This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Shuffle regularization for multiple Eisenstein series of level N\displaystyle N

Hayato Kanno
Abstract

In [BT], Bachmann and Tasaka discovered a relationship between multiple Eisenstein series (MES) of level 1\displaystyle 1 and formal iterated integrals corresponding to multiple zeta value (MZV). They also constructed shuffle regularized MES of level 1\displaystyle 1, which satisfies the shuffle relation that is same as multiple zeta values. In this paper, we expand their results for arbitrary level and give some linear relations among MES of level N\displaystyle N.

1 Introduction

Multiple zeta values are generalizations of the Riemann zeta values which are defined for integers n1,,nr11\displaystyle n_{1},\dots,n_{r-1}\geq 1 and nr2\displaystyle n_{r}\geq 2 by

ζ(n1,,nr)=0<k1<<kr1k1n1krnr.\displaystyle\zeta(n_{1},\dots,n_{r})=\sum_{0<k_{1}<\cdots<k_{r}}\frac{1}{k_{1}^{n_{1}}\cdots k_{r}^{n_{r}}}.

MZVs have the iterated integral representation. The two different representations give us one of the \displaystyle\mathbb{Q}-linear relations among MZVs, which is called double shuffle relation. For example, the product of ζ(2)\displaystyle\zeta(2) and ζ(3)\displaystyle\zeta(3) can be expanded in two ways as

ζ(2)ζ(3)\displaystyle\displaystyle\zeta(2)\zeta(3) =ζ(2,3)+ζ(3,2)+ζ(5)\displaystyle\displaystyle=\zeta(2,3)+\zeta(3,2)+\zeta(5) (1)
=3ζ(2,3)+ζ(3,2)+6ζ(1,4),\displaystyle\displaystyle=3\zeta(2,3)+\zeta(3,2)+6\zeta(1,4), (2)

from which we deduce the linear relation

ζ(5)=2ζ(2,3)+6ζ(1,4).\displaystyle\zeta(5)=2\zeta(2,3)+6\zeta(1,4).

It is known that there are numerous \displaystyle\mathbb{Q}-linear relations among MZVs. Zagier ([Zag92], [Zag93]) initially noted that there exists some relations among double zeta values whose coefficients are originated from modular forms on SL2()\displaystyle\mathrm{SL}_{2}(\mathbb{Z}). He also conjectured the dimension of the space spanned by double zeta values, which implies that the number of all \displaystyle\mathbb{Q}-linear relations among double zeta values of weight k\displaystyle k is equal to dimk(SL2())\displaystyle\mathrm{dim}_{\mathbb{C}}\mathcal{M}_{k}(\mathrm{SL}_{2}(\mathbb{Z})), the dimension of the space of modular forms of weight k\displaystyle k on SL2()\displaystyle\mathrm{SL}_{2}(\mathbb{Z}).

A formulation of modular relations for double zeta values was first established by Gangl, Kaneko and Zagier [GKZ]. It uses the space of even period polynomials, which by the theory of Eichler-Shimura is isomorphic to the space of modular forms on SL2()\displaystyle\mathrm{SL}_{2}(\mathbb{Z}). They also introduced double Eisenstein series Gr,s(τ)\displaystyle G_{r,s}(\tau) defined for integers r,s2\displaystyle r,s\geq 2 as a holomorphic function on the upper half plane \displaystyle\mathbb{H} by

Gr,s(τ):-0λ1λ2λ1,λ2τ+1λ1rλ2s,\displaystyle G_{r,s}(\tau)\coloneq\sum_{\begin{subarray}{c}0\prec\lambda_{1}\prec\lambda_{2}\\ \lambda_{1},\lambda_{2}\in\mathbb{Z}\tau+\mathbb{Z}\end{subarray}}\frac{1}{\lambda_{1}^{r}\lambda_{2}^{s}},

where the order of lattice points l1τ+m1l2τ+m2\displaystyle l_{1}\tau+m_{1}\succ l_{2}\tau+m_{2} means l1>l2\displaystyle l_{1}>l_{2} or l1=l2,m1>m2\displaystyle l_{1}=l_{2},m_{1}>m_{2}. They constructed regularized double Eisenstein series Gr,s(q)\displaystyle G_{r,s}(q) defined for integers r,s1\displaystyle r,s\geq 1 as a q\displaystyle q-series, which satisfies extended double shuffle relation. Double Eisenstein series are not modular forms in general, but they are expected to play an important role for modular relations among MZVs. Tasaka ([Tasaka20]) gave the explicit formula for decomposing a Hecke eigenform into double Eisenstein series. The example of the decomposition is the following:

22680G9,312(q)35364G7,512(q)29145G5,712(q)+13006G3,912(q)+22680G1,1112(q)=1680Δ(q).\displaystyle 22680G^{\frac{1}{2}}_{9,3}(q)-35364G^{\frac{1}{2}}_{7,5}(q)-29145G^{\frac{1}{2}}_{5,7}(q)+13006G^{\frac{1}{2}}_{3,9}(q)+22680G^{\frac{1}{2}}_{1,11}(q)=\frac{1}{680}\Delta(q).

Here, we write Gr,s12(q)=Gr,s(q)+12Gr+s(q)\displaystyle G^{\frac{1}{2}}_{r,s}(q)=G_{r,s}(q)+\frac{1}{2}G_{r+s}(q) and Δ(q)=qi>0(1qi)24\displaystyle\Delta(q)=q\prod_{i>0}(1-q^{i})^{24}.

In [BT], Bachmann and Tasaka studied multiple Eisenstein series (MES) Gn1,,nr(τ)\displaystyle G_{n_{1},\dots,n_{r}}(\tau) for general depth r>0\displaystyle r>0, which is defined for n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 as a generalization of double Eisenstein series. They revealed the relationship between the Fourier expansion of MES and the Goncharov coproduct on Hopf algebra of iterated integrals. They also constructed shuffle regularized MES Gn1,,nrX(q)\displaystyle G^{\,\hbox{\sevency X}\,}_{n_{1},\dots,n_{r}}(q) as a q\displaystyle q-series, which satisfies restricted double shuffle relations. For example, we have

G5(q)=2G2,3(q)+6G1,4X(q).\displaystyle G_{5}(q)=2G_{2,3}(q)+6G^{\,\hbox{\sevency X}\,}_{1,4}(q).

In this paper, we expand their results for general level. Since MES can be viewed as a multivariate generalization of the classical Eisenstein series, we can consider MES with levels as a generalization of classical Eisenstein series for the congruence subgroup. Kaneko and Tasaka ([KTa]) considered double Eisenstein series of level 2. They provided the relationship between double zeta values of level 2 and modular forms of level 2, and obtained the analogous results of Gangl–Kaneko–Zagier [GKZ] and Kaneko [Kaneko04]. Recently, Kina ([Kina24]) considered double Eisenstein series of level 4, whose constant term of its Fourier expansion is double T~\displaystyle\widetilde{T}-value introduced in Kaneko–Tsumura [KTs], and obtained the analogous results of Gangl–Kaneko–Zagier [GKZ] and Kaneko [Kaneko04]. For general level, Yuan and Zhao ([YZ15]) studied double Eisenstein series of level N\displaystyle N and gave the regularization such that it satisfies extended double shuffle relation.

Let N>0\displaystyle N\in\mathbb{Z}_{>0} and η=exp(2π1/N)\displaystyle\eta=\exp(2\pi\sqrt{-1}/N). Let 1\displaystyle\mathfrak{H}^{1}, 0~\displaystyle\widetilde{\mathfrak{H}^{0}} and 2\displaystyle\mathfrak{H}^{2} be non-commutative polynomial rings of double indices defined by

1\displaystyle\displaystyle\mathfrak{H}^{1} :-(na)|n1,a/N,\displaystyle\displaystyle\coloneq\mathbb{Q}\left\langle\binom{n}{a}\mathrel{}\middle|\mathrel{}n\in\mathbb{Z}_{\geq 1},a\in\mathbb{Z}/N\mathbb{Z}\right\rangle, (3)
0~\displaystyle\displaystyle\widetilde{\mathfrak{H}^{0}} :-+n2,a/N1(na),\displaystyle\displaystyle\coloneq\mathbb{Q}+\sum_{n\geq 2,a\in\mathbb{Z}/N\mathbb{Z}}\mathfrak{H}^{1}\binom{n}{a}, (4)
2\displaystyle\displaystyle\mathfrak{H}^{2} :-(na)|n2,a/N.\displaystyle\displaystyle\coloneq\mathbb{Q}\left\langle\binom{n}{a}\mathrel{}\middle|\mathrel{}n\in\mathbb{Z}_{\geq 2},a\in\mathbb{Z}/N\mathbb{Z}\right\rangle. (5)

Note that 0~\displaystyle\widetilde{\mathfrak{H}^{0}}, 2\displaystyle\mathfrak{H}^{2} are the space of admissible indices for MZV and MES of level N\displaystyle N, respectively. We can equip 1\displaystyle\mathfrak{H}^{1} the commutative and associative algebra structure with the shuffle product X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}}. For r2\displaystyle r\geq 2, n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, let (n1,,nra1,,ar)\displaystyle\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} denote the concatenation (n1a1)(nrar)\displaystyle\binom{n_{1}}{a_{1}}\cdots\binom{n_{r}}{a_{r}}. We define MES of level N\displaystyle N as a holomorphic function on upper half plane \displaystyle\mathbb{H}, as an image of the \displaystyle\mathbb{Q}-linear map G:2𝒪()\displaystyle G:\mathfrak{H}^{2}\to\mathcal{O}(\mathbb{H}), by

G(n1,,nra1,,ar;τ):-limLlimM0l1Nτ+m1lrNτ+mrliL,miM,miai(modN)1(l1Nτ+m1)n1(lrNτ+mr)nr\displaystyle G\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)}\coloneq\lim_{L\to\infty}\lim_{M\to\infty}\sum_{\begin{subarray}{c}0\prec l_{1}N\tau+m_{1}\prec\dots\prec l_{r}N\tau+m_{r}\\ l_{i}\in\mathbb{Z}_{L},m_{i}\in\mathbb{Z}_{M},m_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{(l_{1}N\tau+m_{1})^{n_{1}}\dots(l_{r}N\tau+m_{r})^{n_{r}}}

for integers n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, and G(;τ)=1\displaystyle G(\emptyset;\tau)=1. Here, L={l|l|L}\displaystyle\mathbb{Z}_{L}=\{l\in\mathbb{Z}\mid\left|l\right|\leq L\} and M={m|m|M}\displaystyle\mathbb{Z}_{M}=\{m\in\mathbb{Z}\mid\left|m\right|\leq M\}. The order of lattice points is defined by

l1τ+m1l2τ+m2defl1>l2or{l1=l2m1>m2.\displaystyle l_{1}\tau+m_{1}\succ l_{2}\tau+m_{2}\xLeftrightarrow{\mathrm{def}}l_{1}>l_{2}\quad\text{or}\quad\begin{cases}l_{1}=l_{2}\\ m_{1}>m_{2}\end{cases}.

MES of arbitrary levels are studied in Yuan–Zhao [YZ15] in the case of depth 2. The Fourier expansion can be expressed with MZVs and multiple divisor function of level N\displaystyle N. For example, we have

G(2,31,1;τ)=ζ(2,31,1)+ζ(20)g(31;q)+ζ(21)g(31;q)+3ζ(30)g(21;q)+g(2,31,1;q).\displaystyle\displaystyle G\bigg{(}\begin{matrix}2,3\\ 1,1\end{matrix};\tau\bigg{)}=\zeta\binom{2,3}{1,1}+\zeta\binom{2}{0}g\bigg{(}\begin{matrix}3\\ 1\end{matrix};q\bigg{)}+\zeta\binom{2}{1}g\bigg{(}\begin{matrix}3\\ 1\end{matrix};q\bigg{)}+3\zeta\binom{3}{0}g\bigg{(}\begin{matrix}2\\ 1\end{matrix};q\bigg{)}+g\bigg{(}\begin{matrix}2,3\\ 1,1\end{matrix};q\bigg{)}. (6)

where q=e2π1τ\displaystyle q=e^{2\pi\sqrt{-1}\tau}. Here, MZVs and multiple divisor functions of level N\displaystyle N are defined as the image of \displaystyle\mathbb{Q}-linear maps ζ:0~\displaystyle\zeta:\widetilde{\mathfrak{H}^{0}}\to\mathbb{R} and g:1q\displaystyle g:\mathfrak{H}^{1}\to\mathbb{C}\llbracket q\rrbracket by

ζ(n1,,nra1,,ar):-0<k1<<kri,kiai(modN)1k1n1krnr\displaystyle\zeta\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\sum_{\begin{subarray}{c}0<k_{1}<\dots<k_{r}\\ {}^{\forall}i,k_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{k_{1}^{n_{1}}\cdots k_{r}^{n_{r}}}

for integers n1,,nr11\displaystyle n_{1},\dots,n_{r-1}\geq 1, nr2\displaystyle n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, and

g(n1,,nra1,,ar;q):-(2π1N)n0<d1<<drc1,,cr>0i=1rηaicicini1(ni1)!qcidi\displaystyle g\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}\coloneq\left(\frac{-2\pi\sqrt{-1}}{N}\right)^{n}\sum_{\begin{subarray}{c}0<d_{1}<\cdots<d_{r}\\ c_{1},\dots,c_{r}>0\end{subarray}}\prod_{i=1}^{r}\frac{\eta^{a_{i}c_{i}}c_{i}^{n_{i}-1}}{(n_{i}-1)!}q^{c_{i}d_{i}}

for integers n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, where n=n1++nr\displaystyle n=n_{1}+\cdots+n_{r}. Goncharov considered the algebra generated by formal iterated integrals I(a0;a1,,am;am+1)\displaystyle\mathrm{I}(a_{0};a_{1},\dots,a_{m};a_{m+1}), which is corresponding to iterated integrals

a0am+1dtta1dttam.\displaystyle\int_{a_{0}}^{a_{m+1}}\frac{dt}{t-a_{1}}\cdots\frac{dt}{t-a_{m}}.

He proved the algebra has Hopf algebra structure with Goncharov coproduct Δ\displaystyle\Delta. Let 1~\displaystyle\widetilde{\mathcal{I}^{1}} be a \displaystyle\mathbb{Q}-algebra spanned by formal iterated integrals corresponding to MZVs of level N\displaystyle N. 1~\displaystyle\widetilde{\mathcal{I}^{1}} is also Hopf algebra with a coproduct Δμ\displaystyle\Delta_{\mu} induced from Goncharov coproduct Δ\displaystyle\Delta. Since 1~\displaystyle\widetilde{\mathcal{I}^{1}} is isomorphic to (1,X~)\displaystyle(\mathfrak{H}^{1},\widetilde{{\,\hbox{\sevency X}\,}}) as \displaystyle\mathbb{Q}-algebras, we can equip 1\displaystyle\mathfrak{H}^{1} with Hopf algebra structure. The coproduct is explicitly given, for example we have

Δμ((2,31,1))=(2,31,1)1+(20)(31)+(21)(31)+3(30)(21)+1(2,31,1).\displaystyle\displaystyle\Delta_{\mu}\left(\binom{2,3}{1,1}\right)=\binom{2,3}{1,1}\otimes 1+\binom{2}{0}\otimes\binom{3}{1}+\binom{2}{1}\otimes\binom{3}{1}+3\binom{3}{0}\otimes\binom{2}{1}+1\otimes\binom{2,3}{1,1}. (7)

Now, comparing equations (6) and (7), we can see the relationships between Fourier expansion of MES of level N\displaystyle N and Goncharov coproduct.

Theorem 1.1.

For any w2\displaystyle w\in\mathfrak{H}^{2}, we have

G(w;τ)=(ζg)(w;q)(q=e2π1τ),\displaystyle G(w;\tau)=(\zeta\star g)(w;q)\qquad(q=e^{2\pi\sqrt{-1}\tau}),

where ζg=m(ζg)Δμ\displaystyle\zeta\star g=m\circ(\zeta\otimes g)\circ\Delta_{\mu}, m\displaystyle m is multiplication on q\displaystyle\mathbb{C}\llbracket q\rrbracket.

By using this, we can construct shuffle regularized MES of level N\displaystyle N. Kitada ([Kitada23]) constructed shuffle regularized multiple divisor function of level N\displaystyle N, gX~:1q\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}}:\mathfrak{H}^{1}\to\mathbb{C}\llbracket q\rrbracket. Then, we define shuffle regularized MES of level N\displaystyle N as the image of GX~:1𝒪()\displaystyle G^{\widetilde{{\,\hbox{\sevency X}\,}}}:\mathfrak{H}^{1}\to\mathcal{O}(\mathbb{H}) by

GX~(w;τ):-(ζX~gX~)(w;q)(q=e2π1τ)\displaystyle G^{\widetilde{{\,\hbox{\sevency X}\,}}}(w;\tau)\coloneq(\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}\star g^{\widetilde{{\,\hbox{\sevency X}\,}}})(w;q)\quad(q=e^{2\pi\sqrt{-1}\tau})

for w1\displaystyle w\in\mathfrak{H}^{1}, where ζX~:1\displaystyle\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}:\mathfrak{H}^{1}\to\mathbb{C} is the shuffle regularized MZVs of level N\displaystyle N. The regularized MES of level N\displaystyle N satisfy restricted double shuffle relation.

Theorem 1.2 (Restricted double shuffle relation).

For any words w1,w22\displaystyle w_{1},w_{2}\in\mathfrak{H}^{2}, we have

G(w1~w2;τ)=GX~(w1X~w2;τ).\displaystyle G(w_{1}\widetilde{*}w_{2};\tau)=G^{\widetilde{{\,\hbox{\sevency X}\,}}}(w_{1}\widetilde{{\,\hbox{\sevency X}\,}}w_{2};\tau).

Kitada ([Kitada23]) obtained distribution relation and sum and weighted sum formulas for double Eisenstein series. We give distribution relation for MES of level N\displaystyle N.

The organization of this paper is as follows. In Section 2, we recall multiple L\displaystyle L-values (MLVs) introduced in Arakawa–Kaneko [AK] and MZVs of level N\displaystyle N introduced in Yuan–Zhao [YZ16]. Note that their shuffle (harmonic) products are different in the algebra of indices \displaystyle\mathfrak{H}. We give the relationships between their shuffle (harmonic) products. We also give the antipode relations for MLVs and MZVs of level N\displaystyle N. In Section 3, we give an explicit formula of the Fourier expansion of MES of level N\displaystyle N in the same way as Bachmann–Tasaka [BT]. In Section 4, we study formal iterated integrals corresponding to MZVs of level N\displaystyle N and observe relationship between the Fourier expansion of MES of level N\displaystyle N and them. Using this, we construct shuffle regularized MES of level N\displaystyle N in Section 5. In Section 6, we give some linear relations among regularized MES of level N\displaystyle N.

Acknowledgment

The author would like to express his deepest gratitude to his supervisor, Professor Yasuo Ohno of Tohoku University. He taught the author attitude to study mathematics and gave a great deal of advice. The author also would like to express his deepest gratitude to Professor Koji Tasaka of Kindai University for comments, corrections, and ideas on this paper. In particular, he gave the author very helpful advice for the argument in Section 4.2, and introduced the author thesis [Kitada23] of his former student Shui Kitada. The author also would like to thank the members of Ohno Laboratory for their kindness on both academically and as friends.

2 Multiple zeta values of level N\displaystyle N

2.1 Multiple L\displaystyle L-values of level N\displaystyle N

Let \displaystyle\mathfrak{H} denote the non-commutative polynomial ring generated by letters x,ya\displaystyle x,y_{a} (a/N)\displaystyle(a\in\mathbb{Z}/N\mathbb{Z}) and let 0\displaystyle\mathfrak{H}^{0} be a \displaystyle\mathbb{Q}-subalgebra of \displaystyle\mathfrak{H} defined by

\displaystyle\displaystyle\mathfrak{H} :-x,ya|a/N,\displaystyle\displaystyle\coloneq\mathbb{Q}\left\langle x,y_{a}\mathrel{}\middle|\mathrel{}a\in\mathbb{Z}/N\mathbb{Z}\right\rangle, (8)
0\displaystyle\displaystyle\mathfrak{H}^{0} :-+a/Nyax+a,b/Nb0yayb.\displaystyle\displaystyle\coloneq\mathbb{Q}+\sum_{a\in\mathbb{Z}/N\mathbb{Z}}y_{a}\mathfrak{H}x+\sum_{\begin{subarray}{c}a,b\in\mathbb{Z}/N\mathbb{Z}\\ b\neq 0\end{subarray}}y_{a}\mathfrak{H}y_{b}. (9)

We can identify 0\displaystyle\mathfrak{H}^{0} with the algebra of double indices by sending zn,a=yaxn1\displaystyle z_{n,a}=y_{a}x^{n-1} to the double index (na)\displaystyle\binom{n}{a}:

0+n1,a/N(n,a)(1,0)1(na).\displaystyle\mathfrak{H}^{0}\simeq\mathbb{Q}+\sum_{\begin{subarray}{c}n\geq 1,a\in\mathbb{Z}/N\mathbb{Z}\\ (n,a)\neq(1,0)\end{subarray}}\mathfrak{H}^{1}\binom{n}{a}.

