This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Short-range correlations and momentum distributions in mirror nuclei H3\rm{}^{3}H and He3\rm{}^{3}He

Qi Meng School of Physics, Nanjing University, Nanjing 210093, China    Ziyang Lu School of Physics, Nanjing University, Nanjing 210093, China    Chang Xu cxu@nju.edu.cn School of Physics, Nanjing University, Nanjing 210093, China
Abstract

Motivated by recent high-energy electron and H3\rm{}^{3}H and He3\rm{}^{3}He nuclei scattering experiment in Jefferson Lab (Nature 609, 41 (2022)), the short-range correlations (SRCs) between nucleon pairs for 3-nucleon systems are microscopically studied using realistic NNNN 2-body interaction and two-Gaussian type NNNNNN 3-body interaction. The wave functions of both H3\rm{}^{3}H and He3\rm{}^{3}He are obtained by solving 3-body Schrödinger equations using Gaussian expansion method (GEM). The differences of one-nucleon and nucleon-nucleon momentum distributions between H3\rm{}^{3}H and He3\rm{}^{3}He are analyzed in detail. The results show that the percentages of pnpn-SRC pairs are significantly enhanced as compared with those of nn(pp)nn(pp)-SRC ones in H3\rm{}^{3}H and He3\rm{}^{3}He nuclei, which is consistent with the experimental findings.

pacs:
21.30.-x, 21.60.-n, 21.45.+v

I Introduction

Short-range correlations (SRCs) between pairs of nucleons are important aspects in nuclear physics, which are considered to be generated from the strong, short-distance part of nucleon-nucleon (NNNN) interactions. SRCs are important for comprehensive understanding of not only the essential feature of nuclear dynamics but also the nuclear forces at short distance and how they are generated from the strong interaction between quarks in nucleons Hen:2016kwk . The nucleon-nucleon SRC pair is considered to have large relative momentum and small total momentum, leading to a high-momentum tail in one-nucleon and nucleon-nucleon momentum distributions. The study of SRCs and its high-momentum feature will deepen our understanding of the properties of finite nuclei at normal density and nuclear matter at supra-saturation density, which probably has important implications in determining the internal structure and evolution of stellar objects such as neutron stars.

Sophisticated theoretical approaches, using modern realistic interactions Reid:1968sq ; Lacombe:1980dr ; Pudliner:1997ck ; Wiringa:1984tg ; Wiringa:1994wb , can be applied to study the correlated many-body wave functions and SRCs, such as correlated basis function theory Co:1994bzw ; Fabrocini:1999mz ; Bisconti:2007vu ; Ryckebusch:2014ann , self-consistent Green’s function method Dickhoff:2004xx ; Rios:2013zqa , approximate schemes like cluster expansions Alvioli:2007zz ; Alvioli:2012qa ; Alvioli:2011aa ; Alvioli:2016wwp , Tensor-optimized high-momentum antisymmetrized molecular dynamics Lyu:2019bxr , generalized nuclear contact formalism Weiss:2016obx and variational Monte Carlo calculations Schiavilla:2006xx ; Wiringa:2008dn ; Wiringa:2013ala ; Carlson:2014vla ; Piarulli:2022ulk . In general, the high-momentum tail of pnpn-SRCs in light nuclei have been demonstrated to be a universal feature with these state-of-art approaches. Various experimental efforts have also been devoted to the investigation of SRCs with the aim of probing the short-range properties of nuclear force Tang:2002ww ; CLAS:2005ola ; Piasetzky:2006ai ; JeffersonLabHallA:2007lly ; Subedi:2008zz ; CLAS:2010yvl ; Fomin:2011ng ; LabHallA:2014wqo ; Hen:2014nza ; CLAS:2018xvc ; CLAS:2018yvt . Thanks to the high-energy and large momentum transfer electron and proton scattering experiments, it becomes possible to resolve the structure and dynamics of individual nucleons and nucleon pairs with precise measurements of small cross sections. Experimental data have showed that about 20%\% of the nucleons in nuclei have momentum larger than the Fermi momentum kFk_{F} in saturated nuclear matter Hen:2016kwk ; CiofidegliAtti:2015lcu ; Frankfurt:1993sp ; Frankfurt:2008zv ; CLAS:2005ola ; Arrington:2011xs . Follow-up experiments probing the isospin composition of nucleon-nucleon SRCs were successfully conducted in both balanced and imbalanced nuclei, indicating that the pnpn-SRCs are much more dominating than the pppp and nnnn ones.

Recently, an experiment conducted in the Jefferson Lab accurately measured the pnpn-SRC pairs and pppp-SRC ones in 3-nucleon systems, using high-energy electron and H3\rm{}^{3}H and He3\rm{}^{3}He nuclei scattering experiment Li:2022fhh . This experiment took advantage of the mirror properties of H3\rm{}^{3}H and He3\rm{}^{3}He and avoided the direct measurement of high-momentum nucleons in the final state Li:2022fhh , which improved the experimental accuracy and greatly reduced the uncertainties. Very interestingly, the experimental data show the ratio of pnpn-SRCs to pppp-SRCs over the pair-counting prediction Pnp/pp=NZ/(Z(Z1)/2)P_{np/pp}=NZ/(Z(Z-1)/2) for A=3A=3 nuclei is 2.170.20+0.252.17^{+0.25}_{-0.20}, which is much smaller than that in heavy nuclei.

