This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sharp Spectral-Cluster Restriction Bounds for Orthonormal Systems

Changbiao Jian Institute of Applied Physics & Computational Mathematics, Beijing, 100088, PR China bobjian1@gmail.com Xing Wang School of Mathematics, Hunan University, Changsha, HN 410012, PR China xingwang@hnu.edu.cn  and  Yakun Xi School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, PR China yakunxi@zju.edu.cn
Abstract.

For a smooth kk-dimensional submanifold Σ\Sigma of a dd-dimensional compact Riemannian manifold MM, we extend the Lp(Σ)L^{p}(\Sigma) restriction bounds of Burq-Gérard-Tzvetkov [BGT07]—originally proved for individual Laplace–Beltrami eigenfunctions—to arbitrary systems of L2(M)L^{2}(M)-orthonormal functions. Our bounds are essentially optimal for every triple (k,d,p)(k,d,p) with p2p\geq 2, except possibly when d3,k=d1,2p4.d\geq 3,\quad k=d-1,\quad 2\leq p\leq 4. This work is inspired by Frank and Sabin [Fra17b], who established analogous Lp(M)L^{p}(M) bounds for L2(M)L^{2}(M)-orthonormal systems.

1. Introduction

Let (M,g)(M,g) be a compact boundaryless Riemannian manifold of dimension d2d\geq 2, and let Δg\Delta_{g} be the corresponding Laplace–Beltrami operator on MM. Let eλe_{\lambda} be an L2L^{2}-normalized eigenfunction of Δg\Delta_{g}, that is,

Δgeλ=λ2eλ,and M|eλ|2𝑑Vg=1.-\Delta_{g}e_{\lambda}=\lambda^{2}e_{\lambda},\quad\text{and }\int_{M}|e_{\lambda}|^{2}\,dV_{g}=1.

Studying how such eigenfunctions concentrate on a given manifold is of great interest. One important way is to study the growth of the LpL^{p} norms eλLp(M)\|e_{\lambda}\|_{L^{p}(M)}. It is a classical result of Sogge [Sog88] that the LpL^{p} norms of eλe_{\lambda} satisfy

(1.1) eλLp(M)Cλσ(p,d)eλL2(M),\|e_{\lambda}\|_{L^{p}{(M)}}\leq C\lambda^{\sigma{(p,d)}}\|e_{\lambda}\|_{L^{2}(M)},

where 2p2\leq p\leq\infty and σ(p,d)\sigma(p,d) is given by

(1.2) σ(p,d)={d12(121p),if 2p2(d+1)d1,d(121p)12,if 2(d+1)d1p.\displaystyle\sigma(p,d)=\begin{cases}\dfrac{d-1}{2}\bigg{(}\dfrac{1}{2}-\dfrac{1}{p}\bigg{)},&\text{if }2\leq p\leq\dfrac{2(d+1)}{d-1},\cr d\bigg{(}\dfrac{1}{2}-\dfrac{1}{p}\bigg{)}-\dfrac{1}{2},&\text{if }\dfrac{2(d+1)}{d-1}\leq p\leq\infty.\end{cases}

These estimates are the best possible for general Riemannian manifolds since they are achieved on the standard sphere 𝕊d\mathbb{S}^{d}. These bounds of Sogge have been further improved and generalized under various geometric assumptions. We refer the reader to the articles [SZ02, BGT04, BGT05, Sog17, Bla18, BS19, CG23, BHS22] for further discussions.

In 2017, Frank and Sabin [Fra17b] generalized the bounds (1.1) to systems of orthonormal functions. To describe their results, we define the spectral projection operator

Πλ:=𝟙(ΔgIλ),where Iλ:=[λ,λ+1)\Pi_{\lambda}:=\mathds{1}(\sqrt{-\Delta_{g}}\in I_{\lambda}),\quad\text{where }I_{\lambda}:=[\lambda,\lambda+1)

and the spectral cluster

Eλ:=ΠλL2(M).E_{\lambda}:=\Pi_{\lambda}L^{2}(M).

Let QEλQ\subset E_{\lambda} be a linear subspace of EλE_{\lambda} and let {fj}jJ\{f_{j}\}_{j\in J} be an orthonormal basis of QQ. Frank and Sabin [Fra17b] proved that

(1.3) jJtj|fj|2Lp/2(M)Cλ2σ(p,d){tj}lα(d,p),\Biggl{\|}\sum_{j\in J}t_{j}|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(M)}\leq C\lambda^{2\sigma(p,d)}\|\{t_{j}\}\|_{l^{\alpha(d,p)}},

where

(1.4) α(d,p)={2pp+2,if 2p2(d+1)d1,p(d1)2d,if 2(d+1)d1p.\displaystyle\alpha(d,p)=\begin{cases}\dfrac{2p}{p+2},&\text{if }2\leq p\leq\dfrac{2(d+1)}{d-1},\cr\dfrac{p(d-1)}{2d},&\text{if }\dfrac{2(d+1)}{d-1}\leq p\leq\infty.\end{cases}

In addition, Frank and Sabin showed that this exponent α(d,p)\alpha(d,p) is sharp by constructing explicit examples on the two-sphere. Sogge’s bounds (1.1) corresponds to the case when dimQ=1\dim Q=1. Furthermore, since α(d,p)>1\alpha(d,p)>1 for p>2p>2, these bounds improve on those obtained by simply applying triangle inequality (or Minkowski inequality) to (1.1) in this case. This gain is owing to the orthogonality of {fj}jJ\{f_{j}\}_{j\in J} over L2(M)L^{2}(M).

In the work of Burq–Gérard–Tzvetkov [BGT07] (see also [Hu09]), LpL^{p} estimates similar to (1.1) have been established for the restriction of eigenfunctions to a submanifold. In what follows, let ΣM\Sigma\subset M be a smoothly embedded submanifold of dimension kk. Let δ(k,d,p){\delta(k,d,p)} be

δ(d1,d,p)={d14d22p,if2p<2dd1,d12d1p,if2dd1<p,\displaystyle\delta(d-1,d,p)=\begin{cases}\dfrac{d-1}{4}-\dfrac{d-2}{2p},~{}~{}~{}~{}\text{if}~{}2\leq p<\dfrac{2d}{d-1},\\ \dfrac{d-1}{2}-\dfrac{d-1}{p},~{}~{}~{}~{}\text{if}~{}\dfrac{2d}{d-1}<p\leq\infty,\end{cases}
δ(d2,d,p)=d12d2p,if 2p,\displaystyle\delta(d-2,d,p)=\frac{d-1}{2}-\frac{d-2}{p},\ \text{if }2\leq p\leq\infty,
δ(k,d,p)=d12kp, if 1kd3 and 2p.\displaystyle\delta(k,d,p)=\frac{d-1}{2}-\frac{k}{p},\text{ if }1\leq k\leq d-3\text{ and }~{}2\leq p\leq\infty.

Burq–Gérard–Tzvetkov proved the following sharp restriction bounds

(1.5) eλLp(Σ)Cλδ(k,d,p)eλL2(M),\|e_{\lambda}\|_{L^{p}(\Sigma)}\leq C\lambda^{{\delta(k,d,p)}}\|e_{\lambda}\|_{L^{2}(M)},

except a (logλ)12(\log\lambda)^{\frac{1}{2}} loss for (p,k)=(2dd1,d1)(p,k)=(\frac{2d}{d-1},d-1) and (p,k)=(2,d2)(p,k)=(2,d-2).

A couple of years later, Hu [Hu09] gave another proof of (1.5) and removed the log\log loss for the case (p,k)=(2dd1,d1)(p,k)=(\frac{2d}{d-1},d-1). Recently, the second author and Zhang [WZ21] removed the log\log loss for totally geodesic submanifolds and curves with non-vanishing curvature in the (p,k)=(2,d2)(p,k)=(2,d-2) case. The bounds (1.5) have been improved and generalized under various geometric assumptions. See, e.g., [CS14, XZ17, Zha17, Bla18, Xi19, GMX24]. Moreover, certain Lp(Σ)L^{p}(\Sigma) restriction bounds have been shown to be connected to the Lp(M)L^{p}(M) norm of eigenfunctions via Kakeya–Nikodym norms. See, e.g., [Bou09, Sog11, BS15b, BS15a, MSXY16, BS17].

In this article, inspired by (1.3), we generalize (1.5) to systems of orthonormal eigenfunctions {fj}jJ\{f_{j}\}_{j\in J}. To be more precise, let Λ=Λ(k,d,p)\Lambda=\Lambda(k,d,p) denote the square of the current known state-of-the-art bounds for a single eigenfunction, i.e.

Λ(k,d,p)={λ2δ(k,d,p),if(p,k)(2,d2),λ2δ(k,d,p)logλ,if(p,k)=(2,d2).\Lambda(k,d,p)=\begin{cases}\lambda^{2{\delta(k,d,p)}},~{}~{}~{}~{}\text{if}~{}(p,k)\neq(2,d-2),\\ \lambda^{2{\delta(k,d,p)}}\log\lambda,~{}~{}~{}~{}\text{if}~{}(p,k)=(2,d-2).\end{cases}

We are concerned with estimates of the form

(1.6) jJtj|fj|2Lp/2(Σ)CΛ{tj}α(J).\Biggl{\|}\sum_{j\in J}t_{j}\,|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C\,\Lambda\,\|\{t_{j}\}\|_{\ell^{\alpha}(J)}.

A result like (1.6) is natural in view of (1.3).

Our first result establishes optimal bounds in the case codimΣ2\operatorname{codim}\Sigma\geq 2.

Theorem 1.1.

Suppose that d3d\geq 3 and 1kd21\leq k\leq d-2. For any p[2,],p\in[2,\infty], 1αp21\leq\alpha\leq\frac{p}{2}, there exists a constant C>0C>0 such that

jJtj|fj|2Lp/2(Σ)CΛ{tj}α(J).\Biggl{\|}\sum_{j\in J}t_{j}\,|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C\,\Lambda\,\|\{t_{j}\}\|_{\ell^{\alpha}(J)}.

The range of α\alpha is sharp.

The situation is far more delicate in codimension 11. Nonetheless, we are able to prove essentially sharp bounds when dimM=2\dim M=2. Let

(α(k,d,p),h(k,d,p)):={(max{2,p2},min{12,2p})(k,d)=(1,2),(2pp+2,0)k=d1, 2p<2dd1,(2p(d2)4dp4,2dpp(d2))k=d1,2dd1p4,(p2,2p)k=d1, 4p.(\alpha(k,d,p),h(k,d,p)):=\begin{cases}(\max\{2,\frac{p}{2}\},\min\{\frac{1}{2},\frac{2}{p}\})&(k,d)=(1,2),\\[4.0pt] (\tfrac{2p}{p+2},0)&k=d-1,\;2\leq p<\tfrac{2d}{d-1},\\[4.0pt] (\tfrac{2p(d-2)}{4d-p-4},\tfrac{2d-p}{p(d-2)})&k=d-1,\;\tfrac{2d}{d-1}\leq p\leq 4,\\[4.0pt] (\tfrac{p}{2},\tfrac{2}{p})&k=d-1,\;4\leq p\leq\infty.\end{cases}
Theorem 1.2.

Sppose that d=2d=2 and k=1.k=1.

  1. (i)

    For any p[2,4)(4,]p\in[2,4)\cup(4,\infty] and α[1,α(1,2,p))\alpha\in[1,\alpha(1,2,p)) there exists Cα>0C_{\alpha}>0 such that

    (1.7) jJtj|fj|2Lp/2(Σ)CαΛ{tj}α(J).\Biggl{\|}\sum_{j\in J}t_{j}\,|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{\alpha}\,\Lambda\,\|\{t_{j}\}\|_{\ell^{\alpha}(J)}.
  2. (ii)

    For any p[2,]p\in[2,\infty] there exists C>0C>0 such that

    (1.8) jJtj|fj|2Lp/2(Σ)C(logλ)h(1,2,p)Λ{tj}α(1,2,p)(J).\Biggl{\|}\sum_{j\in J}t_{j}\,|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C\,(\log\lambda)^{h(1,2,p)}\Lambda\,\,\|\{t_{j}\}\|_{\ell^{\alpha(1,2,p)}(J)}.
  3. (iii)

    When Σ\Sigma is a great circle on the standard two-sphere MM, the exponent α(1,2,p)\alpha(1,2,p) are essentially sharp.

In higher dimensions, for submanifolds of codimension 11 we obtain the following result. The exponent α(d1,d,p)\alpha(d-1,d,p) is the best possible for 4p4\leq p\leq\infty.

Theorem 1.3.

Suppose that d3d\geq 3 and k=d1k=d-1.