We also apply the identification to 1\displaystyle\mathfrak{H}^{1}, 0~\displaystyle\widetilde{\mathfrak{H}^{0}} and 2\displaystyle\mathfrak{H}^{2}.

Definition 2.1 (cf. Arakawa–Kaneko [AK]).

We define the multiple L\displaystyle L-value (MLV) of shuffle and harmonic type LX,L:0\displaystyle L_{\,\hbox{\sevency X}\,},L_{\ast}:\mathfrak{H}^{0}\to\mathbb{C} by

LX(n1,,nra1,,ar):-01ηa1dt1ηa1t(dtt)n11ηardt1ηart(dtt)nr1,\displaystyle\displaystyle L_{{\,\hbox{\sevency X}\,}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\int_{0}^{1}\frac{\eta^{a_{1}}dt}{1-\eta^{a_{1}}t}\left(\frac{dt}{t}\right)^{n_{1}-1}\cdots\frac{\eta^{a_{r}}dt}{1-\eta^{a_{r}}t}\left(\frac{dt}{t}\right)^{n_{r}-1}, (10)
L(n1,,nra1,,ar):-0<k1<<krηa1k1++arkrk1n1krnr\displaystyle\displaystyle L_{\ast}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\sum_{0<k_{1}<\cdots<k_{r}}\frac{\eta^{a_{1}k_{1}+\cdots+a_{r}k_{r}}}{k_{1}^{n_{1}}\cdots k_{r}^{n_{r}}} (11)

for any word (n1,,nra1,,ar)0\displaystyle\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\in\mathfrak{H}^{0}, and LX()=L()=1\displaystyle L_{\,\hbox{\sevency X}\,}(\emptyset)=L_{\ast}(\emptyset)=1, together with \displaystyle\mathbb{Q}-linearly.

MLVs of shuffle type also have a series expression:

LX(n1,,nra1,,ar)=0<k1<<krη(a1a2)k1+(ar1ar)kr1+arkrk1n1krnr.\displaystyle L_{{\,\hbox{\sevency X}\,}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=\sum_{0<k_{1}<\cdots<k_{r}}\frac{\eta^{(a_{1}-a_{2})k_{1}+\cdots(a_{r-1}-a_{r})k_{r-1}+a_{r}k_{r}}}{k_{1}^{n_{1}}\cdots k_{r}^{n_{r}}}.

We define shuffle product  X  on \displaystyle\mathfrak{H} recursively by

  1. (S1)

    wX 1=1Xw=w,\displaystyle w{\,\hbox{\sevency X}\,}1=1{\,\hbox{\sevency X}\,}w=w,

  2. (S2)

    u1w1Xu2w2=u1(w1Xu2w2)+u2(u1w1Xw2)\displaystyle u_{1}w_{1}{\,\hbox{\sevency X}\,}u_{2}w_{2}=u_{1}(w_{1}{\,\hbox{\sevency X}\,}u_{2}w_{2})+u_{2}(u_{1}w_{1}{\,\hbox{\sevency X}\,}w_{2})

for any u1,u2{x,yaa/N}\displaystyle u_{1},u_{2}\in\{x,y_{a}\mid a\in\mathbb{Z}/N\mathbb{Z}\} and any words w,w1,w2\displaystyle w,w_{1},w_{2}\in\mathfrak{H}, together with \displaystyle\mathbb{Q}-bilinearly. Note that 1\displaystyle\mathfrak{H}^{1} is generated by zn,a=yaxn1\displaystyle z_{n,a}=y_{a}x^{n-1} (n>0,a/N)\displaystyle(n>0,a\in\mathbb{Z}/N\mathbb{Z}). We also define the harmonic product \displaystyle\ast on 1\displaystyle\mathfrak{H}^{1} recursively by

  1. (H1)

    w1=1w=w,\displaystyle w\ast 1=1\ast w=w,

  2. (H2)

    zn1,a1w1zn2,a2w2=zn1,a1(w1zn2,a2w2)+zn2,a2(zn1,a1w1w2)+zn1+n2,a1+a2(w1w2),\displaystyle z_{n_{1},a_{1}}w_{1}\ast z_{n_{2},a_{2}}w_{2}=z_{n_{1},a_{1}}(w_{1}\ast z_{n_{2},a_{2}}w_{2})+z_{n_{2},a_{2}}(z_{n_{1},a_{1}}w_{1}\ast w_{2})+z_{n_{1}+n_{2},a_{1}+a_{2}}(w_{1}\ast w_{2}),

for any zn1,a1,zn2,a2\displaystyle z_{n_{1},a_{1}},z_{n_{2},a_{2}} and any words w1,w21\displaystyle w_{1},w_{2}\in\mathfrak{H}^{1}, together with \displaystyle\mathbb{Q}-bilinearly. It is known that LX\displaystyle L_{\,\hbox{\sevency X}\,} and L\displaystyle L_{\ast} are algebra homomorphisms i.e.

L#(w1#w2)=L#(w1)L#(w2)(w1,w20,#{X,}).\displaystyle L_{\#}(w_{1}\#w_{2})=L_{\#}(w_{1})L_{\#}(w_{2})\quad(w_{1},w_{2}\in\mathfrak{H}^{0},\#\in\{{\,\hbox{\sevency X}\,},\ast\}).
Remark 2.2.

There exist regularized MLVs, which are defined as polynomials, L#reg:(1,#)[T]\displaystyle L_{\#}^{\mathrm{reg}}:(\mathfrak{H}^{1},\#)\to\mathbb{C}[T] and they are algebra homomorphisms (see Arakawa–Kaneko [AK]).

2.2 Multiple zeta values of level N

Definition 2.3 (cf. Yuan–Zhao [YZ16]).

We define the multiple zeta value (MZV) of level N\displaystyle N as the image of \displaystyle\mathbb{Q}-linear map ζ:0~\displaystyle\zeta:\widetilde{\mathfrak{H}^{0}}\to\mathbb{R} by

ζ(n1,,nra1,,ar):-0<k1<<kri,kiai(modN)1k1n1krnr\displaystyle\zeta\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\sum_{\begin{subarray}{c}0<k_{1}<\dots<k_{r}\\ {}^{\forall}i,k_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{k_{1}^{n_{1}}\cdots k_{r}^{n_{r}}}

for integers n1,,nr11\displaystyle n_{1},\dots,n_{r-1}\geq 1, nr2\displaystyle n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, together with \displaystyle\mathbb{Q}-linearly and ζ()=1\displaystyle\zeta(\emptyset)=1.

MZVs of level N\displaystyle N have an iterated integral representation:

ζ(n1,,nra1,,ar)=01ta11dt1tN(dtt)n11ta2a11dt1tN(dtt)n21tarar11dt1tN(dtt)nr1.\displaystyle\zeta\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=\int_{0}^{1}\frac{t^{a_{1}-1}dt}{1-t^{N}}\left(\frac{dt}{t}\right)^{n_{1}-1}\frac{t^{a_{2}-a_{1}-1}dt}{1-t^{N}}\left(\frac{dt}{t}\right)^{n_{2}-1}\cdots\frac{t^{a_{r}-a_{r-1}-1}dt}{1-t^{N}}\left(\frac{dt}{t}\right)^{n_{r}-1}.

We define a \displaystyle\mathbb{Q}-linear bijection ρ:11\displaystyle\rho:\mathfrak{H}^{1}\to\mathfrak{H}^{1} and a (η)\displaystyle\mathbb{Q}(\eta)-linear bijection π:1(η)1(η)\displaystyle\pi:\mathfrak{H}^{1}\otimes_{\mathbb{Q}}\mathbb{Q}(\eta)\to\mathfrak{H}^{1}\otimes_{\mathbb{Q}}\mathbb{Q}(\eta) by

ρ(zn1,a1znr,ar)=zn1,a1zn2,a2a1znr,arar1,\displaystyle\displaystyle\rho(z_{n_{1},a_{1}}\cdots z_{n_{r},a_{r}})=z_{n_{1},a_{1}}z_{n_{2},a_{2}-a_{1}}\cdots z_{n_{r},a_{r}-a_{r-1}}, (12)
π(zn,a)=N1b/Nηabzn,b,\displaystyle\displaystyle\pi(z_{n,a})=N^{-1}\sum_{b\in\mathbb{Z}/N\mathbb{Z}}\eta^{-ab}z_{n,b}, (13)

We define two products X~,~:1×11\displaystyle\widetilde{{\,\hbox{\sevency X}\,}},\widetilde{*}:\mathfrak{H}^{1}\times\mathfrak{H}^{1}\to\mathfrak{H}^{1} by

w1X~w2:-ρ1(ρ(w1)Xρ(w2)),\displaystyle\displaystyle w_{1}\widetilde{{\,\hbox{\sevency X}\,}}w_{2}\coloneq\rho^{-1}\left(\rho(w_{1}){\,\hbox{\sevency X}\,}\rho(w_{2})\right), (14)
w1~w2:-π1(π(w1)π(w2)).\displaystyle\displaystyle w_{1}\widetilde{*}w_{2}\coloneq\pi^{-1}\left(\pi(w_{1})\ast\pi(w_{2})\right). (15)

MZVs of level N\displaystyle N can be written as (η)\displaystyle\mathbb{Q}(\eta)-linear combination of MLVs by using the linear maps ρ\displaystyle\rho and π\displaystyle\pi.

Proposition 2.4 (Yuan–Zhao [YZ16]).

For w0~\displaystyle w\in\widetilde{\mathfrak{H}^{0}}, we have

ζ(w)=(LXπρ)(w)=(Lπ)(w).\displaystyle\zeta(w)=(L_{\,\hbox{\sevency X}\,}\circ\pi\circ\rho)(w)=(L_{\ast}\circ\pi)(w).

MZVs of level N\displaystyle N satisfy X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}} and ~\displaystyle\widetilde{*}-products.

Proposition 2.5.

ζ:(0~,X~)\displaystyle\zeta:(\widetilde{\mathfrak{H}^{0}},\widetilde{{\,\hbox{\sevency X}\,}})\to\mathbb{R} is an algebra homomorphism.

Proof.

Let ya=ta1dt1tN\displaystyle y_{a}=\frac{t^{a-1}dt}{1-t^{N}} and x=dtt\displaystyle x=\frac{dt}{t}. By the integral representation of MZV, it holds

ζ(w)=01ρ(w)\displaystyle\zeta(w)=\int_{0}^{1}\rho(w)

for any word w~0\displaystyle w\in\widetilde{\mathfrak{H}}^{0}. For any words w1,w2~0\displaystyle w_{1},w_{2}\in\widetilde{\mathfrak{H}}^{0}, we have

ζ(w1X~w2)\displaystyle\displaystyle\zeta(w_{1}\widetilde{{\,\hbox{\sevency X}\,}}w_{2}) =01ρ(w1X~w2)=01ρ(w1)Xρ(w2)\displaystyle\displaystyle=\int_{0}^{1}\rho(w_{1}\widetilde{{\,\hbox{\sevency X}\,}}w_{2})=\int_{0}^{1}\rho(w_{1}){\,\hbox{\sevency X}\,}\rho(w_{2}) (16)
=(01ρ(w1))(01ρ(w2))=ζ(w1)ζ(w2).\displaystyle\displaystyle=\left(\int_{0}^{1}\rho(w_{1})\right)\left(\int_{0}^{1}\rho(w_{2})\right)=\zeta(w_{1})\zeta(w_{2}). (17)

Proposition 2.6.

The ~\displaystyle\widetilde{*}-product is well-defined and ζ:(0~,~)\displaystyle\zeta:(\widetilde{\mathfrak{H}^{0}},\widetilde{*})\to\mathbb{R} is an algebra homomorphism.

Proof.

It suffices to show the ~\displaystyle\widetilde{*}-product is determined recursively by

  1. (T1)

    w~1=1~w=w,\displaystyle w\widetilde{*}1=1\widetilde{*}w=w,

  2. (T2)

    zn1,a1w1~zn2,a2w2=zn1,a1(w1~zn2,a2w2)+zn2,a2(zn1,a1w1~w2)+δa1,a2zn1+n2,a1+a2(w1~w2)\displaystyle z_{n_{1},a_{1}}w_{1}\widetilde{*}z_{n_{2},a_{2}}w_{2}=z_{n_{1},a_{1}}(w_{1}\widetilde{*}z_{n_{2},a_{2}}w_{2})+z_{n_{2},a_{2}}(z_{n_{1},a_{1}}w_{1}\widetilde{*}w_{2})+\delta_{a_{1},a_{2}}z_{n_{1}+n_{2},a_{1}+a_{2}}(w_{1}\widetilde{*}w_{2})

for any zn1,a1,zn2,a2\displaystyle z_{n_{1},a_{1}},z_{n_{2},a_{2}} and any words w1,w2\displaystyle w_{1},w_{2}. (T1) is clear by definition. We prove (T2) by induction on l(w1)+l(w2)\displaystyle l(w_{1})+l(w_{2}). Here, l(w)\displaystyle l(w) denote the length of the word w\displaystyle w. When l(w1)+l(w2)=0\displaystyle l(w_{1})+l(w_{2})=0, we have

zn1,a1~zn2,a2\displaystyle\displaystyle z_{n_{1},a_{1}}\widetilde{*}z_{n_{2},a_{2}} =π1(N2b1,b2/Nηa1b1a2b2(zn1,b1zn2,b2+zn2,b2zn1,b1+zn1+n2,b1+b2))\displaystyle\displaystyle=\pi^{-1}\bigg{(}N^{-2}\sum_{b_{1},b_{2}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-a_{1}b_{1}-a_{2}b_{2}}(z_{n_{1},b_{1}}z_{n_{2},b_{2}}+z_{n_{2},b_{2}}z_{n_{1},b_{1}}+z_{n_{1}+n_{2},b_{1}+b_{2}})\bigg{)} (18)
=zn1,a1zn2,a2+zn2,a2zn1,a1+π1(N2b1,b2/Nηa1b1a2b2zn1+n2,b1+b2).\displaystyle\displaystyle=z_{n_{1},a_{1}}z_{n_{2},a_{2}}+z_{n_{2},a_{2}}z_{n_{1},a_{1}}+\pi^{-1}\bigg{(}N^{-2}\sum_{b_{1},b_{2}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-a_{1}b_{1}-a_{2}b_{2}}z_{n_{1}+n_{2},b_{1}+b_{2}}\bigg{)}. (19)

In the sum of the third term, replacing b1=b1+b2\displaystyle b_{1}^{\prime}=b_{1}+b_{2}, we have

π1(N2b1,b2/Nηa1b1a2b2zn1+n2,b1+b2)\displaystyle\displaystyle\pi^{-1}\bigg{(}N^{-2}\sum_{b_{1},b_{2}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-a_{1}b_{1}-a_{2}b_{2}}z_{n_{1}+n_{2},b_{1}+b_{2}}\bigg{)} =π1(N2b2/Nη(a1a2)b2b1/Nηa1b1zn1+n2,b1)\displaystyle\displaystyle=\pi^{-1}\bigg{(}N^{-2}\sum_{b_{2}\in\mathbb{Z}/N\mathbb{Z}}\eta^{(a_{1}-a_{2})b_{2}}\sum_{b_{1}^{\prime}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-a_{1}b_{1}^{\prime}}z_{n_{1}+n_{2},b_{1}^{\prime}}\bigg{)} (20)
=π1(δa1,a2N1b1/Nηa1b1zn1+n2,b1)=δa1,a2zn1+n2,a1.\displaystyle\displaystyle=\pi^{-1}\bigg{(}\delta_{a_{1},a_{2}}N^{-1}\sum_{b_{1}^{\prime}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-a_{1}b_{1}^{\prime}}z_{n_{1}+n_{2},b_{1}^{\prime}}\bigg{)}=\delta_{a_{1},a_{2}}z_{n_{1}+n_{2},a_{1}}. (21)

When l(w1)+l(w2)>0\displaystyle l(w_{1})+l(w_{2})>0, we put w1=zn2,a2znr,ar\displaystyle w_{1}=z_{n_{2},a_{2}}\cdots z_{n_{r},a_{r}} and w2=znr+2,ar+2znr+s,ar+s\displaystyle w_{2}=z_{n_{r+2},a_{r+2}}\cdots z_{n_{r+s},a_{r+s}}. Using inductive hypothesis, we have

zn1,a1w1~znr+1,ar+1w2\displaystyle\displaystyle z_{n_{1},a_{1}}w_{1}\widetilde{*}z_{n_{r+1},a_{r+1}}w_{2} =π1(N(r+s)b1,,br+sη𝒂𝒃zn1,b1znr,brznr+1,br+1znr+s,br+s)\displaystyle\displaystyle=\pi^{-1}\bigg{(}N^{-(r+s)}\sum_{b_{1},\dots,b_{r+s}}\eta^{-\bm{a}\cdot\bm{b}}z_{n_{1},b_{1}}\cdots z_{n_{r},b_{r}}\ast z_{n_{r+1},b_{r+1}}\cdots z_{n_{r+s},b_{r+s}}\bigg{)} (22)
=zn1,a1(w1~znr+1,ar+1w2)+znr+1,ar+1(zn1,a1w1~w2)\displaystyle\displaystyle=z_{n_{1},a_{1}}(w_{1}\widetilde{*}z_{n_{r+1},a_{r+1}}w_{2})+z_{n_{r+1},a_{r+1}}(z_{n_{1},a_{1}}w_{1}\widetilde{*}w_{2}) (23)
+π1(N2b1,br+1/Nηa1b1ar+1br+1zn1+nr+1,b1+br+1)w1~w2,\displaystyle\displaystyle+\pi^{-1}\bigg{(}N^{-2}\sum_{b_{1},b_{r+1}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-a_{1}b_{1}-a_{r+1}b_{r+1}}z_{n_{1}+n_{r+1},b_{1}+b_{r+1}}\bigg{)}w_{1}\widetilde{*}w_{2}, (24)

where 𝒂=(a1,,ar)\displaystyle\bm{a}=(a_{1},\dots,a_{r}) and 𝒃=(b1,,br)t\displaystyle\bm{b}={}^{t}(b_{1},\dots,b_{r}). As mentioned above, the third term is δa1,a2w1~w2\displaystyle\delta_{a_{1},a_{2}}w_{1}\widetilde{*}w_{2}. ∎

We define regularized MZVs of level N\displaystyle N by using regularized MLVs and 2.4.

Definition 2.7.

We define the regularized multiple zeta values of level N\displaystyle N as the images of ζX~:1\displaystyle\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}:\mathfrak{H}^{1}\to\mathbb{C} and ζ~:1\displaystyle\zeta^{\widetilde{*}}:\mathfrak{H}^{1}\to\mathbb{C}, by

ζX~(w):-(LXregπρ)(w)|T=0,\displaystyle\displaystyle\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}(w)\coloneq(L^{\mathrm{reg}}_{\,\hbox{\sevency X}\,}\circ\pi\circ\rho)(w)|_{T=0}, (25)
ζ~(w):-(Lregπ)(w)|T=0.\displaystyle\displaystyle\zeta^{\widetilde{*}}(w)\coloneq(L^{\mathrm{reg}}_{\ast}\circ\pi)(w)|_{T=0}. (26)

By definition, regularized MZV of level N\displaystyle N, ζX~\displaystyle\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}} and ζ~\displaystyle\zeta^{\widetilde{*}} satisfy X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}} and ~\displaystyle\widetilde{*}-product, respectively.

Now, we give the antipode relation for MLVs and MZVs of level N\displaystyle N. We can extend LX\displaystyle L_{\,\hbox{\sevency X}\,} on \displaystyle\mathfrak{H} with  X -homomorphy by putting LX(x)=LX(y0)=0\displaystyle L_{\,\hbox{\sevency X}\,}(x)=L_{\,\hbox{\sevency X}\,}(y_{0})=0. Hoffman ([Hoff00]) provided Hopf algebra structure on the quasi-shuffle algebra.

Theorem 2.8 (Hoffman [Hoff00] Theorem 3.2).

(X,ΔH,εH,𝒮)\displaystyle(\mathfrak{H}_{\,\hbox{\sevency X}\,},\Delta_{H},\varepsilon_{H},\mathcal{S}) is a Hopf algebra with

ΔH(w)=uv=wuv,εH(w)={1w=10w1,𝒮(w)=(1)wt(w)w,\displaystyle\displaystyle\Delta_{H}(w)=\sum_{uv=w}u\otimes v,\quad\varepsilon_{H}(w)=\begin{cases}1&w=1\\ 0&w\neq 1\end{cases},\quad\mathcal{S}(w)=(-1)^{\mathrm{wt}(w)}\overset{\leftarrow}{w}, (27)

where w=ana1\displaystyle\overset{\leftarrow}{w}=a_{n}\cdots a_{1} for w=a1an\displaystyle w=a_{1}\cdots a_{n}.

Lemma 2.9.

For any word a1an\displaystyle a_{1}\cdots a_{n}\in\mathfrak{H} (a1,,an{x,yaa/N})\displaystyle(a_{1},\dots,a_{n}\in\{x,y_{a}\mid a\in\mathbb{Z}/N\mathbb{Z}\}), we have

i=0n(1)iaiai1a1Xai+1ai+2an=0.\displaystyle\sum_{i=0}^{n}(-1)^{i}a_{i}a_{i-1}\cdots a_{1}{\,\hbox{\sevency X}\,}a_{i+1}a_{i+2}\cdots a_{n}=0.
Proof.

