This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\stackMath

Sharp superlevel set estimates for small cap decouplings of the parabola

Yuqiu Fu, Larry Guth, and Dominique Maldague
Abstract.

We prove sharp bounds for the size of superlevel sets {x2:|f(x)|>α}\{x\in\mathbb{R}^{2}:|f(x)|>\alpha\} where α>0\alpha>0 and f:2f:\mathbb{R}^{2}\to\mathbb{C} is a Schwartz function with Fourier transform supported in an R1R^{-1}-neighborhood of the truncated parabola 1\mathbb{P}^{1}. These estimates imply the small cap decoupling theorem for 1\mathbb{P}^{1} from [DGW20] and the canonical decoupling theorem for 1\mathbb{P}^{1} from [BD15]. New (q,Lp)(\ell^{q},L^{p}) small cap decoupling inequalities also follow from our sharp level set estimates.

In this paper, we further develop the high/low frequency proof of decoupling for the parabola [GMW20] to prove sharp level set estimates which recover and refine the small cap decoupling results for the parabola in [DGW20]. We begin by describing the problem and our results in terms of exponential sums. The main results in full generality are in §1.

For N1N\geq 1, R[N,N2]R\in[N,N^{2}], and 2p2\leq p, let D(N,R,p)D(N,R,p) denote the smallest constant so that

(1) |QR|1QR|ξΞaξe((x,t)(ξ,ξ2))|p𝑑x𝑑tD(N,R,p)Np/2|Q_{R}|^{-1}\int_{Q_{R}}|\sum_{\xi\in\Xi}a_{\xi}e((x,t)\cdot(\xi,\xi^{2}))|^{p}dxdt\leq D(N,R,p)N^{p/2}

for any collection Ξ[1,1]\Xi\subset[-1,1] with |Ξ|N|\Xi|\sim N consisting of 1N\sim\frac{1}{N}-separated points, aξa_{\xi}\in\mathbb{C} with |aξ|1|a_{\xi}|\sim 1, and any cube QR2Q_{R}\subset\mathbb{R}^{2} of sidelength RR.

A corollary of the small cap decoupling theorem for the parabola in [DGW20] is that if 2p2+2s2\leq p\leq 2+2s for R=NsR=N^{s}, then

(2) D(N,R,p)CεNε.D(N,R,p)\leq C_{\varepsilon}N^{\varepsilon}.

This estimate is sharp, up to the CεNεC_{\varepsilon}N^{\varepsilon} factor, which may be seen by Khintchine’s inequality. The range 2p2+2s2\leq p\leq 2+2s is the largest range of pp for which D(N,R,p)D(N,R,p) may be bounded by sub-polynomial factors in NN. The case R=N2R=N^{2} of (2) follows from the canonical 2\ell^{2} decoupling theorem of Bourgain and Demeter for the parabola [BD15]. For R<N2R<N^{2} and the subset Ξ={k/N}k=1N\Xi=\{k/N\}_{k=1}^{N}, the inequality (1) is an estimate for the moments of exponential sums over subsets smaller than the full domain of periodicity (i.e. N2N^{2} in the tt-variable). Bourgain investigated examples of this type of inequality in [Bou17b, Bou17a].

By a pigeonholing argument (see Section 5 of [GMW20]), (2) follows from upper bounds for superlevel sets UαU_{\alpha} defined by

Uα={(x,t)2:|ξΞaξe((x,t)(ξ,ξ2))|>α}.U_{\alpha}=\{(x,t)\in\mathbb{R}^{2}:|\sum_{\xi\in\Xi}a_{\xi}e((x,t)\cdot(\xi,\xi^{2}))|>\alpha\}.

In particular, (2) is equivalent, up to a logN\log N factor, to proving that for any α>0\alpha>0 and for R=NsR=N^{s},

(3) α2+2s|UαQR|CεRεN1+sR2\alpha^{2+2s}|U_{\alpha}\cap Q_{R}|\leq C_{\varepsilon}R^{\varepsilon}N^{1+s}R^{2}

when Ξ\Xi, aξa_{\xi} satisfy the hypotheses following (1). In this paper, we improve the above superlevel set estimate for all α>0\alpha>0 strictly between N1/2N^{1/2} and NN.

Theorem 1.

Let R[N,N2]R\in[N,N^{2}]. For any ε>0\varepsilon>0, there exists Cε<C_{\varepsilon}<\infty such that

|UαQR|CεNε{N2Rα4ξΞ|aξ|2ifα2>RN2R2α6ξΞ|aξ|2ifNα2RR2ifα2<N.|U_{\alpha}\cap Q_{R}|\leq C_{\varepsilon}N^{\varepsilon}\begin{cases}\frac{N^{2}R}{\alpha^{4}}\sum\limits_{\xi\in\Xi}|a_{\xi}|^{2}\quad&\text{if}\quad\alpha^{2}>R\\ \frac{N^{2}R^{2}}{\alpha^{6}}\sum\limits_{\xi\in\Xi}|a_{\xi}|^{2}\quad&\text{if}\quad N\leq\alpha^{2}\leq R\\ R^{2}\quad&\text{if}\quad\alpha^{2}<N.\end{cases}

whenever Ξ[1,1]\Xi\subset[-1,1] is a 1N\gtrsim\frac{1}{N}-separated subset, |aξ|1|a_{\xi}|\leq 1 for each ξΞ\xi\in\Xi, and QR2Q_{R}\subset\mathbb{R}^{2} is a cube of sidelength RR.

Our superlevel set estimates are essentially sharp, which follows from analyzing the function F(x,t)=n=1Ne((x,t)(nN,n2N2))F(x,t)=\sum_{n=1}^{N}e((x,t)\cdot(\frac{n}{N},\frac{n^{2}}{N^{2}})). It is not known whether the implicit constant in the upper bound of (2) goes to infinity with NN except in the case that p=6p=6 and s=2s=2, when the same example F(x,t)=n=1Ne((x,t)(nN,n2N2))F(x,t)=\sum_{n=1}^{N}e((x,t)\cdot(\frac{n}{N},\frac{n^{2}}{N^{2}})) shows that D(N,N2,6)(logN)D(N,N^{2},6)\gtrsim(\log N) [Bou93]. Roughly, the argument is that for each dyadic value α[N3/4,N]\alpha\in[N^{3/4},N], one can show by counting the “major arcs” that

α6{(x,t)QN2:|F(x,t)|α}|N4N3.\alpha^{6}\{(x,t)\in Q_{N^{2}}:|F(x,t)|\sim\alpha\}|\gtrsim N^{4}\cdot N^{3}.

Since there are logN\sim\log N values of α\alpha, the lower bound for QN2|F|6\int_{Q_{N^{2}}}|F|^{6} follows. Theorem 1 implies that the corresponding superlevel set estimates (3) are not sharp for 1s<21\leq s<2, unless αN\alpha\sim N or α2N\alpha^{2}\sim N, which leads to the following conjecture.

Conjecture 2.

Let s[1,2)s\in[1,2) and 2p2+2s2\leq p\leq 2+2s. There exists C(s)>0C(s)>0 so that

D(N,Ns,p)C(s).D(N,N^{s},p)\leq C(s).

A more refined version of Theorem 1 leads to the following essentially sharp (q,Lp)(\ell^{q},L^{p}) small cap decoupling theorem, stated here for general exponential sums.

Corollary 1.

Let 3p+1q1,\frac{3}{p}+\frac{1}{q}\leq 1, and let R[N,N2].R\in[N,N^{2}]. Then for each ε>0\varepsilon>0, there exists Cε<C_{\varepsilon}<\infty so that

ξΞaξe((x,t)(ξ,ξ2))Lp(BR)CεNε(N11p1qR1p+N121qR2p)(ξ|aξ|q)1/q.\|\sum_{\xi\in\Xi}a_{\xi}e((x,t)\cdot(\xi,\xi^{2}))\|_{L^{p}(B_{R})}\leq C_{\varepsilon}N^{\varepsilon}(N^{1-\frac{1}{p}-\frac{1}{q}}R^{\frac{1}{p}}+N^{\frac{1}{2}-\frac{1}{q}}R^{\frac{2}{p}})(\sum_{\xi}|a_{\xi}|^{q})^{1/q}.

In the above corollary, the assumptions are that Ξ\Xi is a 1N\gtrsim\frac{1}{N}-separated subset of [1,1][-1,1] and that aξa_{\xi}\in\mathbb{C}.

1. Main results

We state our main results in the more general set-up for decoupling. Let 1\mathbb{P}^{1} denote the truncated parabola

{(t,t2):|t|1}\{(t,t^{2}):|t|\leq 1\}

and write 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) for the R1R^{-1}-neighborhood of 1\mathbb{P}^{1} in 2\mathbb{R}^{2}, where R2R\geq 2. For a partition {γ}\{\gamma\} of 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) into almost rectangular blocks, an (2,Lp)(\ell^{2},L^{p}) decoupling inequality is

(4) fLp(BR)D(R,p)(γfγLp(2)2)1/2\|f\|_{L^{p}(B_{R})}\leq D(R,p)(\sum_{\gamma}\|f_{\gamma}\|_{L^{p}(\mathbb{R}^{2})}^{2})^{1/2}

in which f:2f:\mathbb{R}^{2}\to\mathbb{C} is a Schwartz function with suppf^𝒩R1(1)\mathrm{supp}\widehat{f}\subset\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) and fγf_{\gamma} means the Fourier projection onto γ\gamma, defined precisely below. When we refer to canonical caps or to canonical decoupling, we mean that γ\gamma are approximately R1/2×R1R^{-1/2}\times R^{-1} blocks corresponding to the 2\ell^{2}-decoupling paper of [BD15]. In this paper, we allow γ\gamma to be approximate Rβ×R1R^{-\beta}\times R^{-1} blocks, where 12β1\frac{1}{2}\leq\beta\leq 1. This is the “small cap” regime studied in [DGW20]. We also consider (q,Lp)(\ell^{q},L^{p}) decoupling for small caps, which replaces (γfγp2)1/2(\sum_{\gamma}\|f_{\gamma}\|_{p}^{2})^{1/2} by (γfγpq)1/q(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{1/q} in the decoupling inequality above (see Corollary 5).

To precisely discuss the collection {γ}\{\gamma\}, fix a β[12,1]\beta\in[\frac{1}{2},1]. Let 𝒫=𝒫(R,β)={γ}\mathcal{P}=\mathcal{P}(R,\beta)=\{\gamma\} be the partition of 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) given by

(5) |k|Rβ2{(x,t)𝒩R1(1):kRβ1x<(k+1)Rβ1}\bigsqcup_{|k|\leq\lceil R^{\beta}\rceil-2}\{(x,t)\in\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}):k\lceil R^{\beta}\rceil^{-1}\leq x<(k+1)\lceil R^{\beta}\rceil^{-1}\}

and the two end pieces

{(x,t)𝒩R1(1):x<1+Rβ1}{(x,t)𝒩R1(1):1Rβ1x}.\{(x,t)\in\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}):x<-1+\lceil R^{\beta}\rceil^{-1}\}\sqcup\{(x,t)\in\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}):1-\lceil R^{\beta}\rceil^{-1}\leq x\}.

For a Schwartz function f:2f:\mathbb{R}^{2}\to\mathbb{C} with suppf^𝒩R1(1)\mathrm{supp}\widehat{f}\subset\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}), define for each γ𝒫(R,β)\gamma\in\mathcal{P}(R,\beta)

fγ(x):=γf^(ξ)e2πixξ𝑑ξ.f_{\gamma}(x):=\int_{\gamma}\widehat{f}(\xi)e^{2\pi ix\cdot\xi}d\xi.

For a,b>0a,b>0, the notation aba\lesssim b means that aCba\leq Cb where C>0C>0 is a universal constant whose definition varies from line to line, but which only depends on fixed parameters of the problem. Also, aba\sim b means C1baCbC^{-1}b\leq a\leq Cb for a universal constant CC.

Let Uα:={x2:|f(x)|α}U_{\alpha}:=\{x\in\mathbb{R}^{2}:|f(x)|\geq\alpha\}. In Section 5 of [GMW20], through a wave packet decomposition and series of pigeonholing steps, bounds for D(R,p)D(R,p) in (4) follow (with an additional power of (logR)(\log R)) from bounds on the constant C(R,p)C(R,p) in

αp|Uα|C(R,p)(#{γ:fγ0})p21γfγ22\alpha^{p}|U_{\alpha}|\leq C(R,p)(\#\{\gamma:f_{\gamma}\not=0\})^{\frac{p}{2}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}

for any α>0\alpha>0 and under the additional assumptions that fγ1\|f_{\gamma}\|_{\infty}\lesssim 1, fγppfγ22\|f_{\gamma}\|_{p}^{p}\sim\|f_{\gamma}\|_{2}^{2} for each γ\gamma. Thus decoupling bounds follow from upper bounds on the superlevel set |Uα||U_{\alpha}|. In this paper, we consider the question: given α>0\alpha>0 and a partition {γ}\{\gamma\}, how large can |Uα||U_{\alpha}| be, varying over functions ff satisfying fγ1\|f_{\gamma}\|_{\infty}\lesssim 1 for each γ\gamma? We answer this question in the following theorem.

Theorem 3.

Let β[12,1]\beta\in[\frac{1}{2},1], R2R\geq 2. Let f:2f:\mathbb{R}^{2}\to\mathbb{C} be a Schwartz function with Fourier transform supported in 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) satisfying fγ1\|f_{\gamma}\|_{\infty}\leq 1 for all γ𝒫(R,β)\gamma\in\mathcal{P}(R,\beta). Then for any α>0\alpha>0,

|Uα[R,R]2|CεRε{R2β1α4γfγL2(2)2ifα2>RR2βα6γfγL2(2)2ifRβα2RR2ifα2<Rβ.|U_{\alpha}\cap[-R,R]^{2}|\leq C_{\varepsilon}R^{\varepsilon}\begin{cases}\frac{R^{2\beta-1}}{\alpha^{4}}\sum\limits_{\gamma}\|f_{\gamma}\|_{L^{2}(\mathbb{R}^{2})}^{2}\quad&\text{if}\quad\alpha^{2}>R\\ \frac{R^{2\beta}}{\alpha^{6}}\sum\limits_{\gamma}\|f_{\gamma}\|_{L^{2}(\mathbb{R}^{2})}^{2}\quad&\text{if}\quad R^{\beta}\leq\alpha^{2}\leq R\\ R^{2}\quad&\text{if}\quad\alpha^{2}<R^{\beta}.\end{cases}

Each bound in Theorem 3 is sharp, up to the CεRεC_{\varepsilon}R^{\varepsilon} factor, which we show in §2.

Define notation for a distribution function for the Fourier support of a Schwartz function ff with Fourier transform supported in 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) as follows. For each 0s20\leq s\leq 2, let

λ(s)=supω(s)#{γ:γω(s),fγ0}\lambda(s)=\sup_{\omega(s)}\#\{\gamma:\gamma\cap\omega(s)\not=\emptyset,\,\,f_{\gamma}\not=0\}

where ω(s)\omega(s) is any arc of 1\mathbb{P}^{1} with projection onto the ξ1\xi_{1}-axis equal to an interval of length ss. The following theorem implies Theorem 3 and replaces factors of RβR^{\beta} in the upper bounds from Theorem 3 by expressions involving λ()\lambda(\cdot), which see the actual Fourier support of the input function ff.

Theorem 4.

Let β[12,1]\beta\in[\frac{1}{2},1], R2R\geq 2. For any ff with Fourier transform supported in 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) satisfying fγ1\|f_{\gamma}\|_{\infty}\lesssim 1 for each γ𝒫(R,β)\gamma\in\mathcal{P}(R,\beta),

|Uα|CεRε{1α4max𝑠λ(s1R1)λ(s)γfγ22ifα2>λ(1)2maxsλ(s1R1)λ(s)λ(1)2α6γfγ22ifα2λ(1)2maxsλ(s1R1)λ(s)|U_{\alpha}|\leq C_{\varepsilon}R^{\varepsilon}\begin{cases}\frac{1}{\alpha^{4}}\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad\alpha^{2}>\frac{\lambda(1)^{2}}{\max_{s}\lambda(s^{-1}R^{-1})\lambda(s)}\\ \frac{\lambda(1)^{2}}{\alpha^{6}}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad\alpha^{2}\leq\frac{\lambda(1)^{2}}{\max_{s}\lambda(s^{-1}R^{-1})\lambda(s)}\end{cases}

in which the maxima are taken over dyadic ss, RβsR1/2R^{-\beta}\leq s\leq R^{-1/2}.

Corollary 5 ((lq,Lp)(l^{q},L^{p}) small cap decoupling).

Let 3p+1q1\frac{3}{p}+\frac{1}{q}\leq 1. Then

fLp(BR)CεRε(Rβ(11q)1p(1+β)+Rβ(121q))(γfγLp(2)q)1/q\|f\|_{L^{p}(B_{R})}\leq C_{\varepsilon}R^{\varepsilon}(R^{\beta(1-\frac{1}{q})-\frac{1}{p}(1+\beta)}+R^{\beta(\frac{1}{2}-\frac{1}{q})})(\sum_{\gamma}\|f_{\gamma}\|_{L^{p}(\mathbb{R}^{2})}^{q})^{1/q}

whenever ff is a Schwartz function with Fourier transform supported in 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}).

The powers of RR in the upper bound come from considering two natural sharp examples for the ratio fLp(BR)p/(γfγpq)p/q\|f\|_{L^{p}(B_{R})}^{p}/(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{p/q}. The first is the square root cancellation example, where |fγ|χBR|f_{\gamma}|\sim\chi_{B_{R}} for all γ\gamma and f=γeγfγf=\sum_{\gamma}e_{\gamma}f_{\gamma} where eγe_{\gamma} are ±1\pm 1 signs chosen (using Khintchine’s inequality) so that fLp(BR)pRβp/2R2\|f\|_{L^{p}(B_{R})}^{p}\sim R^{\beta p/2}R^{2}.

fpp/(γfγpq)p/q(Rβp/2R2)/(Rβp/qR2)Rβp(121q).\|f\|_{p}^{p}/(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{p/q}\gtrsim(R^{\beta p/2}R^{2})/(R^{\beta p/q}R^{2})\sim R^{\beta p(\frac{1}{2}-\frac{1}{q})}.

The second example is the constructive interference example. Let fγ=R1+β\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxγf_{\gamma}=R^{1+\beta}\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\gamma} where ηγ\eta_{\gamma} is a smooth bump function approximating χγ\chi_{\gamma}. Since |f|=|γfγ||f|=|\sum_{\gamma}f_{\gamma}| is approximately constant on unit balls and |f(0)|Rβ|f(0)|\sim R^{\beta}, we have

fpp/(γfγpq)p/q(Rβp)/(Rβp/qR1+β)Rβp(11q)1β.\|f\|_{p}^{p}/(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{p/q}\gtrsim(R^{\beta p})/(R^{\beta p/q}R^{1+\beta})\sim R^{\beta p(1-\frac{1}{q})-1-\beta}.