  1. (i)

    For any p(4,]p\in(4,\infty] and α[1,α(d1,d,p))\alpha\in[1,\alpha(d-1,d,p)) there exists Cα>0C_{\alpha}>0 such that

    (1.9) jJtj|fj|2Lp/2(Σ)CαΛ{tj}α(J).\Biggl{\|}\sum_{j\in J}t_{j}\,|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{\alpha}\,\Lambda\bigl{\|}\{t_{j}\}\bigr{\|}_{\ell^{\alpha}(J)}.
  2. (ii)

    For any p[2,]p\in[2,\infty] there exists C>0C>0 such that

    (1.10) jJtj|fj|2Lp/2(Σ)C(logλ)h(d1,d,p)Λ{tj}α(d1,d,p)(J).\Biggl{\|}\sum_{j\in J}t_{j}\,|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C\,(\log\lambda)^{h(d-1,d,p)}\Lambda\bigl{\|}\{t_{j}\}\bigr{\|}_{\ell^{\alpha(d-1,d,p)}(J)}.
  3. (iii)

    When MM is the standard dd-sphere, the exponent α(d1,d,p)\alpha(d-1,d,p) is essentially sharp for 4p4\leq p\leq\infty.

1p\frac{1}{p}12\frac{1}{2}14\frac{1}{4}12\frac{1}{2}14\frac{1}{4}14\frac{1}{4}1/α(1,2,p)1/\alpha(1,2,p)δ(1,2,p)\delta(1,2,p)
Figure 1. δ(1,2,p)\delta(1,2,p) and α(1,2,p)\alpha(1,2,p).
Remark 1.4.

As we shall see in Section 6, Theorem 1.2 is sharp for all possible dimQ\dim Q of the orthonormal system. However, in the final section, we will show that the sharpness of Theorem 1.1 and Theorem 1.3 holds only for a certain, although wide, range of dimQ\dim Q, which in itself is an interesting phenomenon. On the other hand, as stated in Theorem 1.3, we do not know whether α(d1,d,p)\alpha(d-1,d,p) is sharp for 2<p<42<p<4. Compared to Theorem 1.2, it seems that our bounds might not be the best possible.

Similar to [Fra17b], a crucial point of our result is that the exponent 1/α(k,d,p)<11/\alpha(k,d,p)<1 for all p>2p>2. Indeed, applying the triangle inequality to the right‐hand side of (1.6) and estimating each fjf_{j} using (1.5) yields

(1.11) jJ|fj|2Lp/2(Σ)Cλ2δ(k,d,p)dimQ,\Biggl{\|}\sum_{j\in J}|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C\,\lambda^{2\delta(k,d,p)}\,\dim Q,

which is far from optimal in light of our results.

Moreover, the exponent α(k,d,p)=p2\alpha(k,d,p)=\tfrac{p}{2} that appear mutiple times in our theorems is natural. To see this, consider any orthogonal (but not necessarily normalized) subset {fj}jJEλ\{f_{j}\}_{j\in J}\subset E_{\lambda}. Then by our reults 111Possibly modulo a logλ\log\lambda–loss.,

(1.12) {fj}l2(J)Lp(Σ)Cλδ(k,d,p){fjL2(M)}lp(J).\Big{\|}\|\{f_{j}\}\|_{l^{2}(J)}\Big{\|}_{L^{p}(\Sigma)}\leq C\,\lambda^{\delta(k,d,p)}\,\Big{\|}\{\|f_{j}\|_{L^{2}(M)}\}\Big{\|}_{l^{p}(J)}.

This shows that Theorems 1.1, 1.2 and 1.3 allow us to interchange the underlying space in the Lebesgue norm. On the other hand, a direct application of Minkowski’s inequality together with (1.5) gives

(1.13) {fj}l2(J)Lp(Σ)Cλδ(k,d,p){fjL2(M)}l2(J).\Big{\|}\|\{f_{j}\}\|_{l^{2}(J)}\Big{\|}_{L^{p}(\Sigma)}\leq C\,\lambda^{\delta(k,d,p)}\,\Big{\|}\{\|f_{j}\|_{L^{2}(M)}\}\Big{\|}_{l^{2}(J)}.

Clearly (1.12) improves (1.13) for all p>2p>2.

The optimality of our results can be understood from a different point of view. Let us illustrate this in the surface case. When dimM=2\dim M=2, we have the following corollary.

Corollary 1.5.

Let d=2d=2, k=1k=1. For any orthonormal system {fj}jJEλ\{f_{j}\}_{j\in J}\subset E_{\lambda} with #Jλβ\#J\sim\lambda^{\beta} for some 0β10\leq\beta\leq 1, we have

(1.14) jJ|fj|2Lp/2(Σ)C(logλ)h(1,2,p)λγ(p),\displaystyle\Biggl{\|}\sum_{j\in J}|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C\,(\log\lambda)^{h(1,2,p)}\,\lambda^{\gamma(p)},

where

γ(p)={β+12,2p4,12(1β)p,4p.\displaystyle\gamma(p)=\begin{cases}\dfrac{\beta+1}{2},&2\leq p\leq 4,\\ 1-\dfrac{2(1-\beta)}{p},&4\leq p\leq\infty.\end{cases}
Remark 1.6.

The work of Burq–Gérard–Tzvetkov shows that (1.14) is sharp when β=0\beta=0 (equivalently #J1\#J\sim 1), up to a single logλ\log\lambda loss. For β=1\beta=1—that is, for Q=EλQ=E_{\lambda}—we have γ(p)=1\gamma(p)=1, so (1.14) is already optimally sharp by the pointwise Weyl law on the sphere. Moreover, as noted earlier, Section 6 proves the stronger fact that (1.14) is saturated on the two-sphere for every β(0,1)\beta\in(0,1).

The proof of our result rests on three key ingredients: a duality principle in Schatten spaces, a parametrix for the wave equation, and certain oscillatory integral estimates from [BGT07]. As in Frank–Sabin, we use the duality principle to reduce the estimation of LpL^{p} norms for an orthonormal system of eigenfunctions to appropriate Schatten‐type bounds. We then follow the strategy of Burq–Gérard–Tzvetkov [BGT07]: they employ Sogge’s trick to rewrite the spectral projection operator via the half‐wave operator and use a parametrix to convert it into an oscillatory integral operator. A standard TTTT^{*} argument and a dyadic decomposition of the resulting kernel

K(z,z)=jKj(z,z),|zz|2j,K(z,z^{\prime})=\sum_{j}K_{j}(z,z^{\prime}),\qquad|z-z^{\prime}|\sim 2^{j},

together with a formula for the Schatten‐2 norm of the corresponding operator, then completes the proof of Theorem 1.1. Unlike in [Fra17b], we do not employ complex interpolation.

This paper is organized as follows. Section 2 recalls the definition of Schatten classes and the duality principle from [Fra17a]. In Section 3 we carry out the standard reduction. Sections 4 and 5 assemble these ingredients to prove our main theorems. Section 6 shows that (1.14) is essentially sharp on the two-sphere for every β(0,1)\beta\in(0,1). Finally, Section 7 establishes the sharpness parts of Theorems 1.1 and 1.3.

Notation.

Throughout this paper, the symbol CC denotes a (positive) constant that depends only on the fixed data (M,Σ)(M,\Sigma); its value may vary from line to line. We shall write ABA\lesssim B, if there exists an absolute constant C>0C>0, so that A<CBA<CB and write ABA\sim B if one has ABA\lesssim B and BAB\lesssim A. For brevity, whenever the dimensions kk and dd are clear from the context, we will abbreviate δ(k,d,p)\delta(k,d,p), α(k,d,p)\alpha(k,d,p), and h(k,d,p)h(k,d,p) by writing simply δ(p)\delta(p), α(p)\alpha(p), and h(p)h(p), respectively.

Acknowledgements

This project is supported by the National Key Research and Development Program of China No. 2022YFA1007200. X. W. is partially supported by the Fundamental Research Funds for the Central Universities Grant No. 531118010864. Y. X. is partially supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LR23A010002, and NSF China Grant No. 12171424. The authors would like to thank Rupert Frank and Julien Sabin for their kind communications and for pointing out a gap in an earlier version of the paper.

2. Schatten classes

In this section, we recall some fundamental properties of Schatten class operators and review a duality principle established by Frank and Sabin. Let \mathfrak{H} and 𝔎\mathfrak{K} be complex, separable Hilbert spaces, and denote by 𝔅0(,𝔎)\mathfrak{B}_{0}(\mathfrak{H,\mathfrak{K}}) the space of compact linear operators from \mathfrak{H} to 𝔎\mathfrak{K}. For T𝔅0(,𝔎)T\in\mathfrak{B}_{0}(\mathfrak{H,\mathfrak{K}}), the operator |T|:=(TT)1/2|T|:=(T^{*}T)^{1/2} is compact and positive. Its eigenvalues, which are non-negative, are called the singular values of TT, and are arranged in decreasing order as σ1σ20\sigma_{1}\geq\sigma_{2}\geq\cdots\geq 0. For 1p1\leq p\leq\infty, the Schatten class 𝔖p(,𝔎)\mathfrak{S}^{p}(\mathfrak{H},\mathfrak{K}) consists of all compact operators TT whose singular value(counted according to multiplicity) form a sequence in lpl^{p}. Naturally, the Schatten norm of TT is defined by the lpl^{p} norm of the singular value sequence, that is,

T𝔖p(,𝔎):=(j0σjp)1/p,\big{\|}T\big{\|}_{\mathfrak{S}^{p}(\mathfrak{H},\mathfrak{K})}:=\Bigl{(}\sum_{j\geq 0}\sigma^{p}_{j}\Bigr{)}^{1/p},

with the standard modification when p=.p=\infty. When =𝔎\mathfrak{H}=\mathfrak{K}, we write 𝔖p():=𝔖p(,)\mathfrak{S}^{p}(\mathfrak{H}):=\mathfrak{S}^{p}(\mathfrak{H},\mathfrak{H}) and 𝔅0():=𝔅0(,)\mathfrak{B}_{0}(\mathfrak{H}):=\mathfrak{B}_{0}(\mathfrak{H},\mathfrak{H}). For further details, we refer the reader to Simon’s monograph [Sim05].

We will require the following lemma from [Sim05, Theorem 2.7].

Lemma 2.1 (Theorem 2.7 [Sim05]).

Let AA and CC be bounded operators on .\mathfrak{H}. Then for all B𝔅0()B\in\mathfrak{B}_{0}(\mathfrak{H}) and 1p1\leq p\leq\infty, we have

ABC𝔖p()ACB𝔖p().\|ABC\|_{\mathfrak{S}^{p}(\mathfrak{H})}\leq\|A\|\|C\|\|B\|_{\mathfrak{S}^{p}(\mathfrak{H})}.

Here \|{}\cdot{}\| denotes the operator norm on .\mathfrak{H}.

We now review a well-known duality principle for Schatten class operators, as presented in [Fra17a, Lemma 3].

Lemma 2.2 (Duality principle).

Let \mathfrak{H} be a separable Hilbert space. For 2p2\leq p\leq\infty, α1\alpha\geq 1, with 1/α+1/α=1/p+1/p=11/\alpha+1/\alpha^{\prime}=1/p+1/p^{\prime}=1, suppose that TT is a bounded operator from \mathfrak{H} to Lp(d)L^{p}(\mathbb{R}^{d}). Then the following are equivalent.

  1. (1)

    There exists a constant C>0C>0 such that

    (2.1) WTTW¯𝔖α(L2(d))CWL2p/(p2)(d)2,for all WL2p/(p2)(d,).\Big{\|}WTT^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{\alpha^{\prime}}(L^{2}(\mathbb{R}^{d}))}\leq C\|W\|^{2}_{L^{2p/(p-2)}(\mathbb{R}^{d})},~{}~{}~{}\text{for all }W\in L^{2p/(p-2)}(\mathbb{R}^{d},\mathbb{C}).
  2. (2)

    For any orthonormal system {fj}jJ\{f_{j}\}_{j\in J} in \mathfrak{H} and any sequence {tj}jJ\{t_{j}\}_{j\in J}\subset\mathbb{C}, there is a constant CC^{\prime} such that

    (2.2) jJtj|Tfj|2Lp/2(d)C(jJ|tj|α)1/α,\Biggl{\|}\sum_{j\in J}t_{j}|Tf_{j}|^{2}\Biggr{\|}_{L^{p/2}(\mathbb{R}^{d})}\leq C^{\prime}\Biggl{(}\sum_{j\in J}|t_{j}|^{\alpha}\Biggr{)}^{1/\alpha},

    Moreover, the values of the optimal constants CC and CC^{\prime} coincide.

If one examines the proof of the above lemma in [Fra17a], one can see that this duality principle is a direct consequence of the duality between Lebesgue LpL^{p} spaces.

3. Approximate projection operators

In this section, we perform the standard reduction introduced by Sogge [Sog17] and collect a few key oscillatory‐integral estimates from [BGT07]. Sogge’s idea is to consider an operator that reproduces eigenfunctions. Fix a small constant ϵ0>0\epsilon_{0}>0 and let λ1\lambda\geq 1. Choose a Schwartz function χ\chi such that

χ(0)=1,χ(t)>12 for t[0,1],andχ^(t)=0unless |t|[ϵ0,2ϵ0].\chi(0)=1,\quad\chi(t)>\tfrac{1}{2}\text{ for }t\in[0,1],\quad\text{and}\quad\widehat{\chi}(t)=0\quad\text{unless }|t|\in[\epsilon_{0},2\epsilon_{0}].

