This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Simultaneous Auctions are Approximately Revenue-Optimal for Subadditive Bidders

Yang Cai
Yale University, USA
yang.cai@yale.edu
Yang Cai is supported by a Sloan Foundation Research Fellowship and the National Science Foundation Award CCF-1942583 (CAREER).
   Ziyun Chen
Tsinghua University, China
chenziyu20@mails.tsinghua.edu.cn
   Jinzhao Wu
Yale University, USA
jinzhao.wu@yale.edu
Jinzhao Wu is supported by a Research Fellowship from the Center for Algorithms, Data, and Market Design at Yale (CADMY).
Abstract

We study revenue maximization in multi-item auctions, where bidders have subadditive valuations over independent items [47]. Providing a simple mechanism that is approximately revenue-optimal in this setting is a major open problem in mechanism design [20]. In this paper, we present the first simple mechanism whose revenue is at least a constant fraction of the optimal revenue in multi-item auctions with subadditive bidders.

Our mechanism is a simultaneous auction that incorporates either a personalized entry fee or a personalized reserve price per item. We prove that for any simultaneous auction that satisfies cc-efficiency– a new property we propose, its revenue is at least an O(c)O(c)-approximation to the optimal revenue. We further show that both the simultaneous first-price and the simultaneous all-pay auction are 121\over 2-efficient. Providing revenue guarantees for non-truthful simple mechanisms, e.g., simultaneous auctions, in multi-dimensional environments has been recognized by Roughgarden et al. [46] as an important open question. Prior to our result, the only such revenue guarantees are due to Daskalakis et al. [30] for bidders who have additive valuations over independent items. Our result significantly extends the revenue guarantees of these non-truthful simple auctions to settings where bidders have combinatorial valuations.

1 Introduction

Revenue-maximization in auctions is a central problem in both Economics and Computer Science due to its numerous applications in markets and online platforms. While Myerson’s seminal work shows that a simple mechanism achieves the optimal revenue in single-item auctions [45], characterizing the revenue-optimal mechanism in multi-item settings has been notoriously difficult both analytically and algorithmically. Indeed, it has been shown that even finding (approximately) optimal multi-item mechanisms can require description complexity that is exponentially in the number of items, even for a single buyer [31, 29, 38, 4]. Similarly, computing the revenue-optimal multi-item mechanism is known to be intractable even for basic settings [13, 28, 26]. Furthermore, the revenue-optimal multi-item mechanisms may exhibit several counter-intuitive properties that do not arise in single-item settings [7, 39, 38]. To sum up, the optimal mechanism in multi-item settings is highly complex, difficult to characterize, and intractable to find.

Motivated by the highly complex nature of the optimal mechanism in multi-item settings, a recent line of work in algorithmic mechanism design [23, 24, 2, 37, 43, 16, 5, 49, 47, 15, 25, 20, 21, 33, 17, 30, 19] investigate the inherent tradeoff between optimality and simplicity. In other words, can we use simple and practical mechanisms to approximate the optimal revenue in multi-item auctions? The line of work mentioned above provide a positive answer in surprisingly general settings, under the standard item-independence assumption. In a beautiful work, Dütting et al. [33] show that a simple mechanism, known as sequential two-part tariff, can extract an Ω(1loglogm)\Omega\left({1\over\log\log m}\right) fraction of the revenue when bidders have subadditive valuations, where mm is the number of items in the auction. A valuation v:2[m]0v:2^{[m]}\to\mathbb{R}_{\geq 0} is subadditive, if v(ST)v(S)+v(T)v(S\cup T)\leq v(S)+v(T) for all sets of items S,T[m]S,T\subseteq[m]. Subadditivity captures the property that the items are not complements to each other, i.e., the items are not more valuable together than they are apart. This is a natural and important property in numerous economic environments. Hence, the following has been recognized as a fundamental open question:

Can we design simple mechanisms to achieve an O(1)O(1)-approximation to the optimal revenue
when the bidders have subadditive valuations under the item-independence assumption? (*)