There is one more example which may dominate the ratio: The block example is f=R1+βγθ\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxγf=R^{1+\beta}\sum_{\gamma\subset\theta}\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\gamma} where θ\theta is a canonical R1/2×R1R^{-1/2}\times R^{-1} block. Since f=fθf=f_{\theta} and |fθ||f_{\theta}| is approximately constant on dual R1/2×R\sim R^{1/2}\times R blocks θ\theta^{*}, we have

αp|Uα|(#γ)pqfγ22R(β12)pR32R(β12)pqR1+β=R(β12)p(11q)+12β.\frac{\alpha^{p}|U_{\alpha}|}{(\#\gamma)^{\frac{p}{q}}\|f_{\gamma}\|_{2}^{2}}\gtrsim\frac{R^{(\beta-\frac{1}{2})p}R^{\frac{3}{2}}}{R^{(\beta-\frac{1}{2})\frac{p}{q}}R^{1+\beta}}=R^{(\beta-\frac{1}{2})p(1-\frac{1}{q})+\frac{1}{2}-\beta}.

One may check that the constructive interference examples dominate the block example when 3p+1q1\frac{3}{p}+\frac{1}{q}\leq 1. We do not investigate (lq,Lp)(l^{q},L^{p}) small cap decoupling in the range 3p+1q>1\frac{3}{p}+\frac{1}{q}>1 in the present paper.

The paper is organized as follows. In §2, we demonstrate that Theorem 3 is sharp using an exponential sum example. In §3, we show how Theorem 3 follows easily from Theorem 4 and how after some pigeonholing steps, so does Corollary 5. Then in §4, we develop the multi-scale high/low frequency tools we use in the proof of Theorem 4. These tools are very similar to those developed in [GMW20]. It appears that a more careful version of the proof of Theorem 4 could also replace the CεRεC_{\varepsilon}R^{\varepsilon} factor by a power of (logR)(\log R), as is done for canonical decoupling in [GMW20]. Finally, in §5, we prove a bilinear version of Theorem 4 and then reduce to the bilinear case to finish the proof.

LG is supported by a Simons Investigator grant. DM is supported by the National Science Foundation under Award No. 2103249.

2. A sharp example

Because we will show that Theorem 4 implies Theorem 3, it suffices to show that Theorem 3 is sharp, which we mean up to a CεRεC_{\varepsilon}R^{\varepsilon} factor. Write N=RβN=\lceil R^{\beta}\rceil. The function achieving the sharp bounds is

F(x1,x2)=k=1Ne(kNx1+k2N2x2)η(x1,x2),F(x_{1},x_{2})=\sum_{k=1}^{N}e(\frac{k}{N}x_{1}+\frac{k^{2}}{N^{2}}x_{2})\eta(x_{1},x_{2}),

where η\eta is a Schwartz function satisfying η1\eta\sim 1 on [R,R]2[-R,R]^{2} and supp η^BR1\text{supp }\widehat{\eta}\subset B_{R^{-1}}. We will bound the set

Uα={(x1,x2)[R,R]2:|F(x1,x2)|α}.U_{\alpha}=\{(x_{1},x_{2})\in[-R,R]^{2}:|F(x_{1},x_{2})|\geq\alpha\}.

Case 1: R<α2R<\alpha^{2}.

Suppose that αN\alpha\sim N and note that F(0,0)=NF(0,0)=N and |F(0,0)|N|F(0,0)|\sim N when |(x1,x2)|<1103|(x_{1},x_{2})|<\frac{1}{10^{3}}. Using periodicity in the x1x_{1} variable, there are R/N\sim R/N many other heavy balls where |F(x)|N|F(x)|\sim N in [R,R]2[-R,R]^{2}. For α\alpha in the range suppose that R<α2<N2R<\alpha^{2}<N^{2}, we will show that UαU_{\alpha} is dominated by larger neighborhoods of the heavy balls.

Let r=N2/α2r=N^{2}/\alpha^{2} and assume without loss of generality that rr is in the range Rε<r<N2/RR2β1NR^{\varepsilon}<r<N^{2}/R\sim R^{2\beta-1}\ll N. The upper bound for |Uα||U_{\alpha}| in Theorem 3 for this range is

|Uα|CεRεN2α4RγFγ22CεRεN2α4RNR2.|U_{\alpha}|\leq C_{\varepsilon}R^{\varepsilon}\frac{N^{2}}{\alpha^{4}R}\sum_{\gamma}\|F_{\gamma}\|_{2}^{2}\sim C_{\varepsilon}R^{\varepsilon}\frac{N^{2}}{\alpha^{4}R}NR^{2}.

To demonstrate that this inequality is sharp, by periodicity in x1x_{1}, it suffices to show that |UαBr|r2|U_{\alpha}\cap B_{r}|\gtrsim r^{2}. Let ϕr1\phi_{r^{-1}} be a nonnegative bump function supported in Br1/2B_{r^{-1}/2} with ϕr11\phi_{r^{-1}}\gtrsim 1 on Br1/4B_{r^{-1}/4}. Let ηr=r4(ϕr1ϕr1)\savestack\tmpbox\stretchto\scaleto\scalerel[] 0.5ex\stackon[1pt]\tmpbox\eta_{r}=r^{4}({\phi_{r^{-1}}*\phi_{r^{-1}}})^{\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\,\,\,\,}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{3.01389pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\,\,\,\,}{\scalebox{-1.0}{\tmpbox}}} and analyze the L2L^{2} norm FL2(ηr)\|F\|_{L^{2}(\eta_{r})}. By Plancherel’s,

FL2(ηr)2=|F|2ηr|k=1Ne(kNx1+k2N2x2)|2ηr(x1,x2)\displaystyle\|F\|_{L^{2}(\eta_{r})}^{2}=\int|F|^{2}\eta_{r}\sim\int|\sum_{k=1}^{N}e(\frac{k}{N}x_{1}+\frac{k^{2}}{N^{2}}x_{2})|^{2}\eta_{r}(x_{1},x_{2})
=k=1Nk=1Nη^r(ξ(kkN,k2(k)2N2))NN/rr2=rN2.\displaystyle=\sum_{k=1}^{N}\sum_{k^{\prime}=1}^{N}\widehat{\eta}_{r}(\xi(\frac{k-k^{\prime}}{N},\frac{k^{2}-(k^{\prime})^{2}}{N^{2}}))\sim N\cdot N/r\cdot r^{2}=rN^{2}.

Next we bound FL4(BRεr)\|F\|_{L^{4}(B_{R^{\varepsilon}r})} above. It follows from the local linear restriction statement (see [Dem20] Theorem 1.14, Prop 1.27, and Exercise 1.32)

fL4(BRεr)4CεRO(ε)r3f^L4(2)4\|f\|_{L^{4}(B_{R^{\varepsilon}r})}^{4}\lesssim C_{\varepsilon}R^{O(\varepsilon)}r^{-3}\|\widehat{f}\|_{L^{4}(\mathbb{R}^{2})}^{4}

that

FL4(BRεr)4\displaystyle\|F\|_{L^{4}(B_{R^{\varepsilon}r})}^{4} k=1Ne(kNx1+k2N2x2)ηr(x1,x2)L4(BRεr)4\displaystyle\sim\|\sum_{k=1}^{N}e(\frac{k}{N}x_{1}+\frac{k^{2}}{N^{2}}x_{2})\eta_{r}(x_{1},x_{2})\|_{L^{4}(B_{R^{\varepsilon}r})}^{4}
CεRεr3k=1Nη^r(ξ(kN,k2N2))L4(2)4.\displaystyle\lesssim C_{\varepsilon}R^{\varepsilon}r^{-3}\|\sum_{k=1}^{N}\widehat{\eta}_{r}(\xi-(\frac{k}{N},\frac{k^{2}}{N^{2}}))\|_{L^{4}(\mathbb{R}^{2})}^{4}.

The L4L^{4} norm on the right hand side is bounded above by

B2|k=1Nη^r(ξ(kN,k2N2))|4𝑑ξ\displaystyle\int_{B_{2}}|\sum_{k=1}^{N}\widehat{\eta}_{r}(\xi-(\frac{k}{N},\frac{k^{2}}{N^{2}}))|^{4}d\xi (Nr1)3B2k=1N|η^r(ξ(kN,k2N2))|4dξ\displaystyle\lesssim(Nr^{-1})^{3}\int_{B_{2}}\sum_{k=1}^{N}|\widehat{\eta}_{r}(\xi-(\frac{k}{N},\frac{k^{2}}{N^{2}}))|^{4}d\xi
(Nr1)3(r2)3B2k=1N|η^r(ξ(kN,k2N2))|dξN4r3.\displaystyle\lesssim(Nr^{-1})^{3}(r^{2})^{3}\int_{B_{2}}\sum_{k=1}^{N}|\widehat{\eta}_{r}(\xi-(\frac{k}{N},\frac{k^{2}}{N^{2}}))|d\xi\sim N^{4}r^{3}.

This leads to the upper bound FL4(BRεr)4(logR)N4\|F\|_{L^{4}(B_{R^{\varepsilon}r})}^{4}\lesssim(\log R)N^{4}.

Finally, by dyadic pigeonholing, there is some λ[R1000,N]\lambda\in[R^{-1000},N] so that FL2(ηr)2(logR)λ2|{xBRεr:|F(x)|λ}|+CεR2000\|F\|_{L^{2}(\eta_{r})}^{2}\lesssim(\log R)\lambda^{2}|\{x\in B_{R^{\varepsilon}r}:|F(x)|\sim\lambda\}|+C_{\varepsilon}R^{-2000}. The lower bound for FL2(ηr)2\|F\|_{L^{2}(\eta_{r})}^{2} and the upper bound for FL4(BRεr)4\|F\|_{L^{4}(B_{R^{\varepsilon}r})}^{4} tell us that

λ2rN2λ2FL2(ηr)2\displaystyle\lambda^{2}rN^{2}\sim\lambda^{2}\|F\|_{L^{2}(\eta_{r})}^{2} (logR)λ4|{xBRεr:|F(x)|λ}|+Cελ4R2000\displaystyle\lesssim(\log R)\lambda^{4}|\{x\in B_{R^{\varepsilon}r}:|F(x)|\sim\lambda\}|+C_{\varepsilon}\lambda^{4}R^{-2000}
(logR)FL4(BRεr)4+Cελ4R2000CεRεN4+Cελ4R2000.\displaystyle\lesssim(\log R)\|F\|_{L^{4}(B_{R^{\varepsilon}r})}^{4}+C_{\varepsilon}\lambda^{4}R^{-2000}\lesssim C_{\varepsilon}R^{\varepsilon}N^{4}+C_{\varepsilon}\lambda^{4}R^{-2000}.

Conclude that λ2CεRεN2/rCεRεα2\lambda^{2}\lesssim C_{\varepsilon}R^{\varepsilon}N^{2}/r\sim C_{\varepsilon}R^{\varepsilon}\alpha^{2}. Assuming RR is sufficiently large depending on ε\varepsilon,

rN2(logR)λ2|{xBRεr:|F(x)|λ}|CεRε(N2/r)|{xBRεr:|F(x)|λ}|,rN^{2}\sim(\log R)\lambda^{2}|\{x\in B_{R^{\varepsilon}r}:|F(x)|\sim\lambda\}|\lesssim C_{\varepsilon}R^{\varepsilon}(N^{2}/r)|\{x\in B_{R^{\varepsilon}r}:|F(x)|\sim\lambda\}|,

so |{xBRεr:|F(x)|λ}|Cε1Rεr2|\{x\in B_{R^{\varepsilon}r}:|F(x)|\sim\lambda\}|\gtrsim C_{\varepsilon}^{-1}R^{-\varepsilon}r^{2} and λ2Cε1RεN2/rCε1Rεα2\lambda^{2}\gtrsim C_{\varepsilon}^{-1}R^{-\varepsilon}N^{2}/r\sim C_{\varepsilon}^{-1}R^{-\varepsilon}\alpha^{2}.

Case 2: Rβ<α2RR^{\beta}<\alpha^{2}\leq R. Let qq, aa, and bb be integers satisfying

(6) q odd,1bqN2/3,(b,q)=1,and0aq.q\text{ odd},\quad 1\leq b\leq q\leq N^{2/3},\quad(b,q)=1,\quad\text{and}\quad 0\leq a\leq q.

Define the set M(q,a,b)M(q,a,b) to be

M(q,a,b):={(x1,x2)[0,N]×[0,N2]:|x1aqN|11010,|x2bqN2|11010}.M(q,a,b):=\{(x_{1},x_{2})\in[0,N]\times[0,N^{2}]:|x_{1}-\frac{a}{q}N|\leq\frac{1}{10^{10}},\quad|x_{2}-\frac{b}{q}N^{2}|\leq\frac{1}{10^{10}}\}.
Lemma 6.

For each (q,a,b)(q,a,b)(q,a,b)\not=(q^{\prime},a^{\prime},b^{\prime}), both tuples satisfying (6), M(q,a,b)M(q,a,b)=M(q,a,b)\cap M(q^{\prime},a^{\prime},b^{\prime})=\emptyset.

Proof.

If bq=bq\frac{b}{q}=\frac{b^{\prime}}{q^{\prime}}, then using the relatively prime part of (6), b=bb=b^{\prime} and q=qq=q^{\prime}. Then we must have aaa\not=a^{\prime}, meaning that if x1x_{1} is the first coordinate of a point in M(q,a,b)M(q,a,b)M(q,a,b)\cap M(q,a^{\prime},b^{\prime}), then

21010|x1aqN|+|x1aqN||aa|NqN1/3\frac{2}{10^{10}}\geq|x_{1}-\frac{a}{q}N|+|x_{1}-\frac{a^{\prime}}{q}N|\geq\frac{|a-a^{\prime}|N}{q}\geq N^{1/3}

which is clearly a contradiction. The alternative is that bqbq\frac{b}{q}\not=\frac{b^{\prime}}{q^{\prime}} in which case for x2x_{2} the second coordinate of a point in M(q,a,b)M(q,a,b)M(q,a,b)\cap M(q^{\prime},a^{\prime},b^{\prime}),

21010|x2bqN2|+|x2bqN2||bqbq|N2qqN2qqN2/3,\frac{2}{10^{10}}\geq|x_{2}-\frac{b}{q}N^{2}|+|x_{2}-\frac{b^{\prime}}{q^{\prime}}N^{2}|\geq\frac{|b^{\prime}q-bq^{\prime}|N^{2}}{qq^{\prime}}\geq\frac{N^{2}}{qq^{\prime}}\geq N^{2/3},

which is another contradiction. ∎

Lemma 7.

For each (x1,x2)M(q,a,b)(x_{1},x_{2})\in M(q,a,b), |F(x1,x2)|Nq1/2|F(x_{1},x_{2})|\sim\frac{N}{q^{1/2}}, here meaning within a factor of 44.

Proof.

This follows from Proposition 13.4 in [Dem20]. ∎

Proposition 8.

Let Rβ<α2RR^{\beta}<\alpha^{2}\leq R be given. There exists v[0,N2]v\in[0,N^{2}] satisfying

|{(x1,x2)[0,R]2:|F(x1,x2+v))|α}|R2N3α6.|\{(x_{1},x_{2})\in[0,R]^{2}:|F(x_{1},x_{2}+v))|\geq\alpha\}|\gtrsim\frac{R^{2}N^{3}}{\alpha^{6}}.
Proof.

First note that by NN-periodicity in x1x_{1},

|{(x1,x2)[0,R]2:|F(x1,x2+v))|α}|RN|{(x1,x2)([0,N]×[0,R]):|F(x1,x2+v))|α}|.|\{(x_{1},x_{2})\in[0,R]^{2}:|F(x_{1},x_{2}+v))|\geq\alpha\}|\gtrsim\frac{R}{N}|\{(x_{1},x_{2})\in([0,N]\times[0,R]):|F(x_{1},x_{2}+v))|\geq\alpha\}|.

The function FF is N2N^{2} periodic in x2x_{2}, but R<N2R<N^{2} so we need to find v[0,N2]v\in[0,N^{2}] making the set in the lower bound above largest.

By Lemma 7, it suffices to count the tuples (q,a,b)(q,a,b) satisfying (6), qN2/(16α2)q\leq N^{2}/(16\alpha^{2}), and |bqN2v|R|\frac{b}{q}N^{2}-v|\leq R, where vv is to be determined. Begin by considering the distribution of points bq\frac{b}{q} in [0,1][0,1], where 1bqN2α21\leq b\leq q\sim\frac{N^{2}}{\alpha^{2}}, (b,q)=1(b,q)=1. As in the proof of Lemma 6, if bqbq\frac{b}{q}\not=\frac{b^{\prime}}{q^{\prime}}, then |bqbq|α2N4|\frac{b}{q}-\frac{b^{\prime}}{q^{\prime}}|\gtrsim\frac{\alpha^{2}}{N^{4}}. Fix b0,q0b_{0},q_{0} and consider the set {bq:bq=b0q0,1bqN2/α2}\{\frac{b}{q}:\frac{b}{q}=\frac{b_{0}}{q_{0}},\quad 1\leq b\leq q\sim N^{2}/\alpha^{2}\}. Let qmq_{m} be maximal such that for some 1bmqmN2/α21\leq b_{m}\leq q_{m}\sim N^{2}/\alpha^{2} and (bm,qm)=1(b_{m},q_{m})=1, bmqm=b0q0\frac{b_{m}}{q_{m}}=\frac{b_{0}}{q_{0}}. Then q0=qmkq_{0}=q_{m}-k for some integer kk and bm(qmk)=b0qmb_{m}(q_{m}-k)=b_{0}q_{m}. Rearrange to get qm(1b0bm)=kq_{m}(1-\frac{b_{0}}{b_{m}})=k. Thus q0=qmb0bmN2/α2q_{0}=q_{m}\frac{b_{0}}{b_{m}}\sim N^{2}/\alpha^{2}, which implies that b0bm1\frac{b_{0}}{b_{m}}\sim 1. Conclude that there are qN2/α2φ(q)\gtrsim\sum_{q\sim N^{2}/\alpha^{2}}\varphi(q) many unique points bq\frac{b}{q} in [0,1][0,1] satisfying our prescribed conditions for φ\varphi denoting the Euler totient function. Use Theorem 3.7 in [Apo76] to estimate qN2/α2φ(q)N4/α4\sum_{q\sim N^{2}/\alpha^{2}}\varphi(q)\sim N^{4}/\alpha^{4}, as long as N/αN/\alpha is larger than some absolute constant. By the pigeonhole principle, there exists some R/N2R/N^{2} interval I[0,1]I\subset[0,1] containing N4α4RN2\sim\lceil\frac{N^{4}}{\alpha^{4}}\frac{R}{N^{2}}\rceil many points bq\frac{b}{q} with 1bqN2/α21\leq b\leq q\sim N^{2}/\alpha^{2}, (b,q)=1(b,q)=1. There are also N2/α2\sim N^{2}/\alpha^{2} many choices for aa to complete the tuple (q,a,b)(q,a,b) satisfying (6). Let cc denote the center of II and take v=cN2v=cN^{2} in the proposition statement and conclude that

|{(x1,x2)([0,N]×[0,R]):|F(x1,x2+v))|α}|RN4α6|\{(x_{1},x_{2})\in([0,N]\times[0,R]):|F(x_{1},x_{2}+v))|\geq\alpha\}|\gtrsim\frac{RN^{4}}{\alpha^{6}}

to finish the proof. ∎

Note that Proposition 8 shows the sharpness of Theorem 3 in the range Rβ<αRR^{\beta}<\alpha\leq R since

R2βα6γFγ22R2βα6RβR2=N3R2α6.\frac{R^{2\beta}}{\alpha^{6}}\sum_{\gamma}\|F_{\gamma}\|_{2}^{2}\sim\frac{R^{2\beta}}{\alpha^{6}}R^{\beta}R^{2}=\frac{N^{3}R^{2}}{\alpha^{6}}.