Define

χλf:=χ(Δgλ)f=12πϵ02ϵ0(eitΔgf)eitλχ^(t)𝑑t.\chi_{\lambda}f:=\chi\bigl{(}\sqrt{-\Delta_{g}}-\lambda\bigr{)}f=\frac{1}{2\pi}\int_{\epsilon_{0}}^{2\epsilon_{0}}\bigl{(}e^{it\sqrt{-\Delta_{g}}}f\bigr{)}\,e^{-it\lambda}\,\widehat{\chi}(t)\,dt.

For ϵ01\epsilon_{0}\ll 1 and |t|2ϵ0|t|\leq 2\epsilon_{0}, a local‐coordinate parametrix shows that eitΔge^{it\sqrt{-\Delta_{g}}} is a Fourier integral operator. A stationary‐phase argument then gives the following slight variant of [Sog17, Lemma 5.1.3], as in [BGT07, Sog11].

Lemma 3.1.

Let ϵ0>0\epsilon_{0}>0 be smaller than one-tenth of the injectivity radius of (M,g)(M,g). In local coordinates,

χλf(x)=λd12Meiλψ(x,y)aλ(x,y)f(y)𝑑y+Rλf(x),\chi_{\lambda}f(x)=\lambda^{\frac{d-1}{2}}\int_{M}e^{\,i\lambda\psi(x,y)}\,a_{\lambda}(x,y)\,f(y)\,dy+R_{\lambda}f(x),

where

suppaλ{(x,y):ϵ02dg(x,y)ϵ0},ψ(x,y)=dg(x,y),{\rm supp\,}a_{\lambda}\subset\bigl{\{}(x,y)\colon\tfrac{\epsilon_{0}}{2}\leq d_{g}(x,y)\leq\epsilon_{0}\bigr{\}},\qquad\psi(x,y)=-d_{g}(x,y),

and aλC0a_{\lambda}\in C^{\infty}_{0} satisfies

|x,yαaλ(x,y)|Cαfor all multi‐indices α.|\partial_{x,y}^{\alpha}a_{\lambda}(x,y)|\leq C_{\alpha}\quad\text{for all multi‐indices }\alpha.

Moreover, for every N+N\in\mathbb{Z}_{+} and 2p2\leq p\leq\infty there is CN,pC_{N,p} so that

RλL2LpCN,pλN.\|R_{\lambda}\|_{L^{2}\to L^{p}}\leq C_{N,p}\,\lambda^{-N}.
Remark 3.2.

By a partition of unity we may also assume aλ(x,y)a_{\lambda}(x,y) is supported in small coordinate‐chart neighborhoods of fixed points x0,y0Mx_{0},y_{0}\in M with dg(x,y)[ϵ0/2,ϵ0]d_{g}(x,y)\in[\epsilon_{0}/2,\epsilon_{0}], both lying inside the geodesic ball B(x0,10ϵ0)B(x_{0},10\epsilon_{0}). We can always take ϵ0>0\epsilon_{0}>0 smaller if needed.

Define

Tλf(x)=Meiλψ(x,y)aλ(x,y)f(y)𝑑y.T_{\lambda}f(x)=\int_{M}e^{\,i\lambda\psi(x,y)}\,a_{\lambda}(x,y)\,f(y)\,dy.

The approximate projection operator χλ\chi_{\lambda} is usually called a reproducing operator since it reproduces eigenfunctions by χλeλ=eλ\chi_{\lambda}e_{\lambda}=e_{\lambda}. So it suffices to consider the operator norm estimates of TλT_{\lambda} to get the eigenfunction estimates, as RλR_{\lambda} satisfies much better bounds than we want to prove.

4. Proof of Theorem 1.2

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2.

We begin by establishing the second part of the theorem, namely, the bound stated in inequality (1.8). Recall that the operator χλ\chi_{\lambda} is defined by

χλf:=χ(Δgλ)f=12πϵ02ϵ0(eitΔgf)eitλχ^(t)𝑑t.\chi_{\lambda}f:=\chi(\sqrt{-\Delta_{g}}-\lambda)f=\frac{1}{2\pi}\int^{2\epsilon_{0}}_{\epsilon_{0}}(e^{it\sqrt{-\Delta_{g}}}f)e^{-it\lambda}\hat{\chi}(t)\,dt.

Since λj[λ,λ+1]\lambda_{j}\in[\lambda,\lambda+1] for jJj\in J, and χ>1/2\chi>1/2 on [0,1][0,1], it follows that

jJtj|fj|22jJtj|χλfj|2.\sum_{j\in J}t_{j}|f_{j}|^{2}\leq 2\sum_{j\in J}t_{j}|\chi_{\lambda}f_{j}|^{2}.

Therefore, establishing the second part of Theorem 1.2 reduces to proving the following estimate involving χλfj\chi_{\lambda}f_{j}:

(4.1) jJtj|χλfj|2Lp/2(Σ)Cλ2δ(p)(logλ)h(p){tj}lα(p)(J).\Biggl{\|}\sum_{j\in J}t_{j}|\chi_{\lambda}f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C\lambda^{2\delta{(p)}}(\log\lambda)^{h(p)}\Big{\|}\{t_{j}\}\Big{\|}_{l^{\alpha(p)}(J)}.

By Lemma 2.2, this inequality is equivalent to the Schatten norm estimate

(4.2) WχλχλW¯𝔖(α(p))(L2(Σ))Cλ2δ(p)(logλ)h(p)WL2p/(p2)(Σ)2,for allWL2p/(p2)(Σ),\Big{\|}W{\chi}_{\lambda}\chi^{*}_{\lambda}\overline{W}\Big{\|}_{\mathfrak{S}^{(\alpha(p))^{\prime}}(L^{2}(\Sigma))}\leq C\lambda^{2\delta(p)}(\log\lambda)^{h(p)}\|W\|^{2}_{L^{2p/(p-2)}(\Sigma)},~{}~{}~{}{\text{for all}~{}}W\in L^{2p/(p-2)}(\Sigma),

where CC is independent of WW and λ\lambda.

Note that, by Lemma 3.1, RλR_{\lambda} is an operator that always contributes a term rapidly decaying in λ\lambda, it suffices to prove the bound

(4.3) WTλTλW¯𝔖(α(p))(L2(Σ))Cλ2δ(p)1(logλ)h(p)WL2p/(p2)(Σ)2.\Big{\|}WT_{\lambda}T^{*}_{\lambda}\overline{W}\Big{\|}_{\mathfrak{S}^{(\alpha(p))^{\prime}}(L^{2}(\Sigma))}\leq C\lambda^{2\delta(p)-1}(\log\lambda)^{h(p)}\|W\|^{2}_{L^{2p/(p-2)}(\Sigma)}.

First, consider the case p=p=\infty, which corresponds to (α(p))=1(\alpha(p))^{\prime}=1. Then we have

(4.4) WTλTλW¯𝔖1(L2(Σ))\displaystyle\Big{\|}WT_{\lambda}T^{*}_{\lambda}\overline{W}\Big{\|}_{\mathfrak{S}^{1}(L^{2}(\Sigma))} =WTλ𝔖2(L2(M)L2(Σ))2\displaystyle=\|WT_{\lambda}\|^{2}_{\mathfrak{S}^{2}(L^{2}(M)\to L^{2}(\Sigma))}
=ΣM|W(x)|2|Tλ(x,y)|2𝑑y𝑑x\displaystyle=\int_{\Sigma}\int_{M}|W(x)|^{2}|T_{\lambda}(x,y)|^{2}\,dy\,dx
CWL2(Σ)2,\displaystyle\leq C\|W\|^{2}_{L^{2}(\Sigma)},

where Tλ(x,y)=eiλdg(x,y)aλ(x,y)T_{\lambda}(x,y)=e^{-i\lambda d_{g}(x,y)}a_{\lambda}(x,y) is the kernel function associated with TλT_{\lambda}. Here we have used the fact that if

S:L2(M)L2(Σ)S:L^{2}(M)\longrightarrow L^{2}(\Sigma)

is a Hilbert–Schmidt operator with integral kernel S(x,y)S(x,y), then

S𝔖2(L2(M)L2(Σ))2=ΣM|S(x,y)|2𝑑y𝑑x.\big{\|}S\big{\|}_{\mathfrak{S}^{2}(L^{2}(M)\to L^{2}(\Sigma))}^{2}=\int_{\Sigma}\!\!\int_{M}\bigl{|}S(x,y)\bigr{|}^{2}\,dy\,dx.

Next we prove (4.3) for p=4p=4. Once this case is established, the range 4p4\leq p\leq\infty follows immediately by interpolation. Because Σ\Sigma is compact, Hölder’s inequality implies that for every 2p<42\leq p<4,

jJtj|χλfj|2Lp/2(Σ)jJtj|χλfj|2L2(Σ).\Biggl{\|}\sum_{j\in J}t_{j}\,|\chi_{\lambda}f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\;\lesssim\;\Biggl{\|}\sum_{j\in J}t_{j}\,|\chi_{\lambda}f_{j}|^{2}\Biggr{\|}_{L^{2}(\Sigma)}.

Hence (1.8) is a consequence of (4.3) with p=4p=4.

Assume that we are in the geodesic normal coordinate system about x0Mx_{0}\in M, and Σ:[0,1]M\Sigma:[0,1]\to M parameterized by the arc length ss and passes through x0x_{0}. Partition of unity allows us to assume that Σ\Sigma is contained in the geodesic ball centered at x0x_{0} with radius ϵ0/10\epsilon_{0}/10, i.e., |x(s)|ϵ0/10|x(s)|\leqslant\epsilon_{0}/10 and x(0)=0x(0)=0, which forces ϵ0/3|y|4ϵ0/3\epsilon_{0}/3\leq|y|\leq 4\epsilon_{0}/3. We write

𝒯λ(f)(s):=Tλ(f)(x(s))=eiλψ(x(s),y)a(x(s),y)f(y)𝑑y,\mathcal{T}_{\lambda}(f)(s):={T}_{\lambda}(f)(x(s))=\int e^{i\lambda\psi(x(s),y)}a(x(s),y)f(y)\,dy,

and denote by 𝒦(s,t)\mathcal{K}(s,t) the kernel of operator 𝒯λ𝒯λ\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}. Then we have

𝒦(s,t)=eiλ[ψ(x(s),y)ψ(x(t),y)]a(x(s),y)a(x(t),y)¯𝑑y.\mathcal{K}(s,t)=\int e^{i\lambda[\psi(x(s),y)-\psi(x(t),y)]}a(x(s),y)\overline{a(x(t),y)}\,dy.

Our goal is reduced to proving

(4.5) W𝒯λ𝒯λW¯𝔖2(L2(Σ))λ1/2(logλ)1/2WL4(Σ)2,for allWL4(Σ),\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda}\overline{W}\Big{\|}_{\mathfrak{S}^{2}(L^{2}(\Sigma))}\lesssim\lambda^{-1/2}(\log\lambda)^{1/2}\|W\|^{2}_{L^{4}(\Sigma)},~{}~{}~{}{\text{for all}}~{}W\in L^{4}(\Sigma),

which is equivalent to

(4.6) (0101|W(x(s))𝒦(s,t)W(x(t))|2𝑑s𝑑t)1/2λ1/2(logλ)1/2WL4(Σ)2.\Big{(}\int_{0}^{1}\int_{0}^{1}|W(x(s))\mathcal{K}(s,t)W(x(t))|^{2}\,ds\,dt\Big{)}^{1/2}\lesssim\lambda^{-1/2}(\log\lambda)^{1/2}\|W\|^{2}_{L^{4}(\Sigma)}.

Since yy stays in the annulus with inner radius ϵ0/3{\epsilon_{0}}/3 and outer radius 4ϵ0/3{4\epsilon_{0}}/3, we can restrict yy to the circle with radius rr. In fact, we can represent yy in polar coordinates as y=rωy=r\omega (i.e., geodesic polar coordinates on MM), ϵ0/3r4ϵ0/3\epsilon_{0}/3\leqslant r\leqslant 4\epsilon_{0}/3, ω=(ω1,ω2)S1\omega=(\omega_{1},\omega_{2})\in S^{1} and denote:

ψr(x(s),ω)=ψ(x(s),y),ar(x(s),ω)ar(x(t),ω)¯=κ(r,ω)ar(x(s),ω)ar(x(t),ω)¯\psi_{r}(x(s),\omega)=\psi(x(s),y),~{}a_{r}(x(s),\omega)\overline{a_{r}(x(t),\omega)}=\kappa(r,\omega)a_{r}(x(s),\omega)\overline{a_{r}(x(t),\omega)}

for some smooth function κ\kappa. Define

𝒦r(s,t)=𝕊1eiλ[ψr(x(s),ω)ψr(x(t),ω)]ar(x(s),ω)ar(x(t),ω)¯𝑑ω.\mathcal{K}_{r}(s,t)=\int_{\mathbb{S}^{1}}e^{i\lambda[\psi_{r}(x(s),\omega)-\psi_{r}(x(t),\omega)]}a_{r}(x(s),\omega)\overline{a_{r}(x(t),\omega)}\,d\omega.