Motivated by this unexpected experimental result, we investigate the pnpn-SRCs and pppp(nnnn)-SRCs in mirror nuclei H3\rm{}^{3}H and He3\rm{}^{3}He. We obtain both one-nucleon and nucleon-nucleon momentum distributions from an abinitioab\ initio calculation of solving 3-body Schrödinger equation with a realistic NNNN 2-body interaction, i.e. Argonne v8v_{8}^{\prime} (AV8’) interaction, and a two-Gaussian type NNNNNN 3-body interaction. The numerical method we applied to obtain the accurate correlated wave functions is the Gaussian expansion method (GEM) Hiyama:2003cu , which has been successfully used in both nuclear physics and hadron physics Hiyama:2022jqh ; Hiyama:2022loc ; Hiyama:2018ukv . For instance, we have applied the GEM to both bound and resonant states problems of tetraquark and pentaquark and satisfactory results have been obtained Meng:2019fan ; Meng:2020knc ; Meng:2021yjr . Realistic momentum distributions are obtained from the Fourier transform of correlated wave functions and the differences between SRCs in H3\rm{}^{3}H and He3\rm{}^{3}He are analyzed in detail in the present work. The comparison of SRCs in such imbalanced mirror nuclei with fully microscopic calculations may shed light on the equation of state (EoS) of asymmetric nuclear matter and the density-dependence of nuclear symmetry energy Xu:2010xh ; Xu:2009bb ; Xu:2012hf ; Zhang:2014bna ; Carbone:2011wk ; Vidana:2011ap ; Li:2019xxz .

II Methodology

The Hamiltonian for a 3-nucleon system is given by

H=i=13(mi+𝒑i22mi)TG+i<j=13Vij+VNNN,\displaystyle H=\sum_{i=1}^{3}\Big{(}m_{i}+\frac{\bm{p}_{i}^{2}}{2m_{i}}\Big{)}-T_{G}+\sum_{i<j=1}^{3}V_{ij}+V^{NNN}, (1)

where mim_{i} and 𝒑i\bm{p}_{i} are the mass and momentum of the ii-th nucleon, respectively. TGT_{G} is the kinetic energy of the center-of-mass (c.o.m.) motion of the 3-nucleon system. The complete 2-body interaction for a given NNNN pair ijij, VijV_{ij}, is composed of the strong interaction VijNNV_{ij}^{NN} and electromagnetic interaction VijEMV_{ij}^{EM},

Vij=VijNN+VijEM.\displaystyle V_{ij}=V_{ij}^{NN}+V_{ij}^{EM}. (2)

For the NNNN strong interaction, we employ the Argonne v8v_{8}^{\prime} (AV8’) interaction Pudliner:1997ck . For the electromagnetic interaction, we consider the Coulomb force between proton-proton. The 3-body interaction VNNNV^{NNN} we applied is a two-Gaussian type NNNNNN 3-body interaction taken from Ref.Hiyama:2004nf , which is optimized by fitting the bound states of H3\rm{{}^{3}H}, He3\rm{{}^{3}He} and He4\rm{{}^{4}He}. Its function form is given by

VNNN=n=12Vn(3)eμn(r122+r232+r312).\displaystyle V^{NNN}=\sum_{n=1}^{2}V_{n}^{(3)}e^{-\mu_{n}(r_{12}^{2}+r_{23}^{2}+r_{31}^{2})}. (3)
Refer to caption
Figure 1: 3-body Jacobi coordinates of 3-nucleon system in coordinate space.

In Gaussian expansion method, the variational wave function of a 3-nucleon system in coordinate space, ΨTMT,JM\Psi_{TM_{T},JM} with isospin TT, its zz-component MTM_{T}, total angular momentum JJ and its zz-component MM, is given by,

ΨTMT,JM=C=13αAα[[η12η12]tη12]TMT×\displaystyle\Psi_{TM_{T},JM}=\sum_{C=1}^{3}\sum_{\alpha}A_{\alpha}\Big{[}[\eta_{\frac{1}{2}}\eta_{\frac{1}{2}}]_{t}\eta_{\frac{1}{2}}\Big{]}_{TM_{T}}\times
[[[χ12χ12]sχ12]S[ϕnl(𝒓(C))ψNL(𝑹(C))]I]JM,\displaystyle\ \ \ \ \ \ \ \ \Big{[}\big{[}[\chi_{\frac{1}{2}}\chi_{\frac{1}{2}}]_{s}\chi_{\frac{1}{2}}\big{]}_{S}\big{[}\phi_{nl}(\bm{r}^{(C)})\psi_{NL}(\bm{R}^{(C)})\big{]}_{I}\Big{]}_{JM}, (4)

where η12\eta_{\frac{1}{2}}, χ12\chi_{\frac{1}{2}} are the isospin and spin wave functions of a single nucleon, respectively. ϕ\phi and ψ\psi denote spatial wave functions with principal quantum number nn, NN and orbit angular momentum ll, LL, respectively.