Let m:XXX\displaystyle m:\mathfrak{H}_{\,\hbox{\sevency X}\,}\otimes\mathfrak{H}_{\,\hbox{\sevency X}\,}\to\mathfrak{H}_{\,\hbox{\sevency X}\,} and u:X\displaystyle u:\mathbb{Q}\to\mathfrak{H}_{\,\hbox{\sevency X}\,} denote the product and the unit of the shuffle algebra X\displaystyle\mathfrak{H}_{\,\hbox{\sevency X}\,}, respectively. Since 𝒮\displaystyle\mathcal{S} is an antipode, we have

(𝒮1)(w)=(uεH)(w)={1w=1,0w1.\displaystyle(\mathcal{S}\star 1)(w)=(u\circ\varepsilon_{H})(w)=\begin{cases}1&w=1,\\ 0&w\neq 1.\end{cases}

Meanwhile, by definition of convolution, it holds

(𝒮1)(w)=m(𝒮1)ΔH(w)=uv=w𝒮(u)Xv=uv=w(1)wt(u)uXv.\displaystyle(\mathcal{S}\star 1)(w)=m\circ(\mathcal{S}\otimes 1)\circ\Delta_{H}(w)=\sum_{uv=w}\mathcal{S}(u){\,\hbox{\sevency X}\,}v=\sum_{uv=w}(-1)^{\mathrm{wt}(u)}\overset{\leftarrow}{u}{\,\hbox{\sevency X}\,}v.

Putting w=a1an\displaystyle w=a_{1}\cdots a_{n}, we obtain the claim. ∎

Using this, we obtain antipode relation for MLVs of shuffle type.

Proposition 2.10.

For n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar1/N\displaystyle a_{1},\dots,a_{r-1}\in\mathbb{Z}/N\mathbb{Z}, we have

q=1rk1++kr=nkq=1(1)mqi=1iqr(ki1ni1)LX(kq1,,k1aq1,,a1)LX(kq+1,,kraq,,ar1)=0\displaystyle\sum_{q=1}^{r}\sum_{\begin{subarray}{c}k_{1}+\cdots+k_{r}=n\\ k_{q}=1\end{subarray}}(-1)^{m_{q}}\prod_{\begin{subarray}{c}i=1\\ i\neq q\end{subarray}}^{r}\binom{k_{i}-1}{n_{i}-1}L_{\,\hbox{\sevency X}\,}\binom{k_{q-1},\dots,k_{1}}{a_{q-1},\dots,a_{1}}L_{\,\hbox{\sevency X}\,}\binom{k_{q+1},\dots,k_{r}}{a_{q},\dots,a_{r-1}}=0

where mq=k1++kq1+nq\displaystyle m_{q}=k_{1}+\cdots+k_{q-1}+n_{q} and n=n1++nr\displaystyle n=n_{1}+\cdots+n_{r}.

Proof.

By applying 2.9 with w=xn11ya1xn21ya2xnr11yar1xnr1\displaystyle w=x^{n_{1}-1}y_{a_{1}}x^{n_{2}-1}y_{a_{2}}\cdots x^{n_{r-1}-1}y_{a_{r-1}}x^{n_{r}-1}, we have

q=1rlq=0nq1(1)n1++nq1+lq\displaystyle\displaystyle\sum_{q=1}^{r}\sum_{l_{q}=0}^{n_{q}-1}(-1)^{n_{1}+\cdots+n_{q-1}+l_{q}} (xlqyaq1xnq11ya1xn11\displaystyle\displaystyle(x^{l_{q}}y_{a_{q-1}}x^{n_{q-1}-1}\cdots y_{a_{1}}x^{n_{1}-1} (28)
Xxnqlq1yaqxnq+11yar1xnr1)=0.\displaystyle\displaystyle{\,\hbox{\sevency X}\,}x^{n_{q}-l_{q}-1}y_{a_{q}}x^{n_{q+1}-1}\cdots y_{a_{r-1}}x^{n_{r}-1})=0. (29)

Sending both sides by the map LX\displaystyle L_{\,\hbox{\sevency X}\,}, we obtain the claim. ∎

Since MZV of level N\displaystyle N can be written via MLV, we obtain antipode relation for MZV of level N\displaystyle N.

Corollary 2.11 (Antipode relation for MZV of level N\displaystyle N).

For n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we have

q=1rk1++kr=nkq=1(1)mqi=1iqr(ki1ni1)ζ(kq1,,k1aqaq1,,aqa1)ζ(kq+1,,kraq+1aq,,araq)=0,\displaystyle\sum_{q=1}^{r}\sum_{\begin{subarray}{c}k_{1}+\dots+k_{r}=n\\ k_{q}=1\end{subarray}}(-1)^{m_{q}}\prod_{\begin{subarray}{c}i=1\\ i\neq q\end{subarray}}^{r}\binom{k_{i}-1}{n_{i}-1}\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q-1}&,\dots,&k_{1}\\ a_{q}-a_{q-1}&,\dots,&a_{q}-a_{1}\end{array}\bigg{)}\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q+1}&,\dots,&k_{r}\\ a_{q+1}-a_{q}&,\dots,&a_{r}-a_{q}\end{array}\bigg{)}=0,

where mq=k1++kq1+nq\displaystyle m_{q}=k_{1}+\cdots+k_{q-1}+n_{q} and n=n1++nr\displaystyle n=n_{1}+\cdots+n_{r}.

Proof.

Using 2.4 and 2.10, we have

(L.H.S)=\displaystyle\displaystyle(\text{L.H.S})= b1,,br1/Nη(𝒂,𝒃)q=1rk1++kr=nkq=1(1)k1++kq1+nq\displaystyle\displaystyle\sum_{b_{1},\dots,b_{r-1}\in\mathbb{Z}/N\mathbb{Z}}\eta^{(\bm{a},\bm{b})}\sum_{q=1}^{r}\sum_{\begin{subarray}{c}k_{1}+\cdots+k_{r}=n\\ k_{q}=1\end{subarray}}(-1)^{k_{1}+\cdots+k_{q-1}+n_{q}} (30)
×i=1iqr(ki1ni1)LX(kq1,,k1bq1,,b1)LX(kq+1,,krbq,,br1)=0,\displaystyle\displaystyle\times\prod_{\begin{subarray}{c}i=1\\ i\neq q\end{subarray}}^{r}\binom{k_{i}-1}{n_{i}-1}L_{\,\hbox{\sevency X}\,}\binom{k_{q-1},\dots,k_{1}}{b_{q-1},\dots,b_{1}}L_{\,\hbox{\sevency X}\,}\binom{k_{q+1},\dots,k_{r}}{b_{q},\dots,b_{r-1}}=0, (31)

where (𝒂,𝒃)=i=1r1(ai+1ai)bi\displaystyle(\bm{a},\bm{b})=-\sum_{i=1}^{r-1}(a_{i+1}-a_{i})b_{i}. ∎

3 Fourier expansion for multiple Eisenstein series of level N\displaystyle N

In this section, we give the Fourier expansion of MES of level N\displaystyle N explicitly. By the definition of the order of lattice points, we can split the sum 0λ1λr\displaystyle\sum_{0\prec\lambda_{1}\prec\cdots\prec\lambda_{r}} into 2r\displaystyle 2^{r} many terms. In this section, we consider the each term and give its Fourier expansion. Let {x,y}\displaystyle\{\mathrm{x},\mathrm{y}\}^{\ast} be the set of all words generated by letters x\displaystyle\mathrm{x} and y\displaystyle\mathrm{y}.

Definition 3.1.

For n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2, a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in{\mathbb{Z}/N\mathbb{Z}} and w1wr{x,y}\displaystyle w_{1}\cdots w_{r}\in\{\mathrm{x},\mathrm{y}\}^{\ast}, we define

Gw1wr(n1,,nra1,,ar;τ):-limLlimMλiλi1PwiλiNLτ+M,λiai(modN)1λ1n1λrnr,\displaystyle\displaystyle G_{w_{1}\cdots w_{r}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)}\coloneq\lim_{L\to\infty}\lim_{M\to\infty}\sum_{\begin{subarray}{c}\lambda_{i}-\lambda_{i-1}\in P_{w_{i}}\\ \lambda_{i}\in N\mathbb{Z}_{L}\tau+\mathbb{Z}_{M},\lambda_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{\lambda_{1}^{n_{1}}\dots\lambda_{r}^{n_{r}}}, (32)

where Px={lτ+mτ+l=0,m>0}\displaystyle P_{\mathrm{x}}=\{l\tau+m\in\mathbb{Z}\tau+\mathbb{Z}\mid l=0,m>0\}, Py={lτ+mτ+l>0}\displaystyle P_{\mathrm{y}}=\{l\tau+m\in\mathbb{Z}\tau+\mathbb{Z}\mid l>0\} and lτ+ma\displaystyle l\tau+m\equiv a means ma\displaystyle m\equiv a.

Note that λPxPyλ0\displaystyle\lambda\in P_{\mathrm{x}}\sqcup P_{\mathrm{y}}\Leftrightarrow\lambda\succ 0.

Lemma 3.2.

For n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we have

G(n1,,nra1,,ar;τ)=w1,,wr{x,y}Gw1wr(n1,,nra1,,ar;τ).\displaystyle\displaystyle G\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)}=\sum_{w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}}G_{w_{1}\cdots w_{r}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)}. (33)
Proof.

By definition of MES of level N\displaystyle N, we have

(L.H.S)\displaystyle\displaystyle(\text{L.H.S}) =limLlimMλiλi1PxPyλiLτ+M,λiai(modN)1λ1n1λrnr\displaystyle\displaystyle=\lim_{L\to\infty}\lim_{M\to\infty}\sum_{\begin{subarray}{c}\lambda_{i}-\lambda_{i-1}\in P_{\mathrm{x}}\cup P_{\mathrm{y}}\\ \lambda_{i}\in\mathbb{Z}_{L}\tau+\mathbb{Z}_{M},\lambda_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{\lambda_{1}^{n_{1}}\dots\lambda_{r}^{n_{r}}} (34)
=w1,,wr{x,y}limLlimMλiλi1PwiλiLτ+M,λiai(modN)1λ1n1λrnr\displaystyle\displaystyle=\sum_{w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}}\lim_{L\to\infty}\lim_{M\to\infty}\sum_{\begin{subarray}{c}\lambda_{i}-\lambda_{i-1}\in P_{w_{i}}\\ \lambda_{i}\in\mathbb{Z}_{L}\tau+\mathbb{Z}_{M},\lambda_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{\lambda_{1}^{n_{1}}\dots\lambda_{r}^{n_{r}}} (35)
=w1,,wr{x,y}Gw1wr(n1,,nra1,,ar;τ)=(R.H.S).\displaystyle\displaystyle=\sum_{w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}}G_{w_{1}\cdots w_{r}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)}=(\text{R.H.S}). (36)

3.1 Multitangent function of level N\displaystyle N

Multitangent function is defined by Bouillot [Bouillot] in the case of level 1, and he studied the algebraic structure of multitangent functions. In this subsection, we define multitangent function of level N\displaystyle N and give its Fourier expansion.

Definition 3.3.

We define the multitangent function of level N\displaystyle N as the image of \displaystyle\mathbb{Q}-linear map Ψ:2𝒪()\displaystyle\Psi:\mathfrak{H}^{2}\to\mathcal{O}(\mathbb{H}) by

Ψ(n1,,nra1,,ar;τ):-<m1<<mr<+miai(modN)1(τ+m1)n1(τ+mr)nr\displaystyle\Psi\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)}\coloneq\sum_{\begin{subarray}{c}-\infty<m_{1}<\dots<m_{r}<+\infty\\ m_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{(\tau+m_{1})^{n_{1}}\dots(\tau+m_{r})^{n_{r}}}

for n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, and Ψ(;τ)=1\displaystyle\Psi(\emptyset;\tau)=1, together with \displaystyle\mathbb{Q}-linearly. We define

Ψ(1a;τ):-limM|m|<Mma(modN)1τ+m.\displaystyle\Psi\bigg{(}\begin{matrix}1\\ a\end{matrix}\>;\tau\bigg{)}\coloneq\lim_{M\to\infty}\sum_{\begin{subarray}{c}|m|<M\\ m\equiv a\pmod{N}\end{subarray}}\frac{1}{\tau+m}.

for a/N\displaystyle a\in\mathbb{Z}/N\mathbb{Z} and τ\displaystyle\tau\in\mathbb{H}.

Bouillot ([Bouillot]) proved that any multitangent fuction can be written as a \displaystyle\mathbb{Q}-linear sum of products of MZVs and monotangent functions. In the case of level N\displaystyle N, multitangent function can be reduced into monotangent function.

Lemma 3.4.

For n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we have

Ψ(n1,,nra1,,ar;τ)\displaystyle\displaystyle\Psi\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)} =q=1rk1++kr=nkq2(1)n+nq+kq+1++krp=1pqr(kp1np1)\displaystyle\displaystyle=\sum_{q=1}^{r}\sum_{\begin{subarray}{c}k_{1}+\dots+k_{r}=n\\ k_{q}\geq 2\end{subarray}}(-1)^{n+n_{q}+k_{q+1}+\dots+k_{r}}\prod_{\begin{subarray}{c}p=1\\ p\neq q\end{subarray}}^{r}\binom{k_{p}-1}{n_{p}-1} (37)
×ζ(kq1,,k1aqaq1,,aqa1)ζ(kq+1,,kraq+1aq,,araq)Ψ(kqaq;τ),\displaystyle\displaystyle\times\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q-1}&,\dots,&k_{1}\\ a_{q}-a_{q-1}&,\dots,&a_{q}-a_{1}\end{array}\bigg{)}\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q+1}&,\dots,&k_{r}\\ a_{q+1}-a_{q}&,\dots,&a_{r}-a_{q}\end{array}\bigg{)}\Psi\bigg{(}\begin{matrix}k_{q}\\ a_{q}\end{matrix}\>;\tau\bigg{)}, (42)

where n=n1++nr\displaystyle n=n_{1}+\cdots+n_{r}.

Proof.

Using partial fraction decomposition,

1(τ+m1)n1(τ+mr)nr=q=1rk1++kr=nki1(p=1q1(kp1np1)(mqmp)kj)(1)n+nq(τ+mq)kq(p=q+1r(1)kp(kp1np1)(mpmq)kp)\displaystyle\frac{1}{(\tau+m_{1})^{n_{1}}\cdots(\tau+m_{r})^{n_{r}}}=\sum_{q=1}^{r}\sum_{\begin{subarray}{c}k_{1}+\cdots+k_{r}=n\\ k_{i}\geq 1\end{subarray}}\left(\prod_{p=1}^{q-1}\frac{\binom{k_{p}-1}{n_{p}-1}}{(m_{q}-m_{p})^{k_{j}}}\right)\frac{(-1)^{n+n_{q}}}{(\tau+m_{q})^{k_{q}}}\left(\prod_{p=q+1}^{r}\frac{(-1)^{k_{p}}\binom{k_{p}-1}{n_{p}-1}}{(m_{p}-m_{q})^{k_{p}}}\right)

for m1,,mr\displaystyle m_{1},\dots,m_{r}\in\mathbb{Z}, we have

Ψ(n1,,nra1,,ar;τ)\displaystyle\displaystyle\Psi\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)} (43)
=<m1<<mr<+miai(modN)1(τ+m1)n1(τ+mr)nr\displaystyle\displaystyle=\sum_{\begin{subarray}{c}-\infty<m_{1}<\cdots<m_{r}<+\infty\\ m_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{(\tau+m_{1})^{n_{1}}\cdots(\tau+m_{r})^{n_{r}}} (44)
=q=1rk1++kr=nki1(1)n+nq+kq+1++krp=1pqr(kp1np1)mqmqaq(modN)1(τ+mq)kq\displaystyle\displaystyle=\sum_{q=1}^{r}\sum_{\begin{subarray}{c}k_{1}+\cdots+k_{r}=n\\ k_{i}\geq 1\end{subarray}}(-1)^{n+n_{q}+k_{q+1}+\cdots+k_{r}}\prod_{\begin{subarray}{c}p=1\\ p\neq q\end{subarray}}^{r}\binom{k_{p}-1}{n_{p}-1}\sum_{\begin{subarray}{c}m_{q}\in\mathbb{Z}\\ m_{q}\equiv a_{q}\pmod{N}\end{subarray}}\frac{1}{(\tau+m_{q})^{k_{q}}} (45)
×<m1<<mq1<mqmiai(modN)1(mqm1)k1(mqmq1)kq1\displaystyle\displaystyle\times\sum_{\begin{subarray}{c}-\infty<m_{1}<\cdots<m_{q-1}<m_{q}\\ m_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{(m_{q}-m_{1})^{k_{1}}\cdots(m_{q}-m_{q-1})^{k_{q-1}}} (46)
×mq<mq+1<<mr<+miai(modN)1(mq+1mq)kq(mrmq)kr\displaystyle\displaystyle\times\sum_{\begin{subarray}{c}m_{q}<m_{q+1}<\cdots<m_{r}<+\infty\\ m_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{(m_{q+1}-m_{q})^{k_{q}}\cdots(m_{r}-m_{q})^{k_{r}}} (47)
=q=1rk1++kr=nkq1(1)n+nq+kq+1++krp=1pqr(kp1np1)\displaystyle\displaystyle=\sum_{q=1}^{r}\sum_{\begin{subarray}{c}k_{1}+\dots+k_{r}=n\\ k_{q}\geq 1\end{subarray}}(-1)^{n+n_{q}+k_{q+1}+\dots+k_{r}}\prod_{\begin{subarray}{c}p=1\\ p\neq q\end{subarray}}^{r}\binom{k_{p}-1}{n_{p}-1} (48)
×ζ(kq1,,k1aqaq1,,aqa1)ζ(kq+1,,kraq+1aq,,araq)mqmqaq(modN)1(τ+mq)kq.\displaystyle\displaystyle\times\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q-1}&,\dots,&k_{1}\\ a_{q}-a_{q-1}&,\dots,&a_{q}-a_{1}\end{array}\bigg{)}\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q+1}&,\dots,&k_{r}\\ a_{q+1}-a_{q}&,\dots,&a_{r}-a_{q}\end{array}\bigg{)}\sum_{\begin{subarray}{c}m_{q}\in\mathbb{Z}\\ m_{q}\equiv a_{q}\pmod{N}\end{subarray}}\frac{1}{(\tau+m_{q})^{k_{q}}}. (53)

The following lemma gives us the Fourier expansion for multitangent functions of level N\displaystyle N.

Lemma 3.5 (Yuan–Zhao [YZ15], Lemma 4.1).

For an integer n1\displaystyle n\geq 1 and a/N\displaystyle a\in\mathbb{Z}/N\mathbb{Z}, we have

Ψ(na;Nτ)=(2π1N)nc>0cn1ηac(n1)!qcδn,1π1N,\displaystyle\Psi\bigg{(}\begin{matrix}n\\ a\end{matrix}\>;N\tau\bigg{)}=\left(\frac{-2\pi\sqrt{-1}}{N}\right)^{n}\sum_{c>0}\frac{c^{n-1}\eta^{ac}}{(n-1)!}q^{c}-\delta_{n,1}\frac{\pi\sqrt{-1}}{N},

where q=e2π1τ\displaystyle q=e^{2\pi\sqrt{-1}\tau}.

3.2 Multiple divisor function of level N\displaystyle N

Multiple divisor function is initially studied by Bachmann and Kühn ([BK]). Yuan and Zhao ([YZ16]) generalized it to arbitrary level and studied the relationship with MZV of level N\displaystyle N.

Definition 3.6 ([YZ16]).

For n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in{\mathbb{Z}/N\mathbb{Z}}, we define multiple divisor function of level N\displaystyle N as the image of \displaystyle\mathbb{Q}-linear map g:1q\displaystyle g:\mathfrak{H}^{1}\to\mathbb{C}\llbracket q\rrbracket by

g(n1,,nra1,,ar;q):-(2π1N)n0<d1<<drc1,,cr>0i=1rηaicicini1(ni1)!qcidi\displaystyle g\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}\coloneq\left(\frac{-2\pi\sqrt{-1}}{N}\right)^{n}\sum_{\begin{subarray}{c}0<d_{1}<\cdots<d_{r}\\ c_{1},\dots,c_{r}>0\end{subarray}}\prod_{i=1}^{r}\frac{\eta^{a_{i}c_{i}}c_{i}^{n_{i}-1}}{(n_{i}-1)!}q^{c_{i}d_{i}}

for n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, and g(;q)=1\displaystyle g(\emptyset;q)=1, together with \displaystyle\mathbb{Q}-linearly, where n=n1++nr\displaystyle n=n_{1}+\cdots+n_{r}.

As a holomorphic function on \displaystyle\mathbb{H}, multiple divisor function g(q)\displaystyle g(q) can be written as sum of products of monotangent function. The following lemma follows from 3.5.

Lemma 3.7.