The sharpness of the trivial estimate |Uα[R,R]2|R2|U_{\alpha}\cap[-R,R]^{2}|\lesssim R^{2} in the range α2<Rβ\alpha^{2}<R^{\beta} follows from Case 2 since for α2<Rβ\alpha^{2}<R^{\beta},

|Uα[R,R]2||URβ/2[R,R]2|R2β(Rβ/2)6γFγ22R2.|U_{\alpha}\cap[-R,R]^{2}|\geq|U_{R^{\beta/2}}\cap[-R,R]^{2}|\gtrsim\frac{R^{2\beta}}{(R^{\beta/2})^{6}}\sum_{\gamma}\|F_{\gamma}\|_{2}^{2}\sim R^{2}.

3. Implications of Theorem 4

Proof of Theorem 3 from Theorem 4.

First suppose that α2>λ(1)2maxsλ(s1R1)λ(s)\alpha^{2}>\frac{\lambda(1)^{2}}{\max_{s}\lambda(s^{-1}R^{-1})\lambda(s)}. Then

maxsλ(s1R1)λ(s)\displaystyle\max_{s}\lambda(s^{-1}R^{-1})\lambda(s) maxs(s1R1Rβ)(sRβ)=R2β1\displaystyle\lesssim\max_{s}(s^{-1}R^{-1}R^{\beta})(sR^{\beta})=R^{2\beta-1}
{R2β1ifα2>RR2βα2ifRβα2R.\displaystyle\leq\begin{cases}R^{2\beta-1}\quad&\text{if}\quad\alpha^{2}>R\\ \frac{R^{2\beta}}{\alpha^{2}}\quad&\text{if}\quad R^{\beta}\leq\alpha^{2}\leq R\end{cases}.

Now suppose that α2λ(1)2maxsλ(s1R1)λ(s)\alpha^{2}\leq\frac{\lambda(1)^{2}}{\max_{s}\lambda(s^{-1}R^{-1})\lambda(s)}. Then

λ(1)2α2\displaystyle\frac{\lambda(1)^{2}}{\alpha^{2}} {R2β1ifα2>RR2βα2ifRβα2R.\displaystyle\lesssim\begin{cases}R^{2\beta-1}\quad&\text{if}\quad\alpha^{2}>R\\ \frac{R^{2\beta}}{\alpha^{2}}\quad&\text{if}\quad R^{\beta}\leq\alpha^{2}\leq R\end{cases}.

Proof of Corollary 5 from Theorem 4.

To see how this corollary follows from Theorem 4, first use an analogous series of pigeonholing steps as in Section 5 of [GMW20] to reduce to the case where fγ1\|f_{\gamma}\|_{\infty}\lesssim 1 for all γ\gamma and there exists C>0C>0 so that fγpp\|f_{\gamma}\|_{p}^{p} is either 0 or comparable to CC for all γ\gamma. Split the integral

|f|p=R1000αRβUα|f|p+|f|<R1000|f|p\int|f|^{p}=\sum_{R^{-1000}\leq\alpha\lesssim R^{\beta}}\int_{U_{\alpha}}|f|^{p}+\int_{|f|<R^{-1000}}|f|^{p}

where Uα={x:|f(x)|α}U_{\alpha}=\{x:|f(x)|\sim\alpha\} and assume via dyadic pigeonholing that

|f|pαp|Uα|\int|f|^{p}\lesssim\alpha^{p}|U_{\alpha}|

(ignoring the case that the set where |f|R1000|f|\leq R^{-1000} dominates the integral which may be handled trivially). The result of all of the pigeonholing steps is that the statement of Corollary 5 follows from showing that

αp|Uα|CεRε(Rβp(11q)(1+β)+Rβp(121q))λ(1)pq1γfγ22\alpha^{p}|U_{\alpha}|\leq C_{\varepsilon}R^{\varepsilon}(R^{\beta p(1-\frac{1}{q})-(1+\beta)}+R^{\beta p(\frac{1}{2}-\frac{1}{q})})\lambda(1)^{\frac{p}{q}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}

where ff satisfies the hypotheses of Theorem 4. The full range 3p+1q1\frac{3}{p}+\frac{1}{q}\leq 1 follows from pp in the critical range 4p64\leq p\leq 6, which we treat first.
4p64\leq p\leq 6: There are two cases depending on which upper bound is larger in Theorem 4. First we assume the L4L^{4} bound holds, in which case

αp|Uα|\displaystyle\alpha^{p}|U_{\alpha}| CεRεαp4max𝑠λ(s1R1)λ(s)γfγ22\displaystyle\leq C_{\varepsilon}R^{\varepsilon}\alpha^{p-4}\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}
CεRεαp4λ(1)pq1max𝑠λ(s1R1)λ(s)(γfγpq)pq\displaystyle\sim C_{\varepsilon}R^{\varepsilon}\frac{\alpha^{p-4}}{\lambda(1)^{\frac{p}{q}-1}}\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}
CεRελ(1)p4λ(1)pq1max𝑠(Rβs1R1)(Rβs)(γfγpq)pq\displaystyle\lesssim C_{\varepsilon}R^{\varepsilon}\frac{\lambda(1)^{p-4}}{\lambda(1)^{\frac{p}{q}-1}}\underset{s}{\max}(R^{\beta}s^{-1}R^{-1})(R^{\beta}s)(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}
CεRελ(1)p(11q)3R2β1(γfγpq)pq.\displaystyle\lesssim C_{\varepsilon}R^{\varepsilon}\lambda(1)^{p(1-\frac{1}{q})-3}R^{2\beta-1}(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}.

Since p(11q)30p(1-\frac{1}{q})-3\geq 0, we may use the bound λ(1)Rβ\lambda(1)\lesssim R^{\beta} to conclude that

λ(1)p(11q)3R2β1Rβp(11q)3β+2β1=Rβp(11q)(1+β).\lambda(1)^{p(1-\frac{1}{q})-3}R^{2\beta-1}\leq R^{\beta p(1-\frac{1}{q})-3\beta+2\beta-1}=R^{\beta p(1-\frac{1}{q})-(1+\beta)}.

The other case is that the L6L^{6} bound holds in Theorem 4. We may also assume that α2>λ(1)\alpha^{2}>\lambda(1) since otherwise we trivially have

αp|Uα|λ(1)p21γfγ22λ(1)p21+1pq(γfγpq)pqRβp(121q)(γfγpq)pq\alpha^{p}|U_{\alpha}|\leq\lambda(1)^{\frac{p}{2}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\sim\lambda(1)^{\frac{p}{2}-1+1-\frac{p}{q}}(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}\lesssim R^{\beta p(\frac{1}{2}-\frac{1}{q})}(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}

where we used that q2q\geq 2 since 4p64\leq p\leq 6 and 3p+1q1\frac{3}{p}+\frac{1}{q}\leq 1. Now using the assumptions α2>λ(1)\alpha^{2}>\lambda(1) and p6p\leq 6, we have

αp|Uα|\displaystyle\alpha^{p}|U_{\alpha}| CεRεαp6λ(1)2λ(1)1pq(γfγpq)pq\displaystyle\leq C_{\varepsilon}R^{\varepsilon}\alpha^{p-6}\lambda(1)^{2}\lambda(1)^{1-\frac{p}{q}}(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}
CεRελ(1)p(121q)(γfγpq)pqCεRεRβp(121q)(γfγpq)pq.\displaystyle\sim C_{\varepsilon}R^{\varepsilon}\lambda(1)^{p(\frac{1}{2}-\frac{1}{q})}(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}\lesssim C_{\varepsilon}R^{\varepsilon}R^{\beta p(\frac{1}{2}-\frac{1}{q})}(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}.

3p<43\leq p<4: Suppose that α<Rβ/2\alpha<R^{\beta/2}. Then using L2L^{2}-orthogonality,

αp|Uα|Rβ2(p2)γfγ22Rβ2(p2)λ(1)1pq(γfγpq)pq.\alpha^{p}|U_{\alpha}|\leq R^{\frac{\beta}{2}(p-2)}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\sim R^{\frac{\beta}{2}(p-2)}\lambda(1)^{1-\frac{p}{q}}(\sum_{\gamma}\|f_{\gamma}\|_{p}^{q})^{\frac{p}{q}}.

Since in this subcase, 1pq1(p3)>01-\frac{p}{q}\geq 1-(p-3)>0, we are done after noting that Rβ2(p2)λ(1)1pqRβp(121q)R^{\frac{\beta}{2}(p-2)}\lambda(1)^{1-\frac{p}{q}}\leq R^{\beta p(\frac{1}{2}-\frac{1}{q})}. Now assume that αRβ/2\alpha\geq R^{\beta/2} and use the p=4p=4 case above (noting that R4β(11q)(1+β)R4β(121q)R^{4\beta(1-\frac{1}{q})-(1+\beta)}\leq R^{4\beta(\frac{1}{2}-\frac{1}{q})}) to get

αp|Uα|\displaystyle\alpha^{p}|U_{\alpha}| α4(Rβ/2)4p|Uα|Rβ2(4p)CεRεR4β(121q)λ(1)4q1γfγ22\displaystyle\leq\frac{\alpha^{4}}{(R^{\beta/2})^{4-p}}|U_{\alpha}|\leq R^{-\frac{\beta}{2}(4-p)}C_{\varepsilon}R^{\varepsilon}R^{4\beta(\frac{1}{2}-\frac{1}{q})}\lambda(1)^{\frac{4}{q}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}
CεRεRβp(121q)λ(1)pq1γfγ22.\displaystyle\leq C_{\varepsilon}R^{\varepsilon}R^{\beta p(\frac{1}{2}-\frac{1}{q})}\lambda(1)^{\frac{p}{q}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}.

6<p6<p: In this range, we use the trivial bound αλ(1)\alpha\leq\lambda(1) and the p=6p=6 case above (noting that R6β(121q)R6β(11q)(1+β)R^{6\beta(\frac{1}{2}-\frac{1}{q})}\leq R^{6\beta(1-\frac{1}{q})-(1+\beta)}) to get

αp|Uα|\displaystyle\alpha^{p}|U_{\alpha}| λ(1)p6α6|Uα|λ(1)p6CεRεR6β(11q)(1+β)λ(1)6q1γfγ22\displaystyle\leq\lambda(1)^{p-6}\alpha^{6}|U_{\alpha}|\leq\lambda(1)^{p-6}C_{\varepsilon}R^{\varepsilon}R^{6\beta(1-\frac{1}{q})-(1+\beta)}\lambda(1)^{\frac{6}{q}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}
=(λ(1)Rβ)(p6)(11q)CεRεRpβ(11q)(1+β)λ(1)pq1γfγ22\displaystyle=\Big{(}\frac{\lambda(1)}{R^{\beta}}\Big{)}^{(p-6)(1-\frac{1}{q})}C_{\varepsilon}R^{\varepsilon}R^{p\beta(1-\frac{1}{q})-(1+\beta)}\lambda(1)^{\frac{p}{q}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}
CεRεRpβ(11q)(1+β)λ(1)pq1γfγ22.\displaystyle\leq C_{\varepsilon}R^{\varepsilon}R^{p\beta(1-\frac{1}{q})-(1+\beta)}\lambda(1)^{\frac{p}{q}-1}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}.

4. Tools to prove Theorem 4

The proof of Theorem 4 follows the high/low frequency decomposition and pruning approach from [GMW20]. In this section, we introduce notation for different scale neighborhoods of 1\mathbb{P}^{1}, a pruning process for wave packets at various scales, some high/low lemmas which are used to analyze the high/low frequency parts of square functions, and a version of a bilinear restriction theorem for 1\mathbb{P}^{1}.

Begin by fixing some notation, as above. Let β[12,1]\beta\in[\frac{1}{2},1] and R2R\geq 2. The parameter α>0\alpha>0 describes the superlevel set

Uα={x2:|f(x)|α}.U_{\alpha}=\{x\in\mathbb{R}^{2}:|f(x)|\geq\alpha\}.

For ε>0\varepsilon>0, we analyze scales Rk=RkεR_{k}=R^{k\varepsilon} , noting that R1/2Rk1/21R^{-1/2}\leq R_{k}^{-1/2}\leq 1. Let NN distinguish the index so that RNR_{N} is closest to RR. Since RR and RNR_{N} differ at most by a factor of RεR^{\varepsilon}, we will ignore the distinction between RNR_{N} and RR in the rest of the argument.

Define the following collections, each of which partitions a neighborhood of \mathbb{P} into approximate rectangles.

  1. (1)

    {γ}\{\gamma\} is a partition of 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) by approximate Rβ×R1R^{-\beta}\times R^{-1} rectangles, described explicitly in (5).

  2. (2)

    {θ}\{\theta\} is a partition of 𝒩R1(1)\mathcal{N}_{R^{-1}}(\mathbb{P}^{1}) by approximate R1/2×R1R^{-1/2}\times R^{-1} rectangles. In particular, let each θ\theta be a union of adjacent γ\gamma.

  3. (3)

    {τk}\{\tau_{k}\} is a partition of 𝒩Rk1(1)\mathcal{N}_{R_{k}^{-1}}(\mathbb{P}^{1}) by approximate Rk1/2×Rk1R_{k}^{-1/2}\times R_{k}^{-1} rectangles. Assume the additional property that γτk=\gamma\cap\tau_{k}=\emptyset or γτk\gamma\subset\tau_{k}.

4.1. A pruning step

We will define wave packets at each scale τk\tau_{k}, and prune the wave packets associated to fτkf_{\tau_{k}} according to their amplitudes.

For each τk\tau_{k}, fix a dual rectangle τk\tau_{k}^{*} which is a 2Rk1/2×2Rk2R_{k}^{1/2}\times 2R_{k} rectangle centered at the origin and comparable to the convex set

{x2:|xξ|1ξτk}.\{x\in\mathbb{R}^{2}:|x\cdot\xi|\leq 1\quad\forall\xi\in\tau_{k}\}.

Let 𝕋τk\mathbb{T}_{\tau_{k}} be the collection of tubes TτkT_{\tau_{k}} which are dual to τk\tau_{k}, contain τk\tau_{k}^{*}, and which tile 2\mathbb{R}^{2}. Next, we will define an associated partition of unity ψTτk\psi_{T_{\tau_{k}}}. First let φ(ξ)\varphi(\xi) be a bump function supported in [14,14]2[-\frac{1}{4},\frac{1}{4}]^{2}. For each m2m\in\mathbb{Z}^{2}, let

ψm(x)=c[12,12]2|\savestack\tmpbox\stretchto\scaleto\scalerel[φ] 0.5ex\stackon[1pt]φ\tmpbox|2(xym)𝑑y,\psi_{m}(x)=c\int_{[-\frac{1}{2},\frac{1}{2}]^{2}}|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\varphi}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\varphi}{\scalebox{-1.0}{\tmpbox}}|^{2}(x-y-m)dy,

where cc is chosen so that m2ψm(x)=c2|\savestack\tmpbox\stretchto\scaleto\scalerel[φ] 0.5ex\stackon[1pt]φ\tmpbox|2=1\sum_{m\in\mathbb{Z}^{2}}\psi_{m}(x)=c\int_{\mathbb{R}^{2}}|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\varphi}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\varphi}{\scalebox{-1.0}{\tmpbox}}|^{2}=1. Since |\savestack\tmpbox\stretchto\scaleto\scalerel[φ] 0.5ex\stackon[1pt]φ\tmpbox||\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\varphi}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\varphi}{\scalebox{-1.0}{\tmpbox}}| is a rapidly decaying function, for any nn\in\mathbb{N}, there exists Cn>0C_{n}>0 such that

ψm(x)c[0,1]2Cn(1+|xym|2)n𝑑yC~n(1+|xm|2)n.\psi_{m}(x)\leq c\int_{[0,1]^{2}}\frac{C_{n}}{(1+|x-y-m|^{2})^{n}}dy\leq\frac{\tilde{C}_{n}}{(1+|x-m|^{2})^{n}}.

Define the partition of unity ψTτk\psi_{T_{\tau_{k}}} associated to τk{\tau_{k}} to be ψTτk(x)=ψmAτk\psi_{T_{\tau_{k}}}(x)=\psi_{m}\circ A_{\tau_{k}}, where AτkA_{\tau_{k}} is a linear transformation taking τk\tau_{k}^{*} to [12,12]2[-\frac{1}{2},\frac{1}{2}]^{2} and Aτk(Tτk)=m+[12,12]2A_{\tau_{k}}(T_{\tau_{k}})=m+[-\frac{1}{2},\frac{1}{2}]^{2}. The important properties of ψTτk\psi_{T_{\tau_{k}}} are (1) rapid decay off of TτkT_{\tau_{k}} and (2) Fourier support contained in τk\tau_{k}.

To prove upper bounds for the size of UαU_{\alpha}, we will actually bound the sizes of ε1\sim\varepsilon^{-1} many subsets which will be denoted UαΩkU_{\alpha}\cap\Omega_{k}, UαHU_{\alpha}\cap H, and UαLU_{\alpha}\cap L. The pruning process sorts between important and unimportant wave packets on each of these subsets, as described in Lemma 12 below.

Partition 𝕋θ=𝕋θg𝕋θb\mathbb{T}_{\theta}=\mathbb{T}_{\theta}^{g}\sqcup\mathbb{T}_{\theta}^{b} into a “good” and a “bad” set as follows. Let δ>0\delta>0 be a parameter to be chosen in §5.2 and set

Tθ𝕋θgifψTθfθL(R2)RMδλ(1)αT_{\theta}\in\mathbb{T}_{\theta}^{g}\quad\text{if}\quad\|\psi_{T_{\theta}}f_{\theta}\|_{L^{\infty}(R^{2})}\leq R^{M\delta}\frac{\lambda(1)}{\alpha}

where M>0M>0 is a universal constant we will choose in the proof of Proposition 1.

