q}(L^{p}) decoupling constants for paraboloids in n\mathbb{R}^{n}, as well as presenting extremisers for each case. Both are sharp up to ε\varepsilon-losses.

1. Introduction

Let d2d\geq 2 and vi{1,1}v_{i}\in\{-1,1\} for i=1,,d1i=1,\dots,d-1. Write ξ=(ξ1,,ξd1)\xi=(\xi_{1},\dots,\xi_{d-1}), x=(x1,,xd1)x^{\prime}=(x_{1},\dots,x_{d-1}) and x=(x,xd)x=(x^{\prime},x_{d}). Define the paraboloid

(1) ϕ(ξ)=i=1d1viξi2,\phi(\xi)=\sum_{i=1}^{d-1}v_{i}\xi_{i}^{2},

and its associated extension operator

(2) Eg(x1,,xd)=[0,1]d1g(ξ)e(xξ+xdϕ(ξ))𝑑ξ.Eg(x_{1},\dots,x_{d})=\int_{[0,1]^{d-1}}g(\xi)e(x^{\prime}\cdot\xi+x_{d}\phi(\xi))d\xi.

For δ1/2\delta\in\mathbb{N}^{-1/2}, let 𝒫(δ)\mathcal{P}(\delta) be a tiling of [0,1]d1[0,1]^{d-1} by cubes of side length δ1/2\delta^{1/2}.

For p,q>0p,q>0 and each nonzero gL1([0,1]d1)g\in L^{1}([0,1]^{d-1}), denote

(3) R(g)=Rp,q(g):=supB:d-cube, l(B)=δ1EgLp(B)E(g1Q)Lp(wB)lq(Q𝒫(δ)),R(g)=R_{p,q}(g):=\sup_{B:\text{$d$-cube, }l(B)=\delta^{-1}}\frac{\lVert Eg\rVert_{L^{p}(B)}}{\lVert\lVert E(g1_{Q})\rVert_{L^{p}(w_{B})}\rVert_{l^{q}(Q\in\mathcal{P}(\delta))}},

where wBw_{B} is a weight function adapted to BB, such as (see [BD17b])

wB(x)=(1+|xcB|δ1)100d,w_{B}(x)=\left(1+\frac{|x-c_{B}|}{\delta^{-1}}\right)^{-100d},

where cBc_{B} is the centre of BB. Let

(4) Dp,q(δ)=sup{R(g):0gL1([0,1]d1)}.D_{p,q}(\delta)=\sup\{R(g):0\neq g\in L^{1}([0,1]^{d-1})\}.

Denote

(5) pd=2(d+1)d1,N=δd12.p_{d}=\frac{2(d+1)}{d-1},\quad N=\delta^{-\frac{d-1}{2}}.

In the case of an elliptic paraboloid, Bourgain and Demeter [BD15] proved

Theorem 1.

Let vi=1v_{i}=1 for i=1,,d1i=1,\dots,d-1. Then for every p,q[2,]p,q\in[2,\infty] we have

(6) Dp,2(δ)max{1,N12pd2p}.D_{p,2}(\delta)\lessapprox\max\{1,N^{\frac{1}{2}-\frac{p_{d}}{2p}}\}.

Here and throughout this article, A(δ)B(δ)A(\delta)\lessapprox B(\delta) will always mean that for every ε>0\varepsilon>0, there exists some CεC_{\varepsilon} such that A(δ)CεδεB(δ)A(\delta)\leq C_{\varepsilon}\delta^{-\varepsilon}B(\delta) for every δ(0,1)\delta\in(0,1). We define \gtrapprox and \approx in a similar way.

For general vi=±1v_{i}=\pm 1, Bourgain and Demeter [BD17a] also proved

Theorem 2.

Let p[2,]p\in[2,\infty]. Then

(7) Dp,p(δ)max{N121p,N11ppd2p}.D_{p,p}(\delta)\lessapprox\max\{N^{\frac{1}{2}-\frac{1}{p}},N^{1-\frac{1}{p}-\frac{p_{d}}{2p}}\}.

They also proved a version of 2(Lp)\ell^{2}(L^{p}) decoupling in the case of hyperbolic paraboloids:

Theorem 3.

Let p[2,]p\in[2,\infty]. Let d(v)d(v) denote the minimum number of positive and negative entries of viv_{i}, 1id11\leq i\leq d-1, and denote

(8) pv=2(d+1d(v))d1d(v).p_{v}=\frac{2(d+1-d(v))}{d-1-d(v)}.