The label (C)(C) specifies a set of Jacobi coordinates shown in Fig.1. AαA_{\alpha} specifies the expansion coefficients which are determined by matrix diagonalization, where the label α\alpha includes all quantum numbers for the expansion, α{t,T,s,S,n,l,N,L,I}\alpha\equiv\{t,T,s,S,n,l,N,L,I\}. (J,T,MT)(J,T,M_{T}) are (12,12,12)(\frac{1}{2},\frac{1}{2},-\frac{1}{2}) and (12,12,12)(\frac{1}{2},\frac{1}{2},\frac{1}{2}) for H3\rm{{}^{3}H} and He3\rm{{}^{3}He}, respectively.

The one-body and two-body density distributions are defined as

ρN(r)=1MNΨ|iMNPN(i)δ(r|𝒓i𝑹cm|)|Ψ,\displaystyle\rho_{N}(r)=\frac{1}{M_{N}}\Big{\langle}\Psi\Big{|}\sum_{i}^{M_{N}}P_{N}^{(i)}\delta(r-|\bm{r}_{i}-\bm{R}_{cm}|)\Big{|}\Psi\Big{\rangle}, (5)
ρNN(r)=1MNNΨ|i<jMNNPNN(ij)δ(r|𝒓i𝒓j|)|Ψ,\displaystyle\rho_{NN}(r)=\frac{1}{M_{NN}}\Big{\langle}\Psi\Big{|}\sum_{i<j}^{M_{NN}}P_{NN}^{(ij)}\delta(r-|\bm{r}_{i}-\bm{r}_{j}|)\Big{|}\Psi\Big{\rangle}, (6)

respectively. PN(i)=12(1±τz,i)P_{N}^{(i)}=\frac{1}{2}(1\pm\tau_{z,i}) and PNN(ij)=14(1±τz,i)(1±τz,j)P_{NN}^{(ij)}=\frac{1}{4}(1\pm\tau_{z,i})(1\pm\tau_{z,j}) are one-body and two-body isospin projection operators, respectively and the subscript NN labels proton pp and neutron nn. MNM_{N} and MNNM_{NN} stand for the number of corresponding nucleon and nucleon-nucleon pair. The normalizations are 4πρN(r)r2𝑑r=14\pi\int\rho_{N}(r)r^{2}dr=1 and 4πρNN(r)r2𝑑r=14\pi\int\rho_{NN}(r)r^{2}dr=1.

The basis wave functions of a 3-nucleon system in momentum space are obtained by the Fourier transform of the Gaussian basis functions in coordinate space, φ(𝒌)=(12π)3/2ϕ(𝒓)ei𝒌𝒓𝑑𝒓\varphi(\bm{k})=(\frac{1}{2\pi})^{3/2}\int\phi(\bm{r})e^{-i\bm{k}\cdot\bm{r}}d\bm{r} and φ(𝑲)=(12π)3/2ψ(𝑹)ei𝑲𝑹𝑑𝑹\varphi^{\prime}(\bm{K})=(\frac{1}{2\pi})^{3/2}\int\psi(\bm{R})e^{-i\bm{K}\cdot\bm{R}}d\bm{R}. Then using the 3-body Jacobi coordinates in momentum space, 𝒌1=(𝒑3𝒑2)/2\bm{k}_{1}=(\bm{p}_{3}-\bm{p}_{2})/2, 𝒌2=(𝒑1𝒑3)/2\bm{k}_{2}=(\bm{p}_{1}-\bm{p}_{3})/2, 𝒌3=(𝒑2𝒑1)/2\bm{k}_{3}=(\bm{p}_{2}-\bm{p}_{1})/2, 𝑲1=2(𝒑112𝒑212𝒑3)/3\bm{K}_{1}=2(\bm{p}_{1}-\frac{1}{2}\bm{p}_{2}-\frac{1}{2}\bm{p}_{3})/3, 𝑲2=2(𝒑212𝒑312𝒑1)/3\bm{K}_{2}=2(\bm{p}_{2}-\frac{1}{2}\bm{p}_{3}-\frac{1}{2}\bm{p}_{1})/3, and 𝑲3=2(𝒑312𝒑112𝒑2)/3\bm{K}_{3}=2(\bm{p}_{3}-\frac{1}{2}\bm{p}_{1}-\frac{1}{2}\bm{p}_{2})/3, we obtain the total wave function Φ\Phi of the 3-nucleon system in momentum space,