Definition 1 (Pruning with respect to τk\tau_{k}).

For each θ\theta and τN1\tau_{N-1}, define the notation fθN=Tθ𝕋θgψTθfθf_{\theta}^{N}=\sum_{T_{\theta}\in\mathbb{T}_{\theta}^{g}}\psi_{T_{\theta}}f_{\theta} and fτN1N=θτN1fθNf_{\tau_{N-1}}^{N}=\sum_{\theta\subset\tau_{N-1}}f_{\theta}^{N}. For each k<Nk<N, let

𝕋τkg\displaystyle\mathbb{T}_{\tau_{k}}^{g} ={Tτk𝕋τk:ψTτkfτkk+1L(R2)RMδλ(1)α},\displaystyle=\{T_{\tau_{k}}\in\mathbb{T}_{\tau_{k}}:\|\psi_{T_{\tau_{k}}}f_{\tau_{k}}^{k+1}\|_{L^{\infty}(R^{2})}\leq R^{M\delta}\frac{\lambda(1)}{\alpha}\},
fτkk=Tτk𝕋τkg\displaystyle f_{\tau_{k}}^{k}=\sum_{T_{\tau_{k}}\in\mathbb{T}_{\tau_{k}}^{g}} ψTτkfτkk+1andfτk1k=τkτk1fτkk.\displaystyle\psi_{T_{\tau_{k}}}f^{k+1}_{\tau_{k}}\qquad\text{and}\qquad f_{\tau_{k-1}}^{k}=\sum_{\tau_{k}\subset\tau_{k-1}}f_{\tau_{k}}^{k}.

For each kk, define the kkth version of ff to be fk=τkfτkkf^{k}=\underset{\tau_{k}}{\sum}f_{\tau_{k}}^{k}.

Lemma 9 (Properties of fkf^{k}).
  1. (1)

    |fτkk(x)||fτkk+1(x)|#γτk.|f_{\tau_{k}}^{k}(x)|\leq|f_{\tau_{k}}^{k+1}(x)|\leq\#\gamma\subset\tau_{k}.

  2. (2)

    fτkkLCεRO(ε)RMδλ(1)α\|f_{\tau_{k}}^{k}\|_{L^{\infty}}\leq C_{\varepsilon}R^{O(\varepsilon)}R^{M\delta}\frac{\lambda(1)}{\alpha}.

  3. (3)

    suppfτkk^2τk.\text{supp}\widehat{f_{\tau_{k}}^{k}}\subset 2\tau_{k}.

  4. (4)

    suppfτk1k^(1+(logR)1)τk1.\text{supp}\widehat{f_{\tau_{k-1}}^{k}}\subset(1+(\log R)^{-1})\tau_{k-1}.

Proof.

The first property follows because Tτk𝕋τkψTτk\sum_{T_{\tau_{k}}\in\mathbb{T}_{\tau_{k}}}\psi_{T_{\tau_{k}}} is a partition of unity, and

fτkk=Tτk𝕋τkhψTτkfτkk+1.f_{\tau_{k}}^{k}=\sum_{T_{\tau_{k}}\in\mathbb{T}_{\tau_{k}^{h}}}\psi_{T_{\tau_{k}}}f_{\tau_{k}}^{k+1}.

Furthermore, by definition of fτkk+1f_{\tau_{k}}^{k+1} and iterating, we have

|fτkk||fτkk+1|\displaystyle|f_{\tau_{k}}^{k}|\leq|f_{\tau_{k}}^{k+1}| τk+1τk|fτk+1k+1|τNτk|fτNN|\displaystyle\leq\sum_{\tau_{k+1}\subset\tau_{k}}|f_{\tau_{k+1}}^{k+1}|\leq\cdots\leq\sum_{\tau_{N}\subset\tau_{k}}|f_{\tau_{N}}^{N}|
θτk|fθ|γτk|fγ|#γτk\displaystyle\leq\sum_{\theta\subset\tau_{k}}|f_{\theta}|\leq\sum_{\gamma\subset\tau_{k}}|f_{\gamma}|\lesssim\#\gamma\subset\tau_{k}

where we used the assumption fγ1\|f_{\gamma}\|_{\infty}\lesssim 1 for all γ\gamma. Now consider the LL^{\infty} bound in the second property. We write

fτkk(x)=Tτk𝕋τkh,xRεTτkψTτkfτkk+1+Tτk𝕋τk,λ,xRεTτkψTτkfk+1,τk.f_{\tau_{k}}^{k}(x)=\sum_{\begin{subarray}{c}T_{\tau_{k}}\in\mathbb{T}_{\tau_{k}^{h}},\\ x\in R^{\varepsilon}T_{\tau_{k}}\end{subarray}}\psi_{T_{\tau_{k}}}f_{\tau_{k}}^{k+1}+\sum_{\begin{subarray}{c}T_{\tau_{k}}\in\mathbb{T}_{\tau_{k},\lambda},\\ x\notin R^{\varepsilon}T_{\tau_{k}}\end{subarray}}\psi_{T_{\tau_{k}}}f_{k+1,\tau_{k}}.

The first sum has at most CR2εCR^{2\varepsilon} terms, and each term has norm bounded by RMδλ(1)αR^{M\delta}\frac{\lambda(1)}{\alpha} by the definition of 𝕋τkh\mathbb{T}_{\tau_{k}}^{h}. By the first property, we may trivially bound fτkk+1f_{\tau_{k}}^{k+1} by RmaxγfγR\max_{\gamma}\|f_{\gamma}\|_{\infty}. But if xRεTτkx\notin R^{\varepsilon}T_{\tau_{k}}, then ψTτk(x)R1000\psi_{T_{\tau_{k}}}(x)\leq R^{-1000}. Thus

|Tτk𝕋τkh,xRεTτkψTτkfτkk+1|\displaystyle|\sum_{\begin{subarray}{c}T_{\tau_{k}}\in\mathbb{T}_{\tau_{k}}^{h},\\ x\notin R^{\varepsilon}T_{\tau_{k}}\end{subarray}}\psi_{T_{\tau_{k}}}f^{k+1}_{\tau_{k}}| Tτk𝕋τkh,xRεTτkR500ψTτk1/2(x)fτkk+1R250maxγfγ.\displaystyle\leq\sum_{\begin{subarray}{c}T_{\tau_{k}}\in\mathbb{T}_{\tau_{k}}^{h},\\ x\notin R^{\varepsilon}T_{\tau_{k}}\end{subarray}}R^{-500}\psi_{T_{\tau_{k}}}^{1/2}(x)\|f^{k+1}_{\tau_{k}}\|_{\infty}\leq R^{-250}\max_{\gamma}\|f_{\gamma}\|_{\infty}.

Since α|f(x)|γfγλ(1)\alpha\lesssim|f(x)|\lesssim\sum_{\gamma}\|f_{\gamma}\|_{\infty}\lesssim\lambda(1), (recalling the assumption that each fγ1\|f_{\gamma}\|_{\infty}\lesssim 1), we note R250CR2ελ(1)αR^{-250}\leq CR^{2\varepsilon}\frac{\lambda(1)}{\alpha}.

The fourth and fifth properties depend on the Fourier support of ψTτk\psi_{T_{\tau_{k}}}, which is contained in 12τk\frac{1}{2}\tau_{k}. Initiate a 2-step induction with base case k=Nk=N: fθNf_{\theta}^{N} has Fourier support in 2θ2\theta because of the above definition. Then

fτN1N=θτN1fθNf_{\tau_{N-1}}^{N}=\sum_{\theta\subset\tau_{N-1}}f_{\theta}^{N}

has Fourier support in θτN12θ\underset{\theta\subset\tau_{N-1}}{\cup}2\theta, which is contained in (1+(logR)1)τN1(1+(\log R)^{-1})\tau_{N-1}. Since each ψTτN1\psi_{T_{\tau_{N-1}}} has Fourier support in 12τN1\frac{1}{2}\tau_{N-1},

fτN1N1=TτN1𝕋τN1,λψτN1fτN1Nf_{\tau_{N-1}}^{N-1}=\sum_{T_{\tau_{N-1}}\in\mathbb{T}_{\tau_{N-1},\lambda}}\psi_{\tau_{N-1}}f_{\tau_{N-1}}^{N}

has Fourier support in 12τN1+(1+(logR)1)τN12τN1\frac{1}{2}\tau_{N-1}+(1+(\log R)^{-1})\tau_{N-1}\subset 2\tau_{N-1}. Iterating this reasoning until k=1k=1 gives (3) and (4).

Definition 2.

For each τk\tau_{k}, let wτkw_{\tau_{k}} be the weight function adapted to τk\tau_{k}^{*} defined by

wτk(x)=wkRτk(x)w_{\tau_{k}}(x)=w_{k}\circ R_{\tau_{k}}(x)

where

wk(x,y)=c(1+|x|2Rk)10(1+|y|2Rk2)10,w1=1,w_{k}(x,y)=\frac{c}{(1+\frac{|x|^{2}}{R_{k}})^{10}(1+\frac{|y|^{2}}{R_{k}^{2}})^{10}},\qquad\|w\|_{1}=1,

and Rτk:22R_{\tau_{k}}:\mathbb{R}^{2}\to\mathbb{R}^{2} is the rotation taking τk\tau_{k}^{*} to [Rk1/2,Rk1/2]×[Rk,Rk][-R_{k}^{1/2},R_{k}^{1/2}]\times[-R_{k},R_{k}]. For each Tτk𝕋τkT_{\tau_{k}}\in\mathbb{T}_{\tau_{k}}, let wTτk=wτk(xcTτk)w_{T_{\tau_{k}}}=w_{\tau_{k}}(x-c_{T_{\tau_{k}}}) where cTτkc_{T_{\tau_{k}}} is the center of TτkT_{\tau_{k}}. For s>0s>0, we also use the notation wsw_{s} to mean

(7) ws(x)=c(1+|x|2/s2)10,ws1=1.w_{s}(x)=\frac{c^{\prime}}{(1+|x|^{2}/s^{2})^{10}},\qquad\|w_{s}\|_{1}=1.

The weights wτkw_{\tau_{k}}, wθ=wτNw_{\theta}=w_{\tau_{N}}, and wsw_{s} are useful when we invoke the locally constant property. By locally constant property, we mean generally that if a function ff has Fourier transform supported in a convex set AA, then for a bump function φA1\varphi_{A}\equiv 1 on AA, f=f\savestack\tmpbox\stretchto\scaleto\scalerel[φA] 0.5ex\stackon[1pt]φA\tmpboxf=f*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\varphi_{A}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\varphi_{A}}{\scalebox{-1.0}{\tmpbox}}. Since |\savestack\tmpbox\stretchto\scaleto\scalerel[φA] 0.5ex\stackon[1pt]φA\tmpbox||\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\varphi_{A}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\varphi_{A}}{\scalebox{-1.0}{\tmpbox}}| is an L1L^{1}-normalized function which is positive on a set dual to AA, |f||\savestack\tmpbox\stretchto\scaleto\scalerel[φA] 0.5ex\stackon[1pt]φA\tmpbox||f|*|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\varphi_{A}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\varphi_{A}}{\scalebox{-1.0}{\tmpbox}}| is an averaged version of |f||f| over a dual set AA^{*}. We record some of the specific locally constant properties we need in the following lemma.

Lemma 10 (Locally constant property).

For each τk\tau_{k} and Tτk𝕋τkT_{\tau_{k}}\in\mathbb{T}_{\tau_{k}},

fτkL(Tτk)2|fτk|2wτk(x)for anyxTτk.\|f_{\tau_{k}}\|_{L^{\infty}(T_{\tau_{k}})}^{2}\lesssim|f_{\tau_{k}}|^{2}*w_{\tau_{k}}(x)\qquad\text{for any}\quad x\in T_{\tau_{k}}.

For any collection of s1×s2\sim s^{-1}\times s^{-2} blocks θs\theta_{s} partitioning 𝒩s2(1)\mathcal{N}_{s^{-2}}(\mathbb{P}^{1}) and any ss-ball BB,

θs|fθs|2L(B)θs|fθs|2ws(x)for anyxB.\|\sum_{\theta_{s}}|f_{\theta_{s}}|^{2}\|_{L^{\infty}(B)}\lesssim\sum_{\theta_{s}}|f_{\theta_{s}}|^{2}*w_{s}(x)\qquad\text{for any}\quad x\in B.

Because the pruned versions of ff and fτkf_{\tau_{k}} have essentially the same Fourier supports as the unpruned versions, the locally constant lemma applies to the pruned versions as well.

Proof of Lemma 10.

Let ρτk\rho_{\tau_{k}} be a bump function equal to 11 on τk\tau_{k} and supported in 2τk2\tau_{k}. Then using Fourier inversion and Hölder’s inequality,

|fτk(y)|2=|fτk\savestack\tmpbox\stretchto\scaleto\scalerel[ρτk] 0.5ex\stackon[1pt]ρτk\tmpbox(y)|2\savestack\tmpbox\stretchto\scaleto\scalerel[ρτk] 0.5ex\stackon[1pt]ρτk\tmpbox1|fτk|2|\savestack\tmpbox\stretchto\scaleto\scalerel[ρτk] 0.5ex\stackon[1pt]ρτk\tmpbox|(y).|f_{\tau_{k}}(y)|^{2}=|f_{\tau_{k}}*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{\tau_{k}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{\tau_{k}}}{\scalebox{-1.0}{\tmpbox}}(y)|^{2}\leq\|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{\tau_{k}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{\tau_{k}}}{\scalebox{-1.0}{\tmpbox}}\|_{1}|f_{\tau_{k}}|^{2}*|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{\tau_{k}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{\tau_{k}}}{\scalebox{-1.0}{\tmpbox}}|(y).

Since ρτk\rho_{\tau_{k}} may be taken to be an affine transformation of a standard bump function adapted to the unit ball, \savestack\tmpbox\stretchto\scaleto\scalerel[ρτk] 0.5ex\stackon[1pt]ρτk\tmpbox1\|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{\tau_{k}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{\tau_{k}}}{\scalebox{-1.0}{\tmpbox}}\|_{1} is a constant. The function \savestack\tmpbox\stretchto\scaleto\scalerel[ρτk] 0.5ex\stackon[1pt]ρτk\tmpbox\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{\tau_{k}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{\tau_{k}}}{\scalebox{-1.0}{\tmpbox}} decays rapidly off of τk\tau_{k}^{*}, so |\savestack\tmpbox\stretchto\scaleto\scalerel[ρτk] 0.5ex\stackon[1pt]ρτk\tmpbox|wτk|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{\tau_{k}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{\tau_{k}}}{\scalebox{-1.0}{\tmpbox}}|\lesssim w_{{\tau_{k}}}. Since for any Tτk𝕋τkT_{\tau_{k}}\in\mathbb{T}_{\tau_{k}}, wτk(y)w_{\tau_{k}}(y) is comparable for all yTτky\in T_{\tau_{k}}, we have

supxTτk|fτk|2wτk(x)\displaystyle\sup_{x\in T_{\tau_{k}}}|f_{\tau_{k}}|^{2}*w_{\tau_{k}}(x) |fτk|2(y)supxTτkwτk(xy)dy\displaystyle\leq\int|f_{\tau_{k}}|^{2}(y)\sup_{x\in T_{\tau_{k}}}w_{\tau_{k}}(x-y)dy
|fτk|2(y)wτk(xy)𝑑yfor allxTτk.\displaystyle\sim\int|f_{\tau_{k}}|^{2}(y)w_{\tau_{k}}(x-y)dy\qquad\text{for all}\quad x\in T_{\tau_{k}}.

For the second part of the lemma, repeat analogous steps as above, except begin with ρθs\rho_{\theta_{s}} which is identically 11 on a ball of radius 2s12s^{-1} containing θs\theta_{s}. Then

θs|fθs(y)|2=θs|fθs\savestack\tmpbox\stretchto\scaleto\scalerel[ρθs] 0.5ex\stackon[1pt]ρθs\tmpbox(y)|2θs|fθs|2|\savestack\tmpbox\stretchto\scaleto\scalerel[ρs1] 0.5ex\stackon[1pt]ρs1\tmpbox|(y),\sum_{\theta_{s}}|f_{\theta_{s}}(y)|^{2}=\sum_{\theta_{s}}|f_{\theta_{s}}*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{\theta_{s}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{\theta_{s}}}{\scalebox{-1.0}{\tmpbox}}(y)|^{2}\lesssim\sum_{\theta_{s}}|f_{\theta_{s}}|^{2}*|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\rho_{s^{-1}}}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\rho_{s^{-1}}}{\scalebox{-1.0}{\tmpbox}}|(y),

where we used that each ρθs\rho_{\theta_{s}} is a translate of a single function ρs1\rho_{s^{-1}}. The rest of the argument is analogous to the first part. ∎

Definition 3 (Auxiliary functions).

Let φ(x):2[0,)\varphi(x):\mathbb{R}^{2}\to[0,\infty) be a radial, smooth bump function satisfying φ(x)=1\varphi(x)=1 on B1B_{1} and suppφB2\mathrm{supp}\varphi\subset B_{2}.

φ(2J+1ξ)+j=2J[φ(2jξ)φ(2j+1ξ)]\displaystyle\varphi(2^{J+1}\xi)+\sum_{j=-2}^{J}[\varphi(2^{j}\xi)-\varphi(2^{j+1}\xi)]

where JJ is defined by 2JRβ<2J+12^{J}\leq\lceil R^{\beta}\rceil<2^{J+1}. Then for each dyadic s=2js=2^{j}, let

ηs(ξ)=φ(2jξ)φ(2j+1ξ)\eta_{\sim s}(\xi)=\varphi(2^{j}\xi)-\varphi(2^{j+1}\xi)

and let

η<Rβ1(ξ)=φ(2J+1ξ).\eta_{<\lceil R^{\beta}\rceil^{-1}}(\xi)=\varphi(2^{J+1}\xi).

Finally, for k=1,,N1k=1,\ldots,N-1, define

ηk(ξ)=φ(Rk+11/2x).\eta_{k}(\xi)=\varphi(R_{k+1}^{1/2}x).
Definition 4.

Let G(x)=θ|fθ|2wθG(x)=\sum_{\theta}|f_{\theta}|^{2}*w_{\theta}, G(x)=G\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpbox<Rβ1G^{\ell}(x)=G*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{<\lceil R^{\beta}\rceil^{-1}}, Gh(x)=G(x)G(x)G^{h}(x)=G(x)-G^{\ell}(x). For k=1,,N1k=1,\ldots,N-1, let

gk(x)=τk|fτkk+1|2wτk,gk(x)=gk\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxk,andgkh(x)=gkgk.g_{k}(x)=\sum_{\tau_{k}}|f_{\tau_{k}}^{k+1}|^{2}*w_{\tau_{k}},\qquad g_{k}^{\ell}(x)=g_{k}*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{k},\qquad\text{and}\qquad g_{k}^{h}(x)=g_{k}-g_{k}^{\ell}.
Definition 5.