Then

(9) Dp,2(δ){Nd(v)d1(121p),if2ppv,N12pd2p,ifpvp.D_{p,2}(\delta)\lessapprox\begin{cases}N^{\frac{d(v)}{d-1}\left(\frac{1}{2}-\frac{1}{p}\right)},&\quad\text{if}\quad 2\leq p\leq p_{v},\\ N^{\frac{1}{2}-\frac{p_{d}}{2p}},&\quad\text{if}\quad p_{v}\leq p\leq\infty.\end{cases}

Note that pdpvp_{d}\leq p_{v}, with equality if and only if d(v)=0d(v)=0, that is, we are in the case of elliptic paraboloids.

1.1. Main results

In the case of an elliptic paraboloid, we prove that

Theorem 4.

Let vi=1v_{i}=1 for i=1,,d1i=1,\dots,d-1. Then for all p,q[2,]p,q\in[2,\infty], we have

(10) Dp,q(δ)max{N121q,N1pd2p1q}.D_{p,q}(\delta)\approx\max\{N^{\frac{1}{2}-\frac{1}{q}},N^{1-\frac{p_{d}}{2p}-\frac{1}{q}}\}.
1p\frac{1}{p}1q\frac{1}{q}A1A_{1}A2A_{2}A3A_{3}A4A_{4}A5A_{5}A6A_{6}A7A_{7}12\frac{1}{2}12\frac{1}{2}
Figure 1. The interpolation diagram

More generally, for hyperbolic paraboloids, we also have

Theorem 5.

In the (1/p,1/q)(1/p,1/q) interpolation diagram (see Figure 1), let

A1=(0,0),A2=(0,12),A3=(1pv,12),A4=(1pd,1pd)\displaystyle A_{1}=\left(0,0\right),\quad A_{2}=\left(0,\frac{1}{2}\right),\quad A_{3}=\left(\frac{1}{p_{v}},\frac{1}{2}\right),\quad A_{4}=\left(\frac{1}{p_{d}},\frac{1}{p_{d}}\right)
A5=(1pd,0),A6=(12,0),A7=(12,12).\displaystyle A_{5}=\left(\frac{1}{p_{d}},0\right),\quad A_{6}=\left(\frac{1}{2},0\right),\quad A_{7}=\left(\frac{1}{2},\frac{1}{2}\right).

Then the following holds:

(11) Dp,q(δ){N121q,if (1/p,1/q) lies in trapezoid A4A5A6A7,N121q+d(v)d1(1q1p),if (1/p,1/q) lies in triangle A3A4A7,N1pd2p1q,if (1/p,1/q) lies in pentagon A1A2A3A4A5.D_{p,q}(\delta)\approx\begin{cases}&N^{\frac{1}{2}-\frac{1}{q}},\quad\text{if $(1/p,1/q)$ lies in trapezoid $A_{4}A_{5}A_{6}A_{7}$},\\ &N^{\frac{1}{2}-\frac{1}{q}+\frac{d(v)}{d-1}\left(\frac{1}{q}-\frac{1}{p}\right)},\quad\text{if $(1/p,1/q)$ lies in triangle $A_{3}A_{4}A_{7}$},\\ &N^{1-\frac{p_{d}}{2p}-\frac{1}{q}},\quad\text{if $(1/p,1/q)$ lies in pentagon $A_{1}A_{2}A_{3}A_{4}A_{5}$}.\end{cases}

Acknowledgement. The author thanks Jianhui Li for thoughtful discussions.

2. extremisers for elliptic paraboloids

2.1. The constant test function

Theorem 6.

Let g1g\equiv 1. For every p[2,]p\in[2,\infty], q(0,]q\in(0,\infty] we have

(12) R(g)N1pd2p1q.R(g)\gtrsim N^{1-\frac{p_{d}}{2p}-\frac{1}{q}}.

In particular, if ppdp\geq p_{d}, then the constant function is an extremizer for Dp,q(δ)D_{p,q}(\delta) for elliptic paraboloids.

Proof.

If p<p<\infty, we use the equivalent neighbourhood version of decoupling. For each QQ, let fQf_{Q} be a Schwartz function such that fQ^\widehat{f_{Q}} is essentially the normalised indicator function of the δ\delta-neighbourhood of the graph of ϕ\phi over QQ. Let f=QfQf=\sum_{Q}f_{Q}. Let BB be centred at the origin and have side length δ1\delta^{-1}.

For |x|c1|x|\leq c\ll 1, we have |e(xξ+xdϕ(ξ))|>1/2|e(x^{\prime}\cdot\xi+x_{d}\phi(\xi))|>1/2. Thus |f(x)|N|f(x)|\sim N over [c,c]d1[-c,c]^{d-1}, and hence

(13) fLp(B)fLp([c,c]d1)N.\lVert f\rVert_{L^{p}(B)}\geq\lVert f\rVert_{L^{p}([-c,c]^{d-1})}\sim N.