For any n1,,nr2\displaystyle n_{1},\dots,n_{r}\in\mathbb{Z}_{\geq 2}, a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in{\mathbb{Z}/N\mathbb{Z}} and τ\displaystyle\tau\in\mathbb{H}, we have

g(n1,,nra1,,ar;q)=0<d1<<drΨ(n1a1;d1Nτ)Ψ(nrar;drNτ),\displaystyle\displaystyle g\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}=\sum_{0<d_{1}<\dots<d_{r}}\Psi\bigg{(}\begin{matrix}n_{1}\\ a_{1}\end{matrix}\>;d_{1}N\tau\bigg{)}\cdots\Psi\bigg{(}\begin{matrix}n_{r}\\ a_{r}\end{matrix}\>;d_{r}N\tau\bigg{)}, (54)

where q=e2π1τ\displaystyle q=e^{2\pi\sqrt{-1}\tau}.

3.3 The Fourier expansion of MES of level N\displaystyle N

The Fourier expansion of MES can be written with MZVs and multiple divisor functions.

Proposition 3.8.

For any n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2, a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in{\mathbb{Z}/N\mathbb{Z}} and w1wr{x,y}\displaystyle w_{1}\cdots w_{r}\in\{\mathrm{x},\mathrm{y}\}^{*}, we put w1wr=xt11yxt2t11yxthth11yxrth\displaystyle w_{1}\cdots w_{r}=\mathrm{x}^{t_{1}-1}\mathrm{y}\mathrm{x}^{t_{2}-t_{1}-1}\mathrm{y}\cdots\mathrm{x}^{t_{h}-t_{h-1}-1}\mathrm{y}\mathrm{x}^{r-t_{h}}. Then we have

Gw1wr(n1,,nra1,,ar;τ)\displaystyle\displaystyle G_{w_{1}\cdots w_{r}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)} (55)
=ζ(n1,,nt11a1,,at11)t1q1t21thqhrktj++ktj+11=ntj++ntj+11(1jh),ki1j=1h{(1)lj(p=tjpqjtj+11(kp1np1)\displaystyle\displaystyle=\zeta\binom{n_{1},\dots,n_{t_{1}-1}}{a_{1},\dots,a_{t_{1}-1}}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-5.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}$}}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}k_{t_{j}}+\cdots+k_{t_{j+1}-1}\\ =n_{t_{j}}+\cdots+n_{t_{j+1}-1}\\ (1\leq j\leq h),k_{i}\geq 1\end{subarray}}$}}\prod_{j=1}^{h}\Bigg{\{}(-1)^{l_{j}}\Bigg{(}\prod_{\begin{subarray}{c}p=t_{j}\\ p\neq q_{j}\end{subarray}}^{t_{j+1}-1}\binom{k_{p}-1}{n_{p}-1}
×ζ(kqj1,,ktjaqjaqj1,,aqjatj)ζ(kqj+1,,ktj+11aqj+1aqj,,atj+11aqj)}g(kq1,,kqhaq1,,aqh;q),\displaystyle\displaystyle\times\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}-1}&,\dots,&k_{t_{j}}\\ a_{q_{j}}-a_{q_{j}-1}&,\dots,&a_{q_{j}}-a_{t_{j}}\end{array}\bigg{)}\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}+1}&,\dots,&k_{t_{j+1}-1}\\ a_{q_{j}+1}-a_{q_{j}}&,\dots,&a_{t_{j+1}-1}-a_{q_{j}}\end{array}\bigg{)}\Bigg{\}}g\bigg{(}\begin{matrix}k_{q_{1}},\dots,k_{q_{h}}\\ a_{q_{1}},\dots,a_{q_{h}}\end{matrix};q\bigg{)}, (60)

where lj=ntj++ntj+11+nqj+kqj+1++kqj+11\displaystyle l_{j}=n_{t_{j}}+\cdots+n_{t_{j+1}-1}+n_{q_{j}}+k_{q_{j}+1}+\cdots+k_{q_{j+1}-1}, q=e2π1τ\displaystyle q=e^{2\pi\sqrt{-1}\tau}, th+1=r+1\displaystyle t_{h+1}=r+1 and ar+1=0\displaystyle a_{r+1}=0.

Proof.

By definition of the portion Gw1wr\displaystyle G_{w_{1}\cdots w_{r}}, we have

Gw1wr(n1,,nra1,,ar;τ)\displaystyle\displaystyle G_{w_{1}\cdots w_{r}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)} (61)
=0<l1<<lh0jh,mtj<<mtj+11i>0,mi>0,miai(modN)1m1n1mt11nt11j=1h1(ljNτ+mtj)ntj(ljNτ+mtj+11)ntj+11\displaystyle\displaystyle=\sum_{\begin{subarray}{c}0<l_{1}<\cdots<l_{h}\\ 0\leq{}^{\forall}j\leq h,m_{t_{j}}<\cdots<m_{t_{j+1}-1}\\ {}^{\forall}i>0,m_{i}>0,m_{i}\equiv a_{i}\pmod{N}\end{subarray}}\frac{1}{m_{1}^{n_{1}}\cdots m_{t_{1}-1}^{n_{t_{1}-1}}}\prod_{j=1}^{h}\frac{1}{(l_{j}N\tau+m_{t_{j}})^{n_{t_{j}}}\cdots(l_{j}N\tau+m_{t_{j+1}-1})^{n_{t_{j+1}-1}}} (62)
=ζ(n1,,nt11a1,,at11)0<l1<<lhj=1hΨ(ntj,,ntj+11atj,,atj+11;ljNτ).\displaystyle\displaystyle=\zeta\binom{n_{1},\dots,n_{t_{1}-1}}{a_{1},\dots,a_{t_{1}-1}}\sum_{0<l_{1}<\cdots<l_{h}}\prod_{j=1}^{h}\Psi\bigg{(}\begin{matrix}n_{t_{j}},\dots,n_{t_{j+1}-1}\\ a_{t_{j}},\dots,a_{t_{j+1}-1}\end{matrix};l_{j}N\tau\bigg{)}. (63)

By 3.4, we have

0<l1<<lhj=1hΨ(ntj,,ntj+11atj,,atj+11;ljNτ)\displaystyle\displaystyle\sum_{0<l_{1}<\cdots<l_{h}}\prod_{j=1}^{h}\Psi\bigg{(}\begin{matrix}n_{t_{j}},\dots,n_{t_{j+1}-1}\\ a_{t_{j}},\dots,a_{t_{j+1}-1}\end{matrix};l_{j}N\tau\bigg{)} (64)
=limLt1q1t21thqhrktj++ktj+11=ntj++ntj+11(1jh),ki1j=1h{(1)ljp=tjpqjtj+11\displaystyle\displaystyle=\lim_{L\to\infty}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-5.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}$}}\,\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}k_{t_{j}}+\cdots+k_{t_{j+1}-1}\\ =n_{t_{j}}+\cdots+n_{t_{j+1}-1}\\ (1\leq j\leq h),k_{i}\geq 1\end{subarray}}$}}\prod_{j=1}^{h}\Bigg{\{}(-1)^{l_{j}}\prod_{\begin{subarray}{c}p=t_{j}\\ p\neq q_{j}\end{subarray}}^{t_{j+1}-1}
×ζ(kqj1,,ktjaqjaqj1,,aqjatj)ζ(kqj+1,,ktj+11aqj+1aqj,,atj+11aqj)}\displaystyle\displaystyle\times\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}-1}&,\dots,&k_{t_{j}}\\ a_{q_{j}}-a_{q_{j}-1}&,\dots,&a_{q_{j}}-a_{t_{j}}\end{array}\bigg{)}\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}+1}&,\dots,&k_{t_{j+1}-1}\\ a_{q_{j}+1}-a_{q_{j}}&,\dots,&a_{t_{j+1}-1}-a_{q_{j}}\end{array}\bigg{)}\Bigg{\}} (69)
×0<l1<<lh<LΨ(kq1aq1;l1Nτ)Ψ(kqhaqh;lhNτ).\displaystyle\displaystyle\times\sum_{0<l_{1}<\dots<l_{h}<L}\Psi\bigg{(}\begin{matrix}k_{q_{1}}\\ a_{q_{1}}\end{matrix}\>;l_{1}N\tau\bigg{)}\cdots\Psi\bigg{(}\begin{matrix}k_{q_{h}}\\ a_{q_{h}}\end{matrix}\>;l_{h}N\tau\bigg{)}. (70)

It follows from 3.7 since the constant term in the right hand side vanish if kqi=1\displaystyle k_{q_{i}}=1 for some i=1,,h\displaystyle i=1,\dots,h by 2.11.

4 Formal iterated integrals corresponding to MZV of level N\displaystyle N

In this section, we consider the algebra generated by formal iterated integrals, which is introduced by Goncharov [Gon05] and calculate the coproduct for the formal iterated integrals corresponding to MZV of level N\displaystyle N.

4.1 Hopf algebra of formal iterated integrals

Goncharov([Gon05]) considered the formal version of iterated integrals

a0am+1dtta1dttam(a0,,am+1),\displaystyle\displaystyle\int_{a_{0}}^{a_{m+1}}\frac{dt}{t-a_{1}}\cdots\frac{dt}{t-a_{m}}\quad(a_{0},\dots,a_{m+1}\in\mathbb{C}), (71)

and proved the algebra generated by formal iterated integrals has Hopf algebra structure.

Definition 4.1 (Goncharov [Gon05]).

Let S\displaystyle S be a set. We define a commutative graded \displaystyle\mathbb{Q}-algebra (S)\displaystyle\mathcal{I}_{\bullet}(S) by

(S):-[I(a0;a1,,am;am+1)m0,aiS]/(i)(iv),\displaystyle\mathcal{I}_{\bullet}(S)\coloneq\mathbb{Q}\left[\mathrm{I}(a_{0};a_{1},\dots,a_{m};a_{m+1})\mid m\geq 0,a_{i}\in S\right]/_{(\mathrm{i})\sim(\mathrm{iv})},

where deg(I(a0;a1,,am;am+1))=m\displaystyle\mathrm{deg}(\mathrm{I}(a_{0};a_{1},\dots,a_{m};a_{m+1}))=m and the relations (i)(iv)\displaystyle(\mathrm{i})\sim(\mathrm{iv}) are the following:

  1. (i)

    I(a;b)=1,(a,bS).\displaystyle\mathrm{I}(a;b)=1,\quad(a,b\in S).

  2. (ii)

    (Shuffle product formula) For a,b,a1,,an+mS\displaystyle a,b,a_{1},\dots,a_{n+m}\in S, it holds

    I(a;a1,,an;b)I(a;an+1,,an+m;b)=σShn(n+m)I(a;aσ1(1),,aσ1(n+m);b),\displaystyle\mathrm{I}(a;a_{1},\dots,a_{n};b)\mathrm{I}(a;a_{n+1},\dots,a_{n+m};b)=\sum_{\sigma\in Sh^{(n+m)}_{n}}\mathrm{I}(a;a_{\sigma^{-1}(1)},\dots,a_{\sigma^{-1}(n+m)};b),

    where

    Shn(n+m):-{σ𝔖n+mσ(1)<<σ(n),σ(n+1)<<σ(n+m)}.\displaystyle Sh^{(n+m)}_{n}\coloneq\left\{\sigma\in\mathfrak{S}_{n+m}\mid\sigma(1)<\cdots<\sigma(n),\sigma(n+1)<\cdots<\sigma(n+m)\right\}.
  3. (iii)

    (Path composition formula) For x,a0,,am+1S\displaystyle x,a_{0},\dots,a_{m+1}\in S, it holds

    I(a0;a1,,am;am+1)=i=0mI(a0;a1,,ai;x)I(x;ai+1,,am;am+1).\displaystyle\mathrm{I}(a_{0};a_{1},\dots,a_{m};a_{m+1})=\sum_{i=0}^{m}\mathrm{I}(a_{0};a_{1},\dots,a_{i};x)\mathrm{I}(x;a_{i+1},\dots,a_{m};a_{m+1}).
  4. (iv)

    I(a;a1,,am;a)=0,(a,a1,,amS,m1).\displaystyle\mathrm{I}(a;a_{1},\dots,a_{m};a)=0,\quad(a,a_{1},\dots,a_{m}\in S,m\geq 1).

Theorem 4.2 (Goncharov [Gon05]).

(S)\displaystyle\mathcal{I}_{\bullet}(S) is a graded Hopf algebra with the coproduct Δ:(S)(S)(S)\displaystyle\Delta:\mathcal{I}_{\bullet}(S)\rightarrow\mathcal{I}_{\bullet}(S)\otimes_{\mathbb{Q}}\mathcal{I}_{\bullet}(S) defined by

Δ(I(a0;a1,,am;am+1))\displaystyle\displaystyle\Delta(\mathrm{I}(a_{0};a_{1},\dots,a_{m};a_{m+1})) (72)
:-\displaystyle\displaystyle\coloneq 0=i0<i1<<ik<ik+1=m+1p=0kI(aip;aip+1,,aip+11;aip+1)I(a0;ai1,,aik;am+1).\displaystyle\displaystyle\sum_{0=i_{0}<i_{1}<\cdots<i_{k}<i_{k+1}=m+1}\prod_{p=0}^{k}\mathrm{I}(a_{i_{p}};a_{i_{p+1}},\dots,a_{i_{p+1}-1};a_{i_{p+1}})\otimes\mathrm{I}(a_{0};a_{i_{1}},\dots,a_{i_{k}};a_{m+1}). (73)
Remark 4.3.

The counit εG:(S)\displaystyle\varepsilon_{G}:\mathcal{I}_{\bullet}(S)\to\mathbb{Q} is defined by

εG(u)={1deg(u)=00deg(u)>0.\displaystyle\varepsilon_{G}(u)=\begin{cases}1&\mathrm{deg}(u)=0\\ 0&\mathrm{deg}(u)>0\end{cases}.

The antipode is determined inductively on the degree.

4.2 Formal iterated integrals corresponding MLV and MZV of level N\displaystyle N

Hereinafter, we consider the case S={η,η2,,ηN,0}\displaystyle S=\{\eta,\eta^{2},\dots,\eta^{N},0\} and denote =(S)\displaystyle\mathcal{I}_{\bullet}=\mathcal{I}_{\bullet}(S). Let 𝔞\displaystyle\mathfrak{a} be an ideal of \displaystyle\mathcal{I} generated by {I(0;0;a)aS{0}}\displaystyle\{\mathrm{I}(0;0;a)\mid a\in S\setminus\{0\}\}, and let 0\displaystyle\mathcal{I}^{0} be the quotient 0=/𝔞\displaystyle\mathcal{I}^{0}=\mathcal{I}/\mathfrak{a}.

Proposition 4.4 (Bachmann–Tasaka [BT]).

(0,Δ)\displaystyle(\mathcal{I}^{0},\Delta) is a Hopf algebra.

Proof.

For any aS{0}\displaystyle a\in S\setminus\{0\}, I(0;0;a)\displaystyle\mathrm{I}(0;0;a) is a primitive element since

Δ(I(0;0;a))=I(0;0;a)1+1I(0;0;a).\displaystyle\Delta(\mathrm{I}(0;0;a))=\mathrm{I}(0;0;a)\otimes 1+1\otimes\mathrm{I}(0;0;a).

Therefore, 𝔞={I(0;0;a)aS{0}}\displaystyle\mathfrak{a}=\{\mathrm{I}(0;0;a)\mid a\in S\setminus\{0\}\}\mathcal{I} is a Hopf ideal and the quotient is a Hopf algebra. ∎

We give some important properties of formal iterated integrals.

Lemma 4.5 (Goncharov [Gon05]).

For any a0,,am+1S\displaystyle a_{0},\dots,a_{m+1}\in S, we have

I(a0;a1,,am;am+1)=(1)mI(am+1;am,,a1;a0).\displaystyle\mathrm{I}(a_{0};a_{1},\dots,a_{m};a_{m+1})=(-1)^{m}\mathrm{I}(a_{m+1};a_{m},\dots,a_{1};a_{0}).

For n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a,a1,,ar/N\displaystyle a,a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, denote

Ia(n1,,nra1,,ar):-I(0;ηa1,{0}n11,,ηar,{0}nr1;ηa),\displaystyle\displaystyle\mathrm{I}_{a}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\mathrm{I}(0;\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}), (74)
I(n1,,nra1,,ar):-I0(n1,,nra1,,ar).\displaystyle\displaystyle\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\mathrm{I}_{0}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}. (75)

2.1 implies I(n1,,nra1,,ar)\displaystyle\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} corresponds to MLV of shuffle type

(1)rLX(n1,,nra1,,ar)=01dttηa1(dtt)n11dttηar(dtt)nr1.\displaystyle(-1)^{r}L_{{\,\hbox{\sevency X}\,}}\binom{n_{1},\dots,n_{r}}{-a_{1},\dots,-a_{r}}=\int_{0}^{1}\frac{dt}{t-\eta^{a_{1}}}\left(\frac{dt}{t}\right)^{n_{1}-1}\cdots\frac{dt}{t-\eta^{a_{r}}}\left(\frac{dt}{t}\right)^{n_{r}-1}.
Lemma 4.6.

For any n,n1,,nr1\displaystyle n,n_{1},\dots,n_{r}\geq 1 and a,a1,,ar/N\displaystyle a,a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we have

I(0;{0}n,ηa1,{0}n11,,ηar,{0}nr1;ηa)\displaystyle\displaystyle\mathrm{I}(0;\{0\}^{n},\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}) (76)
=(1)nk1++kr=n+n1++nrkinip=1r(kp1np1)Ia(k1,,kra1,,ar).\displaystyle\displaystyle=(-1)^{n}\sum_{\begin{subarray}{c}k_{1}+\cdots+k_{r}=n+n_{1}+\cdots+n_{r}\\ k_{i}\geq n_{i}\end{subarray}}\prod_{p=1}^{r}\binom{k_{p}-1}{n_{p}-1}\mathrm{I}_{a}\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}. (77)
Proof.

We prove by induction on n1\displaystyle n\geq 1. When n=1\displaystyle n=1, using (ii) and (v), we have

0\displaystyle\displaystyle 0 =I(0;0;ηa)I(0;ηa1,{0}n11,,ηar,{0}nr1;ηa)\displaystyle\displaystyle=\mathrm{I}(0;0;\eta^{a})\mathrm{I}(0;\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}) (78)
=I(0;0,ηa1,{0}n11,,ηar,{0}nr1;ηa)\displaystyle\displaystyle=\mathrm{I}(0;0,\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}) (79)
+q=1rnqI(0;ηa1,{0}n11,,ηaq,{0}nq,,ηar,{0}nr1;ηa).\displaystyle\displaystyle+\sum_{q=1}^{r}n_{q}\mathrm{I}(0;\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{q}},\{0\}^{n_{q}},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}). (80)

When n>1\displaystyle n>1, using (ii) and (v), we have

0\displaystyle\displaystyle 0 =I(0;0;ηa)I(0;{0}n1,ηa1,{0}n11,,ηar,{0}nr1;ηa)\displaystyle\displaystyle=\mathrm{I}(0;0;\eta^{a})\mathrm{I}(0;\{0\}^{n-1},\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}) (81)
=nI(0;{0}n,ηa1,{0}n11,,ηar,{0}nr1;ηa)\displaystyle\displaystyle=n\mathrm{I}(0;\{0\}^{n},\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}) (82)
+q=1rnqI(0;{0}n1,ηa1,{0}n11,,ηaq,{0}nq,,ηar,{0}nr1;ηa).\displaystyle\displaystyle+\sum_{q=1}^{r}n_{q}\mathrm{I}(0;\{0\}^{n-1},\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{q}},\{0\}^{n_{q}},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}). (83)

By the inductive hypothesis, we have

I(0;{0}n,ηa1,{0}n11,,ηar,{0}nr1;ηa)\displaystyle\displaystyle\mathrm{I}(0;\{0\}^{n},\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1};\eta^{a}) (84)
=(1)nq=1rnqnk1++kr=n+n1++nrkinip=1pqr(kp1np1)(kq1nq)Ia(k1,,kra1,,ar)\displaystyle\displaystyle=(-1)^{n}\sum_{q=1}^{r}\frac{n_{q}}{n}\sum_{\begin{subarray}{c}k_{1}+\cdots+k_{r}=n+n_{1}+\cdots+n_{r}\\ k_{i}\geq n_{i}\end{subarray}}\prod_{\begin{subarray}{c}p=1\\ p\neq q\end{subarray}}^{r}\binom{k_{p}-1}{n_{p}-1}\binom{k_{q}-1}{n_{q}}\mathrm{I}_{a}\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}} (85)
=(1)nk1++kr=n+n1++nrkinip=1r(kp1np1)Ia(k1,,kra1,,ar).\displaystyle\displaystyle=(-1)^{n}\sum_{\begin{subarray}{c}k_{1}+\cdots+k_{r}=n+n_{1}+\cdots+n_{r}\\ k_{i}\geq n_{i}\end{subarray}}\prod_{p=1}^{r}\binom{k_{p}-1}{n_{p}-1}\mathrm{I}_{a}\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}. (86)

Using these properties, we know that any elements of 0\displaystyle\mathcal{I}^{0} can be written as a polynomial of Ia(n1,,nra1,,ar)\displaystyle\mathrm{I}_{a}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}

Proposition 4.7.

It holds

0=[Ia(n1,,nra1,,ar)|r0,ni1,a,ai/N].\displaystyle\mathcal{I}^{0}=\mathbb{Q}\left[\mathrm{I}_{a}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\mathrel{}\middle|\mathrel{}r\geq 0,n_{i}\geq 1,a,a_{i}\in\mathbb{Z}/N\mathbb{Z}\right].
Proof.

