This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

 
SI-HEP-2015-26
QFET-2015-33
Phenomenological Implications of an
SU(𝟓)×S𝟒×U(𝟏)\bm{SU(5)\times S_{4}\times U(1)} SUSY GUT of Flavour


Maria Dimou111E-mail: md1e10@soton.ac.uka\;\;{}^{a}, Stephen F. King222E-mail: king@soton.ac.uka\;\;{}^{a}, Christoph Luhn333E-mail: christoph.luhn@uni-siegen.deb\;\;{}^{b}
a School of Physics and Astronomy, University of Southampton,
Southampton, SO17 1BJ, United Kingdom
b Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,
Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
Abstract

We discuss the characteristic low energy phenomenological implications of an SU(5)SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) whose flavour structure is controlled by the family symmetry S4×U(1)S_{4}\times U(1), which provides a good description of all quark and lepton masses, mixings as well as CP violation. Although the model closely mimics Minimal Flavour Violation (MFV) as shown in [1], here we focus on the differences. We first present numerical estimates of the low energy mass insertion parameters, including canonical normalisation and renormalisation group running, for well-defined ranges of SUSY parameters and compare the naive model expectations to the numerical scans and the experimental bounds. Our results are then used to estimate the model-specific predictions for Electric Dipole Moments (EDMs), Lepton Flavour Violation (LFV), BB and KK meson mixing as well as rare BB decays. The largest observable deviations from MFV come from the LFV process μeγ\mu\rightarrow e\gamma and the electron EDM.

 

1 Introduction

The flavour problem has been around for a long time, but only relatively recently has new information been provided in the form of neutrino mass and lepton mixing. Subsequently, a lot of effort has been put into trying to formulate a theory of flavour (for reviews see e.g. [2]) which can account for the observed pattern of fermion masses and mixing, while providing more accurate predictions for the less well measured (or unmeasured) flavour parameters in the neutrino sector, see e.g. [3].

A possible additional source of experimental information which could shed light on the flavour puzzle would be the observation of rare flavour changing processes at rates beyond that predicted by the Standard Model (SM). Such observations could in principle provide insight into the nature of the theory of flavour beyond the SM. So far, experiment has unfortunately not measured any flavour or CP violation beyond SM expectations. Indeed all data are consistent with the concept of Minimal Flavour Violation (MFV) [4], in which all flavour and CP-violating transitions are governed by the CKM matrix and the only relevant local operators are the ones that are relevant in the SM. Although the formulation of MFV in an effective field theory, involving an approximate SU(3)5SU(3)^{5} symmetry444In the framework of Grand Unified Theories (GUTs) it is not possible to implement SU(3)5SU(3)^{5} symmetry at the GUT scale. However, in GUTs based on SU(5)SU(5) [5] or Pati-Salam [6], it is certainly possible to introduce an SU(3)2SU(3)^{2} flavour symmetry, and this has been shown to be sufficient [7]. broken by the Yukawa matrices, allows some new operators which can in principle give significant contributions [8, 9], in all cases, MFV predicts very SM-like flavour and CP violation consistent with observation.

The absence of flavour violation is consistent with the absence of any new physics beyond the SM, such as Supersymmetry (SUSY) which, if softly broken at the TeV scale, would in general imply large deviations from SM flavour and CP violation [10]. For example, SUSY models involve one-loop diagrams that induce Flavour Changing Neutral Current (FCNC) processes such as bsγb\to s\gamma and μeγ\mu\to e\gamma at rates which are proportional to the mass insertion parameters, i.e. the off-diagonal elements of the scalar mass matrices in the super-CKM (SCKM) basis where the Yukawa matrices are diagonal [10, 11]. Such SUSY contributions are very small in the the Constrained Minimal Supersymmetric Standard Model (CMSSM) where the squark and slepton mass squared matrices are proportional to the unit matrix at the high energy scale and the trilinear AA-terms are aligned with the Yukawa matrices, resulting in an (approximate) MFV-like structure at low energy [10]. But there is no convincing theoretical basis for either the CMSSM or MFV. Moreover, in SUSY GUTs, the CMSSM framework while providing suppressed flavour violation, cannot easily control CP violation in the form of Electric Dipole Moments (EDMs) which remains a challenge [10]. However, the real challenge is to justify the assumptions of MFV or the CMSSM, while at the same time providing a realistic explanation of quark and lepton (including neutrino) masses, mixing and CP violation.

Following the discovery of neutrino mass and mixing, there has been an impetus to revisit the favour problem using a family symmetry of some kind, in particular discrete non-Abelian family symmetry [2]. It was realised that in such models, spontaneous CP and flavour violation could solve the CP and flavour problems of the SM [12, 13] without any ad hoc assumptions about MFV or the CMSSM. The family symmetry that is responsible for the structure of the Yukawa sector will automatically control the soft SUSY breaking sector as long as the SUSY breaking hidden sector respects the family symmetry. This is realised for instance in supergravity induced SUSY breaking.

Considering a SUSY framework, the choice of an SU(3)SU(3) family symmetry [13, 14] provides a benchmark scenario where flavour and CP violation is controlled by family symmetry. The spontaneous breaking of family and CP symmetry by Vacuum Expectation Values (VEVs) of the so-called flavon fields perturbs the SUSY breaking sector, thereby generating distinct deviations from MFV or the CMSSM. Unfortunately, these signatures which were expected to appear in Run 1 of the LHC [15] did not in fact materialise, and the allowed parameter space has been much reduced [16]. At leading order, the CMSSM is enforced by the SU(3)SU(3) family symmetry acting on the squark and slepton mass squared matrices. When SU(3)SU(3) is broken by flavon VEVs, to generate quark and lepton flavour, those flavons appearing in the Kähler potential give important contributions to the kinetic terms, requiring extra canonical normalisation [17]. Since SUSY breaking also originates from the Kähler potential, the flavons also modify the couplings of squarks and sleptons to the fields with SUSY breaking FF-terms, where the corrections have a different form to the flavon corrections appearing in the superpotential. All of this occurs at the high scale. Additional flavour violation is generated by renormalisation group (RG) running down to low energy, taking into account the seesaw mechanism [18] and threshold corrections [19].

In this paper we discuss the characteristic low energy phenomenological implications of an SU(5)SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) whose flavour structure is controlled by the family symmetry S4×U(1)S_{4}\times U(1), which provides a good description of all quark and lepton masses, mixings as well as CP violation. In a recent paper we showed how MFV emerges approximately in this setup [1]. Assuming a SUSY breaking mechanism which respects the family symmetry, we calculated in full explicit detail the low energy mass insertion parameters in the SCKM basis, including the effects of canonical normalisation and renormalisation group running, showing that the peculiar flavour structure of the model, defined by the small family symmetry S4×U(1)S_{4}\times U(1), is sufficient to approximately mimic MFV.555Depending on the implementation of a particular family symmetry, SUSY GUTs of flavour typically realise some approximation of MFV at high as well as low scales [20]. However there are important phenomenological differences which can provide tell-tale signatures of the model, and it is the main purpose of this paper to discuss these in detail. In other words, we exploit the low energy mass insertion parameters of the model calculated in [1] to analyse a panoply of rare and flavour changing processes as well as EDMs in both the lepton and quark sectors. The results are quite illuminating: while we find only small new effects in BB physics, very large effects arise for Lepton Flavour Violation (LFV) and the electron EDM which are therefore predicted to be observed soon.

The layout of the remainder of the paper is as follows. In Section 2 we give a succinct summary of the analytic Yukawa matrices and mass insertion parameters calculated in [1]. In Section 3 we discuss numerical estimates of the low energy mass insertion parameters for ranges of SUSY parameters which are consistent with the bounds from direct searches for squarks and sleptons at LHC Run 1. We compare the naive model expectations to the numerical scans and the experimental bounds. In Section 4 these results are then used to estimate the predictions for EDMs, LFV, BB and KK meson mixing as well as rare BB decays. The largest observable deviations from MFV come from the LFV process μeγ\mu\rightarrow e\gamma and the electron EDM. Section 5 concludes the paper.

2 Yukawa matrices and SUSY breaking parameters

In this section, we briefly summarise the GUT scale Yukawa matrices and soft SUSY breaking parameters constructed within the framework of the family symmetry model in [1]. Working in a power expansion of the Wolfenstein parameter λ0.225\lambda\approx 0.225 [21], we present all expressions to Leading Order (LO). The entries of the flavour matrices are generally complex, where the phases are given in terms of two free parameters θ2d\theta^{d}_{2}, θ3d\theta^{d}_{3}, with the exception of the soft trilinear terms whose phases are not identified with the corresponding Yukawa phases but are kept as free parameters, even though their flavour structure is the same as that of the Yukawas. Details on this aspect can be found in [1]. In the present work, we will comment on the consequences of this generalisation where relevant.

2.1 Yukawa sector

The fermion structure was already scrutinised in [22], and we have completed this analysis by including the effects of canonical normalisation. In the basis with canonical kinetic terms, that is after redefining the superfields such that the Kähler metrics are identified with the unit matrix, the Yukawa matrix for the up-type quarks reads

YGUTu\displaystyle Y^{u}_{\text{GUT}} \displaystyle\approx (yuλ812k2ycλ812k4ytei(θ3dθ2d)λ612k2ycλ8ycλ412k3ytei5θ2dλ512k4ytei(3θ2d+2θ3d)λ612k3ytei(7θ2d+3θ3d)λ5yt),\displaystyle\left(\begin{array}[]{ccc}y_{u}\,\lambda^{8}&-\frac{1}{2}k_{2}\,y_{c}\,\lambda^{8}&-\frac{1}{2}k_{4}\,y_{t}e^{i(\theta^{d}_{3}-\theta^{d}_{2})}\,\lambda^{6}\\ -\frac{1}{2}k_{2}\,y_{c}\lambda^{8}&y_{c}\,\lambda^{4}&-\frac{1}{2}k_{3}\,y_{t}e^{-i5\theta^{d}_{2}}\lambda^{5}\\ \!\!-\frac{1}{2}k_{4}\,y_{t}e^{-i(3\theta^{d}_{2}+2\theta^{d}_{3})}\,\lambda^{6}&~~-\frac{1}{2}k_{3}\,y_{t}e^{-i(7\theta^{d}_{2}+3\theta^{d}_{3})}\lambda^{5}&y_{t}\end{array}\right)\ ,~~~~ (2.4)

where yfy_{f} and kik_{i} are real order one coefficients, with the former stemming from the Yukawa part of the superpotential of the theory and the latter from the Kähler potential. In particular, k2,k3k_{2},k_{3} and k4k_{4} appear in the non-canonical Kähler metric of the SU(5)SU(5) 𝟏𝟎{\bf{10}}-plets, in the (12), (23) and (13) elements, respectively.

The Yukawa matrices for the down-type quarks and charged leptons take the form

YGUTd\displaystyle Y^{d}_{{\text{GUT}}} \displaystyle\!\approx\! (z1deiθ2dλ8x~2λ5x~2ei(3θ2d+2θ3d)λ5x~2λ5yseiθ2dλ4yse2i(θ2d+θ3d)λ4(z3dK32yb)ei(3θ2d+2θ3d)λ6(z2dK32yb)ei(3θ2d+2θ3d)λ6ybλ2),\displaystyle\left(\begin{array}[]{ccc}z^{d}_{1}e^{-i\theta^{d}_{2}}\lambda^{8}&\tilde{x}_{2}\lambda^{5}&\!-\tilde{x}_{2}e^{i(3\theta^{d}_{2}+2\theta^{d}_{3})}\lambda^{5}\\ -\tilde{x}_{2}\lambda^{5}&~~y_{s}e^{-i\theta^{d}_{2}}\lambda^{4}&\!-y_{s}e^{2i(\theta^{d}_{2}+\theta^{d}_{3})}\lambda^{4}\\ \!\left(z^{d}_{3}\!-\!\frac{K_{3}}{2}y_{b}\right)e^{-i(3\theta^{d}_{2}+2\theta^{d}_{3})}\lambda^{6}\!&~\left(z^{d}_{2}\!-\!\frac{K_{3}}{2}y_{b}\right)e^{-i(3\theta^{d}_{2}+2\theta^{d}_{3})}\lambda^{6}\!\!&y_{b}\lambda^{2}\end{array}\right)\!,~~~~~~~~ (2.8)
YGUTe\displaystyle Y^{e}_{{\text{GUT}}} \displaystyle\!\approx\! (3z1deiθ2dλ8x~2λ5(z3dK32yb)λ6x~2λ53eiθ2dysλ4(z2dK32yb)λ6x~2λ53eiθ2dysλ4ybλ2).\displaystyle\left(\begin{array}[]{ccc}-3z^{d}_{1}e^{-i\theta^{d}_{2}}\lambda^{8}&-\tilde{x}_{2}\lambda^{5}&~~\left(z^{d}_{3}-\frac{K_{3}}{2}y_{b}\right)\lambda^{6}\\ \tilde{x}_{2}\lambda^{5}&-3\,e^{-i\theta^{d}_{2}}y_{s}\lambda^{4}&~~\left(z^{d}_{2}-\frac{K_{3}}{2}y_{b}\right)\lambda^{6}\\ -\tilde{x}_{2}\lambda^{5}&~~3\,e^{-i\theta^{d}_{2}}y_{s}\lambda^{4}&~~y_{b}\lambda^{2}\end{array}\right)\!. (2.12)

Again, these expressions are given in the canonical basis and all coefficients are real and of order one. x~2\tilde{x}_{2}, yfy_{f} and zidz^{d}_{i} arise from the superpotential operators and K3K_{3} from the Kähler potential, where it enters symmetrically in all off-diagonal elements of the non-canonical Kähler metric of the SU(5)SU(5) 𝟓¯\bf{\bar{5}}-plets.

Finally, the Dirac neutrino Yukawa matrix in the canonical basis is given by

Yν\displaystyle Y^{\nu} \displaystyle\!\approx\! (yDyD(K3+K3N)2λ4(z1DyD(K3+K3N)2)λ4yD(K3+K3N)2λ4(z1DyD(K3+K3N)2)λ4yD(z1DyD(K3+K3N)2)λ4yDyD(K3+K3N)2λ4),\displaystyle\left(\begin{array}[]{ccc}y_{D}&-\frac{y_{D}(K_{3}+K^{N}_{3})}{2}\lambda^{4}&\left(z^{D}_{1}-\frac{y_{D}(K_{3}+K^{N}_{3})}{2}\right)\lambda^{4}\\ -\frac{y_{D}(K_{3}+K^{N}_{3})}{2}\lambda^{4}&\left(z^{D}_{1}-\frac{y_{D}(K_{3}+K^{N}_{3})}{2}\right)\lambda^{4}\!\!&y_{D}\\ \!\left(z^{D}_{1}-\frac{y_{D}(K_{3}+K^{N}_{3})}{2}\right)\lambda^{4}&y_{D}&-\frac{y_{D}(K_{3}+K^{N}_{3})}{2}\lambda^{4}\end{array}\right),~~~~~~~~~ (2.16)

which is real up to LO in λ\lambda. The parameters yDy_{D} and z1Dz^{D}_{1} originate from the superpotential, while K3NK^{N}_{3} is associated to the Kähler metric of the right-handed neutrinos. Note that this metric is identical to that of the SU(5)SU(5) 𝟓¯\bf{\bar{5}}-plets, up to renaming the order one coefficients, see [1] for details.

Transforming the left- and right-handed superfields fL,Rf_{L,R} by unitary matrices UL,RfU^{f}_{L,R}, we obtain the canonically normalised diagonal and positive Yukawas in the SCKM basis

Y~GUTu(yuλ8000ycλ4000yt),Y~GUTd(x~22ysλ6000ysλ4000ybλ2),\tilde{Y}^{u}_{\text{GUT}}\approx\left(\begin{array}[]{ccc}y_{u}\lambda^{8}&0&0\\ 0&y_{c}\lambda^{4}&0\\ 0&0&y_{t}\end{array}\right),\qquad\tilde{Y}^{d}_{\text{GUT}}\approx\left(\begin{array}[]{ccc}\frac{\tilde{x}_{2}^{2}}{y_{s}}\lambda^{6}&0&0\\ 0&y_{s}\lambda^{4}&0\\ 0&0&y_{b}\lambda^{2}\end{array}\right), (2.17)
Y~GUTe(x~223ysλ60003ysλ4000ybλ2).\tilde{Y}^{e}_{\text{GUT}}\approx\left(\begin{array}[]{ccc}\frac{\tilde{x}_{2}^{2}}{3y_{s}}\lambda^{6}&0&0\\ 0&3y_{s}\lambda^{4}&0\\ 0&0&y_{b}\lambda^{2}\end{array}\right). (2.18)

Up to phase convention, the CKM matrix is given by VCKMGUT=(ULu)TULdV_{\text{CKM}_{\text{GUT}}}=(U^{u}_{L})^{T}U^{d*}_{L}, leading to the mixing angles

sin(θ13q)GUTx~2ybλ3,tan(θ23q)GUTysybλ2,tan(θ12q)GUTx~2ysλ.\sin(\theta^{q}_{13})_{\text{GUT}}\approx\frac{\tilde{x}_{2}}{y_{b}}\lambda^{3}\ ,\qquad\tan(\theta^{q}_{23})_{\text{GUT}}\approx\frac{y_{s}}{y_{b}}\lambda^{2}\ ,\qquad\tan(\theta^{q}_{12})_{\text{GUT}}\approx\frac{\tilde{x}_{2}}{y_{s}}\lambda\ . (2.19)

The mixing arises purely from the down-type quark sector and incorporates the Gatto-Sartori-Tonin relation [23] θ12qmd/ms\theta^{q}_{12}\approx\sqrt{m_{d}/m_{s}}. The amount of CP violation is given by the Jarlskog invariant [24]

JCPGUTq\displaystyle J^{q}_{\text{CP}_{\text{GUT}}} \displaystyle\approx λ7x~23yb2yssinθ2d.\displaystyle\lambda^{7}\frac{\tilde{x}_{2}^{3}}{y_{b}^{2}y_{s}}\sin\theta^{d}_{2}\ . (2.20)

These results are in agreement with the LO expressions derived in [22], where canonical normalisation effects were ignored. As discussed in [1], the LO results for the quark and charged lepton masses and mixing angles remain unaffected by the process of canonicalising the kinetic terms. We point out that these 13 observables of the charged fermion sector are given in terms of only 8 input parameters (λ\lambda, yu,c,ty_{u,c,t}, ys,by_{s,b}, x~2\tilde{x}_{2} and θ2d\theta_{2}^{d}) at LO.

2.2 Soft SUSY breaking sector

The soft trilinear AA-terms and the Yukawa couplings originate in the same superpotential terms. Hence, they have a similar flavour structure and, in the basis of canonical kinetic terms, the soft flavour matrices AGUTf/A0A^{f}_{\text{GUT}}/A_{0}, where A0A_{0} denotes the scale of the trilinear terms, can be deduced from Eqs. (2.4-2.16) by simply replacing yuauei(θuaθuy)y_{u}\to a_{u}\,e^{i(\theta^{a}_{u}-\theta^{y}_{u})}, ycacei(θcaθcy)y_{c}\to a_{c}\,e^{i(\theta^{a}_{c}-\theta^{y}_{c})}, ytaty_{t}\to a_{t}, ysasei(θsaθsy)y_{s}\to a_{s}\,e^{i(\theta^{a}_{s}-\theta^{y}_{s})}, ybabei(θbaθby)y_{b}\to a_{b}\,e^{i(\theta^{a}_{b}-\theta^{y}_{b})}, x~2x~2aei(θ2x~aθ2x~)\tilde{x}_{2}\to\tilde{x}^{a}_{2}\,e^{i(\theta^{\tilde{x}_{a}}_{2}-\theta^{\tilde{x}}_{2})}, zifzifaei(θizfaθizf)z^{f}_{i}\to z^{f_{a}}_{i}\,e^{i(\theta^{z_{f_{a}}}_{i}-\theta^{z_{f}}_{i})} and yDαDy_{D}\to\alpha_{D}. Here, the Yukawa phases are all given in terms of θ2d,θ3d\theta^{d}_{2},~\theta^{d}_{3} as follows: θuy=θcy=θsy=θ1zd=2θ2d+3θ3d\theta^{y}_{u}=\theta^{y}_{c}=\theta^{y}_{s}=\theta^{z_{d}}_{1}=2\theta^{d}_{2}+3\theta^{d}_{3}, θby=θ2zd=θ3zd=θ3d\theta^{y}_{b}=\theta^{z_{d}}_{2}=\theta^{z_{d}}_{3}=\theta^{d}_{3} and θ2x~=3(θ2d+θ3d)\theta^{\tilde{x}}_{2}=3(\theta^{d}_{2}+\theta^{d}_{3}). On the other hand, the trilinear phases θfa,θ2x~a,θizfa\theta^{a}_{f},~\theta^{\tilde{x}_{a}}_{2},~\theta^{z_{f_{a}}}_{i} are kept free.

Turning to the soft scalar mass squared matrices in the canonical basis, we find

MTGUT2m02\displaystyle\frac{M^{2}_{T_{\text{GUT}}}}{m_{0}^{2}} \displaystyle\approx (b01(b2b01k2)λ4ei(θ2dθ3d)(b4k4(b01+b02)2)λ6b01e5iθ2d(b3k3(b01+b02)2)λ5b02),\displaystyle\left(\begin{array}[]{ccc}b_{01}&~~(b_{2}-b_{01}k_{2})\lambda^{4}&~~~e^{i(\theta^{d}_{2}-\theta^{d}_{3})}(b_{4}-\frac{k_{4}(b_{01}+b_{02})}{2})\lambda^{6}\\ \cdot&~~b_{01}&~~~e^{5i\theta^{d}_{2}}(b_{3}-\frac{k_{3}(b_{01}+b_{02})}{2})\lambda^{5}\\ \cdot&\cdot&~~b_{02}\end{array}\right)\ , (2.24)

for the SU(5)SU(5) 𝟏𝟎{\bf{10}}-plets as well as

MF(N)GUT2m02\displaystyle\frac{M^{2}_{F(N)_{\text{GUT}}}}{m_{0}^{2}} \displaystyle\approx (B0(N)(B3(N)K3(N))λ4(B3(N)K3(N))λ4B0(N)(B3(N)K3(N))λ4B0(N)),\displaystyle\left(\begin{array}[]{ccc}B^{(N)}_{0}&~~~(B^{(N)}_{3}-K^{(N)}_{3})\lambda^{4}&~~~(B^{(N)}_{3}-K^{(N)}_{3})\lambda^{4}\\ \cdot&~~~B^{(N)}_{0}&~~~(B^{(N)}_{3}-K^{(N)}_{3})\lambda^{4}\\ \cdot&\cdot&B^{(N)}_{0}\end{array}\right), (2.28)

for the SU(5)SU(5) 𝟓{\bf{5}}-plets and the right-handed neutrinos, with the latter being associated to the coefficients with index NN. For convenience, we absorb the universal order one parameter B0B_{0} on the diagonal into the soft SUSY breaking mass m0m_{0}, so that the leading contribution to the diagonal entries of MFGUT2/m02M^{2}_{F_{\text{GUT}}}/m_{0}^{2} is one.

2.3 Mass insertion parameters

In order to study the phenomenological implications of the soft SUSY breaking sector, it is useful to rotate all quantities into the physical basis where the Yukawa matrices are diagonal and positive, i.e. the SCKM basis. Any misalignment between the fermion and sfermion flavour matrices constitutes a source of flavour violation, with the off-diagonal entries of the sfermionic mass matrices contributing to FCNCs. The sfermion mass matrices are given as

mf~LL2=(m~f2)LL+Y~fY~fυu,d2,mf~RR2=(m~f2)RR+Y~fY~fυu,d2,mf~LR2=A~fυu,dμY~fυd,u,m^{2}_{\tilde{f}_{LL}}\!\!=(\tilde{m}_{f}^{2})_{LL}+\tilde{Y}_{f}\tilde{Y}_{f}^{\dagger}\upsilon^{2}_{u,d}\ ,~\quad m^{2}_{\tilde{f}_{RR}}\!\!=(\tilde{m}_{f}^{2})_{RR}+\tilde{Y}_{f}^{\dagger}\tilde{Y}_{f}\upsilon^{2}_{u,d}\ ,~\quad m^{2}_{\tilde{f}_{LR}}\!\!=\tilde{A}_{f}\upsilon_{u,d}-\mu\tilde{Y}_{f}\upsilon_{d,u}\ , (2.29)

where m~f2\tilde{m}^{2}_{f} and A~f\tilde{A}_{f} denote the soft flavour matrices in the SCKM basis, and Y~f\tilde{Y}_{f} are the diagonal Yukawa matrices. μ\mu is the (real) higgsino mass parameter, and the VEVs of the two neutral Higgses are defined as

υu\displaystyle\upsilon_{u} =\displaystyle= υ1+tβ2tβ,υd=υ1+tβ2,\displaystyle\frac{\upsilon}{\sqrt{1+t_{\beta}^{2}}}\,t_{\beta}\ ,~~~~~~\upsilon_{d}=\frac{\upsilon}{\sqrt{1+t_{\beta}^{2}}}\ , (2.30)

where tβtanβ=υuυdt_{\beta}\equiv\tan\beta=\frac{\upsilon_{u}}{\upsilon_{d}} and υ=υu2+υd2=174\upsilon=\sqrt{\upsilon_{u}^{2}+\upsilon_{d}^{2}}=174 GeV. The indices LL and RR refer to the chirality of the corresponding SM fermions and mf~RL2(mf~LR2)m^{2}_{\tilde{f}_{RL}}\equiv(m^{2}_{\tilde{f}_{LR}})^{\dagger}. With these definitions, the amount of flavour violation can be measured in terms of the dimensionless mass insertion parameters [11]

(δLLf)ij=(mf~LL2)ijmf~LL2,(δRRf)ij=(mf~RR2)ijmf~RR2,(δLRf)ij=(mf~LR2)ijmf~LR2,\displaystyle(\delta^{f}_{LL})_{ij}=\frac{(m^{2}_{\tilde{f}_{LL}})_{ij}}{\langle m_{\tilde{f}}\rangle^{2}_{LL}}\ ,\qquad(\delta^{f}_{RR})_{ij}=\frac{(m^{2}_{\tilde{f}_{RR}})_{ij}}{\langle m_{\tilde{f}}\rangle^{2}_{RR}}\ ,\qquad(\delta^{f}_{LR})_{ij}=\frac{(m^{2}_{\tilde{f}_{LR}})_{ij}}{\langle m_{\tilde{f}}\rangle^{2}_{LR}}\ , (2.31)

where the average masses in the denominators are defined by

mf~AB2=(mf~AA2)ii(mf~BB2)jj.\langle m_{\tilde{f}}\rangle^{2}_{AB}=\sqrt{(m^{2}_{\tilde{f}_{AA}})_{ii}(m^{2}_{\tilde{f}_{BB}})_{jj}}\ . (2.32)

We mention in passing that the phase structure of the mass insertion parameters depends on the choice of the phase conventions of the CKM and PMNS matrices. In [1], we have worked out the expressions in Eq. (2.31) explicitly for our model at the GUT scale, choosing a phase convention in which VCKMV_{\text{CKM}} and UPMNSU_{\text{PMNS}} take their standard form.

The effects of RG running down to the low energy scales where experiments are performed were also estimated, using the leading logarithmic approximation. Introducing the parameters

η\displaystyle\eta =\displaystyle= 116π2ln(MGUTMlow),ηN=116π2ln(MGUTMR),\displaystyle\frac{1}{16\pi^{2}}\ln\left(\frac{M_{\text{GUT}}}{M_{\text{low}}}\right),~~~\eta_{N}=\frac{1}{16\pi^{2}}\ln\left(\frac{M_{\text{GUT}}}{M_{\text{R}}}\right), (2.33)

we performed a two-stage running (ii) from MGUTM_{\text{GUT}} to MRM_{R}, where the right-handed neutrinos are integrated out, and (iiii) from MRM_{R} to MSUSYMWMlowM_{\text{SUSY}}\sim M_{\text{W}}\equiv M_{\text{low}}. For MGUT2×1016M_{\text{GUT}}\approx 2\times 10^{16} GeV, MR1014M_{\text{R}}\approx 10^{14} GeV and Mlow103M_{\text{low}}\approx 10^{3} GeV, η0.19\eta\approx 0.19 is of the order of our expansion parameter λ0.22\lambda\approx 0.22 and ηN0.03\eta_{N}\approx 0.03. In terms of their λ\lambda-suppression, the resulting flavour structures of the low energy mass insertion parameters δ\delta read

δLLu(1λ4λ61λ51),δRRu(1λ4λ61λ51),δLRu(λ80λ70λ4λ60λ71),\displaystyle\delta^{u}_{LL}\sim\left(\begin{array}[]{ccc}1&\lambda^{4}&\lambda^{6}\\ \cdot&1&\lambda^{5}\\ \cdot&\cdot&1\end{array}\right),~~~\delta^{u}_{RR}\sim\left(\begin{array}[]{ccc}1&\lambda^{4}&\lambda^{6}\\ \cdot&1&\lambda^{5}\\ \cdot&\cdot&1\end{array}\right),~~~\delta^{u}_{LR}\sim\left(\begin{array}[]{ccc}\lambda^{8}&0&\lambda^{7}\\ 0&\lambda^{4}&\lambda^{6}\\ 0&\lambda^{7}&1\end{array}\right),~~~~ (2.43)
δLLd(1λ3λ41λ21),δRRd(1λ4λ41λ41),δLRd(λ6λ5λ5λ5λ4λ4λ6λ6λ2),\displaystyle\delta^{d}_{LL}\sim\left(\begin{array}[]{ccc}1&\lambda^{3}&\lambda^{4}\\ \cdot&1&\lambda^{2}\\ \cdot&\cdot&1\end{array}\right),~~~\delta^{d}_{RR}\sim\left(\begin{array}[]{ccc}1&\lambda^{4}&\lambda^{4}\\ \cdot&1&\lambda^{4}\\ \cdot&\cdot&1\end{array}\right),~~~\delta^{d}_{LR}\sim\left(\begin{array}[]{ccc}\lambda^{6}&\lambda^{5}&\lambda^{5}\\ \lambda^{5}&\lambda^{4}&\lambda^{4}\\ \lambda^{6}&\lambda^{6}&\lambda^{2}\end{array}\right),~~~~ (2.53)
δLLe(1λ4λ41λ41),δRRe(1λ3λ41λ21),δLRe(λ6λ5λ6λ5λ4λ6λ5λ4λ2).\displaystyle\delta^{e}_{LL}\sim\left(\begin{array}[]{ccc}1&\lambda^{4}&\lambda^{4}\\ \cdot&1&\lambda^{4}\\ \cdot&\cdot&1\end{array}\right),~~~\delta^{e}_{RR}\sim\left(\begin{array}[]{ccc}1&\lambda^{3}&\lambda^{4}\\ \cdot&1&\lambda^{2}\\ \cdot&\cdot&1\end{array}\right),~~~\delta^{e}_{LR}\sim\left(\begin{array}[]{ccc}\lambda^{6}&\lambda^{5}&\lambda^{6}\\ \lambda^{5}&\lambda^{4}&\lambda^{6}\\ \lambda^{5}&\lambda^{4}&\lambda^{2}\end{array}\right).~~~~ (2.63)

Appendix A provides the explicit expressions for each entry in terms of the parameters of the model.