On the other hand, we have fQ1TQf_{Q}\sim 1_{T_{Q}} where TQT_{Q} is a rectangle with dimensions (δ1/2)d1×δ1(\delta^{-1/2})^{d-1}\times\delta^{-1}. Thus

(14) fQLp(wB)δd12p1p,\lVert f_{Q}\rVert_{L^{p}(w_{B})}\sim\delta^{-\frac{d-1}{2p}-\frac{1}{p}},

which holds for every QQ. Thus we have

R(g)\displaystyle R(g) NN1qδd12p1p=N11q1pδ1p=N1pd2p1q.\displaystyle\gtrsim\frac{N}{N^{\frac{1}{q}}\delta^{-\frac{d-1}{2p}-\frac{1}{p}}}=N^{1-\frac{1}{q}-\frac{1}{p}}\delta^{\frac{1}{p}}=N^{1-\frac{p_{d}}{2p}-\frac{1}{q}}.

For p=p=\infty, it is easy to see that E1L(B)=|E1(0)|1\lVert E1\rVert_{L^{\infty}(B)}=|E1(0)|\sim 1, and E1QL(wB)=|E1Q(0)||Q|=N1\lVert E1_{Q}\rVert_{L^{\infty}(w_{B})}=|E1_{Q}(0)|\sim|Q|=N^{-1}. Thus we also have

(15) R(g)1N1q1=N11q.R(g)\gtrsim\frac{1}{N^{\frac{1}{q}-1}}=N^{1-\frac{1}{q}}.

2.2. The exponential sum test function

Lemma 7.

For δ2\delta\in\mathbb{N}^{-2} we define the function on 𝕋2\mathbb{T}^{2} as

f(x,y)=j=1δ1/2e(jx+j2y).f(x,y)=\sum_{j=1}^{\delta^{-1/2}}e\left(jx+j^{2}y\right).

Then for all 2p2\leq p\leq\infty, we have

fLp(𝕋2){δ14 if 2p6δ12+32p if 6p.\lVert f\rVert_{L^{p}(\mathbb{T}^{2})}\approx\begin{cases}\delta^{-\frac{1}{4}}&\text{ if }2\leq p\leq 6\\ \delta^{-\frac{1}{2}+\frac{3}{2p}}&\text{ if }6\leq p\leq\infty\end{cases}.
Proof.

We first prove the upper bound by testing

g(s)=j=1δ1/2Δjδ1/2(s),g(s)=\sum_{j=1}^{\delta^{-1/2}}\Delta_{j\delta^{1/2}}(s),

where Δa\Delta_{a} is the delta-mass at aa. (A more rigorous argument is to take an approximation to the identity at each of the delta masses.) Then we have

Eg(x,y)=j=1δ1/2e(jδ1/2x+j2δy)=f(δ1/2x,δy).Eg(x,y)=\sum_{j=1}^{\delta^{-1/2}}e\left(j\delta^{1/2}x+j^{2}\delta y\right)=f(\delta^{1/2}x,\delta y).

Also, for each jj we have

Egj(x,y)=e(jδ1/2x+j2δy).Eg_{j}(x,y)=e\left(j\delta^{1/2}x+j^{2}\delta y\right).

Thus EgjLp(wB)δ2p\lVert Eg_{j}\rVert_{L^{p}(w_{B})}\sim\delta^{-\frac{2}{p}}, and so

EgjLp(wB)l2(j)δ14δ2p.\lVert\lVert Eg_{j}\rVert_{L^{p}(w_{B})}\rVert_{l^{2}(j)}\sim\delta^{-\frac{1}{4}}\delta^{-\frac{2}{p}}.

But by periodicity, we have

EgLp(B)=δ2pfLp(𝕋2).\lVert Eg\rVert_{L^{p}(B)}=\delta^{-\frac{2}{p}}\lVert f\rVert_{L^{p}(\mathbb{T}^{2})}.

The desired upper bound then follows from Theorem 1 with d=2d=2.

The lower bound follows from [BB10]. We provide a little more detail for clarity. The case p=p=\infty is trivial, taking x=y=0x=y=0. The case 6p<6\leq p<\infty follows by considering (x,y)(x,y) near the origin; the detail can be found in Theorem 2.2 of [Yip20] (with s=p/2s=p/2, and the proof there is easily seen to work for all real numbers s>0s>0.) The case p=2p=2 and p=4p=4 follows from the first (trivial) bound of Theorem 2.3 of [Yip20].