Define the high set

H={xBR:G(x)2|Gh(x)|}.H=\{x\in B_{R}:G(x)\leq 2|G^{h}(x)|\}.

For each k=1,,N1k=1,\ldots,N-1, let

Ωk={xBRH:gk2|gkh|,gk+12|gk+1|,,gN2|gN|}\Omega_{k}=\{x\in B_{R}\setminus H:g_{k}\leq 2|g_{k}^{h}|,\,g_{k+1}\leq 2|g_{k+1}^{\ell}|,\,\ldots,\,g_{N}\leq 2|g_{N}^{\ell}|\}

and for each k=1,,Nk=1,\ldots,N. Define the low set

L={xBRH:g12|g1|,,gN2|gN|,G(x)2|G(x)|}.L=\{x\in B_{R}\setminus H:g_{1}\leq 2|g_{1}^{\ell}|,\,\ldots,\,g_{N}\leq 2|g_{N}^{\ell}|,G(x)\leq 2|G^{\ell}(x)|\}.

4.2. High/low frequency lemmas

Lemma 11 (Low lemma).

For each xx, |G(x)|λ(1)|G^{\ell}(x)|\lesssim\lambda(1) and |gk(x)|gk+1(x)|g_{k}^{\ell}(x)|\lesssim g_{k+1}(x).

Proof.

For each θ\theta, by Plancherel’s theorem,

The integrand is supported in (γγ)B2Rβ1(\gamma\setminus\gamma^{\prime})\cap B_{2\lceil R^{\beta}\rceil^{-1}}. This means that the integral vanishes unless γ\gamma is within CRβCR^{-\beta} of γ\gamma^{\prime} for some constant C>0C>0, in which case we write γγ\gamma\sim\gamma^{\prime}. Then

γ,γθ2e2πixξf^γf¯^γ(ξ)η<Rβ1(ξ)𝑑ξ=γ,γθγγ2e2πixξf^γf¯^γ(ξ)η<Rβ1(ξ)𝑑ξ\sum_{\gamma,\gamma^{\prime}\subset\theta}\int_{\mathbb{R}^{2}}e^{-2\pi ix\cdot\xi}\widehat{f}_{\gamma}*\widehat{\overline{f}}_{\gamma^{\prime}}(\xi)\eta_{<\lceil R^{\beta}\rceil^{-1}}(\xi)d\xi=\sum_{\begin{subarray}{c}\gamma,\gamma^{\prime}\subset\theta\\ \gamma\sim\gamma^{\prime}\end{subarray}}\int_{\mathbb{R}^{2}}e^{-2\pi ix\cdot\xi}\widehat{f}_{\gamma}*\widehat{\overline{f}}_{\gamma^{\prime}}(\xi)\eta_{<\lceil R^{\beta}\rceil^{-1}}(\xi)d\xi

Use Plancherel’s theorem again to get back to a convolution in xx and conclude that

By an analogous argument as above, we have that

|gk(x)|τk+1|fτk+1k+1|2wτk|\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxk|(x)|g_{k}^{\ell}(x)|\lesssim\sum_{\tau_{k+1}}|f_{\tau_{k+1}}^{k+1}|^{2}*w_{\tau_{k}}*|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{k}|(x)

where for each summand, wτkw_{\tau_{k}} corresponds to the τk\tau_{k} containing τk+1\tau_{k+1}. By definition, |fτk+1k+1||fτk+1k||f_{\tau_{k+1}}^{k+1}|\leq|f_{\tau_{k+1}}^{k}|. By the locally constant property, |fτk+1k|2|fτk+1|2wτk+1|f_{\tau_{k+1}}^{k}|^{2}\lesssim|f_{\tau_{k+1}}|^{2}*w_{\tau_{k+1}}. It remains to note that

wτk+1wτk|\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxk|(x)wτk+1(x)w_{\tau_{k+1}}*w_{\tau_{k}}*|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{k}|(x)\lesssim w_{\tau_{k+1}}(x)

since τkτk+1\tau_{k}^{*}\subset\tau_{k+1}^{*} and \savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxk\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{k} is an L1L^{1}-normalized function that is rapidly decaying away from BRk+11/2(0)B_{R_{k+1}^{1/2}}(0).

Lemma 12 (Pruning lemma).

For any τ\tau,

|τkτfτkτkτfτkk+1(x)|\displaystyle|\sum_{\tau_{k}\subset\tau}f_{\tau_{k}}-\sum_{\tau_{k}\subset\tau}f_{\tau_{k}}^{k+1}(x)| CεRMδαfor all xΩk\displaystyle\leq C_{\varepsilon}R^{-M\delta}\alpha\qquad\text{for all $x\in\Omega_{k}$}
and|τ1τfτ1τ1τfτ11(x)|\displaystyle\text{and}\qquad|\sum_{\tau_{1}\subset\tau}f_{\tau_{1}}-\sum_{\tau_{1}\subset\tau}f_{\tau_{1}}^{1}(x)| CεRMδα for all xL.\displaystyle\leq C_{\varepsilon}R^{-M\delta}\alpha\qquad\text{ for all $x\in L$}.
Proof.

By the definition of the pruning process, we have

fτ=fτN+(fτfτN)==fτk+1(x)+m=k+1N(fτm+1fτm)f_{\tau}=f^{N}_{\tau}+(f_{\tau}-f^{N}_{\tau})=\cdots=f^{k+1}_{\tau}(x)+\sum_{m=k+1}^{N}(f^{m+1}_{\tau}-f^{m}_{\tau})

with the understanding that fN+1=ff^{N+1}=f and formally, the subscript τ\tau means fτ=γτfγf_{\tau}=\sum_{\gamma\subset\tau}f_{\gamma} and fτm=τmτfτmmf_{\tau}^{m}=\sum_{\tau_{m}\subset\tau}f_{\tau_{m}}^{m}. We will show that each difference in the sum is much smaller than α\alpha. For each mk+1m\geq k+1 and τm\tau_{m},

|fτmm(x)fτmm+1(x)|\displaystyle|f_{\tau_{m}}^{m}(x)-f_{\tau_{m}}^{m+1}(x)| =|Tτm𝕋τmbψTτm(x)fτmm+1(x)|=TτmTτmb|ψTτm1/2(x)fτmm+1(x)|ψTτm1/2(x)\displaystyle=|\sum_{T_{\tau_{m}}\in\mathbb{T}_{\tau_{m}}^{b}}\psi_{T_{\tau_{m}}}(x)f_{\tau_{m}}^{m+1}(x)|=\sum_{T_{\tau_{m}}\in T_{\tau_{m}}^{b}}|\psi_{T_{\tau_{m}}}^{1/2}(x)f_{\tau_{m}}^{m+1}(x)|\psi_{T_{\tau_{m}}}^{1/2}(x)
Tτm𝕋τmbRMδαλ(1)λ1ψTτmfτmm+1L(2)ψTτm1/2fτmm+1L(2)ψTτm1/2(x)\displaystyle\lesssim\sum_{T_{\tau_{m}}\in\mathbb{T}_{\tau_{m}}^{b}}R^{-M\delta}\frac{\alpha}{\lambda(1)}\lambda^{-1}\|\psi_{T_{\tau_{m}}}f_{{\tau_{m}}}^{m+1}\|_{L^{\infty}(\mathbb{R}^{2})}\|\psi_{T_{\tau_{m}}}^{1/2}f_{{\tau_{m}}}^{m+1}\|_{L^{\infty}(\mathbb{R}^{2})}\psi_{T_{\tau_{m}}}^{1/2}(x)
RMδαλ(1)Tτm𝕋τmbψTτm1/2fτmm+1L(2)2ψTτm1/2(x)\displaystyle\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}\sum_{T_{\tau_{m}}\in\mathbb{T}_{\tau_{m}}^{b}}\|\psi_{T_{\tau_{m}}}^{1/2}f_{{\tau_{m}}}^{m+1}\|_{L^{\infty}(\mathbb{R}^{2})}^{2}\psi_{T_{\tau_{m}}}^{1/2}(x)
RMδαλ(1)Tτm𝕋τmbT~τmψTτm|fτmm+1|2L(T~τm)ψTτm1/2(x)\displaystyle\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}\sum_{T_{\tau_{m}}\in\mathbb{T}_{\tau_{m}}^{b}}\sum_{\tilde{T}_{{\tau_{m}}}}\|\psi_{T_{\tau_{m}}}|f_{{\tau_{m}}}^{m+1}|^{2}\|_{L^{\infty}(\tilde{T}_{{\tau_{m}}})}\psi_{T_{\tau_{m}}}^{1/2}(x)
RMδαλ(1)Tτm,T~τm𝕋τmψTτmL(T~τm)|fτmm+1|2L(T~τm)ψTτm1/2(x).\displaystyle\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}\sum_{T_{\tau_{m}},\tilde{T}_{\tau_{m}}\in\mathbb{T}_{\tau_{m}}}\|\psi_{T_{\tau_{m}}}\|_{L^{\infty}(\tilde{T}_{\tau_{m}})}\||f_{{\tau_{m}}}^{m+1}|^{2}\|_{{L}^{\infty}(\tilde{T}_{{\tau_{m}}})}\psi_{T_{\tau_{m}}}^{1/2}(x).

Let cT~τmc_{\tilde{T}_{\tau_{m}}} denote the center of T~τm\tilde{T}_{\tau_{m}} and note the pointwise inequality

TτmψTτmL(T~τm)ψTτm1/2(x)Rm3/2wτm(xcT~τm),\sum_{{T}_{\tau_{m}}}\|\psi_{T_{\tau_{m}}}\|_{L^{\infty}(\tilde{T}_{\tau_{m}})}\psi_{T_{\tau_{m}}}^{1/2}(x)\lesssim R_{m}^{3/2}w_{\tau_{m}}(x-c_{\tilde{T}_{\tau_{m}}}),

which means that

|fτmm(x)fτmm+1(x)|\displaystyle|f_{\tau_{m}}^{m}(x)-f_{\tau_{m}}^{m+1}(x)| RMδαλ(1)Rm3/2T~τmTτmwτm(xcT~τm)|fτmm+1|2L(T~τm)\displaystyle\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}R_{m}^{3/2}\sum_{\tilde{T}_{\tau_{m}}\in T_{\tau_{m}}}w_{\tau_{m}}(x-c_{\tilde{T}_{\tau_{m}}})\||f_{{\tau_{m}}}^{m+1}|^{2}\|_{{L}^{\infty}(\tilde{T}_{{\tau_{m}}})}
RMδαλ(1)Rm3/2T~τmTτmwτm(xcT~τm)|fτmm+1|2wτm(cT~τm)\displaystyle\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}R_{m}^{3/2}\sum_{\tilde{T}_{\tau_{m}}\in T_{\tau_{m}}}w_{\tau_{m}}(x-c_{\tilde{T}_{\tau_{m}}})|f_{{\tau_{m}}}^{m+1}|^{2}*w_{\tau_{m}}(c_{\tilde{T}_{\tau_{m}}})
RMδαλ(1)|fτmm+1|2wτm(x).\displaystyle\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}|f_{{\tau_{m}}}^{m+1}|^{2}*w_{\tau_{m}}(x).

where we used the locally constant property in the second to last inequality and the pointwise relation wτmwτmwτmw_{\tau_{m}}*w_{\tau_{m}}\lesssim w_{\tau_{m}} for the final inequality. Then

|τmτfτmm(x)fτmm+1(x)|RMδαλ(1)τmτ|fτmm+1|2wτm(x)RMδαλ(1)gm(x).|\sum_{\tau_{m}\subset\tau}f_{\tau_{m}}^{m}(x)-f_{\tau_{m}}^{m+1}(x)|\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}\sum_{\tau_{m}\subset\tau}|f_{\tau_{m}}^{m+1}|^{2}*w_{\tau_{m}}(x)\lesssim R^{-M\delta}\frac{\alpha}{\lambda(1)}g_{m}(x).

By the definition of Ωk\Omega_{k} and Lemma 11, gm(x)2|gm(x)|2Cgm+1(x)(2C)ε1G(x)(2C)ε1rg_{m}(x)\leq 2|g_{m}^{\ell}(x)|\leq 2Cg_{m+1}(x)\leq\cdots\leq(2C)^{\varepsilon^{-1}}G(x)\lesssim(2C)^{\varepsilon^{-1}}r. Conclude that

|τmτfτmm(x)fτmm+1(x)|(2C)ε1RMδα.|\sum_{\tau_{m}\subset\tau}f_{\tau_{m}}^{m}(x)-f_{\tau_{m}}^{m+1}(x)|\lesssim(2C)^{\varepsilon^{-1}}R^{-M\delta}\alpha.

The claim for LL follows immediately from the above argument, using the low-dominance of gkg_{k} for all kk. ∎

Definition 6.

Call the distribution function λ\lambda associated to a function ff (R,ε)(R,\varepsilon)-normalized if for any τk,τm\tau_{k},\tau_{m},

#{τkτm:fτk0}\displaystyle\#\{\tau_{k}\subset\tau_{m}:f_{\tau_{k}}\not=0\} 100λ(Rm1/2)λ(Rk1/2).\displaystyle\leq 100\frac{\lambda(R_{m}^{-1/2})}{\lambda(R_{k}^{-1/2})}.
Lemma 13 (High lemma I).

Assume that ff has an (R,ε)(R,\varepsilon)-normalized distribution function λ()\lambda(\cdot). For each dyadic ss, RβsR1/2R^{-\beta}\leq s\leq R^{-1/2},

2|G\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs|2CεR2ελ(s1R1)λ(s)γfγ22.\int_{\mathbb{R}^{2}}|G*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}|^{2}\lesssim C_{\varepsilon}R^{2\varepsilon}\lambda(s^{-1}R^{-1})\lambda(s)\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}.
Proof.

Organize the {γ}\{\gamma\} into subcollections {θs}\{\theta_{s}\} in which each θs\theta_{s} is a union of γ\gamma which intersect the same s\sim s-arc of 1\mathbb{P}^{1}, where here for concreteness, s\sim s means within a factor of 22. Then by Plancherel’s theorem, since \savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpbox¯s=\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs\overline{\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}}_{\sim s}={\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}}_{\sim s}, we have for each θ\theta

(8)

The support of f¯^θs(ξ)=e2πixξf¯θs(x)𝑑x=f^¯θs(ξ)\widehat{\overline{f}}_{\theta_{s}^{\prime}}(\xi)=\int e^{-2\pi ix\cdot\xi}\overline{f}_{\theta_{s}^{\prime}}(x)dx=\overline{\widehat{f}}_{\theta_{s}^{\prime}}(-\xi) is contained in θs-\theta_{s}^{\prime}. This means that the support of f^θsf¯^θs(ξ)\widehat{f}_{\theta_{s}}*\widehat{\overline{f}}_{\theta_{s}^{\prime}}(\xi) is contained in θsθs\theta_{s}-\theta_{s}^{\prime}. Since the support of ηs(ξ)\eta_{\sim s}(\xi) is contained in the ball of radius 2s2s, for each θsθ\theta_{s}\subset\theta, there are only finitely many θsθ\theta_{s}^{\prime}\subset\theta so that the integral in (8) is nonzero. Thus we may write

G\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs(x)=θ|fθ|2wθ\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs(x)=θθs,θsθθsθs(fθsf¯θs)wθ\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs(x).G*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}(x)=\sum_{\theta}|f_{\theta}|^{2}*w_{\theta}*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}(x)=\sum_{\theta}\sum_{\begin{subarray}{c}\theta_{s},\theta_{s}^{\prime}\subset\theta\\ \theta_{s}\sim\theta_{s}^{\prime}\end{subarray}}(f_{\theta_{s}}\overline{f}_{\theta_{s}^{\prime}})*w_{\theta}*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}(x).

where the second sum is over θs,θsθ\theta_{s},\theta_{s}^{\prime}\subset\theta with dist(θs,θs)<2s\text{dist}(\theta_{s},\theta_{s}^{\prime})<2s. Using the above pointwise expression and then Plancherel’s theorem, we have

For each θ\theta, θs,θsθθsθs(fθs^f¯^θs)\sum_{\begin{subarray}{c}\theta_{s},\theta_{s}^{\prime}\subset\theta\\ \theta_{s}\sim\theta_{s}^{\prime}\end{subarray}}(\widehat{f_{\theta_{s}}}*\widehat{\overline{f}}_{\theta_{s}^{\prime}}) is supported in θθ\theta-\theta, since each summand is supported in θsθs\theta_{s}-\theta_{s}^{\prime} and θs,θsθ\theta_{s},\theta_{s}^{\prime}\subset\theta. For each ξ2\xi\in\mathbb{R}^{2}, |ξ|>12r|\xi|>\frac{1}{2}r, the maximum number of θθ\theta-\theta containing ξ\xi is bounded by the maximum number of θ\theta intersecting an R1/2s1R1/2R^{-1/2}\cdot s^{-1}R^{-1/2}-arc of the parabola. Using that λ()\lambda(\cdot) is (R,ε)(R,\varepsilon)-normalized, this number is bounded above by CεRελ(s1R1)λ(R1/2)C_{\varepsilon}R^{\varepsilon}\frac{\lambda(s^{-1}R^{-1})}{\lambda(R^{-1/2})}. Since ηs\eta_{\sim s} is supported in the region |ξ|>12r|\xi|>\frac{1}{2}r, by Cauchy-Schwarz

It remains to analyze each of the integrals above:

Bound the LL^{\infty} norms using the assumption that fγ1\|f_{\gamma}\|_{\infty}\lesssim 1 for all γ\gamma:

θsθ|fθs|2wθ|\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs|θsθfθs2θsθγθs|fγ|\displaystyle\|\sum_{\theta_{s}\subset\theta}|f_{\theta_{s}}|^{2}*w_{\theta}*|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}|\|_{\infty}\lesssim\sum_{\theta_{s}\subset\theta}\|f_{\theta_{s}}\|_{\infty}^{2}\lesssim\sum_{\theta_{s}\subset\theta}\|\sum_{\gamma\subset\theta_{s}}|f_{\gamma}|\|_{\infty} λ(R1/2)λ(s).\displaystyle\lesssim\lambda(R^{-1/2})\lambda(s).

Finally, using Young’s convolution inequality and the L2L^{2}-orthogonality of the fγf_{\gamma}, we have

2θsθ|fθs|2wθ|\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs|2θsθ|fθs|2=γθfγ22.\int_{\mathbb{R}^{2}}\sum_{\theta_{s}\subset\theta}|f_{\theta_{s}}|^{2}*w_{\theta}*|\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}|\lesssim\int_{\mathbb{R}^{2}}\sum_{\theta_{s}\subset\theta}|f_{\theta_{s}}|^{2}=\sum_{\gamma\subset\theta}\|f_{\gamma}\|_{2}^{2}.