3 Numerical analysis

3.1 Parameter range

Numerical results for the running quark and charged lepton masses as well as for the quark mixing angles at the GUT scale can be found in [25]. The matching conditions from the SM to the Minimal Supersymmetric Standard Model (MSSM), imposed at the SUSY scale, take the form

yu,c,tSM\displaystyle y_{u,c,t}^{\text{SM}} \displaystyle\approx yu,c,tMSSMsinβ¯,\displaystyle\,y_{u,c,t}^{\text{MSSM}}\sin\bar{\beta},
yd,sSM\displaystyle y_{d,s}^{\text{SM}} \displaystyle\approx (1+η¯q)yd,sMSSMcosβ¯,\displaystyle(1+\bar{\eta}_{q})\,y_{d,s}^{\text{MSSM}}\cos\bar{\beta},
ybSM\displaystyle y_{b}^{\text{SM}} \displaystyle\approx (1+η¯b)ybMSSMcosβ¯,\displaystyle(1+\bar{\eta}_{b})\,y_{b}^{\text{MSSM}}\cos\bar{\beta},
ye,μSM\displaystyle y_{e,\mu}^{\text{SM}} \displaystyle\approx (1+η¯l)ye,μMSSMcosβ¯,\displaystyle(1+\bar{\eta}_{l})\,y_{e,\mu}^{\text{MSSM}}\cos\bar{\beta},
yτSM\displaystyle y_{\tau}^{\text{SM}} \displaystyle\approx yτMSSMcosβ¯,\displaystyle y_{\tau}^{\text{MSSM}}\cos\bar{\beta}, (3.1)

for the singular values of the Yukawa matrices. Similarly, we have for the CKM mixing

θi3q,SM1+η¯q1+η¯bθi3q,MSSM,θ12q,SMθ12q,MSSM,δq,SMδq,MSSM.\displaystyle\theta^{q,\text{SM}}_{i3}\approx\frac{1+\bar{\eta}_{q}}{1+\bar{\eta}_{b}}\theta^{q,\text{MSSM}}_{i3},\qquad\theta^{q,\text{SM}}_{12}\approx\theta^{q,\text{MSSM}}_{12},\qquad\delta^{q,\text{SM}}\approx\delta^{q,\text{MSSM}}. (3.2)

Here

η¯q=ηqηl,η¯b=ηq+ηAηl,η¯l=ηlηl,\displaystyle\bar{\eta}_{q}=\eta_{q}-\eta_{l}^{\prime},\qquad\bar{\eta}_{b}=\eta_{q}^{\prime}+\eta_{A}-\eta_{l}^{\prime},\qquad\bar{\eta}_{l}=\eta_{l}-\eta_{l}^{\prime}\,, (3.3)

represent SUSY radiative threshold corrections that are parametrised by ηi=ϵitanβ\eta_{i}=\epsilon_{i}\,\tan\beta, with explicit expressions for ϵi\epsilon_{i} available in [26]. The unprimed η\eta parameters correspond to corrections to the first two generations, the primed ones to the third generation, and the one with index “AA” to a correction due to the soft SUSY breaking trilinear terms. The parameter β¯\bar{\beta} follows from the absorption of ηl\eta_{l}^{\prime} into β\beta,

cosβ¯(1+ηl)cosβ,sinβ¯sinβ,\displaystyle\cos\bar{\beta}\equiv(1+\eta_{l}^{\prime})\cos\beta,~~~~~\sin\bar{\beta}\approx\sin\beta, (3.4)

with the approximation being valid for tanβ5\tan\beta\gtrsim 5. In the limit where threshold effects for the charged leptons are neglected, tanβ¯\tan\bar{\beta} simply reduces to tanβ\tan\beta.

Our model predicts y^b,τ=ybλ2\hat{y}_{{b,\tau}}=y_{b}\,\lambda^{2}, where the hat indicates the diagonalised Yukawa sector at the GUT scale. As a consequence, very large values of tanβ\tan{\beta} are excluded, and we only study the parameter space in which tanβ[5,25]\tan{\beta}\in[5,25], keeping the value of yby_{b} below four. In order to obtain viable ranges for our Yukawa input parameters, we plot yu,c,t,by_{u,c,t,b}, (x~2/ys)2(\tilde{x}_{2}/y_{s})^{2} and (1+η¯l)ys(1+\bar{\eta}_{l})y_{s} against tanβ¯\tan\bar{\beta} using the results for the diagonalised Yukawa sector at the GUT scale provided in [25]. We remark that yby_{b}, ysy_{s} and x~2\tilde{x}_{2} are extracted from the lepton sector. We fit the resulting curves using the relative uncertainties σ(yu)/yu=31%\sigma(y_{u})/y_{u}=31\%, σ(yc)/yc=3.5%\sigma(y_{c})/y_{c}=3.5\%, σ(yt)/yt=10%\sigma(y_{t})/y_{t}=10\%, σ(yb)/yb=0.6%\sigma(y_{b})/y_{b}=0.6\%, see [25]. Concerning ysy_{s} and x~2\tilde{x}_{2}, we take σ(ys)/ys=10%\sigma(y_{s})/y_{s}=10\% and σ(x~2)/x~2=10%\sigma(\tilde{x}_{2})/\tilde{x}_{2}=10\%, allowing for higher order corrections to the mass ratios that would reduce the discrepancy between the values of x~2/ys\tilde{x}_{2}/y_{s} predicted from the lepton and the quark sectors and maximise the GUT scale value of (y^μy^d)/(y^sy^e)(\hat{y}_{\mu}\,\hat{y}_{d})/(\hat{y}_{s}\,\hat{y}_{e}). Due to the implementation of the Georgi-Jarlskog relation [27], it is equal to 9 in our model at LO, while its preferred range is 10.70.8+1.810.7^{+1.8}_{-0.8} [25], which is independent of threshold corrections and also not sensitive to a change of the SUSY scale.

We estimate the low energy Yukawa couplings using the leading logarithmic approximation as described in [1]. Clearly, the resulting low energy Yukawa matrices are only valid up to that approximation. Mindful of such limitations, we obtain

Y~lowu\displaystyle\tilde{Y}^{u}_{{\text{low}}} \displaystyle\approx Diag[(1+Ruy)yuλ8,(1+Ruy)ycλ4,(1+Rty)yt],\displaystyle\text{Diag}\,\Big{[}(1+R^{y}_{u})\,y_{u}\,\lambda^{8},(1+R^{y}_{u})\,y_{c}\,\lambda^{4},(1+R^{y}_{t})\,y_{t}\Big{]}, (3.5)
Y~lowd\displaystyle\tilde{Y}^{d}_{{\text{low}}} \displaystyle\approx Diag[(1+Rdy)x~22ysλ6,(1+Rdy)ysλ4,(1+Rby)ybλ2],\displaystyle\text{Diag}\,\Big{[}(1+R^{y}_{d})\frac{\tilde{x}_{2}^{2}}{y_{s}}\lambda^{6},(1+R^{y}_{d})\,y_{s}\,\lambda^{4},(1+R^{y}_{b})\,y_{b}\,\lambda^{2}\Big{]}, (3.6)
Y~lowe\displaystyle\tilde{Y}^{e}_{{\text{low}}} \displaystyle\approx Diag[(1+Rey)x~223ysλ6,(1+Rey)3ysλ4,(1+Rey)ybλ2],\displaystyle\text{Diag}\,\Big{[}(1+R^{y}_{e})\frac{\tilde{x}_{2}^{2}}{3\,y_{s}}\lambda^{6},(1+R^{y}_{e})3y_{s}\,\lambda^{4},(1+R^{y}_{e})\,y_{b}\,\lambda^{2}\Big{]}, (3.7)

where the corrections from the RG running are encoded in the parameters RfyR^{y}_{f}

Ruy\displaystyle R^{y}_{u} =\displaystyle= η(465gU23yt2)3ηNyD2,Rty=Ruy3ηyt2,\displaystyle\eta\left(\frac{46}{5}g_{U}^{2}-3y_{t}^{2}\right)-3\eta_{N}\,y_{D}^{2},\qquad R^{y}_{t}=R^{y}_{u}-3\,\eta\,y_{t}^{2}, (3.8)
Rdy\displaystyle R^{y}_{d} =\displaystyle= η445gU2,Rby=Rdyηyt2,Rey=η245gU2ηNyD2.\displaystyle\eta\frac{44}{5}g_{U}^{2},\qquad R^{y}_{b}=R^{y}_{d}-\eta\,y_{t}^{2},\qquad R^{y}_{e}=\eta\frac{24}{5}g_{U}^{2}-\eta_{N}\,y_{D}^{2}. (3.9)

Here, gU0.52g_{U}\approx\sqrt{0.52} denotes the universal gauge coupling constant at the GUT scale. Our scan produces the following values for the right-hand sides of Eq. (3.1)

Y~low11usinβ¯[3.4,6.9]×106,Y~low22usinβ¯[2.34,2.65]×103,Y~low33usinβ¯[0.77,0.89],\displaystyle\tilde{Y}^{u}_{\text{low}_{11}}\sin\bar{\beta}\in[3.4,6.9]\times 10^{-6}\!,~\tilde{Y}^{u}_{\text{low}_{22}}\sin\bar{\beta}\in[2.34,2.65]\times 10^{-3}\!,~\tilde{Y}^{u}_{\text{low}_{33}}\sin\bar{\beta}\in[0.77,0.89],
Y~low11dcosβ¯(1+η¯q)[0.9,1.6]×105,Y~low22dcosβ¯(1+η¯q)[2.2,3.5]×104,\displaystyle\tilde{Y}^{d}_{\text{low}_{11}}\cos\bar{\beta}(1+\bar{\eta}_{q})\in[0.9,1.6]\times 10^{-5},~~~~~\tilde{Y}^{d}_{\text{low}_{22}}\cos\bar{\beta}(1+\bar{\eta}_{q})\in[2.2,3.5]\times 10^{-4},
Y~low33dcosβ¯(1+η¯b)[1.17,1.6]×102,\displaystyle\tilde{Y}^{d}_{\text{low}_{33}}\cos\bar{\beta}(1+\bar{\eta}_{b})\in[1.17,1.6]\times 10^{-2},
Y~low11ecosβ¯(1+η¯l)[2.4,3.8]×106,Y~low22ecosβ¯(1+η¯l)[5.6,7.7]×104,\displaystyle\tilde{Y}^{e}_{\text{low}_{11}}\cos\bar{\beta}(1+\bar{\eta}_{l})\in[2.4,3.8]\times 10^{-6},~~~~~\tilde{Y}^{e}_{\text{low}_{22}}\cos\bar{\beta}(1+\bar{\eta}_{l})\in[5.6,7.7]\times 10^{-4},
Y~low33ecosβ¯[1.06,1.14]×102,\displaystyle\tilde{Y}^{e}_{\text{low}_{33}}\cos\bar{\beta}\in[1.06,1.14]\times 10^{-2}, (3.10)

which have to be compared to the SM values, taken from Table 2 of [25],

yuSM\displaystyle y_{u}^{\text{SM}} \displaystyle\in [3.40,7.60]×106,ycSM[2.69,3.20]×103,ytSM[0.78,0.88],\displaystyle[3.40,7.60]\times 10^{-6},~~~y_{c}^{\text{SM}}\in[2.69,3.20]\times 10^{-3},~~~y_{t}^{\text{SM}}\in[0.78,0.88], (3.11)
ydSM\displaystyle y_{d}^{\text{SM}} \displaystyle\in [1.15,1.56]×105,ysSM[2.29,2.84]×104,ybSM[1.21,1.42]×102,\displaystyle[1.15,1.56]\times 10^{-5},~~~y_{s}^{\text{SM}}\in[2.29,2.84]\times 10^{-4},~~~y_{b}^{\text{SM}}\in[1.21,1.42]\times 10^{-2},
yeSM\displaystyle y_{e}^{\text{SM}} \displaystyle\in [2.85,2.88]×106,yμSM[6.01,6.08]×104,yτSM[1.02,1.03]×102.\displaystyle[2.85,2.88]\times 10^{-6},~~~y_{\mu}^{\text{SM}}\in[6.01,6.08]\times 10^{-4},~~~y_{\tau}^{\text{SM}}\in[1.02,1.03]\times 10^{-2}.~~~~~~

The corresponding ranges of the order one input parameters of the Yukawa sector are listed in the first five rows of the first column of Table 1. All other coefficients that are not fixed by this fit, are scanned over the interval ±[0.5,2]\pm[0.5,2], with the following exceptions: we allow the absolute value of the Dirac neutrino Yukawa coupling yDy_{D} to be as small as 0.20.2 but not larger than 0.60.6, such that it does not exceed the maximum allowed value of yty_{t}. We also relax the lower bounds on |x~2a||\tilde{x}^{a}_{2}|, |as||a_{s}| and |au||a_{u}| and extend the upper bound on |ab||a_{b}|, such that they are allowed to get the same values as the corresponding Yukawa coefficients. The coefficients cHuc_{H_{u}} and cHdc_{H_{d}} of the soft Higgs mass squares,

mHuGUT2\displaystyle m^{2}_{{H_{u}}_{\text{GUT}}} =\displaystyle= cHum02,mHdGUT2=cHdm02,\displaystyle c_{H_{u}}\,m_{0}^{2},\qquad m^{2}_{{H_{d}}_{\text{GUT}}}=c_{H_{d}}\,m_{0}^{2}\ ,~~ (3.12)

are taken to be positive, just like the coefficients b01b_{01}, b02b_{02} and B0(N)B_{0}^{(N)} of the leading order diagonal elements of the soft scalar mass squared matrices. Phases are generally allowed to take arbitrary values within [0,2π][0,2\pi]. As mentioned earlier, tanβ\tan\beta is varied between 5 and 25. Concerning the CMSSM parameters, we define

α0\displaystyle\alpha_{0} \displaystyle\equiv A0/m0,x(M1/2/m0)2,\displaystyle A_{0}/m_{0},\qquad x\equiv(M_{1/2}/m_{0})^{2}, (3.13)

and scan over M1/2[0.3,5]M_{1/2}\in[0.3,5] TeV, m0[0.05,5]m_{0}\in[0.05,5] TeV as well as α0[3,3]\alpha_{0}\in[-3,3] in order to avoid charge and colour breaking minima.666In our numerical scan, we have checked that the potentials are always bounded from below and that the corresponding minima do not break charge or colour [28].

Yukawa terms Range Soft trilinear terms Range
x~2,ys\tilde{x}_{2},y_{s} [0.2,1.6][0.2,1.6] x~2a,as\tilde{x}^{a}_{2},a_{s} ±[0.2,2]\pm[0.2,2]
yby_{b} [0.7,3.8][0.7,3.8] aba_{b} ±[0.5,4]\pm[0.5,4]
yuy_{u} [0.3,0.6][0.3,0.6] aua_{u} ±[0.3,2]\pm[0.3,2]
ycy_{c} [0.5,0.6][0.5,0.6] aca_{c} ±[0.5,2]\pm[0.5,2]
yty_{t} [0.46,0.6][0.46,0.6] ata_{t}
yDy_{D} ±[0.2,0.6]\pm[0.2,0.6] αD\alpha_{D}
zifz^{f}_{i} ±[0.5,2]\pm[0.5,2] zifaz^{f_{a}}_{i}
Kähler metric Range Soft mass terms Range
k2,k3,k4,K3(N)k_{2},k_{3},k_{4},K_{3}^{(N)} ±[0.5,2]\pm[0.5,2] b2,b3,b4,B3(N)b_{2},b_{3},b_{4},B^{(N)}_{3} ±[0.5,2]\pm[0.5,2]
b01,b02,B0(N),cHu,cHdb_{01},b_{02},B^{(N)}_{0},c_{H_{u}},c_{H_{d}} [0.5,2][0.5,2]
SUSY masses Range SUSY ratios Range
M1/2M_{1/2} [0.3,5][0.3,5] TeV tanβ\tan\beta [5,25][5,25]
m0m_{0} [0.05,5][0.05,5] TeV α0\alpha_{0} [3,3][-3,3]
Table 1: Ranges of the input parameters used in our scan.

The μ\mu parameter, which we take as real, is given at the electroweak scale by the relation777The lack of any evidence for low energy supersymmetry requires a certain amount of cancellation between the terms of Eq. (3.14), see e.g. [29].

MZ22\displaystyle\frac{M_{Z}^{2}}{2} =\displaystyle= mHd2+Σdd(mHu2+Σuu)tβ2tβ21μ2,\displaystyle\frac{m_{H_{d}}^{2}+\Sigma^{d}_{d}-(m_{H_{u}}^{2}+\Sigma^{u}_{u})t_{\beta}^{2}}{t_{\beta}^{2}-1}-\mu^{2}, (3.14)

where MZM_{Z} denotes the ZZ boson mass [30]. Σuu\Sigma^{u}_{u} and Σdd\Sigma^{d}_{d} are radiative corrections, with the most important contributions coming from the stops

Σuu(t~1,2)\displaystyle\Sigma^{u}_{u}\left(\tilde{t}_{1,2}\right) =\displaystyle= 316π2F(mt~1,22)(Yt2gZ2At28gZ2(1423xW)Δtmt~22mt~12),\displaystyle\frac{3}{16\pi^{2}}F(m^{2}_{\tilde{t}_{1,2}})\left(Y_{t}^{2}-g_{Z}^{2}\mp\frac{A_{t}^{2}-8g_{Z}^{2}\left(\frac{1}{4}-\frac{2}{3}x_{W}\right)\Delta_{t}}{m^{2}_{\tilde{t}_{2}}-m^{2}_{\tilde{t}_{1}}}\right), (3.15)
Σdd(t~1,2)\displaystyle\Sigma^{d}_{d}\left(\tilde{t}_{1,2}\right) =\displaystyle= 316π2F(mt~1,22)(gZ2Yt2μ2+8gZ2(1423xW)Δtmt~22mt~12).\displaystyle\frac{3}{16\pi^{2}}F(m^{2}_{\tilde{t}_{1,2}})\left(g_{Z}^{2}\mp\frac{Y_{t}^{2}\mu^{2}+8g_{Z}^{2}\left(\frac{1}{4}-\frac{2}{3}x_{W}\right)\Delta_{t}}{m^{2}_{\tilde{t}_{2}}-m^{2}_{\tilde{t}_{1}}}\right). (3.16)

In these expressions, YtY_{t}, AtA_{t} and μ\mu denote the low energy Yukawa and trilinear couplings and the low energy μ\mu parameter, respectively. Moreover

mt~1,22\displaystyle m^{2}_{\tilde{t}_{1,2}} =\displaystyle= 12(mt~LL2+mt~RR24mt~LR2+(mt~LL2mt~RR2)2),\displaystyle\frac{1}{2}\left(m^{2}_{\tilde{t}_{LL}}+m^{2}_{\tilde{t}_{RR}}\mp\sqrt{4\,m^{2}_{\tilde{t}_{LR}}+(m^{2}_{\tilde{t}_{LL}}-m^{2}_{\tilde{t}_{RR}})^{2}}\right),
F(m2)\displaystyle F(m^{2}) =\displaystyle= m2(log(m2MS2)1),Δt=12(mt~LL2mt~RR2)+MZ2cos(2β)(1423xW),\displaystyle m^{2}\left(\log\left(\frac{m^{2}}{M_{S}^{2}}\right)-1\right)\!,~~~~~~\Delta_{t}=\frac{1}{2}\left(m^{2}_{\tilde{t}_{LL}}-m^{2}_{\tilde{t}_{RR}}\right)+M_{Z}^{2}\cos(2\beta)\left(\frac{1}{4}-\frac{2}{3}x_{W}\right)\!,
xW\displaystyle x_{W} =\displaystyle= sin2θW,gZ2=MZ24υ2,MS=mt~1mt~2,\displaystyle\sin^{2}\theta_{W},\qquad g_{Z}^{2}=\frac{M_{Z}^{2}}{4\upsilon^{2}},\qquad M_{S}=\sqrt{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}, (3.17)

with θW\theta_{W} denoting the Weinberg angle. mt~LL2m^{2}_{\tilde{t}_{LL}}, mt~RR2m^{2}_{\tilde{t}_{RR}} and mt~LR2m^{2}_{\tilde{t}_{LR}} are the low energy (33) elements of the squark mass matrices defined in Eq. (2.29). The so-determined μ\mu parameter can then be used to calculate the physical Higgs mass. Adopting the approximate formulas of Section 2.4 of [31], we demand that the resulting Higgs mass lies within the interval [110,135][110,135] GeV. Additionally, we impose cuts on the SUSY parameters from direct searches by requiring that the first and the second generation squark masses are larger than 1.41.4 TeV.

3.2 Estimates of the low energy mass insertion parameters

In this section, we analyse the predictions for the low energy mass insertion parameters δ\delta whose explicit expressions are given in Appendix A. Tables 2-6 provide naive expectations for the individual δ\deltas, where we take into account the λ\lambda-suppression and the main effects of the RG running, while setting any order one coefficients to one. Clearly, we still expect to see a spread within a few orders of magnitude due to the variation of the SUSY scale and the order one coefficients. The third columns of Tables 2-6 list existing experimental bounds. The full ranges of our δ\deltas arising from scanning over the input parameters, given in Table 1, are depicted in Figures 1-3.

3.2.1 Up-type quark sector

Parameter Naive expectation Exp. bound
|Im[(δLL,RRu)122]|\sqrt{|\mathrm{Im}[(\delta^{u}_{LL,RR})^{2}_{12}]|} 𝒪(sin(2θ2d)λ41+6.3x4×104sin(2θ2d))\mathcal{O}\left(\frac{\sqrt{\sin(2\theta^{d}_{2})}\lambda^{4}}{1+6.3\,x}\approx 4\times{10^{-4}}\sqrt{\sin(2\theta^{d}_{2})}\right)~~~~~~ 2.85×1022.85\times 10^{-2} [32]
(1.65×103)|LL=RR\left(1.65\times 10^{-3}\right)\!|_{{}_{LL=RR}}
|Im[(δLR,RLu)122]|\sqrt{|\mathrm{Im}[(\delta^{u}_{LR,RL})^{2}_{12}]|} 0 3.75×1033.75\times 10^{-3}[32]
|(δLLu)13||(\delta^{u}_{LL})_{13}| 𝒪(1+η(Rq1+6.5xyt2)1+6.5xλ62×105)\mathcal{O}\left(\frac{1+\eta\left(\frac{R_{q}}{1+6.5\,x}-y_{t}^{2}\right)}{1+6.5\,x}\lambda^{6}\approx 2\times 10^{-5}\right) 𝒪(101)\mathcal{O}(10^{-1}) [33]
|(δRRu)13||(\delta^{u}_{RR})_{13}| 𝒪(1+2η(Rq1+6.15xyt2)1+6.15xλ62×105)\mathcal{O}\left(\frac{1+2\eta\left(\frac{R_{q}}{1+6.15\,x}-y_{t}^{2}\right)}{1+6.15\,x}\lambda^{6}\approx 2\times 10^{-5}\right)
|(δLLu)23||(\delta^{u}_{LL})_{23}| 𝒪(1+η(Rq1+6.5xyt2)1+6.5xλ58×105)\mathcal{O}\left(\frac{1+\eta\left(\frac{R_{q}}{1+6.5\,x}-y_{t}^{2}\right)}{1+6.5\,x}\lambda^{5}\approx 8\times 10^{-5}\right)
|(δRRu)23||(\delta^{u}_{RR})_{23}| 𝒪(1+2η(Rq1+6.15xyt2)1+6.15xλ58×105)\mathcal{O}\left(\frac{1+2\eta\left(\frac{R_{q}}{1+6.15\,x}-y_{t}^{2}\right)}{1+6.15\,x}\lambda^{5}\approx 8\times 10^{-5}\right)
|(δLRu)13||(\delta^{u}_{LR})_{13}| 𝒪(α0υum02η(1+6.3x)λ7107)\mathcal{O}\left(\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}}\frac{2\,\eta}{(1+6.3\,x)}\lambda^{7}\approx 10^{-7}\right)
|(δLRu)23||(\delta^{u}_{LR})_{23}| 𝒪(α0υum02η(1+6.3x)λ65×107)\mathcal{O}\left(\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}}\frac{2\,\eta}{(1+6.3\,x)}\lambda^{6}\approx 5\times 10^{-7}\right) 𝒪(101)\mathcal{O}(10^{-1}) [34]
|(δRLu)13||(\delta^{u}_{RL})_{13}| 0
|(δRLu)23||(\delta^{u}_{RL})_{23}| 𝒪(α0υum01+η(46gU258yt2+Rq1+6.5x)1+6.3xλ75×107)\mathcal{O}\left(\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}}\frac{1+\eta\left(\frac{46\,g_{U}^{2}}{5}-8y_{t}^{2}+\frac{R_{q}}{1+6.5\,x}\right)}{1+6.3\,x}\lambda^{7}\approx 5\times 10^{-7}\right)
Table 2: The naive numerical expectations for the low energy up-type mass insertion parameters as extracted from our model (second column), to be compared with experimental bounds in the literature (third column). The full ranges of the δ\deltas are shown in Figure 1. Note that the (12), (21) and (31) δLRu\delta^{u}_{LR} parameters remain zero up to order λ8\lambda^{8}.

The strongest constraints on the up-type mass insertion parameters involve the (12) sector and stem from D0D¯0D^{0}-\bar{D}^{0} mixing. The SM contribution to this amplitude conserves CP to a good approximation and provides significant constraints on the imaginary parts of (δABu)12(\delta^{u}_{AB})_{12}, A,B=L,RA,B=L,R. These limits were derived in [32], assuming equal squark and gluino masses of 1 TeV. We quote them in the third column of Table 2, rescaled to masses of 1.5 TeV. The limits on the RRRR and RLRL parameters are identical to the LLLL and LRLR ones due to the LRL\leftrightarrow R symmetric form of the gluino-squark box diagram. The index LL=RRLL=RR refers to the assumption that (δLLu)12(δRRu)12(\delta^{u}_{LL})_{12}\approx(\delta^{u}_{RR})_{12}, as is the case in our model. In the second column of Table 2, we give a naive estimate for |Im[(δLLu)122]||Im[(δRRu)122]||Im[(δLLu)12(δRRu)12]|\sqrt{|\mathrm{Im}[(\delta^{u}_{LL})^{2}_{12}]|}\approx\sqrt{|\mathrm{Im}[(\delta^{u}_{RR})^{2}_{12}]|}\approx\sqrt{|\mathrm{Im}[(\delta^{u}_{LL})_{12}(\delta^{u}_{RR})_{12}]|}. For θ2d=π/2\theta^{d}_{2}=\pi/2, as suggested from maximising the Jarlskog invariant of Eq. (2.20), these quantities vanish to LO. Since |Im[(δLL,RRu)122]|\sqrt{|\mathrm{Im}[(\delta^{u}_{LL,RR})^{2}_{12}]|} is at most |(δLLu)12|\sim|(\delta^{u}_{LL})_{12}|, we only show the full range of the absolute value of that parameter in Figure 1, plotted against the corresponding GUT scale coefficient b~12\tilde{b}_{12}, defined in Eq. (A.1). This coefficient quantifies the mismatch between the Kähler metric and the soft mass matrix elements for the SU(5)SU(5) 𝟏𝟎{\bf{10}}-plets and can be as large as 6 when the associated parameters contribute constructively and receive their maximum values in the scan. The effects of the RG running are trivial and depend only on x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2}; for x1x\approx 1 and b~121\tilde{b}_{12}\approx 1, we estimate a value of around 4×1044\times 10^{-4}, shown by the blue dashed line in Figure 1. With increasing xx, we obtain even smaller values, as the RG suppression is increased. The red dotted line shows the experimental limit, adapted from [32] and valid for (δLLu)12(δRRu)12(\delta^{u}_{LL})_{12}\approx(\delta^{u}_{RR})_{12}.

The LLLL and RRRR parameters of the (i3)(i3) sector (i=1,2i=1,2) have GUT scale coefficients with the same range as the parameters of the (12) sector but a different RG suppression due to the milder running of the third generation sfermionic masses. This is represented by the factor ηRq\eta\,R_{q} appearing in Eq. (A.13), where η\eta and RqR_{q} are defined in Eqs. (2.33,A.7), respectively. Approximating these δ\deltas as shown in Table 2 and taking x1x\approx 1, Rq3yt2+1R_{q}\approx 3y_{t}^{2}+1 as well as yt0.5y_{t}\approx 0.5, we expect |(δLL,RRu)13|λ6|(\delta^{u}_{LL,RR})_{13}|\propto\lambda^{6} and |(δLL,RRu)23|λ5|(\delta^{u}_{LL,RR})_{23}|\propto\lambda^{5} to vary around 2×1052\times 10^{-5} and 8×1058\times 10^{-5}, respectively. The existing bounds on these variables from flavour changing effects are very weak, leaving them essentially unconstrained. BdB_{d} mixing can place a bound on |(δLLu)13||(\delta^{u}_{LL})_{13}| of the order of 10110^{-1} at most, as described in [33].

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
Refer to caption
Refer to caption
Figure 1: The low energy up-type mass insertion parameters plotted against their GUT scale coefficients, defined in Eqs. (A.1,A.2) [except for (δLRu)13,23(\delta^{u}_{LR})_{13,23} which are plotted against a coefficient multiplying the RG running contribution, cf. Eqs. (A.26,A)]. The blue dashed lines represent our naive numerical expectations according to the second column of Table 2, while the red dotted lines (when available) represent their experimental limits, shown in the third column of Table 2. Since (δRRu)12(δLLu)12(\delta^{u}_{RR})_{12}\approx(\delta^{u}_{LL})_{12}, only the LLLL parameter is plotted. The plots have been produced by scanning over the input parameters listed in Table 1.