Then,

𝒦(s,t)=ϵ0/34ϵ0/3𝒦r(s,t)𝑑r.\mathcal{K}(s,t)=\int_{\epsilon_{0}/3}^{4\epsilon_{0}/3}\mathcal{K}_{r}(s,t)\,dr.

By applying [BGT07, Lemma 3.2], we have that Kr(s,t)K_{r}(s,t) is bounded by

C(1+λ|st|)1/2,C(1+\lambda|s-t|)^{-1/2},

and then

𝒦(s,t)(1+λ|st|)1/2.\mathcal{K}(s,t)\lesssim(1+\lambda|s-t|)^{-1/2}.

Consequently, the square of the left-hand side of (4.6) is bounded by

(4.7) 0101|W(x(s))|2(1+λ|st|)1|W(x(t))|2𝑑t𝑑s,\int_{0}^{1}\int_{0}^{1}|W(x(s))|^{2}(1+\lambda|s-t|)^{-1}|W(x(t))|^{2}\,dt\,ds,

Applying the Young inequality, we obtain

(4.7)\displaystyle\eqref{gg26} WL4(Σ)201(1+λ|st|)1|W(x(t))|2𝑑tL2(0,1)\displaystyle\leq\|W\|^{2}_{L^{4}(\Sigma)}\cdot\Big{\|}\int^{1}_{0}(1+\lambda|s-t|)^{-1}|W(x(t))|^{2}dt\Big{\|}_{L^{2}(0,1)}
WL4(Σ)401(1+λt)1𝑑t\displaystyle\leq\|W\|_{L^{4}(\Sigma)}^{4}\cdot\int^{1}_{0}(1+\lambda t)^{-1}dt
λ1logλWL4(Σ)4.\displaystyle\lesssim\lambda^{-1}\log\lambda\|W\|_{L^{4}(\Sigma)}^{4}.

Taking square roots completes the proof of (4.5).

Now we prove the first part of Theorem 1.2 (inequality (1.7)), beginning with the case 2p<42\leq p<4.

Let 1<α<21<\alpha<2, and thus α>2\alpha^{\prime}>2. the operator WTλTλW¯W\,T_{\lambda}T_{\lambda}^{*}\,\overline{W} is self-adjoint. Invoking the Hausdorff–Young theorem for integral operators [Rus77, Theorem 1] and then Young’s inequality we obtain

WTλTλW¯𝔖α\displaystyle\Big{\|}WT_{\lambda}T_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{\alpha^{\prime}}} (01(01|W(x(s))𝒦(s,t)W(x(t))¯|α𝑑s)α/α𝑑t)1/α\displaystyle\leq\Big{(}\int^{1}_{0}\Big{(}\int^{1}_{0}\big{|}W(x(s))\mathcal{K}(s,t)\overline{W(x(t))}\big{|}^{\alpha}\,ds\Big{)}^{\alpha^{\prime}/\alpha}\,dt\Big{)}^{1/\alpha^{\prime}}
WL2α(Σ)(01(01|W(x(s))|α(1+λ|st|)α/2𝑑s)2α/α𝑑t)1/2α\displaystyle\leq\|W\|_{L^{2\alpha^{\prime}}(\Sigma)}\Big{(}\int^{1}_{0}\Big{(}\int^{1}_{0}|W(x(s))|^{\alpha}(1+\lambda|s-t|)^{-\alpha/2}\,ds\Big{)}^{2\alpha^{\prime}/\alpha}\,dt\Big{)}^{1/2\alpha^{\prime}}
WL2α(Σ)2(01(1+λ|s|)α2𝑑s)1/α\displaystyle\leq\|W\|^{2}_{L^{2\alpha^{\prime}}(\Sigma)}\Big{(}\int^{1}_{0}(1+\lambda|s|)^{-\frac{\alpha}{2}}\,ds\Big{)}^{1/\alpha}
λ1/2WL2α(Σ)2.\displaystyle\lesssim\lambda^{-1/2}\|W\|^{2}_{L^{2\alpha^{\prime}}(\Sigma)}.

Set 2p/(p2)=2α>42p/(p-2)=2\alpha^{\prime}>4, equivalently 2p<42\leq p<4. By the duality principle (Lemma 2.2), the above estimate gives us

(4.8) jtj|Tλfj|2Lp/2(Σ)Cpλ1/2{tj}lα(J).\Big{\|}\sum_{j}t_{j}|T_{\lambda}f_{j}|^{2}\Big{\|}_{L^{p/2}(\Sigma)}\leq C_{p}\lambda^{-1/2}\big{\|}\{t_{j}\}\big{\|}_{l^{\alpha}(J)}.

Since the curve Σ\Sigma is compact, Hölder’s inequality implies that for any 2qp2\leq q\leq p, we have

jtj|Tλfj|2Lq/2(Σ)Cαλ1/2{tj}lα(J).\Big{\|}\sum_{j}t_{j}|T_{\lambda}f_{j}|^{2}\Big{\|}_{L^{q/2}(\Sigma)}\leq C_{\alpha}\lambda^{-1/2}\big{\|}\{t_{j}\}\big{\|}_{l^{\alpha}(J)}.

Note that we can choose pp in (4.8) arbitrarily close to 44, thus the associated exponent α\alpha can be taken arbitrarily close to 22. This completes the proof for the range 2p<42\leq p<4.

Now let 4<p4<p\leq\infty. Note that for any p0(4,p)p_{0}\in(4,p), we have

WTλTλW¯𝔖2(L2(Σ))\displaystyle\Big{\|}WT_{\lambda}T^{\star}_{\lambda}\overline{W}\Big{\|}_{\mathfrak{S}^{2}(L^{2}(\Sigma))} =(0101|W(x(s))|2|𝒦(s,t)|2|W(x(t))¯|2𝑑s𝑑t)1/2\displaystyle=\Big{(}\int^{1}_{0}\int^{1}_{0}|W(x(s))|^{2}|\mathcal{K}(s,t)|^{2}|\overline{W(x(t))}|^{2}\,ds\,dt\Big{)}^{1/2}
WL2p0/(p02)(Σ)01|𝒦(s,t)|2|W(x(t))|2𝑑tLp0/2(0,1)1/2\displaystyle\leq\|W\|_{L^{2p_{0}/(p_{0}-2)}(\Sigma)}\Big{\|}\int^{1}_{0}|\mathcal{K}(s,t)|^{2}|W(x(t))|^{2}\,dt\Big{\|}^{1/2}_{L^{p_{0}/2}(0,1)}
(1+λ|s|)1Lp0/4(0,1)1/2WL2p0/(p02)(Σ)2\displaystyle\leq\|(1+\lambda|s|)^{-1}\|^{1/2}_{L^{p_{0}/4}(0,1)}\|W\|^{2}_{L^{2p_{0}/(p_{0}-2)}(\Sigma)}
Cp0λ2/p0WL2p0/(p02)(Σ)2.\displaystyle\leq C_{p_{0}}\lambda^{-2/p_{0}}\|W\|_{L^{2p_{0}/(p_{0}-2)}(\Sigma)}^{2}.

Interpolating this with the trace-class bound (4.4) yields

WTλTλW¯𝔖(2p/p0)(L2(Σ))Cp0λ2/pWL2p/(p2)(Σ)2.\Big{\|}WT_{\lambda}T^{\star}_{\lambda}\overline{W}\Big{\|}_{\mathfrak{S}^{(2p/p_{0})^{\prime}}(L^{2}(\Sigma))}\leq C_{p_{0}}\lambda^{-2/p}\|W\|^{2}_{L^{2p/(p-2)}(\Sigma)}.

By duality this is equivalent to

jJtj|Tλfj|2Lp/2(Σ)Cp0λ2/p{tj}l2p/p0(J).\Biggl{\|}\sum_{j\in J}t_{j}|T_{\lambda}f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{p_{0}}\lambda^{-2/p}\big{\|}\{t_{j}\}\big{\|}_{l^{2p/p_{0}}(J)}.

Since p0p_{0} can be taken to be arbitrarily close to 44, we see that the following holds for any 1α<p/2.1\leq\alpha<p/2.

jJtj|Tλfj|2Lp/2(Σ)Cαλ2/p{tj}lα(J),\Biggl{\|}\sum_{j\in J}t_{j}|T_{\lambda}f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{\alpha}\lambda^{-2/p}\big{\|}\{t_{j}\}\big{\|}_{l^{\alpha}(J)},

as desired.

5. Proof Theorem 1.1 and 1.3

In this section, we prove Theorem 1.1 and 1.3. Assume that in the geodesic normal coordinate system about x0M,x_{0}\in M, Σ\Sigma is parameterized by x(z1,z2,,zk),x(z_{1},z_{2},\cdots,z_{k}), x(0)=0x(0)=0. Again by a partition of unity, we can assume that (a local piece of) Σ\Sigma is contained in a small enough geodesic ball about x0x_{0}, i.e., |x(z)|ϵ0/10,|x(z)|\leq\epsilon_{0}/10, which forces ϵ0/3|y|4ϵ0/3\epsilon_{0}/3\leq|y|\leq 4\epsilon_{0}/3. We write

𝒯λ(f)(z):=Tλ(f)(x(z))=Meiλψ(x(z),y)aλ(x(z),y)f(y)𝑑y\mathcal{T}_{\lambda}(f)(z):=T_{\lambda}(f)(x(z))=\int_{M}e^{i\lambda\psi(x(z),y)}a_{\lambda}(x(z),y)f(y)\,dy

and denote by K(x,x){K}(x,x^{\prime}) the kernel of the operator TλTλ{T}_{\lambda}{T}^{*}_{\lambda}. Let

𝒦(z,z):=K(x(z),x(z))=Meiλ[ψ(x(z),y)ψ(x(z),y)]aλ(x(z),y)aλ(x(z),y)¯𝑑y\mathcal{K}(z,z^{\prime}):=K(x(z),x(z^{\prime}))=\int_{M}e^{i\lambda[\psi(x(z),y)-\psi(x(z^{\prime}),y)]}a_{\lambda}(x(z),y)\overline{a_{\lambda}(x(z^{\prime}),y)}\,dy

be the kernel of the operator 𝒯λ𝒯λ\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda}. We now turn to an estimate from [BGT07] that will be essential for our analysis.

Lemma 5.1 (Lemma 6.1 in [BGT07]).

For any (x,x)(x,x^{\prime}), |K(x,x)|1|{K}(x,x^{\prime})|\lesssim 1. If |ψ(x,x)|λ1|\psi(x,x^{\prime})|\gtrsim\lambda^{-1}, then for any N+N\in\mathbb{Z}^{+}, there exists ϵ01\epsilon_{0}\ll 1 so that

(5.1) K(x,x)=±n=0N1e±iλψ(x,x)(λψ(x,x))d12+nan±(x,x,λ)+bN(x,x,λ),{K}(x,x^{\prime})=\sum_{\pm}\sum^{N-1}_{n=0}\frac{e^{\pm i\lambda\psi(x,x^{\prime})}}{(\lambda\psi(x,x^{\prime}))^{\frac{d-1}{2}+n}}a_{n}^{\pm}(x,x^{\prime},\lambda)+b_{N}(x,x^{\prime},\lambda),

where an±,bnC(d×d×)a^{\pm}_{n},b_{n}\in C^{\infty}(\mathbb{R}^{d}\times\mathbb{R}^{d}\times\mathbb{R}) and ψ(x,y)=dg(x,y)-\psi(x,y)=d_{g}(x,y) is the geodesic distance between xx and xx^{\prime}. Furthermore, a±a^{\pm} are real, have supports of size O(ϵ0)O(\epsilon_{0}) with respect to the first two variables and are uniformly bounded with respect to λ\lambda. Finally

(5.2) |bN(x,x,λ)||1+λψ(xx)|d12N.|b_{N}(x,x^{\prime},\lambda)|\lesssim|1+\lambda\psi(x-x^{\prime})|^{-\frac{d-1}{2}-N}.

In view of

dg(x(z),x(z))|zz|,d_{g}(x(z),x(z^{\prime}))\sim|z-z^{\prime}|,

noting that KK is bounded, applying Lemma 5.1 yields a rough bound on the kernel of 𝒯λ𝒯λ\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda}

(5.3) |K(x(z),x(z))|C(1+λ|zz|)d12.|K(x(z),x(z^{\prime}))|\leq C(1+\lambda|z-z^{\prime}|)^{-\frac{d-1}{2}}.

However, this estimate alone is insufficient to achieve our desired bounds. To improve upon it, we follow the approach in [BGT07] by exploiting the oscillatory nature of the phase in K(x(z),x(z))K(x(z),x(z^{\prime})). This involves dyadically decomposing the kernel based on the size of |zz||z-z^{\prime}|. We now provide a detailed description of this decomposition and collect the key estimates that will be instrumental in our proof.