ΦTMT,JM=C=13αAα[[η12η12]tη12]TMT×\displaystyle\Phi_{TM_{T},JM}=\sum_{C=1}^{3}\sum_{\alpha}A_{\alpha}\Big{[}[\eta_{\frac{1}{2}}\eta_{\frac{1}{2}}]_{t}\eta_{\frac{1}{2}}\Big{]}_{TM_{T}}\times
[[[χ12χ12]sχ12]S[φnl(𝒌(C))φNL(𝑲(C))]I]JM,\displaystyle\ \ \ \ \ \Big{[}\big{[}[\chi_{\frac{1}{2}}\chi_{\frac{1}{2}}]_{s}\chi_{\frac{1}{2}}\big{]}_{S}\big{[}\varphi_{nl}(\bm{k}^{(C)}){\varphi^{\prime}}_{NL}(\bm{K}^{(C)})\big{]}_{I}\Big{]}_{JM}, (7)

where 𝒌\bm{k} and 𝑲\bm{K} stand for the relative momentum between two nucleons and relative momentum between NNNN pair and the third nucleon, respectively. The c.o.m. momentum of NNNN pair 𝑸=𝑲\bm{Q}=-\bm{K} when we omit the c.o.m. motion of the 3-nucleon system.

III Results

We firstly calculate the binding energies (B.E.) and the root-mean-square (R.M.S.) radii for H3\rm{{}^{3}H} and He3\rm{{}^{3}He}, respectively. The R.M.S. radius RR is defined as R=(r2ρ(r)r2𝑑r/ρ(r)r2𝑑r)1/2R=(\int r^{2}\rho(r)r^{2}dr/\int\rho(r)r^{2}dr)^{1/2}. In the diagonalization of the 3-body Hamiltonian, we use basis functions with l2l\leq 2 and L2L\leq 2, which are enough to make the eigenvalues convergence quickly. The comparison between the calculated results and the experimental data is given in Table 1. It is clearly shown that the binding energies and the proton R.M.S. radii for the bound states of H3\rm{{}^{3}H} and He3\rm{{}^{3}He} nuclei are both well reproduced. We also calculate the expectation values of kinetic energy, each part of potential energies and potential energies in different isospin tt and spin ss channels. The results, which are listed in Table 2, show that the central potential exists in all (t,s)(t,s) channels but mainly contributes as attraction in the (0,1)(0,1) and (1,0)(1,0) channels. Spin-orbit potential and tensor potential only exist in s=1s=1 channels. It should be emphasized that the tensor potential in the (t,s)=(0,1)(t,s)=(0,1) channel is important and contributes 55%\sim 55\% of total attraction. Repulsive Coulomb potential is considered only between pppp in the t=1t=1 channels for He3\rm{{}^{3}He}. The 3-body interaction serves as an attractive potential for both H3\rm{{}^{3}H} and He3\rm{{}^{3}He} and its contribution is relatively small.

The one-body momentum distribution is defined as

ρN(k)=1MNΦ|iMNPN(i)δ(k|𝒌i|)|Φ,\displaystyle\rho_{N}(k)=\frac{1}{M_{N}}\Big{\langle}\Phi\Big{|}\sum_{i}^{M_{N}}P_{N}^{(i)}\delta(k-|\bm{k}_{i}|)\Big{|}\Phi\Big{\rangle}, (8)

with the normalization condition 4πρN(k)k2𝑑k=14\pi\int\rho_{N}(k)k^{2}dk=1 and the c.o.m. motion of the 3-nucleon system is omitted. In Fig. 2(a)(a) and Fig. 2(b)(b), we display the calculated one-body proton and neutron momentum distributions for H3\rm{{}^{3}H} and He3\rm{{}^{3}He}, respectively. One can see that the proton and neutron momentum distributions both have max values at k=0fm1k=0\ \rm{fm^{-1}}, and fall down rapidly in the range of 0<k<2.00<k<2.0 fm1\rm{fm}^{-1}. As expected, the high-momentum tail appears with k>2fm1k>2\ \rm{fm^{-1}}, which is attributed to the effect of SRCs between pairs of nucleons. But differences are seen between the proton and neutron for H3\rm{{}^{3}H} and He3\rm{{}^{3}He}, namely, the minority nucleon (proton for H3\rm{{}^{3}H} and neutron for He3\rm{{}^{3}He}) has larger high-momentum tail. This is considered to be a natural consequence of the short-range tensor interaction. Taking He3\rm{}^{3}He as an example, the pnpn-SRC generated from tensor interaction populates one proton and one neutron in high-momentum state while the remaining proton (majority nucleon) is in relatively low momentum state. Thus the neutron (minority nucleon) has larger high-momentum tail and larger kinetic energy compared with the proton. This feature also manifests itself in heavy nuclei such as Al27\rm{}^{27}Al, Fe56\rm{}^{56}Fe and Pb208\rm{}^{208}Pb. The average proton kinetic energy in these nuclei is found to be larger than that of the neutron one in a pnpn-dominance toy model Hen:2014nza .