Thus, the only case remaining is the case when 2<p<62<p<6 and p4p\neq 4. Assume 2<p<42<p<4 first. Then 4(p,6)4\in(p,6) and using the log-convexity of LpL^{p}-norms, we have

fL4(𝕋2)fLp(𝕋2)1θfL6(𝕋2)θ,\lVert f\rVert_{L^{4}(\mathbb{T}^{2})}\leq\lVert f\rVert^{1-\theta}_{L^{p}(\mathbb{T}^{2})}\lVert f\rVert^{\theta}_{L^{6}(\mathbb{T}^{2})},

where 1θp+θ6=14\frac{1-\theta}{p}+\frac{\theta}{6}=\frac{1}{4}. But since fL4(𝕋2)δ1/4\lVert f\rVert_{L^{4}(\mathbb{T}^{2})}\sim\delta^{-1/4} and fL6(𝕋2)δ1/4\lVert f\rVert_{L^{6}(\mathbb{T}^{2})}\sim\delta^{-1/4}, we also have fLp(𝕋2)δ1/4\lVert f\rVert_{L^{p}(\mathbb{T}^{2})}\gtrsim\delta^{-1/4}. The case 4<p<64<p<6 is similar. ∎

Theorem 8.

Let g=QΔ(cQ,ϕ(cQ))g=\sum_{Q}\Delta(c_{Q},\phi(c_{Q})) be the sum of delta-masses at (cQ,ϕ(cQ))(c_{Q},\phi(c_{Q})). Then for every p[2,]p\in[2,\infty], q(0,]q\in(0,\infty] we have

(16) R(g)max{N121q,N13p1q}.R(g)\gtrsim\max\{N^{\frac{1}{2}-\frac{1}{q}},N^{1-\frac{3}{p}-\frac{1}{q}}\}.

As a result, if 2ppd2\leq p\leq p_{d}, then gg is an extremizer for Dp,q(δ)D_{p,q}(\delta) for elliptic paraboloids.

Remark. For d3d\geq 3 and p>pdp>p_{d}, the bound N13p1qN^{1-\frac{3}{p}-\frac{1}{q}} does not agree with the sharp bound N1pd2p1qN^{1-\frac{p_{d}}{2p}-\frac{1}{q}}. Thus to get sharp decoupling, we will need the constant test function. Thus, only the first lower bound N121qN^{\frac{1}{2}-\frac{1}{q}} will be useful in our proof later. Nevertheless, if d=2d=2, pd=6p_{d}=6, then gg is an extremizer for every p2p\geq 2.

Proof.

Let BB be centred at the origin and have side length δ1\delta^{-1}. We have |E(g1Q)(x)|1|E(g1_{Q})(x)|\equiv 1, and thus

(17) E(g1Q)Lp(wB)lq(Q𝒫(δ))N1q|B|1p=N1q+2dp(d1).\lVert\lVert E(g1_{Q})\rVert_{L^{p}(w_{B})}\rVert_{l^{q}(Q\in\mathcal{P}(\delta))}\sim N^{\frac{1}{q}}|B|^{\frac{1}{p}}=N^{\frac{1}{q}+\frac{2d}{p(d-1)}}.

For the left hand side, we have

Eg(x)\displaystyle Eg(x) =Qe(xcQ+xdϕ(cQ))\displaystyle=\sum_{Q}e(x^{\prime}c_{Q}+x_{d}\phi(c_{Q}))
=i=1d1ji=1δ1/2e(jiδ1/2xi+viji2δxd).\displaystyle=\prod_{i=1}^{d-1}\sum_{j_{i}=1}^{\delta^{-1/2}}e(j_{i}\delta^{1/2}x_{i}+v_{i}j_{i}^{2}\delta x_{d}).

For p<p<\infty,

B|Eg(x)|p𝑑x\displaystyle\int_{B}|Eg(x)|^{p}dx
=δ1δ1(i=1d1δ1δ1|ji=1δ1/2e(jiδ1/2xi+viji2δxd)|p𝑑xi)𝑑xd\displaystyle=\int_{-\delta^{-1}}^{\delta^{-1}}\left(\prod_{i=1}^{d-1}\int_{-\delta^{-1}}^{\delta^{-1}}\left|\sum_{j_{i}=1}^{\delta^{-1/2}}e(j_{i}\delta^{1/2}x_{i}+v_{i}j_{i}^{2}\delta x_{d})\right|^{p}dx_{i}\right)dx_{d}
=δ1+d1211(i=1d1δ1/2δ1/2|ji=1δ1/2e(jixi+viji2xd)|p𝑑xi)𝑑xd\displaystyle=\delta^{1+\frac{d-1}{2}}\int_{-1}^{1}\left(\prod_{i=1}^{d-1}\int_{-\delta^{-1/2}}^{\delta^{-1/2}}\left|\sum_{j_{i}=1}^{\delta^{-1/2}}e(j_{i}x_{i}+v_{i}j_{i}^{2}x_{d})\right|^{p}dx_{i}\right)dx_{d}
(18) =δd11(i=1d111|ji=1δ1/2e(jixi+viji2xd)|p𝑑xi)𝑑xd,\displaystyle=\delta^{-d}\int_{-1}^{1}\left(\prod_{i=1}^{d-1}\int_{-1}^{1}\left|\sum_{j_{i}=1}^{\delta^{-1/2}}e(j_{i}x_{i}+v_{i}j_{i}^{2}x_{d})\right|^{p}dx_{i}\right)dx_{d},