The parameters of LRLR type have a slightly different behaviour. They are proportional to the factor (α0υu/m0)(\alpha_{0}\,\upsilon_{u}/m_{0}) which, for |A0|>0.5|A_{0}|>0.5 TeV, can cause an extra suppression of up to 𝒪(103)\mathcal{O}(10^{-3}). Because of this factor, the LRLR parameters show a dependence on the mass scale, even at the GUT scale. (δLRf)ij(\delta^{f}_{LR})_{ij} are also generally proportional to the mismatch of the ratios of soft trilinear over Yukawa sector coefficients for the ii-th and the jj-th generation and vanish, barring RG induced corrections, if those are aligned. To estimate the magnitude of these parameters in Table 2, we take |α0|υu/m0101|\alpha_{0}|\,\upsilon_{u}/m_{0}\approx 10^{-1}, x1x\approx 1, yt0.5y_{t}\approx 0.5 and Rq1.75R_{q}\approx 1.75, while their full ranges are shown in Figure 1. The (δLRu)13(\delta^{u}_{LR})_{13} parameter was zero at the GUT scale but receives a contribution through the RG running of the order of ηλ7\eta\,\lambda^{7}. Similarly, (δLRu)23(\delta^{u}_{LR})_{23}, which was suppressed by λ7\lambda^{7} at the GUT scale, receives a similar running contribution which comes in at an even lower order, namely ηλ6\eta\,\lambda^{6}. Such an effect is not found in any other δ\delta parameter. Finally, we remark that (δLR,RLu)12(\delta^{u}_{LR,RL})_{12} as well as (δRLu)13(\delta^{u}_{RL})_{13} are zero up to order λ8\lambda^{8}, where we truncate our expansion.

The limits on the LRLR parameters of the (i3)(i3) sector (i=1,2)i=1,2) originate mainly from the requirement that the potential be bounded from below with a vacuum that does not break charge or colour [28]. We have already constrained the trilinear parameters accordingly and do not comment on those effects any further. Other bounds on the LRLR off-diagonal parameters can be deduced by demanding that the supersymmetric radiative corrections to the CKM matrix elements do not exceed their experimental values [35]. The limit for |(δLRu)23||(\delta^{u}_{LR})_{23}| quoted in Table 2 has been obtained in [34] by considering chargino loop contributions to bsl+lb\to sl^{+}l^{-}. In our model, all up-type mass insertion parameters of the LRLR type turn out to be safely below any current bound.

3.2.2 Down-type quark sector

Parameter Naive expectation Exp. bound
|Re[(δLLd)122]|\sqrt{\left|\mathrm{Re}\left[(\delta^{d}_{LL})^{2}_{12}\right]\right|} 𝒪(11+6.5xλ32×103)\mathcal{O}\left(\frac{1}{1+6.5\,x}\lambda^{3}\approx 2\times 10^{-3}\right) [6.6×102,[6.6\times 10^{-2},
|Re[(δRRd)122]|\sqrt{\left|\mathrm{Re}\left[(\delta^{d}_{RR})^{2}_{12}\right]\right|} 𝒪(cos(2θ2d)1+6.1xλ44×104cos(2θ2d))\mathcal{O}\left(\frac{\sqrt{\cos(2\theta^{d}_{2})}}{1+6.1\,x}\lambda^{4}\approx 4\times 10^{-4}\sqrt{\cos(2\theta^{d}_{2})}\right) 3.3×101]3.3\times 10^{-1}]
|Im[(δLLd)122]|\sqrt{\left|\mathrm{Im}\left[(\delta^{d}_{LL})^{2}_{12}\right]\right|} 𝒪(sin(θ2d)1+6.5xλ7/27×104sin(θ2d))\mathcal{O}\left(\frac{\sqrt{\sin(\theta^{d}_{2})}}{1+6.5\,x}\lambda^{7/2}\approx 7\times 10^{-4}\sqrt{\sin(\theta^{d}_{2})}\right) [8.7×103,[8.7\times 10^{-3},
|Im[(δRRd)122]|\sqrt{\left|\mathrm{Im}\left[(\delta^{d}_{RR})^{2}_{12}\right]\right|} 𝒪(sin(2θ2d)1+6.1xλ44×104sin(2θ2d))\mathcal{O}\left(\frac{\sqrt{\sin(2\theta^{d}_{2})}}{1+6.1\,x}\lambda^{4}\approx 4\times 10^{-4}\sqrt{\sin(2\theta^{d}_{2})}\right) 4.2×102]4.2\times 10^{-2}]
|Re[(δLR(RL)d)122]|\sqrt{\left|\mathrm{Re}\left[(\delta^{d}_{LR(RL)})^{2}_{12}\right]\right|} 𝒪(α0υdm01+η44gU251+6.3xλ5×\mathcal{O}\Big{(}\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\,\frac{44\,g_{U}^{2}}{5}}{1+6.3\,x}\lambda^{5}\times [7.8,12]×103[7.8,12]\times 10^{-3}
|Im[(δLR(RL)d)12]|\left|\mathrm{Im}\left[(\delta^{d}_{LR(RL)})_{12}\right]\right| Re(Im)[f(θ2x~aθ2x~,θsaθsy)]7×107)\mathrm{Re}(\mathrm{Im})\left[f(\theta^{\tilde{x}_{a}}_{2}-\theta^{\tilde{x}}_{2},\theta^{a}_{s}-\theta^{y}_{s})\right]\approx 7\times 10^{-7}\Big{)} [1,5.7]×104[1,5.7]\times 10^{-4}
Table 3: The naive expectation for the ranges of (δABd)12(\delta^{d}_{AB})_{12}, A,B=L,RA,B=L,R, as extracted from our model (second column), to be compared with experimental bounds from [36] for mq~1.5m_{\tilde{q}}\approx 1.5 TeV and (mg~/mq~)2[0.3,4](m_{\tilde{g}}/m_{\tilde{q}})^{2}\in[0.3,4] (third column). The full ranges of these δ\deltas as produced in our scan are shown in Figure 2.

We first consider the (12) elements of the down-type mass insertion parameters (δABd)12(\delta^{d}_{AB})_{12}, where A,B=L,RA,B=L,R. The corresponding bounds are derived from the results of [36] which we have rescaled to mq~1.5m_{\tilde{q}}\approx 1.5 TeV and (mg~/mq~)2[0.3,4](m_{\tilde{g}}/m_{\tilde{q}})^{2}\in[0.3,4]. These bounds are summarised in the third column of Table 3 and have been extracted using observables related to Kaon mixing. They are given separately for the real and imaginary parts due to a relative difference of an order of magnitude.

In our model, (δLLd)12λ3(\delta^{d}_{LL})_{{12}}\sim\lambda^{3} is real at LO, while the next-to-leading order (NLO) contribution is a linear combination of eiθ2de^{-i\theta^{d}_{2}} and cos(4θ2d+θ3d)\cos(4\theta^{d}_{2}+\theta^{d}_{3}). Therefore, |Im[(δLLd)12NLO2]|\sqrt{\left|\mathrm{Im}\left[(\delta^{d}_{LL})^{2}_{{12}_{\text{NLO}}}\right]\right|} is proportional to sin(θ2d)λ7/2\sqrt{\sin(\theta^{d}_{2})}\lambda^{7/2}. Setting θ2d=π/2\theta^{d}_{2}=\pi/2, i.e. the value preferred by the Jarlskog invariant JCPqJ^{q}_{CP}, we expect Im[(δLLd)12NLO2]\mathrm{Im}\left[(\delta^{d}_{LL})^{2}_{{12}_{\text{NLO}}}\right] to take its maximum value. In Figure 2 we only plot the absolute value of this mass insertion parameter versus its GUT scale coefficient B~12\tilde{B}_{12}, see Eq. (A.1), which can take values between zero and twelve. Our naive numerical estimate of |(δLLd)12||(\delta^{d}_{LL})_{12}|, approximated as shown in the second column of Table 3, is of the order of 10310^{-3} for x1x\approx 1, visualised by the blue dashed line in Figure 2. Since the experimental limits are given as ranges, we depict them by the red shaded region.

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
Refer to caption
Refer to caption
Refer to caption
Figure 2: The low energy down-type mass insertion parameters (δABd)ij(\delta^{d}_{AB})_{ij}, A,B=L,RA,B=L,R, i=1,2,3i=1,2,3 plotted against their GUT scale coefficients, defined in Eqs. (A.1,A.2). The blue dashed lines represent our naive numerical expectation according to the second columns of Tables 3-5. The red shaded areas cover the parameter space bounded by the limits shown in the third column of the corresponding tables, with the red dotted lines denoting the weakest limit in each case. The absolute values of δRRd\delta^{d}_{RR} are equal in the (12),(23) and (13) sectors and also |(δLRd)12|=|(δRLd)12|=|(δLRd)13||(\delta^{d}_{LR})_{12}|=|(\delta^{d}_{RL})_{12}|=|(\delta^{d}_{LR})_{13}|. We therefore only show the bounds stemming from the (12) sector as they are the strongest ones. All plots have been produced by scanning over the input parameters shown in Table 1.

The parameter (δRRd)12(\delta^{d}_{RR})_{12} is proportional to eiθ2de^{i\theta^{d}_{2}}, so that |Im[(δRRd)122]|\sqrt{\left|\mathrm{Im}\left[(\delta^{d}_{RR})^{2}_{12}\right]\right|} vanishes for θ2d=π/2\theta^{d}_{2}=\pi/2, while the corresponding real part is maximised. The RG suppression is again trivial, only depending on xx, while the GUT scale δ\delta parameter is proportional to R~12=(B3K3)\tilde{R}_{12}=(B_{3}-K_{3}), see Eq. (A.1). When B3=K3=2B_{3}=-K_{3}=2 and x1x\ll 1, the absolute value of the mass insertion reaches its maximum of 10210^{-2}, as can be seen in the associated plot in Figure 2. On the other hand, for B3=0.5B_{3}=0.5, K3=1K_{3}=1 and x1x\gg 1, it can scale down to about 10610^{-6}. Note that |(δRRd)12|=|(δRRd)23|=|(δRRd)13||(\delta^{d}_{RR})_{12}|=|(\delta^{d}_{RR})_{23}|=|(\delta^{d}_{RR})_{13}|, as can be seen in Eqs. (A.32,A.33).

The mass insertion parameters (δLRd)12=(δRLd)12=(δLRd)13(\delta^{d}_{LR})_{12}=-(\delta^{d}_{RL})_{12}=(\delta^{d}_{LR})_{13} receive an extra suppression from the factor α0υd/m0\alpha_{0}\,\upsilon_{d}/m_{0}, for which we use the value of 5×1035\times 10^{-3} in our naive numerical estimates. Then, for x1x\approx 1, we expect these δ\delta parameters to vary around 7×1077\times 10^{-7}, see the last two rows of Table 3. As can be seen in Figure 2, our model predictions lie well below the limits. Furthermore, if the Yukawa and soft trilinear phase structures are aligned, the phases within a~12d\tilde{a}^{d}_{12} cancel and (δLRd)12(\delta^{d}_{LR})_{12} becomes real at the given order in λ\lambda.

As parts of our parameter space place the down-type mass insertion parameter |(δLLd)12||(\delta^{d}_{LL})_{12}| within a region possibly excluded by Kaon mixing observables, we study the relevant contributions in Section 4 in more detail. Due to additional strong constraints on the product of LLLL and RRRR mass insertion parameters, we see that actually a large fraction of the parameter space is excluded.

Parameter Naive expectation Exp. bound
|(δLLd)23||(\delta^{d}_{LL})_{23}| 𝒪(2ηRq1+6.5xλ2|b01=b025×103)\mathcal{O}\left(\frac{2\eta\,R_{q}}{1+6.5\,x}\lambda^{2}|_{b_{01}=b_{02}}\approx 5\times 10^{-3}\right) [6×102,8×101][6\times 10^{-2},8\times 10^{-1}]
|(δRRd)23||(\delta^{d}_{RR})_{23}| 𝒪(11+6.1xλ44×104)\mathcal{O}\left(\frac{1}{1+6.1\,x}\lambda^{4}\approx 4\times 10^{-4}\right) [6.3,9.7]×101[6.3,9.7]\times 10^{-1}
|(δLRd)23||(\delta^{d}_{LR})_{23}| 𝒪(α0υdm01+η(44gU25+2atyt)1+6.3xλ45×106)\mathcal{O}\left(\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\left(\frac{44\,g_{U}^{2}}{5}+2a_{t}\,y_{t}\right)}{1+6.3\,x}\lambda^{4}\approx 5\times 10^{-6}\right) [7×103,2×101][7\times 10^{-3},2\times 10^{-1}]
|(δRLd)23||(\delta^{d}_{RL})_{23}| 𝒪(α0υdm01+η(44gU25+2atyt+Rq1+6.5x)1+6.3xλ63×107)\mathcal{O}\left(\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\left(\frac{44\,g_{U}^{2}}{5}+2a_{t}\,y_{t}+\frac{R_{q}}{1+6.5\,x}\right)}{1+6.3\,x}\lambda^{6}\approx 3\times 10^{-7}\right) [2,6]×102[2,6]\times 10^{-2}
Table 4: The naive expectation for the ranges of (δABd)23(\delta^{d}_{AB})_{23}, A,B=L,RA,B=L,R, as extracted from our model (second column), to be compared with experimental bounds from [37] (third column). The full ranges of each δ\delta parameter, produced by scanning over the input parameters as shown in Table 1, are plotted in Figure 2.

The bounds on (δABd)23(\delta^{d}_{AB})_{23}, A,B=L,RA,B=L,R are related to bsb\to s transitions. They are taken from [37] and were derived by demanding that the contribution of each individual mass insertion parameter to the flavour observables BR(BXsγ)\text{BR}(B\to X_{s}\gamma), BR(Bsμ+μ)\text{BR}(B_{s}\to\mu^{+}\mu^{-}) and ΔMBs\Delta M_{B_{s}} does not exceed the current experimental limits. The analysis was performed for six representative points of the MSSM parameter space which are compatible with LHC SUSY and Higgs searches as well as an explanation of the discrepancy of (g2)μ(g-2)_{\mu} from its SM value in terms of one-loop SUSY contributions from charginos and neutralinos. We present the extracted bounds in the third column of Table 4, where the intervals arise due to the dependence on the SUSY spectra. We note that, for simplicity, all δ\deltas were assumed to be real in [37].

At the GUT scale, the parameter (δLLd)23λ2(\delta^{d}_{LL})_{23}\sim\lambda^{2} is proportional to (b01b02)(b_{01}-b_{02}); it can therefore vanish at that order if b02b01b_{02}\to b_{01}. In that case, it would still receive a non-zero contribution through the running, as can be seen in Eq. (A.31), through the factor RqR_{q}, defined in Eq. (A.7). To see this effect, we expand (δLLd)23(\delta^{d}_{LL})_{23} to first order in the running parameter η\eta, defined in Eq. (2.33), taking the limit b02b01b_{02}\to b_{01}. Then, for Rq3yt2+1R_{q}\approx 3y_{t}^{2}+1, yt0.5y_{t}\approx 0.5 and x1x\approx 1, we expect the absolute value of (δLLd)23(\delta^{d}_{LL})_{23} to vary around 5×1035\times 10^{-3} for B~23b01b020\tilde{B}_{23}\propto b_{01}-b_{02}\to 0, as shown by the blue dashed line in Figure 2. The spread towards smaller values of (δLLd)23(\delta^{d}_{LL})_{23} as B~23\tilde{B}_{23} deviates from zero, is mainly due to the parameter space where b01b02b_{01}-b_{02} is negative, thereby partly cancelling the RqR_{q} contribution. As can be seen in Figure 2, all generated points lie below the limits of the corresponding (23) sector.

Parameter Naive expectation Exp. bound
|(δLLd)13||(\delta^{d}_{LL})_{13}| 𝒪(2ηRq1+6.5xλ4|b01=b022×104)\mathcal{O}\left(\frac{2\eta\,R_{q}}{1+6.5\,x}\lambda^{4}|_{b_{01}=b_{02}}\approx 2\times 10^{-4}\right) [1.2,14]×101[1.2,14]\times 10^{-1}
|(δRRd)13||(\delta^{d}_{RR})_{13}| 𝒪(11+6.1xλ44×104)\mathcal{O}\left(\frac{1}{1+6.1\,x}\lambda^{4}\approx 4\times 10^{-4}\right)
|(δLRd)13||(\delta^{d}_{LR})_{13}| 𝒪(α0υdm01+η44gU251+6.3xλ57×107)\mathcal{O}\left(\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\frac{44\,g_{U}^{2}}{5}}{1+6.3\,x}\lambda^{5}\approx 7\times 10^{-7}\right) [6,9]×102[6,9]\times 10^{-2}
|(δRLd)13||(\delta^{d}_{RL})_{13}| 𝒪(α0υdm01+η(44gU25+Rq1+6.5xyt2)1+6.3xλ62×107)\mathcal{O}\left(\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\left(\frac{44\,g_{U}^{2}}{5}+\frac{R_{q}}{1+6.5\,x}-y_{t}^{2}\right)}{1+6.3\,x}\lambda^{6}\approx 2\times 10^{-7}\right)
Table 5: The naive expectation for the ranges of (δABd)13(\delta^{d}_{AB})_{13}, A,B=L,RA,B=L,R, as extracted from our model (second column), to be compared with experimental bounds from [36] for mq~1m_{\tilde{q}}\approx 1 TeV and (mg~/mq~)2[0.25,4](m_{\tilde{g}}/m_{\tilde{q}})^{2}\in[0.25,4] (third column). The full ranges of the δ\deltas as produced in our scan are shown in Figure 2.

The experimental bounds for (δABd)13(\delta^{d}_{AB})_{13} are taken from [36], where they were extracted from BdB_{d} mixing related observables and given in terms of |Re[δABd]|{|\mathrm{Re}\left[\delta^{d}_{AB}\right]|} and |Im[δABd]|{|\mathrm{Im}\left[\delta^{d}_{AB}\right]|}. Their orders of magnitude are at most of the same order as |δABd||\delta^{d}_{AB}|, and for mq~1m_{\tilde{q}}\approx 1 TeV and (mg~/mq~)2[0.25,4](m_{\tilde{g}}/m_{\tilde{q}})^{2}\in[0.25,4] they are summarised in the third column of Table 5. The limits for the RRRR and RLRL type δ\deltas are equal to the LLLL and LRLR type ones, respectively, as the gluino contribution to the box diagram for meson mixing is symmetric under LRL\leftrightarrow R.

In our model, we expect |(δLLd)13||(\delta^{d}_{LL})_{13}| to have a similar behaviour as |(δLLd)23||(\delta^{d}_{LL})_{23}| but with an extra suppression of λ2\lambda^{2}. Furthermore, |(δLRd)23||(\delta^{d}_{LR})_{23}| mimics |(δLRd)12|=|(δRLd)12|=|(δLRd)13||(\delta^{d}_{LR})_{12}|=|(\delta^{d}_{RL})_{12}|=|(\delta^{d}_{LR})_{13}| with an extra enhancement factor of λ1\lambda^{-1}. The RLRL parameters (13) and (23) sectors are of the same order in λ\lambda and should therefore have a similar numerical range. All (13) sector mass insertion parameters δABd\delta^{d}_{AB} lie below the limits set by BdB_{d} mixing, as can be seen in Figure 2.

3.2.3 Charged lepton sector

Parameter Naive expectation Exp. bound
|(δLLe)12||(\delta^{e}_{LL})_{12}| 𝒪(2RlηN1+0.5xλ4|B3=K32×104)\mathcal{O}\left(\frac{2\,R_{l}\eta_{N}}{1+0.5\,x}\lambda^{4}|_{B_{3}=K_{3}}\approx 2\times 10^{-4}\right) [1.5,60]×105[1.5,60]\times 10^{-5}
|(δLLe)23,13||(\delta^{e}_{LL})_{23,13}| [0.7,35]×102[0.7,35]\times 10^{-2}
|(δRRe)12||(\delta^{e}_{RR})_{12}| 𝒪(λ31+0.15x102)\mathcal{O}\left(\frac{\lambda^{3}}{1+0.15\,x}\approx 10^{-2}\right) [0.35,25]×103[0.35,25]\times 10^{-3}
|(δRRe)23||(\delta^{e}_{RR})_{23}| 𝒪(λ21+0.15x4×102)\mathcal{O}\left(\frac{\lambda^{2}}{1+0.15\,x}\approx 4\times 10^{-2}\right) [2,10]×101[2,10]\times 10^{-1}
|(δRRe)13||(\delta^{e}_{RR})_{13}| 𝒪(λ41+0.15x2×103)\mathcal{O}\left(\frac{\lambda^{4}}{1+0.15\,x}\approx 2\times{10^{-3}}\right)
|(δLR(RL)e)12||(\delta^{e}_{LR(RL)})_{12}| 𝒪(α0υdm01+η24gU25+ηN(Rl1+0.5xyD2)1+0.3xλ53×106)\mathcal{O}\Big{(}\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\frac{24g_{U}^{2}}{5}+\eta_{N}\left(\frac{R_{l}}{1+0.5\,x}-y_{D}^{2}\right)}{1+0.3\,x}\lambda^{5}\approx 3\times 10^{-6}\Big{)} [1.2,22]×106[1.2,22]\times 10^{-6}
|(δRLe)13||(\delta^{e}_{RL})_{13}| [1,22]×102[1,22]\times 10^{-2}
|(δLRe)13||(\delta^{e}_{LR})_{13}| 𝒪(α0υdm01+η24gU25+ηN(Rl1+0.5xyD2)1+0.3xλ68×107)\mathcal{O}\Big{(}\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\frac{24g_{U}^{2}}{5}+\eta_{N}\left(\frac{R_{l}}{1+0.5\,x}-y_{D}^{2}\right)}{1+0.3\,x}\lambda^{6}\approx 8\times 10^{-7}\Big{)}
|(δLRe)23||(\delta^{e}_{LR})_{23}|
|(δRLe)23||(\delta^{e}_{RL})_{23}| 𝒪(α0υdm01+η24gU25+ηN(Rl1+0.5xyD2)1+0.3xλ4105)\mathcal{O}\Big{(}\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}}\frac{1+\eta\frac{24g_{U}^{2}}{5}+\eta_{N}\left(\frac{R_{l}}{1+0.5\,x}-y_{D}^{2}\right)}{1+0.3\,x}\lambda^{4}\approx 10^{-5}\Big{)}
Table 6: The naive expectation for the ranges of (δABe)ij(\delta^{e}_{AB})_{ij}, A,B=L,RA,B=L,R, as extracted from our model (second column), to be compared with experimental bounds from [38] (third column). The full ranges of the δ\delta parameters produced in our scan are shown in Figure 3.

The bounds on the mass insertion parameters (δABe)ij(\delta^{e}_{AB})_{ij}, A,B=L,RA,B=L,R, of the charged lepton sector are taken from [38]. They were derived by studying radiative, leptonic and semileptonic LFV decays as well as μe\mu\to e conversion in heavy nuclei. The analysis was performed for six representative points in the MSSM parameter space, which are in agreement with LHC SUSY and Higgs searches as well as data on (g2)μ(g-2)_{\mu}. Moreover, four additional, more general two-dimensional scenarios, characterised by universal squark and slepton mass scales, were considered in [38]. The derived limits vary within an order of magnitude in all cases and are summarised in the third column of Table 6. We note that all δ\deltas were assumed to be real in [38] for simplicity.

At the GUT scale, the mass insertion parameter (δLLe)12λ4(\delta^{e}_{LL})_{12}\sim\lambda^{4} is proportional to R~12=B3K3\tilde{R}_{12}=B_{3}-K_{3}. Its absolute value is equal to |(δRRd)12||(\delta^{d}_{RR})_{12}| due to the SU(5)SU(5) framework. However, the parameter of the lepton sector, given in Eq. (A.41), receives large RG corrections which encode seesaw effects. At the low energy scale, it is non-zero even for B3=K3B_{3}=K_{3}, due to the term proportional to the small parameter ηN\eta_{N} which is defined in Eq. (2.33) and originates from the running between the GUT scale and the scale of the right-handed neutrinos. In the second column of Table 6, we estimate this effect by considering B3=K3B_{3}=K_{3}. We then expand to first order in ηN\eta_{N} and consider RlRlR_{l}\approx R_{l}^{\prime}, where RlR_{l} and RlR_{l}^{\prime} are defined in Eqs. (A.8,A.9). For x1x\approx 1, Rl3yD2+1R_{l}\approx 3y_{D}^{2}+1 and yD0.5y_{D}\approx 0.5, we expect the low energy |(δLLe)12||(\delta^{e}_{LL})_{12}| to vary around 2×1042\times 10^{-4}. However, the non-trivial expression of E~12\tilde{E}_{12}, cf. Eqs. (A.41,A.54), creates a spread of about two orders of magnitude around this value. As |R~12||\tilde{R}_{12}| increases, the mass insertion parameter lies above the limits given in Table 6. As can be seen from Figure 3, the non-observation of μeγ\mu\to e\gamma places stronger constraints on the down-type quark δ\deltas than the direct bounds from the quark sector. Analogous to the down-type RRRR parameters, the absolute values of the (12), (23) and (13) lepton LLLL parameters are identical, see Eqs. (A.41,A.42).

[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
[Uncaptioned image]
Refer to caption
Refer to caption
Refer to caption
Figure 3: The low energy lepton mass insertion parameters (δABe)ij(\delta^{e}_{AB})_{ij}, A,B=L,RA,B=L,R, plotted against the down-type δ\deltas to which they are related via the SU(5)SU(5) framework. The dashed lines represent their GUT scale relations, while the red shaded areas denote experimental limits on the parameter space according to the third column of Tables 3-6. Scanning over the input parameters within the ranges shown in Table 1, we observe that in particular |(δLLe)12||(\delta^{e}_{LL})_{12}| exceeds its limit for much of our parameter space. Note that |(δLLe)12|=|(δLLe)23|=|(δLLe)13||(\delta^{e}_{LL})_{12}|=|(\delta^{e}_{LL})_{23}|=|(\delta^{e}_{LL})_{13}| and |(δRLe)12|=|(δLRe)12|=|(δRLe)13||(\delta^{e}_{RL})_{12}|=|(\delta^{e}_{LR})_{12}|=|(\delta^{e}_{RL})_{13}|.

Similarly, at the GUT scale, the absolute values of the RRRR parameters in the lepton sector are equal to the LLLL ones of the down-type sector times the Georgi-Jarlskog factor of 1/31/3. For the (12) δ\deltas, the RG running effects are trivial, consisting only of a suppression through xx, which is milder in the lepton sector where the numerical prefactor of xx is 0.150.15, as compared to a factor of 6.56.5 in the quark one. For the (13) and (23) parameters, the non-trivial running effects in the quark sector are obvious in Figure 3, where we see that even though |(δLLd)23,13||(\delta^{d}_{LL})_{23,13}| can get very small for negative b01b02b_{01}-b_{02}, |(δRRe)23,13||(\delta^{e}_{RR})_{23,13}| can only receive such small values when b01b02b_{01}\to b_{02}, see e.g. Eqs. (A.30,A.44).

Finally, the variation of the LRLR parameters can be understood in an analogous way to the one described in the quark sector. |(δLRe)ijGUT|=|(δRLd)ijGUT||(\delta^{e}_{LR})_{{ij}_{\text{GUT}}}|=|(\delta^{d}_{RL})_{{ij}_{\text{GUT}}}|, with the exception of the (23) parameters which are not equal due to a term which involves a H45¯H_{\bar{45}}, thereby receiving an extra factor of 9 for the leptons, see Eqs. (A.40,A.52) together with Eq. (A.2). As in the down-type sector, |(δRLe)12|=|(δLRe)12|=|(δRLe)13||(\delta^{e}_{RL})_{12}|=|(\delta^{e}_{LR})_{12}|=|(\delta^{e}_{RL})_{13}| and we only show the (12) parameter in Figure 3 which features the strongest experimental constraint.

4 Phenomenological implications

In the preceding section, we found that parts of the parameter space spanned by the (12) mass insertion parameters of the down-type and charged lepton sector are excluded due to experimental limits set by μeγ\mu\to e\gamma and Kaon mixing observables. The corresponding bounds are available in the literature and their derivation is highly dependent on the assumed SUSY mass spectra. Possible interference effects between contributions from multiple δ\delta parameters to a given observable can additionally have significant effects. These are usually ignored when setting “model independent” limits on mass insertion parameters.