Aside from question (1), other gaps remain in our understanding of the tradeoff between optimality and simplicity. In particular, existing results almost exclusively focus on truthful auctions, while many of the practical auctions are simple, but not truthful. For instance, the first-price auction is the most common type of mechanism in practice. In the display-ads market, arguably the most significant application of auctions in modern commerce, first-price auctions are adopted by every major exchange to allocate ad-displaying slots. Revenue guarantees for these simple non-truthful auctions have been scarce. Due to the ubiquity of such auctions, providing revenue guarantees for non-truthful simple mechanisms, especially in multi-item environments, has been recognized by Roughgarden et al. [46] as an important open question:

Can we provide revenue guarantees for simple but non-truthful mechanisms in multi-item auctions
that match the guarantees for simple and truthful mechanisms? (**)

Hartline et al. [40] show that the first-price auction with reserve price (or minimum bid) achieves approximately optimal revenue in the single-item setting. Prior to our work, the only revenue guarantee for non-truthful auctions in multi-item settings is due to Daskalakis et al. [30]. They show that when the bidders have additive valuations, simultaneous auctions with entry fees or reserved prices can extract a constant fraction of the optimal revenue.

We make significant progress in addressing both questions (1) and (1) in this paper. Our main result shows that the simultaneous first-price auction (or the simultaneous all-pay auction) with appropriately devised entry fees or reserve prices can achieve a constant fraction of the optimal revenue when bidders have subadditive valuations.

1.1 Our Contributions

We focus on the revenue guarantees of simultaneous auctions in this paper. We assume there are nn bidders and mm items. A simultaneous auction consists of mm parallel single-item auctions {𝒜j}j[m]\left\{\mathcal{A}_{j}\right\}_{j\in[m]}, one for each item. We consider two variants of simultaneous auctions:

Simultaneous auctions with personalized entry fees:

Each bidder ii is asked to pay a fixed entry fee Enti\textsc{Ent}_{i} up front. The mechanism then proceeds to run the simultaneous auction, that is, run mm parallel single-item auctions. Only the bidders who pay the entry fees can participate in these single-item auctions. See Mechanism 1 for details.

Simultaneous auctions with personalized reserve prices:

There is a reserve price rijr_{ij} for each bidder ii and each item jj. The mechanism runs the simultaneous auction. For each item jj that bidder ii wins, they need to pay the higher between their payment decided by the single-item auction 𝒜j\mathcal{A}_{j} and rijr_{ij}. See Mechanism 2 for details.

We now state our main result.

Main Contribution: We identify a crucial property of simultaneous auctions 𝒜={𝒜j}j[m]\mathcal{A}=\left\{\mathcal{A}_{j}\right\}_{j\in[m]} that we refer to as cc-efficiency, where cc is a positive real number (Definition 3.1). We show that, if the bidders have subadditive valuations over independent items (Definition 2.1), for any cc-efficient simultaneous auction 𝒜\mathcal{A}, there exists entry fees {Enti}i[n]\{\textsc{Ent}_{i}\}_{i\in[n]} and reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} such that the better of (i) 𝒜\mathcal{A} with personalized entry fees {Enti}i[n]\{\textsc{Ent}_{i}\}_{i\in[n]} and (ii) 𝒜\mathcal{A} with personalized reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} is an O(c)O(c)-approximation to the optimal revenue (Theorem 3.1). Next, we prove that both the simultaneous first-price auction and the simultaneous all-pay auction are 121\over 2-efficient (Lemmas 3.2, LABEL: and 3.3 ). Hence, by incorporating with entry fees or reserve prices, the simultaneous first-price auction (or the simultaneous all-pay auction) is an O(1)O(1)-approximation to the optimal revenue (Corollaries 3.4, LABEL: and 3.5). See Table 1 for comparison with other simple mechanisms.