where the last line follows from periodicity. By taking complex conjugation and symmetry, it is easy to see that for each ii we have

11|ji=1δ1/2e(jixi+viji2xd)|p𝑑xi=11|j=1δ1/2e(jt+j2xd)|p𝑑t:=Sp(xd).\displaystyle\int_{-1}^{1}\left|\sum_{j_{i}=1}^{\delta^{-1/2}}e(j_{i}x_{i}+v_{i}j_{i}^{2}x_{d})\right|^{p}dx_{i}=\int_{-1}^{1}\left|\sum_{j=1}^{\delta^{-1/2}}e(jt+j^{2}x_{d})\right|^{p}dt:=S_{p}(x_{d}).

Thus

(19) B|Eg(x)|p𝑑x=δd11Sp(xd)d1𝑑xd.\int_{B}|Eg(x)|^{p}dx=\delta^{-d}\int_{-1}^{1}S_{p}(x_{d})^{d-1}dx_{d}.

In particular, this computation shows that the test function gg disregards the signs of viv_{i}, and thus it should only extremize the case of elliptic paraboloids.

We then use Jensen’s inequality:

11Sp(xd)d1𝑑xd\displaystyle\int_{-1}^{1}S_{p}(x_{d})^{d-1}dx_{d}
(11Sp(xd)𝑑xd)d1\displaystyle\gtrsim\left(\int_{-1}^{1}S_{p}(x_{d})dx_{d}\right)^{d-1}
max{(δ12)p2(d1),(δ12)(p3)(d1)}\displaystyle\sim\max\{(\delta^{-\frac{1}{2}})^{\frac{p}{2}(d-1)},(\delta^{-\frac{1}{2}})^{(p-3)(d-1)}\}
=max{Np2,Np3},\displaystyle=\max\{N^{\frac{p}{2}},N^{p-3}\},

where the \sim follows from Lemma 7. This gives

(20) EgLp(B)δdpmax{N12,N13p}.\lVert Eg\rVert_{L^{p}(B)}\gtrsim\delta^{-\frac{d}{p}}\max\{N^{\frac{1}{2}},N^{1-\frac{3}{p}}\}.

If p=p=\infty, it is also easy to see that EgL(B)|Eg(0)|N\lVert Eg\rVert_{L^{\infty}(B)}\geq|Eg(0)|\sim N, which agrees with the expression above.

As a result, we have

(21) R(g)δdpmax{N12,N13p}N1q+2dp(d1)=max{N121q,N13p1q}.R(g)\gtrsim\frac{\delta^{-\frac{d}{p}}\max\{N^{\frac{1}{2}},N^{1-\frac{3}{p}}\}}{N^{\frac{1}{q}+\frac{2d}{p(d-1)}}}=\max\{N^{\frac{1}{2}-\frac{1}{q}},N^{1-\frac{3}{p}-\frac{1}{q}}\}.

Remark. When d=2d=2, p=6p=6, a more refined number-theoretic argument (see [BB10] and Theorem 3.5 of [Yip20]) proves EgLp(B)N7/6(logN)1/6\lVert Eg\rVert_{L^{p}(B)}\gtrsim N^{7/6}(\log N)^{1/6}, implying D6,2(δ)|logδ|1/6D_{6,2}(\delta)\gtrsim|\log\delta|^{1/6}. So in general, we must have at least logarithmic losses in the upper bound. In fact, in [GMW24], the authors proved that when d=2d=2, p=6p=6, we can have D6,2(δ)|logδ|O(1)D_{6,2}(\delta)\lesssim|\log\delta|^{O(1)}.

2.3. Proof of Theorem 4

Proof.