In this section, we therefore investigate the phenomenological implications of the deviations of our model from MFV. In particular, we focus on the predictions for BR(μeγ)BR(\mu\to e\gamma) and ϵK\epsilon_{K}. We also scrutinise whether the phase structure of our model can survive the strong limits set by electric dipole moments. Since the analysis in [37], which provides the limits on (δABd)23(\delta^{d}_{AB})_{23}, assumes real parameters throughout, we also study how our model contributes to the time-dependent CP asymmetry associated with the decay BsJ/ψϕB_{s}\to J/\psi\phi. For completeness, we check that the limits set by the decay BdJ/ψKSB_{d}\to J/\psi K_{S} and the mass differences ΔMBs,d\Delta M_{B_{s,d}} are satisfied. Finally, we also consider the branching ratios of bsγb\to s\gamma and Bs,dμ+μB_{s,d}\to\mu^{+}\mu^{-}

Adopting the leading logarithmic approximation, the low energy gaugino masses [39]

Mi\displaystyle M_{i} =\displaystyle= gi2gU2M1/2M1/21+2ηgU2βi,i=1,2,3,\displaystyle\frac{g^{2}_{i}}{g^{2}_{U}}M_{1/2}\approx\frac{M_{1/2}}{1+2\,\eta\,g_{U}^{2}\,\beta_{i}},\qquad i=1,2,3, (4.1)

with β1=33/5\beta_{1}={33}/{5}, β2=1\beta_{2}=1 and β3=3\beta_{3}=-3, are given by

M10.43M1/2,M20.83M1/2,M32.53M1/2.\displaystyle M_{1}\approx 0.43\,M_{1/2},\quad~~M_{2}\approx 0.83\,M_{1/2},\quad~~M_{3}\approx 2.53\,M_{1/2}. (4.2)

4.1 Electron EDM

The current experimental limit for the electric dipole moment of the electron stems from the ACME collaboration [40] and is given by

|de/e|8.7×1029cm4.41×1015GeV1.|d_{e}/e|~\lesssim~8.7\times 10^{-29}\,\text{cm}~\approx 4.41~\times 10^{-15}\,\text{GeV}^{-1}. (4.3)

This tiny value poses a strong constraint on the phases of any model. The supersymmetric contributions depend on the mass insertion parameters as follows [41]888The corresponding expression in [15] also includes triple mass insertions of type (LR)(RR)(RR)(LR)(RR)(RR) and (LL)(LL)(LR)(LL)(LL)(LR). In our model, these give suppressed contributions to de/ed_{e}/e of order λ11\lambda^{11} and λ13\lambda^{13}, respectively, which can be safely neglected.

dee\displaystyle\frac{d_{e}}{e} =\displaystyle= α8πcos2θW0.43xm03me~LLIm[(δLRe)11CBme~RR+\displaystyle\frac{\alpha}{8\pi\cos^{2}\theta_{W}}0.43\frac{\sqrt{x}}{~~m_{0}^{3}}\,m_{\tilde{e}_{LL}}\mathrm{Im}\Big{[}-(\delta^{e}_{LR})_{11}C_{B}\,m_{\tilde{e}_{RR}}+ (4.4)
+\displaystyle+ {(δLLe)1i(δLRe)i1CB,L+(δLRe)1i(δRRe)i1CB,R}mRii\displaystyle\Big{\{}(\delta^{e}_{LL})_{1i}(\delta^{e}_{LR})_{i1}C^{\prime}_{B,L}+(\delta^{e}_{LR})_{1i}(\delta^{e}_{RR})_{i1}C^{\prime}_{B,R}\Big{\}}m_{R_{ii}}-
\displaystyle- {(δLLe)1i(δLRe)ij(δRRe)j1+(δLRe)1j(δRLe)ji(δLRe)i1}CB′′mRjj],\displaystyle\Big{\{}(\delta^{e}_{LL})_{1i}(\delta^{e}_{LR})_{ij}(\delta^{e}_{RR})_{j1}+(\delta^{e}_{LR})_{1j}(\delta^{e}_{RL})_{ji}(\delta^{e}_{LR})_{i1}\Big{\}}C^{\prime\prime}_{B}\,m_{R_{jj}}\Big{]},

where me~LLm_{\tilde{e}_{LL}} and me~RRm_{\tilde{e}_{RR}} are given in Eq. (A.12). Moreover mRii=me~RRm_{R_{ii}}=m_{\tilde{e}_{RR}} for i=1,2i=1,2 and mR33=mτ~RRm_{R_{33}}=m_{\tilde{\tau}_{RR}} with the latter being defined in Eq. (A.12). The expression of Eq. (4.4) is actually proportional to the bino mass M1M_{1}, which we have approximated by Eq. (4.2) using x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2}. The dimensionless loop functions CiC_{i}, whose expressions can be found in Appendix B encode the contributions from the pure bino (i=Bi=B) and the bino-higgsino with left- (i=B,Li=B,L) and right-handed (i=B,Ri=B,R) slepton diagrams. For x1x\ll 1, all ratios of different CiC_{i} functions are close to one. With increasing xx, CBC_{B} takes slightly larger values than the rest of the functions, reaching up to twice the value of CB,L(R)C^{\prime}_{B,L(R)} and three times the value of CB′′C^{\prime\prime}_{B}. This can be seen in the limit where the left- and right-type slepton masses are not very different, such that the loop functions take the form [41]

CB\displaystyle C_{B} \displaystyle\approx m04me~4h1(x¯),CB′′m043me~4(h1(x¯)+2k1(x¯)),\displaystyle\frac{m_{0}^{4}}{m_{\tilde{e}}^{4}}h_{1}(\bar{x}),\qquad C^{\prime\prime}_{B}\approx\frac{m_{0}^{4}}{3m_{\tilde{e}}^{4}}\left(h_{1}(\bar{x})+2k_{1}(\bar{x})\right),
CB,L\displaystyle C^{\prime}_{B,L} \displaystyle\approx CB,Rm042me~4(h1(x¯)+k1(x¯)),\displaystyle C^{\prime}_{B,R}\approx\frac{m_{0}^{4}}{2m_{\tilde{e}}^{4}}\left(h_{1}(\bar{x})+k_{1}(\bar{x})\right), (4.5)

where we consider me~=me~LLme~RRm_{\tilde{e}}=\sqrt{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}} as the average slepton mass999me~RRm_{\tilde{e}_{RR}} and mτ~RRm_{\tilde{\tau}_{RR}} only differ in the order one coefficients b01b_{01} and b02b_{02} which take values in the same range. Since the dominant term in Eq. (4.4) involves the first generation masses, we use me~=me~LLme~RRm_{\tilde{e}}=\sqrt{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}} rather than me~=me~LLme~RRmτ~RRm_{\tilde{e}}=\sqrt{m_{\tilde{e}_{LL}}\sqrt{m_{\tilde{e}_{RR}}m_{\tilde{\tau}_{RR}}}} as the average slepton mass. and x¯=(M1/me~)2\bar{x}=(M_{1}/m_{\tilde{e}})^{2}. The function h1h_{1} is given in Appendix B while k1k_{1} denotes the derivative k1(x¯)d(x¯h1(x¯))/dx¯k_{1}(\bar{x})\equiv d(\bar{x}h_{1}(\bar{x}))/d\bar{x}. Their behaviour is shown in the right panel of Figure 4.

The dominant contribution to the electron EDM comes from the single chirality flipping diagonal mass insertion (δLRe)11λ6(\delta^{e}_{LR})_{11}\propto\lambda^{6}, such that we can make the approximation

|de/e|\displaystyle|d_{e}/e| \displaystyle\approx α8πcos2θW0.43x|α0|υdm02(1+Rey)13|Im[a~11d]|λ6CB,\displaystyle\frac{\alpha}{8\pi\cos^{2}\theta_{W}}0.43\sqrt{x}\,\frac{|\alpha_{0}|\upsilon_{d}}{m_{0}^{2}}(1+R^{y}_{e})\frac{1}{3}\,\left|\mathrm{Im}[\tilde{a}^{d}_{11}]\right|\,\lambda^{6}\,C_{B}, (4.6)

where ReyR^{y}_{e} is an RG running factor defined in Eq. (3.9) and a~11d/3\tilde{a}^{d}_{11}/3, defined in Eq. (A.2), is the (11) element of A~GUTe/A0\tilde{A}^{e}_{\text{GUT}}/A_{0}, with A~GUTe\tilde{A}^{e}_{\text{GUT}} denoting the GUT scale soft trilinear matrix in the SCKM basis. Its imaginary part is non-zero when allowing the phases of the soft trilinear sector to be different from the phases of the corresponding Yukawa sector. Then, for |α0υd/m0|102|\alpha_{0}\upsilon_{d}/m_{0}|\approx 10^{-2}, m01m_{0}\approx 1 TeV and x1x\approx 1, we expect |de/e||d_{e}/e| to vary around 1013GeV110^{-13}\,\text{GeV}^{-1}.

As can be seen in the left panel of Figure 4, which was produced using the full expression in Eq. (4.4), the numerical choice for the suppression factor |α0υd/m0||\alpha_{0}\,\upsilon_{d}/m_{0}| corresponds to the yellow points and brings our prediction for the EDM above its current experimental limit, represented by the red dotted line.

Refer to caption
Refer to caption
Figure 4: Left panel: the prediction for the SUSY contribution to the electron EDM versus me~=me~LLme~RRm_{\tilde{e}}=\sqrt{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}}. The red dotted line represents the current experimental limit of Eq. (4.3), while the black dotted line corresponds to the expected future limit of |de/e|3×1031|d_{e}/e|\lesssim 3\times 10^{-31} cm 1.52×1017GeV1\approx 1.52\times 10^{-17}\,\text{GeV}^{-1} [42]. Right panel: the behaviour of the functions h1h_{1}, k1k_{1} and (in anticipation of the discussion in Section 4.2) h2h_{2}.

In the case where the phases of the soft trilinear and Yukawa sectors are equal, a~11d\tilde{a}^{d}_{11} and all factors in Eq. (A.2) become real. In that case, the dominant imaginary part originates from the NLO contribution101010The SCKM rotation which renders the Yukawa sector diagonal and real does not do the same to the AA-terms beyond leading order. to (δLRe)11(\delta^{e}_{LR})_{11} and is proportional to sin(4θ2d+θ3d)\sin(4\theta^{d}_{2}+\theta^{d}_{3}). Setting θ2d=π/2\theta^{d}_{2}=\pi/2, as is preferred by the Jarlskog invariant JCPqJ^{q}_{CP}, given in Eq. (2.20), we see that also the NLO contribution vanishes for θ3d=0\theta^{d}_{3}=0, such that |de/e||d_{e}/e| would only arise at order λ8\lambda^{8}.

Concerning the terms of Eq. (4.4) with double mass insertions, they enter at orders (δLRe)12(δRRe)21λ8(\delta^{e}_{LR})_{12}(\delta^{e}_{RR})_{21}\sim\lambda^{8}, (δLRe)13(δRRe)31λ10(\delta^{e}_{LR})_{13}(\delta^{e}_{RR})_{31}\sim\lambda^{10} and (δLLe)12(δLRe)21(δLLe)13(δLRe)31λ9(\delta^{e}_{LL})_{12}(\delta^{e}_{LR})_{21}\sim(\delta^{e}_{LL})_{13}(\delta^{e}_{LR})_{31}\sim\lambda^{9} in our model. In the situation described in the preceding paragraph, the first two terms are real, while the contributions of the latter two cancel against each other. Finally, the contributions of the triple mass insertions are further suppressed, with the largest one, (δLLe)13(δLRe)33(δRRe)31λ10(\delta^{e}_{LL})_{13}(\delta^{e}_{LR})_{33}(\delta^{e}_{RR})_{31}\sim\lambda^{10}, being real in the case at hand, while all other triple insertions entail contributions which lie below the experimental limit.

4.2 𝑩𝑹(𝝁𝒆𝜸)\bm{BR(\mu\to e\gamma)}

According to Figure 3, a large part of our parameter space in the (12) charged lepton sector appears to be excluded by the experimental limit set by the non-observation of μeγ\mu\to e\gamma. In this section, we therefore study in detail the contributions to this LFV process within our model. The current experimental limit for the branching ratio

BR(μeγ)5.7×1013,BR(\mu\to e\,\gamma)~\lesssim~5.7\times 10^{-13}\ , (4.7)

is set by the MEG collaboration [43]. The expression for the corresponding SUSY contribution is given by [41]

BR(μeγ)=3.4×104×0.432MW4xμ2tβ2m06×\displaystyle BR(\mu\to e\gamma)~=~3.4\times 10^{-4}\times 0.43^{2}\,M_{W}^{4}\,x\,\frac{\mu^{2}\,t_{\beta}^{2}}{m_{0}^{6}}\times (4.8)
×\displaystyle\times (|(δLLe)12((δLRe)22me~LLme~RRμtβmμCB,L+12CL+C2)+(δLRe)12me~LLme~RRμtβmμCB|2\displaystyle\Bigg{(}\left|(\delta^{e}_{LL})_{12}\left(-(\delta^{e}_{LR})_{22}\frac{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}}{\mu\,t_{\beta}\,m_{\mu}}C^{\prime}_{B,L}+\frac{1}{2}C^{\prime}_{L}+C^{\prime}_{2}\right)+(\delta^{e}_{LR})_{12}\frac{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}}{\mu\,t_{\beta}\,m_{\mu}}C_{B}\right|^{2}
+\displaystyle+ |(δRRe)12((δLRe)22me~LLme~RRμtβmμCB,RCR)+(δLRe)21me~LLme~RRμtβmμCB|2).\displaystyle\left|(\delta^{e}_{RR})_{12}\left(-(\delta^{e}_{LR})^{*}_{22}\frac{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}}{\mu\,t_{\beta}\,m_{\mu}}C^{\prime}_{B,R}-C^{\prime}_{R}\right)+(\delta^{e}_{LR})^{*}_{21}\frac{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}}{\mu\,t_{\beta}\,m_{\mu}}C_{B}\right|^{2}\Bigg{)}.

It is proportional to the bino mass squared, that has been approximated by Eq. (4.2) and expressed as M12=0.432xm02M_{1}^{2}=0.43^{2}x\,m_{0}^{2}, where x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2}. The loop function C2C^{\prime}_{2} encodes the wino-higgsino contribution and is defined in Appendix B, along with the rest of the functions CiC_{i}.

In our model, (δLLe)12λ4(\delta^{e}_{LL})_{12}\sim\lambda^{4}, (δRRe)12λ3(\delta^{e}_{RR})_{12}\sim\lambda^{3}, (δLRe)12(21)λ5(\delta^{e}_{LR})_{12(21)}\sim\lambda^{5} and (δLRe)22λ4(\delta^{e}_{LR})_{22}\sim\lambda^{4}. To get an estimate of the dominant δ\deltas in Eq. (4.8), we first compare the SU(2)SU(2) (C2\propto C^{\prime}_{2}) and the U(1)U(1) (CB,L,CL\propto C_{B,L}^{\prime},C_{L}^{\prime}) contributions to the (δLLe)12(\delta^{e}_{LL})_{12} term by studying the ratio

R\displaystyle R =\displaystyle= |C2/((1A0μtβa~22dys)CB,L+12CL)|,\displaystyle\left|C^{\prime}_{2}\Big{/}\left(\left(1-\frac{A_{0}}{\mu\,t_{\beta}}\frac{\tilde{a}^{d}_{22}}{y_{s}}\right)C^{\prime}_{B,L}+\frac{1}{2}C^{\prime}_{L}\right)\right|, (4.9)

which, in the limit where me~RRm_{\tilde{e}_{RR}} and me~LLm_{\tilde{e}_{LL}} are not very different, can be written as

RR¯\displaystyle R~\approx~\bar{R} =\displaystyle= 2M2M1cot2θW|1y¯x¯(h2(x¯)h2(y¯))h1(x¯)+k1(x¯)+1y¯x¯(h1(x¯)h1(y¯))|.\displaystyle 2\frac{M_{2}}{M_{1}}\cot^{2}\theta_{W}\left|\frac{\frac{1}{\bar{y}-\bar{x}^{\prime}}\left(h_{2}(\bar{x}^{\prime})-h_{2}(\bar{y})\right)}{h_{1}(\bar{x})+k_{1}(\bar{x})+\frac{1}{\bar{y}-\bar{x}}\left(h_{1}(\bar{x})-h_{1}(\bar{y})\right)}\right|. (4.10)
Refer to caption
Refer to caption
Figure 5: Left panel: the contour lines for R¯\bar{R}, the approximate ratio of the SU(2)SU(2) over the U(1)U(1) contributions to the (δLLe)12(\delta^{e}_{LL})_{12} term in Eq. (4.8), as defined in Eq. (4.10). For the average slepton mass me~=me~LLme~RRm_{\tilde{e}}=\sqrt{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}}, x¯=(M1/me~)20.432x/(1+0.3x)\bar{x}=(M_{1}/m_{\tilde{e}})^{2}\approx 0.43^{2}x/(1+0.3\,x), with x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2}. Right panel: the ratio RR (without approximation), as defined in Eq. (4.9) and produced in our scan. The dependence of (M2/μ)2(M_{2}/\mu)^{2} and x¯\bar{x} on xx is such that the SU(2)SU(2) contributions dominate for most of the parameter space.

The behaviour of the loop functions h1h_{1} and h2h_{2}, which are defined in Appendix B, as well as k1(x¯)d(x¯h1(x¯))/dx¯k_{1}(\bar{x})\equiv d(\bar{x}h_{1}(\bar{x}))/d\bar{x} is shown in the right panel of Figure 4, and x¯=(M1/me~)2\bar{x}=(M_{1}/m_{\tilde{e}})^{2}, x¯=(M2/me~)2\bar{x}^{\prime}=(M_{2}/m_{\tilde{e}})^{2}, y¯=(μ/me~)2\bar{y}=(\mu/m_{\tilde{e}})^{2}, with me~=me~LLme~RRm_{\tilde{e}}=\sqrt{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}}. The contours in the left panel of Figure 5 show the dependence of R¯\bar{R}, as defined in Eq. (4.10), on (M2/μ)2(M_{2}/\mu)^{2} and x¯\bar{x}. We see that for (M2/μ)21.5(M_{2}/\mu)^{2}\gtrsim 1.5, R¯\bar{R} is larger than one for all x¯0.432x/(1+0.3x)0.6\bar{x}\approx 0.43^{2}x/(1+0.3\,x)\lesssim 0.6, while for (M2/μ)2𝒪(1)(M_{2}/\mu)^{2}\sim\mathcal{O}(1) and smaller, the U(1)U(1) contributions can dominate if x¯\bar{x} does not decrease faster than (M2/μ)2(M_{2}/\mu)^{2}. The right panel in Figure 5 is based on our scan and shows that the correlation of (M2/μ)2(M_{2}/\mu)^{2} and x¯\bar{x} through xx is such that RR, as defined in Eq. (4.9), stays larger than one in most of our parameter space, making the SU(2)SU(2) contribution to the (δLLe)12(\delta^{e}_{LL})_{12} term in Eq. (4.8) the most important one.

Similarly, one can show that the RRRR contribution to μeγ\mu\to e\gamma in Eq. (4.8) is comparable to the LLLL one only when |(δRRe)12λ|/|(δLLe)12|1|(\delta^{e}_{RR})_{12}\lambda|/|(\delta^{e}_{LL})_{12}|\gtrsim 1, although (δLLe)12(\delta^{e}_{LL})_{12} is suppressed by an order of λ\lambda with respect to (δRRe)12(\delta^{e}_{RR})_{12}. This happens because the RRRR parameter has only two U(1)U(1) contributions which come in with opposite signs, allowing even for a complete cancellation.

Finally, we study the relative size of the LLLL and LRLR contributions by considering the ratio

R=|μtβmμ(δLLe)12C2me~LLme~RR(δLRe)12CB|=λ3κ|μtβA0C2CB|,\displaystyle R^{\prime}=\Big{|}\frac{\mu\,t_{\beta}\,m_{\mu}(\delta^{e}_{LL})_{12}\,C_{2}^{\prime}}{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}(\delta^{e}_{LR})_{12}C_{B}}\Big{|}=\lambda^{3}\kappa\Big{|}\frac{\mu\,t_{\beta}}{A_{0}}\frac{C_{2}^{\prime}}{C_{B}}\Big{|}, (4.11)

where κ=|3ys(R~122ηNE~12)/(a~12d(pLe)2)|\kappa=\Big{|}3\,y_{s}(\tilde{R}_{12}-2\eta_{N}\,\tilde{E}_{12})/(\tilde{a}^{d}_{12}(p^{e}_{L})^{2})\Big{|}, with R~12\tilde{R}_{12}, a~12d\tilde{a}^{d}_{12}, pLep^{e}_{L}, E~12\tilde{E}_{12} and ηN\eta_{N} defined in Eqs. (A.1,A.2,A.15,A.54,2.33), respectively. The absolute value of the right-hand side of Eq. (4.11) exhibits a similar behaviour as the ratio RR, defined in Eq. (4.9) and shown in the right panel of Figure 5. Taking into account the λ\lambda-suppression (λ3102\lambda^{3}\sim 10^{-2}) and the range of κ\kappa which can vary within two orders of magnitude, we find that the (δLRe)12(\delta^{e}_{LR})_{12} contribution to the branching ratio can be comparable to the (δLLe)12(\delta^{e}_{LL})_{12} one when (M2/μ)21(M_{2}/\mu)^{2}\sim 1.

Considering situations in which the (δLRe)12(\delta^{e}_{LR})_{12} contribution to Eq. (4.8) dominates, we obtain the approximate expression

BR(μeγ)|(δLRe)12\displaystyle BR(\mu\to e\gamma)|_{{}_{(\delta^{e}_{LR})_{12}}} \displaystyle\approx 𝒪(102α02m04me~8h12(x¯))(|a~12d|3ys)2.\displaystyle\mathcal{O}\left(10^{2}\,\alpha_{0}^{2}\frac{m_{0}^{4}}{m_{\tilde{e}}^{8}}h^{2}_{1}(\bar{x})\right)\left(\frac{|\tilde{a}^{d}_{12}|}{3\,y_{s}}\right)^{2}. (4.12)

In the case where (δLLe)12(\delta^{e}_{LL})_{12} is more important, e.g. when (M2/μ)21(M_{2}/\mu)^{2}\ll 1, cf. right panel of Figure 5, we obtain

BR(μeγ)|(δLLe)12\displaystyle BR(\mu\to e\gamma)|_{{}_{(\delta^{e}_{LL})_{12}}} \displaystyle\approx 𝒪(xtβ2μ2m06me~LL8h22(3.7xL))|R~122ηNE~12|2.\displaystyle\mathcal{O}\left(\frac{x\,t_{\beta}^{2}}{\mu^{2}}\frac{m_{0}^{6}}{~~m_{\tilde{e}_{LL}}^{8}}h^{2}_{2}(3.7\,x_{L})\right)\Big{|}\tilde{R}_{12}-2\eta_{N}\,\tilde{E}_{12}\Big{|}^{2}. (4.13)

For xL(M1/me~LL)2x¯0.1x_{L}\equiv(M_{1}/m_{\tilde{e}_{LL}})^{2}\approx\bar{x}\approx 0.1, x1x\approx 1, α01\alpha_{0}\approx 1, tβ10t_{\beta}\approx 10, μm01\mu\approx m_{0}\approx 1 TeV and me~LL750m_{\tilde{e}_{LL}}\approx 750 GeV, the approximations of Eqs. (4.12,4.13) both produce a value of the order of 101010^{-10} times the relevant order one coefficients squared. In order to gain an extra suppression of at least an order of magnitude, the latter are preferred to be smaller than one.

The total supersymmetric contribution to the branching ratio of μeγ\mu\to e\gamma of Eq. (4.8) as produced in our scan is shown in Figure 6. There it is plotted against the average slepton mass (left panel) as well as |de/e||d_{e}/e| (right panel). From the left panel we observe that our model requires rather heavy sleptons, in the TeV range, in order to survive the current experimental limit in Eq. (4.7), which is denoted by the red dotted line. As can be seen in Eqs. (4.8,4.13), there is also a strong μ\mu dependence, with a preference for large values. The right panel of Figure 6 shows that the μeγ\mu\to e\gamma branching ratio is correlated with the electron EDM, mainly through the slepton masses and the bino-slepton mass ratio. The combination of the current limits on both observables highly restricts our parameter space. Reaching the expected future limits, denoted by the black dotted lines, would nearly exclude our model.

Refer to caption
Refer to caption
Figure 6: The supersymmetric contribution to the branching ratio of μeγ\mu\to e\,\gamma versus the average slepton mass me~=me~LLme~RRm_{\tilde{e}}=\sqrt{m_{\tilde{e}_{LL}}m_{\tilde{e}_{RR}}} (left panel) as well as |de/e||d_{e}/e| (right panel). The red dotted lines represent the current experimental limits given in Eqs. (4.3,4.7) while the black dotted lines show the expected future limits, that is BR(μeγ)6×1014BR(\mu\to e\,\gamma)\lesssim 6\times 10^{-14} [44] and |de/e|1.52×1017GeV1|d_{e}/e|\lesssim 1.52\times 10^{-17}~\text{GeV}^{-1} [42].
Refer to caption
Refer to caption
Refer to caption
Figure 7: The range of the (12) lepton mass insertion parameters as produced in our scan, together with the resulting prediction for the branching ratio of μeγ\mu\to e\gamma. The grey points do not satisfy the current experimental limit given in Eq. (4.3).

In Figure 7 we show our predictions for BR(μeγ)BR(\mu\to e\gamma) in the plane of two (12) mass insertion parameters as produced in our scan. Comparing this to the discussion of Section 3.2.3 reveals that, with the present MEG bound, |(δLLe)12|5×103|(\delta^{e}_{LL})_{12}|\lesssim 5\times 10^{-3} and |(δLRe)12|5×106|(\delta^{e}_{LR})_{12}|\lesssim 5\times 10^{-6} are not excluded as it was suggested by the limits in Figure 3. On the other hand, |(δRRe)12||(\delta^{e}_{RR})_{12}| can take its maximum values produced by the scan. The reason for these weaker bounds is twofold. Firstly, the analysis in [38] sets the limits on the mass insertion parameters by choosing tβt_{\beta} as large as 60, whereas we only allow for maximum values of 25. Secondly, the derivation in [38] requires that the discrepancy of (g2)μ(g-2)_{\mu} from its SM value is explained by SUSY contributions.

4.3 Meson mixing

Turning to ΔF=2\Delta F=2 transitions, we study the SUSY contributions to meson mixing. The dispersive part of the mixing for a meson PP can be parametrised as [45]

M12P=M12P,SM+M12P,NP=M12P,SM(1+hPe2iσP),\displaystyle M^{P}_{12}=M^{P,\,\text{SM}}_{12}+M^{P,\,\text{NP}}_{12}=M^{P,\,\text{SM}}_{12}\left(1+h_{P}e^{2i\sigma_{P}}\right), (4.14)

and the corresponding mass difference is given by

ΔMP=2|M12P|.\displaystyle\Delta M_{P}=2|M^{P}_{12}|. (4.15)

We express the SM contribution as M12P,SM=|M12P,SM|e2iϕPSMM^{P,\,\text{SM}}_{12}=|M^{P,\,\text{SM}}_{12}|\,e^{2i\phi_{P}^{\text{SM}}}. The New Physics (NP) contribution, M12P,NP=|M12P,NP|e2iθPM^{P,\,\text{NP}}_{12}=|M^{P,\,\text{NP}}_{12}|\,e^{2i\theta_{P}}, is encoded in the real parameters

hP\displaystyle h_{P} =\displaystyle= |M12P,NP||M12P,SM|,σP=θPϕPSM.\displaystyle\frac{|M^{P,\,\text{NP}}_{12}|}{|M^{P,\,\text{SM}}_{12}|},\qquad\sigma_{P}=\theta_{P}-\phi_{P}^{\text{SM}}. (4.16)

The contributions of the gluino-squark box diagram in terms of mass insertion parameters read [11, 15]

M12P,(g~)\displaystyle M^{P,(\tilde{g})}_{12} =\displaystyle= A1P,(g~)(A2P,(g~)[(δLLd)ji2+(δRRd)ji2]+A3P,(g~)(δLLd)ji(δRRd)ji\displaystyle A_{1}^{P,(\tilde{g})}\Bigg{(}A_{2}^{P,(\tilde{g})}\left[(\delta^{d}_{LL})_{ji}^{2}+(\delta^{d}_{RR})_{ji}^{2}\right]+A_{3}^{P,(\tilde{g})}(\delta^{d}_{LL})_{ji}(\delta^{d}_{RR})_{ji} (4.17)
+\displaystyle+ A4P,(g~)[(δLRd)ji2+(δRLd)ji2]+A5P,(g~)(δLRd)ji(δRLd)ji),\displaystyle A_{4}^{P,(\tilde{g})}\left[(\delta^{d}_{LR})_{ji}^{2}+(\delta^{d}_{RL})_{ji}^{2}\right]+A_{5}^{P,(\tilde{g})}(\delta^{d}_{LR})_{ji}(\delta^{d}_{RL})_{ji}\Bigg{)},

where

A1P,(g~)\displaystyle A_{1}^{P,(\tilde{g})} =\displaystyle= αs2216mq~213MPfP2,A2P,(g~)=24yf6(y)+66f~6(y),\displaystyle-\frac{\alpha_{s}^{2}}{216\,m^{2}_{\tilde{q}}}\frac{1}{3}M_{P}f^{2}_{P},~~\qquad A_{2}^{P,(\tilde{g})}=24\,yf_{6}(y)+66\tilde{f}_{6}(y), (4.18)
A3P,(g~)\displaystyle A_{3}^{P,(\tilde{g})} =\displaystyle= (384(MPmj+mi)2+72)yf6(y)+(24(MPmj+mi)2+36)f~6(y),\displaystyle\Bigg{(}384\left(\frac{M_{P}}{m_{j}+m_{i}}\right)^{2}+72\Bigg{)}yf_{6}(y)+\Bigg{(}-24\left(\frac{M_{P}}{m_{j}+m_{i}}\right)^{2}+36\Bigg{)}\tilde{f}_{6}(y),
A4P,(g~)\displaystyle A_{4}^{P,(\tilde{g})} =\displaystyle= 132(MPmj+mi)2yf6(y),A5P,(g~)=(144(MPmj+mi)284)f~6(y).\displaystyle-132\left(\frac{M_{P}}{m_{j}+m_{i}}\right)^{2}yf_{6}(y),~~~A_{5}^{P,(\tilde{g})}=\Bigg{(}-144\left(\frac{M_{P}}{m_{j}+m_{i}}\right)^{2}-84\Bigg{)}\tilde{f}_{6}(y).

MPM_{P} denotes the mass of the meson under consideration and fPf_{P} is the associated decay constant. mim_{i} and mjm_{j} are the masses of the meson’s constituent quarks while mq~m_{\tilde{q}} is an average squark mass which we define as

mq~\displaystyle m_{\tilde{q}} =\displaystyle= {md~LLmd~RR,P=K,md~LLmb~LLmd~RR,P=Bs,d,\displaystyle\Bigg{\{}\begin{array}[]{ccc}\sqrt{m_{\tilde{d}_{LL}}m_{\tilde{d}_{RR}}},&P=K,\\[5.69054pt] \sqrt{\sqrt{m_{\tilde{d}_{LL}}m_{\tilde{b}_{LL}}}m_{\tilde{d}_{RR}}},&~~P=B_{s,d},\end{array} (4.21)

with md~LLm_{\tilde{d}_{LL}}, mb~LLm_{\tilde{b}_{LL}} and md~RRm_{\tilde{d}_{RR}} defined in Eq. (A.11). The loop functions f6(y)f_{6}(y) and f~6(y)\tilde{f}_{6}(y), where y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}, are given in Appendix B and the gluino mass has been approximated by Eq. (4.2).