We fix a compactly supported bump function χ0C0(k),\chi_{0}\in C^{\infty}_{0}(\mathbb{R}^{k}), so that suppχ0{xk:|x|C}\mathrm{supp}\,\chi_{0}\in\{x\in\mathbb{R}^{k}:|x|\leq C\}. Additionally, let χ~C0(k)\tilde{\chi}\in C^{\infty}_{0}(\mathbb{R}^{k}) be supported in the set {xk:12<|x|<2}\{x\in{\mathbb{R}^{k}}:\frac{1}{2}<|x|<2\} such that there is a partition of unity on {xk:|x|<1}\{x\in\mathbb{R}^{k}:|x|<1\} of the form

(5.4) 1=χ0(λx)+j=1logλ/log2χ~(2jx).1=\chi_{0}(\lambda x)+\sum^{\log\lambda/\log 2}_{j=1}\tilde{\chi}(2^{j}x).

Using this, we decompose the kernel 𝒦(z,z)\mathcal{K}(z,z^{\prime}) dyadically:

(5.5) 𝒦(z,z)\displaystyle\mathcal{K}(z,z^{\prime}) =𝒦(z,z)χ0(λ(zz))+j=1logλ/log2𝒦(z,z)χ~(2j(zz))\displaystyle=\mathcal{K}(z,z^{\prime})\chi_{0}(\lambda(z-z^{\prime}))+\sum^{\log\lambda/\log 2}_{j=1}\mathcal{K}(z,z^{\prime})\tilde{\chi}(2^{j}(z-z^{\prime}))
=𝒦0(z,z)+j=1logλ/log2𝒦j(z,z).\displaystyle=\mathcal{K}_{0}(z,z^{\prime})+\sum^{\log\lambda/\log 2}_{j=1}\mathcal{K}_{j}(z,z^{\prime}).

In the proof of Theorem 1.1, we will estimate the contribution of each dyadic piece 𝒦j\mathcal{K}_{j}. To facilitate these estimates, we rely on the following crucial estimates from [BGT07].

Lemma 5.2 (Proposition 6.3 in [BGT07]).

For sufficiently large jj, let (𝒯λ𝒯λ)j(\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*})_{j} be the operator whose integral kernel is 𝒦j(z,z)\mathcal{K}_{j}(z,z^{\prime}). Then it satisfies the estimate

(5.6) (𝒯λ𝒯λ)jfL(Σ)(2jλ)d12fL1(Σ),\displaystyle\|(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}f\|_{L^{\infty}(\Sigma)}\lesssim\Big{(}\frac{2^{j}}{\lambda}\Big{)}^{\frac{d-1}{2}}\|f\|_{L^{1}(\Sigma)},
(5.7) (𝒯λ𝒯λ)jfL2(Σ)2jk(2jλ)d12+k12fL2(Σ).\displaystyle\|(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}f\|_{L^{2}(\Sigma)}\lesssim 2^{-jk}\Big{(}\frac{2^{j}}{\lambda}\Big{)}^{\frac{d-1}{2}+\frac{k-1}{2}}\|f\|_{L^{2}(\Sigma)}.

We remark that the operator corresponding to 𝒦0\mathcal{K}_{0} satisfies (5.6) and (5.7) with 2jλ,2^{j}\sim\lambda, and thus we do not need to handle it separately. Furthermore, note that the operator (𝒯λ𝒯λ)j(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j} in Proposition 6.3 of [BGT07] does not include the remainder term bNb_{N}. However, one readily verifies that the same estimates hold when bNb_{N} is included, provided NN is chosen sufficiently large. Indeed, by (5.2), if NN in Lemma 5.1 is sufficiently large, then the operator with kernel

bN(z,z,λ)χ~(2j(zz))b_{N}(z,z^{\prime},\lambda)\,\tilde{\chi}\bigl{(}2^{j}(z-z^{\prime})\bigr{)}

satisfies (5.6) and (5.7) via Young’s inequality.

5.1. Proof of Theorem 1.1

We begin by adopting the same strategy used in the two-dimensional case. By the same reasoning that led to inequality (4.3), it suffices to establish that for every WL2pp2(Σ)W\in L^{\frac{2p}{p-2}}(\Sigma), the following holds:

(5.8) W𝒯λ𝒯λW¯𝔖(p/2)(L2(Σ))λ2δ(d,k,p)(d1)WL2pp2(Σ)2.\|W\,\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\|_{\mathfrak{S}^{(p/2)^{\prime}}(L^{2}(\Sigma))}\lesssim\lambda^{2\delta(d,k,p)-(d-1)}\|W\|_{L^{\frac{2p}{p-2}}(\Sigma)}^{2}.

We shall apply the dyadic decomposition (5.5) to the kernel of 𝒯λ𝒯λ\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}. This decomposition enables us to leverage Proposition 5.2 to obtain bounds on the Schatten norms of the operators W(𝒯λ𝒯λ)jW¯W(\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*})_{j}\overline{W}. Summing these bounds over all dyadic levels jj then yields the desired Schatten bound for W𝒯λ𝒯λW¯W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}.

By Lemmas 2.1 and using the fact that the largest singular value of a compact operator is equal to its operator norm, we have

(5.9) W(𝒯λ𝒯λ)jW¯𝔖(L2(Σ))\displaystyle\Big{\|}W(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}\overline{W}\Big{\|}_{\mathfrak{S}^{\infty}(L^{2}(\Sigma))} WL(Σ)2(𝒯λ𝒯λ)j𝔖(L2(Σ))\displaystyle\leq\|W\|^{2}_{L^{\infty}(\Sigma)}\|(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}\|_{\mathfrak{S}^{\infty}(L^{2}(\Sigma))}
=WL(Σ)2(𝒯λ𝒯λ)jL2(Σ)L2(Σ).\displaystyle=\|W\|^{2}_{L^{\infty}(\Sigma)}\|(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}\|_{L^{2}(\Sigma)\to L^{2}(\Sigma)}.

Inserting the operator‐norm bound (5.7)\eqref{g27} into the above inequality gives

(5.10) W(𝒯λ𝒯λ)jW¯𝔖(L2(Σ))C12jk(2jλ)d12+k12WL(Σ)2,\Big{\|}W(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}\overline{W}\Big{\|}_{\mathfrak{S}^{\infty}(L^{2}(\Sigma))}\leq C_{1}2^{-jk}\Big{(}\frac{2^{j}}{\lambda}\Big{)}^{\frac{d-1}{2}+\frac{k-1}{2}}\|W\|^{2}_{L^{\infty}(\Sigma)},

where C1C_{1} is a constant that depends only on the fixed data (M,Σ)(M,\Sigma).

Recalling that χ~\tilde{\chi} is supported in the set {xk:12<|x|<2}\{x\in{\mathbb{R}^{k}}:\frac{1}{2}<|x|<2\} and applying the kernel estimate (5.3), or directly using the bound (5.6)\eqref{g26}, one shows

(5.11) W(𝒯λ𝒯λ)jW¯𝔖2(L2(Σ))\displaystyle\Big{\|}W(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}\overline{W}\Big{\|}_{\mathfrak{S}^{2}(L^{2}(\Sigma))} =(Σ×Σ|W𝒦j(,)W¯|2)1/2\displaystyle=\Big{(}\iint_{\Sigma\times\Sigma}\Big{|}W\mathcal{K}_{j}(\cdot,\cdot)\overline{W}\Big{|}^{2}\Big{)}^{1/2}
C2(BkBk|W(x(z))|2(1+2jλ)(d1)|W(x(z))¯|2𝑑z𝑑z)1/2\displaystyle\leq C_{2}\Big{(}\int_{B^{k}}\int_{B^{k}}\Big{|}W(x(z))\Big{|}^{2}(1+2^{-j}\lambda)^{-(d-1)}\Big{|}\overline{W(x(z^{\prime}))}\Big{|}^{2}dzdz^{\prime}\Big{)}^{1/2}
C2(2jλ)d12WL2(Σ)2,\displaystyle\leq C_{2}\Big{(}\frac{2^{j}}{\lambda}\Big{)}^{\frac{d-1}{2}}\|W\|^{2}_{L^{2}(\Sigma)},

where BkB^{k} denotes the unit ball in k\mathbb{R}^{k} and C2C_{2} is an absolute constant. Here we used the fact that for every operator TT acting on functions on L2(Σ)L^{2}(\Sigma),

T𝔖2(L2(Σ))2=ΣΣ|T(x,y)|2𝑑x𝑑y,\big{\|}T\big{\|}^{2}_{\mathfrak{S}^{2}(L^{2}(\Sigma))}=\int_{\Sigma}\int_{\Sigma}|T(x,y)|^{2}\,dx\,dy,

where T(,)T(\cdot,\cdot) denotes the integral kernel of TT.

Interpolating between the bounds (5.10) and (5.11) in the Schatten spaces shows that for any p02p_{0}\geq 2,

(5.12) W(𝒯λ𝒯λ)jW¯𝔖2p0/(p02)(L2(Σ))C12p0C212p022jkp0(2jλ)d12+k1p0WL2p0/(p02)(Σ)2,\Big{\|}W(\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda})_{j}\overline{W}\Big{\|}_{\mathfrak{S}^{2p_{0}/(p_{0}-2)}(L^{2}(\Sigma))}\leq C_{1}^{\frac{2}{p_{0}}}C_{2}^{1-\frac{2}{p_{0}}}2^{-\frac{2jk}{p_{0}}}\Big{(}\frac{2^{j}}{\lambda}\Big{)}^{\frac{d-1}{2}+\frac{k-1}{p_{0}}}\|W\|^{2}_{L^{2p_{0}/(p_{0}-2)}(\Sigma)},

where we take 2p0p02=\frac{2p_{0}}{p_{0}-2}=\infty as p0=2p_{0}=2 and 2p0p02=2\frac{2p_{0}}{p_{0}-2}=2 as p0=p_{0}=\infty. Summing over 1jlogλ/log21\ll j\leq\log{\lambda}/\log{2} yields222Here we may require jj to be sufficiently large by choosing ϵ0\epsilon_{0} small.

(5.13) W𝒯λ𝒯λW¯\displaystyle\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda}\overline{W}\Big{\|} 𝔖2p0/(p02)(L2(Σ))C12p0C212p0λd12k1p0j=1logλ/log22j(d12k+1p0)WL2p0/(p02)(Σ)2\displaystyle{}_{\mathfrak{S}^{2p_{0}/(p_{0}-2)}(L^{2}(\Sigma))}\leq C_{1}^{\frac{2}{p_{0}}}C_{2}^{1-\frac{2}{p_{0}}}\lambda^{-\frac{d-1}{2}-\frac{k-1}{p_{0}}}\sum_{j=1}^{\log\lambda/\log 2}2^{j(\frac{d-1}{2}-\frac{k+1}{p_{0}})}\|W\|^{2}_{L^{2p_{0}/(p_{0}-2)}(\Sigma)}
C12p0C212p0{λd12k1p0+d12k+1p0WL2p0/(p02)(Σ)2,ifp0>2(k+1)d1,λd12k1p0WL2p0/(p02)(Σ)2,ifp0<2(k+1)d1,λd12k1p0logλWL2p0/(p02)(Σ)2,ifp0=2(k+1)d1.\displaystyle\leq C_{1}^{\frac{2}{p_{0}}}C_{2}^{1-\frac{2}{p_{0}}}\begin{cases}\lambda^{-\frac{d-1}{2}-\frac{k-1}{p_{0}}+\frac{d-1}{2}-\frac{k+1}{p_{0}}}\|W\|^{2}_{L^{2p_{0}/(p_{0}-2)}(\Sigma)},\quad\text{if}\quad p_{0}>\frac{2(k+1)}{d-1},\\ \lambda^{-\frac{d-1}{2}-\frac{k-1}{p_{0}}}\|W\|^{2}_{L^{2p_{0}/(p_{0}-2)}(\Sigma)},\qquad\qquad\quad\,\text{if}\quad p_{0}<\frac{2(k+1)}{d-1},\\ \lambda^{-\frac{d-1}{2}-\frac{k-1}{p_{0}}}\log\lambda\|W\|^{2}_{L^{2p_{0}/(p_{0}-2)}(\Sigma)},\qquad\quad\text{if}\quad p_{0}=\frac{2(k+1)}{d-1}.\end{cases}

Note that estimate (5.13) remains valid for any Σ\Sigma with 1dimΣd11\leq\dim\Sigma\leq d-1. In particular, we will later apply (5.13) in the proof of Theorem 1.3.