Fig. 3 shows the ratios of proton momentum distribution to neutron one (ρp/ρn\rho_{p}/\rho_{n}) for H3\rm{{}^{3}H} (red curve) and He3\rm{{}^{3}He} (blue curve). Two curves are roughly symmetric about the horizontal line ρp(k)/ρn(k)=1\rho_{p}(k)/\rho_{n}(k)=1. The behavior of the ratio is determined mainly by the competition between the tensor interaction and the repulsive hard-core. Taking the red curve for H3\rm{{}^{3}H} as an example, the ratio of minority nucleon to majority nucleon keeps increasing in the range of 0<k<2.00<k<2.0 fm1\rm{fm}^{-1}. This is expected because the tensor interaction plays a more and more important role with the increasing of kk. The decreasing of the ratio beyond k=2.0k=2.0 fm1\rm{fm^{-1}} is because the short-range repulsive hard-core starts to contribute largely and reduces the dominance of tensor interaction. Note that the short-range repulsive hard-core exists in all NNNN channels including nnnn and pppp channels. For very large kk, the ratio of ρp/ρn\rho_{p}/\rho_{n} is expected to become smaller. At k=5.0fm1k=5.0\ \rm{fm^{-1}}, this ratio reduces to approximately ρp/ρn=1.25\rho_{p}/\rho_{n}=1.25, indicating that the tensor interaction still contributes but in less dominance. The blue line for He3\rm{{}^{3}He} has similar behavior except that it is shown in the ratio of majority nucleon to minority one. We do not repeat the discussion here.

Table 1: The calculated H3\rm{{}^{3}H} and He3\rm{{}^{3}He} binding energies (B.E.) and root-mean-square (R.M.S.) radii using AV8’ interaction (Cal.(AV8’)) and AV8’ and NNNNNN 3-body interaction (Cal.(AV8’+3NI)), compared with the experimental values (Exp.).
Cal.(AV8’) Cal.(AV8’+3NI) Exp.
H3\rm{{}^{3}H} B.E.(MeV) -7.77 -8.44 -8.48
RpR_{p}(fm) 1.637 1.597 1.59
RnR_{n}(fm) 1.790 1.740
RpnR_{pn}(fm) 2.922 2.846
RnnR_{nn}(fm) 3.189 3.094
He3\rm{{}^{3}He} B.E.(MeV) -7.11 -7.76 -7.72
RpR_{p}(fm) 1.824 1.770 1.76
RnR_{n}(fm) 1.660 1.617
RpnR_{pn}(fm) 2.967 2.886
RppR_{pp}(fm) 3.256 3.152
Table 2: The expectation values of kinetic energy KK and potential energies of central VCen\langle V^{Cen}\rangle, spin-orbit VLS\langle V^{LS}\rangle, tensor VTen\langle V^{Ten}\rangle, Coulomb VCoul\langle V^{Coul}\rangle and NNNNNN 3-body interaction VNNN\langle V^{NNN}\rangle in different isospin tt and spin ss channels for H3\rm{{}^{3}H} and He3\rm{{}^{3}He} (Unit:MeV).
tt ss KK AV8’ VCoul\langle V^{Coul}\rangle VNNN\langle V^{NNN}\rangle
VCen\langle V^{Cen}\rangle VLS\langle V^{LS}\rangle VTen\langle V^{Ten}\rangle
H3\rm{{}^{3}H} 0 0 0.02 0 0 0
0 1 -8.72 -1.97 -31.50 0
1 0 -14.74 0 0 0
1 1 0.19 -0.10 -0.24 0
sum 49.54 -23.25 -2.07 -31.74 0 -0.92
He3\rm{{}^{3}He} 0 0 0.02 0 0 0
0 1 -8.63 -1.95 -31.16 0
1 0 -14.36 0 0 0.61
1 1 0.19 -0.10 -0.23 0.06
sum 48.69 -22.78 -2.05 -31.39 0.67 -0.91
Refer to caption
Figure 2: One-body proton (ρp\rho_{p}) and neutron (ρn\rho_{n}) momentum distributions for H3\rm{{}^{3}H} and He3\rm{{}^{3}He} as functions of the momentum kk.
Refer to caption
Figure 3: Ratios of proton to neutron (ρp/ρn\rho_{p}/\rho_{n}) for H3\rm{{}^{3}H} and He3\rm{{}^{3}He} as functions of the momentum kk.

The two-body momentum distribution ρNN\rho_{NN} is a function of NNNN relative momentum kk after integrating over all values of of c.o.m. momentum of NNNN pairs 𝑸\bm{Q},

ρNN(k)=1MNNΦ|i<jMNNPNN(ij)δ(k|𝒌i𝒌j|)|Φ,\displaystyle\rho_{NN}(k)=\frac{1}{M_{NN}}\Big{\langle}\Phi\Big{|}\sum_{i<j}^{M_{NN}}P_{NN}^{(ij)}\delta(k-|\bm{k}_{i}-\bm{k}_{j}|)\Big{|}\Phi\Big{\rangle}, (9)

with the normalization 4πρNN(k)k2𝑑k=14\pi\int\rho_{NN}(k)k^{2}dk=1. We display the calculated two-body momentum distributions of different NNNN pairs for H3\rm{{}^{3}H} and He3\rm{{}^{3}He} in Fig. 4(a)(a) and Fig. 4(b)(b), respectively, with kk ranging from 0 to 5.0fm15.0\ \rm{fm^{-1}}. In general, the behavior of two-body momentum distributions is similar to that of one-body ones. When k>2fm1k>2\ \rm{fm}^{-1}, the pnpn pair in H3\rm{{}^{3}H} shows a large high-momentum tail while that in the nnnn pair is much smaller. Similar to the case of H3\rm{{}^{3}H}, the high-momentum tail appears in the pnpn pairs rather than in the pppp pair for He3\rm{{}^{3}He}.