4.3.1 𝑩𝒒𝑩¯𝒒\bm{B_{q}-\bar{B}_{q}} mixing

The SM contribution to BqB_{q}, q=s,dq=s,d meson mixing given by [46]

M12Bq,SM\displaystyle M^{{B_{q}},\text{SM}}_{12} =\displaystyle= GF2MBq12π2MW2(VtbVtq)2ηBS0(xt)fBq2B^Bq,\displaystyle\frac{G_{F}^{2}M_{B_{q}}}{12\pi^{2}}M_{W}^{2}(V_{tb}V_{tq}^{*})^{2}\eta_{B}S_{0}(x_{t})f^{2}_{B_{q}}\hat{B}_{B_{q}}, (4.22)

with

Vts\displaystyle V_{ts} =\displaystyle= |Vts|eiβs,Vtd=|Vtd|eiβ,\displaystyle-|V_{ts}|e^{i\beta_{s}},\qquad V_{td}=|V_{td}|e^{-i\beta}, (4.23)
ϕBsSM\displaystyle\phi_{B_{s}}^{\text{SM}} =\displaystyle= βs,ϕBdSM=β.\displaystyle-\beta_{s},\qquad\phi_{B_{d}}^{\text{SM}}=\beta. (4.24)

Here ηB\eta_{B} is a QCD factor, B^Bq\hat{B}_{B_{q}} a perturbative parameter related to hadronic matrix elements and S0(xtm¯t2(m¯t)/MW2)S_{0}(x_{t}\equiv\bar{m}_{t}^{2}(\bar{m}_{t})/M_{W}^{2}) is the Inami-Lim loop function [47]. The calculation of the pure SM contribution to the BsB_{s} mass difference gives [48]

ΔMBs(SM)=125.212.7+13.8×1013 GeV,\displaystyle\Delta M^{\text{(SM)}}_{B_{s}}=125.2^{+13.8}_{-12.7}\times 10^{-13}\text{ GeV}, (4.25)

with the largest uncertainty stemming from the non-perturbative factor fBsB^Bsf_{B_{s}}\sqrt{\hat{B}_{B_{s}}}, for which the value 275±13275\pm 13 MeV [49] has been used.111111We note that the 2014 average of the FLAG collaboration [50] corresponds to a lower central value but with a larger error: fBsB^Bs|FLAG=266±18 MeVf_{B_{s}}\sqrt{\hat{B}_{B_{s}}}\,\Big{|}_{\text{FLAG}}=266\pm 18\text{ MeV}. The SM prediction for ΔMBd\Delta M_{B_{d}} can be deduced from the ratio [48]

ΔMBd(SM)ΔMBs(SM)=0.02835±0.00187,\displaystyle\frac{\Delta M^{\text{(SM)}}_{B_{d}}}{\Delta M^{\text{(SM)}}_{B_{s}}}=0.02835\pm 0.00187, (4.26)

which is less sensitive to theoretical uncertainties. On the other hand, the associated experimental averages as of summer 2014, provided by the HFAG group, read [51]

ΔMBs(exp)\displaystyle\Delta M^{\text{(exp)}}_{B_{s}} =\displaystyle= (116.9±0.1)×1013 GeV ,\displaystyle(116.9\pm 0.1)\times 10^{-13}\text{ GeV }, (4.27)
ΔMBd(exp)\displaystyle\Delta M^{\text{(exp)}}_{B_{d}} =\displaystyle= (3.357±0.020)×1013 GeV ,\displaystyle(3.357\pm 0.020)\times 10^{-13}\text{ GeV }, (4.28)
ΔMBd(exp)ΔMBs(exp)\displaystyle\frac{\Delta M^{\text{(exp)}}_{B_{d}}}{\Delta M^{\text{(exp)}}_{B_{s}}} =\displaystyle= 0.02879±0.0002.\displaystyle 0.02879\pm 0.0002. (4.29)

Comparing Eq. (4.25) with Eq. (4.27) leads to a negative central value for the experimentally allowed NP contribution to ΔMBs\Delta M_{B_{s}}, with a similar result being obtained for ΔMBd\Delta M_{B_{d}}. The main source for the errors are the uncertainties of the SM calculation.121212For a recent discussion on theoretical uncertainties and comparison with experimental results, see [52]. In view of Eqs. (4.25-4.29), and in anticipation of reduced theoretical uncertainties, we conclude that the largest NP effects that could still be allowed should be consistent with

|ΔMBs(NP)|\displaystyle|\Delta M^{\text{(NP)}}_{B_{s}}| \displaystyle\leq 2×1012 GeV ,|ΔMBd(NP)|1×1013 GeV .\displaystyle 2\times 10^{-12}\text{ GeV },\qquad|\Delta M^{\text{(NP)}}_{B_{d}}|\leq 1\times 10^{-13}\text{ GeV }. (4.30)

Using Eqs. (4.15,4.17), we can estimate the effects of the gluino-squark box diagrams. Taking into account the λ\lambda-suppression of each δ\delta parameter entering Eq. (4.17), we can write ΔMBs,d(g~)\Delta M_{B_{s,d}}^{(\tilde{g})} in the schematic form

ΔMBs(g~)\displaystyle\Delta M_{B_{s}}^{(\tilde{g})} \displaystyle\propto λ4(A2Bs,(g~)+A3Bs,(g~)λ2+A4Bs,(g~)λ4+A5Bs,(g~)λ6),\displaystyle\lambda^{4}\left(A_{2}^{B_{s},(\tilde{g})}+A_{3}^{B_{s},(\tilde{g})}\lambda^{2}+A_{4}^{B_{s},(\tilde{g})}\lambda^{4}+A_{5}^{B_{s},(\tilde{g})}\lambda^{6}\right),
ΔMBd(g~)\displaystyle\Delta M_{B_{d}}^{(\tilde{g})} \displaystyle\propto λ8(A2Bd,(g~)+A3Bd,(g~)+A4Bd,(g~)λ2+A5Bd,(g~)λ3).\displaystyle\lambda^{8}\left(A_{2}^{B_{d},(\tilde{g})}+A_{3}^{B_{d},(\tilde{g})}+A_{4}^{B_{d},(\tilde{g})}\lambda^{2}+A_{5}^{B_{d},(\tilde{g})}\lambda^{3}\right). (4.31)
Refer to caption
Refer to caption
Figure 8: The dependence of the individual contributions in Eq. (4.31) on y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}. The average squark mass mq~m_{\tilde{q}} is defined in Eq. (4.21) while the functions AiBs,d,(g~)A^{B_{s,d},(\tilde{g})}_{i} can be found in Eq. (4.18).

Figure 8 shows the individual contributions as a function of y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}. The largest contributions originate from the terms proportional to A2Bs,d,(g~)A^{B_{s,d},(\tilde{g})}_{2} and A3Bs,d,(g~)A^{B_{s,d},(\tilde{g})}_{3}, i.e. the terms associated with the δLLd\delta^{d}_{LL} and δRRd\delta^{d}_{RR}, cf. Eq. (4.17). The contributions from the LRLR-type mass insertion parameters, proportional to A4,5Bs,d,(g~)A^{B_{s,d},(\tilde{g})}_{4,5}, are negligible. The maximum effect of the gluino-squark box diagrams is obtained when x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2} and yy are smaller than one, with the (δLL(RR)d)i32(\delta^{d}_{LL(RR)})^{2}_{i3} and (δLLd)i3(δRRd)i3(\delta^{d}_{LL})_{i3}(\delta^{d}_{RR})_{i3} terms interfering constructively. For relatively light mq~m_{\tilde{q}} around 2 TeV, |A1Bs,d,(g~)|max𝒪(1012)|A^{B_{s,d},(\tilde{g})}_{1}|_{\text{max}}\sim\mathcal{O}(10^{-12}) GeV. Assuming furthermore |(δLLd)13|103|(\delta^{d}_{LL})_{13}|\approx 10^{-3}, |(δLLd)23|2×102|(\delta^{d}_{LL})_{23}|\approx 2\times 10^{-2} and |(δRRd)13|=|(δRRd)23|102|(\delta^{d}_{RR})_{13}|=|(\delta^{d}_{RR})_{23}|\approx 10^{-2} (cf. Figure 2) as well as y0.3y\approx 0.3, we can use Eqs. (4.15,4.17) together with Figure 8 to estimate the maximum gluino effects as |ΔMBs(g~)|max|\Delta M^{(\tilde{g})}_{{B_{s}}}|_{\text{max}}\sim 𝒪(1014)\mathcal{O}(10^{-14}) GeV and |ΔMBd(g~)|max|\Delta M^{(\tilde{g})}_{{B_{d}}}|_{\text{max}}\sim 𝒪(1015)\mathcal{O}(10^{-15}) GeV. This is about two orders of magnitude smaller than the corresponding SM and experimental values.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 9: The dependence of the loop functions as well as |A2,3Bq,(DP)||A^{B_{q},\text{(DP)}}_{2,3}| appearing in Eq. (4.32) on y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}, yμ=(μ/mq~)2y_{\mu}=(\mu/m_{\tilde{q}})^{2} and y2=(M2/mq~)20.11yy_{2}=(M_{2}/m_{\tilde{q}})^{2}\approx 0.11\,y. The blue lines correspond to yμ/y=30y_{\mu}/y=30 and the magenta ones to yμ/y=0.3y_{\mu}/y=0.3. In the plots for |A2Bq,(DP)||A^{B_{q},\text{(DP)}}_{2}|, we have assumed that Atmq~A_{t}\approx m_{\tilde{q}}.

For relatively large values of tβt_{\beta} and a light CP-odd Higgs mass MAM_{A}, the contributions of the double penguin (DP) diagrams, which scale as tβ4μ2/MA2t_{\beta}^{4}\,\mu^{2}/M_{A}^{2}, become important. Considering diagrams with (ii) two gluino, (iiii) one gluino and one Higgsino and (iiiiii) one gluino and one Wino loops, the associated part of M12BqM^{B_{q}}_{12} can be approximated by [15]

M12Bq,(DP)\displaystyle M^{B_{q},\text{(DP)}}_{12} =\displaystyle= A1Bq,(DP)(δRRd)3itβ4μ2MA2{A2Bq,(DP)+(δLLd)3iA3Bq,(DP)},\displaystyle A^{B_{q},\text{(DP)}}_{1}(\delta^{d}_{RR})_{3i}\,t_{\beta}^{4}\frac{\mu^{2}}{M_{A}^{2}}\Bigg{\{}A^{B_{q},\text{(DP)}}_{2}+(\delta^{d}_{LL})_{3i}A^{B_{q},\text{(DP)}}_{3}\Bigg{\}}, (4.32)

where i=1(2)i=1(2) for q=d(s)q=d(s) and

A1Bq,(DP)\displaystyle A^{B_{q},\text{(DP)}}_{1} =\displaystyle= αsα2216πMBqfBq2mq~2(MBqmb+mq)22mb23MW2yf3(y),\displaystyle\frac{\alpha_{s}\,\alpha_{2}^{2}}{16\pi}\frac{M_{B_{q}}f^{2}_{B_{q}}}{m^{2}_{\tilde{q}}}\left(\frac{M_{B_{q}}}{m_{b}+m_{q}}\right)^{2}\frac{2m_{b}^{2}}{3M_{W}^{2}}\,y\,f_{3}(y),
A2Bq,(DP)\displaystyle A^{B_{q},\text{(DP)}}_{2} =\displaystyle= Atmg~mt2MW2VtbVtqf1(yμ),\displaystyle\frac{A_{t}}{m_{\tilde{g}}}\,\frac{m_{t}^{2}}{M_{W}^{2}}\,V_{tb}V_{tq}^{*}\,f_{1}(y_{\mu}),
A3Bq,(DP)\displaystyle A^{B_{q},\text{(DP)}}_{3} =\displaystyle= 2(M2mg~f4(y2,yμ)83αsα2f3(y)).\displaystyle 2\left(\frac{M_{2}}{m_{\tilde{g}}}\,f_{4}(y_{2},y_{\mu})-\frac{8}{3}\frac{\alpha_{s}}{\alpha_{2}}f_{3}(y)\right). (4.33)

yμ=(μ/mq~)2y_{\mu}=(\mu/m_{\tilde{q}})^{2} and y2=(M2/mq~)2y_{2}=(M_{2}/m_{\tilde{q}})^{2} where the latter is related to y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2} via the approximations of Eq. (4.2). The loop functions f3(y)f_{3}(y), f1(yμ)f_{1}(y_{\mu}), f4(y2,yμ)f_{4}(y_{2},y_{\mu}) are given in Appendix B. Their behaviour is sketched in Figure 9, along with that of |A2,3Bq,(DP)||A^{B_{q},\text{(DP)}}_{2,3}|. For |At|>500|A_{t}|>500 GeV, the dominant contribution to Eq. (4.32) comes from A2Bd,(DP)A^{B_{d},\text{(DP)}}_{2} in the BdB_{d} sector, even for our maximum values of |(δLLd)13||(\delta^{d}_{LL})_{13}|, while for BsB_{s}, where |(δLLd)23||(\delta^{d}_{LL})_{23}| assumes larger values (cf. Figure 2), the two terms in the curly brackets are comparable. For light average squark masses mq~m_{\tilde{q}} around 2 TeV, A1Bq,(DP)A^{B_{q},\text{(DP)}}_{1} can reach values up to 𝒪(1016)\mathcal{O}(10^{-16}) GeV, while |(δRRd)i3|max102|(\delta^{d}_{RR})_{i3}|_{\text{max}}\approx 10^{-2} (cf. Figure 2). Then, for Atmg~A_{t}\gtrsim m_{\tilde{g}} and μmq~\mu\ll m_{\tilde{q}}, |A2Bs(d),(DP)|𝒪(101(2))|A^{B_{s(d)},\text{(DP)}}_{2}|\approx\mathcal{O}(10^{-1(-2)}), such that |ΔM12Bs(d),(DP)|2×1019(20)×tβ4μ2/MA2|\Delta M^{B_{s(d)},\text{(DP)}}_{12}|\approx 2\times 10^{-19(-20)}\times t_{\beta}^{4}\,\mu^{2}/M_{A}^{2} GeV, barring contributions from the A3Bq,(DP)A^{B_{q},\text{(DP)}}_{3} term. When tβt_{\beta} takes its maximum value of 25 and μMA\mu\sim M_{A}, the double penguin contributions to ΔMBq\Delta M_{B_{q}} increase to about an order of magnitude above the gluino-box contributions, which is however still significantly below the SM and experimental values.

Figure 10 shows the predicted SUSY contributions to the BqB_{q} meson mixings as produced in our scan. They are plotted against the average squark mass defined in Eq. (4.21) and lie below both the experimental measurements (red dotted lines) and the NP limits (blue dotted lines) by at least an order of magnitude. This result is in agreement with the findings in Section 3.2.2, where we have compared our predictions for the mass insertion parameters with existing limits in the literature.

Refer to caption
Refer to caption
Refer to caption
Figure 10: The absolute value of the gluino and double penguin contributions to ΔMBs(d)\Delta M_{B_{s(d)}} versus the average squark mass as defined in Eq. (4.21). The colour coding corresponds to different values of x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2}. The red dotted lines denote the experimental central values of Eqs. (4.27,4.28), while the blue dotted lines indicate the maximum allowed NP contributions according to Eq. (4.30).

The effects of the complex down-type mass insertion parameters of the (23) and (13) sectors can be studied through the time dependent CP asymmetries associated with the decays BsJ/ψϕB_{s}\to J/\psi\,\phi and BdJ/ψKSB_{d}\to J/\psi\,K_{S}. Focusing on the mixing-induced CP asymmetries, we have [53]

Sf\displaystyle S_{f} =\displaystyle= 2Im(λf)1+|λf|2,\displaystyle\frac{2\,\mathrm{Im}(\lambda_{f})}{1+|\lambda_{f}|^{2}}, (4.34)

with

λf\displaystyle\lambda_{f} =\displaystyle= qp𝒜¯(B¯qf)𝒜(Bqf),qp=M12Bqi2Γ12BqM12Bqi2Γ12Bq,\displaystyle\frac{q}{p}\frac{\bar{\mathcal{A}}(\bar{B}_{q}\to f)}{\mathcal{A}(B_{q}\to f)},\qquad\frac{q}{p}=\sqrt{\frac{M^{B_{q}*}_{12}-\frac{i}{2}\Gamma^{B_{q}*}_{12}}{M^{B_{q}}_{12}-\frac{i}{2}\Gamma^{B_{q}}_{12}}}, (4.35)

where ff denotes the final state of the decay and 𝒜\mathcal{A} is the corresponding amplitude. As the absorptive part Γ12Bq\Gamma^{B_{q}}_{12} of the BqB_{q} meson mixing is much smaller than the dispersive one M12BqM^{B_{q}}_{12}, i.e. Γ12BqM12Bq\Gamma^{B_{q}}_{12}\ll M^{B_{q}}_{12}, we can approximate q/pM12Bq/M12Bqq/p\approx\sqrt{M^{B_{q}*}_{12}/M^{B_{q}}_{12}}. Then, the λf\lambda_{f} factors associated with the decays BsJ/ψϕB_{s}\to J/\psi\,\phi and BdJ/ψKSB_{d}\to J/\psi\,K_{S} take the form

λJ/ψϕ\displaystyle\lambda_{J/\psi\phi} =\displaystyle= eiϕs,ϕs=2βs+arg(1+hBse2iσBs),\displaystyle e^{-i\phi_{s}},\quad\>\>~~~~\phi_{s}=-2\beta_{s}+\text{arg}\left(1+h_{B_{s}}e^{2i\sigma_{B_{s}}}\right),
λJ/ψKS\displaystyle\lambda_{J/\psi K_{S}} =\displaystyle= eiϕd,ϕd=2β+arg(1+hBde2iσBd),\displaystyle-e^{-i\phi_{d}},\quad~~~\phi_{d}=2\beta+\text{arg}\left(1+h_{B_{d}}e^{2i\sigma_{B_{d}}}\right), (4.36)

where the parameters hBqh_{B_{q}} and σBq\sigma_{B_{q}} are defined in Eq. (4.16), while the SM phases βs\beta_{s} and β\beta can be found in Eqs. (4.23,4.24). The mixing-induced time dependent asymmetries can then be simply written as

SJ/ψϕ\displaystyle S_{J/\psi\phi} =\displaystyle= sin(ϕs),SJ/ψKS=sin(ϕd).\displaystyle-\sin(\phi_{s}),\quad~~~~S_{J/\psi K_{S}}=\sin(\phi_{d}). (4.37)

The current measurements are [51]131313LHCb recently published their first measurements of SJ/ψKS=0.746±0.030S_{J/\psi K_{S}}=0.746\pm 0.030 [54] in the limit of a vanishing direct CP asymmetry, i.e. 1|𝒜¯(B¯qJ/ψKS)/𝒜(BqJ/ψKS)|21+|𝒜¯(B¯qJ/ψKS)/𝒜(BqJ/ψKS)|2=0\frac{1-|\bar{\mathcal{A}}(\bar{B}_{q}\to J/\psi K_{S})/\mathcal{A}(B_{q}\to J/\psi K_{S})|^{2}}{1+|\bar{\mathcal{A}}(\bar{B}_{q}\to J/\psi K_{S})/\mathcal{A}(B_{q}\to J/\psi K_{S})|^{2}}=0, thereby improving consistency with the SM expectation.

SJ/ψϕ\displaystyle S_{J/\psi\phi} =\displaystyle= 0.015±0.035,SJ/ψKS=0.682±0.019,\displaystyle 0.015\pm 0.035,\quad~~~~S_{J/\psi K_{S}}=0.682\pm 0.019, (4.38)

while the SM expectations read [55]

SJ/ψϕSM=sin(2βs)=0.03650.0013+0.0012,SJ/ψKSSM=sin(2β)=0.7710.041+0.017.\displaystyle S_{J/\psi\phi}^{\text{SM}}=\sin(2\beta_{s})=0.0365^{+0.0012}_{-0.0013},\quad~~~S_{J/\psi K_{S}}^{\text{SM}}=\sin(2\beta)=0.771^{+0.017}_{-0.041}. (4.39)

SJ/ψϕSMS_{J/\psi\phi}^{\text{SM}} comes with a relatively small error, whereas SJ/ψKSSMS_{J/\psi K_{S}}^{\text{SM}} depends strongly on the value of |Vub||V_{ub}|, which differs significantly when extracted via inclusive or exclusive decays, see e.g. [46], with the above data preferring the lower exclusive result. The value of SJ/ψKSSMS_{J/\psi K_{S}}^{\text{SM}} quoted in Eq. (4.39) has been derived by averaging over inclusive and exclusive semileptonic determinations of the relevant CKM elements and using the value of the CP-violating parameter ϵK\epsilon_{K}, see Eq. (4.47), amongst the input parameters but not the measurement of sin(2β)\sin(2\beta) itself.

Comparing Eq. (4.38) and Eq. (4.39), we observe that the NP contributions to SJ/ψϕS_{J/\psi\phi} and SJ/ψKSS_{J/\psi K_{S}} can be as large as 100%\sim 100\% and 10%\sim 10\% of the respective SM values. In order to reach 10%10\% deviations, hBsh_{B_{s}} and hBdh_{B_{d}} should be larger than 4×103\sim 4\times 10^{-3} and 0.14\sim 0.14 respectively, corresponding to |ΔMBs,d(NP)|5×1014|\Delta M^{\text{(NP)}}_{B_{s,d}}|\gtrsim 5\times 10^{-14}. Here we have assumed NP phases which maximise the effect. In view of Figure 10, we would expect a non-negligible contribution to SJ/ψϕS_{J/\psi\phi} in a small part of the parameter space. However, at leading order, (δLLd)23(\delta^{d}_{LL})_{23} and (δRRd)23(\delta^{d}_{RR})_{23} are real, cf. Eqs. (A.31,A.33). They only receive non-trivial phase factors at order λ5\lambda^{5}, suppressing the imaginary part of ΔMBsSUSY\Delta M^{\text{SUSY}}_{B_{s}} by one power of λ101\lambda\approx 10^{-1} with respect to the real part. As a result, any deviation from SJ/ψϕSMS_{J/\psi\phi}^{\text{SM}} is only of the order of 1%1\%. In the BdB_{d} sector, (δLLd)13(\delta^{d}_{LL})_{13} and (δRRd)13(\delta^{d}_{RR})_{13} are already complex at leading order in λ\lambda, cf. Eqs. (A.30,A.32). But as can be seen from Figure 10, |ΔMBdSUSY|max1015|\Delta M^{\text{SUSY}}_{B_{d}}|_{\text{max}}\approx 10^{-15} is too small to be relevant. Even for |ΔMBdSUSY|1014|\Delta M^{\text{SUSY}}_{B_{d}}|\approx 10^{-14}, the maximum deviation from SJ/ψKSSMS_{J/\psi K_{S}}^{\text{SM}} would be 3%\sim 3\% at most.

In conclusion, our model would not be able to explain any persistent deviations from SM expectations in observables related to BB meson mixing.

4.3.2 𝑲𝑲¯\bm{K-\bar{K}} mixing

The SM contribution to the Kaon mixing reads [46]

M12K,SM\displaystyle M^{K,\text{SM}}_{12} =\displaystyle= GF2MK12π2MW2((VcsVcd)2ηccS0(xc)+(VtsVtd)2ηttS0(xt)+\displaystyle\frac{G_{F}^{2}M_{K}}{12\pi^{2}}M_{W}^{2}\Big{(}(V_{cs}V_{cd}^{*})^{2}\eta_{cc}S_{0}(x_{c})+(V_{ts}V_{td}^{*})^{2}\eta_{tt}S_{0}(x_{t})+ (4.40)
+\displaystyle+ 2VcsVcdVtsVtdηctS0(xc,xt))f2KB^K,\displaystyle 2V_{cs}V_{cd}^{*}V_{ts}V_{td}^{*}\eta_{ct}S_{0}(x_{c},x_{t})\Big{)}f^{2}_{K}\hat{B}_{K},

where ηi\eta_{i} are QCD factors, B^K\hat{B}_{K} denotes a perturbative parameter and S0(xim¯i2(m¯i)/MW2)S_{0}(x_{i}\equiv\bar{m}_{i}^{2}(\bar{m}_{i})/M_{W}^{2}) are the Inami-Lim loop functions [47]. From this, the SM value for the Kaon mass difference is numerically given by [56]

ΔMK(SM)=3.30(34)×1015 GeV,\displaystyle\Delta M_{K}^{\text{(SM)}}=3.30(34)\times 10^{-15}\,\text{ GeV}, (4.41)

while the experimental measurement yields [57]

ΔMK(exp)=3.484(6)×1015 GeV.\displaystyle\Delta M_{K}^{\text{(exp)}}=3.484(6)\times 10^{-15}\,\text{ GeV}. (4.42)

We therefore impose the constraint that the maximum allowed NP contribution should be limited by

ΔMK(NP)5×1016 GeV.\displaystyle\Delta M_{K}^{\text{(NP)}}\leq 5\times 10^{-16}\,\text{ GeV}. (4.43)

For Kaon mixing, the relevant mass insertion parameters are those of the (12) sector. Taking into account their λ\lambda-suppression, we can write the gluino-box contribution to the mixing amplitude, given in Eq. (4.17), in the schematic form

ΔMK(g~)\displaystyle\Delta M_{K}^{(\tilde{g})} \displaystyle\propto λ6(A2K,(g~)+A3K,(g~)λ+A4K,(g~)λ4+A5K,(g~)λ4).\displaystyle\lambda^{6}\left(A_{2}^{K,(\tilde{g})}+A_{3}^{K,(\tilde{g})}\lambda+A_{4}^{K,(\tilde{g})}\lambda^{4}+A_{5}^{K,(\tilde{g})}\lambda^{4}\right). (4.44)
Refer to caption
Figure 11: The dependence of the individual contributions in Eq. (4.44) on y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}. The average squark mass mq~m_{\tilde{q}} is defined in Eq. (4.21) while the functions AiK,(g~)A^{K,(\tilde{g})}_{i} can be found in Eq. (4.18).

Figure 11 depicts the individual contributions as a function of y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}. It shows that the dominant contribution originates from the term proportional to A3K,(g~)A^{K,(\tilde{g})}_{3}, i.e. the term proportional to (δLLd)21(δRRd)21(\delta^{d}_{LL})_{21}(\delta^{d}_{RR})_{21}, see Eq. (4.17). The effects of the LRLR-type δ\deltas, proportional to A4,5K,(g~)A^{K,(\tilde{g})}_{4,5}, are negligible. Using Eqs. (4.15,4.17) together with Figure 11, we can estimate the maximum gluino contributions to |ΔMK||\Delta M_{K}|. Assuming y0.3y\approx 0.3, A1K,(g~)1013A^{K,(\tilde{g})}_{1}\approx 10^{-13} GeV and (δLLd)215×102(\delta^{d}_{LL})_{21}\approx 5\times 10^{-2}, (δRRd)217×103(\delta^{d}_{RR})_{21}\approx 7\times 10^{-3} (cf. Figure 2), we expect that |ΔMK(g~)|max5×1014|\Delta M_{K}^{(\tilde{g})}|_{\text{max}}\approx 5\times 10^{-14} GeV, which is about one order of magnitude larger than the experimental result of Eq. (4.42).

The double penguin (DP) contributions to ΔMK\Delta M_{K} arise at the level of four mass insertions, by effectively generating the (sd)(s\to d) transitions through (sb)(s\to b) followed by (bd)(b\to d). The relevant part of the mixing amplitude takes the form [15]

M12K,(DP)\displaystyle M^{K,\,\text{(DP)}}_{12} =\displaystyle= αs2α216πMKfK2(MKms+md)232mb29MW2tβ2μ2MA2mq~2y(f5(y))2×\displaystyle\frac{\alpha_{s}^{2}\,\alpha_{2}}{16\pi}M_{K}f^{2}_{K}\left(\frac{M_{K}}{m_{s}+m_{d}}\right)^{2}\frac{32m_{b}^{2}}{9M_{W}^{2}}\frac{t_{\beta}^{2}\,\mu^{2}}{M_{A}^{2}\,m^{2}_{\tilde{q}}}\,y\,(f_{5}(y))^{2}\times (4.45)
×\displaystyle\times (δLLd)23(δLLd)31(δRRd)23(δRRd)31,\displaystyle(\delta^{d}_{LL})_{23}(\delta^{d}_{LL})_{31}(\delta^{d}_{RR})_{23}(\delta^{d}_{RR})_{31}, (4.46)

with the loop function f5(y)f_{5}(y) given in Appendix B. We find that this contribution is completely negligible, as it is proportional to λ14\lambda^{14}. The upper left panel of Figure 12 shows the combined gluino and DP SUSY contribution to ΔMK\Delta M_{K}, as produced in our scan. It can exceed the NP limit quoted in Eq. (4.43) (blue dotted line) for small values of xx, even shooting above the experimental value of Eq. (4.42) (red dotted line) for x1x\ll 1.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 12: Upper panels: the absolute value of SUSY contributions to ΔMK\Delta M_{K} (left) and ϵK\epsilon_{K} (right) plotted against the average squark mass defined in Eq. (4.21), with the different colours corresponding to different values of x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2}. Lower panels: the most important mass insertion parameters, relevant for KK mixing (left) with different colours representing the produced value of |ϵKSUSY||\epsilon_{K}^{\text{SUSY}}|; |ΔMKSUSY||\Delta M_{K}^{\text{SUSY}}| versus |ϵKSUSY||\epsilon_{K}^{\text{SUSY}}| (right), with the grey shaded points being excluded by BR(μeγ)BR(\mu\to e\gamma). The red dotted lines indicate the experimentally observed values, while the blue dotted lines show the limits on NP contributions.