Lemma 14 (High lemma II).

For each kk,

2|gkh|2R3ετk2|fτk+1k+1|4.\int_{\mathbb{R}^{2}}|g_{k}^{h}|^{2}\lesssim R^{3\varepsilon}\sum_{\tau_{k}}\int_{\mathbb{R}^{2}}|f_{\tau_{k+1}}^{k+1}|^{4}.
Proof.

By Plancherel’s theorem, we have

2|gkh|2\displaystyle\int_{\mathbb{R}^{2}}|g_{k}^{h}|^{2} =2|gkgk|2\displaystyle=\int_{\mathbb{R}^{2}}|g_{k}-g_{k}^{\ell}|^{2}
=2|τk(fτkk+1^fτkk+1¯^)w^τkτk(fτkk+1^fτkk+1¯^)w^τkηk|2\displaystyle=\int_{\mathbb{R}^{2}}|\sum_{\tau_{k}}(\widehat{f_{\tau_{k}}^{k+1}}*\widehat{\overline{f_{\tau_{k}}^{k+1}}})\widehat{w}_{\tau_{k}}-\sum_{\tau_{k}}(\widehat{f_{\tau_{k}}^{k+1}}*\widehat{\overline{f^{k+1}_{\tau_{k}}}})\widehat{w}_{\tau_{k}}\eta_{k}|^{2}
|ξ|>cRk+11/2|τk(fτkk+1^fτkk+1¯^)w^τk|2\displaystyle\leq\int_{|\xi|>cR_{k+1}^{-1/2}}|\sum_{\tau_{k}}(\widehat{f_{\tau_{k}}^{k+1}}*\widehat{\overline{f_{\tau_{k}}^{k+1}}})\widehat{w}_{\tau_{k}}|^{2}

since (1ηk)(1-\eta_{k}) is supported in the region |ξ|>cRk+11/2|\xi|>cR_{k+1}^{-1/2} for some constant c>0c>0. For each τk\tau_{k}, fτkk+1^fτkk+1¯^\widehat{f_{\tau_{k}}^{k+1}}*\widehat{\overline{f_{\tau_{k}}^{k+1}}} is supported in 2τk2τk2\tau_{k}-2\tau_{k}, using property (4) of Lemma 9. The maximum overlap of the sets {2τk2τk}\{2\tau_{k}-2\tau_{k}\} in the region |ξ|cRk+11/2|\xi|\geq cR_{k+1}^{-1/2} is bounded by Rk1/2Rk+11/2Rε\sim\frac{R_{k}^{-1/2}}{R_{k+1}^{-1/2}}\lesssim R^{\varepsilon}. Thus using Cauchy-Schwarz,

|ξ|>cRk+11/2|τk(fτkk+1^fτkk+1¯^)w^τk|2\displaystyle\int_{|\xi|>cR_{k+1}^{-1/2}}|\sum_{\tau_{k}}(\widehat{f_{\tau_{k}}^{k+1}}*\widehat{\overline{f_{\tau_{k}}^{k+1}}})\widehat{w}_{\tau_{k}}|^{2} Rετk|ξ|>cRk+11/2|(fτkk+1^fτkk+1¯^)w^τk|2\displaystyle\lesssim R^{\varepsilon}\sum_{\tau_{k}}\int_{|\xi|>cR_{k+1}^{-1/2}}|(\widehat{f_{\tau_{k}}^{k+1}}*\widehat{\overline{f_{\tau_{k}}^{k+1}}})\widehat{w}_{\tau_{k}}|^{2}
Rετk2|(fτkk+1^fτkk+1¯^)w^τk|2\displaystyle\leq R^{\varepsilon}\sum_{\tau_{k}}\int_{\mathbb{R}^{2}}|(\widehat{f_{\tau_{k}}^{k+1}}*\widehat{\overline{f_{\tau_{k}}^{k+1}}})\widehat{w}_{\tau_{k}}|^{2}
=Rετk2||fτkk+1|2wτk|2R3ετk+12|fτk+1k+1|4\displaystyle=R^{\varepsilon}\sum_{\tau_{k}}\int_{\mathbb{R}^{2}}||f_{\tau_{k}}^{k+1}|^{2}*{w}_{\tau_{k}}|^{2}\leq R^{3\varepsilon}\sum_{\tau_{k+1}}\int_{\mathbb{R}^{2}}|f_{\tau_{k+1}}^{k+1}|^{4}

where we used Young’s inequality with wτk11\|w_{\tau_{k}}\|_{1}\lesssim 1 and fτkk+1=τk+1τkfτk+1k+1f_{\tau_{k}}^{k+1}=\sum_{\tau_{k+1}\subset\tau_{k}}f_{\tau_{k+1}}^{k+1} with Cauchy-Schwarz again in the last line. ∎

4.3. Bilinear restriction

We will use the following version of a local bilinear restriction theorem, which follows from a standard Córdoba argument [Cor77] included here for completeness.

Theorem 15.

Let S4S\geq 4, 12DS1/2\frac{1}{2}\geq D\geq S^{-1/2}, and X2X\subset\mathbb{R}^{2} be any Lebesgue measurable set. Suppose that τ\tau and τ\tau^{\prime} are DD-separated subsets of 𝒩S1(1)\mathcal{N}_{S^{-1}}(\mathbb{P}^{1}). Then for a partition {θS}\{\theta_{S}\} of 𝒩S1(1)\mathcal{N}_{S^{-1}}(\mathbb{P}^{1}) into S1/2×S1\sim S^{-1/2}\times S^{-1}-blocks, we have

X|fτ|2(x)|fτ|2(x)𝑑xD2𝒩S1/2(X)|θS|fθS|2wS1/2(x)|2𝑑x.\int_{X}|f_{\tau}|^{2}(x)|f_{\tau^{\prime}}|^{2}(x)dx\lesssim D^{-2}\int_{\mathcal{N}_{S^{1/2}}(X)}|\sum_{\theta_{S}}|f_{\theta_{S}}|^{2}*w_{S^{1/2}}(x)|^{2}dx.

In the following proof, the exact definition of the S1×S1\sim S^{-1}\times S^{-1} blocks θS\theta_{S} is not important. However, by fτf_{\tau} and fτf_{\tau^{\prime}}, we mean more formally fτ=θSτfθSf_{\tau}=\sum_{\theta_{S}\cap\tau\not=\emptyset}f_{\theta_{S}} and fτ=θSτfθSf_{\tau^{\prime}}=\sum_{\theta_{S}\cap\tau^{\prime}\not=\emptyset}f_{\theta_{S}}.

Proof.

Let BB be a ball of radius S1/2S^{1/2} centered at a point in XX. Let φB\varphi_{B} be a smooth function satisfying φB1\varphi_{B}\gtrsim 1 in BB, φB\varphi_{B} decays rapidly away from BB, and φB^\widehat{\varphi_{B}} is supported in the S1/2S^{-1/2} neighborhood of the origin. Then

XB|fτ|2|fτ|2\displaystyle\int_{X\cap B}|f_{\tau}|^{2}|f_{\tau^{\prime}}|^{2} 2|fτ|2|fτ|2φB.\displaystyle\lesssim\int_{\mathbb{R}^{2}}|f_{\tau}|^{2}|f_{\tau^{\prime}}|^{2}\varphi_{B}.

Since SS is a fixed parameter and θS\theta_{S} are fixed S1/2×S1\sim S^{-1/2}\times S^{-1} blocks, simplify notation by dropping the SS. Expand the squared terms in the integral above to obtain

2|fτ|2|fτ|2φB=θiτθiτ2fθ1f¯θ2fθ2f¯θ1φB.\int_{\mathbb{R}^{2}}|f_{\tau}|^{2}|f_{\tau^{\prime}}|^{2}\varphi_{B}=\sum_{\begin{subarray}{c}\theta_{i}\cap\tau\not=\emptyset\\ \theta^{\prime}_{i}\cap\tau^{\prime}\not=\emptyset\end{subarray}}\int_{\mathbb{R}^{2}}f_{\theta_{1}}\overline{f}_{\theta_{2}}f_{\theta_{2}^{\prime}}\overline{f}_{\theta_{1}^{\prime}}\varphi_{B}.

By Placherel’s theorem, each integral vanishes unless

(9) (θ1θ2)𝒩S1/2(θ1θ2).(\theta_{1}-\theta_{2})\cap\mathcal{N}_{S^{-1/2}}(\theta_{1}^{\prime}-\theta_{2}^{\prime})\not=\emptyset.

Next we check that the number of tuples (θ1,θ2,θ1,θ2)(\theta_{1},\theta_{2},\theta_{1}^{\prime},\theta_{2}^{\prime}) (with θ1,θ2\theta_{1},\theta_{2} having nonempty intersection with τ\tau and θ1,θ2\theta_{1}^{\prime},\theta_{2}^{\prime} having nonempty intersection with τ\tau^{\prime}) satisfying (9) is O(D1)O(D^{-1}). Indeed, suppose that ξ<ξ<ξ′′<ξ′′′\xi<\xi^{\prime}<\xi^{\prime\prime}<\xi^{\prime\prime\prime} satisfy

(ξ,ξ2)θ1,(ξ,(ξ)2)θ2,(ξ′′,(ξ′′)2)θ1,(ξ′′′,(ξ′′′)2)θ2(\xi,\xi^{2})\in\theta_{1},\quad(\xi^{\prime},(\xi^{\prime})^{2})\in\theta_{2},\quad(\xi^{\prime\prime},(\xi^{\prime\prime})^{2})\in\theta_{1}^{\prime},\quad(\xi^{\prime\prime\prime},(\xi^{\prime\prime\prime})^{2})\in\theta_{2}^{\prime}

and

ξξ=ξ′′ξ′′′+O(S1/2).\xi-\xi^{\prime}=\xi^{\prime\prime}-\xi^{\prime\prime\prime}+O(S^{-1/2}).

Then by the mean value theorem, ξ2(ξ)2=2ξ1(ξξ)\xi^{2}-(\xi^{\prime})^{2}=2\xi_{1}(\xi-\xi^{\prime}) for some ξ<ξ1<ξ\xi<\xi_{1}<\xi^{\prime} and (ξ′′)2(ξ′′′)2=2ξ2(ξ′′ξ′′′)(\xi^{\prime\prime})^{2}-(\xi^{\prime\prime\prime})^{2}=2\xi_{2}(\xi^{\prime\prime}-\xi^{\prime\prime\prime}) for some ξ′′<ξ2<ξ′′′\xi^{\prime\prime}<\xi_{2}<\xi^{\prime\prime\prime}. Since (ξ1,ξ12)τ(\xi_{1},\xi_{1}^{2})\in\tau and (ξ2,ξ22)τ(\xi_{2},\xi_{2}^{2})\in\tau^{\prime}, we also know that |ξ1ξ2|D|\xi_{1}-\xi_{2}|\geq D. Putting everything together, we have

|ξ2(ξ)2((ξ′′)2(ξ′′′)2)|\displaystyle|\xi^{2}-(\xi^{\prime})^{2}-((\xi^{\prime\prime})^{2}-(\xi^{\prime\prime\prime})^{2})| =2|ξ1(ξξ)ξ2(ξ′′ξ′′′)|\displaystyle=2|\xi_{1}(\xi-\xi^{\prime})-\xi_{2}(\xi^{\prime\prime}-\xi^{\prime\prime\prime})|
2|ξ1ξ2||ξξ|cS1/2(2Cc)S1/2\displaystyle\geq 2|\xi_{1}-\xi_{2}||\xi-\xi^{\prime}|-cS^{-1/2}\geq(2C-c)S^{-1/2}

if either dist((ξ,ξ2),(ξ,(ξ)2))\text{dist}((\xi,\xi^{2}),(\xi^{\prime},(\xi^{\prime})^{2})) or dist((ξ′′,(ξ′′)2),(ξ′′′,(ξ′′′)2))\text{dist}((\xi^{\prime\prime},(\xi^{\prime\prime})^{2}),(\xi^{\prime\prime\prime},(\xi^{\prime\prime\prime})^{2})) is larger than CD1S1/2CD^{-1}S^{-1/2}. Thus for a suitably large CC, the heights will have difference larger than the allowed O(S1/2)O(S^{-1/2})-neighborhood imposed by (9). The conclusion is that

θiτθiτ2fθ1f¯θ2fθ2f¯θ1φB\displaystyle\sum_{\begin{subarray}{c}\theta_{i}\cap\tau\not=\emptyset\\ \theta^{\prime}_{i}\cap\tau^{\prime}\not=\emptyset\end{subarray}}\int_{\mathbb{R}^{2}}f_{\theta_{1}}\overline{f}_{\theta_{2}}f_{\theta_{2}^{\prime}}\overline{f}_{\theta_{1}^{\prime}}\varphi_{B} =θ1τθ1τd(θ1,θ2)CD1S1/2d(θ1,θ2)CD1S1/22fθ1f¯θ2fθ2f¯θ1φB\displaystyle=\sum_{\begin{subarray}{c}\theta_{1}\cap\tau\not=\emptyset\\ \theta^{\prime}_{1}\cap\tau^{\prime}\not=\emptyset\end{subarray}}\,\,\sum_{\begin{subarray}{c}d(\theta_{1},\theta_{2})\leq CD^{-1}S^{-1/2}\\ d(\theta_{1}^{\prime},\theta_{2}^{\prime})\leq CD^{-1}S^{-1/2}\end{subarray}}\int_{\mathbb{R}^{2}}f_{\theta_{1}}\overline{f}_{\theta_{2}}f_{\theta_{2}^{\prime}}\overline{f}_{\theta_{1}^{\prime}}\varphi_{B}
D22(θ|fθ|2)2φB.\displaystyle\lesssim D^{-2}\int_{\mathbb{R}^{2}}(\sum_{\theta}|f_{\theta}|^{2})^{2}\varphi_{B}.

Using the locally constant property and summing over a finitely overlapping cover of 2\mathbb{R}^{2} by S1/2S^{1/2}-balls BB^{\prime} with centers cBc_{B^{\prime}}, we have

2(θ|fθ|2)2φB\displaystyle\int_{\mathbb{R}^{2}}(\sum_{\theta}|f_{\theta}|^{2})^{2}\varphi_{B} B|B|θ|fθ|2L(B)2φBL(B)\displaystyle\leq\sum_{B^{\prime}}|B|\|\sum_{\theta}|f_{\theta}|^{2}\|_{L^{\infty}(B^{\prime})}^{2}\|\varphi_{B}\|_{L^{\infty}(B^{\prime})}
|B|(Bθ|fθ|2L(B)φB1/2L(B))2\displaystyle\leq|B|\Big{(}\sum_{B^{\prime}}\|\sum_{\theta}|f_{\theta}|^{2}\|_{L^{\infty}(B^{\prime})}\|\varphi_{B}^{1/2}\|_{L^{\infty}(B^{\prime})}\Big{)}^{2}
|B|(Bθ|fθ|2wS1/2(cB)φB1/2L(B))2\displaystyle\lesssim|B|\Big{(}\sum_{B^{\prime}}\sum_{\theta}|f_{\theta}|^{2}*w_{S^{1/2}}(c_{B^{\prime}})\|\varphi_{B}^{1/2}\|_{L^{\infty}(B^{\prime})}\Big{)}^{2}
|B|1(2θ|fθ|2wS1/2(y)φB1/2(y)dy)2\displaystyle\lesssim|B|^{-1}\Big{(}\int_{\mathbb{R}^{2}}\sum_{\theta}|f_{\theta}|^{2}*w_{S^{1/2}}(y)\varphi_{B}^{1/2}(y)dy\Big{)}^{2}
|B|1(Bθ|fθ|2wS1/2(y)dy)2\displaystyle\lesssim|B|^{-1}\Big{(}\int_{B}\sum_{\theta}|f_{\theta}|^{2}*w_{S^{1/2}}(y)dy\Big{)}^{2}
B(θ|fθ|2wS1/2)2\displaystyle\leq\int_{B}\Big{(}\sum_{\theta}|f_{\theta}|^{2}*w_{S^{1/2}}\Big{)}^{2}

where we used that wS1/2φB1/2(y)wS1/2χB(y)w_{S^{1/2}}*\varphi_{B}^{1/2}(y)\lesssim w_{S^{1/2}}*\chi_{B}(y) in the second to last line.

5. Proof of Theorem 4

Theorem 4 follows from the following proposition and a broad-narrow argument in §5.2. First we prove a version of Theorem 4 where UαU_{\alpha} is replaced by a “broad” version of UαU_{\alpha}.

5.1. The broad version of Theorem 4

Let δ>0\delta>0 be a parameter we will choose in the broad/narrow analysis. The notation (τ)=s\ell(\tau)=s means that τ\tau is an approximate s×s2s\times s^{2} block which is part of a partition of 𝒩s2(1)\mathcal{N}_{s^{2}}(\mathbb{P}^{1}). For two non-adjacent blocks τ,τ\tau,\tau^{\prime} satisfying (τ)=(τ)=Rδ\ell(\tau)=\ell(\tau^{\prime})=R^{-\delta}, define the broad version of UαU_{\alpha} to be

(10) Brα(τ,τ)={x2:α|fτ(x)fτ(x)|1/2,(|fτ(x)|+|fτ(x)|)RO(δ)α}}.\text{Br}_{\alpha}(\tau,\tau^{\prime})=\{x\in\mathbb{R}^{2}:\alpha\sim|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2},\,\,(|f_{\tau}(x)|+|f_{\tau^{\prime}}(x)|)\leq R^{O(\delta)}\alpha\}\}.
Proposition 1.

Suppose that ff satisfies the hypotheses of Theorem 4 and has an (R,ε)(R,\varepsilon)-normalized distribution function λ()\lambda(\cdot). Then

|Brα(τ,τ)|\displaystyle|\text{\emph{Br}}_{\alpha}(\tau,\tau^{\prime})| Cε,δRεRO(δ){1α4max𝑠λ(s1R1)λ(s)γfγ22ifα2>λ(1)2max𝑠λ(s1R1)λ(s)λ(1)2α6γfγ22ifα2λ(1)2maxsλ(s1R1)λ(s).\displaystyle\leq C_{\varepsilon,\delta}R^{\varepsilon}R^{O(\delta)}\begin{cases}\frac{1}{\alpha^{4}}\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad\alpha^{2}>\frac{\lambda(1)^{2}}{\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)}\\ \frac{\lambda(1)^{2}}{\alpha^{6}}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad\alpha^{2}\leq\frac{\lambda(1)^{2}}{\max_{s}\lambda(s^{-1}R^{-1})\lambda(s)}\end{cases}.
Proof of Proposition 1.