Now we first solve the case where dimΣ<d2\dim\Sigma<d-2. A direct calculation yields

(5.14) W𝒯λ𝒯λW¯𝔖1(L2(Σ))\displaystyle\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}^{*}_{\lambda}\overline{W}\Big{\|}_{\mathfrak{S}^{1}(L^{2}(\Sigma))} =W𝒯λ𝔖2(L2(M)L2(Σ))2\displaystyle=\|W\mathcal{T}_{\lambda}\|^{2}_{\mathfrak{S}^{2}(L^{2}(M)\to L^{2}(\Sigma))}
=Σ|W(x)|2M|𝒯λ(x,y)|2𝑑x𝑑z\displaystyle=\int_{\Sigma}|W(x)|^{2}\int_{M}|\mathcal{T}_{\lambda}(x,y)|^{2}dx^{\prime}dz
C3WL2(Σ)2,\displaystyle\leq C_{3}\|W\|^{2}_{L^{2}(\Sigma)},

where 𝒯λ(x,y)=eiλdg(x(z),y)aλ(x,y)\mathcal{T}_{\lambda}(x,y)=e^{-i\lambda d_{g}(x(z),y)}a_{\lambda}(x,y) is the kernel of 𝒯λ\mathcal{T}_{\lambda} and C3C_{3} is a constant that depends only on the fixed data (M,Σ)(M,\Sigma).

For p0>2(k+1)d1p_{0}>\frac{2(k+1)}{d-1}, interpolating this estimate with the previous Schatten bounds (5.13) yields

(5.15) W𝒯λ𝒯λW¯𝔖2p2pp02(L2(Σ))C12pC2p0p2pC31p0pλ2kpWL2p/(p2)(Σ)2.\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{\frac{2p}{2p-p_{0}-2}}(L^{2}(\Sigma))}\leq C_{1}^{\frac{2}{p}}C_{2}^{\frac{p_{0}}{p}-\frac{2}{p}}C_{3}^{1-\frac{p_{0}}{p}}\lambda^{-\frac{2k}{p}}\|W\|_{L^{2p/(p-2)}(\Sigma)}^{2}.

In particular, choosing p0=2p_{0}=2, we obtain

W𝒯λ𝒯λW¯𝔖pp2(L2(Σ))C12pC312pλ2kpWL2p/(p2)(Σ)2,\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{\frac{p}{p-2}}(L^{2}(\Sigma))}\leq C_{1}^{\frac{2}{p}}C_{3}^{1-\frac{2}{p}}\lambda^{-\frac{2k}{p}}\|W\|_{L^{2p/(p-2)}(\Sigma)}^{2},

which establishes the desired bound (5.8)\eqref{g37} for dimΣ=k<d2\dim\Sigma=k<d-2.

Next, when dimΣ=d2\dim\Sigma=d-2, setting p0=2p_{0}=2 in (5.13) yields

W𝒯λ𝒯λW¯𝔖(L2(Σ))C1λ(d1)+1logλWL(Σ)2,\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{\infty}(L^{2}(\Sigma))}\leq C_{1}\lambda^{-(d-1)+1}\log\lambda\,\|W\|_{L^{\infty}(\Sigma)}^{2},

which aligns with the desired bound (5.8)\eqref{g37} for the case p=2p=2.

For 2<p0p2<p_{0}\leq p, applying the duality principle (see Lemma 2.2) shows that (5.15) is equivalent to

(5.16) jJtj|fj|2Lp/2(Σ)C12pC2p0p2pC31p0pλ2(d2)p{tj}l2pp0+2(J)\Biggl{\|}\sum_{j\in J}t_{j}|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{1}^{\frac{2}{p}}C_{2}^{\frac{p_{0}}{p}-\frac{2}{p}}C_{3}^{1-\frac{p_{0}}{p}}\lambda^{-\frac{2(d-2)}{p}}\Big{\|}\{t_{j}\}\Big{\|}_{l^{\frac{2p}{p_{0}+2}}(J)}

Since the right-hand side norm {tj}l2pp0+2(J)\left\|\{t_{j}\}\right\|_{l^{\frac{2p}{p_{0}+2}}(J)} is increasing in p0p_{0} , taking the infimum over p0(2,p]p_{0}\in(2,p] gives

jJtj|fj|2Lp/2(Σ)C12pC312pλ2(d2)p{tj}lp2(J).\Biggl{\|}\sum_{j\in J}t_{j}|f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{1}^{\frac{2}{p}}C_{3}^{1-\frac{2}{p}}\lambda^{-\frac{2(d-2)}{p}}\left\|\{t_{j}\}\right\|_{l^{\frac{p}{2}}(J)}.

Using the duality principle again, we have

W𝒯λ𝒯λW¯𝔖pp2(L2(Σ))λ2(d2)pWL2p/(p2)(Σ)2,\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{\frac{p}{p-2}}(L^{2}(\Sigma))}\lesssim\lambda^{-\frac{2(d-2)}{p}}\|W\|_{L^{2p/(p-2)}(\Sigma)}^{2},

completing the proof of (5.8)\eqref{g37} for dimΣ=d2\dim\Sigma=d-2 when p>2p>2. ∎

5.2. Proof of Theorem 1.3

We begin by deriving (1.10). We observe that inequality (5.13) covers (1.10) when 2p2dd12\leq p\leq\frac{2d}{d-1}. Therefore, it suffices to consider the case 2dd1<p\frac{2d}{d-1}<p\leq\infty.

Now we consider the range 4p4\leq p\leq\infty. Recall that α(d1,d,p)=p2\alpha(d-1,d,p)=\frac{p}{2}. In particular, when p=4p=4, we have α(d1,d,4)=2\alpha(d-1,d,4)=2. Applying inequality (5.3) and Young’s inequality, we obtain

(5.17) W𝒯λ𝒯λW¯\displaystyle\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W} 𝔖2(L2(Σ))=(Bd1×Bd1|W(x(z))K(x(z),x(z))W(x(z))¯|2dzdz)1/2\displaystyle\Big{\|}_{\mathfrak{S}^{2}(L^{2}(\Sigma))}=\left(\iint_{B^{d-1}\times B^{d-1}}\left|W(x(z))K(x(z),x(z^{\prime}))\overline{W(x(z^{\prime}))}\right|^{2}\,dz\,dz^{\prime}\right)^{1/2}
(Bd1×Bd1|W(x(z))|2(1+λ|zz|)(d1)|W(x(z))¯|2𝑑z𝑑z)1/2\displaystyle\lesssim\left(\iint_{B^{d-1}\times B^{d-1}}|W(x(z))|^{2}(1+\lambda|z-z^{\prime}|)^{-(d-1)}|\overline{W(x(z^{\prime}))}|^{2}\,dz\,dz^{\prime}\right)^{1/2}
WL4(Σ)Bd1(1+λ|zz|)(d1)|W(x(z))¯|𝑑zL2(Σ)1/2\displaystyle\lesssim\|W\|_{L^{4}(\Sigma)}\left\|\int_{B^{d-1}}(1+\lambda|z-z^{\prime}|)^{-(d-1)}|\overline{W(x(z^{\prime}))}|\,dz^{\prime}\right\|_{L^{2}(\Sigma)}^{1/2}
WL4(Σ)2|Bd1(1+λ|z|)(d1)𝑑z|1/2\displaystyle\leq\|W\|_{L^{4}(\Sigma)}^{2}\left|\int_{B^{d-1}}(1+\lambda|z|)^{-(d-1)}\,dz\right|^{1/2}
λ(d1)/2(logλ)1/2WL4(Σ)2.\displaystyle\lesssim\lambda^{-(d-1)/2}(\log\lambda)^{1/2}\|W\|_{L^{4}(\Sigma)}^{2}.

Interpolating this estimate with the Schatten bounds given in (5.14) yields

W𝒯λ𝒯λW¯𝔖p/(p2)(L2(Σ))λ2(d1)/p(logλ)2/pWL2p/(p2)(Σ).\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{p/(p-2)}(L^{2}(\Sigma))}\lesssim\lambda^{-2(d-1)/p}(\log\lambda)^{2/p}\|W\|_{L^{2p/(p-2)}(\Sigma)}.

This completes the proof of (1.10) for the case 4p4\leq p\leq\infty.

Next, consider the range 2dd1<p<4\frac{2d}{d-1}<p<4. By interpolating the bound in (5.17) with inequality (5.13)—which applies when dimΣ=d1\dim\Sigma=d-1 and p0=2dd1p_{0}=\frac{2d}{d-1}—we obtain

W𝒯λ𝒯λW¯𝔖2p(d2)2pd4d3p+4(L2(Σ))λ2(d1)/p(logλ)2dpp(d2)WL2pp2(Σ).\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{\frac{2p(d-2)}{2pd-4d-3p+4}}(L^{2}(\Sigma))}\lesssim\lambda^{-2(d-1)/p}(\log\lambda)^{\frac{2d-p}{p(d-2)}}\|W\|_{L^{\frac{2p}{p-2}}(\Sigma)}.

This completes the analysis for 2dd1<p<4\frac{2d}{d-1}<p<4.

Finally, we turn to the proof of inequality (1.9). The approach follows a similar pattern to the two-dimensional case. For any p0(4,p)p_{0}\in(4,p), applying the bound (5.3) and Young’s inequality gives

W𝒯λ𝒯λW¯\displaystyle\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W} 𝔖2(L2(Σ))=(Bd1×Bd1|W(x(z))|2|K(x(z),x(z))|2|W(x(z))¯|2dzdz)1/2\displaystyle\Big{\|}_{\mathfrak{S}^{2}(L^{2}(\Sigma))}=\left(\iint_{B^{d-1}\times B^{d-1}}|W(x(z))|^{2}|K(x(z),x(z^{\prime}))|^{2}|\overline{W(x(z^{\prime}))}|^{2}\,dz\,dz^{\prime}\right)^{1/2}
WL2p0/(p02)(Σ)Bd1|K(x(z),x(z))|2|W(x(z))|2𝑑zLp0/2(Bd1)1/2\displaystyle\leq\|W\|_{L^{2p_{0}/(p_{0}-2)}(\Sigma)}\left\|\int_{B^{d-1}}|K(x(z),x(z^{\prime}))|^{2}|W(x(z^{\prime}))|^{2}\,dz^{\prime}\right\|_{L^{p_{0}/2}(B^{d-1})}^{1/2}
(1+λ|s|)(d1)Lp0/4(Bd1)1/2WL2p0/(p02)(Σ)2\displaystyle\leq\left\|(1+\lambda|s|)^{-(d-1)}\right\|_{L^{p_{0}/4}(B^{d-1})}^{1/2}\|W\|_{L^{2p_{0}/(p_{0}-2)}(\Sigma)}^{2}
Cp0λ2(d1)/p0WL2p0/(p02)(Σ)2.\displaystyle\leq C_{p_{0}}\lambda^{-2(d-1)/p_{0}}\|W\|_{L^{2p_{0}/(p_{0}-2)}(\Sigma)}^{2}.

Interpolating this with the trace-class bound in (5.14) yields

W𝒯λ𝒯λW¯𝔖(2p/p0)(L2(Σ))Cp0λ2(d1)/pWL2p/(p2)(Σ)2.\Big{\|}W\mathcal{T}_{\lambda}\mathcal{T}_{\lambda}^{*}\overline{W}\Big{\|}_{\mathfrak{S}^{(2p/p_{0})^{\prime}}(L^{2}(\Sigma))}\leq C_{p_{0}}\lambda^{-2(d-1)/p}\|W\|_{L^{2p/(p-2)}(\Sigma)}^{2}.

By the duality principle (Lemma 2.2), this is equivalent to

jJtj|Tλfj|2Lp/2(Σ)Cp0λ2(d1)/p{tj}2p/p0(J).\Biggl{\|}\sum_{j\in J}t_{j}|T_{\lambda}f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{p_{0}}\lambda^{-2(d-1)/p}\left\|\{t_{j}\}\right\|_{\ell^{2p/p_{0}}(J)}.

Since p0p_{0} can be chosen arbitrarily close to 4, it follows that for any α<p/2\alpha<p/2,

jJtj|Tλfj|2Lp/2(Σ)Cαλ2(d1)/p{tj}α(J).\Biggl{\|}\sum_{j\in J}t_{j}|T_{\lambda}f_{j}|^{2}\Biggr{\|}_{L^{p/2}(\Sigma)}\leq C_{\alpha}\lambda^{-2(d-1)/p}\left\|\{t_{j}\}\right\|_{\ell^{\alpha}(J)}.

This concludes the proof. ∎

6. Sharpness in dimension two

In this section, we demonstrate that the estimate in Theorem 1.2 is essentially sharp for any intermediate value of #J\#J, except for the logarithmic loss on the two-sphere 𝕊2\mathbb{S}^{2}. To achieve this, we will utilize a key estimate from [Fra17b].

When MM is the standard sphere 𝕊2\mathbb{S}^{2} and 2p2\leq p\leq\infty, consider an increasing function, tλ=t(λ),t_{\lambda}=t(\lambda), λ>0\lambda>0, satisfying the following conditions:

limλtλ=+,limλtλλ=0.\lim_{\lambda\to\infty}t_{\lambda}=+\infty,~{}~{}~{}~{}~{}~{}\lim_{\lambda\to\infty}\dfrac{t_{\lambda}}{\lambda}=0.