The upper bound follows from Theorem 1 and Hölder’s inequality. The lower bound follows from Theorems 6 and 8. ∎

3. extremisers for hyperpolic paraboloids

We are now going to prove Theorem 5. By renaming the variables, we may let

(22) ϕ(ξ)=ξ12++ξd(v)2ξd(v)+12ξd12,\phi(\xi)=\xi_{1}^{2}+\cdots+\xi^{2}_{d(v)}-\xi^{2}_{d(v)+1}-\cdots-\xi_{d-1}^{2},

where we recall d(v)(d1)/2d(v)\leq(d-1)/2 is the minimum number of positive and negative entries of viv_{i}, 1id11\leq i\leq d-1.

First, if ppvp\geq p_{v}, then since pvpdp_{v}\geq p_{d}, by Theorem 3 with Hölder’s inequality and Theorem 6, our claim follows. Thus it suffices to consider 2ppv2\leq p\leq p_{v}.

3.1. The hyperplane test function

Theorem 9.

Let p,q[2,]p,q\in[2,\infty] and hh be an extremizer for the decoupling for the elliptic paraboloid in dimension d12d(v)d-1-2d(v) (set h1h\equiv 1 if d12d(v)=0d-1-2d(v)=0). Define g(ξ)=h(ξ2d(v)+1,,ξd1)j=1d(v)Δ(ξjξd(v)+j)g(\xi)=h(\xi_{2d(v)+1},\cdots,\xi_{d-1})\prod_{j=1}^{d(v)}\Delta(\xi_{j}-\xi_{d(v)+j}). Then

(23) R(g)N121q+d(v)d1(1p1q).R(g)\gtrsim N^{\frac{1}{2}-\frac{1}{q}+\frac{d(v)}{d-1}(\frac{1}{p}-\frac{1}{q})}.
Proof.

Let BB be centred at the origin and have side length δ1\delta^{-1}. By the separability of EgEg, we can easily compute that

(24) Eg(x)=E~h(x2d(v)+1,,xd1,xd)k=1d(v)(jk=1δ1/2e(δ12jk(xk+xk+d(v)))),Eg(x)=\tilde{E}h(x_{2d(v)+1},\dots,x_{d-1},x_{d})\prod_{k=1}^{d(v)}\left(\sum_{j_{k}=1}^{\delta^{-1/2}}e(\delta^{\frac{1}{2}}j_{k}(x_{k}+x_{k+d(v)}))\right),

where E~\tilde{E} is the extension operator for the elliptic paraboloid over the unit cube in d12d(v)d-1-2d(v) dimensions. We first compute

[δ1,δ1]2d(v)k=1d(v)|jk=1δ1/2e(δ12jk(xk+xk+d(v)))|pdx1dx2d(v)\displaystyle\int_{[-\delta^{-1},\delta^{-1}]^{2d(v)}}\prod_{k=1}^{d(v)}\left|\sum_{j_{k}=1}^{\delta^{-1/2}}e(\delta^{\frac{1}{2}}j_{k}(x_{k}+x_{k+d(v)}))\right|^{p}dx_{1}\cdots dx_{2d(v)}
=([δ1,δ1]2|j=1δ1/2e(δ12j(x+y))|p𝑑x𝑑y)d(v)\displaystyle=\left(\int_{[-\delta^{-1},\delta^{-1}]^{2}}\left|\sum_{j=1}^{\delta^{-1/2}}e(\delta^{\frac{1}{2}}j(x+y))\right|^{p}dxdy\right)^{d(v)}
(δ1δ1δ1|j=1δ1/2e(δ12jz)|p𝑑z)d(v)\displaystyle\sim\left(\int_{-\delta^{-1}}^{\delta^{-1}}\delta^{-1}\left|\sum_{j=1}^{\delta^{-1/2}}e(\delta^{\frac{1}{2}}jz)\right|^{p}dz\right)^{d(v)}
δ(p+3)d(v)2.\displaystyle\sim\delta^{-\frac{(p+3)d(v)}{2}}.

Thus

(25) EgLp(B)δ(p+3)d(v)2pE~hLp(B~),\lVert Eg\rVert_{L^{p}(B)}\sim\delta^{-\frac{(p+3)d(v)}{2p}}\lVert\tilde{E}h\rVert_{L^{p}(\tilde{B})},

where B~d2d(v)\tilde{B}\subseteq\mathbb{R}^{d-2d(v)} is the cube centred at 0 and has side length δ1\delta^{-1}.

Similarly, given each Q:=l=1d1Il[0,1]d1Q:=\prod_{l=1}^{d-1}I_{l}\subseteq[0,1]^{d-1} of side length δ1/2\delta^{1/2}. Let Q~=l=2d(v)+1d1Il\tilde{Q}=\prod_{l=2d(v)+1}^{d-1}I_{l}, we see E(g1Q)(x)E(g1_{Q})(x) is nonzero only if and for each 1ld(v)1\leq l\leq d(v) we have Il=Il+d(v)I_{l}=I_{l+d(v)}. Thus

(26) |E(g1Q)(x)|=|E~Q~h(x2d(v)+1,,xd1,xd)|l=1d(v)1Il=Il+d(v).|E(g1_{Q})(x)|=|\tilde{E}_{\tilde{Q}}h(x_{2d(v)+1},\dots,x_{d-1},x_{d})|\prod_{l=1}^{d(v)}1_{I_{l}=I_{l+d(v)}}.