The ratios of pnpn to pppp(nnnn) pairs as function of kk are shown in Fig. 5 (red curve for H3\rm{{}^{3}H} and blue curve for He3\rm{{}^{3}He}), which can be approximately divided into three regions. The first region (0<k<1.5fm10<k<1.5\ {\rm fm^{-1}}) is considered to be dominated by the long-range one-pion-exchange potential and the variation of pnpn/pp(nn)pp(nn) ratio is rather smooth. The rapid changing of slope in the second region (1.5fm1<k<3.0fm11.5\ {\rm fm^{-1}}<k<3.0\ \rm{fm^{-1}}) is because the pnpn pair correlation has a strong dominance compared with the pppp and nnnn correlations, due to the strong tensor interaction of the pnpn pair. This is consistent with the latest results of abab initioinitio variational Monte Carlo (VMC) calculations Piarulli:2022ulk . As discussed above, the decreasing of the ratios in the third region (3.0fm1<k<5.0fm13.0\ {\rm fm^{-1}}<k<5.0\ \rm{fm^{-1}}) is very likely because that the repulsive hard-core from NNNN scalar interaction becomes dominating. Since the strong repulsive core exists in both pnpn pair and pp(nn)pp(nn) pair, the pnpn pair correlation becomes less dominating and the ratio of pnpn to pppp(nnnn) pairs becomes smaller. Note that the red and blue curves almost coincide with each other but small difference is found between two curves with k>2.5fm1k>2.5\ \rm{fm}^{-1}, i.e. the ratio of pn/pppn/pp is larger than that of pn/nnpn/nn. This can be explained by the Coulomb interaction between pppp, which is repulsive and makes the pppp correlation weaker than the nnnn one, leading to the small difference between H3\rm{}^{3}H and He3\rm{}^{3}He.

Refer to caption
Figure 4: Two-body proton-neutron (ρpn\rho_{pn}) and neutron-neutron (ρnn\rho_{nn}) momentum distributions for H3\rm{{}^{3}H} and He3\rm{{}^{3}He} as functions of the relative momentum kk.
Refer to caption
Figure 5: Ratios of pnpn to nnnn pairs (ρpn/ρnn\rho_{pn}/\rho_{nn}) for H3\rm{{}^{3}H} and pnpn to pppp pairs (ρpn/ρpp\rho_{pn}/\rho_{pp}) for He3\rm{{}^{3}He} as function of the relative momentum kk.
Table 3: The calculated non-SRC and SRC pnpn and nnnn(pppp) pairs percentage and ratios of pnpn SRC pairs to nn(pp)nn(pp) SRC ones. For non-SRC pairs and SRC pairs, we define that PNN=0kFρNN(k)k2𝑑k/0ρNN(k)k2𝑑kP_{NN}=\int_{0}^{k_{F}}\rho_{NN}(k)k^{2}dk/\int_{0}^{\infty}\rho_{NN}(k)k^{2}dk and PNN=kFkmaxρNN(k)k2𝑑k/0ρNN(k)k2𝑑kP_{NN}=\int_{k_{F}}^{k_{max}}\rho_{NN}(k)k^{2}dk/\int_{0}^{\infty}\rho_{NN}(k)k^{2}dk, respectively, where kmax=5.0fm1k_{max}=5.0\ \rm{fm}^{-1}.
non-SRC pairs SRC pairs SRC
Ppn(%)P_{pn}(\%) Pnn(pp)(%)P_{nn(pp)}(\%) Ppn(%)P_{pn}(\%) Pnn(pp)(%)P_{nn(pp)}(\%) Ppn/Pnn(pp)P_{pn}/P_{nn(pp)}
H3\rm{{}^{3}H} 93.57 96.02 6.43 3.98 1.62
He3\rm{{}^{3}He} 93.67 96.11 6.33 3.89 1.63