Our goal is to construct, for sufficiently large λ\lambda, geodesic segments γ𝕊2\gamma\subset\mathbb{S}^{2} and orthonormal systems {fj}jJλEλ\{f_{j}\}_{j\in J_{\lambda}}\subset E_{\lambda} and {gj}jJλEλ\{g_{j}\}_{j\in J_{\lambda}}\subset E_{\lambda} with #Jλtλ\#J_{\lambda}\sim t_{\lambda}, such that the following estimates hold:

(6.1) jJλ|fj|2Lp/2(γ)λ12ptλ2p;\displaystyle\Big{\|}\sum_{j\in J_{\lambda}}|f_{j}|^{2}\Big{\|}_{L^{p/2}(\gamma)}\gtrsim\lambda^{1-\frac{2}{p}}t_{\lambda}^{\frac{2}{p}};
(6.2) jJλ|gj|2Lp/2(γ)λ12tλ12.\displaystyle\Big{\|}\sum_{j\in J_{\lambda}}|g_{j}|^{2}\Big{\|}_{L^{p/2}(\gamma)}\gtrsim\lambda^{\frac{1}{2}}t^{\frac{1}{2}}_{\lambda}.

For each λ>0\lambda>0, we construct orthonormal systems using spherical harmonics of degree kλk\sim\lambda. Recall that for any spherical harmonic Y(x)Y(x) of degree kk on L2(𝕊2)L^{2}(\mathbb{S}^{2}), the Laplace–Beltrami operator satisfies

Δ𝕊2Y(x)=k(k+1)Y(x).\Delta_{\mathbb{S}^{2}}Y(x)=-k(k+1)Y(x).

Let YkαkY_{k}^{\alpha_{k}} denote an L2L^{2}-normalized spherical harmonic of degree kk, where αk[k,k]\alpha_{k}\in[-k,k]. Consider a sequence {tk}k\{t_{k}\}_{k\in\mathbb{N}} such that

limktk=+,andlimktkk=0.\lim_{k\to\infty}t_{k}=+\infty,\quad\text{and}\quad\lim_{k\to\infty}\frac{t_{k}}{k}=0.

Assuming that for sufficiently large kk, tkk2t_{k}\leq\frac{k}{2}, we claim the following:

  • The orthonormal system {Ykαk}αk[tk,2tk]\{Y_{k}^{\alpha_{k}}\}_{\alpha_{k}\in[t_{k},2t_{k}]\cap\mathbb{Z}} satisfies the bound corresponding to (6.1).

  • The orthonormal system {Ykαk}αk[k2tk,ktk]\{Y_{k}^{\alpha_{k}}\}_{\alpha_{k}\in[k-2t_{k},\,k-t_{k}]\cap\mathbb{Z}} satisfies the bound corresponding to (6.2).

To verify these claims, we will utilize a key estimate from [Fra17b], which provides essential bounds for these spherical harmonics.

Lemma 6.1 (Proposition 15 in [Fra17b]).

If we parameterize points in 𝕊2\mathbb{S}^{2} by usual spherical coordinates (θ,φ)[0,π]×[0,2π)(\theta,\varphi)\in[0,\pi]\times[0,2\pi), then

  1. (1)

    there exist η1>0,K1,\eta_{1}>0,~{}K\geq 1, and c>0c>0 such that for all kKk\geq K, η1tk/kθπ2\eta_{1}t_{k}/k\leq\theta\leq\frac{\pi}{2} and 0φ2π0\leq\varphi\leq 2\pi,

    αk[tk,2tk]|Yαkk(θ,φ)|2ctksinθ;\sum_{\alpha_{k}\in[t_{k},2t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\theta,\varphi)|^{2}\geq c\,\frac{t_{k}}{\sin\theta};
  2. (2)

    there exist η2>0,K1\eta_{2}>0,K\geq 1, and c>0c>0 such that for all kKk\geq K, 0θη2(tk/k)1/20\leq\theta\leq\eta_{2}(t_{k}/k)^{1/2} and 0φ2π0\leq\varphi\leq 2\pi,

    αk[k2tk,ktk]|Yαkk(π/2θ,φ)|2ck1/2tk1/2.\sum_{\alpha_{k}\in[k-2t_{k},k-t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\pi/2-\theta,\varphi)|^{2}\geq c\,k^{1/2}t_{k}^{1/2}.

Now, we are prepared to proceed with the proof of our sharpness result.

Theorem 6.2.

There exist c>0c>0, K1K\geq 1 and curves γ1\gamma_{1} and γ2\gamma_{2} on 𝕊2\mathbb{S}^{2} so that for all kKk\geq K and 2p2\leq p\leq\infty one has

(6.3) αk[tk,2tk]|Yαkk(θ,φ)|2Lp/2(γ1)Ck12ptk2p;\displaystyle\Big{\|}\sum_{\alpha_{k}\in[t_{k},2t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\theta,\varphi)|^{2}\Big{\|}_{L^{p/2}(\gamma_{1})}\geq Ck^{1-\frac{2}{p}}t^{\frac{2}{p}}_{k};
(6.4) αk[k2tk,ktk]|Yαkk(θ,φ)|2Lp/2(γ2)Ck12tk12.\displaystyle\Big{\|}\sum_{\alpha_{k}\in[k-2t_{k},k-t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\theta,\varphi)|^{2}\Big{\|}_{L^{p/2}(\gamma_{2})}\geq Ck^{\frac{1}{2}}t^{\frac{1}{2}}_{k}.

In particular, Theorem 1.2 is essentially saturated by (6.3) for 4p4\leq p\leq\infty, and by (6.4)\eqref{s2} for 2p42\leq p\leq 4.

Proof.

We first establish inequality (6.3). Consider the curve γ1\gamma_{1} on 𝕊2\mathbb{S}^{2} parameterized by γ1(θ)=(sinθ,0,cosθ)\gamma_{1}(\theta)=(\sin\theta,~{}0,~{}\cos\theta), with θ[0,π/2].\theta\in[0,\pi/2]. Applying item (1) of Lemma 6.1, we obtain

αk[tk,2tk]|Yαkk(θ,φ)|2Lp/2(γ1)p/2\displaystyle\Big{\|}\sum_{\alpha_{k}\in[t_{k},2t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\theta,\varphi)|^{2}\Big{\|}^{p/2}_{L^{p/2}(\gamma_{1})} η1tk/kπ/2(αk[tk,2tk]|Yαkk(θ,0)|2)p/2𝑑θ\displaystyle\geq\int^{\pi/2}_{\eta_{1}t_{k}/k}\Big{(}\sum_{\alpha_{k}\in[t_{k},2t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\theta,0)|^{2}\Big{)}^{p/2}\,d\theta
η1tk/kπ/2(tksinθ)p2𝑑θtkp/2η1tk/k2η1tk/kθp2𝑑θ\displaystyle\gtrsim\int^{\pi/2}_{\eta_{1}t_{k}/k}\Big{(}\frac{t_{k}}{\sin\theta}\Big{)}^{\frac{p}{2}}\,d\theta\gtrsim t^{p/2}_{k}\int^{2\eta_{1}t_{k}/k}_{\eta_{1}t_{k}/k}{\theta}^{-\frac{p}{2}}\,d\theta
kp21tk.\displaystyle\gtrsim k^{\frac{p}{2}-1}t_{k}.

Next, to prove (6.4), consider the curve γ2\gamma_{2} as the equator, that is, θ=π/2\theta=\pi/2. Applying item (2) of Lemma 6.1, we conclude that

αk[k2tk,ktk]|Yαkk(θ,φ)|2Lp/2(γ2)p/2\displaystyle\Big{\|}\sum_{\alpha_{k}\in[k-2t_{k},k-t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\theta,\varphi)|^{2}\Big{\|}^{p/2}_{L^{p/2}(\gamma_{2})} =02π(αk[k2tk,ktk]|Yαkk(π/2,φ)|2)p/2𝑑φ\displaystyle=\int^{2\pi}_{0}\Big{(}\sum_{\alpha_{k}\in[k-2t_{k},k-t_{k}]\cap\mathbb{Z}}|Y^{k}_{\alpha_{k}}(\pi/2,\varphi)|^{2}\Big{)}^{p/2}d\varphi
02π(Ck12tk12)p/2𝑑φ\displaystyle\geq\int^{2\pi}_{0}\big{(}Ck^{\frac{1}{2}}t_{k}^{\frac{1}{2}}\big{)}^{p/2}\,d\varphi
(k1/2tk12)p/2.\displaystyle\gtrsim(k^{1/2}t_{k}^{\frac{1}{2}})^{p/2}.

7. Sharpness in hgher dimensions

Finally, we address the sharpness in higher dimensions. Suppose d3d\geq 3 and dimΣ=k\dim\Sigma=k. We work on the standard dd-sphere. Let

λ2=l(l+d1),l,\lambda^{2}=l(l+d-1),\quad l\in\mathbb{N},

and fix an orthonormal basis {Yi}i=1dimEλ\{Y_{i}\}_{i=1}^{\dim E_{\lambda}} of the eigenspace EλE_{\lambda}. Define

Zλ(p,x)=i=1dimEλYi(p)Yi(x).Z_{\lambda}(p,x)=\sum_{i=1}^{\dim E_{\lambda}}Y_{i}(p)\,Y_{i}(x).

By symmetry, Zλ(p,p)=C(λ)λd1Z_{\lambda}(p,p)=C(\lambda)\sim\lambda^{d-1}. For any p𝕊dp\in\mathbb{S}^{d}, the normalized zonal eigenfunction concentrated at pp is

Zλp(x)=Zλ(p,x)Zλ(p,p).Z_{\lambda}^{p}(x)=\frac{Z_{\lambda}(p,x)}{\sqrt{Z_{\lambda}(p,p)}}.
Proposition 1.

For each p𝕊dp\in\mathbb{S}^{d},

Zλp(x)={O(λd12),dist(x,p)λ1,O(dist(x,p)d12),dist(x,p)λ1.Z_{\lambda}^{p}(x)=\begin{cases}O\bigl{(}\lambda^{\frac{d-1}{2}}\bigr{)},&\mathrm{dist}(x,p)\leq\lambda^{-1},\\ O\bigl{(}\mathrm{dist}(x,p)^{-\frac{d-1}{2}}\bigr{)},&\mathrm{dist}(x,p)\geq\lambda^{-1}.\end{cases}
Proposition 2.

For any p1,p2𝕊dp_{1},p_{2}\in\mathbb{S}^{d},

Zλp1,Zλp2=Zλ(p1,p2)C(λ).\bigl{\langle}Z_{\lambda}^{p_{1}},Z_{\lambda}^{p_{2}}\bigr{\rangle}=\frac{Z_{\lambda}(p_{1},p_{2})}{C(\lambda)}.

The proofs of these propositions can be found in [DX13, Lemma 1.2.5].

Let 0<β<10<\beta<1 be a parameter to be chosen later. Fix a sufficiently large constant C>0C>0, and select a Cλ1+βC\lambda^{-1+\beta}–separated set {pj}jJΣ\{p_{j}\}_{j\in J}\subset\Sigma so that for all iji\neq j,

Cλ1+βdist(pi,pj)π2.C\,\lambda^{-1+\beta}\leq\mathrm{dist}(p_{i},p_{j})\leq\frac{\pi}{2}.

In this configuration,

|J|=O(C1λk(1β)).|J|=O\bigl{(}C^{-1}\,\lambda^{\,k(1-\beta)}\bigr{)}.

Moreover, by the preceding propositions, for iji\neq j we have

|Zλpi,Zλpj|λd12β.\bigl{|}\langle Z_{\lambda}^{p_{i}},\,Z_{\lambda}^{p_{j}}\rangle\bigr{|}\lesssim\lambda^{-\frac{d-1}{2}\,\beta}.

We will need the following lemma, which follows from Gerschgorin’s Circle Theorem. For completeness, we include a proof here.

Lemma 7.1.

Let HH be a Hilbert space, and let {ei}i=1nH\{e_{i}\}_{i=1}^{n}\subset H be unit vectors satisfying

|ei,ej|<δn1,ij,|\langle e_{i},e_{j}\rangle|<\frac{\delta}{n-1},\quad i\neq j,

for some 0<δ<120<\delta<\tfrac{1}{2}. Then there exists an n×nn\times n matrix A=[Aij]A=[A_{ij}] with

|Aijδij|δ(1i,jn),|A_{ij}-\delta_{ij}|\leq\delta\quad(1\leq i,j\leq n),

such that the vectors

fi=j=1nAijej,i=1,,n,f_{i}=\sum_{j=1}^{n}A_{ij}e_{j},\quad i=1,\dots,n,

form an orthonormal system in HH.

Proof.