For such QQ we have

(27) E(g1Q)Lp(B)E~Q~hLp(B~)δ2d(v)p.\lVert E(g1_{Q})\rVert_{L^{p}(B)}\sim\lVert\tilde{E}_{\tilde{Q}}h\rVert_{L^{p}(\tilde{B})}\delta^{-\frac{2d(v)}{p}}.

Thus

(28) E(g1Q)Lp(B)lq(Q)E~Q~hLp(B~)lq(Q~)δ2d(v)pδd(v)2q.\lVert\lVert E(g1_{Q})\rVert_{L^{p}(B)}\rVert_{l^{q}(Q)}\sim\lVert\lVert\tilde{E}_{\tilde{Q}}h\rVert_{L^{p}(\tilde{B})}\rVert_{l^{q}(\tilde{Q})}\delta^{-\frac{2d(v)}{p}}\delta^{-\frac{d(v)}{2q}}.

For E~h\tilde{E}h, the critical exponent this time becomes pd2d(v)p_{d-2d(v)} instead of pdp_{d}. Since ppvpd2d(v)p\leq p_{v}\leq p_{d-2d(v)}, we use Theorem 8. Since hh is defined to be an extremizer, we have

(29) E~hLp(B~)(δd12d(v)2)121qE~Q~hLp(B~)lq(Q~)\lVert\tilde{E}h\rVert_{L^{p}(\tilde{B})}\sim(\delta^{-\frac{d-1-2d(v)}{2}})^{\frac{1}{2}-\frac{1}{q}}\lVert\lVert\tilde{E}_{\tilde{Q}}h\rVert_{L^{p}(\tilde{B})}\rVert_{l^{q}(\tilde{Q})}

This implies that

R(g)\displaystyle R(g) δ(p+3)d(v)2pδ2d(v)pδd(v)2q(δd12d(v)2)121q\displaystyle\gtrsim\delta^{-\frac{(p+3)d(v)}{2p}}\delta^{\frac{2d(v)}{p}}\delta^{\frac{d(v)}{2q}}(\delta^{-\frac{d-1-2d(v)}{2}})^{\frac{1}{2}-\frac{1}{q}}
=N121qNd(v)d1(1q1p).\displaystyle=N^{\frac{1}{2}-\frac{1}{q}}N^{\frac{d(v)}{d-1}(\frac{1}{q}-\frac{1}{p})}.

3.2. The case pdppvp_{d}\leq p\leq p_{v}

Combining the sharp lower bounds in Theorems 6 and 9, we get

(30) Dp,q(δ)max{N1pd2p1q,N121qNd(v)d1(1q1p)}.D_{p,q}(\delta)\gtrsim\max\{N^{1-\frac{p_{d}}{2p}-\frac{1}{q}},N^{\frac{1}{2}-\frac{1}{q}}N^{\frac{d(v)}{d-1}(\frac{1}{q}-\frac{1}{p})}\}.

We need to determine which one is larger. Setting

(31) 1pd2p1q=121q+d(v)d1(1q1p),1-\frac{p_{d}}{2p}-\frac{1}{q}=\frac{1}{2}-\frac{1}{q}+\frac{d(v)}{d-1}\left(\frac{1}{q}-\frac{1}{p}\right),

that is,

(32) 12pd2p=d(v)d1(1q1p),\frac{1}{2}-\frac{p_{d}}{2p}=\frac{d(v)}{d-1}\left(\frac{1}{q}-\frac{1}{p}\right),

we see this corresponds to the critical line l1l_{1} that passes through the points (1/pv,1/2)(1/p_{v},1/2) and (1/pd,1/pd)(1/p_{d},1/p_{d}) in the (1/p,1/q)(1/p,1/q) interpolation diagram.

  • If (1/p,1/q)(1/p,1/q) lies above l1l_{1}, then we have

    (33) Dp,q(δ)N121q+d(v)d1(1p1q).D_{p,q}(\delta)\gtrsim N^{\frac{1}{2}-\frac{1}{q}+\frac{d(v)}{d-1}(\frac{1}{p}-\frac{1}{q})}.