Any elements I(a0;a1,,am;am+1)0\displaystyle\mathrm{I}(a_{0};a_{1},\dots,a_{m};a_{m+1})\in\mathcal{I}^{0} can be expressed as a sum of products for some I(0;;a)\displaystyle\mathrm{I}(0;\dots;a) (aS)\displaystyle(a\in S) since (iii) and 4.5. Using (ii) and 4.6, it can be written as a sum of products for some Ia(n1,,nra1,,ar)\displaystyle\mathrm{I}_{a}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}. Now, the products can be expressed as a \displaystyle\mathbb{Q}-linear combination of them by shuffle product. ∎

Let 1\displaystyle\mathcal{I}^{1} be a subalgebra of 0\displaystyle\mathcal{I}^{0} defined by

1:-I(n1,,nra1,,ar)0|r0,ni>0,ai/N\displaystyle\mathcal{I}^{1}\coloneq\left\langle\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\in\mathcal{I}^{0}\mathrel{}\middle|\mathrel{}r\geq 0,n_{i}>0,a_{i}\in\mathbb{Z}/N\mathbb{Z}\right\rangle_{\mathbb{Q}}

and let μ:01\displaystyle\mu:\mathcal{I}^{0}\twoheadrightarrow\mathcal{I}^{1} be a surjective algebra homomorphism defined by

μ(Ia(n1,,nra1,,ar))=I(n1,,nra1a,,ara).\displaystyle\mu\left(\mathrm{I}_{a}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right)=\mathrm{I}\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}c}n_{1}&,\dots,&n_{r}\\ a_{1}-a&,\dots,&a_{r}-a\end{array}\bigg{)}.
Remark 4.8.

0\displaystyle\mathcal{I}^{0} has no information about homothety property. 1\displaystyle\mathcal{I}^{1} is an algebra spanned by formal iterated integrals that satisfy such homothety. μ\displaystyle\mu is an operator corresponding to variable changing of integrals.

Let Δμ:111\displaystyle\Delta_{\mu}:\mathcal{I}^{1}\to\mathcal{I}^{1}\otimes\mathcal{I}^{1} be an algebra homomorphism defined by

Δμ:-(μμ)Δ|1.\displaystyle\Delta_{\mu}\coloneq(\mu\otimes\mu)\circ\Delta|_{\mathcal{I}^{1}}.
Proposition 4.9.

(1,Δμ,εG)\displaystyle(\mathcal{I}^{1},\Delta_{\mu},\varepsilon_{G}) is a Hopf algebra.

Proof.

It is clear that εG\displaystyle\varepsilon_{G} and Δμ\displaystyle\Delta_{\mu} satisfy the counitary property. Let us check the coassociativity. If it holds Δμμ=Δμ\displaystyle\Delta_{\mu}\circ\mu=\Delta_{\mu} on 0\displaystyle\mathcal{I}^{0}, we have

(Δμid)Δμ(u)=(Δμid)μ(u1)μ(u2)=μ(u1)μ(u2)μ(u3)=(idΔμ)Δμ(u).\displaystyle(\Delta_{\mu}\circ\mathrm{id})\circ\Delta_{\mu}(u)=(\Delta_{\mu}\otimes\mathrm{id})\sum\mu(u_{1})\otimes\mu(u_{2})=\sum\mu(u_{1})\otimes\mu(u_{2})\otimes\mu(u_{3})=(\mathrm{id}\otimes\Delta_{\mu})\circ\Delta_{\mu}(u).

So it suffices to show that

Δμμ(Ia(n1,,nra1,,ar))=Δμ(Ia(n1,,nra1,,ar))\displaystyle\Delta_{\mu}\circ\mu\left(\mathrm{I}_{a}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right)=\Delta_{\mu}\left(\mathrm{I}_{a}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right)

for any n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a,a1,,ar/N\displaystyle a,a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}. This statement follows from the calculation of Δ\displaystyle\Delta in the next subsection. The antipode is determined inductively since the product and coproduct preserve the degree. ∎

4.3 Computing Goncharov coproduct

In this subsection, we give the explicit formula for the Goncharov coproduct of I(n1,,nra1,,ar)\displaystyle\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}, which is corresponding to MLVs of shuffle type. Then, we consider formal iterated integrals corresponding MZVs of level N\displaystyle N and give its coproduct.

For positive integers 0=i0<i1<<ik<ik+1=n+1\displaystyle 0=i_{0}<i_{1}<\cdots<i_{k}<i_{k+1}=n+1 (0kn)\displaystyle(0\leq k\leq n) and ε1,,εnS\displaystyle\varepsilon_{1},\dots,\varepsilon_{n}\in S, we define φi1,,ik(ε1,,εn)00\displaystyle\varphi_{i_{1},\dots,i_{k}}(\varepsilon_{1},\dots,\varepsilon_{n})\in\mathcal{I}^{0}\otimes\mathcal{I}^{0} by

φi1,,ik(ε1,,εn):-p=0kI(εip;εip+1,,εip+11;εip+1)I(0;εi1,,εik;1),\displaystyle\varphi_{i_{1},\dots,i_{k}}(\varepsilon_{1},\dots,\varepsilon_{n})\coloneq\prod_{p=0}^{k}\mathrm{I}(\varepsilon_{i_{p}};\varepsilon_{i_{p+1}},\dots,\varepsilon_{i_{p+1}-1};\varepsilon_{i_{p+1}})\otimes\mathrm{I}(0;\varepsilon_{i_{1}},\dots,\varepsilon_{i_{k}};1),

where ε0=0\displaystyle\varepsilon_{0}=0, εn+1=1\displaystyle\varepsilon_{n+1}=1, and denote

φi1,,ik(n1,,nra1,,ar):-φi1,,ik(ηa1,{0}n11,,ηar,{0}nr1).\displaystyle\varphi_{i_{1},\dots,i_{k}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\varphi_{i_{1},\dots,i_{k}}(\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{r}},\{0\}^{n_{r}-1}).

Further, we put

ιn1,,nr(w1wr):-{n1++nt11+1,,n1++nth1+1}\displaystyle\iota_{n_{1},\dots,n_{r}}(w_{1}\cdots w_{r})\coloneq\{n_{1}+\cdots+n_{t_{1}-1}+1,\dots,n_{1}+\cdots+n_{t_{h}-1}+1\}

for n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and w1wr=xt11yxt2t11yxthth11yxrth{x,y}\displaystyle w_{1}\cdots w_{r}=\mathrm{x}^{t_{1}-1}\mathrm{y}\mathrm{x}^{t_{2}-t_{1}-1}\mathrm{y}\cdots\mathrm{x}^{t_{h}-t_{h-1}-1}\mathrm{y}\mathrm{x}^{r-t_{h}}\in\{\mathrm{x},\mathrm{y}\}^{*} (0<t1<<tn<r+1)\displaystyle(0<t_{1}<\cdots<t_{n}<r+1).

Definition 4.10.

For any word w1wr=xt11yxt2t11yxthth11yxrth{x,y}\displaystyle w_{1}\cdots w_{r}=\mathrm{x}^{t_{1}-1}\mathrm{y}\mathrm{x}^{t_{2}-t_{1}-1}\mathrm{y}\cdots\mathrm{x}^{t_{h}-t_{h-1}-1}\mathrm{y}\mathrm{x}^{r-t_{h}}\in\{\mathrm{x},\mathrm{y}\}^{*}, n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we define

Φw1wr(n1,,nra1,,ar):-k=hn1i1<<ikn{i1,,ik}{1,n1+1,,n1++nr1+1}=ιn1,,nr(w1wr)φi1,,ik(n1,,nra1,,ar),\displaystyle\displaystyle\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\sum_{k=h}^{n}\sum_{\begin{subarray}{c}1\leq i_{1}<\cdots<i_{k}\leq n\\ \{i_{1},\dots,i_{k}\}\cap\{1,n_{1}+1,\dots,n_{1}+\cdots+n_{r-1}+1\}\\ =\iota_{n_{1},\dots,n_{r}}(w_{1}\cdots w_{r})\end{subarray}}\varphi_{i_{1},\dots,i_{k}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}, (89)

where n=n1++nr\displaystyle n=n_{1}+\cdots+n_{r}.

Remark 4.11.

Roughly speaking, Φ𝒘(n1,,nra1,,ar)\displaystyle\Phi_{\bm{w}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} is a portion of Δ(I(n1,,nra1,,ar))\displaystyle\Delta\left(\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right) such that it doesn’t mark the point of ηai\displaystyle\eta^{a_{i}} corresponding to x\displaystyle\mathrm{x} and does the point of ηai\displaystyle\eta^{a_{i}} corresponding to y\displaystyle\mathrm{y}.

Example 4.12.
Φxyx(n1,n2,n3a1,a2,a3)=k=1n1i1<<iknl,il=n1+1l,il1,n1+n2+1φi1,,ik(n1,n2,n3a1,a2,a3).\displaystyle\Phi_{\mathrm{x}\mathrm{y}\mathrm{x}}\binom{n_{1},n_{2},n_{3}}{a_{1},a_{2},a_{3}}=\sum_{k=1}^{n}\sum_{\begin{subarray}{c}1\leq i_{1}<\cdots<i_{k}\leq n\\ {}^{\exists}l,i_{l}=n_{1}+1\\ {}^{\forall}l,i_{l}\neq 1,n_{1}+n_{2}+1\end{subarray}}\varphi_{i_{1},\dots,i_{k}}\binom{n_{1},n_{2},n_{3}}{a_{1},a_{2},a_{3}}.

In the right-hand side, the term for k=1\displaystyle k=1 is only φn1+1\displaystyle\varphi_{n_{1}+1}. In general, the term for k=p\displaystyle k=p is sum of φ\displaystyle\varphi such that it marks p1\displaystyle p-1 white points.

a1\displaystyle a_{1}x\displaystyle\mathrm{x}n11\displaystyle n_{1}-1a2\displaystyle a_{2}y\displaystyle\mathrm{y}n21\displaystyle n_{2}-1a3\displaystyle a_{3}x\displaystyle\mathrm{x}n31\displaystyle n_{3}-11\displaystyle 1
=I(0;ηa1,{0}n11;ηa2)I(ηa2;{0}n21,ηa3,{0}n31;1)I(0;ηa2;1)\displaystyle=\mathrm{I}(0;\eta^{a_{1}},\{0\}^{n_{1}-1};\eta^{a_{2}})\mathrm{I}(\eta^{a_{2}};\{0\}^{n_{2}-1},\eta^{a_{3}},\{0\}^{n_{3}-1};1)\otimes\mathrm{I}(0;\eta^{a_{2}};1)
=φn1+1(n1,n2,n3a1,a2,a3)\displaystyle=\varphi_{n_{1}+1}\binom{n_{1},n_{2},n_{3}}{a_{1},a_{2},a_{3}}
Lemma 4.13.

For any n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we have

Δ(I(n1,,nra1,,ar))=w1,,wr{x,y}Φw1wr(n1,,nra1,,ar).\displaystyle\Delta\left(\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right)=\sum_{w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}}\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}.
Proof.

By definition of the coproduct Δ\displaystyle\Delta, we have

Δ(I(n1,,nra1,,ar))=k=0n1i1<<iknφi1,,ik(n1,,nra1,,ar).\displaystyle\Delta\left(\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right)=\sum_{k=0}^{n}\sum_{1\leq i_{1}<\cdots<i_{k}\leq n}\varphi_{i_{1},\dots,i_{k}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}.

Meanwhile, it holds

w1,,wr{x,y}Φw1wr(n1,,nra1,,ar)\displaystyle\displaystyle\sum_{w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}}\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} =h=0rw1,,wr{x,y}degy(w1wr)=hΦw1wr(n1,,nra1,,ar)\displaystyle\displaystyle=\sum_{h=0}^{r}\sum_{\begin{subarray}{c}w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}\\ \deg_{\mathrm{y}}(w_{1}\cdots w_{r})=h\end{subarray}}\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} (92)
=h=0rk=hr1i1<<ikn#{i1,,ik}Pn1,,nr=hφi1,,ik(n1,,nra1,,ar)\displaystyle\displaystyle=\sum_{h=0}^{r}\sum_{k=h}^{r}\sum_{\begin{subarray}{c}1\leq i_{1}<\cdots<i_{k}\leq n\\ \#\{i_{1},\dots,i_{k}\}\cap P_{n_{1},\dots,n_{r}}=h\end{subarray}}\varphi_{i_{1},\dots,i_{k}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} (93)
=k=0n1i1<<iknφi1,,ik(n1,,nra1,,ar),\displaystyle\displaystyle=\sum_{k=0}^{n}\sum_{1\leq i_{1}<\cdots<i_{k}\leq n}\varphi_{i_{1},\dots,i_{k}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}, (94)

where Pn1,,nr={1,n1+1,n1+n2+1,,n1++nr1+1}\displaystyle P_{n_{1},\dots,n_{r}}=\{1,n_{1}+1,n_{1}+n_{2}+1,\dots,n_{1}+\cdots+n_{r-1}+1\}. ∎

The following lemma gives us the explicit formula for the Goncharov coproduct of I(n1,,nra1,,ar)\displaystyle\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}.

Lemma 4.14.

For any n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1, a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z} and any word w1wr=xt11yxt2t11y\displaystyle w_{1}\cdots w_{r}=\mathrm{x}^{t_{1}-1}\mathrm{y}\mathrm{x}^{t_{2}-t_{1}-1}\mathrm{y} xthth11yxrth{x,y}\displaystyle\cdots\mathrm{x}^{t_{h}-t_{h-1}-1}\mathrm{y}\mathrm{x}^{r-t_{h}}\in\{\mathrm{x},\mathrm{y}\}^{*}, we have

Φw1wr(n1,,nra1,,ar)=(Iat1(n1,,nt11a1,,at11)1)\displaystyle\displaystyle\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=\left(\mathrm{I}_{a_{t_{1}}}\binom{n_{1},\dots,n_{t_{1}-1}}{a_{1},\dots,a_{t_{1}-1}}\otimes 1\right) (95)
×t1q1t21thqhrktj++ktj+11=ntj++ntj+11(1jh),ki1j=1h{(1)lj(p=tjpqjtj+11(kp1nq1)\displaystyle\displaystyle\times\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-5.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}$}}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}k_{t_{j}}+\cdots+k_{t_{j+1}-1}\\ =n_{t_{j}}+\cdots+n_{t_{j+1}-1}\\ (1\leq j\leq h),k_{i}\geq 1\end{subarray}}$}}\prod_{j=1}^{h}\Bigg{\{}(-1)^{l_{j}}\Bigg{(}\prod_{\begin{subarray}{c}p=t_{j}\\ p\neq q_{j}\end{subarray}}^{t_{j+1}-1}\binom{k_{p}-1}{n_{q}-1}
×Iatj(kqj1,,ktjaqj,,atj+1)Iatj+1(kqj+1,,ktj+11aqj+1,,atj+11)}I(kq1,,kqhat1,,ath),\displaystyle\displaystyle\times\mathrm{I}_{a_{t_{j}}}\binom{k_{q_{j}-1},\dots,k_{t_{j}}}{a_{q_{j}},\dots,a_{t_{j}+1}}\mathrm{I}_{a_{t_{j+1}}}\binom{k_{q_{j}+1},\dots,k_{t_{j+1}-1}}{a_{q_{j}+1},\dots,a_{t_{j+1}-1}}\Bigg{\}}\otimes\mathrm{I}\binom{k_{q_{1}},\dots,k_{q_{h}}}{a_{t_{1}},\dots,a_{t_{h}}}, (96)

where lj=ntj++ntj+11+nqj+kqj+1++kqj+11\displaystyle l_{j}=n_{t_{j}}+\cdots+n_{t_{j+1}-1}+n_{q_{j}}+k_{q_{j}+1}+\cdots+k_{q_{j+1}-1}, th+1=r+1\displaystyle t_{h+1}=r+1 and ar+1=0\displaystyle a_{r+1}=0.

Proof.

The left-hand side is a sum of all terms of Δ(I(n1,,nra1,,ar))\displaystyle\Delta\left(\mathrm{I}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right) such that its edge is 0,ηat1,,ηath\displaystyle 0,\eta^{a_{t_{1}}},\dots,\eta^{a_{t_{h}}}. Using path composition formula

I(ηatj;{0}ntj1,ηatj+1,,{0}ntj+111;ηatj+1)\displaystyle\displaystyle\mathrm{I}(\eta^{a_{t_{j}}};\{0\}^{n_{t_{j}-1}},\eta^{a_{t_{j}+1}},\dots,\{0\}^{n_{t_{j+1}-1}-1};\eta^{a_{t_{j+1}}}) (97)
=tjqjtj+110lqjnqj1I(ηatj;{0}ntj1,ηatj+1,,ηaqj,{0}lqj;0)\displaystyle\displaystyle=\sum_{t_{j}\leq q_{j}\leq t_{j+1}-1}\sum_{0\leq l_{q_{j}}\leq n_{q_{j}}-1}\mathrm{I}(\eta^{a_{t_{j}}};\{0\}^{n_{t_{j}}-1},\eta^{a_{t_{j}+1}},\dots,\eta^{a_{q_{j}}},\{0\}^{l_{q_{j}}};0) (98)
×I(0;{0}nqjlqj1,ηaqj+1,,{0}ntj+111;ηatj+1),\displaystyle\displaystyle\times\mathrm{I}(0;\{0\}^{n_{q_{j}}-l_{q_{j}}-1},\eta^{a_{q_{j}+1}},\dots,\{0\}^{n_{t_{j+1}-1}-1};\eta^{a_{t_{j+1}}}), (99)

we have

Φw1wr(n1,,nra1,,ar)\displaystyle\displaystyle\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} (100)
=(I(0;ηa1,{0}n11,,ηat11,{0}nt11;ηat1)1)\displaystyle\displaystyle=(\mathrm{I}(0;\eta^{a_{1}},\{0\}^{n_{1}-1},\dots,\eta^{a_{t_{1}-1}},\{0\}^{n_{t_{1}-1}};\eta^{a_{t_{1}}})\otimes 1) (101)
×(t1q1t21thqhr0<lq1+kq1nq10<lqh+kqhnqhli0,ki1j=1hI(ηatj;{0}ntj1,ηatj+1,{0}ntj+11,,ηaqj,{0}lqj;0\displaystyle\displaystyle\times\bigg{(}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-5.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}\sum_{\begin{subarray}{c}0<l_{q_{1}}+k_{q_{1}}\leq n_{q_{1}}\\[-7.0pt] \vdots\\[1.0pt] 0<l_{q_{h}}+k_{q_{h}}\leq n_{q_{h}}\\ l_{i}\geq 0,k_{i}\geq 1\end{subarray}}$}}\prod_{j=1}^{h}\mathrm{I}(\eta^{a_{t_{j}}};\{0\}^{n_{t_{j}}-1},\eta^{a_{t_{j}+1}},\{0\}^{n_{t_{j}+1}-1},\dots,\eta^{a_{q_{j}}},\{0\}^{l_{q_{j}}};0
×(I(0;0))kqj2I(0;{0}nqjlqjkqj,ηaqj+1,{0}nqj+11,,ηatj+11,{0}ntj+111;ηatj+1)\displaystyle\displaystyle\times(\mathrm{I}(0;0))^{k_{q_{j}}-2}\mathrm{I}(0;\{0\}^{n_{q_{j}}-l_{q_{j}}-k_{q_{j}}},\eta^{a_{q_{j}+1}},\{0\}^{n_{q_{j}+1}-1},\dots,\eta^{a_{t_{j+1}-1}},\{0\}^{n_{t_{j+1}-1}-1};\eta^{a_{t_{j+1}}}) (102)
I(0;ηat1,{0}kq11,,ηath,{0}kqh1;1)).\displaystyle\displaystyle\otimes\mathrm{I}(0;\eta^{a_{t_{1}}},\{0\}^{k_{q_{1}}-1},\dots,\eta^{a_{t_{h}}},\{0\}^{k_{q_{h}}-1};1)\bigg{)}. (103)

Here, when kqj=1\displaystyle k_{q_{j}}=1, we understand (I(0;0))kqj2=1\displaystyle(I(0;0))^{k_{q_{j}}-2}=1. By 4.5,4.6, we have