Finally we discuss the enhancement of pnpn-SRC pairs to nn(pp)nn(pp)-SRC ones in 3-nucleon systems and make comparison between theory and experimental data. Here the SRC pair is defined as NNNN pair with relative momentum kk larger than the Fermi momentum in saturated nuclear matter kF=1.33fm1k_{F}=1.33\ \rm fm^{-1}. The percentages of non-SRC pairs with relative momentum below the Fermi momentum 0<k<kF0<k<k_{F} and SRC pairs with relative momentum kF<k<5.0fm1k_{F}<k<5.0\ \rm{fm}^{-1} are calculated for H3\rm{{}^{3}H} or He3\rm{{}^{3}He}, respectively. The results are listed in Table 3. It is clearly seen that a small percentage of pnpn and nn(pp)nn(pp)-SRC pairs is found in both nuclei (3.89%-6.43%). For these SRC pairs, the ratios of Ppn(%)P_{pn}(\%) to Pnn(pp)(%)P_{nn(pp)}(\%) are 1.62 and 1.63 for H3\rm{{}^{3}H} and He3\rm{{}^{3}He}, respectively. This means that the percentages of pnpn-SRC pairs are significantly enhanced compared with those of nn(pp)nn(pp)-SRC ones in both nuclei. The enhancement of pnpn-SRC pairs is consistent with the experimental data Li:2022fhh . Note that an enhancement factor of 2.170.20+0.252.17^{+0.25}_{-0.20} is extracted from the experiment data with c.o.m. momentum of NNNN pair 𝑸0\bm{Q}\simeq 0. For 𝑸>0\bm{Q}>0, higher partial wave components are expected to be involved, leading to a higher average relative momentum Wiringa:2008dn . Thus, a relatively smaller enhancement factor can be obtained by summing over all values of 𝑸\bm{Q}. It should be interesting to compare the theoretical results with the experimental data for 𝑸>0\bm{Q}>0. One would expect the ratio of pnpn-SRC pairs to nn(pp)nn(pp) ones to be smaller and very likely to be more consistent with our theoretical prediction.

IV Summary

We have performed microscopic calculations of the one-, and two-nucleon momentum distributions and the pn/nn(pp)pn/nn(pp) SRC ratios for mirror nuclei H3\rm{{}^{3}H} and He3\rm{{}^{3}He}. We show that the pnpn-SRCs are enhanced compared with the nn(pp)nn(pp)-SRCs, which is consistent with the recent experimental data. We also show that the tensor-force-induced SRC competes strongly with the hard-core-induced SRC beyond the Fermi momentum. The tensor SRC pairs dominate in the inter-medium region of 1.5fm1<k<3.0fm11.5\ {\rm fm^{-1}}<k<3.0\ \rm{fm^{-1}} while the hard-core SRC ones in higher momentum region k>3.0fm1k>3.0\ \rm{fm^{-1}}. The present microscopic GEM calculations can possibly be extended to heavier systems in which the percentage of pnpn-SRCs is expected to be further enhanced. A comparison of 3-nucleon systems and heavier ones should be helpful to better understand the short-distance part of nuclear force and its isospin-dependence.

Acknowledgements.
The authors would like to thank Zhihong Ye, Mengjiao Lyu, and Emiko Hiyama for the helpful discussions. The work is supported by the National Natural Science Foundation of China (Grant No. 12275129) and the Fundamental Research Funds for the Central Universities (Grant No. 020414380209).