    We claim that \lessapprox also holds in this case. By interpolation, it suffices to prove upper bounds at the following three points:

    (34) (1pv,12),(1pd,1pd),(1pd,12).\left(\frac{1}{p_{v}},\frac{1}{2}\right),\quad\left(\frac{1}{p_{d}},\frac{1}{p_{d}}\right),\quad\left(\frac{1}{p_{d}},\frac{1}{2}\right).

    The point (1pv,12)(\frac{1}{p_{v}},\frac{1}{2}) has been settled by the case ppvp\geq p_{v}, since we can check by direct computation that

    (35) d(v)d1(121pv)=12pdpv.\frac{d(v)}{d-1}\left(\frac{1}{2}-\frac{1}{p_{v}}\right)=\frac{1}{2}-\frac{p_{d}}{p_{v}}.

    The upper bound at (1pd,1pd)(\frac{1}{p_{d}},\frac{1}{p_{d}}) follows from Theorem 2 when p=pdp=p_{d}. The upper bound at (1pd,12)(\frac{1}{p_{d}},\frac{1}{2}) follows from Theorem 3 when p=pdp=p_{d}.

  • If (1/p,1/q)(1/p,1/q) lies below l1l_{1}, then we have

    (36) Dp,q(δ)N1pd2p1q.D_{p,q}(\delta)\gtrsim N^{1-\frac{p_{d}}{2p}-\frac{1}{q}}.

    We have \lessapprox also holds in this case, by the upper bounds at (1pv,12)(\frac{1}{p_{v}},\frac{1}{2}) and (1pd,1pd)(\frac{1}{p_{d}},\frac{1}{p_{d}}), together with Hölder’s inequality.

3.3. The case 2ppd2\leq p\leq p_{d}

Combining the sharp lower bounds in Theorems 8 and 9, we get

(37) Dp,q(δ)max{N121q,N121qNd(v)d1(1q1p)}.D_{p,q}(\delta)\gtrsim\max\{N^{\frac{1}{2}-\frac{1}{q}},N^{\frac{1}{2}-\frac{1}{q}}N^{\frac{d(v)}{d-1}(\frac{1}{q}-\frac{1}{p})}\}.

It is easy to see that the critical line l2l_{2} in this case is given by 1/p=1/q1/p=1/q.

  • If 1/p1/q1/p\leq 1/q, then we have

    (38) Dp,q(δ)N121q+d(v)d1(1p1q).D_{p,q}(\delta)\gtrsim N^{\frac{1}{2}-\frac{1}{q}+\frac{d(v)}{d-1}(\frac{1}{p}-\frac{1}{q})}.

    We have \lessapprox also holds in this case, which follows immediately by interpolating the upper bounds we already obtained at (1pd,1pd)(\frac{1}{p_{d}},\frac{1}{p_{d}}) and (1pd,12)(\frac{1}{p_{d}},\frac{1}{2}) with (12,12)(\frac{1}{2},\frac{1}{2}) given by Plancherel.

  • If 1/p1/q1/p\geq 1/q, then we have

    (39) Dp,q(δ)N121q.D_{p,q}(\delta)\gtrsim N^{\frac{1}{2}-\frac{1}{q}}.

    We have \lessapprox also holds in this case, by the upper bound at (1pd,1pd)(\frac{1}{p_{d}},\frac{1}{p_{d}}) and Plancherel at (12,12)(\frac{1}{2},\frac{1}{2}), together with Hölder’s inequality.

References

  • [BB10] V. Blomer and J. Brüdern. The number of integer points on Vinogradov’s quadric. Monatsh. Math., 160(3):243–256, 2010.
  • [BD15] J. Bourgain and C. Demeter. The proof of the l2l^{2} decoupling conjecture. Ann. of Math. (2), 182(1):351–389, 2015.
  • [BD17a] J. Bourgain and C. Demeter. Decouplings for curves and hypersurfaces with nonzero Gaussian curvature. J. Anal. Math., 133:279–311, 2017.
  • [BD17b] J. Bourgain and C. Demeter. A study guide for the l2l^{2} decoupling theorem. Chin. Ann. Math. Ser. B, 38(1):173–200, 2017.
  • [GMW24] L. Guth, D. Maldague, and H. Wang. Improved decoupling for the parabola. J. Eur. Math. Soc. (JEMS), 26(3):875–917, 2024.
  • [GOZZK23] S. Guo, C. Oh, R. Zhang, and P. Zorin-Kranich. Decoupling inequalities for quadratic forms. Duke Math. J., 172(2):387–445, 2023.
  • [Yip20] C. H. Yip. Vinogradov’s mean value conjecture, 2020. https://drive.google.com/file/d/15WtAhVM0WUUXKRhvfnC0HhCWtfzOP_cL/view.