I(ηatj;{0}ntj1,ηatj+1,{0}ntj+11,,ηaqj,{0}lqj;0)\displaystyle\displaystyle\mathrm{I}(\eta^{a_{t_{j}}};\{0\}^{n_{t_{j}}-1},\eta^{a_{t_{j}+1}},\{0\}^{n_{t_{j}+1}-1},\dots,\eta^{a_{q_{j}}},\{0\}^{l_{q_{j}}};0) (104)
=(1)ntj++nqj1+lqjI(0;{0}lqj,ηaqj,,{0}ntj+11,ηatj+1,{0}ntj1;ηatj)\displaystyle\displaystyle=(-1)^{n_{t_{j}}+\cdots+n_{q_{j}-1}+l_{q_{j}}}\mathrm{I}(0;\{0\}^{l_{q_{j}}},\eta^{a_{q_{j}}},\dots,\{0\}^{n_{t_{j}+1}-1},\eta^{a_{t_{j}+1}},\{0\}^{n_{t_{j}}-1};\eta^{a_{t_{j}}}) (105)
=(1)ntj++nqj1ktj++kqj1=ntj++nqj1+lqjp=tjqj1(kp1np1)Iatj(kqj1,,ktjaqj,,atj+1),\displaystyle\displaystyle=(-1)^{n_{t_{j}}+\cdots+n_{q_{j}-1}}\sum_{\begin{subarray}{c}k_{t_{j}}+\cdots+k_{q_{j}-1}\\ =n_{t_{j}}+\cdots+n_{q_{j}-1}+l_{q_{j}}\end{subarray}}\prod_{p=t_{j}}^{q_{j}-1}\binom{k_{p}-1}{n_{p}-1}\mathrm{I}_{a_{t_{j}}}\binom{k_{q_{j}-1},\dots,k_{t_{j}}}{a_{q_{j}},\dots,a_{t_{j+1}}}, (106)

and

I(0;{0}nqjlqjkqj,ηaqj+1,{0}nqj+11,,ηatj+11,{0}ntj+111;ηatj+1)\displaystyle\displaystyle\mathrm{I}(0;\{0\}^{n_{q_{j}}-l_{q_{j}}-k_{q_{j}}},\eta^{a_{q_{j}+1}},\{0\}^{n_{q_{j}+1}-1},\dots,\eta^{a_{t_{j+1}-1}},\{0\}^{n_{t_{j+1}-1}-1};\eta^{a_{t_{j+1}}}) (107)
=(1)nqjlqjkqjkqj+1++ktj+11=nqjlqjkqj+nqj+1++ntj+11p=qj+1tj+11(kp1np1)Iatj+1(kqj+1,,ktj+11aqj+1,,atj+11).\displaystyle\displaystyle=(-1)^{n_{q_{j}}-l_{q_{j}}-k_{q_{j}}}\sum_{\begin{subarray}{c}k_{q_{j}+1}+\cdots+k_{t_{j+1}-1}\\ =n_{q_{j}}-l_{q_{j}}-k_{q_{j}}+n_{q_{j}+1}+\cdots+n_{t_{j+1}-1}\end{subarray}}\prod_{p=q_{j}+1}^{t_{j+1}-1}\binom{k_{p}-1}{n_{p}-1}\mathrm{I}_{a_{t_{j+1}}}\binom{k_{q_{j}+1},\dots,k_{t_{j+1}-1}}{a_{q_{j}+1},\dots,a_{t_{j+1}-1}}. (108)

Therefore, we have

Φw1wr(n1,,nra1,,ar)=(Iat1(n1,,nt11a1,,at11)1)\displaystyle\displaystyle\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=\left(\mathrm{I}_{a_{t_{1}}}\binom{n_{1},\dots,n_{t_{1}-1}}{a_{1},\dots,a_{t_{1}-1}}\otimes 1\right) (109)
×t1q1t21thqhr(kq1,lq1,,kqh,lqh)j=1h{(1)ntj++nqjlqjkqj(p=tjpqjtj+11(kp1nq1))\displaystyle\displaystyle\times\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-5.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}\sum_{(k_{q_{1}},l_{q_{1}},\dots,k_{q_{h}},l_{q_{h}})}\prod_{j=1}^{h}\Bigg{\{}(-1)^{n_{t_{j}}+\cdots+n_{q_{j}}-l_{q_{j}}-k_{q_{j}}}\Bigg{(}\prod_{\begin{subarray}{c}p=t_{j}\\ p\neq q_{j}\end{subarray}}^{t_{j+1}-1}\binom{k_{p}-1}{n_{q}-1}\Bigg{)} (110)
×Iatj(kqj1,,ktjaqj,,atj+1)Iatj+1(kqj+1,,ktj+11aqj+1,,atj+11)}I(kq1,,kqhat1,,ath).\displaystyle\displaystyle\times\mathrm{I}_{a_{t_{j}}}\binom{k_{q_{j}-1},\dots,k_{t_{j}}}{a_{q_{j}},\dots,a_{t_{j}+1}}\mathrm{I}_{a_{t_{j+1}}}\binom{k_{q_{j}+1},\dots,k_{t_{j+1}-1}}{a_{q_{j}+1},\dots,a_{t_{j+1}-1}}\Bigg{\}}\otimes\mathrm{I}\binom{k_{q_{1}},\dots,k_{q_{h}}}{a_{t_{1}},\dots,a_{t_{h}}}. (111)

Here, the second sum runs over

{(kq1,lq1,,kqh,lqh)|li0,ki1,0<lqj+kqjnqj,ktj++kqj1=ntj++nqj1+lqj,kqj+1++ktj+11=nqj+1++ntj+11+nqjlqjkqj.}.\displaystyle\displaystyle\left\{(k_{q_{1}},l_{q_{1}},\dots,k_{q_{h}},l_{q_{h}})\mathrel{}\middle|\mathrel{}\begin{array}[]{l}l_{i}\geq 0,k_{i}\geq 1,0<l_{q_{j}}+k_{q_{j}}\leq n_{q_{j}},\\ k_{t_{j}}+\cdots+k_{q_{j}-1}=n_{t_{j}}+\cdots+n_{q_{j}-1}+l_{q_{j}},\\ k_{q_{j}+1}+\cdots+k_{t_{j+1}-1}=n_{q_{j}+1}+\cdots+n_{t_{j+1}-1}+n_{q_{j}}-l_{q_{j}}-k_{q_{j}}.\end{array}\right\}. (115)

This is exactly the right-hand side of the claim. ∎

Let I~\displaystyle\widetilde{\mathrm{I}} be a formal iterated integral corresponding to MZV of level N\displaystyle N defined by

I~(n1,,nra1,,ar):-(1)rNrb1,,br/Nηρ(𝒂)𝒃I(n1,,nrb1,,br)1(η)\displaystyle\widetilde{\mathrm{I}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq\frac{(-1)^{r}}{N^{r}}\sum_{b_{1},\dots,b_{r}\in\mathbb{Z}/N\mathbb{Z}}\eta^{\rho(\bm{a})\cdot\bm{b}}\mathrm{I}\binom{n_{1},\dots,n_{r}}{b_{1},\dots,b_{r}}\in\mathcal{I}^{1}\otimes_{\mathbb{Q}}\mathbb{Q}(\eta)

for n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, where ρ(𝒂)=(a1,a2a1,,arar1)\displaystyle\rho(\bm{a})=(a_{1},a_{2}-a_{1},\dots,a_{r}-a_{r-1}). 2.4 implies that I~\displaystyle\widetilde{\mathrm{I}} corresponds to ζ\displaystyle\zeta. Let

Φ~w1wr(n1,,nra1,,ar):-(μμ)((1)rNrb1,,br/Nηρ(𝒂)𝒃Φw1wr(n1,,nrb1,,br)).\displaystyle\widetilde{\Phi}_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\coloneq(\mu\otimes\mu)\left(\frac{(-1)^{r}}{N^{r}}\sum_{b_{1},\dots,b_{r}\in\mathbb{Z}/N\mathbb{Z}}\eta^{\rho(\bm{a})\cdot\bm{b}}\Phi_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{b_{1},\dots,b_{r}}\right).

By 4.13, we have

Δμ(I~(n1,,nra1,,ar))=w1,,wr{x,y}Φ~w1wr(n1,,nra1,,ar).\displaystyle\Delta_{\mu}\left(\widetilde{\mathrm{I}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\right)=\sum_{w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}}\widetilde{\Phi}_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}.

The following proposition gives us the explicit formula for the Goncharov coproduct of formal iterated integrals corresponding to MZVs of level N\displaystyle N.

Proposition 4.15.

For any n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1, a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z} and w1,,wr{x,y}\displaystyle w_{1},\dots,w_{r}\in\{\mathrm{x},\mathrm{y}\}, we have

Φ~w1wr(n1,,nra1,,ar)=(I~(n1,,nt11a1,,at11)1)\displaystyle\displaystyle\widetilde{\Phi}_{w_{1}\cdots w_{r}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=\left(\widetilde{\mathrm{I}}\binom{n_{1},\dots,n_{t_{1}-1}}{a_{1},\dots,a_{t_{1}-1}}\otimes 1\right) (116)
×t1q1t21thqhrktj++ktj+11=ntj++ntj+11(1jh),ki1j=1h{(1)lj(p=tjpqjtj+11(kp1np1)\displaystyle\displaystyle\times\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-5.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}$}}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}k_{t_{j}}+\cdots+k_{t_{j+1}-1}\\ =n_{t_{j}}+\cdots+n_{t_{j+1}-1}\\ (1\leq j\leq h),k_{i}\geq 1\end{subarray}}$}}\prod_{j=1}^{h}\Bigg{\{}(-1)^{l_{j}}\Bigg{(}\prod_{\begin{subarray}{c}p=t_{j}\\ p\neq q_{j}\end{subarray}}^{t_{j+1}-1}\binom{k_{p}-1}{n_{p}-1}
×I~(kqj1,,ktjaqjaqj1,,aqjatj)I~(kqj+1,,ktj+11aqj+1aqj,,atj+11aqj)}I~(kq1,,kqhaq1,,aqh),\displaystyle\displaystyle\times\widetilde{\mathrm{I}}\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}-1}&,\dots,&k_{t_{j}}\\ a_{q_{j}}-a_{q_{j}-1}&,\dots,&a_{q_{j}}-a_{t_{j}}\end{array}\bigg{)}\widetilde{\mathrm{I}}\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}+1}&,\dots,&k_{t_{j+1}-1}\\ a_{q_{j}+1}-a_{q_{j}}&,\dots,&a_{t_{j+1}-1}-a_{q_{j}}\end{array}\bigg{)}\Bigg{\}}\otimes\widetilde{\mathrm{I}}\binom{k_{q_{1}},\dots,k_{q_{h}}}{a_{q_{1}},\dots,a_{q_{h}}}, (121)

where lj=ntj++ntj+11+nqj+kqj+1++kqj+11\displaystyle l_{j}=n_{t_{j}}+\cdots+n_{t_{j+1}-1}+n_{q_{j}}+k_{q_{j}+1}+\cdots+k_{q_{j+1}-1}, th+1=r+1\displaystyle t_{h+1}=r+1 and ar+1=0\displaystyle a_{r+1}=0.

Proof.

By 4.14, we have

(L.H.S)=(1)rNrt1q1t21thqhrkt1++kt21=nt1++nt21kth++kr=nth++nrki1(1)j=1hlj(p=t1pq1,,qhr(kp1np1))\displaystyle\displaystyle(\text{L.H.S})=\frac{(-1)^{r}}{N^{r}}\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-4.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}\sum_{\begin{subarray}{c}k_{t_{1}}+\cdots+k_{t_{2}-1}=n_{t_{1}}+\cdots+n_{t_{2}-1}\\[-7.0pt] \vdots\\ k_{t_{h}}+\cdots+k_{r}=n_{t_{h}}+\cdots+n_{r}\\ k_{i}\geq 1\end{subarray}}(-1)^{\sum_{j=1}^{h}l_{j}}\left(\prod_{\begin{subarray}{c}p=t_{1}\\ p\neq q_{1},\dots,q_{h}\end{subarray}}^{r}\binom{k_{p}-1}{n_{p}-1}\right) (122)
×b1,,br/Nηρ(𝒂)𝒃(I(n1,,nt11b1bt1,,bt11bt1)1)\displaystyle\displaystyle\times\sum_{b_{1},\dots,b_{r}\in\mathbb{Z}/N\mathbb{Z}}\eta^{\rho(\bm{a})\cdot\bm{b}}\left(\mathrm{I}\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}n_{1}&,\dots,&n_{t_{1}-1}\\ b_{1}-b_{t_{1}}&,\dots,&b_{t_{1}-1}-b_{t_{1}}\end{array}\bigg{)}\otimes 1\right) (125)
×j=1h(I(kqj1,,ktjbqjbtj,,btj+1btj)I(kqj+1,,ktj+11bqj+1btj+1,,btj+11btj+1))I(kq1,,kqhbt1,,bth).\displaystyle\displaystyle\times\prod_{j=1}^{h}\left(\mathrm{I}\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}-1}&,\dots,&k_{t_{j}}\\ b_{q_{j}}-b_{t_{j}}&,\dots,&b_{t_{j}+1}-b_{t_{j}}\end{array}\bigg{)}\mathrm{I}\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}+1}&,\dots,&k_{t_{j+1}-1}\\ b_{q_{j}+1}-b_{t_{j+1}}&,\dots,&b_{t_{j+1}-1}-b_{t_{j+1}}\end{array}\bigg{)}\right)\otimes\mathrm{I}\binom{k_{q_{1}},\dots,k_{q_{h}}}{b_{t_{1}},\dots,b_{t_{h}}}. (130)

Replacing a running index as

bk{bk+bq11k<t1,bqjk=tj(j{1,,h}),bk1+bqjtj<kqj(j{1,,h}),bk+bqj+1qj<k<tj+1(j{1,,h}).,\displaystyle b_{k}\mapsto\begin{cases}b_{k}+b_{q_{1}}&1\leq k<t_{1},\\ b_{q_{j}}&k=t_{j}\;(j\in\{1,\dots,h\}),\\ b_{k-1}+b_{q_{j}}&t_{j}<k\leq q_{j}\;(j\in\{1,\dots,h\}),\\ b_{k}+b_{q_{j+1}}&q_{j}<k<t_{j+1}\;(j\in\{1,\dots,h\}).\end{cases},

we obtain the claim. ∎

We define a \displaystyle\mathbb{Q}-algebra generated by formal MZVs 1~\displaystyle\widetilde{\mathcal{I}^{1}} by

1~:-I~(n1,,nra1,,ar)|r0,n1,,nr1,a1,,ar/N.\displaystyle\widetilde{\mathcal{I}^{1}}\coloneq\left\langle\widetilde{\mathrm{I}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\mathrel{}\middle|\mathrel{}r\geq 0,n_{1},\dots,n_{r}\geq 1,a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}\right\rangle_{\mathbb{Q}}.

1~\displaystyle\widetilde{\mathcal{I}^{1}} is isomorphic to (1,X~)\displaystyle(\mathfrak{H}^{1},\widetilde{{\,\hbox{\sevency X}\,}}) as a \displaystyle\mathbb{Q}-algebra by sending I~(n1,,nra1,,ar)\displaystyle\widetilde{\mathrm{I}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}} to zn1,a1znr,ar\displaystyle z_{n_{1},a_{1}}\cdots z_{n_{r},a_{r}}. In other words, we can equip (1,X~)\displaystyle(\mathfrak{H}^{1},\widetilde{{\,\hbox{\sevency X}\,}}) with a Hopf algebra structure by the identification.

1.1.

For any w2\displaystyle w\in\mathfrak{H}^{2}, we have

G(w;τ)=(ζg)(w;q)(q=e2π1τ).\displaystyle G(w;\tau)=(\zeta\star g)(w;q)\qquad(q=e^{2\pi\sqrt{-1}\tau}).
Proof.

It follows from 3.8 and 4.15

5 Shuffle regularization for MES of level N\displaystyle N

In this section, we construct shuffle regularized MES of level N\displaystyle N by using the X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}}-homomorphism gX~\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}}.

5.1 Shuffle regularization for multiple divisor function

Kitada ([Kitada23]) constructed shuffle regularized multiple divisor function. In this subsection, we introduce it. Let 𝒦\displaystyle\mathcal{K} denote q\displaystyle\mathbb{C}\llbracket q\rrbracket.

Definition 5.1 (Kitada [Kitada23]).

For n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we define H,g𝒦x1,,xr\displaystyle H,g\in\mathcal{K}\llbracket x_{1},\dots,x_{r}\rrbracket by

H(n1,,nra1,,arx1,,xr):-0<d1<<drj=1redjxjηajdj(qdj1qdj)nj,\displaystyle\displaystyle H\begin{pmatrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\\ x_{1},\dots,x_{r}\end{pmatrix}\coloneq\sum_{0<d_{1}<\cdots<d_{r}}\prod_{j=1}^{r}e^{d_{j}x_{j}}\eta^{a_{j}d_{j}}\left(\frac{q^{d_{j}}}{1-q^{d_{j}}}\right)^{n_{j}}, (131)
g(a1,,arx1,,xr):-k1,,kr>0(N2π1)k1++krg(k1,,kra1,,ar;q)x1k11xrkr1.\displaystyle\displaystyle g\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}\coloneq\sum_{k_{1},\dots,k_{r}>0}\left(\frac{N}{-2\pi\sqrt{-1}}\right)^{k_{1}+\cdots+k_{r}}\!g\bigg{(}\begin{matrix}k_{1},\dots,k_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}x_{1}^{k_{1}-1}\cdots x_{r}^{k_{r}-1}. (132)
Lemma 5.2 ([Kitada23]).

For any a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we have

g(a1,,arx1,,xr)=H(1,,1,1arar1,,a2a1,a1xrxr1,,x2x1,x1).\displaystyle g\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}=H\left(\begin{array}[]{@{}c@{}c@{}c@{}l@{}}1&,\dots,&1&,1\\ a_{r}-a_{r-1}&,\dots,&a_{2}-a_{1}&,a_{1}\\ x_{r}-x_{r-1}&,\dots,&x_{2}-x_{1}&,x_{1}\end{array}\right).
Proof.

By 3.6, we have

(L.H.S)=0<d1<<drk1,,kr>0c1,,cr>0j=1r(cjxj)kj1(kj1)!ηajcjqcjdj=0<d1<<drc1,,cr>0j=1recjxjηajcjqcjdj.\displaystyle\displaystyle(\text{L.H.S})=\sum_{\begin{subarray}{c}0<d_{1}<\cdots<d_{r}\\ k_{1},\dots,k_{r}>0\\ c_{1},\dots,c_{r}>0\end{subarray}}\prod_{j=1}^{r}\frac{(c_{j}x_{j})^{k_{j}-1}}{(k_{j}-1)!}\eta^{a_{j}c_{j}}q^{c_{j}d_{j}}=\sum_{\begin{subarray}{c}0<d_{1}<\cdots<d_{r}\\ c_{1},\dots,c_{r}>0\end{subarray}}\prod_{j=1}^{r}e^{c_{j}x_{j}}\eta^{a_{j}c_{j}}q^{c_{j}d_{j}}. (136)

On the other hand, we have

(R.H.S)\displaystyle\displaystyle(\text{R.H.S}) =0<d1<<drc1,,cr>0j=1re(drj+1drj)xjη(drj+1drj)ajqcjdj.\displaystyle\displaystyle=\sum_{\begin{subarray}{c}0<d_{1}<\cdots<d_{r}\\ c_{1},\dots,c_{r}>0\end{subarray}}\prod_{j=1}^{r}e^{(d_{r-j+1}-d_{r-j})x_{j}}\eta^{(d_{r-j+1}-d_{r-j})a_{j}}q^{c_{j}d_{j}}. (137)

Replacing

dj=crj+1++cr,cj=drj+1drj(j{1,,r}),\displaystyle d_{j}=c_{r-j+1}^{\prime}+\cdots+c_{r}^{\prime},\quad c_{j}=d_{r-j+1}^{\prime}-d_{r-j}^{\prime}\quad(j\in\{1,\dots,r\}),

we have

0<d1<<drc1,,cr>0j=1re(drj+1drj)xjη(drj+1drj)ajqcjdj=c1,,cr>00<d1<<drj=1recjxjηajcjqcjdj.\displaystyle\displaystyle\sum_{\begin{subarray}{c}0<d_{1}<\cdots<d_{r}\\ c_{1},\dots,c_{r}>0\end{subarray}}\prod_{j=1}^{r}e^{(d_{r-j+1}-d_{r-j})x_{j}}\eta^{(d_{r-j+1}-d_{r-j})a_{j}}q^{c_{j}d_{j}}=\sum_{\begin{subarray}{c}c_{1}^{\prime},\dots,c_{r}^{\prime}>0\\ 0<d_{1}^{\prime}<\cdots<d_{r}^{\prime}\end{subarray}}\prod_{j=1}^{r}e^{c_{j}^{\prime}x_{j}}\eta^{a_{j}c_{j}^{\prime}}q^{c_{j}^{\prime}d_{j}^{\prime}}. (138)

Let 𝒰\displaystyle\mathcal{U} be a non-commutative polynomial ring defined by

𝒰:-(naz)|n>0,a/N,zX,\displaystyle\mathcal{U}\coloneq\mathbb{Q}\left\langle\begin{pmatrix}n\\ a\\ z\end{pmatrix}\mathrel{}\middle|\mathrel{}n\in\mathbb{Z}_{>0},a\in\mathbb{Z}/N\mathbb{Z},z\in X\right\rangle,

where the set X\displaystyle X is the following

X:-{i>0mixi|mi0,mi=0 for almost all i}.\displaystyle X\coloneq\left\{\sum_{i>0}m_{i}x_{i}\mathrel{}\middle|\mathrel{}m_{i}\in\mathbb{Z}_{\geq 0},m_{i}=0\text{ for almost all $\displaystyle i$}\right\}.

Denote the concatenation of letters as

(n1,,nra1,,arz1,,zr)=(n1a1z1)(nrarzr).\displaystyle\begin{pmatrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\\ z_{1},\dots,z_{r}\end{pmatrix}=\begin{pmatrix}n_{1}\\ a_{1}\\ z_{1}\end{pmatrix}\cdots\begin{pmatrix}n_{r}\\ a_{r}\\ z_{r}\end{pmatrix}.