A few remarks are in order. Firstly, our benchmark is the optimal revenue achievable by any Bayesian Incentive Compatible mechanism (or equivalently achievable at any Bayes-Nash equilibrium of any mechanism, truthful or not). This is the standard benchmark considered in the simple vs. optimal literature and used in all previous results. Secondly, our result makes the standard item-independent assumption that is used in essentially all previous work regarding the tradeoff between simplicity and optimality in multi-item auctions for both truthful and non-truthful mechanisms [23, 24, 2, 37, 43, 16, 5, 49, 47, 15, 25, 20, 21, 33, 30, 19]. Without assuming item-independence, [38] and [8] suggest that no mechanism with bounded menu complexity, a basic requirement for simple mechanisms, can offer any finite approximation guarantees, even when selling only two or three correlated items to a single buyer. 111Our mechanism becomes either selling the grand bundle or selling the items separately when there is a single buyer, and hence has bounded menu complexity. Finally, our approach fails to extend to simultaneous second-price auctions. We present some formal barriers in Example 1. See Section 3.2 for a more detailed discussion. It is an interesting open question to understand whether some variant of the simultaneous second-price auction is approximately revenue-optimal in our setting.

Revenue guarantees for a non-truthful auction.

We provide details on how we evaluate the revenue of simultaneous auctions. For the simultaneous auction with personalized reserved prices, our result holds even if the revenue is evaluated at the worst Bayes-Nash equilibrium. For the simultaneous auction with personalized entry fees, the answer is more nuanced. We show that for any Bayes-Nash equilibrium s{s} of the original simultaneous auction, there exists a set of entry fees {Enti}i[m]\{\textsc{Ent}_{i}\}_{i\in[m]} such that (a) the set of Bayes-Nash equilibria remains unchanged in the new simultaneous auction with entry fees, and (b) our result holds for the revenue generated at equilibrium s{s} in the new simultaneous auction with entry fees. Note that this is the same type of guarantee provided in [30] but for additive valuations. We believe such a guarantee is desirable in practice. When the original simultaneous auction has a unique Bayes-Nash equilibrium, our new mechanism inherits the uniqueness. When there are multiple equilibria, the auctioneer can first deploy the original simultaneous auction and wait until the bidders have reached an equilibrium s{s}. The auctioneer can now incorporate the set of entry fees tailored for the equilibrium s{s}. As our result suggests, the new mechanism still admits s{s} as a Bayes-Nash equilibrium and can now provide strong revenue guarantees. It seems unreasonable for the bidders to abandon s{s} and play a different equilibrium in the new mechanism, while they choose to play according to s{s} in the original one.

Our Techniques.

Our result is based on a combination of the cc-efficiency property for simultaneous auctions and the duality framework developed in [15, 20]. Roughly speaking, a simultaneous auction is cc-efficient, if for any Bayes-Nash equilibrium s{s}, any bidder ii, and any subset of items SS, bidder ii’s maximum attainable utility from items in SS plus the revenue generated from items in SS is at least cc times ii’s value for the bundle SS. It is not hard to see that if a simultaneous auction is cc-efficient, then its welfare is at least cc times the optimal welfare. What we show is that this desirable property is also useful in producing revenue guarantees. Furthermore, we provide a simple but crucial modification for the double-core decomposition in the duality framework, which is a most critical and challenging step of the entire analysis. This modification allows us to extend the duality-based analysis to simultaneous auctions and will likely find further applications. With these two innovations, we avoid the type-loss tradeoff analysis, which is the major technical hurdle in [30], and provide a modular and arguably simpler analysis for the significantly more general setting with subadditive bidders.

Table 1: A Summary of Approximation Results for Multi-Dimensional Revenue Maximization
S1A = Simultaneous First-Price Auction, S2A = Simultaneous-Second Price Auction, SAP = Simultaneous All-Pay Auction
Sequential Two-Part
Tariff Mechanism
S2A with
Entry Fees / Reserve Prices
S1A, SAP with
Entry Fees / Reserve Prices
Additive O(1)O(1)[25, 20] O(1)O(1) [49, 15, 30] O(1)O(1) for regular distributions[30]
XOS O(1)O(1)[20] ?? O(1)O(1)(This paper)
Subadditive O(loglogm)O(\log\log m)[33] ?? O(1)O(1)(This paper)

Approximate revenue monotonicity.