Bounding |Brα(τ,τ)H||\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H|: Using bilinear restriction, given here by Theorem 15, we have

α4|Brα(τ,τ)H|(τ)=(τ)=Rδd(τ,τ)RδUαH|fτ|2|fτ|2RO(δ)𝒩R1/2(Brα(τ,τ)H)(θ|fθ|2wR1/2)2.\alpha^{4}|\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H|\lesssim\sum_{\begin{subarray}{c}\ell(\tau)=\ell(\tau)=R^{-\delta}\\ d(\tau,\tau^{\prime})\gtrsim R^{-\delta}\end{subarray}}\int_{U_{\alpha}\cap H}|f_{\tau}|^{2}|f_{\tau^{\prime}}|^{2}\lesssim R^{O(\delta)}\int_{\mathcal{N}_{R^{1/2}}(\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H)}(\sum_{\theta}|f_{\theta}|^{2}*w_{R^{1/2}})^{2}.

By the locally constant property and the pointwise inequality wR1/2wθwθw_{R^{1/2}}*w_{\theta}\lesssim w_{\theta} for each θ\theta, we have that θ|fθ|2wR1/2G(x)\sum_{\theta}|f_{\theta}|^{2}*w_{R^{1/2}}\lesssim G(x). Then

(11) 𝒩R1/2(Brα(τ,τ)H)|G(x)|2𝑑xQR1/2:QR1/2(Brα(τ,τ)H)|QR1/2|GL(QR1/2(Brα(τ,τ)H))2\displaystyle\int_{\mathcal{N}_{R^{1/2}}(\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H)}|G(x)|^{2}dx\leq\sum_{\begin{subarray}{c}Q_{R^{1/2}}:\\ Q_{R^{1/2}}\cap(\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H)\not=\emptyset\end{subarray}}|Q_{R^{1/2}}|\|G\|_{L^{\infty}(Q_{R^{1/2}}\cap(\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H))}^{2}

For each xHx\in H, G(x)2|Gh(x)|G(x)\leq 2|G^{h}(x)|. Also note the equality Gh(x)=sG\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs(x)G^{h}(x)=\sum_{s}G*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}(x) where the sum is over dyadic ss in the range Rβ1sR1/2\lceil{R^{\beta}}\rceil^{-1}\lesssim s\lesssim R^{-1/2}. This is because the Fourier support of GhG^{h} is contained in θ(θθ)BcRβ1\cup_{\theta}(\theta-\theta)\setminus B_{c\lceil R^{\beta}\rceil^{-1}} for a sufficiently small c>0c>0. By dyadic pigeonholing, there is some dyadic ss, Rβ1sR1/2\lceil{R^{\beta}}\rceil^{-1}\lesssim s\lesssim R^{-1/2}, so that the upper bound in (11) is bounded by

(logR)QR1/2:QR1/2(Brα(τ,τ)H)|QR1/2|G\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxsL(QR1/2(Brα(τ,τ)H))2.(\log R)\sum_{\begin{subarray}{c}Q_{R^{1/2}}:\\ Q_{R^{1/2}}\cap(\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H)\not=\emptyset\end{subarray}}|Q_{R^{1/2}}|\|G*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}\|_{L^{\infty}(Q_{R^{1/2}}\cap(\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H))}^{2}.

By the locally constant property, the above displayed expression is bounded by

(logR)QR1/2:QR1/2(Brα(τ,τ)H)2|G\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs|2wQR1/2(logR)2|G\savestack\tmpbox\stretchto\scaleto\scalerel[η] 0.5ex\stackon[1pt]η\tmpboxs|2.(\log R)\sum_{\begin{subarray}{c}Q_{R^{1/2}}:\\ Q_{R^{1/2}}\cap(\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H)\end{subarray}}\int_{\mathbb{R}^{2}}|G*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}|^{2}w_{Q_{R^{1/2}}}\lesssim(\log R)\int_{\mathbb{R}^{2}}|G*\savestack{\tmpbox}{\stretchto{\scaleto{\scalerel*[\widthof{\eta}]{\kern-0.6pt\bigwedge\kern-0.6pt}{\rule[-624.0pt]{4.30554pt}{624.0pt}}}{}}{0.5ex}}\stackon[1pt]{\eta}{\scalebox{-1.0}{\tmpbox}}_{\sim s}|^{2}.

Use Lemma 13 to upper bound the above integral to finish bounding |Brα(τ,τ)H||\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H|.

Bounding |Brα(τ,τ)Ωk||\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k}|: First write the trivial inequality

α4|Brα(τ,τ)Ωk|(τ)=(τ)=Rδd(τ,τ)RδBrα(τ,τ)Ωk{|fτfτ|1/2α}|fτ|2|fτ|2.\alpha^{4}|\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k}|\leq\sum_{\begin{subarray}{c}\ell(\tau)=\ell(\tau)=R^{-\delta}\\ d(\tau,\tau^{\prime})\gtrsim R^{-\delta}\end{subarray}}\int_{\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k}\cap\{|f_{\tau}f_{\tau^{\prime}}|^{1/2}\sim\alpha\}}|f_{\tau}|^{2}|f_{\tau^{\prime}}|^{2}.

By the definition of Brα(τ,τ)Ωk\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k} and Lemma 12, for each xBrα(τ,τ)Ωkx\in\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k} we have

|fτ(x)fτ(x)|\displaystyle|f_{\tau}(x)f_{\tau^{\prime}}(x)| |fτ(x)||fτ(x)fτk+1(x)|+|fτ(x)fτk+1(x)||fτk+1(x)|+|fτk+1(x)fτk+1(x)|\displaystyle\leq|f_{\tau}(x)||f_{\tau^{\prime}}(x)-f_{\tau^{\prime}}^{k+1}(x)|+|f_{\tau}(x)-f_{\tau}^{k+1}(x)||f_{\tau^{\prime}}^{k+1}(x)|+|f_{\tau}^{k+1}(x)f_{\tau^{\prime}}^{k+1}(x)|
CεRO(δ)RMδα2+|fτk+1(x)fτk+1(x)|.\displaystyle\lesssim C_{\varepsilon}R^{O(\delta)}R^{-M\delta}\alpha^{2}+|f_{\tau}^{k+1}(x)f_{\tau^{\prime}}^{k+1}(x)|.

For MM large enough in the definition of pruning (depending on the implicit universal constant from the broad/narrow analysis which determines the set Brα(τ,τ)\text{Br}_{\alpha}(\tau,\tau^{\prime})) so that RO(δ)RMδRδR^{O(\delta)}R^{-M\delta}\leq R^{-\delta} and for RR large enough depending on ε\varepsilon and δ\delta, we may bound each integral by

{Brα(τ,τ)Ωk{|fτfτ|1/2α}|fτ|2|fτ|2Brα(τ,τ)Ωk|fτk+1|2|fτk+1|2.\int_{\{\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k}\cap\{|f_{\tau}f_{\tau^{\prime}}|^{1/2}\sim\alpha\}}|f_{\tau}|^{2}|f_{\tau^{\prime}}|^{2}\lesssim\int_{\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k}}|f_{\tau}^{k+1}|^{2}|f_{\tau^{\prime}}^{k+1}|^{2}.

Repeat analogous bilinear restriction, high-dominated from the definition of Ωk\Omega_{k}, and locally-constant steps from the argument bounding Brα(τ,τ)H\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap H to obtain

α4|Brα(τ,τ)Ωk|\displaystyle\alpha^{4}|\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k}| RO(δ)2|gkh|2.\displaystyle\lesssim R^{O(\delta)}\int_{\mathbb{R}^{2}}|g_{k}^{h}|^{2}.

Use Lemma 14 and Lemma 9 to bound the above integral, obtaining

α4|Brα(τ,τ)Ωk|\displaystyle\alpha^{4}|\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap\Omega_{k}| (logR)42|gkh|2\displaystyle\lesssim(\log R)^{4}\int_{\mathbb{R}^{2}}|g_{k}^{h}|^{2}
RO(δ)RO(ε)λ(1)2α2τk+12|fτk+1k+1|2.\displaystyle\lesssim R^{O(\delta)}R^{O(\varepsilon)}\frac{\lambda(1)^{2}}{\alpha^{2}}\sum_{\tau_{k+1}}\int_{\mathbb{R}^{2}}|f_{\tau_{k+1}}^{k+1}|^{2}.

Use L2L^{2}-orthogonality and that |fτmm||fτmm+1||f_{\tau_{m}}^{m}|\leq|f_{\tau_{m}}^{m+1}| for each mm to bound each integral above:

2|fτk+1k+1|2\displaystyle\int_{\mathbb{R}^{2}}|f_{\tau_{k+1}}^{k+1}|^{2} 2|fτk+1k+2|2Cτk+2τk+12|fτk+2k+2|2Cε1γτk+12|fγ|2.\displaystyle\leq\int_{\mathbb{R}^{2}}|f_{\tau_{k+1}}^{k+2}|^{2}\leq C\sum_{\tau_{k+2}\subset\tau_{k+1}}\int_{\mathbb{R}^{2}}|f_{\tau_{k+2}}^{k+2}|^{2}\leq\cdots\leq C^{\varepsilon^{-1}}\sum_{\gamma\subset\tau_{k+1}}\int_{\mathbb{R}^{2}}|f_{\gamma}|^{2}.

We are done with this case because

λ(1)2α2\displaystyle\frac{\lambda(1)^{2}}{\alpha^{2}} {max𝑠λ(s1R1)λ(s)ifα2>λ(1)2max𝑠λ(s1R1)λ(s)λ(1)2α2ifα2λ(1)2maxsλ(s1R1)λ(s).\displaystyle\leq\begin{cases}\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)\quad&\text{if}\quad\alpha^{2}>\frac{\lambda(1)^{2}}{\underset{s}{max}\lambda(s^{-1}R^{-1})\lambda(s)}\\ \frac{\lambda(1)^{2}}{\alpha^{2}}\quad&\text{if}\quad\alpha^{2}\leq\frac{\lambda(1)^{2}}{\max_{s}\lambda(s^{-1}R^{-1})\lambda(s)}\end{cases}.

Bounding |Brα(τ,τ)L||\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap L|: Repeat the pruning step from the previous case to get

α6|Brα(τ,τ)L|(τ)=(τ)=Rδd(τ,τ)RδBrα(τ,τ)L{|fτfτ|1/2α}|fτ1fτ1|2|fτfτ|.\alpha^{6}|\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap L|\lesssim\sum_{\begin{subarray}{c}\ell(\tau)=\ell(\tau)=R^{-\delta}\\ d(\tau,\tau^{\prime})\gtrsim R^{-\delta}\end{subarray}}\int_{\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap L\cap\{|f_{\tau}f_{\tau^{\prime}}|^{1/2}\sim\alpha\}}|f_{\tau}^{1}f_{\tau^{\prime}}^{1}|^{2}|f_{\tau}f_{\tau^{\prime}}|.

Use Cauchy-Schwartz and the locally constant lemma for the bound |fτ1fτ1|RO(ε)G0|f_{\tau}^{1}f_{\tau^{\prime}}^{1}|\lesssim R^{O(\varepsilon)}G_{0} and recall that by Lemma 11, G0CεRελ(1)G_{0}\leq C_{\varepsilon}R^{\varepsilon}\lambda(1). Then

RO(ε)(τ)=(τ)=Rδd(τ,τ)RδBrα(τ,τ)L|G0|2|fτfτ|\displaystyle R^{O(\varepsilon)}\sum_{\begin{subarray}{c}\ell(\tau)=\ell(\tau)=R^{-\delta}\\ d(\tau,\tau^{\prime})\gtrsim R^{-\delta}\end{subarray}}\int_{\text{Br}_{\alpha}(\tau,\tau^{\prime})\cap L}|G_{0}|^{2}|f_{\tau}f_{\tau^{\prime}}| RO(ε)λ(1)2(τ)=Rδ2|fτ|2RO(ε)λ(1)2γfγ22.\displaystyle\leq R^{O(\varepsilon)}\lambda(1)^{2}\sum_{\ell(\tau)=R^{-\delta}}\int_{\mathbb{R}^{2}}|f_{\tau}|^{2}\lesssim R^{O(\varepsilon)}\lambda(1)^{2}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}.

Using the same upper bound for λ(1)2α2\frac{\lambda(1)^{2}}{\alpha^{2}} as in the previous case finishes the proof.

5.2. Bilinear reduction

We will present a broad/narrow analysis to show that Proposition 1 implies Theorem 4. In order to apply Proposition 1, we must reduce to the case that ff has an (R,ε)(R,\varepsilon)-normalized distribution function λ()\lambda(\cdot). We demonstrate this through a series of pigeonholing steps.

Proposition 1 implies Theorem 4.

We will pigeonhole the fγf_{\gamma} so that roughly, for any ss-arc ω\omega of the parabola, the number

#{γ:γω,fγ0}\#\{\gamma:\gamma\cap\omega\not=\emptyset,\quad f_{\gamma}\not=0\}

is either 0 or relatively constant among ss-arcs ω\omega. For the initial step, write

{τN:γs.t.fγ0,γτN}=1λRβRεΛN(λ)\{\tau_{N}:\exists\gamma\,\text{s.t.}\,f_{\gamma}\not=0,\,\,\gamma\subset\tau_{N}\}=\sum_{1\leq\lambda\lesssim R^{\beta}R^{-\varepsilon}}\Lambda_{N}(\lambda)

where λ\lambda is a dyadic number, {τN:#γτNλ}\{\tau_{N}:\#\gamma\subset\tau_{N}\sim\lambda\}, #γτN\#\gamma\subset\tau_{N} means #{γτN:fγ0}\#\{\gamma\subset\tau_{N}:f_{\gamma}\not=0\}, and #γτNλ\#\gamma\subset\tau_{N}\sim\lambda means λ#γτN<2λ\lambda\leq\#\gamma\subset\tau_{N}<2\lambda. Since there are logR\lesssim\log R many λ\lambda in the sum, there exists some λN\lambda_{N} such that

|{x:|f(x)|>α}|C(logR)|{x:C(logR)|τNΛN(λN)fτN(x)|>α}|.|\{x:|f(x)|>\alpha\}|\leq C(\log R)|\{x:C(\log R)|\sum_{\tau_{N}\in\Lambda_{N}(\lambda_{N})}f_{\tau_{N}}(x)|>\alpha\}|.

Continuing in this manner, we have

{τk:τk+1Λk+1(λk+1)s.t.τk+1τk}=1λrkΛk(λ)\{\tau_{k}:\exists\tau_{k+1}\in\Lambda_{k+1}(\lambda_{k+1})\,\text{s.t.}\,\tau_{k+1}\subset\tau_{k}\}=\sum_{1\leq\lambda\leq r_{k}}\Lambda_{k}(\lambda)

where Λk(λ)={τk:τk+1Λk+1(λk+1)s.t.τk+1τkand#γτkλ}\Lambda_{k}(\lambda)=\{\tau_{k}:\exists\tau_{k+1}\in\Lambda_{k+1}(\lambda_{k+1})\,\text{s.t.}\,\tau_{k+1}\subset\tau_{k}\quad\text{and}\quad\#\gamma\subset\tau_{k}\sim\lambda\} and for some λk\lambda_{k},

|{x:(C(logR))Nk|\displaystyle|\{x:(C(\log R))^{N-k}| τk+1Λk+1(λk+1)fτk+1(x)|>α}|\displaystyle\sum_{\tau_{k+1}\in\Lambda_{k+1}(\lambda_{k+1})}f_{\tau_{k+1}}(x)|>\alpha\}|
C(logR)|{x:(C(logR))Nk+1|τkΛk(λk)fτk(x)|>α}|.\displaystyle\qquad\qquad\leq C(\log R)|\{x:(C(\log R))^{N-k+1}|\sum_{\tau_{k}\in\Lambda_{k}(\lambda_{k})}f_{\tau_{k}}(x)|>\alpha\}|.

Continue this process until we have found τ1\tau_{1}, λ1\lambda_{1} so that

|{x:|f(x)|>α}|Cε1(logR)O(ε1)|{x:Cε1(logR)O(ε1)|τ1Λ1(λ1)fτ1(x)|>α}|.\displaystyle|\{x:|f(x)|>\alpha\}|\leq C^{\varepsilon^{-1}}(\log R)^{O(\varepsilon^{-1})}|\{x:C^{\varepsilon^{-1}}(\log R)^{O(\varepsilon^{-1})}|\sum_{\tau_{1}\in\Lambda_{1}(\lambda_{1})}f_{\tau_{1}}(x)|>\alpha\}|.

The function τ1Λ1(λ1)fτ1\sum_{\tau_{1}\in\Lambda_{1}(\lambda_{1})}f_{\tau_{1}} now satisfies the hypotheses of Theorem 4 and the property that #γτkλk\#\gamma\subset\tau_{k}\sim\lambda_{k} or #γτk=0\#\gamma\subset\tau_{k}=0 for all kk, τk\tau_{k}. It follows that the associated distribution function λ()\lambda(\cdot) of τ1Λ1(λ1)fτ1\sum_{\tau_{1}\in\Lambda_{1}(\lambda_{1})}f_{\tau_{1}} is (R,ε)(R,\varepsilon)-normalized since

λm#γτm=τkτm#γτk(#τkτm)(λk)\lambda_{m}\sim\#\gamma\subset\tau_{m}=\sum_{\tau_{k}\subset\tau_{m}}\#\gamma\subset\tau_{k}\sim(\#\tau_{k}\subset\tau_{m})(\lambda_{k})

where we only count the γ\gamma or τk\tau_{k} for which fγf_{\gamma} or fτkf_{\tau_{k}} is nonzero. Now we may apply Proposition 1. Note that since logRε1Rε\log R\leq\varepsilon^{-1}R^{\varepsilon} for all R1R\geq 1, the accumulated constant from this pigeonholing process satisfies Cε1(logR)O(ε1)CεRεC^{\varepsilon^{-1}}(\log R)^{O(\varepsilon^{-1})}\leq C_{\varepsilon}R^{\varepsilon}. It thus suffices to prove Theorem 4 assuming that ff is (R,ε)(R,\varepsilon)-normalized.