We now turn to the CP-violating parameter ϵK\epsilon_{K}, defined as [46]

ϵK=κϵeiφϵ2ΔMKexp.(Im(M12K,SM)+Im(M12K,SUSY)),\displaystyle\epsilon_{K}=\frac{\kappa_{\epsilon}e^{i\varphi_{\epsilon}}}{\sqrt{2}\Delta M_{K}^{\text{exp.}}}\left(\mathrm{Im}(M_{12}^{K,\,\text{SM}})+\mathrm{Im}(M_{12}^{K,\,\text{SUSY}})\right), (4.47)

where the superweak phase141414ΔΓ\Delta\Gamma denotes the difference of the widths. φϵ=arctan(2ΔMK/ΔΓ)=(43.52±0.05)\varphi_{\epsilon}=\text{arctan}(2\Delta M_{K}/\Delta\Gamma)=(43.52\pm 0.05)^{\circ} [57], and the factor κϵ=0.94±0.02\kappa_{\epsilon}=0.94\pm 0.02 [58] takes into account that φϵπ/4\varphi_{\epsilon}\neq\pi/4 and includes long distance contributions. The experimentally measured value of ϵK\epsilon_{K} is [57]

ϵK(exp)\displaystyle\epsilon_{K}^{\text{(exp)}} =\displaystyle= (2.228±0.011)×103×eiφϵ,\displaystyle(2.228\pm 0.011)\times 10^{-3}\times e^{i\varphi_{\epsilon}}, (4.48)

while the SM prediction depends highly on the value of VcbV_{cb} [46]. According to [59] and for the input set from the angle-only fit [60], where the Wolfenstein parameters do not show an unwanted correlation with ϵK\epsilon_{K} and B^K\hat{B}_{K}, one finds

|ϵK(SM)|\displaystyle|\epsilon_{K}^{\text{(SM)}}| =\displaystyle= 2.17(24)×103 (inclusive Vcb),\displaystyle 2.17(24)\times 10^{-3}\text{ (inclusive $V_{cb}$)},
|ϵK(SM)|\displaystyle|\epsilon_{K}^{\text{(SM)}}| =\displaystyle= 1.58(18)×103 (exclusive Vcb).\displaystyle 1.58(18)\times 10^{-3}\text{ (exclusive $V_{cb}$)}. (4.49)

We therefore demand that

|ϵK(NP)|\displaystyle|\epsilon_{K}^{\text{(NP)}}| \displaystyle\leq 0.8×103.\displaystyle 0.8\times 10^{-3}. (4.50)

The upper right panel of Figure 12 shows the absolute value of our predicted SUSY contribution to ϵK\epsilon_{K}, plotted against the average squark mass. We find that it can exceed the limit of Eq. (4.50) by more than three orders of magnitude when x<1x<1. In view of Figure 2, we would not have expected such a big effect. However, the limits on the mass insertion parameters used in Section 3.2.2, only take into account one non-zero mass insertion at a time. As we have seen in this section, the dominant contribution to the Kaon mixing amplitude stems from the multiple δ\delta term A3K,(g~)(δLLd)21(δRRd)21A^{K,(\tilde{g})}_{3}(\delta^{d}_{LL})_{21}(\delta^{d}_{RR})_{21} (cf. Figure 11). The non-zero phase of the RRRR parameter is the source of our prediction of a large |ϵKSUSY||\epsilon_{K}^{\text{SUSY}}|.

The lower left panel of Figure 12 shows |ϵKSUSY||\epsilon_{K}^{\text{SUSY}}| in the |(δLLd)12||(δRRd)12||(\delta^{d}_{LL})_{12}|-|(\delta^{d}_{RR})_{12}| plane. It indicates that for |(δLLd)12|5×102|(\delta^{d}_{LL})_{12}|\sim 5\times 10^{-2}, i.e. towards the largest possible value according to Figure 2, |(δRRd)12|105|(\delta^{d}_{RR})_{12}|\lesssim 10^{-5} is required. When |(δRRd)12||(\delta^{d}_{RR})_{12}| takes its maximum value of 102\sim 10^{-2}, |(δLLd)12||(\delta^{d}_{LL})_{12}| should stay below 104\sim 10^{-4}.

Finally, from the lower right panel of Figure 12 we observe that ϵK\epsilon_{K} places stronger bounds on the mass insertion parameters than ΔMK\Delta M_{K}. Due to the SU(5)SU(5) framework of our model there is a correlation between the δ\delta parameters relevant in Kaon mixing and the ones that enter the branching ratio of (μeγ)(\mu\to e\gamma). Denoting the points excluded by BR(μeγ)BR(\mu\to e\gamma) with a grey shade reveals that there still remains a small area of parameter space which is excluded by ϵK\epsilon_{K}.

4.4 𝑩𝑹(𝒃𝒔𝜸)\bm{BR(b\to s\gamma)}

We now consider the gluino contribution to the branching ratio of bsγb\to s\gamma. In terms of the relevant mass insertion parameters it is given by [11]

BR(bsγ)=αs2α81π2mq~4mb3τB(|mbM3(y)(δLLd)23+mg~M1(y)(δLRd)23|2+LR),BR(b\to s\gamma)=\frac{\alpha_{s}^{2}\,\alpha}{81\pi^{2}m^{4}_{\tilde{q}}}m_{b}^{3}\tau_{B}\Big{(}|m_{b}\,M_{3}(y)(\delta^{d}_{LL})_{23}+m_{\tilde{g}}\,M_{1}(y)(\delta^{d}_{LR})_{23}|^{2}+L\leftrightarrow R\Big{)},~~ (4.51)

where the loop functions M1(y),M3(y)M_{1}(y),~M_{3}(y) are defined in Appendix B, τB\tau_{B} denotes the mean life of the BB meson and y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}. This observable does not constrain our parameter space. Even for squark masses as low as 100 GeV and y=1y=1, the LLLL and RRRR mass insertion parameters would only need to be smaller than 0.4 to be consistent with the current experimental value of [51]

BR(BXsγ)=(3.43±0.21±0.07)×104,\displaystyle BR(B\to X_{s}\gamma)=(3.43\pm 0.21\pm 0.07)\times 10^{-4}, (4.52)

which is in good agreement with the SM prediction [61]. Similarly, the chirality flipping mass insertion parameters would need to be smaller than 3×1033\times 10^{-3}. In our scan we find, cf. Figure 2, (δLLd)23102({\delta^{d}_{LL}})_{23}\lesssim 10^{-2}, (δRRd)23102({\delta^{d}_{RR}})_{23}\lesssim 10^{-2}, (δLRd)23105({\delta^{d}_{LR}})_{23}\lesssim 10^{-5} and (δRLd)23106({\delta^{d}_{RL}})_{23}\lesssim 10^{-6}. Taking into account the squark mass dependence and the fact that our scan excludes such light squarks, we have found that our model predicts a contribution to BR(bsγ)BR(b\to s\gamma) which is at least three orders of magnitude below the experimental measurement.

4.5 𝑩𝑹(𝑩𝒔,𝒅𝝁+𝝁)\bm{BR(B_{s,d}\to\mu^{+}\mu^{-})}

The most recent SM predictions for the branching ratios of Bs,dμ+μB_{s,d}\to\mu^{+}\mu^{-} are given by [62]

BR(Bsμ+μ)(SM)\displaystyle BR(B_{s}\to\mu^{+}\mu^{-})^{\text{(SM)}} =\displaystyle= (3.65±0.23)×109,\displaystyle(3.65\pm 0.23)\times 10^{-9},
BR(Bdμ+μ)(SM)\displaystyle BR(B_{d}\to\mu^{+}\mu^{-})^{\text{(SM)}} =\displaystyle= (1.06±0.09)×1010,\displaystyle(1.06\pm 0.09)\times 10^{-10}, (4.53)

while the averages of the CMS and LHCb collaborations read [63]

BR(Bsμ+μ)(exp.)\displaystyle BR(B_{s}\to\mu^{+}\mu^{-})^{\text{(exp.)}} =\displaystyle= 2.80.6+0.7×109,\displaystyle 2.8^{+0.7}_{-0.6}\times 10^{-9},
BR(Bdμ+μ)(exp.)\displaystyle BR(B_{d}\to\mu^{+}\mu^{-})^{\text{(exp.)}} =\displaystyle= 3.91.4+1.6×1010.\displaystyle 3.9^{+1.6}_{-1.4}\times 10^{-10}. (4.54)

The BdB_{d} sector therefore still allows for rather large relative deviations from the SM expectations. In the case of BsB_{s} the experimental measurement yields a value which is slightly lower than the SM prediction.151515The calculations in [62] have been performed using the inclusive value of |Vcb||V_{cb}|. Working with the exclusive one would result in a lower central value of BR(Bsμ+μ)(SM)=3.1×109BR(B_{s}\to\mu^{+}\mu^{-})^{\text{(SM)}}=3.1\times 10^{-9} which fully agrees with the data [64]. We therefore quote the allowed room for contributions from new physics as

BR(Bsμ+μ)(NP)\displaystyle BR(B_{s}\to\mu^{+}\mu^{-})^{\text{(NP)}} \displaystyle\leq 1.68×109,\displaystyle 1.68\times 10^{-9},
BR(Bdμ+μ)(NP)\displaystyle BR(B_{d}\to\mu^{+}\mu^{-})^{\text{(NP)}} \displaystyle\leq 4.53×1010.\displaystyle 4.53\times 10^{-10}. (4.55)

The chargino and gluino contributions to the branching ratio of Bs,dμ+μB_{s,d}\to\mu^{+}\mu^{-} can be expressed as [15]

BR(Bqμ+μ)\displaystyle BR(B_{q}\to\mu^{+}\mu^{-}) =\displaystyle= τBqfBq2MBq332π14mμ2MBq2×\displaystyle\frac{\tau_{B_{q}}\,f_{B_{q}}^{2}\,M_{B_{q}}^{3}}{32\pi}\sqrt{1-4\frac{m_{\mu}^{2}}{M^{2}_{B_{q}}}}\times
×\displaystyle\times {|𝒜1Bq[𝒜2Bqαsα2f3(y)((δLLd)i3(δRRd)i3)]|2(14mμ2MBq2)\displaystyle\Bigg{\{}\left|\mathcal{A}^{B_{q}}_{1}\Bigg{[}\mathcal{A}^{B_{q}}_{2}-\frac{\alpha_{s}}{\alpha_{2}}f_{3}(y)\left((\delta^{d}_{LL})_{i3}-(\delta^{d}_{RR})_{i3}\right)\Bigg{]}\right|^{2}\left(1-4\frac{m_{\mu}^{2}}{M^{2}_{B_{q}}}\right)
+\displaystyle+ |2mμMBqC10SM+𝒜1Bq[𝒜2Bqαsα2f3(y)((δLLd)i3+(δRRd)i3)]|2},\displaystyle\left|2\frac{m_{\mu}}{M_{B_{q}}}C_{10}^{\text{SM}}+\mathcal{A}^{B_{q}}_{1}\Bigg{[}\mathcal{A}^{B_{q}}_{2}-\frac{\alpha_{s}}{\alpha_{2}}f_{3}(y)\left((\delta^{d}_{LL})_{i3}+(\delta^{d}_{RR})_{i3}\right)\Bigg{]}\right|^{2}\Bigg{\}},

where

𝒜1Bq\displaystyle\mathcal{A}^{B_{q}}_{1} =\displaystyle= α22tβ3MBqmμ4MW2mg~μMA2mq~2,𝒜2Bq=mt2MW2Atmg~VtbVtqf1(yμ)+M2mg~(δLLu)i3f4(y2,yμ),\displaystyle\alpha_{2}^{2}\,t_{\beta}^{3}\frac{M_{B_{q}}\,m_{\mu}}{4M_{W}^{2}}\frac{m_{\tilde{g}}\,\mu}{M_{A}^{2}\,m^{2}_{\tilde{q}}},~~~~~\mathcal{A}^{B_{q}}_{2}=\frac{m_{t}^{2}}{M_{W}^{2}}\frac{A_{t}}{m_{\tilde{g}}}V_{tb}V_{tq}^{*}f_{1}(y_{\mu})+\frac{M_{2}}{m_{\tilde{g}}}(\delta^{u}_{LL})_{i3}\,f_{4}(y_{2},y_{\mu}),
C10SM\displaystyle C_{10}^{\text{SM}} =\displaystyle= α24π4GF2VtbVtqY0(xt),Y0(x)=x8(x4x1+3x(x1)2ln(x)),\displaystyle\frac{\alpha_{2}}{4\pi}\frac{4G_{F}}{\sqrt{2}}V_{tb}V_{tq}^{*}Y_{0}(x_{t}),~~~~~Y_{0}(x)=\frac{x}{8}\left(\frac{x-4}{x-1}+\frac{3x}{(x-1)^{2}}\ln(x)\right), (4.57)

with xt=mt2/MW2x_{t}={m_{t}^{2}}/{M_{W}^{2}} and i=1(2)i=1(2) for q=d(s)q=d(s) . The loop functions f1(yμ)f_{1}(y_{\mu}), f3(y)f_{3}(y) and f4(y2,yμ)f_{4}(y_{2},y_{\mu}) are the ones which appear in the double penguin contributions to BqB_{q} mixing in Section 4.3.1. With C10SM=0C_{10}^{\text{SM}}=0 and At100A_{t}\gtrsim 100 GeV, the dominant contribution to Eq. (4.5) originates from the flavour blind term of 𝒜2Bq\mathcal{A}_{2}^{B_{q}}, such that we can make the approximation

BR(Bs(d)μ+μ)\displaystyle BR(B_{s(d)}\to\mu^{+}\mu^{-}) \displaystyle\approx 𝒪(6×106(1×107)GeV4mq~4tβ6At2μ2MA4f12(yμ)).\displaystyle\mathcal{O}\Bigg{(}\frac{6\times 10^{-6}(1\times 10^{-7})\text{GeV}^{4}}{m_{\tilde{q}}^{4}}t_{\beta}^{6}\,\frac{A_{t}^{2}\,\mu^{2}}{M_{A}^{4}}f^{2}_{1}(y_{\mu})\Bigg{)}. (4.58)

Then, for |Atμ|/MA2𝒪(1)|A_{t}\,\mu|/M_{A}^{2}\approx\mathcal{O}(1), mq~2m_{\tilde{q}}\approx 2 TeV, tβ25t_{\beta}\approx 25 and f1(yμ)f_{1}(y_{\mu}) receiving its maximum value of order one (cf. Figure 9), we expect BR(Bs(d)μ+μ)𝒪(1010(12))BR(B_{s(d)}\to\mu^{+}\mu^{-})\approx\mathcal{O}(10^{-10(-12)}).

Refer to caption
Refer to caption
Refer to caption
Figure 13: The SUSY contributions to the branching ratios of Bqμ+μB_{q}\to\mu^{+}\mu^{-} versus the average squark mass mq~m_{\tilde{q}}, defined in Eq. (4.21). The red dotted lines denote the experimental measurements, while the blue dotted lines indicate the maximum NP contributions.

In Figure 13, we plot our predicted SUSY contributions to the branching ratios of Bqμ+μB_{q}\to\mu^{+}\mu^{-} against the average squark mass mq~m_{\tilde{q}}, defined in Eq. (4.21). The red dotted lines denote the experimental measurements, while the blue ones correspond to the limits for the NP contributions as given in Eq. (4.55). In both sectors, BsB_{s} and BdB_{d}, our maximum predictions fall about an order of magnitude below these limits.161616As discussed in [65] and also in [66], the theory prediction in Eq. (4.5) should take into account the large width difference between the mass eigenstates of the BsB_{s} system. This correction enhances the corresponding branching ratio by about 10%. Given the smallness of the new physics contribution in our model, it does, however, not change our results significantly.

4.6 Neutron and 199Hg EDMs

CP-violating effects in the quark sector can manifest themselves through the quark EDMs as well as the quark Chromo Electric Dipole Moments (CEDMs). The gluino contributions read [67, 68, 15]

{dqie,dqiC}\displaystyle\left\{\frac{d_{q_{i}}}{e},d_{q_{i}}^{C}\right\} =\displaystyle= αs4πmg~mq~2Im[(δLLq)ik(δLRq)kj(δRRq)ji]{Qqq(y),qC(y)},\displaystyle\frac{\alpha_{s}}{4\pi}\frac{m_{\tilde{g}}}{m^{2}_{\tilde{q}}}\mathrm{Im}\left[(\delta^{q}_{LL})_{ik}(\delta^{q}_{LR})_{kj}(\delta^{q}_{RR})_{ji}\right]\left\{Q_{q}\mathcal{F}_{q}(y),\mathcal{F}^{C}_{q}(y)\right\}, (4.59)

with

q(y)\displaystyle\mathcal{F}_{q}(y) =\displaystyle= 83N1(y),qC(y)=(13N1(y)+3N2(y)),\displaystyle-\frac{8}{3}N_{1}(y),\qquad\mathcal{F}_{q}^{C}(y)=\left(\frac{1}{3}N_{1}(y)+3N_{2}(y)\right), (4.60)

where QqQ_{q} denotes the electric charge of quark qq and the loop functions N1(y)N_{1}(y), N2(y)N_{2}(y), with y=(mg~/mq~)2y=(m_{\tilde{g}}/m_{\tilde{q}})^{2}, are given in Appendix B. As the first generation squarks dominate Eq. (4.59), we use the average squark masses

mu~=mu~LLmu~RR,md~=md~LLmd~RR,\displaystyle m_{\tilde{u}}=\sqrt{m_{\tilde{u}_{LL}}m_{\tilde{u}_{RR}}},\qquad m_{\tilde{d}}=\sqrt{m_{\tilde{d}_{LL}}m_{\tilde{d}_{RR}}}, (4.61)

with mq~LL(RR)m_{\tilde{q}_{LL(RR)}} given in Eqs. (A.10,A.11).

Similar to the case of the electron EDM, we consider the most general scenario where the phases of the soft trilinear sector are different from the corresponding Yukawa ones. Then the dominant contributions of Eq. (4.59) arise from the single mass insertions with i=j=k=1i=j=k=1,

Im[(δLRu)11]Im[a~11u]λ8,Im[(δLRd)11]Im[a~11d]λ6,\displaystyle\mathrm{Im}\left[(\delta^{u}_{LR})_{11}\right]\propto\mathrm{Im}\left[\tilde{a}^{u}_{11}\right]\lambda^{8},\qquad\mathrm{Im}\left[(\delta^{d}_{LR})_{11}\right]\propto\mathrm{Im}\left[\tilde{a}^{d}_{11}\right]\lambda^{6}, (4.62)

where a~ijf\tilde{a}^{f}_{ij} is defined in Eq. (A.2). The double and triple mass insertions start contributing at orders λ12\lambda^{12} and λ8\lambda^{8} for the up and down quark (C)EDMs, respectively.

If, however, the phases of the soft trilinear and Yukawa sectors are aligned, a~ijf\tilde{a}^{f}_{ij} is real. In the case of the up quark sector, one should then check171717We have truncated our expansion at the order of λ8\lambda^{8}. whether the NLO corrections to Im[(δLRu)11]\mathrm{Im}\left[(\delta^{u}_{LR})_{11}\right] also vanish, before assuming that the term Im[(δLLu)13(δLRu)33(δRRu)31]sin(4θ2dθ3d)λ12\mathrm{Im}\left[(\delta^{u}_{LL})_{13}(\delta^{u}_{LR})_{33}(\delta^{u}_{RR})_{31}\right]\propto\sin(4\theta^{d}_{2}-\theta^{d}_{3})\lambda^{12} dominates. The situation in the down sector is such that the NLO correction to (δLRd)11(\delta^{d}_{LR})_{11} gives a non-vanishing contribution to the (C)EDMs. Explicitly, we find Im[(δLRd)11]NLOsin(4θ2d+θ3d)λ7\mathrm{Im}\left[(\delta^{d}_{LR})_{11}\right]_{\text{NLO}}\propto\sin(4\theta^{d}_{2}+\theta^{d}_{3})\lambda^{7}, while the smallest contribution from multiple mass insertions is Im[(δLLd)12NLO(δLRd)21]sin(θ2d)λ9\mathrm{Im}\left[(\delta^{d}_{LL})_{{12}_{\text{NLO}}}(\delta^{d}_{LR})_{21}\right]\propto\sin(\theta^{d}_{2})\lambda^{9}.

In order to compare the gluino contributions of our model according to Eq. (4.59) with the experimental limits, we take into account the RG running from the SUSY scale down to the hadronic scale, using the LO results of [69], for αs(μS1TeV)0.089\alpha_{s}(\mu_{S}\approx 1\text{TeV})\approx 0.089 and αs(μH1GeV)0.358\alpha_{s}(\mu_{H}\approx 1\text{GeV})\approx 0.358 [70]. Then,

dqiC(μH)\displaystyle d^{C}_{q_{i}}(\mu_{H}) \displaystyle\approx 0.87dqiC(μS),\displaystyle 0.87\,d^{C}_{q_{i}}(\mu_{S}),
dqie(μH)\displaystyle\frac{d_{q_{i}}}{e}(\mu_{H}) \displaystyle\approx 0.38dqie(μS)0.39QqdqiC(μS),\displaystyle 0.38\,\frac{d_{q_{i}}}{e}(\mu_{S})-0.39\,Q_{q}\,d^{C}_{q_{i}}(\mu_{S}), (4.63)

with dqi(C)(μS)d^{(C)}_{q_{i}}(\mu_{S}) as given in Eq. (4.59).

With these preparations, we can study the predictions for the neutron and the 199Hg EDMs. Adopting the QCD sum rules approach, the neutron EDM at the renormalisation scale μ=1\mu=1 GeV is given in terms of the QCD θ¯\bar{\theta}-term and the quark (C)EDMs by [42]

dne=8.2×1017cmθ¯0.12due+0.78dde+(0.3duC+0.3ddC0.014dsC),\frac{d_{n}}{e}=8.2\times 10^{-17}\,\text{cm}\,\bar{\theta}-0.12\,\frac{d_{u}}{e}+0.78\,\frac{d_{d}}{e}+\left(-0.3\,d^{C}_{u}+0.3\,d^{C}_{d}-0.014\,d^{C}_{s}\right), (4.64)

while the current experimental limit is [71]

|dn/e|2.9×1026cm1.47×1012 GeV1.\displaystyle|d_{n}/e|\leq 2.9\times 10^{-26}\text{cm}\approx 1.47\times 10^{-12}\text{ GeV}^{-1}. (4.65)

The quark (C)EDMs can also be probed through measurements of the EDMs of atomic systems, where 199Hg provides the best upper limit amongst the diamagnetic systems [72]

|dHg/e|3.1×1029cm1.57×1015 GeV1.\displaystyle|d_{\text{Hg}}/e|\leq 3.1\times 10^{-29}\text{cm}\approx 1.57\times 10^{-15}\text{ GeV}^{-1}. (4.66)

However, large theoretical uncertainties in the atomic and in particular the nuclear calculations prevent the extraction of bounds on dqi(C)d^{(C)}_{q_{i}}. Eq. (4.66) limits the nuclear Schiff moment as [73]

SHg1.45×1012|e|fm3,\displaystyle S_{\text{Hg}}\leq 1.45\times 10^{-12}|e|\,\text{fm}^{3}, (4.67)

which, assuming it is dominated by pion-nucleon interactions, can be expressed as [74]

SHg=13.5(0.01g¯πNN(0)+(±)0.02g¯πNN(1)+0.02g¯πNN(2)).\displaystyle S_{\text{Hg}}=13.5\left(0.01\,\bar{g}^{(0)}_{\pi NN}+(\pm)0.02\,\bar{g}^{(1)}_{\pi NN}+0.02\,\bar{g}^{(2)}_{\pi NN}\right). (4.68)

In this equation, the g¯πNN(i)\bar{g}^{(i)}_{\pi NN} denote the pion-nucleon couplings. Their coefficients in Eq. (4.68) are the best fit values taken from the review article [74], which assesses the strengths and weaknesses of different, sometimes contradictory, nuclear calculations provided in the literature. Combining Eqs. (4.67,4.68) with the relation

g¯πNN(1)=2×1012(duCddC),\displaystyle\bar{g}^{(1)}_{\pi NN}=2\times 10^{-12}\left(d^{C}_{u}-d^{C}_{d}\right), (4.69)

which was derived in [75], it can be inferred that [73]

|(duCddC)/e|2.8×1026cm1.42×1012 GeV1.\displaystyle|(d^{C}_{u}-d^{C}_{d})/e|\leq 2.8\times 10^{-26}\text{cm}\approx 1.42\times 10^{-12}\text{ GeV}^{-1}. (4.70)

However, this bound only applies if the coefficient of g¯πNN(1)\bar{g}^{(1)}_{\pi NN} in Eq. (4.68) takes its best fit value. In principle, it could also be zero, in which case no bound on |(duCddC)/e||(d^{C}_{u}-d^{C}_{d})/e| could be extracted.

Refer to caption
Refer to caption
Figure 14: The neutron EDM versus the average squark mass mq~=mu~md~m_{\tilde{q}}=\sqrt{m_{\tilde{u}}\,m_{\tilde{d}}}, with mu~m_{\tilde{u}} and md~m_{\tilde{d}} as defined in Eq. (4.61) (left panel) and versus the electron EDM (right panel). The red dotted lines denote the current experimental limits as given in Eqs. (4.65,4.3) and the black dotted lines the future limits |dn/e|1028|d_{n}/e|\lesssim 10^{-28} cm 5×1015GeV1\approx 5\times 10^{-15}\,\text{GeV}^{-1} and |de/e|3×1031|d_{e}/e|\,\lesssim 3\times 10^{-31} cm 1.52×1017GeV1\approx 1.52\times 10^{-17}\,\text{GeV}^{-1} [42].

In the left panel of Figure 14, we show our prediction for the neutron EDM versus the average first generation squark mass mq~=mu~md~m_{\tilde{q}}=\sqrt{m_{\tilde{u}}\,m_{\tilde{d}}}. For squark masses less than about 6 TeV, it lies just below the red line denoting the experimental limit in Eq. (4.65). For heavier squarks it stays below the limit by at least one order of magnitude. The colour coding corresponds to the predicted value of |(duCddC)/e|×1012|(d^{C}_{u}-d^{C}_{d})/e|\times 10^{12} GeV, which can also reach the limit in Eq. (4.70) for large |dn/e||d_{n}/e| values. In the right panel of Figure 14, the neutron and electron EDMs are plotted against each other. They are of the same order of magnitude, but it is the current electron EDM limit that constrains our parameter space. When the future experimental limits are reached, only the small part lying in the lower left corner bounded by the black dotted lines will survive.

5 Conclusions

In a recent paper we showed how MFV can emerge approximately from an SU(5)SU(5) SUSY GUT whose flavour structure is controlled by the family symmetry S4×U(1)S_{4}\times U(1) [1], providing a good description of all quark and lepton masses, mixings as well as CP violation. We showed that the model leads to mass insertion parameters in Eqs. (2.43,2.53,2.63) which very closely resemble the MFV forms, where δLL,RRu,d,e\delta^{u,d,e}_{LL,RR} are unit matrices and δLRu,d,e\delta^{u,d,e}_{LR} are proportional to the Yukawa matrices.

Whereas in [1] we focused on the similarity to MFV, here we highlight the differences, which we do by considering the predictions for electric dipole moments, lepton flavour violation, BB and KK meson mixing as well as rare BB decays. As expected, many of the new physics contributions fall well below current limits. This is the case for example in BB physics observables, where deviations are negligible (at the 1% level). Thus, our model would be unable to explain any discrepancies between SM expectations and measurements in ΔMBs,d\Delta M_{B_{s,d}} or in the time dependent asymmetries SJ/ψϕS_{J/\psi\phi} and SJ/ψKSS_{J/\psi K_{S}}. This is in marked contrast to the SU(3)SU(3) family symmetry models previously studied, where large effects were expected in these observables. Thus, neutrino physics which led to S4×U(1)S_{4}\times U(1), appears to lead us towards models with small such deviations.

On the other hand there are observable effects which would distinguish the SU(5)×S4×U(1)SU(5)\times S_{4}\times U(1) SUSY GUT model from MFV. The most significant effects of the departure from MFV appear in the (12) down-type quark and charged lepton sectors, related to Kaon mixing observables and the branching ratio of μeγ\mu\rightarrow e\gamma. We find that (δLLe)12(\delta^{e}_{LL})_{12} provides the dominant contribution to BR(μeγ\mu\rightarrow e\gamma) and that our model requires rather heavy sleptons, exceeding about 1 TeV, in order to satisfy the experimental bound. Another important area where our model gives observable deviations from MFV is CP violation, in particular the electron EDM, where again large (TeV scale) slepton masses are required for compatibility with current bounds to be achieved. The model therefore predicts that a signal should be observed in both μeγ\mu\rightarrow e\gamma and the electron EDM within the expected future sensitivity of these experiments.

Turning to CP violation in the Kaon system, the model contributes significantly to ϵK\epsilon_{K} due to the phase of (δRRd)12(\delta^{d}_{RR})_{12}. The SM prediction for this observable depends sensitively on |Vcb||V_{cb}|, which differs when considering inclusive or exclusive decays, leading to a lower central value in the latter case. However, even for inclusive values of |Vcb||V_{cb}|, the SM expectation for ϵK\epsilon_{K} is about 10% below the measurement. Our model is capable of providing sufficient enhancement to explain the experimentally observed value of ϵK\epsilon_{K}.

ded_{e} μeγ\mu\rightarrow e\gamma ΔMBs,d\Delta M_{B_{s,d}} SJ/ψϕS_{J/\psi\phi} SJ/ψKSS_{J/\psi K_{S}} ΔMK\Delta M_{K} ϵK\epsilon_{K} Bs,dμ+μB_{s,d}\rightarrow\mu^{+}\mu^{-} dnd_{n} \bm{\star\star\star} \bm{\star\star\star} \bm{\star} \bm{\star} \bm{\star} \bm{\star\star} \bm{\star\star\star} \bm{\star} \bm{\star\star}

Table 7: The flavour “DNA” of our SU(5)×S4×U(1)SU(5)\times S_{4}\times U(1) SUSY GUT model following the labelling proposed in [15]. The predicted contributions to the various flavour observables are classified into three categories: \bm{\star\star\star} indicates large observable effects while visible but small effects are marked by \bm{\star\star}. The absence of sizable effects is shown by \bm{\star}.

We collect our findings in Table 7, where we classify various flavour observables according to the expected size of our model’s predictions. Large observable effects are indicated by \bm{\star\star\star}, while visible but small effects are labelled by \bm{\star\star}. A single star {\bm{\star}} shows the absence of sizable effects on a particular flavour observable. This classification, which was first suggested in [15], is undoubtedly somewhat vague by nature and therefore limited in its scope. Yet, it has proved to be a useful tool in comparing characteristic predictions of various models of flavour. Table 8 of [15] shows the expected predictions of a selection of different models. Comparing this table with our model’s DNA, see Table 7, demonstrates the specific signatures of our SU(5)×S4×U(1)SU(5)\times S_{4}\times U(1) SUSY GUT of flavour. According to the phenomenological study in [15], all of the discussed models which predict large effects on ϵK\epsilon_{K} also predict large contributions to SJ/ψϕS_{J/\psi\phi}. In contrast, our model features large contributions to ϵK\epsilon_{K} in conjunction with negligible effects on SJ/ψϕS_{J/\psi\phi}. Furthermore, all SUSY models in [15] entail large contributions to Bsμ+μB_{s}\rightarrow\mu^{+}\mu^{-} while such contributions are tiny in our model. Those models in [15] which lead to a large electron EDM (ded_{e}) also predict a large neutron EDM (dnd_{n}). Again, our model differs from this pattern by predicting large observable ded_{e} together with only small dnd_{n}. Concerning μeγ\mu\rightarrow e\gamma we observe that sizable effects are expected for our model as well as all flavour models scrutinised in [15]. This comparison illustrates that the phenomenological signatures of our SU(5)×S4×U(1)SU(5)\times S_{4}\times U(1) SUSY GUT are indeed quite different from those of previously discussed flavour models.