Let G=[ei,ej]i,j=1nG=[\langle e_{i},e_{j}\rangle]_{i,j=1}^{n} be the Gram matrix. By hypothesis,

Gii=1,|Gij|<δn1(ij),G_{ii}=1,\qquad|G_{ij}|<\frac{\delta}{n-1}\quad(i\neq j),

with 0<δ<120<\delta<\tfrac{1}{2}. Write G=I+EG=I+E with

Eij={ei,ej,ij,0,i=j.E_{ij}=\begin{cases}\langle e_{i},e_{j}\rangle,&i\neq j,\\ 0,&i=j.\end{cases}

Then for each ii, the row–sum norm of the off–diagonal part satisfies

E=maxiji|Eij|<(n1)δn1=δ<1.\|E\|_{\infty}=\max_{i}\sum_{j\neq i}|E_{ij}|<(n-1)\cdot\frac{\delta}{n-1}=\delta<1.

By Gerschgorin’s theorem, each eigenvalue λi\lambda_{i} of G=I+EG=I+E lies in {z:|z1|δ}\{\,z:|z-1|\leq\delta\}, so GG is positive‐definite and invertible. Since the spectral norm E2E<1\|E\|_{2}\leq\|E\|_{\infty}<1, the Neumann series for (I+E)1/2(I+E)^{-1/2} converges in operator norm. Hence we may set

A=G1/2=(I+E)1/2.A=G^{-1/2}=(I+E)^{-1/2}.

Define

fi=j=1nAijej.f_{i}=\sum_{j=1}^{n}A_{ij}\,e_{j}.

Then the Gram matrix of {fi}\{f_{i}\} is

fi,fj=(AGA)ij=[G1/2GG1/2]ij=δij,\langle f_{i},f_{j}\rangle=(A\,G\,A^{*})_{ij}=[G^{-1/2}\,G\,G^{-1/2}]_{ij}=\delta_{ij},

so {fi}\{f_{i}\} is orthonormal.

Finally, we have for all i,ji,j

maxi,j|aijδij|max1in|λi1|<δ.\max_{i,j}|a_{ij}-\delta_{ij}|\leq\max_{1\leq i\leq n}{|\sqrt{\lambda_{i}}-1|}<\delta.

This completes the proof. ∎

Let us return to the example. For simplicity, let Zj=ZλpjZ_{j}=Z_{\lambda}^{p_{j}}. Then there exists a matrix A=[aij]A=[a_{ij}] such that

fi=jJaijZj,|aijδij||J|λd12β,f_{i}=\sum_{j\in J}a_{ij}\,Z_{j},\qquad\bigl{|}a_{ij}-\delta_{ij}\bigr{|}\lesssim|J|\,\lambda^{-\frac{d-1}{2}\beta},

and the family {fj}jJ\{f_{j}\}_{j\in J} is orthonormal.

Our goal is to choose β\beta so that |fi(x)|λd12\lvert f_{i}(x)\rvert\approx\lambda^{\frac{d-1}{2}} whenever xx lies in the λ1\lambda^{-1}-neighborhood of pip_{i}. To ensure this, note that for such xx,

|jiaijZj(x)||J|λd12(1β)λd12β|J|λd12.\Bigl{|}\sum_{j\neq i}a_{ij}\,Z_{j}(x)\Bigr{|}\leq|J|\lambda^{\frac{d-1}{2}(1-\beta)}\lambda^{-\frac{d-1}{2}\beta}|J|\ll\lambda^{\frac{d-1}{2}}.

This holds provided

|J|λd12β=O(C1λ(1β)kd12β)1,|J|\lambda^{-\frac{d-1}{2}\beta}=O\bigl{(}C^{-1}\,\lambda^{(1-\beta)k-\frac{d-1}{2}\beta}\bigr{)}\ll 1,

which is achieved by taking

(7.1) 2k2k+d1β<1,\frac{2k}{2k+d-1}\leq\beta<1,

and CC sufficiently large. For the system {fj}\{f_{j}\} constructed above, we then have

|fj(x)|λd12on Bpj(λ1),|f_{j}(x)|\geq\lambda^{\frac{d-1}{2}}\quad\text{on }B_{p_{j}}(\lambda^{-1}),

and dist(pi,pj)λ1\mathrm{dist}(p_{i},p_{j})\gg\lambda^{-1} for iji\neq j. Hence, for p2p\geq 2 and dimΣd1\dim\Sigma\leq d-1,

jJtj|fj|2Lp/2(Σ)\displaystyle\Bigl{\|}\sum_{j\in J}t_{j}\,|f_{j}|^{2}\Bigr{\|}_{L^{p/2}(\Sigma)} (jJBpj(λ1)Σtjp2|fj|p)2p\displaystyle\geq\Bigl{(}\sum_{j\in J}\int_{B_{p_{j}}(\lambda^{-1})\cap\Sigma}t_{j}^{\frac{p}{2}}\,|f_{j}|^{p}\Bigr{)}^{\frac{2}{p}}
(jJtjp2λ(d1)p2λk)2p\displaystyle\geq\Bigl{(}\sum_{j\in J}t_{j}^{\frac{p}{2}}\,\lambda^{\frac{(d-1)p}{2}}\,\lambda^{-k}\Bigr{)}^{\frac{2}{p}}
λd12kptjp2(J).\displaystyle\approx\lambda^{\,d-1-\frac{2k}{p}}\,\bigl{\|}t_{j}\bigr{\|}_{\ell^{\frac{p}{2}}(J)}.

This demonstrates the sharpness of Theorem 1.1, and Theorem 1.3 for the case 4p4\leq p\leq\infty.

In the case k=d1k=d-1 and d3d\geq 3, one can likewise employ highest‐weight spherical harmonics to construct an orthonormal family {fj}jJ\{f_{j}\}_{j\in J}, with |J|λ(d2)(1ϵ)|J|\sim\lambda^{(d-2)(1-\epsilon)} for any 0<ϵ<10<\epsilon<1, each concentrating along the geodesic through a chosen point. Consequently, for p=2p=2 the exponent α=1\alpha=1 is achieved, confirming its sharpness.

Remark 7.2.

Finally, we point out that producing a sharpness example for Theorem 1.1 requires a nontrivial upper bound on |J||J|—equivalently, a positive lower bound on β\beta (see, e.g., (7.1)). By contrast, Theorem 1.2 is sharp for all values of |J||J|.

Indeed, take a codimension-2 submanifold ΣSd\Sigma\subset S^{d} and let Q=EλQ=E_{\lambda}, so that

|J|=dimEλλd1.|J|=\dim E_{\lambda}\sim\lambda^{d-1}.

The sharp pointwise Weyl law on the sphere gives

λjIλ|eλj(x)|2λd1,xSd,\sum_{\lambda_{j}\in I_{\lambda}}\bigl{|}e_{\lambda_{j}}(x)\bigr{|}^{2}\sim\lambda^{d-1},\quad x\in S^{d},

and hence

λjIλ|eλj|2Lp/2(Σ)λd1.\Bigl{\|}\sum_{\lambda_{j}\in I_{\lambda}}|e_{\lambda_{j}}|^{2}\Bigr{\|}_{L^{p/2}(\Sigma)}\sim\lambda^{d-1}.

On the other hand, Theorem 1.1 yields the upper bound

λjIλ|eλj|2Lp/2(Σ)λd12d4p+2(d1)p=λd1+2p.\Bigl{\|}\sum_{\lambda_{j}\in I_{\lambda}}|e_{\lambda_{j}}|^{2}\Bigr{\|}_{L^{p/2}(\Sigma)}\lesssim\lambda^{{d-1}-\frac{2d-4}{p}+\frac{2(d-1)}{p}}=\lambda^{{d-1}+\frac{2}{p}}.

It follows that the exponent in Theorem 1.1 strictly exceeds the true exponent d1d-1, so the bound cannot be sharp in this case unless p=p=\infty.

References

  • [BGT04] Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Multilinear estimates for the Laplace spectral projectors on compact manifolds. Comptes Rendus Mathématique. Académie des Sciences. Paris, 338(5):359–364, 2004.
  • [BGT05] Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations. Annales Scientifiques de l’École Normale Supérieure. Quatrième Série, 38(2):255–301, 2005.
  • [BGT07] Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds,. Duke Mathematical Journal,, 138(3):445–486, 2007.
  • [BHS22] Matthew D Blair, Xiaoqi Huang, and Christopher D Sogge. Improved spectral projection estimates. arXiv preprint arXiv:2211.17266, 2022.
  • [Bla18] Matthew D. Blair. On logarithmic improvements of critical geodesic restriction bounds in the presence of nonpositive curvature. Israel J. Math., 224(1):407–436, 2018.
  • [Bou09] J. Bourgain. Geodesic restrictions and LpL^{p}-estimates for eigenfunctions of Riemannian surfaces. In Linear and complex analysis, volume 226 of Amer. Math. Soc. Transl. Ser. 2, pages 27–35. Amer. Math. Soc., Providence, RI, 2009.
  • [BS15a] Matthew D. Blair and Christopher D. Sogge. On Kakeya-Nikodym averages, LpL^{p}-norms and lower bounds for nodal sets of eigenfunctions in higher dimensions. J. Eur. Math. Soc. (JEMS), 17(10):2513–2543, 2015.
  • [BS15b] Matthew D. Blair and Christopher D. Sogge. Refined and microlocal Kakeya-Nikodym bounds for eigenfunctions in two dimensions. Anal. PDE, 8(3):747–764, 2015.
  • [BS17] Matthew D. Blair and Christopher D. Sogge. Refined and microlocal Kakeya-Nikodym bounds of eigenfunctions in higher dimensions. Comm. Math. Phys., 356(2):501–533, 2017.
  • [BS19] Matthew D. Blair and Christopher D. Sogge. Logarithmic improvements in LpL^{p} bounds for eigenfunctions at the critical exponent in the presence of nonpositive curvature. Inventiones Mathematicae, 217(2):703–748, 2019.
  • [CG23] Yaiza Canzani and Jeffrey Galkowski. Growth of high LpL^{p} norms for eigenfunctions: an application of geodesic beams. Anal. PDE, 16(10):2267–2325, 2023.
  • [CS14] Xuehua Chen and Christopher D. Sogge. A few endpoint geodesic restriction estimates for eigenfunctions. Communications in Mathematical Physics, 329(2):435–459, 2014.
  • [DX13] Feng Dai and Yuan Xu. Approximation theory and harmonic analysis on spheres and balls. Springer Monographs in Mathematics. Springer, New York, 2013.
  • [Fra17a] Frank, Rupert L and Sabin, Julien. Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates,. American Journal of Mathematics,, 139(6):1649–1691, 2017.
  • [Fra17b] Frank Rupert L and Sabin Julien. Spectral cluster bounds for orthonormal systems and oscillatory integral operators in Schatten spaces,. Advances in Mathematics,, 317(157–192), 2017.
  • [GMX24] Chuanwei Gao, Changxing Miao, and Yakun Xi. Refined lpl^{p} restriction estimate for eigenfunctions on riemannian surfaces,. arXiv preprint arXiv:2411.01577, 2024.
  • [Hu09] Rui Hu. LpL^{p} norm estimates of eigenfunctions restricted to submanifolds. Forum Math., 21(6):1021–1052, 2009.
  • [MSXY16] Changxing Miao, Christopher D. Sogge, Yakun Xi, and Jianwei Yang. Bilinear Kakeya-Nikodym averages of eigenfunctions on compact Riemannian surfaces. J. Funct. Anal., 271(10):2752–2775, 2016.
  • [Rus77] Bernard Russo. On the Hausdorff-Young theorem for integral operators. Pacific J. Math., 68(1):241–253, 1977.
  • [Sim05] Barry Simon. Trace ideals and their applications, volume 120 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, 2005.
  • [Sog88] Sogge, Christopher D. Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds,. Journal of Functional Analysis,, 77(1):123–138, 1988.
  • [Sog11] Christopher D. Sogge. Kakeya-Nikodym averages and LpL^{p}-norms of eigenfunctions. Tohoku Math. J. (2), 63(4):519–538, 2011.
  • [Sog17] Sogge, Christopher D. Fourier integrals in classical analysis,, volume 210. Cambridge University Press, 2017.
  • [SZ02] Christopher D. Sogge and Steve Zelditch. Riemannian manifolds with maximal eigenfunction growth. Duke Mathematical Journal, 114(3):387–437, 2002.
  • [WZ21] Xing Wang and Cheng Zhang. Sharp endpoint estimates for eigenfunctions restricted to submanifolds of codimension 2. Advances in Mathematics, 386:Paper No. 107835, 20, 2021.
  • [Xi19] Yakun Xi. Inner product of eigenfunctions over curves and generalized periods for compact Riemannian surfaces. J. Geom. Anal., 29(3):2674–2701, 2019.
  • [XZ17] Yakun Xi and Cheng Zhang. Improved critical eigenfunction restriction estimates on Riemannian surfaces with nonpositive curvature. Communications in Mathematical Physics, 350(3):1299–1325, 2017.
  • [Zha17] Cheng Zhang. Improved critical eigenfunction restriction estimates on Riemannian manifolds with constant negative curvature. Journal of Functional Analysis, 272(11):4642–4670, 2017.