Now we present a broad-narrow argument adapted to our set-up. Write K=RδK=R^{\delta} for some δ>0\delta>0 which will be chosen later. Since |f(x)|(τ)=K1|fτ(x)||f(x)|\leq\sum_{\ell(\tau)=K^{-1}}|f_{\tau}(x)|, there is a universal constant C>0C>0 so that |f(x)|>KCmax(τ)=(τ)=K1τ,τnonadj.|fτ(x)fτ(x)|1/2|f(x)|>K^{C}\max_{\begin{subarray}{c}\ell(\tau)=\ell(\tau^{\prime})=K^{-1}\\ \tau,\tau^{\prime}\,\,\text{nonadj.}\end{subarray}}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2} implies |f(x)|Cmax(τ)=K1|fτ(x)||f(x)|\leq C\max_{\ell(\tau)=K^{-1}}|f_{\tau}(x)|. If |f(x)|KCmax(τ)=(τ)=K1τ,τnonadj.|fτ(x)fτ(x)|1/2|f(x)|\leq K^{C}\max_{\begin{subarray}{c}\ell(\tau)=\ell(\tau^{\prime})=K^{-1}\\ \tau,\tau^{\prime}\,\,\text{nonadj.}\end{subarray}}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2} and KCmax(τ)=(τ)=K1τ,τnonadj.|fτ(x)fτ(x)|1/2Cmax(τ)=K1|fτ(x)|K^{C}\max_{\begin{subarray}{c}\ell(\tau)=\ell(\tau^{\prime})=K^{-1}\\ \tau,\tau^{\prime}\,\,\text{nonadj.}\end{subarray}}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2}\leq C\max_{\ell(\tau)=K^{-1}}|f_{\tau}(x)|, then |f(x)|Cmax(τ)=K1|fτ(x)||f(x)|\leq C\max_{\ell(\tau)=K^{-1}}|f_{\tau}(x)|. Using this reasoning, we obtain the first step in the broad-narrow inequality

|f(x)|\displaystyle|f(x)| Cmax(τ)=K1|fτ(x)|+KCmax(τ)=(τ)=K1τ,τnonadj.Cmax(τ0)=K1|fτ0(x)|KC|fτ(x)fτ(x)|1/2|fτ(x)fτ(x)|1/2.\displaystyle\leq C\max_{\ell(\tau)=K^{-1}}|f_{\tau}(x)|+K^{C}\max_{\begin{subarray}{c}\ell(\tau)=\ell(\tau^{\prime})=K^{-1}\\ \tau,\tau^{\prime}\,\text{nonadj.}\\ C\underset{\ell(\tau_{0})=K^{-1}}{\max}|f_{\tau_{0}}(x)|\leq K^{C}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2}\end{subarray}}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2}.

Iterate the inequality mm times (for the first term) where KmR1/2K^{m}\sim R^{1/2} to bound |f(x)||f(x)| by

|f(x)|\displaystyle|f(x)| Cmmax(τ)=R1/2|fτ(x)|\displaystyle\lesssim C^{m}\max_{\ell(\tau)=R^{-1/2}}|f_{\tau}(x)|
+CmKCR1/2<Δ<1ΔKmax(τ~)Δmax(τ)=(τ)K1Δτ,ττ~,nonadj.Cmax(τ0)=K1Δτ0τ~|fτ0(x)|KC|fτ(x)fτ(x)|1/2|fτ(x)fτ(x)|1/2.\displaystyle\qquad+C^{m}K^{C}\sum_{\begin{subarray}{c}R^{-1/2}<\Delta<1\\ \Delta\in K^{\mathbb{N}}\end{subarray}}\max_{\begin{subarray}{c}\ell(\tilde{\tau})\sim\Delta\end{subarray}}\max_{\begin{subarray}{c}\ell(\tau)=\ell(\tau^{\prime})\sim K^{-1}\Delta\\ \tau,\tau^{\prime}\subset\tilde{\tau},\,\,\text{nonadj.}\\ C\underset{\begin{subarray}{c}\ell(\tau_{0})=K^{-1}\Delta\\ \tau_{0}\subset\tilde{\tau}\end{subarray}}{\max}|f_{\tau_{0}}(x)|\leq K^{C}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2}\end{subarray}}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2}.

Recall that our goal is to bound the size of the set

Uα={x2:α|f(x)|}.U_{\alpha}=\{x\in\mathbb{R}^{2}:\alpha\leq|f(x)|\}.

By the triangle inequality and using the notation θ\theta for blocks τ\tau with (τ)=R1/2\ell(\tau)=R^{-1/2}

(12) |Uα||{x2:αCmmaxθ|fθ(x)|}|+R1/2<Δ<1ΔK(τ~)Δ(τ)=(τ)K1Δτ,ττ~,nonadj.|Uα(τ,τ)|\displaystyle|U_{\alpha}|\leq|\{x\in\mathbb{R}^{2}:\alpha\lesssim C^{m}\max_{\theta}|f_{\theta}(x)|\}|+\sum_{\begin{subarray}{c}R^{-1/2}<\Delta<1\\ \Delta\in K^{\mathbb{N}}\end{subarray}}\sum_{\begin{subarray}{c}\ell(\tilde{\tau})\sim\Delta\\ \ell(\tau)=\ell(\tau^{\prime})\sim K^{-1}\Delta\\ \tau,\tau^{\prime}\subset\tilde{\tau},\,\,\text{nonadj.}\end{subarray}}|U_{\alpha}(\tau,\tau^{\prime})|

where Uα(τ,τ)U_{\alpha}(\tau,\tau^{\prime}) is the set

{x2:α(logR)CmKC|fτ(x)fτ(x)|1/2,C(|fτ(x)|+|fτ(x)|)KC|fτ(x)fτ(x)|1/2}.\{x\in\mathbb{R}^{2}:\alpha\lesssim(\log R)C^{m}K^{C}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2},\,\,C(|f_{\tau}(x)|+|f_{\tau^{\prime}}(x)|)\leq K^{C}|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2}\}.

The first term in the upper bound from (12) is bounded trivially by λ(R1/2)2α4γfγ22\frac{\lambda(R^{-1/2})^{2}}{\alpha^{4}}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}. By the assumption that fγ1\|f_{\gamma}\|_{\infty}\lesssim 1 for every γ\gamma, we know that |fτ|Rβ|f_{\tau}|\lesssim R^{\beta} for any τ\tau. Also assume without loss of generality that α>1\alpha>1 (otherwise Theorem 4 follows from L2L^{2}-orthogonality). This means that there are logR\sim\log R dyadic values of α\alpha^{\prime} between α\alpha and RβR^{\beta} so by pigeonholing, there exists α[α/(CmKC),Rβ]\alpha^{\prime}\in[\alpha/(C^{m}K^{C}),R^{\beta}] so that

|Uα(τ,τ)|(logR+log(CmKC))|Brα(τ,τ)||U_{\alpha}(\tau,\tau^{\prime})|\lesssim(\log R+\log(C^{m}K^{C}))|\text{Br}_{\alpha^{\prime}}(\tau,\tau^{\prime})|

where the set Brα(τ,τ)\text{Br}_{\alpha^{\prime}}(\tau,\tau^{\prime}) is defined in (10). By parabolic rescaling, there exists an affine transformation TT so that fτT=gτ¯f_{\tau}\circ T=g_{\underline{\tau}} and fτT=gτ¯f_{\tau^{\prime}}\circ T=g_{\underline{\tau}^{\prime}} where τ¯\underline{\tau} and τ¯\underline{\tau^{\prime}} are K1\sim K^{-1}-separated blocks in 𝒩Δ2R1(1)\mathcal{N}_{\Delta^{-2}R^{-1}}(\mathbb{P}^{1}). Note that the functions gτ¯g_{\underline{\tau}} and gτ¯g_{\underline{\tau}^{\prime}} inherit the property of being (Δ2R,ε)(\Delta^{2}R,\varepsilon)-normalized in the sense required to apply Proposition 1 in each of the following cases.

Case 1: Suppose that for some β[12,1]\beta^{\prime}\in[\frac{1}{2},1], Δ1Rβ=(Δ2R)β\Delta^{-1}R^{-\beta}=(\Delta^{2}R)^{-\beta^{\prime}}. Then for each γ𝒫(R,β)\gamma\in\mathcal{P}(R,\beta), fγT=gγ¯f_{\gamma}\circ T=g_{\underline{\gamma}} for some γ¯𝒫(Δ2R,β)\underline{\gamma}\in\mathcal{P}(\Delta^{2}R,\beta^{\prime}). Applying Proposition 1 with functions gτ¯g_{\underline{\tau}} and gτ¯g_{\underline{\tau}^{\prime}} and level set parameter α\alpha^{\prime} leads to the inequality

|Brα(τ,τ)|KCα}|Cε,δRεCmKO(1)×\displaystyle|\text{Br}_{\alpha^{\prime}}(\tau,\tau^{\prime})|\leq K^{C}\alpha^{\prime}\}|\leq C_{\varepsilon,\delta}R^{\varepsilon}C^{m}K^{O(1)}\times
{1(α)4maxRβ<s<R1/2λ(s1R1)λ(s)γτ~fγ22if(α)2>λ(Δ)2max𝑠λ(s1R1)λ(s)λ(Δ)2(α)6γτ~fγ22if(α)2λ(Δ)2max𝑠λ(s1R1)λ(s)\displaystyle\qquad\begin{cases}\frac{1}{(\alpha^{\prime})^{4}}\underset{R^{-\beta}<s<R^{-1/2}}{\max}\lambda(s^{-1}R^{-1})\lambda(s)\sum_{\gamma\subset\tilde{\tau}}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad(\alpha^{\prime})^{2}>\frac{\lambda(\Delta)^{2}}{\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)}\\ \frac{\lambda(\Delta)^{2}}{(\alpha^{\prime})^{6}}\sum_{\gamma\subset\tilde{\tau}}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad(\alpha^{\prime})^{2}\leq\frac{\lambda(\Delta)^{2}}{\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)}\end{cases}

Case 2: Now suppose that Δ1Rβ<(Δ2R)1\Delta^{-1}R^{-\beta}<(\Delta^{2}R)^{-1}. Let θ~\tilde{\theta} be Δ1R1×R1\Delta^{-1}R^{-1}\times R^{-1} blocks and let θ¯~\underline{\tilde{\theta}} be (Δ2R)1×(Δ2R)1(\Delta^{2}R)^{-1}\times(\Delta^{2}R)^{-1} blocks so that fθ~T=gθ¯~f_{\tilde{\theta}}\circ T=g_{\underline{\tilde{\theta}}}. Let B=maxθ~|fθ~|B=\max_{\tilde{\theta}}|f_{\tilde{\theta}}| and divide everything by BB in order to satisfy the hypotheses gθ¯~/B1\|g_{\underline{\tilde{\theta}}}\|_{\infty}/B\leq 1 for all θ¯~\underline{\tilde{\theta}}. Let λ~(s):=λ(Δs)/λ(Δ1R1)\tilde{\lambda}(s):=\lambda(\Delta s)/\lambda(\Delta^{-1}R^{-1}) count the number of θ¯~\underline{\tilde{\theta}} intersecting an ss-arc. In the case (α)2>λ~(1)B2maxsλ~(s1(Δ2R)1)λ~(s)(\alpha^{\prime})^{2}>\frac{\tilde{\lambda}(1)B^{2}}{\max_{s}\tilde{\lambda}(s^{-1}(\Delta^{2}R)^{-1})\tilde{\lambda}(s)} (with the maximum taken over (Δ2R)1<s<(Δ2R)1/2(\Delta^{2}R)^{-1}<s<(\Delta^{2}R)^{-1/2}), use Proposition 1 with functions gτ¯/Bg_{\underline{\tau}}/B and gτ¯/Bg_{\underline{\tau}^{\prime}}/B and level set parameter α/B\alpha^{\prime}/B to get the inequality

|Brα(τ,τ)|Cε,δRεCmKO(1)B4(α)4max(Δ2R)1<s<(Δ2R)1/2λ~(s1(Δ2R)1)λ~(s)θ~τ~fθ~22/B2.|\text{Br}_{\alpha^{\prime}}(\tau,\tau^{\prime})|\leq C_{\varepsilon,\delta}R^{\varepsilon}C^{m}K^{O(1)}\frac{B^{4}}{(\alpha^{\prime})^{4}}\underset{(\Delta^{2}R)^{-1}<s<(\Delta^{2}R)^{-1/2}}{\max}\tilde{\lambda}(s^{-1}(\Delta^{2}R)^{-1})\tilde{\lambda}(s)\sum_{\tilde{\theta}\subset\tilde{\tau}}\|f_{\tilde{\theta}}\|_{2}^{2}/B^{2}.

Note that since Bλ(Δ1R1)B\leq\lambda(\Delta^{-1}R^{-1}),

B2max(Δ2R)1<s<(Δ2R)1/2λ~(s1(Δ2R)1)λ~(s)maxΔ1R1<s<R1/2λ(s1R1)λ(s)B^{2}\underset{(\Delta^{2}R)^{-1}<s<(\Delta^{2}R)^{-1/2}}{\max}\tilde{\lambda}(s^{-1}(\Delta^{2}R)^{-1})\tilde{\lambda}(s)\leq\underset{\Delta^{-1}R^{-1}<s<R^{-1/2}}{\max}{\lambda}(s^{-1}R^{-1}){\lambda}(s)

and

λ~(1)2B2max𝑠λ~(s1(Δ2R)1)λ~(s)λ(Δ)2λ(Δ1R1)2maxΔ1R1<s<R1/2λ(s1R1)λ(s)λ(Δ1R1)λ(Δ).\frac{\tilde{\lambda}(1)^{2}B^{2}}{\underset{s}{\max}\tilde{\lambda}(s^{-1}(\Delta^{2}R)^{-1})\tilde{\lambda}(s)}\leq\frac{\lambda(\Delta)^{2}\lambda(\Delta^{-1}R^{-1})^{2}}{\underset{\Delta^{-1}R^{-1}<s<R^{-1/2}}{\max}{\lambda}(s^{-1}R^{-1}){\lambda}(s)}\leq\lambda(\Delta^{-1}R^{-1})\lambda(\Delta).

Then in the case (α)2λ~(1)B2maxsλ~(s1(Δ2R)1)λ~(s)(\alpha^{\prime})^{2}\leq\frac{\tilde{\lambda}(1)B^{2}}{\max_{s}\tilde{\lambda}(s^{-1}(\Delta^{2}R)^{-1})\tilde{\lambda}(s)}, compute directly that

(α)4|{x2:α|fτ(x)fτ(x)|1/2,(|fτ(x)|+|fτ(x)|)KCα}|\displaystyle(\alpha^{\prime})^{4}|\{x\in\mathbb{R}^{2}:\alpha^{\prime}\sim|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2},\,\,(|f_{\tau}(x)|+|f_{\tau^{\prime}}(x)|)\leq K^{C}\alpha^{\prime}\}|
λ(Δ1R1)λ(Δ)2(|fτ|2+|fτ|2)maxΔ1R1<s<R1/2λ(s1R1)λ(s)γτ~fγ22.\displaystyle\quad\lesssim\lambda(\Delta^{-1}R^{-1})\lambda(\Delta)\int_{\mathbb{R}^{2}}(|f_{\tau}|^{2}+|f_{\tau^{\prime}}|^{2})\lesssim\underset{\Delta^{-1}R^{-1}<s<R^{-1/2}}{\max}{\lambda}(s^{-1}R^{-1}){\lambda}(s)\sum_{\gamma\subset\tilde{\tau}}\|f_{\gamma}\|_{2}^{2}.

Using also that θ~τ~fθ~22γτ~fγ22\sum_{\tilde{\theta}\subset\tilde{\tau}}\|f_{\tilde{\theta}}\|_{2}^{2}\leq\sum_{\gamma\subset\tilde{\tau}}\|f_{\gamma}\|_{2}^{2}, the bound for Case 2 is

|{x2:α|fτ(x)fτ(x)|1/2,(|fτ(x)|+|fτ(x)|)KCα}|\displaystyle|\{x\in\mathbb{R}^{2}:\alpha^{\prime}\sim|f_{\tau}(x)f_{\tau^{\prime}}(x)|^{1/2},\,\,(|f_{\tau}(x)|+|f_{\tau^{\prime}}(x)|)\leq K^{C}\alpha^{\prime}\}|
Cε,δRεCmKO(1)1(α)4maxRβ<s<R1/2λ(s1(Δ2R)1)λ(s)γτ~fγ22.\displaystyle\quad\leq C_{\varepsilon,\delta}R^{\varepsilon}C^{m}K^{O(1)}\frac{1}{(\alpha^{\prime})^{4}}\underset{R^{-\beta}<s<R^{-1/2}}{max}{\lambda}(s^{-1}(\Delta^{2}R)^{-1}){\lambda}(s)\sum_{\gamma\subset\tilde{\tau}}\|f_{\gamma}\|_{2}^{2}.

It follows from (12) and the combined Case 1 and Case 2 arguments above that

|Uα|Cε,δRεCmKO(1)×\displaystyle|U_{\alpha}|\leq C_{\varepsilon,\delta}R^{\varepsilon}C^{m}K^{O(1)}\times
{1α4maxRβ<s<R1/2λ(s1R1)λ(s)γfγ22ifα>λ(1)2max𝑠λ(s1R1)λ(s)λ(1)2α6γfγ22ifα2λ(1)2max𝑠λ(s1R1)λ(s).\displaystyle\qquad\begin{cases}\frac{1}{\alpha^{4}}\underset{R^{-\beta}<s<R^{-1/2}}{\max}\lambda(s^{-1}R^{-1})\lambda(s)\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad\alpha>\frac{\lambda(1)^{2}}{\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)}\\ \frac{\lambda(1)^{2}}{\alpha^{6}}\sum_{\gamma}\|f_{\gamma}\|_{2}^{2}\quad&\text{if}\quad\alpha^{2}\leq\frac{\lambda(1)^{2}}{\underset{s}{\max}\lambda(s^{-1}R^{-1})\lambda(s)}\end{cases}.

Recall that KmR1/2K^{m}\sim R^{-1/2} and K=RδK=R^{\delta} so that Cε,δRεCmKO(1)Cε,δRεCO(δ1)RO(1)δC_{\varepsilon,\delta}R^{\varepsilon}C^{m}K^{O(1)}\leq C_{\varepsilon,\delta}R^{\varepsilon}C^{O(\delta^{-1})}R^{O(1)\delta}. Choosing δ\delta small enough so that RO(1)δRεR^{O(1)\delta}\leq R^{\varepsilon} finishes the proof.

References

  • [Apo76] Tom M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1976.
  • [BD15] Jean Bourgain and Ciprian Demeter. The proof of the l2l^{2} decoupling conjecture. Ann. of Math. (2), 182(1):351–389, 2015.
  • [Bou93] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal., 3(2):107–156, 1993.
  • [Bou17a] J. Bourgain. Decoupling, exponential sums and the Riemann zeta function. J. Amer. Math. Soc., 30(1):205–224, 2017.
  • [Bou17b] Jean Bourgain. Decoupling inequalities and some mean-value theorems. J. Anal. Math., 133:313–334, 2017.
  • [Cor77] Antonio Cordoba. The Kakeya maximal function and the spherical summation multipliers. American Journal of Mathematics, 99(1):1–22, 1977.
  • [Dem20] Ciprian Demeter. Fourier restriction, decoupling, and applications, volume 184 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2020.
  • [DGW20] Ciprian Demeter, Larry Guth, and Hong Wang. Small cap decouplings. Geom. Funct. Anal., 30(4):989–1062, 2020. With an appendix by D. R. Heath-Brown.
  • [GMW20] Larry Guth, Dominique Maldague, and Hong Wang. Improved decoupling for the parabola. arXiv preprint arXiv:2009.07953, 2020.