In summary, theories with discrete flavour symmetries such as the SU(5)×S4×U(1)SU(5)\times S_{4}\times U(1) SUSY GUT model, motivated by neutrino physics, seem to lead to MFV-like flavour changing expectations, but with some important exceptions. This study shows that, while observable deviations in BB physics are generally not expected to show up, departures from MFV are expected in both μeγ\mu\rightarrow e\gamma and the electron EDM within the foreseeable future sensitivity of these experiments. CP violating effects may also be observed in ϵK\epsilon_{K}, perhaps resolving some possible SM discrepancies.

Acknowledgements

We thank Claudia Hagedorn for helpful discussions throughout this project. MD and SFK acknowledge partial support from the STFC Consolidated ST/J000396/1 grant and the European Union FP7 ITN-INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442). CL is supported by the Deutsche Forschungsgemeinschaft (DFG) within the Research Unit FOR 1873 “Quark Flavour Physics and Effective Field Theories”.

Appendix

Appendix A Low energy mass insertion parameters

In this appendix, we show explicitly the full expressions of the low energy mass insertion parameters used in our numerical analysis. They are given in terms of the high energy order one coefficients introduced in Section 2. Performing the transformation to the SCKM basis, it is useful to define the corresponding GUT scale parameters

b~12\displaystyle\tilde{b}_{12} =\displaystyle= (b2b01k2),b~13=(b4b01k4),b~23=(b3b01k3),\displaystyle(b_{2}-b_{01}k_{2}),~~~~\tilde{b}_{13}=-(b_{4}-b_{01}k_{4}),~~~~\tilde{b}_{23}=-(b_{3}-b_{01}k_{3}), (A.1)
B~12\displaystyle\tilde{B}_{12} =\displaystyle= 2x~2ys(b1b01k1),B~13=x~22ybys(b01b02),B~23=ysyb(b01b02),R~12=B3K3,\displaystyle 2\frac{\tilde{x}_{2}}{y_{s}}(b_{1}-b_{01}k_{1}),~~\>\tilde{B}_{13}=\frac{\tilde{x}_{2}^{2}}{y_{b}\,y_{s}}(b_{01}-b_{02}),~~\>\tilde{B}_{23}=\frac{y_{s}}{y_{b}}(b_{01}-b_{02}),~~\>\tilde{R}_{12}=B_{3}-K_{3},

and

a~11u\displaystyle\tilde{a}^{u}_{11} =\displaystyle= auei(θuaθuy),a~22u=acei(θcaθuy),a~33u=at,a~23u=z2u(atytei(θ2zuaθ2zu)z2uaz2u),\displaystyle a_{u}e^{i(\theta^{a}_{u}-\theta^{y}_{u})},~~~~\tilde{a}^{u}_{22}=a_{c}e^{i(\theta^{a}_{c}-\theta^{y}_{u})},~~~~\tilde{a}^{u}_{33}=a_{t},~~~~\tilde{a}^{u}_{23}=z^{u}_{2}\left(\frac{a_{t}}{y_{t}}-e^{i(\theta^{z_{u_{a}}}_{2}-\theta^{z_{u}}_{2})}\frac{z^{u_{a}}_{2}}{z^{u}_{2}}\right),
a~11d\displaystyle\tilde{a}^{d}_{11} =\displaystyle= x~22ys(2x~2ax~2ei(θ2x~aθ2x~)asysei(θsaθsy)),a~22d=asei(θsaθsy),a~33d=abei(θbaθby),\displaystyle\frac{\tilde{x}_{2}^{2}}{y_{s}}\left(2\frac{\tilde{x}^{a}_{2}}{\tilde{x}_{2}}e^{i(\theta^{\tilde{x}_{a}}_{2}-\theta^{\tilde{x}}_{2})}-\frac{a_{s}}{y_{s}}e^{i(\theta^{a}_{s}-\theta^{y}_{s})}\right),~~~~\tilde{a}^{d}_{22}=a_{s}e^{i(\theta^{a}_{s}-\theta^{y}_{s})},~~~~\tilde{a}^{d}_{33}=a_{b}e^{i(\theta^{a}_{b}-\theta^{y}_{b})},
a~12d\displaystyle\tilde{a}^{d}_{12} =\displaystyle= x~2(x~2ax~2ei(θ2x~aθ2x~)asysei(θsaθsy)),a~23d=ys(asysei(θsaθsy)abybei(θbaθby)),\displaystyle\tilde{x}_{2}\left(\frac{\tilde{x}^{a}_{2}}{\tilde{x}_{2}}e^{i(\theta^{\tilde{x}_{a}}_{2}-\theta^{\tilde{x}}_{2})}-\frac{a_{s}}{y_{s}}e^{i(\theta^{a}_{s}-\theta^{y}_{s})}\right),~~~~\tilde{a}^{d}_{23}=y_{s}\left(\frac{a_{s}}{y_{s}}e^{i(\theta^{a}_{s}-\theta^{y}_{s})}-\frac{a_{b}}{y_{b}}e^{i(\theta^{a}_{b}-\theta^{y}_{b})}\right),
a~31d\displaystyle\tilde{a}^{d}_{31} =\displaystyle= z3d(abybei(θbaθby)z3daz3dei(θ3zdaθ3zd)),\displaystyle z^{d}_{3}\left(\frac{a_{b}}{y_{b}}e^{i(\theta^{a}_{b}-\theta^{y}_{b})}-\frac{z^{d_{a}}_{3}}{z^{d}_{3}}e^{i(\theta^{z_{d_{a}}}_{3}-\theta^{z_{d}}_{3})}\right),~~~~
a~32d\displaystyle\tilde{a}^{d}_{32} =\displaystyle= ys2yb(asysei(θsaθsy)abybei(θbaθby))+z2d(abybei(θbaθby)z2daz2dei(θ2zdaθ2zd)),\displaystyle\frac{y_{s}^{2}}{y_{b}}\left(\frac{a_{s}}{y_{s}}e^{i(\theta^{a}_{s}-\theta^{y}_{s})}-\frac{a_{b}}{y_{b}}e^{i(\theta^{a}_{b}-\theta^{y}_{b})}\right)+z^{d}_{2}\left(\frac{a_{b}}{y_{b}}e^{i(\theta^{a}_{b}-\theta^{y}_{b})}-\frac{z^{d_{a}}_{2}}{z^{d}_{2}}e^{i(\theta^{z_{d_{a}}}_{2}-\theta^{z_{d}}_{2})}\right),~~~~
a~23e\displaystyle\tilde{a}^{e}_{23} =\displaystyle= 9ys2yb(asysei(θsaθsy)abybei(θbaθby))+z2d(abybei(θbaθby)z2daz2dei(θ2zdaθ2zd)).\displaystyle 9\frac{y_{s}^{2}}{y_{b}}\left(\frac{a_{s}}{y_{s}}e^{i(\theta^{a}_{s}-\theta^{y}_{s})}-\frac{a_{b}}{y_{b}}e^{i(\theta^{a}_{b}-\theta^{y}_{b})}\right)+z^{d}_{2}\left(\frac{a_{b}}{y_{b}}e^{i(\theta^{a}_{b}-\theta^{y}_{b})}-\frac{z^{d_{a}}_{2}}{z^{d}_{2}}e^{i(\theta^{z_{d_{a}}}_{2}-\theta^{z_{d}}_{2})}\right).~~~~ (A.2)

Here, z2uz^{u}_{2} parameterises the (23) and (32) entries of the up-type quark Yukawa matrix of order λ7\lambda^{7} before canonical normalisation; the associated phase is given by θ2zu=3θ2d+2θ3d\theta^{z_{u}}_{2}=3\theta^{d}_{2}+2\theta^{d}_{3}. They become subdominant contributions to the (23) and (32) elements of YGUTuY^{u}_{\text{GUT}} in Eq. (2.4). The parameter of the corresponding soft trilinear contribution is denoted by z2uaz^{u_{a}}_{2} with phase θ2zua\theta^{z_{u_{a}}}_{2}. In addition to z2uz^{u}_{2} we also need z4dz^{d}_{4} which parameterises a subdominant contribution to the (22) and (23) elements of YGUTdY^{d}_{\text{GUT}} in Eq. (2.8) of order λ5\lambda^{5}. For the phase we have θ4zd=6θ2d+4θ3d\theta^{z_{d}}_{4}=6\theta^{d}_{2}+4\theta^{d}_{3}, and the corresponding parameters of the AA-terms are z4daz^{d_{a}}_{4} and θ4zda\theta^{z_{d_{a}}}_{4}. It is worth mentioning that all a~ijf\tilde{a}^{f}_{ij} become real in the limit where the Yukawa and trilinear phase structures are aligned such that the relation θfy=θfa\theta^{y}_{f}=\theta^{a}_{f} holds.

In order to describe the renormalisation group running from the GUT scale down to low energies, we introduce the parameters in Eqs. (3.8,3.9) as well as

Rua\displaystyle R^{a}_{u} =\displaystyle= η(465gU2M1/2A0+3atyt)+3ηNyDαD,Rta=Rua+3ηatyt,\displaystyle\eta\left(\frac{46}{5}g_{U}^{2}\frac{M_{1/2}}{A_{0}}+3a_{t}\,y_{t}\right)+3\eta_{N}\,y_{D}\,\alpha_{D}\,,~~~~~~~R^{a}_{t}=R^{a}_{u}+3\,\eta\,a_{t}\,y_{t}\,,~~~~ (A.3)
Rda\displaystyle R^{a}_{d} =\displaystyle= η445gU2M1/2A0,Rba=Rda+ηatyt,Rea=η245gU2M1/2A0+ηNyDαD,\displaystyle\eta\,\frac{44}{5}g_{U}^{2}\frac{M_{1/2}}{A_{0}}\,,~~~~~~R^{a}_{b}=R^{a}_{d}+\eta\,a_{t}\,y_{t}\,,~~~~~~R^{a}_{e}=\eta\frac{24}{5}g_{U}^{2}\frac{M_{1/2}}{A_{0}}+\eta_{N}\,y_{D}\alpha_{D}\,,~~~~~~~~ (A.4)
Rν\displaystyle R_{\nu} =\displaystyle= z1DyD(K3+K3N),Rνa=z1Daeiθ1zDaαD(K3+K3N),\displaystyle z^{D}_{1}-y_{D}(K_{3}+K^{N}_{3})\,,~~~~~~R^{a}_{\nu}=z^{D_{a}}_{1}e^{i\theta^{z_{D_{a}}}_{1}}-\alpha_{D}(K_{3}+K^{N}_{3})\,, (A.5)

and

Rμ\displaystyle R_{\mu} =\displaystyle= 4η(0.9gU234yt2)3ηNyD2,\displaystyle 4\eta\left(0.9\,g_{U}^{2}-\frac{3}{4}y_{t}^{2}\right)-3\eta_{N}\,y_{D}^{2}\,, (A.6)
Rq\displaystyle R_{q} =\displaystyle= (2b02+cHu)yt2+α02at2,\displaystyle(2b_{02}+c_{H_{u}})\,y_{t}^{2}+\alpha_{0}^{2}\,a_{t}^{2}\,, (A.7)
Rl\displaystyle R_{l} =\displaystyle= (1+B0N+cHu)yD2+α02αD2,\displaystyle(1+B^{N}_{0}+c_{H_{u}})y_{D}^{2}+\alpha_{0}^{2}\alpha_{D}^{2}\,, (A.8)
Rl\displaystyle R_{l}^{\prime} =\displaystyle= (1+B0N+cHu)yDz1D+α02αDz1Daeiθ1zDa.\displaystyle(1+B^{N}_{0}+c_{H_{u}})y_{D}\,z^{D}_{1}+\alpha_{0}^{2}\alpha_{D}\,z^{D_{a}}_{1}e^{i\theta^{z_{D_{a}}}_{1}}\,. (A.9)

In these expressions, gU0.52g_{U}\approx\sqrt{0.52} denotes the universal gauge coupling constant at the GUT scale, M1/2M_{1/2} is the universal gaugino mass parameter and A0A_{0} is the scale of the soft trilinear terms. Using the SUSY breaking mass m0m_{0}, we have also introduced α0=A0/m0\alpha_{0}=A_{0}/m_{0}, see Eq. (3.13). η\eta and ηN\eta_{N} have been defined in Eq. (2.33), while cHuc_{H_{u}} is given in Eq. (3.12).

With these definitions, the μ\mu parameter at the low energy scale can be approximated by μμGUT(1+Rμ)\mu\approx\mu_{\text{GUT}}\left(1+R_{\mu}\right), and the low energy sfermion masses, whose GUT scale definitions are given in Eq. (2.29), take the form

mu~LL\displaystyle m_{\tilde{u}_{LL}} \displaystyle\approx mc~LLm0pL1Gu,mt~LLm0pL3Gu,\displaystyle m_{\tilde{c}_{LL}}\approx m_{0}\,p^{u}_{L^{1G}}\,,~~~~\,~~m_{\tilde{t}_{LL}}\approx m_{0}\,p^{u}_{L^{3G}}\,,
mu~RR\displaystyle m_{\tilde{u}_{RR}} \displaystyle\approx mc~RRm0pR1Gu,mt~RRm0pR3Gu,\displaystyle m_{\tilde{c}_{RR}}\approx m_{0}\,p^{u}_{R^{1G}}\,,~~~~~~m_{\tilde{t}_{RR}}\approx m_{0}\,p^{u}_{R^{3G}}\,, (A.10)
md~LL\displaystyle m_{\tilde{d}_{LL}} \displaystyle\approx ms~LLm0pL1Gd,mb~LLm0pL3Gd,\displaystyle m_{\tilde{s}_{LL}}\approx m_{0}\,p^{d}_{L^{1G}}\,,~~~~~~m_{\tilde{b}_{LL}}\approx m_{0}\,p^{d}_{L^{3G}}\,,
md~RR\displaystyle m_{\tilde{d}_{RR}} \displaystyle\approx ms~RRmb~RRm0pRd,\displaystyle m_{\tilde{s}_{RR}}\approx m_{\tilde{b}_{RR}}\approx m_{0}\,p^{d}_{R}\,, (A.11)
me~LL\displaystyle m_{\tilde{e}_{LL}} \displaystyle\approx mμ~LLmτ~LLm0pLe,\displaystyle m_{\tilde{\mu}_{LL}}\approx m_{\tilde{\tau}_{LL}}\approx m_{0}\,p^{e}_{L}\,,
me~RR\displaystyle m_{\tilde{e}_{RR}} \displaystyle\approx mμ~RRm0pR1Ge,mτ~RRm0pR3Ge,\displaystyle m_{\tilde{\mu}_{RR}}\approx m_{0}\,p^{e}_{R^{1G}}\,,~~~~~~m_{\tilde{\tau}_{RR}}\approx m_{0}\,p^{e}_{R^{3G}}\,, (A.12)

with

pL1Gu\displaystyle p^{u}_{L^{1G}} =\displaystyle= b01+6.5x,pL3Gu=b02+6.5x2ηRq+υu2m02yt2(1+Rty)2,\displaystyle\sqrt{b_{01}+6.5\,x},~~~~~~~\,p^{u}_{L^{3G}}=\sqrt{b_{02}+6.5\,x-2\eta R_{q}+\frac{\upsilon_{u}^{2}}{m_{0}^{2}}y_{t}^{2}(1+R^{y}_{t})^{2}}\,,
pR1Gu\displaystyle p^{u}_{R^{1G}} =\displaystyle= b01+6.15x,pR3Gu=b02+6.15x4ηRq+υu2m02yt2(1+Rty)2,\displaystyle\sqrt{b_{01}+6.15\,x},~~~~~~p^{u}_{R^{3G}}=\sqrt{b_{02}+6.15\,x-4\eta R_{q}+\frac{\upsilon_{u}^{2}}{m^{2}_{0}}y_{t}^{2}(1+R^{y}_{t})^{2}}\,,~~~~~~ (A.13)
pL1Gd\displaystyle p^{d}_{L^{1G}} =\displaystyle= b01+6.5x,pL3Gd=b02+6.5x4ηRq,pRd=1+6.1x,\displaystyle\sqrt{b_{01}+6.5\,x},~~~~~p^{d}_{L^{3G}}=\sqrt{b_{02}+6.5\,x-4\eta R_{q}},~~~~~p^{d}_{R}=\sqrt{1+6.1x},~~~~~~~~ (A.14)
pR1Ge\displaystyle p^{e}_{R^{1G}} =\displaystyle= b01+0.15x,pR3Ge=b02+0.15x,pLe=1+0.5x2ηNRl.\displaystyle\sqrt{b_{01}+0.15\,x},~~~~p^{e}_{R^{3G}}=\sqrt{b_{02}+0.15\,x},~~~~p^{e}_{L}=\sqrt{1+0.5\,x-2\eta_{N}\,R_{l}}.~~~~~~~~ (A.15)

Here, x=(M1/2/m0)2x=(M_{1/2}/m_{0})^{2} as defined in Eqs. (3.13). With these definitions at hand, we can write the mass insertion parameters at the low energy as follows.

Up-type quark sector:

(δLLu)12\displaystyle(\delta^{u}_{LL})_{12} =\displaystyle= 1(pL1Gu)2eiθ2db~12λ4,\displaystyle\frac{1}{(p^{u}_{L^{1G}})^{2}}e^{-i\theta^{d}_{2}}\,\tilde{b}_{12}\,\lambda^{4}, (A.16)
(δLLu)13\displaystyle(\delta^{u}_{LL})_{13} =\displaystyle= 1pL1GupL3Guei(4θ2d+θ3d)(1ηyt2)b~13λ6,\displaystyle\frac{1}{p^{u}_{L^{1G}}p^{u}_{L^{3G}}}e^{-i(4\theta^{d}_{2}+\theta^{d}_{3})}(1-\eta\,y_{t}^{2})\,\tilde{b}_{13}\,\lambda^{6}, (A.17)
(δLLu)23\displaystyle(\delta^{u}_{LL})_{23} =\displaystyle= 1pL1GupL3Guei(7θ2d+2θ3d)(1ηyt2)b~23λ5,\displaystyle\frac{1}{p^{u}_{L^{1G}}p^{u}_{L^{3G}}}e^{-i(7\theta^{d}_{2}+2\theta^{d}_{3})}(1-\eta\,y_{t}^{2})\,\tilde{b}_{23}\,\lambda^{5}, (A.18)
(δRRu)12\displaystyle(\delta^{u}_{RR})_{12} =\displaystyle= 1(pR1Gu)2eiθ2db~12λ4,\displaystyle\frac{1}{(p^{u}_{R^{1G}})^{2}}e^{-i\theta^{d}_{2}}\,\tilde{b}_{12}\,\lambda^{4}, (A.19)
(δRRu)13\displaystyle(\delta^{u}_{RR})_{13} =\displaystyle= 1pR1GupR3Gu(12ηyt2)b~13λ6,\displaystyle\frac{1}{p^{u}_{R^{1G}}p^{u}_{R^{3G}}}(1-2\eta\,y_{t}^{2})\,\tilde{b}_{13}\,\lambda^{6}, (A.20)
(δRRu)23\displaystyle(\delta^{u}_{RR})_{23} =\displaystyle= 1pR1GupR3Guei(5θ2d+θ3d)(12ηyt2)b~23λ5,\displaystyle\frac{1}{p^{u}_{R^{1G}}p^{u}_{R^{3G}}}e^{i(5\theta^{d}_{2}+\theta^{d}_{3})}(1-2\eta\,y_{t}^{2})\,\tilde{b}_{23}\,\lambda^{5}, (A.21)
(δLRu)11\displaystyle(\delta^{u}_{LR})_{11} =\displaystyle= α0υum0pL1GupR1Guyu(1+Ruy)(a~11uyuμ(1+Rμ)A0tβ2Rua1+Ruy)λ8,\displaystyle\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}\,p^{u}_{L^{1G}}\,p^{u}_{R^{1G}}}y_{u}(1+R^{y}_{u})\left(\frac{\tilde{a}^{u}_{11}}{y_{u}}-\frac{\mu(1+R_{\mu})}{A_{0}\,t_{\beta}}-2\frac{R^{a}_{u}}{1+R^{y}_{u}}\right)\lambda^{8}, (A.22)
(δLRu)22\displaystyle(\delta^{u}_{LR})_{22} =\displaystyle= α0υum0pL1GupR1Guyc(1+Ruy)(a~22uycμ(1+Rμ)A0tβ2Rua1+Ruy)λ4,\displaystyle\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}\,p^{u}_{L^{1G}}\,p^{u}_{R^{1G}}}y_{c}(1+R^{y}_{u})\left(\frac{\tilde{a}^{u}_{22}}{y_{c}}-\frac{\mu(1+R_{\mu})}{A_{0}\,t_{\beta}}-2\frac{R^{a}_{u}}{1+R^{y}_{u}}\right)\lambda^{4}, (A.23)
(δLRu)33\displaystyle(\delta^{u}_{LR})_{33} =\displaystyle= α0υum0pL3GupR3Guyt(1+Rty)(a~33uytμ(1+Rμ)A0tβ2Rta1+Rty),\displaystyle\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}\,p^{u}_{L^{3G}}\,p^{u}_{R^{3G}}}y_{t}(1+R^{y}_{t})\left(\frac{\tilde{a}^{u}_{33}}{y_{t}}-\frac{\mu(1+R_{\mu})}{A_{0}\,t_{\beta}}-2\frac{R^{a}_{t}}{1+R^{y}_{t}}\right), (A.24)
(δLRu)12\displaystyle(\delta^{u}_{LR})_{12} =\displaystyle= (δLRu)21=(δLRu)31=0,\displaystyle(\delta^{u}_{LR})_{21}=(\delta^{u}_{LR})_{31}=0, (A.25)
(δLRu)13\displaystyle(\delta^{u}_{LR})_{13} =\displaystyle= α0υum0pL1GupR3Gux~2ybyt(x~2ax~2ei(θ2x~aθ2x~)+Rta1+Rty)2ηλ7,\displaystyle-\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}\,p^{u}_{L^{1G}}\,p^{u}_{R^{3G}}}\tilde{x}_{2}\,y_{b}\,y_{t}\left(\frac{\tilde{x}^{a}_{2}}{\tilde{x}_{2}}e^{i(\theta^{\tilde{x}_{a}}_{2}-\theta^{\tilde{x}}_{2})}+\frac{R^{a}_{t}}{1+R^{y}_{t}}\right)2\eta\lambda^{7}, (A.26)
(δLRu)23\displaystyle(\delta^{u}_{LR})_{23} =\displaystyle= α0υum0pL1GupR3Gu{ysybyt(asysei(θsaθsy)+Rta1+Rty)2ηλ6+\displaystyle\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}\,p^{u}_{L^{1G}}\,p^{u}_{R^{3G}}}\Bigg{\{}-y_{s}\,y_{b}\,y_{t}\left(\frac{a_{s}}{y_{s}}e^{i(\theta^{a}_{s}-\theta^{y}_{s})}+\frac{R^{a}_{t}}{1+R^{y}_{t}}\right)2\eta\lambda^{6}+
+\displaystyle+ λ7[eiθ2da~23u(1+Rtyηyt2)+2ηybyt(eiθ2da~12d+(asysei(θsaθsy)+Rta1+Rty)×\displaystyle\lambda^{7}\Bigg{[}e^{i\theta^{d}_{2}}\tilde{a}^{u}_{23}(1+R^{y}_{t}-\eta\,y_{t}^{2})+2\eta\,y_{b}\,y_{t}\Bigg{(}e^{i\theta^{d}_{2}}\tilde{a}^{d}_{12}+\left(\frac{a_{s}}{y_{s}}e^{i(\theta^{a}_{s}-\theta^{y}_{s})}+\frac{R^{a}_{t}}{1+R^{y}_{t}}\right)\times
×\displaystyle\times (x~2cos(θ2d)z4dcos(4θ2d+θ3d))+z4dei(4θ2d+θ3d)(ei(θsaθsy)z4daz4dei(θ4zdaθ4zd)))]},\displaystyle(\tilde{x}_{2}\cos(\theta^{d}_{2})-z^{d}_{4}\cos(4\theta^{d}_{2}+\theta^{d}_{3}))+z^{d}_{4}e^{i(4\theta^{d}_{2}+\theta^{d}_{3})}\left(e^{i(\theta^{a}_{s}-\theta^{y}_{s})}-\frac{z^{d_{a}}_{4}}{z^{d}_{4}}e^{i(\theta^{z_{d_{a}}}_{4}-\theta^{z_{d}}_{4})}\right)\Bigg{)}\Bigg{]}\Bigg{\}},
(δLRu)32\displaystyle(\delta^{u}_{LR})_{32} =\displaystyle= α0υum0pL3GupR1Gu(1+Rty2ηyt2)ei(3θ2d+θ3d)a~23uλ7.\displaystyle\frac{\alpha_{0}\,\upsilon_{u}}{m_{0}\,p^{u}_{L^{3G}}\,p^{u}_{R^{1G}}}(1+R^{y}_{t}-2\eta\,y_{t}^{2})e^{i(3\theta^{d}_{2}+\theta^{d}_{3})}\tilde{a}^{u}_{23}\,\lambda^{7}. (A.28)

At the GUT scale, (δLRu)13(\delta^{u}_{LR})_{{13}} is zero up to the order λ8\lambda^{8} where we truncate our expansion. The non-zero value in Eq. (A.26) is purely generated via the RG evolution. Similarly, a term proportional to ηλ6\eta\,\lambda^{6} is generated in (δLRu)23(\delta^{u}_{LR})_{23}, which was of order λ7\lambda^{7} at the GUT scale. The λ\lambda-suppression of all other low energy mass insertion parameters (δLL,RR,LRf)ij(\delta^{f}_{LL,RR,LR})_{ij} remains unaffected by the running, such that the corresponding RG effects can simply be absorbed into new order one coefficients.

Down-type quark sector:

(δLLd)12\displaystyle(\delta^{d}_{LL})_{12} =\displaystyle= 1(pL1Gd)2B~12λ3,\displaystyle\frac{1}{(p^{d}_{L^{1G}})^{2}}\tilde{B}_{12}\,\lambda^{3}, (A.29)
(δLLd)13\displaystyle(\delta^{d}_{LL})_{13} =\displaystyle= 1pL1GdpL13deiθ2dx~22ybys(b01b02+2ηRq)(1+ηyt21+Rby)λ4,\displaystyle\frac{1}{p^{d}_{L^{1G}}p^{d}_{L^{13}}}e^{i\theta^{d}_{2}}\frac{\tilde{x}_{2}^{2}}{y_{b}\,y_{s}}\left(b_{01}-b_{02}+2\eta\,R_{q}\right)\left(1+\frac{\eta\,y_{t}^{2}}{1+R^{y}_{b}}\right)\,\lambda^{4}, (A.30)
(δLLd)23\displaystyle(\delta^{d}_{LL})_{23} =\displaystyle= 1pL1GdpL13dysyb(b01b02+2ηRq)(1+ηyt21+Rby)λ2,\displaystyle\frac{1}{p^{d}_{L^{1G}}p^{d}_{L^{13}}}\frac{y_{s}}{y_{b}}\left(b_{01}-b_{02}+2\eta\,R_{q}\right)\left(1+\frac{\eta\,y_{t}^{2}}{1+R^{y}_{b}}\right)\,\lambda^{2}, (A.31)
(δRRd)12\displaystyle(\delta^{d}_{RR})_{12} =\displaystyle= (δRRd)13=1(pRd)2eiθ2dR~12λ4,\displaystyle-(\delta^{d}_{RR})_{13}=\frac{1}{(p^{d}_{R})^{2}}e^{i\theta^{d}_{2}}\,\tilde{R}_{12}\,\lambda^{4}, (A.32)
(δRRd)23\displaystyle(\delta^{d}_{RR})_{23} =\displaystyle= 1(pRd)2R~12λ4,\displaystyle-\frac{1}{(p^{d}_{R})^{2}}\tilde{R}_{12}\,\lambda^{4}, (A.33)
(δLRd)11\displaystyle(\delta^{d}_{LR})_{11} =\displaystyle= α0υdm0pL1GdpRdx~22ys(1+Rdy)(a~11dx~22/ysμtβ(1+Rμ)A02Rda1+Rdy)λ6,\displaystyle\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}\,p^{d}_{L^{1G}}\,p^{d}_{R}}\frac{\tilde{x}_{2}^{2}}{y_{s}}(1+R^{y}_{d})\left(\frac{\tilde{a}^{d}_{11}}{\tilde{x}_{2}^{2}/y_{s}}-\frac{\mu\,t_{\beta}(1+R_{\mu})}{A_{0}}-2\frac{R^{a}_{d}}{1+R^{y}_{d}}\right)\lambda^{6}, (A.34)
(δLRd)22\displaystyle(\delta^{d}_{LR})_{22} =\displaystyle= α0υdm0pL1GdpRdys(1+Rdy)(a~22dysμtβ(1+Rμ)A02Rda1+Rdy)λ4,\displaystyle\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}\,p^{d}_{L^{1G}}\,p^{d}_{R}}y_{s}(1+R^{y}_{d})\left(\frac{\tilde{a}^{d}_{22}}{y_{s}}-\frac{\mu\,t_{\beta}(1+R_{\mu})}{A_{0}}-2\frac{R^{a}_{d}}{1+R^{y}_{d}}\right)\lambda^{4}, (A.35)
(δLRd)33\displaystyle(\delta^{d}_{LR})_{33} =\displaystyle= α0υdm0pL3GdpRdyb(1+Rby)(a~33dybμtβ(1+Rμ)A02Rba1+Rby)λ2,\displaystyle\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}\,p^{d}_{L^{3G}}\,p^{d}_{R}}y_{b}(1+R^{y}_{b})\left(\frac{\tilde{a}^{d}_{33}}{y_{b}}-\frac{\mu\,t_{\beta}(1+R_{\mu})}{A_{0}}-2\frac{R^{a}_{b}}{1+R^{y}_{b}}\right)\lambda^{2}, (A.36)
(δLRd)12\displaystyle(\delta^{d}_{LR})_{12} =\displaystyle= (δLRd)21=(δLRd)13=α0υdm0pL1GdpRd(1+Rdy)a~12dλ5,\displaystyle-(\delta^{d}_{LR})_{21}=(\delta^{d}_{LR})_{13}=\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}\,p^{d}_{L^{1G}}\,p^{d}_{R}}(1+R^{y}_{d})\tilde{a}^{d}_{12}\,\lambda^{5}, (A.37)
(δLRd)23\displaystyle(\delta^{d}_{LR})_{23} =\displaystyle= α0υdm0pL1GdpRdys(1+Rdy)(a~23dys+2ηyt21+Rby(atyt+Rda1+Rdy))λ4,\displaystyle\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}\,p^{d}_{L^{1G}}\,p^{d}_{R}}y_{s}(1+R^{y}_{d})\left(\frac{\tilde{a}^{d}_{23}}{y_{s}}+2\frac{\eta\,y_{t}^{2}}{1+R^{y}_{b}}\left(\frac{a_{t}}{y_{t}}+\frac{R^{a}_{d}}{1+R^{y}_{d}}\right)\right)\lambda^{4},~~~~~~~~~~ (A.38)
(δLRd)31\displaystyle(\delta^{d}_{LR})_{31} =\displaystyle= α0υdm0pL3GdpRdeiθ2d(1+Rby)a~31dλ6,\displaystyle\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}\,p^{d}_{L^{3G}}\,p^{d}_{R}}e^{-i\theta^{d}_{2}}(1+R^{y}_{b})\tilde{a}^{d}_{31}\,\lambda^{6}, (A.39)
(δLRd)32\displaystyle(\delta^{d}_{LR})_{32} =\displaystyle= α0υdm0pL3GdpRd(1+Rby)yb(a~32dyb+2ηyt2ys2yb2[2(1+Rby)+ηyt22(1+Rby)2a~23dys\displaystyle\frac{\alpha_{0}\,\upsilon_{d}}{m_{0}\,p^{d}_{L^{3G}}\,p^{d}_{R}}(1+R^{y}_{b})y_{b}\Bigg{(}\frac{\tilde{a}^{d}_{32}}{y_{b}}+2\eta y_{t}^{2}\frac{y_{s}^{2}}{y_{b}^{2}}\Bigg{[}\frac{2(1+R^{y}_{b})+\eta y_{t}^{2}}{2(1+R^{y}_{b})^{2}}\frac{\tilde{a}^{d}_{23}}{y_{s}} (A.40)
+\displaystyle+ (atyt+Rda1+Rdy)(1+Rdy)2(1+Rby)3])λ6.\displaystyle\left(\frac{a_{t}}{y_{t}}+\frac{R^{a}_{d}}{1+R^{y}_{d}}\right)\frac{(1+R^{y}_{d})^{2}}{(1+R^{y}_{b})^{3}}\Bigg{]}\Bigg{)}\lambda^{6}.