We define two products ,X\displaystyle\ast,{\,\hbox{\sevency X}\,} on 𝒰\displaystyle\mathcal{U} inductively by

w1=1w=w,wX 1=1Xw=w,\displaystyle\displaystyle w*1=1*w=w,\quad w{\,\hbox{\sevency X}\,}1=1{\,\hbox{\sevency X}\,}w=w, (139)
u1w1u2w2=u1(w1u2w2)+u2(u1w1w2)+(n1+n2a1+a2z1+z2)(w1w2),\displaystyle\displaystyle u_{1}w_{1}*u_{2}w_{2}=u_{1}\left(w_{1}*u_{2}w_{2}\right)+u_{2}\left(u_{1}w_{1}*w_{2}\right)+\begin{pmatrix}n_{1}+n_{2}\\ a_{1}+a_{2}\\ z_{1}+z_{2}\end{pmatrix}(w_{1}*w_{2}), (140)
u1w1Xu2w2=u1(w1Xu2w2)+u2(u1w1Xw2),\displaystyle\displaystyle u_{1}w_{1}{\,\hbox{\sevency X}\,}u_{2}w_{2}=u_{1}\left(w_{1}{\,\hbox{\sevency X}\,}u_{2}w_{2}\right)+u_{2}\left(u_{1}w_{1}{\,\hbox{\sevency X}\,}w_{2}\right), (141)

for letters u1=(n1a1z1),u2=(n2a2z2)𝒰\displaystyle u_{1}=\Bigg{(}\begin{matrix}n_{1}\\[-3.0pt] a_{1}\\[-3.0pt] z_{1}\end{matrix}\Bigg{)},u_{2}=\Bigg{(}\begin{matrix}n_{2}\\[-3.0pt] a_{2}\\[-3.0pt] z_{2}\end{matrix}\Bigg{)}\in\mathcal{U} and words w,w1,w2𝒰\displaystyle w,w_{1},w_{2}\in\mathcal{U}. Note that H\displaystyle H satisfies \displaystyle\ast-product. We define exponential map on 𝒰\displaystyle\mathcal{U} by

exp((n1,,nra1,,arz1,,zr)):-1mri1++im=ri1,,im>01i1!im!(ni1,,nimai1,,aimzi1,,zim),\displaystyle\displaystyle\exp\left(\begin{pmatrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\\ z_{1},\dots,z_{r}\end{pmatrix}\right)\coloneq\sum_{\begin{subarray}{c}1\leq m\leq r\\ i_{1}+\cdots+i_{m}=r\\ i_{1},\dots,i_{m}>0\end{subarray}}\frac{1}{i_{1}!\cdots i_{m}!}\begin{pmatrix}n^{\prime}_{i_{1}},\dots,n^{\prime}_{i_{m}}\\ a^{\prime}_{i_{1}},\dots,a^{\prime}_{i_{m}}\\ z^{\prime}_{i_{1}},\dots,z^{\prime}_{i_{m}}\end{pmatrix}, (142)

where pik=pi1++ik1+1++pi1++ik\displaystyle p^{\prime}_{i_{k}}=p_{i_{1}+\cdots+i_{k-1}+1}+\cdots+p_{i_{1}+\cdots+i_{k}} for p{n,a,z}\displaystyle p\in\{n,a,z\} and k=1,,m\displaystyle k=1,\dots,m.

Proposition 5.3 (Hoffman [Hoff00]).

𝒰X\displaystyle\mathcal{U}_{{\,\hbox{\sevency X}\,}} and 𝒰\displaystyle\mathcal{U}_{\ast} are commutative \displaystyle\mathbb{Q}-algebras, and the exponential map gives the isomorphism between them:

exp:𝒰X\xlongrightarrow𝒰.\displaystyle\exp:\mathcal{U}_{{\,\hbox{\sevency X}\,}}\xlongrightarrow{\sim}\mathcal{U}_{\ast}.
Definition 5.4 ([Kitada23]).

For a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we define h(a1,,arx1,,xr)𝒦x1,,xr\displaystyle h\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}\in\mathcal{K}\llbracket x_{1},\dots,x_{r}\rrbracket by

h(a1,,arx1,,xr)\displaystyle\displaystyle h\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}} :-Hexp((1,,1a1,,arx1,,xr))\displaystyle\displaystyle\coloneq H\circ\exp\left(\begin{pmatrix}1,\dots,1\\ a_{1},\dots,a_{r}\\ x_{1},\dots,x_{r}\end{pmatrix}\right) (143)
=1mri1++im=ri1,,im>01i1!im!H(ni1,,nimai1,,aimzi1,,zim).\displaystyle\displaystyle=\sum_{\begin{subarray}{c}1\leq m\leq r\\ i_{1}+\cdots+i_{m}=r\\ i_{1},\dots,i_{m}>0\end{subarray}}\frac{1}{i_{1}!\cdots i_{m}!}H\begin{pmatrix}n^{\prime}_{i_{1}},\dots,n^{\prime}_{i_{m}}\\ a^{\prime}_{i_{1}},\dots,a^{\prime}_{i_{m}}\\ z^{\prime}_{i_{1}},\dots,z^{\prime}_{i_{m}}\end{pmatrix}. (144)
Lemma 5.5 ([Kitada23]).

For any a1,,ar+s/N\displaystyle a_{1},\dots,a_{r+s}\in\mathbb{Z}/N\mathbb{Z}, we have

h(a1,,arx1,,xr)h(ar+1,,ar+sxr+1,,xr+s)=h(a1,,ar+sx1,,xr+s)|shr(r+s),\displaystyle h\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}h\binom{a_{r+1},\dots,a_{r+s}}{x_{r+1},\dots,x_{r+s}}=\left.h\binom{a_{1},\dots,a_{r+s}}{x_{1},\dots,x_{r+s}}\mathrel{}\middle|\mathrel{}\mathrm{sh}^{(r+s)}_{r}\right.,

where

shr(r+s):-σShr(r+s)σ[𝔖r+s],\displaystyle\mathrm{sh}^{(r+s)}_{r}\coloneq\sum_{\sigma\in\mathrm{Sh}^{(r+s)}_{r}}\sigma\in\mathbb{Z}[\mathfrak{S}_{r+s}],

and the action extends to an action of the group ring [𝔖r+s]\displaystyle\mathbb{Z}[\mathfrak{S}_{r+s}] by linearity.

Proof.

Since H\displaystyle H satisfies harmonic product, the map

H:𝒰limr𝒦x1,,xr:(n1,,nra1,,arz1,,zr)H(n1,,nra1,,arz1,,zr)\displaystyle H:\mathcal{U}_{*}\to\varinjlim_{r}\mathcal{K}\llbracket x_{1},\dots,x_{r}\rrbracket:\begin{pmatrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\\ z_{1},\dots,z_{r}\end{pmatrix}\mapsto H\begin{pmatrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\\ z_{1},\dots,z_{r}\end{pmatrix}

is homomorphism. Clearly, we have

h(a1,,arx1,,xr)=Hexp((1,,1a1,,arx1,,xr)).\displaystyle h\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}=H\circ\exp\left(\begin{pmatrix}1,\dots,1\\ a_{1},\dots,a_{r}\\ x_{1},\dots,x_{r}\end{pmatrix}\right).

Therefore, h:𝒰X𝒦x1,,xr\displaystyle h:\mathcal{U}_{\,\hbox{\sevency X}\,}\to\mathcal{K}\llbracket x_{1},\dots,x_{r}\rrbracket is a homomorphism. ∎

The following lemma gives us the characterization of the product X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}} through generating function.

Lemma 5.6.

Let F𝒦x1,,xr\displaystyle F\in\mathcal{K}\llbracket x_{1},\dots,x_{r}\rrbracket and f𝒦\displaystyle f\in\mathcal{K} satisfying

F(a1,,arx1,,xr)=k1,,kr>0f(k1,,kra1,,ar)x1k11xrkr1.\displaystyle F\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}=\sum_{k_{1},\dots,k_{r}>0}f\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}x_{1}^{k_{1}-1}\cdots x_{r}^{k_{r}-1}.

Then, the following statements are equivalent:

  1. (i)

    f𝒦\displaystyle f\in\mathcal{K} satisfies X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}}-product i.e. it holds

    f(k1,,kra1,,ar)f(kr+1,,kr+sar+1,,ar+s)=f((k1,,kra1,,ar)X~(kr+1,,kr+sar+1,,ar+s)).\displaystyle f\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}f\binom{k_{r+1},\dots,k_{r+s}}{a_{r+1},\dots,a_{r+s}}=f\left(\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}\widetilde{{\,\hbox{\sevency X}\,}}\binom{k_{r+1},\dots,k_{r+s}}{a_{r+1},\dots,a_{r+s}}\right).

    for any k1,,kr+s1\displaystyle k_{1},\dots,k_{r+s}\in\mathfrak{H}^{1}.

  2. (ii)

    For any positive integers r,s>0\displaystyle r,s>0 and a1,,ar+s/N\displaystyle a_{1},\dots,a_{r+s}\in\mathbb{Z}/N\mathbb{Z}, it holds

    F#(a1,,arx1,,xr)F#(ar+1,,ar+sxr+1,,xr+s)=F#(a1,,ar+sx1,,xr+s)|shr(r+s).\displaystyle F^{\#}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}F^{\#}\binom{a_{r+1},\dots,a_{r+s}}{x_{r+1},\dots,x_{r+s}}=\left.F^{\#}\binom{a_{1},\dots,a_{r+s}}{x_{1},\dots,x_{r+s}}\mathrel{}\middle|\mathrel{}\mathrm{sh}^{(r+s)}_{r}\right..

    Here, F#(a1,,arx1,,xr):-F#(a1,a1+a2,,a1++arx1,x1+x2,,x1++xr)\displaystyle F^{\#}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}\coloneq F^{\#}\binom{a_{1},a_{1}+a_{2},\dots,a_{1}+\cdots+a_{r}}{x_{1},x_{1}+x_{2},\dots,x_{1}+\cdots+x_{r}}.

Proof.

Since

F#(a1,,arx1,,xr)=k1,,kr>0f(ρ1(k1,,k1a1,,ar))x1k11(x1+x2)k21(x1++xr)kr1,\displaystyle F^{\#}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}=\sum_{k_{1},\dots,k_{r}>0}f\left(\rho^{-1}\binom{k_{1},\dots,k_{1}}{a_{1},\dots,a_{r}}\right)x_{1}^{k_{1}-1}(x_{1}+x_{2})^{k_{2}-1}\cdots(x_{1}+\cdots+x_{r})^{k_{r}-1},

the statement (ii) is equivalent to

f(ρ1(k1,,kra1,,ar))f(ρ1(kr+1,,kr+sar+1,,ar+s))=f(ρ1((k1,,kra1,,ar)X(kr+1,,kr+sar+1,,ar+s)))\displaystyle f\left(\rho^{-1}\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}\right)f\left(\rho^{-1}\binom{k_{r+1},\dots,k_{r+s}}{a_{r+1},\dots,a_{r+s}}\right)=f\left(\rho^{-1}\left(\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}{\,\hbox{\sevency X}\,}\binom{k_{r+1},\dots,k_{r+s}}{a_{r+1},\dots,a_{r+s}}\right)\right)

for any k1,,kr+s1\displaystyle k_{1},\dots,k_{r+s}\geq 1 and a1,,ar+s/N\displaystyle a_{1},\dots,a_{r+s}\in\mathbb{Z}/N\mathbb{Z} (see Ihara–Kaneko–Zagier [IKZ], Section 8). By definition of X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}} and bijectiveness of ρ\displaystyle\rho, this statement is equivalent to

f(k1,,kra1,,ar)f(kr+1,,kr+sar+1,,ar+s)=f((k1,,kra1,,ar)X~(kr+1,,kr+sar+1,,ar+s))\displaystyle f\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}f\binom{k_{r+1},\dots,k_{r+s}}{a_{r+1},\dots,a_{r+s}}=f\left(\binom{k_{1},\dots,k_{r}}{a_{1},\dots,a_{r}}\widetilde{{\,\hbox{\sevency X}\,}}\binom{k_{r+1},\dots,k_{r+s}}{a_{r+1},\dots,a_{r+s}}\right)

for any k1,,kr+s1\displaystyle k_{1},\dots,k_{r+s}\geq 1 and a1,,ar+s/N\displaystyle a_{1},\dots,a_{r+s}\in\mathbb{Z}/N\mathbb{Z}. ∎

Definition 5.7 ([Kitada23]).

We define gX~𝒦x1,,xr\displaystyle g_{\widetilde{{\,\hbox{\sevency X}\,}}}\in\mathcal{K}\llbracket x_{1},\dots,x_{r}\rrbracket by

gX~(a1,,arx1,,xr):-h(arar1,,a2a1,a1xrxr1,,x2x1,x1),\displaystyle g_{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}\coloneq h\binom{a_{r}-a_{r-1},\dots,a_{2}-a_{1},a_{1}}{x_{r}-x_{r-1},\dots,x_{2}-x_{1},x_{1}},

and we define shuffle regularization gX~:1q\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}}:\mathfrak{H}^{1}\to\mathbb{C}\llbracket q\rrbracket as the coefficient of the generating function:

k1,,kr>0(N2π1)k1++krgX~(k1,,kra1,,ar;q)x1k11xrkr1:-gX~(a1,,arx1,,xr).\displaystyle\sum_{k_{1},\dots,k_{r}>0}\left(\frac{N}{-2\pi\sqrt{-1}}\right)^{k_{1}+\cdots+k_{r}}g^{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}k_{1},\dots,k_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}x_{1}^{k_{1}-1}\cdots x_{r}^{k_{r}-1}\coloneq g_{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}.
Proposition 5.8 ([Kitada23]).

For any n1,,nr+s1\displaystyle n_{1},\dots,n_{r+s}\geq 1 and a1,,ar+s/N\displaystyle a_{1},\dots,a_{r+s}\in\mathbb{Z}/N\mathbb{Z}, we have

gX~(n1,,nra1,,ar)gX~(nr+1,,nr+sar+1,,ar+s)=gX~((n1,,nra1,,ar)X~(nr+1,,nr+sar+1,,ar+s)).\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}g^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{n_{r+1},\dots,n_{r+s}}{a_{r+1},\dots,a_{r+s}}=g^{\widetilde{{\,\hbox{\sevency X}\,}}}\left(\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}\widetilde{{\,\hbox{\sevency X}\,}}\binom{n_{r+1},\dots,n_{r+s}}{a_{r+1},\dots,a_{r+s}}\right).
Proof.

Let ρr,s𝔖r+s\displaystyle\rho_{r,s}\in\mathfrak{S}_{r+s}, τr𝔖r\displaystyle\tau_{r}\in\mathfrak{S}_{r} be

ρr,s=(1rr+1r+sr 1r+sr+1),τr=(1rr 1).\displaystyle\rho_{r,s}=\binom{1\;\cdots\;r\quad r+1\;\cdots\;r+s}{r\;\cdots\;1\quad r+s\;\cdots\;r+1},\quad\tau_{r}=\binom{1\;\cdots\;r}{r\;\cdots\;1}.

We have

gX~#(a1,,arx1,,xr)gX~#(ar+1,,ar+sxr+1,,xr+s)\displaystyle\displaystyle g_{\widetilde{{\,\hbox{\sevency X}\,}}}^{\#}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}g_{\widetilde{{\,\hbox{\sevency X}\,}}}^{\#}\binom{a_{r+1},\dots,a_{r+s}}{x_{r+1},\dots,x_{r+s}} =h(ar,,a1xr,,x1)h(ar+s,,ar+1xr+s,,xr+1)\displaystyle\displaystyle=h\binom{a_{r},\dots,a_{1}}{x_{r},\dots,x_{1}}h\binom{a_{r+s},\dots,a_{r+1}}{x_{r+s},\dots,x_{r+1}} (145)
=h(a1,,arx1,,xr)h(ar+1,,ar+sxr+1,,xr+s)|ρr,s.\displaystyle\displaystyle=h\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}h\binom{a_{r+1},\dots,a_{r+s}}{x_{r+1},\dots,x_{r+s}}\Big{|}\rho_{r,s}. (146)

Since h\displaystyle h satisfies  X -product, we have

h(a1,,arx1,,xr)h(ar+1,,ar+sxr+1,,xr+s)|ρr,s\displaystyle\displaystyle h\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}h\binom{a_{r+1},\dots,a_{r+s}}{x_{r+1},\dots,x_{r+s}}\Big{|}\rho_{r,s} =h(a1,,ar+sx1,,xr+s)|shr(r+s)|ρr,s\displaystyle\displaystyle=h\binom{a_{1},\dots,a_{r+s}}{x_{1},\dots,x_{r+s}}\Big{|}\mathrm{sh}_{r}^{(r+s)}\Big{|}\rho_{r,s} (147)
=gX~#(a1,,ar+sx1,,xr+s)|τr+s|shr(r+s)|ρr,s.\displaystyle\displaystyle=g_{\widetilde{{\,\hbox{\sevency X}\,}}}^{\#}\binom{a_{1},\dots,a_{r+s}}{x_{1},\dots,x_{r+s}}\Big{|}\tau_{r+s}\Big{|}\mathrm{sh}_{r}^{(r+s)}\Big{|}\rho_{r,s}. (148)

Since τr+sσρr,sShr(r+s)\displaystyle\tau_{r+s}\sigma\rho_{r,s}\in\mathrm{Sh}^{(r+s)}_{r} for any σShr(r+s)\displaystyle\sigma\in\mathrm{Sh}^{(r+s)}_{r}, we have

gX~#(a1,,ar+sx1,,xr+s)|τr+s|shr(r+s)|ρr,s=gX~#(a1,,ar+sx1,,xr+s)|shr(r+s).\displaystyle g_{\widetilde{{\,\hbox{\sevency X}\,}}}^{\#}\binom{a_{1},\dots,a_{r+s}}{x_{1},\dots,x_{r+s}}\Big{|}\tau_{r+s}\Big{|}\mathrm{sh}_{r}^{(r+s)}\Big{|}\rho_{r,s}=g_{\widetilde{{\,\hbox{\sevency X}\,}}}^{\#}\binom{a_{1},\dots,a_{r+s}}{x_{1},\dots,x_{r+s}}\Big{|}\mathrm{sh}_{r}^{(r+s)}.

By 5.6, gX~\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}} satisfies X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}}-product. ∎

For an index w1\displaystyle w\in\mathfrak{H}^{1} such that all upper components are greater than 1, we have gX~(w;q)=g(w;q)\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}}(w;q)=g(w;q).

Lemma 5.9 ([Kitada23]).

For n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 and a1,,ar/N\displaystyle a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}, we have

gX~(n1,,nra1,,ar;q)=g(n1,,nra1,,ar;q).\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}=g\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}.
Proof.

By definition of gX~,h,H𝒦x1,,xr\displaystyle g_{\widetilde{{\,\hbox{\sevency X}\,}}},h,H\in\mathcal{K}\llbracket x_{1},\dots,x_{r}\rrbracket, we have

gX~(a1,,arx1,,xr)=1mri1++im=rij>01i1!im!H(i1,,imai1′′,,aim′′xi1′′,,xim′′),\displaystyle g_{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}=\sum_{\begin{subarray}{c}1\leq m\leq r\\ i_{1}+\cdots+i_{m}=r\\ i_{j}>0\end{subarray}}\frac{1}{i_{1}!\cdots i_{m}!}H\left(\begin{matrix}i_{1},\dots,i_{m}\\ a_{i_{1}}^{\prime\prime},\dots,a_{i_{m}}^{\prime\prime}\\ x_{i_{1}}^{\prime\prime},\dots,x_{i_{m}}^{\prime\prime}\end{matrix}\right),

where pij′′:-pr(i1++ij1)pr(i1++ij)\displaystyle p_{i_{j}}^{\prime\prime}\coloneq p_{r-(i_{1}+\cdots+i_{j-1})}-p_{r-(i_{1}+\cdots+i_{j})} for p{a,x}\displaystyle p\in\{a,x\} and j=1,,r\displaystyle j=1,\dots,r. Since

The coefficients of x1n11xrnr1 in H(i1,,imai1′′,,aim′′xi1′′,,xim′′)=0\displaystyle\text{The coefficients of $\displaystyle x_{1}^{n_{1}-1}\cdots x_{r}^{n_{r}-1}$ in }H\left(\begin{matrix}i_{1},\dots,i_{m}\\ a_{i_{1}}^{\prime\prime},\dots,a_{i_{m}}^{\prime\prime}\\ x_{i_{1}}^{\prime\prime},\dots,x_{i_{m}}^{\prime\prime}\end{matrix}\right)=0

for any n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2 when 1m<r\displaystyle 1\leq m<r. By 5.2, we have

The coefficients of x1n11xrnr1 in gX~(a1,,arx1,,xr)\displaystyle\displaystyle\text{The coefficients of $\displaystyle x_{1}^{n_{1}-1}\cdots x_{r}^{n_{r}-1}$ in }g_{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}} (149)
=The coefficients of x1n11xrnr1 in H(1,,1,1arar1,,a2a1,a1xrxr1,,x2x1,x1)\displaystyle\displaystyle=\text{The coefficients of $\displaystyle x_{1}^{n_{1}-1}\cdots x_{r}^{n_{r}-1}$ in }H\left(\begin{array}[]{@{}c@{}c@{}c@{}l@{}}1&,\dots,&1&,1\\ a_{r}-a_{r-1}&,\dots,&a_{2}-a_{1}&,a_{1}\\ x_{r}-x_{r-1}&,\dots,&x_{2}-x_{1}&,x_{1}\end{array}\right) (153)
=The coefficients of x1n11xrnr1 in g(a1,,arx1,,xr).\displaystyle\displaystyle=\text{The coefficients of $\displaystyle x_{1}^{n_{1}-1}\cdots x_{r}^{n_{r}-1}$ in }g\binom{a_{1},\dots,a_{r}}{x_{1},\dots,x_{r}}. (154)

5.2 Shuffle regularization for MES of level N\displaystyle N

Definition 5.10.