References

  • (1) O. Hen, G. A. Miller, E. Piasetzky and L. B. Weinstein, Rev. Mod. Phys. 89, 045002 (2017).
  • (2) R. V. Reid, Jr., Annals Phys. 50, 411 (1968).
  • (3) M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. Cote, P. Pires and R. De Tourreil, Phys. Rev. C 21, 861(1980).
  • (4) B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).
  • (5) R. B. Wiringa, R. A. Smith and T. L. Ainsworth, Phys. Rev. C 29, 1207 (1984).
  • (6) R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Phys. Rev. C 51, 38 (1995).
  • (7) G. Co’, A. Fabrocini and S. Fantoni, Nucl. Phys. A 568, 73(1994).
  • (8) A. Fabrocini, F. Arias de Saavedra and G. Co’, Phys. Rev. C 61, 044302 (2000).
  • (9) C. Bisconti, F. Arias de Saavedra and G. Co’, Phys. Rev. C 75, 054302 (2007).
  • (10) J. Ryckebusch, W. Cosyn and M. Vanhalst, J. Phys. G 42, 055104 (2015).
  • (11) W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377(2004).
  • (12) A. Rios, A. Polls and W. H. Dickhoff, Phys. Rev. C 89, 044303 (2014).
  • (13) M. Alvioli, C. Ciofi degli Atti and H. Morita, Phys. Rev. Lett. 100, 162503 (2008).
  • (14) M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti and H. Morita, Phys. Rev. C 87, 034603 (2013).
  • (15) M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti, H. Morita and S. Scopetta, Phys. Rev. C 85, 021001 (2012).
  • (16) M. Alvioli, C. Ciofi degli Atti and H. Morita, Phys. Rev. C 94, 044309 (2016).
  • (17) M. Lyu, T. Myo, H. Toki, H. Horiuchi, C. Xu and N. Wan, Phys. Lett. B 805, 135421 (2020).
  • (18) R. Weiss, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, Phys. Lett. B 780, 211-215 (2018).
  • (19) R. Schiavilla, R. B. Wiringa, S. C. Pieper and J. Carlson, Phys. Rev. Lett. 98, 132501 (2007).
  • (20) R. B. Wiringa, R. Schiavilla, S. C. Pieper and J. Carlson, Phys. Rev. C 78, 021001 (2008).
  • (21) R. B. Wiringa, R. Schiavilla, S. C. Pieper and J. Carlson, Phys. Rev. C 89, 024305 (2014).
  • (22) M. Piarulli, S. Pastore, R. B. Wiringa, S. Brusilow and R. Lim, Phys. Rev. C 107, 014314 (2023).
  • (23) J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla, K. E. Schmidt and R. B. Wiringa, Rev. Mod. Phys. 87, 1067 (2015).
  • (24) A. Tang, J. W. Watson, J. L. S. Aclander, J. Alster, G. Asryan, Y. Averichev, D. Barton, V. Baturin, N. Bukhtoyarova and A. Carroll, et al. Phys. Rev. Lett. 90, 042301 (2003).
  • (25) K. S. Egiyan et al. [CLAS], Phys. Rev. Lett. 96, 082501 (2006).
  • (26) E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman and J. W. Watson, Phys. Rev. Lett. 97, 162504 (2006).
  • (27) R. Shneor et al. , Phys. Rev. Lett. 99, 072501 (2007).
  • (28) R. Subedi, R. Shneor, P. Monaghan, B. D. Anderson, K. Aniol, J. Annand, J. Arrington, H. Benaoum, W. Bertozzi and F. Benmokhtar, et al. Science 320, 1476 (2008).
  • (29) H. Baghdasaryan et al. [CLAS], Phys. Rev. Lett. 105, 222501 (2010).
  • (30) N. Fomin, J. Arrington, R. Asaturyan, F. Benmokhtar, W. Boeglin, P. Bosted, A. Bruell, M. H. S. Bukhari, M. E. Christy and E. Chudakov, et al. Phys. Rev. Lett. 108, 092502 (2012).
  • (31) O. Hen, M. Sargsian, L. B. Weinstein, E. Piasetzky, H. Hakobyan, D. W. Higinbotham, M. Braverman, W. K. Brooks, S. Gilad and K. P. Adhikari, et al. Science 346, 614 (2014).
  • (32) I. Korover et al., Phys. Rev. Lett. 113, 022501 (2014).
  • (33) M. Duer et al. [CLAS], Phys. Rev. Lett. 122, 172502 (2019).
  • (34) M. Duer et al. [CLAS], Nature 560, 617 (2018).
  • (35) C. Ciofi degli Atti, Phys. Rep. 590, 1(2015).
  • (36) L. L. Frankfurt, M. I. Strikman, D. B. Day and M. Sargsian, Phys. Rev. C 48, 2451(1993).
  • (37) L. Frankfurt, M. Sargsian and M. Strikman, Int. J. Mod. Phys. A 23, 2991(2008).
  • (38) J. Arrington, D. W. Higinbotham, G. Rosner and M. Sargsian, Prog. Part. Nucl. Phys. 67, 898 (2012).
  • (39) S. Li, R. Cruz-Torres, N. Santiesteban, Z. H. Ye, D. Abrams, S. Alsalmi, D. Androic, K. Aniol, J. Arrington and T. Averett, et al. Nature 609, 41(2022).
  • (40) E. Hiyama, B. F. Gibson and M. Kamimura, Phys. Rev. C 70, 031001 (2004).
  • (41) E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223(2003).
  • (42) E. Hiyama, M. Isaka, T. Doi and T. Hatsuda, Phys. Rev. C 106, 064318 (2022).
  • (43) E. Hiyama, R. Lazauskas, J. Carbonell and T. Frederico, Phys. Rev. C 106, 064001 (2022).
  • (44) E. Hiyama, A. Hosaka, M. Oka and J. M. Richard, Phys. Rev. C 98, 045208 (2018).
  • (45) Q. Meng, E. Hiyama, K. U. Can, P. Gubler, M. Oka, A. Hosaka and H. Zong, Phys. Lett. B 798, 135028 (2019).
  • (46) Q. Meng, E. Hiyama, A. Hosaka, M. Oka, P. Gubler, K. U. Can, T. T. Takahashi and H. S. Zong, Phys. Lett. B 814, 136095 (2021).
  • (47) Q. Meng, M. Harada, E. Hiyama, A. Hosaka and M. Oka, Phys. Lett. B 824, 136800 (2022).
  • (48) C. Xu and B. A. Li, Phys. Rev. C 81, 044603 (2010).
  • (49) C. Xu and B. A. Li, Phys. Rev. C 81, 064612 (2010).
  • (50) C. Xu, A. Li and B. A. Li, J. Phys. Conf. Ser. 420, 012090 (2013).
  • (51) X. Zhang, C. Xu and Z. Ren, Eur. Phys. J. A 50, 113 (2014).
  • (52) A. Carbone, A. Polls and A. Rios, EPL 97, 22001 (2012).
  • (53) I. Vidana, A. Polls and C. Providencia, Phys. Rev. C 84, 062801 (2011).
  • (54) B. A. Li, P. G. Krastev, D. H. Wen and N. B. Zhang, Eur. Phys. J. A 55, 117 (2019).