Charged lepton sector:

(δLLe)12\displaystyle(\delta^{e}_{LL})_{12} =\displaystyle= (δLLe)23=1(pLe)2(R~122ηNE~12)λ4,\displaystyle-(\delta^{e}_{LL})_{23}=\frac{1}{(p^{e}_{L})^{2}}\left(\tilde{R}_{12}-2\eta_{N}\tilde{E}_{12}\right)\lambda^{4}, (A.41)
(δLLe)13\displaystyle(\delta^{e}_{LL})_{13} =\displaystyle= 1(pLe)2(R~122ηNE~12)λ4,\displaystyle-\frac{1}{(p^{e}_{L})^{2}}\left(\tilde{R}_{12}-2\eta_{N}\tilde{E}^{*}_{12}\right)\lambda^{4}, (A.42)
(δRRe)12\displaystyle(\delta^{e}_{RR})_{12} =\displaystyle= 1(pR1Ge)2eiθ2dB~123λ3,\displaystyle-\frac{1}{(p^{e}_{R^{1G}})^{2}}e^{i\theta^{d}_{2}}\frac{\tilde{B}_{12}}{3}\,\lambda^{3}, (A.43)
(δRRe)13\displaystyle(\delta^{e}_{RR})_{13} =\displaystyle= 1pR1GepR3GeB~133λ4,\displaystyle\frac{1}{p^{e}_{R^{1G}}\,p^{e}_{R^{3G}}}\frac{\tilde{B}_{13}}{3}\,\lambda^{4}, (A.44)
(δRRe)23\displaystyle(\delta^{e}_{RR})_{23} =\displaystyle= 1pR1GepR3Ge3B~23λ2,\displaystyle\frac{1}{p^{e}_{R^{1G}}\,p^{e}_{R^{3G}}}3\tilde{B}_{23}\,\lambda^{2}, (A.45)
(δLRe)11\displaystyle(\delta^{e}_{LR})_{11} =\displaystyle= 1pLepR1Geυdα0m0x~223ys(1+Rey)(ysx~22a~11dμtβA0(1+Rμ)2Rea1+Rey)λ6,\displaystyle\frac{1}{p^{e}_{L}\,p^{e}_{R^{1G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}\frac{\tilde{x}_{2}^{2}}{3\,y_{s}}(1+R^{y}_{e})\left(\frac{y_{s}}{\tilde{x}_{2}^{2}}\tilde{a}^{d}_{11}-\frac{\mu\,t_{\beta}}{A_{0}}(1+R_{\mu})-2\frac{R^{a}_{e}}{1+R^{y}_{e}}\right)\lambda^{6},~~~~~~ (A.46)
(δLRe)22\displaystyle(\delta^{e}_{LR})_{22} =\displaystyle= 1pLepR1Geυdα0m03ys(1+Rey)(a~22dysμtβA0(1+Rμ)2Rea1+Rey)λ4,\displaystyle\frac{1}{p^{e}_{L}\,p^{e}_{R^{1G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}3\,y_{s}(1+R^{y}_{e})\left(\frac{\tilde{a}^{d}_{22}}{y_{s}}-\frac{\mu\,t_{\beta}}{A_{0}}(1+R_{\mu})-2\frac{R^{a}_{e}}{1+R^{y}_{e}}\right)\lambda^{4}, (A.47)
(δLRe)33\displaystyle(\delta^{e}_{LR})_{33} =\displaystyle= 1pLepR3Geυdα0m0yb(1+Rey)(a~33dybμtβA0(1+Rμ)2Rea1+Rey)λ2,\displaystyle\frac{1}{p^{e}_{L}\,p^{e}_{R^{3G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}y_{b}(1+R^{y}_{e})\left(\frac{\tilde{a}^{d}_{33}}{y_{b}}-\frac{\mu\,t_{\beta}}{A_{0}}(1+R_{\mu})-2\frac{R^{a}_{e}}{1+R^{y}_{e}}\right)\lambda^{2}, (A.48)
(δLRe)12\displaystyle(\delta^{e}_{LR})_{12} =\displaystyle= 1pLepR1Geυdα0m0(1+Rey)eiθ2da~12dλ5,\displaystyle\frac{1}{p^{e}_{L}\,p^{e}_{R^{1G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}(1+R^{y}_{e})e^{i\theta^{d}_{2}}\tilde{a}^{d}_{12}\,\lambda^{5}, (A.49)
(δLRe)13\displaystyle(\delta^{e}_{LR})_{13} =\displaystyle= 1pLepR3Geυdα0m0((1+Rey)a~31d+2ηNyDRνyb(αDyD+Rea1+Rey))λ6,\displaystyle\frac{1}{p^{e}_{L}\,p^{e}_{R^{3G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}\left((1+R^{y}_{e})\tilde{a}^{d}_{31}+2\eta_{N}\,y_{D}\,R_{\nu}\,y_{b}\left(\frac{\alpha_{D}}{y_{D}}+\frac{R^{a}_{e}}{1+R^{y}_{e}}\right)\right)\lambda^{6},~~~~~~~~ (A.50)
(δLRe)21\displaystyle(\delta^{e}_{LR})_{21} =\displaystyle= (δLRe)31=1pLepR1Geυdα0m0(1+Rey)eiθ2da~12dλ5,\displaystyle(\delta^{e}_{LR})_{31}=-\frac{1}{p^{e}_{L}\,p^{e}_{R^{1G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}(1+R^{y}_{e})e^{-i\theta^{d}_{2}}\tilde{a}^{d}_{12}\,\lambda^{5}, (A.51)
(δLRe)23\displaystyle(\delta^{e}_{LR})_{23} =\displaystyle= 1pLepR3Geυdα0m0((1+Rey)a~23e+2ηNyDRνyb(RνaRν+Rea1+Rey))λ6,\displaystyle\frac{1}{p^{e}_{L}\,p^{e}_{R^{3G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}\left((1+R^{y}_{e})\tilde{a}^{e}_{23}+2\eta_{N}\,y_{D}\,R_{\nu}\,y_{b}\left(\frac{R^{a}_{\nu}}{R_{\nu}}+\frac{R^{a}_{e}}{1+R^{y}_{e}}\right)\right)\lambda^{6}, (A.52)
(δLRe)32\displaystyle(\delta^{e}_{LR})_{32} =\displaystyle= 1pLepR1Geυdα0m0(1+Rey)3a~23dλ4.\displaystyle\frac{1}{p^{e}_{L}\,p^{e}_{R^{1G}}}\frac{\upsilon_{d}\,\alpha_{0}}{m_{0}}(1+R^{y}_{e})3\,\tilde{a}^{d}_{23}\,\lambda^{4}. (A.53)

Here we have additionally introduced E~12\tilde{E}_{12} which parameterises the off-diagonal entries of (δe)LL(\delta^{e})_{LL} in Eqs. (A.41,A.42) induced by the RG running. It is defined as

E~12\displaystyle\tilde{E}_{12} =\displaystyle= yD2(R~12+B3NK3NB0N)+Rl(K3+K3N)Rl.\displaystyle y_{D}^{2}\left(\tilde{R}_{12}+B^{N}_{3}-K^{N}_{3}B^{N}_{0}\right)+R_{l}^{\prime}-(K_{3}+K^{N}_{3})R_{l}\,. (A.54)

Appendix B Loop functions

The dimensionless functions CBC_{B}, CLC^{\prime}_{L}, CRC^{\prime}_{R}, C2C^{\prime}_{2}, CB,RC^{\prime}_{B,R}, CB,LC^{\prime}_{B,L} and CB′′C^{\prime\prime}_{B} which appear in the expressions for the EDM of the electron in Section 4.1 and the branching ratio of μeγ\mu\to e\gamma in Section 4.2 are defined as [41]

Ci=m04μ2Ii,\displaystyle C_{i}=\frac{m_{0}^{4}}{\mu^{2}}I_{i}\ , (B.1)

where

IB(M12,mL2,mR2)\displaystyle I_{B}(M_{1}^{2},\,m_{L}^{2},\,m_{R}^{2}) =\displaystyle= 1mR2mL2[yLg1(xL)yRg1(xR)],\displaystyle\frac{1}{m_{R}^{2}-m_{L}^{2}}\left[y_{L}\,g_{1}\left(x_{L}\right)-y_{R}\,g_{1}\left(x_{R}\right)\right], (B.2)
IL(mL2,M12,μ2)\displaystyle I^{\prime}_{L}(m_{L}^{2},\,M_{1}^{2},\,\mu^{2}) =\displaystyle= 1mL2yLyLxL[h1(xL)h1(yL)],\displaystyle\frac{1}{m_{L}^{2}}\frac{y_{L}}{y_{L}-x_{L}}\left[\,h_{1}\left(x_{L}\right)-\,h_{1}\left(y_{L}\right)\right], (B.3)
IR(mR2,M12,μ2)\displaystyle I^{\prime}_{R}(m_{R}^{2},\,M_{1}^{2},\,\mu^{2}) =\displaystyle= 1mR2yRyRxR[h1(xR)h1(yR)],\displaystyle\frac{1}{m_{R}^{2}}\frac{y_{R}}{y_{R}-x_{R}}\left[\,h_{1}\left(x_{R}\right)-\,h_{1}\left(y_{R}\right)\right], (B.4)
I2(mL2,M22,μ2)\displaystyle I^{\prime}_{2}(m_{L}^{2},\,M_{2}^{2},\,\mu^{2}) =\displaystyle= M2cot2θWM1mL2yLyLxL[h2(xL)h2(yL)],\displaystyle\frac{M_{2}\cot^{2}\theta_{W}}{M_{1}m_{L}^{2}}\frac{y_{L}}{y_{L}-x^{\prime}_{L}}\left[\,h_{2}\left(x^{\prime}_{L}\right)-\,h_{2}\left(y_{L}\right)\right], (B.5)
IB,R(M12,mL2,mR2)\displaystyle I^{\prime}_{B,R}(M_{1}^{2},\,m_{L}^{2},\,m_{R}^{2}) =\displaystyle= 1mR2mL2(yRh1(xR)mR2IB),\displaystyle-\frac{1}{m_{R}^{2}-m_{L}^{2}}\left(y_{R}\,h_{1}\left(x_{R}\right)-m_{R}^{2}I_{B}\right), (B.6)
IB,L(M12,mL2,mR2)\displaystyle I^{\prime}_{B,L}(M_{1}^{2},\,m_{L}^{2},\,m_{R}^{2}) =\displaystyle= 1mR2mL2(yLh1(xL)mL2IB),\displaystyle\frac{1}{m_{R}^{2}-m_{L}^{2}}\left(y_{L}\,h_{1}\left(x_{L}\right)-m_{L}^{2}I_{B}\right), (B.7)
IB′′(M12,mL2,mR2)\displaystyle I^{\prime\prime}_{B}(M_{1}^{2},\,m_{L}^{2},\,m_{R}^{2}) =\displaystyle= mL2mR2mR2mL21μ2(yRIB,RyLIB,L),\displaystyle\frac{m_{L}^{2}\,m_{R}^{2}}{m_{R}^{2}-m_{L}^{2}}{\frac{1}{\mu^{2}}}\left(y_{R}I^{\prime}_{B,R}-y_{L}I^{\prime}_{B,L}\right), (B.8)

with

xL=M12mL2,xR=M12mR2,xL=M22mL2,yL=μ2mL2,yR=μ2mR2,\displaystyle x_{L}=\frac{M_{1}^{2}}{m_{L}^{2}},~~\quad x_{R}=\frac{M_{1}^{2}}{m_{R}^{2}},~~\quad x^{\prime}_{L}=\frac{M_{2}^{2}}{m_{L}^{2}},~~\quad y_{L}=\frac{\mu^{2}}{m_{L}^{2}},~~\quad y_{R}=\frac{\mu^{2}}{m_{R}^{2}}, (B.9)

and

g1(y)\displaystyle g_{1}(y) =\displaystyle= 1y2+2yln(y)(1y)3,\displaystyle\frac{1-y^{2}+2y\ln(y)}{(1-y)^{3}},
h1(y)\displaystyle h_{1}(y) =\displaystyle= 1+4y5y2+(2y2+4y)ln(y)(1y)4,\displaystyle\frac{1+4y-5y^{2}+(2y^{2}+4y)\ln(y)}{(1-y)^{4}},
h2(y)\displaystyle h_{2}(y) =\displaystyle= 7y2+4y112(y2+6y+2)ln(y)2(y1)4.\displaystyle\frac{7y^{2}+4y-11-2(y^{2}+6y+2)\ln(y)}{2(y-1)^{4}}. (B.10)

Note that we assume real and positive values for MiM_{i} and μ2\mu^{2}.

The loop functions appearing in the meson mixing amplitudes of Section 4.3 as well as the branching ratios of Bs,dμ+μB_{s,d}\to\mu^{+}\mu^{-} in Section 4.5 read [15]

f6(y)\displaystyle f_{6}(y) =\displaystyle= 6(1+3y)ln(y)+y39y29y+176(y1)5,\displaystyle\frac{6(1+3y)\ln(y)+y^{3}-9y^{2}-9y+17}{6(y-1)^{5}}, (B.11)
f~6(y)\displaystyle\tilde{f}_{6}(y) =\displaystyle= 6y(1+y)ln(y)y39y2+9y+13(y1)5,\displaystyle\frac{6y(1+y)\ln(y)-y^{3}-9y^{2}+9y+1}{3(y-1)^{5}}, (B.12)
f1(y)\displaystyle f_{1}(y) =\displaystyle= 11y+y(1y)2ln(y),\displaystyle\frac{1}{1-y}+\frac{y}{(1-y)^{2}}\ln(y), (B.13)
f3(y)\displaystyle f_{3}(y) =\displaystyle= 1+y2(1y)2y(1y)3ln(y),\displaystyle-\frac{1+y}{2(1-y)^{2}}-\frac{y}{(1-y)^{3}}\ln(y), (B.14)
f4(x,y)\displaystyle f_{4}(x,y) =\displaystyle= xln(x)(1x)2(yx)yln(y)(1y)2(xy)+1(1x)(1y),\displaystyle-\frac{x\ln(x)}{(1-x)^{2}(y-x)}-\frac{y\ln(y)}{(1-y)^{2}(x-y)}+\frac{1}{(1-x)(1-y)}, (B.15)
f5(y)\displaystyle f_{5}(y) =\displaystyle= 2+5yy26(1y)3+y(1y)4ln(y).\displaystyle\frac{2+5y-y^{2}}{6(1-y)^{3}}+\frac{y}{(1-y)^{4}}\ln(y). (B.16)

The relevant functions for the branching ratio of bsγb\to s\gamma in Section 4.4 are given by [11]

M1(y)\displaystyle M_{1}(y) =\displaystyle= 1+4y5y2+4yln(y)+2y2ln(y)2(1y)4,\displaystyle\frac{1+4y-5y^{2}+4y\ln(y)+2y^{2}\ln(y)}{2(1-y)^{4}}, (B.17)
M3(y)\displaystyle M_{3}(y) =\displaystyle= 1+9y+9y217y3+18y2ln(y)+6y3ln(y)12(y1)5.\displaystyle\frac{-1+9y+9y^{2}-17y^{3}+18y^{2}\ln(y)+6y^{3}\ln(y)}{12(y-1)^{5}}. (B.18)

Finally, the loop functions entering the hadronic EDM expressions in Section 4.6 are [67]

N1(y)\displaystyle N_{1}(y) =\displaystyle= 3+44y36y212y3+y4+12y(2+3y)ln(y)6(y1)6,\displaystyle\frac{3+44y-36y^{2}-12y^{3}+y^{4}+12y(2+3y)\ln(y)}{6(y-1)^{6}}, (B.19)
N2(y)\displaystyle N_{2}(y) =\displaystyle= 10+9y18y2y3+3(1+6y+3y2)ln(y)3(y1)6.\displaystyle-\frac{10+9y-18y^{2}-y^{3}+3(1+6y+3y^{2})\ln(y)}{3(y-1)^{6}}. (B.20)

References

  • [1] M. Dimou, S. F. King and C. Luhn, JHEP 1602 (2016) 118 [arXiv:1511.07886].
  • [2] S. F. King, Rept. Prog. Phys.  67 (2004) 107 [hep-ph/0310204]; G. Altarelli and F. Feruglio, Rev. Mod. Phys.  82 (2010) 2701 [arXiv:1002.0211]; S. F. King and C. Luhn, Rept. Prog. Phys.  76 (2013) 056201 [arXiv:1301.1340]; S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys.  16 (2014) 045018 [arXiv:1402.4271]; S. F. King, J. Phys. G: Nucl. Part. Phys. 42 (2015) 123001 [arXiv:1510.02091].
  • [3] P. Ballett, S. F. King, C. Luhn, S. Pascoli and M. A. Schmidt, Phys. Rev. D 89 (2014) 1, 016016 [arXiv:1308.4314]; D. Meloni, Phys. Lett. B 728 (2014) 118 [arXiv:1308.4578]; P. Ballett, S. F. King, C. Luhn, S. Pascoli and M. A. Schmidt, J. Phys. Conf. Ser.  598 (2015) 1, 012014 [arXiv:1406.0308]; P. Ballett, S. F. King, C. Luhn, S. Pascoli and M. A. Schmidt, JHEP 1412 (2014) 122 [arXiv:1410.7573].
  • [4] R. S. Chivukula and H. Georgi, Phys. Lett. B 188 (1987) 99; L. J. Hall and L. Randall, Phys. Rev. Lett.  65 (1990) 2939; A. J. Buras, P. Gambino, M. Gorbahn, S. Jäger and L. Silvestrini, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085].
  • [5] H. Georgi and S. L. Glashow, Phys. Rev. Lett.  32 (1974) 438.
  • [6] J. C. Pati and A. Salam, Phys. Rev. D 8 (1973) 1240; J. C. Pati and A. Salam, Phys. Rev. D 10 (1974) 275 [Phys. Rev. D 11 (1975) 703].
  • [7] T. Feldmann, JHEP 1104 (2011) 043 [arXiv:1010.2116]; T. Feldmann, F. Hartmann, W. Kilian and C. Luhn, JHEP 1510 (2015) 160 [arXiv:1506.00782]; R. Barbieri and F. Senia, arXiv:1506.09201 [hep-ph].
  • [8] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036]; V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001].
  • [9] C. Bobeth, T. Ewerth, F. Kruger and J. Urban, Phys. Rev. D 66 (2002) 074021 [hep-ph/0204225].
  • [10] D. J. H. Chung, L. L. Everett, G. L. Kane, S. F. King, J. D. Lykken and L. T. Wang, Phys. Rept.  407 (2005) 1 [hep-ph/0312378].
  • [11] F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387]; M. Misiak, S. Pokorski and J. Rosiek, Adv. Ser. Direct. High Energy Phys.  15 (1998) 795 [hep-ph/9703442].
  • [12] G. G. Ross and O. Vives, Phys. Rev. D 67 (2003) 095013 [hep-ph/0211279].
  • [13] G. G. Ross, L. Velasco-Sevilla and O. Vives, Nucl. Phys. B 692 (2004) 50 [hep-ph/0401064].
  • [14] S. Antusch, S. F. King and M. Malinsky, JHEP 0806 (2008) 068 [arXiv:0708.1282]; S. Antusch, S. F. King, M. Malinsky and G. G. Ross, Phys. Lett. B 670 (2009) 383 [arXiv:0807.5047].
  • [15] W. Altmannshofer, A. J. Buras, S. Gori, P. Paradisi and D. M. Straub, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333].
  • [16] A. J. Buras and J. Girrbach, Acta Phys. Polon. B 43 (2012) 1427 [arXiv:1204.5064]; D. M. Straub, arXiv:1205.6094.
  • [17] S. F. King and I. N. R. Peddie, Phys. Lett. B 586 (2004) 83 [hep-ph/0312237]; S. F. King, I. N. R. Peddie, G. G. Ross, L. Velasco-Sevilla and O. Vives, JHEP 0507 (2005) 049 [hep-ph/0407012].
  • [18] P. Minkowski, Phys. Lett. B 67 (1977) 421; M. Gell-Mann, P. Ramond and R. Slansky, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669]; T. Yanagida, Conf. Proc. C 7902131 (1979) 95; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett.  44 (1980) 912.
  • [19] Y. Yamada, Z. Phys. C 60 (1993) 83; S. Antusch and M. Spinrath, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717].
  • [20] P. Paradisi, M. Ratz, R. Schieren and C. Simonetto, Phys. Lett. B 668 (2008) 202 [arXiv:0805.3989]; G. Colangelo, E. Nikolidakis and C. Smith, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801].
  • [21] L. Wolfenstein, Phys. Rev. Lett.  51 (1983) 1945.
  • [22] C. Hagedorn, S. F. King and C. Luhn, JHEP 1006 (2010) 048 [arXiv:1003.4249]; C. Hagedorn, S. F. King and C. Luhn, Phys. Lett. B 717 (2012) 207 [arXiv:1205.3114].
  • [23] R. Gatto, G. Sartori and M. Tonin, Phys. Lett. B 28 (1968) 128.
  • [24] C. Jarlskog, Phys. Rev. Lett.  55 (1985) 1039.
  • [25] S. Antusch and V. Maurer, JHEP 1311 (2013) 115 [arXiv:1306.6879].
  • [26] S. Antusch and M. Spinrath, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717].
  • [27] H. Georgi and C. Jarlskog, Phys. Lett. B 86 (1979) 297.
  • [28] J. A. Casas and S. Dimopoulos, Phys. Lett. B 387 (1996) 107 [hep-ph/9606237].
  • [29] R. Barbieri and G. F. Giudice, Nucl. Phys. B 306 (1988) 63; G. L. Kane and S. F. King, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374].
  • [30] H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev and X. Tata, Phys. Rev. D 87 (2013) 11, 115028 [arXiv:1212.2655].
  • [31] S. Heinemeyer, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244].
  • [32] N. Carrasco et al., Phys. Rev. D 90 (2014) 1, 014502 [arXiv:1403.7302].
  • [33] E. Gabrielli and S. Khalil, Phys. Rev. D 67 (2003) 015008 [hep-ph/0207288].
  • [34] A. Behring, C. Gross, G. Hiller and S. Schacht, JHEP 1208 (2012) 152 [arXiv:1205.1500].
  • [35] A. Crivellin and U. Nierste, Phys. Rev. D 79 (2009) 035018 [arXiv:0810.1613].
  • [36] A. Masiero, S. K. Vempati and O. Vives, arXiv:0711.2903.
  • [37] M. Arana-Catania, S. Heinemeyer and M. J. Herrero, Phys. Rev. D 90 (2014) 7, 075003 [arXiv:1405.6960].
  • [38] M. Arana-Catania, S. Heinemeyer and M. J. Herrero, Phys. Rev. D 88 (2013) 1, 015026 [arXiv:1304.2783].
  • [39] S. P. Martin, Adv. Ser. Direct. High Energy Phys.  21 (2010) 1 [Adv. Ser. Direct. High Energy Phys.  18 (1998) 1] [hep-ph/9709356].
  • [40] J. Baron et al. [ACME Collaboration], Science 343 (2014) 269 [arXiv:1310.753].
  • [41] I. Masina and C. A. Savoy, Nucl. Phys. B 661 (2003) 365 [hep-ph/0211283].
  • [42] J. Hisano, D. Kobayashi, W. Kuramoto and T. Kuwahara, JHEP 1511 (2015) 085 [arXiv:1507.05836].
  • [43] J. Adam et al. [MEG Collaboration], Phys. Rev. Lett.  110 (2013) 201801 [arXiv:1303.0754].
  • [44] A. M. Baldini et al., arXiv:1301.7225.
  • [45] Z. Ligeti, M. Papucci and G. Perez, Phys. Rev. Lett.  97 (2006) 101801 [hep-ph/0604112].
  • [46] A. J. Buras and J. Girrbach, Rept. Prog. Phys.  77 (2014) 086201 [arXiv:1306.3775].
  • [47] T. Inami and C. S. Lim, Prog. Theor. Phys.  65 (1981) 297 [Prog. Theor. Phys.  65 (1981) 1772]; G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys.  68 (1996) 1125 [hep-ph/9512380].
  • [48] E. Golowich, J. Hewett, S. Pakvasa, A. A. Petrov and G. K. Yeghiyan, Phys. Rev. D 83 (2011) 114017 [arXiv:1102.0009].
  • [49] J. Laiho, E. Lunghi and R. S. Van de Water, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928].
  • [50] S. Aoki et al., Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555].
  • [51] Y. Amhis et al. [Heavy Flavor Averaging Group (HFAG) Collaboration], arXiv:1412.7515.
  • [52] M. Artuso, G. Borissov and A. Lenz, arXiv:1511.09466.
  • [53] T. Aushev et al., arXiv:1002.5012.
  • [54] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett.  115 (2015) 3, 031601 [arXiv:1503.07089].
  • [55] J. Charles et al., Phys. Rev. D 91 (2015) 7, 073007 [arXiv:1501.05013].
  • [56] J. Yu, PoS LATTICE 2013 (2014) 398 [arXiv:1312.0306].
  • [57] K. A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38 (2014) 090001.
  • [58] A. J. Buras and D. Guadagnoli, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887].
  • [59] J. J. A. Bailey et al. [SWME Collaboration], Phys. Rev. D 92 (2015) 3, 034510 [arXiv:1503.05388].
  • [60] A. Bevan et al., Nucl. Phys. Proc. Suppl.  241-242 (2013) 89.
  • [61] M. Misiak et al., Phys. Rev. Lett.  98 (2007) 022002 [hep-ph/0609232]; M. Misiak et al., Phys. Rev. Lett.  114 (2015) 22, 221801 [arXiv:1503.01789]; M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier and M. Steinhauser, JHEP 1504 (2015) 168 [arXiv:1503.01791].
  • [62] C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Phys. Rev. Lett.  112 (2014) 101801 [arXiv:1311.0903].
  • [63] V. Khachatryan et al. [CMS and LHCb Collaborations], Nature 522 (2015) 68 [arXiv:1411.4413].
  • [64] A. Buras, PoS FWNP (2015) 003 [arXiv:1505.00618].
  • [65] K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk and N. Tuning, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735].
  • [66] A. J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934].
  • [67] J. Hisano and Y. Shimizu, Phys. Rev. D 70 (2004) 093001 [hep-ph/0406091].
  • [68] J. Hisano, M. Nagai and P. Paradisi, Phys. Rev. D 80 (2009) 095014 [arXiv:0812.4283].
  • [69] G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, JHEP 0511 (2005) 044 [hep-ph/0510137].
  • [70] W. Dekens and J. de Vries, JHEP 1305 (2013) 149 [arXiv:1303.3156]; V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 75 (2015) 5, 186 [arXiv:1412.1633]; G. Dissertori, arXiv:1506.05407.
  • [71] C. A. Baker et al., Phys. Rev. Lett.  97 (2006) 131801 [hep-ex/0602020].
  • [72] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel and E. N. Fortson, Phys. Rev. Lett.  102 (2009) 101601.
  • [73] Y. Singh and B. K. Sahoo, Phys. Rev. A 91 (2015) 3, 030501 [arXiv:1408.4337].
  • [74] J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Prog. Part. Nucl. Phys.  71 (2013) 21 [arXiv:1303.2371].
  • [75] M. Pospelov, Phys. Lett. B 530 (2002) 123 [hep-ph/0109044].