We define the shuffle regularized MES of level N\displaystyle N as the image of \displaystyle\mathbb{Q}-linear map G:1𝒪()\displaystyle G:\mathfrak{H}^{1}\to\mathcal{O}(\mathbb{H}) by

GX~(w;τ):-(ζX~gX~)(w;q)\displaystyle G^{\widetilde{{\,\hbox{\sevency X}\,}}}(w;\tau)\coloneq(\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}\star g^{\widetilde{{\,\hbox{\sevency X}\,}}})(w;q)

for w1\displaystyle w\in\mathfrak{H}^{1} and q=e2π1τ\displaystyle q=e^{2\pi\sqrt{-1}\tau}.

This regularization makes sense, in other words, the regularized MES is equal to the original MES for the cases of convergence.

Proposition 5.11.

It holds GX~=G\displaystyle G^{\widetilde{{\,\hbox{\sevency X}\,}}}=G on 2\displaystyle\mathfrak{H}^{2}.

Proof.

By the explicit formula of Fourier expansion of MES, we have

(GX~G)(n1,,nra1,,ar;τ)\displaystyle\displaystyle(G^{\widetilde{{\,\hbox{\sevency X}\,}}}-G)\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)} (155)
=0hr0<t1<<th<r+1ζ(n1,,nt11a1,,at11)t1q1t21thqhrktj++ktj+11=ntj++ntj+11(1jh),ki1j=1h{(1)lj(p=tjpqjtj+11(kp1np1)\displaystyle\displaystyle=\sum_{\begin{subarray}{c}0\leq h\leq r\\ 0<t_{1}<\cdots<t_{h}<r+1\end{subarray}}\zeta\binom{n_{1},\dots,n_{t_{1}-1}}{a_{1},\dots,a_{t_{1}-1}}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}t_{1}\leq q_{1}\leq t_{2}-1\\[-5.0pt] \vdots\\ t_{h}\leq q_{h}\leq r\end{subarray}}$}}\raisebox{0.0pt}{{$\displaystyle\sum_{\begin{subarray}{c}k_{t_{j}}+\cdots+k_{t_{j+1}-1}\\ =n_{t_{j}}+\cdots+n_{t_{j+1}-1}\\ (1\leq j\leq h),k_{i}\geq 1\end{subarray}}$}}\prod_{j=1}^{h}\Bigg{\{}(-1)^{l_{j}}\Bigg{(}\prod_{\begin{subarray}{c}p=t_{j}\\ p\neq q_{j}\end{subarray}}^{t_{j+1}-1}\binom{k_{p}-1}{n_{p}-1}
×ζ(kqj1,,ktjaqjaqj1,,aqjatj)ζ(kqj+1,,ktj+11aqj+1aqj,,atj+11aqj)}(gX~g)(kq1,,kqhaq1,,aqh;q)\displaystyle\displaystyle\times\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}-1}&,\dots,&k_{t_{j}}\\ a_{q_{j}}-a_{q_{j}-1}&,\dots,&a_{q_{j}}-a_{t_{j}}\end{array}\bigg{)}\zeta\bigg{(}\begin{array}[]{@{}c@{}c@{}c@{}}k_{q_{j}+1}&,\dots,&k_{t_{j+1}-1}\\ a_{q_{j}+1}-a_{q_{j}}&,\dots,&a_{t_{j+1}-1}-a_{q_{j}}\end{array}\bigg{)}\Bigg{\}}(g^{\widetilde{{\,\hbox{\sevency X}\,}}}-g)\bigg{(}\begin{matrix}k_{q_{1}},\dots,k_{q_{h}}\\ a_{q_{1}},\dots,a_{q_{h}}\end{matrix};q\bigg{)} (160)

for n1,,nr2\displaystyle n_{1},\dots,n_{r}\geq 2. The terms with kq1,,kqh2\displaystyle k_{q_{1}},\dots,k_{q_{h}}\geq 2 vanish by 5.9. When kqj1,,kqjs=1\displaystyle k_{q_{j_{1}}},\dots,k_{q_{j_{s}}}=1 for some 1j1<<jsh\displaystyle 1\leq j_{1}<\cdots<j_{s}\leq h, the terms vanish by 2.11 since we can write (gX~g)(kq1,,kqhaq1,,aqh;q)=l=1sfl(q)\displaystyle(g^{\widetilde{{\,\hbox{\sevency X}\,}}}-g)\bigg{(}\begin{matrix}k_{q_{1}},\dots,k_{q_{h}}\\ a_{q_{1}},\dots,a_{q_{h}}\end{matrix};q\bigg{)}=\sum_{l=1}^{s}f_{l}(q) such that fl\displaystyle f_{l} does not depend on aqjl\displaystyle a_{q_{j_{l}}}. ∎

6 Linear relations among regularized MES of level N\displaystyle N

In this final section, we obtain restricted double shuffle relation, distribution relation for MES, and sum and weighted sum formulas for double Eisenstein series (DES).

1.2 (Restricted double shuffle relation).

For any words w1,w2X0\displaystyle w_{1},w_{2}\in X^{0}, we have

G(w1~w2;τ)=GX~(w1X~w2;τ).\displaystyle\displaystyle G(w_{1}\widetilde{*}w_{2};\tau)=G^{\widetilde{{\,\hbox{\sevency X}\,}}}(w_{1}\widetilde{{\,\hbox{\sevency X}\,}}w_{2};\tau). (161)
Proof.

This equation follows by expanding G(w1;τ)G(w2;τ)\displaystyle G(w_{1};\tau)G(w_{2};\tau) in ~\displaystyle\widetilde{*}-product and X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}}-product. ∎

Let Gn1,,nrX(τ)\displaystyle G^{\,\hbox{\sevency X}\,}_{n_{1},\dots,n_{r}}(\tau), ζX(n1,,nr)\displaystyle\zeta^{\,\hbox{\sevency X}\,}(n_{1},\dots,n_{r}) and gn1,,nrX(q)\displaystyle g^{\,\hbox{\sevency X}\,}_{n_{1},\dots,n_{r}}(q) denote those of level 1\displaystyle 1. Note that X~\displaystyle\widetilde{{\,\hbox{\sevency X}\,}}-product is equal to  X -products when N=1\displaystyle N=1.

Theorem 6.1 (Distribution relation).

For n1,,nr1\displaystyle n_{1},\dots,n_{r}\geq 1, we have

a1,,ar/NGX~(n1,,nra1,,ar;τ)=Gn1,,nrX(Nτ).\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}G^{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};\tau\bigg{)}=G^{\,\hbox{\sevency X}\,}_{n_{1},\dots,n_{r}}(N\tau).
Proof.

It suffices to show ζX~\displaystyle\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}} and gX~\displaystyle g^{\widetilde{{\,\hbox{\sevency X}\,}}} satisfy distribution relation i.e.

a1,,ar/NζX~(n1,,nra1,,ar)=ζX(n1,,nr),\displaystyle\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=\zeta^{\,\hbox{\sevency X}\,}(n_{1},\dots,n_{r}), (162)
a1,,ar/NgX~(n1,,nra1,,ar;q)=gn1,,nrX(qN).\displaystyle\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}g^{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}=g^{{\,\hbox{\sevency X}\,}}_{n_{1},\dots,n_{r}}(q^{N}). (163)

By definition of ζX~\displaystyle\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}, we have

a1,,ar/NζX~(n1,,nra1,,ar)=1Nrb1,,br/N(a1,,ar/Nηρ(𝒂)𝒃)LXreg(n1,,nrb1,,br)|T=0.\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=\frac{1}{N^{r}}\sum_{b_{1},\dots,b_{r}\in\mathbb{Z}/N\mathbb{Z}}\left(\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-\rho(\bm{a})\cdot\bm{b}}\right)L_{{\,\hbox{\sevency X}\,}}^{\mathrm{reg}}\binom{n_{1},\dots,n_{r}}{b_{1},\dots,b_{r}}\bigg{|}_{T=0}.

Since

a1,,ar/Nηρ(𝒂)𝒃=j=1raj/Nηaj(bjbj+1)={Nrb1==br=0,0otherwise.,\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}\eta^{-\rho(\bm{a})\cdot\bm{b}}=\prod_{j=1}^{r}\sum_{a_{j}\in\mathbb{Z}/N\mathbb{Z}}\eta^{a_{j}(b_{j}-b_{j+1})}=\begin{cases}N^{r}&b_{1}=\cdots=b_{r}=0,\\ 0&\mathrm{otherwise}.\end{cases},

we have

a1,,ar/NζX~(n1,,nra1,,ar)=LXreg(n1,,nr0,,0)|T=0=ζX(n1,,nr).\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}\zeta^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{n_{1},\dots,n_{r}}{a_{1},\dots,a_{r}}=L_{{\,\hbox{\sevency X}\,}}^{\mathrm{reg}}\binom{n_{1},\dots,n_{r}}{0,\dots,0}\bigg{|}_{T=0}=\zeta^{{\,\hbox{\sevency X}\,}}(n_{1},\dots,n_{r}).

By definition of aij′′\displaystyle a_{i_{j}}^{\prime\prime}, we have

a1,,ar/NgX~(a1,,arx1,,xr;q)\displaystyle\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}g_{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}a_{1},\dots,a_{r}\\ x_{1},\dots,x_{r}\end{matrix};q\bigg{)} =1mri1++im=ri1,,im>01i1!im!a1,,ar/NH(i1,,imai1′′,,aim′′xi1′′,,xim′′;q)\displaystyle\displaystyle=\sum_{\begin{subarray}{c}1\leq m\leq r\\ i_{1}+\cdots+i_{m}=r\\ i_{1},\dots,i_{m}>0\end{subarray}}\frac{1}{i_{1}!\cdots i_{m}!}\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}H\left(\begin{matrix}i_{1},\dots,i_{m}\\ a_{i_{1}}^{\prime\prime},\dots,a_{i_{m}}^{\prime\prime}\\ x_{i_{1}}^{\prime\prime},\dots,x_{i_{m}}^{\prime\prime}\end{matrix};q\right) (164)
=1mri1++im=ri1,,im>01i1!im!(a1,,ar/Nai1^,,aim^1)\displaystyle\displaystyle=\sum_{\begin{subarray}{c}1\leq m\leq r\\ i_{1}+\cdots+i_{m}=r\\ i_{1},\dots,i_{m}>0\end{subarray}}\frac{1}{i_{1}!\cdots i_{m}!}\Bigg{(}\sum_{\begin{subarray}{c}a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}\\ \widehat{a_{i_{1}}},\dots,\widehat{a_{i_{m}}}\end{subarray}}1\Bigg{)} (165)
×ai1,,aim/NH(i1,,imai1,,aimxi1′′,,xim′′;q).\displaystyle\displaystyle\times\sum_{a_{i_{1}},\dots,a_{i_{m}}\in\mathbb{Z}/N\mathbb{Z}}H\left(\begin{matrix}i_{1},\dots,i_{m}\\ a_{i_{1}},\dots,a_{i_{m}}\\ x_{i_{1}}^{\prime\prime},\dots,x_{i_{m}}^{\prime\prime}\end{matrix};q\right). (166)

Therefore, we have

a1,,ar/NH(n1,,nra1,,arx1,,xr;q)\displaystyle\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}H\left(\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\\ x_{1},\dots,x_{r}\end{matrix};q\right) =0<d1<<drj=1r(aj/Nηajdj)edjxj(qdj1qdj)nj\displaystyle\displaystyle=\sum_{0<d_{1}<\cdots<d_{r}}\prod_{j=1}^{r}\left(\sum_{a_{j}\in\mathbb{Z}/N\mathbb{Z}}\eta^{a_{j}d_{j}}\right)e^{d_{j}x_{j}}\left(\frac{q^{d_{j}}}{1-q^{d_{j}}}\right)^{n_{j}} (167)
=Nr0<d1<<drdi=0j=1redjxj(qdj1qdj)nj\displaystyle\displaystyle=N^{r}\sum_{\begin{subarray}{c}0<d_{1}<\cdots<d_{r}\\ d_{i}=0\end{subarray}}\prod_{j=1}^{r}e^{d_{j}x_{j}}\left(\frac{q^{d_{j}}}{1-q^{d_{j}}}\right)^{n_{j}} (168)
=NrH(n1,,nr0,,0Nx1,,Nxr;qN).\displaystyle\displaystyle=N^{r}H\left(\begin{matrix}n_{1},\dots,n_{r}\\ 0,\dots,0\\ Nx_{1},\dots,Nx_{r}\end{matrix};q^{N}\right). (169)

By definition of gX~\displaystyle g_{\widetilde{{\,\hbox{\sevency X}\,}}}, we have

a1,,ar/NgX~(a1,,arx1,,xr;q)\displaystyle\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}g_{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}a_{1},\dots,a_{r}\\ x_{1},\dots,x_{r}\end{matrix};q\bigg{)} =1mri1++im=ri1,,im>01i1!im!NrmNmH(i1,,im0,,0Nxi1′′,,Nxim′′;qN)\displaystyle\displaystyle=\sum_{\begin{subarray}{c}1\leq m\leq r\\ i_{1}+\cdots+i_{m}=r\\ i_{1},\dots,i_{m}>0\end{subarray}}\frac{1}{i_{1}!\cdots i_{m}!}N^{r-m}\cdot N^{m}H\left(\begin{matrix}i_{1},\dots,i_{m}\\ 0,\dots,0\\ Nx_{i_{1}}^{\prime\prime},\dots,Nx_{i_{m}}^{\prime\prime}\end{matrix};q^{N}\right) (170)
=NrgX~(0,,0Nx1,,Nxr;qN).\displaystyle\displaystyle=N^{r}g_{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}0,\dots,0\\ Nx_{1},\dots,Nx_{r}\end{matrix};q^{N}\bigg{)}. (171)

Comparing both coefficients, we have

a1,,ar/NgX~(n1,,nra1,,ar;q)=gn1,,nrX(qN).\displaystyle\sum_{a_{1},\dots,a_{r}\in\mathbb{Z}/N\mathbb{Z}}g^{\widetilde{{\,\hbox{\sevency X}\,}}}\bigg{(}\begin{matrix}n_{1},\dots,n_{r}\\ a_{1},\dots,a_{r}\end{matrix};q\bigg{)}=g^{{\,\hbox{\sevency X}\,}}_{n_{1},\dots,n_{r}}(q^{N}).

We give sum and weighted sum formula for DES through the generating function. Let Fa1,a2(X,Y)\displaystyle F_{a_{1},a_{2}}(X,Y) be the generating function of DES of weight k\displaystyle k (4)\displaystyle(\geq 4) and level N\displaystyle N,

Fa1,a2(X,Y):-i+j=ki,j>1G(i,ja1,a2;τ)Xi1Yj1(a1,a2/N).\displaystyle F_{a_{1},a_{2}}(X,Y)\coloneq\sum_{\begin{subarray}{c}i+j=k\\ i,j>1\end{subarray}}G\bigg{(}\begin{matrix}i,j\\ a_{1},a_{2}\end{matrix};\tau\bigg{)}X^{i-1}Y^{j-1}\quad(a_{1},a_{2}\in\mathbb{Z}/N\mathbb{Z}).

By restricted double shuffle relation for DES, we have the following equation for the generating function.

Lemma 6.2 ([Kitada23]).

For any integer k4\displaystyle k\geq 4 and a1,a2/N\displaystyle a_{1},a_{2}\in\mathbb{Z}/N\mathbb{Z}, we have

Fa1,a2(X,Y)+Fa2,a1(Y,X)+δa1,a2G(ka1)(Xk1Yk1XY(Xk2Yk2))\displaystyle\displaystyle F_{a_{1},a_{2}}(X,Y)+F_{a_{2},a_{1}}(Y,X)+\delta_{a_{1},a_{2}}G\binom{k}{a_{1}}\left(\frac{X^{k-1}-Y^{k-1}}{X-Y}-(X^{k-2}-Y^{k-2})\right) (172)
=Fa1,a1+a2(X,X+Y)+Fa2,a1+a2(Y,X+Y)\displaystyle\displaystyle=F_{a_{1},a_{1}+a_{2}}(X,X+Y)+F_{a_{2},a_{1}+a_{2}}(Y,X+Y) (173)
+(GX~(1,k1a1,a1+a2)+GX~(1,k1a2,a1+a2))(X+Y)k2\displaystyle\displaystyle+\left(G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{1,k-1}{a_{1},a_{1}+a_{2}}+G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{1,k-1}{a_{2},a_{1}+a_{2}}\right)(X+Y)^{k-2} (174)
i+j=ki>0,j>1GX~(i,ja1,a1+a2)Xk2i+j=ki>0,j>1GX~(i,ja2,a1+a2)Yk2.\displaystyle\displaystyle-\sum_{\begin{subarray}{c}i+j=k\\ i>0,j>1\end{subarray}}G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{i,j}{a_{1},a_{1}+a_{2}}X^{k-2}-\sum_{\begin{subarray}{c}i+j=k\\ i>0,j>1\end{subarray}}G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{i,j}{a_{2},a_{1}+a_{2}}Y^{k-2}. (175)
Proof.

By restricted double shuffle relation, we have

G(ia1)G(ja2)\displaystyle\displaystyle G\binom{i}{a_{1}}G\binom{j}{a_{2}} =G(i,ja1,a2)+G(j,ia2,a1)+δa1,a2G(i+ja1)\displaystyle\displaystyle=G\binom{i,j}{a_{1},a_{2}}+G\binom{j,i}{a_{2},a_{1}}+\delta_{a_{1},a_{2}}G\binom{i+j}{a_{1}} (176)
=m+n=i+jm,n>1{(n1j1)G(m,na1,a1+a2)+(n1i1)G(m,na2,a1+a2)}\displaystyle\displaystyle=\sum_{\begin{subarray}{c}m+n=i+j\\ m,n>1\end{subarray}}\left\{\binom{n-1}{j-1}G\binom{m,n}{a_{1},a_{1}+a_{2}}+\binom{n-1}{i-1}G\binom{m,n}{a_{2},a_{1}+a_{2}}\right\} (177)
+(i+j2i1)(GX~(1,i+j1a1,a1+a2)+GX~(1,i+j1a2,a1+a2))\displaystyle\displaystyle+\binom{i+j-2}{i-1}\left(G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{1,i+j-1}{a_{1},a_{1}+a_{2}}+G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{1,i+j-1}{a_{2},a_{1}+a_{2}}\right) (178)

for i,j>1\displaystyle i,j>1. Multiplying Xi1Yj1\displaystyle X^{i-1}Y^{j-1} and adding up for i+j=k\displaystyle i+j=k, i,j>1\displaystyle i,j>1, we obtain the equation. ∎

By using this lemma, we have sum and weighted sum formula for DES.

Theorem 6.3 (Sum formula for DES, Kitada [Kitada23]).

For any even integer k4\displaystyle k\geq 4 and a/N\displaystyle a\in\mathbb{Z}/N\mathbb{Z}, we have

2i+j=ki,j>1((1)i1G(i,ja,a)+G(i,ja,2a))+4GX~(1,k1a,2a)=G(ka).\displaystyle 2\sum_{\begin{subarray}{c}i+j=k\\ i,j>1\end{subarray}}\left((-1)^{i-1}G\binom{i,j}{a,a}+G\binom{i,j}{a,2a}\right)+4G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{1,k-1}{a,2a}=G\binom{k}{a}.
Proof.

It follows by letting k\displaystyle k be even, (X,Y)=(1,1)\displaystyle(X,Y)=(1,-1) and a1=a2=a\displaystyle a_{1}=a_{2}=a in 6.2. ∎

Theorem 6.4 (Weighted sum formula for DES).

For any integer k4\displaystyle k\geq 4 and a/N\displaystyle a\in\mathbb{Z}/N\mathbb{Z}, we have

i+j=ki,j>0{(2j11)GX~(i,ja,2a)+(1δj,1)GX~(i,ja,a)}=k32GX~(ka).\displaystyle\sum_{\begin{subarray}{c}i+j=k\\ i,j>0\end{subarray}}\left\{(2^{j-1}-1)G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{i,j}{a,2a}+(1-\delta_{j,1})G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{i,j}{a,a}\right\}=\frac{k-3}{2}G^{\widetilde{{\,\hbox{\sevency X}\,}}}\binom{k}{a}.
Proof.

It follows by letting (X,Y)=(1,1)\displaystyle(X,Y)=(1,1) and a1=a2=a\displaystyle a_{1}=a_{2}=a in 6.2. ∎

References