Building on our constant factor approximation, we establish approximate revenue monotonicity for subadditive bidders. This work generalizes the findings of Yao [50], who demonstrate approximate revenue monotonicity for XOS bidders. The formal statement of the theorem and the accompanying proof can be found in Appendix F.

1.2 Additional Related Work

Simple vs. Optimal.

As we mentioned earlier, the majority of results in the simple vs. optimal literature focus on truthful mechanisms. Indeed, most of the designed mechanisms are dominant strategy incentive compatible, providing very strong incentive guarantees for the bidders. However, to provide dominant strategy incentive compatibility, the mechanisms are sequential. As noted in [1], the multi-round nature of these sequential mechanisms can present implementation difficulties that static mechanisms, such as simultaneous auctions, avoid. Empirical evidence [3] also suggests that static mechanisms can be conducted rapidly and asynchronously, thus offering several implementation benefits, which may explain the prevalence of static mechanisms in the real world.

Algorithms for finding nearly revenue-optimal mechanisms.

There is a line of work focusing on efficient algorithms to find a (1ε)(1-\varepsilon)-approximation of the optimal revenue in multi-item auctions [10, 2, 12, 11, 13, 14, 44, 18]. However, the computed mechanisms may not be simple, and might be too complicated to implement in practice.

Welfare guarantees of simultaneous auctions.

A fruitful line of work aim to approximate the welfare in combinatorial auctions using simultaneous auctions. A non-exhaustive list includes [27, 6, 41, 34, 32, 42]. Feldman et al. [34] show that, when bidders have subadditive valuations, the Price of Anarchy is 22 for the simultaneous first-price auction, and 44 for the simultaneous second-price auction under the no-overbidding assumption. Recently, Correa and Cristi [42] show that the Price of Anarchy is 6+ε6+\varepsilon for a variant of the simultaneous all-pay auction. We provide constant factor approximation to the optimal revenue using simultaneous auctions. Our analysis for the cc-efficiency  property is inspired by [34].

2 Preliminaries

In this paper, we focus on revenue maximization in simultaneous auctions with nn bidders and mm items. We represent the set of all nn bidders using [n][n] and the set of all mm items with [m][m].

Types and Valuation Functions.

For each bidder ii, its type ti=tijj=1mt_{i}={\mathchoice{\left\langle t_{ij}\right\rangle}{\langle t_{ij}\rangle}{\langle t_{ij}\rangle}{\langle t_{ij}\rangle}}_{j=1}^{m} is a mm-dimensional vector where tijt_{ij} is the private information of bidder ii about item jj. Each tijt_{ij} is drawn independently from the distribution DijD_{ij}. The support of Di=×jDijD_{i}=\bigtimes_{j}D_{ij} and DijD_{ij} are represented by TiT_{i} and TijT_{ij}. When bidder ii has a type tit_{i}, their valuation for a set of items SS is denoted as υi(ti,S)\upsilon_{i}(t_{i},S). We refer to vi(,)v_{i}(\cdot,\cdot) as bidder ii’s valuation function that takes both ii’s type and a set of items as input. We refer to vi(ti,)v_{i}(t_{i},\cdot) as a valuation of bidder ii, which only takes a set of items as input.

Throughout the paper, we assume that each bidder ii’s distribution of valuation satisfies Definition 2.1. This is colloquially referred to as bidder ii’s valuation is subadditive over independent items. Definition 2.1 is proposed in [47] and has been adopted in essentially every work that studies revenue guarantees for simple mechanisms with subadditive bidders [20, 9, 33].

Definition 2.1 (Subadditive over independent items [47]).

A bidder ii’s distribution 𝒱i\mathcal{V}_{i} of their valuation υi(ti,)\upsilon_{i}{\mathchoice{\left(t_{i},\cdot\right)}{(t_{i},\cdot)}{(t_{i},\cdot)}{(t_{i},\cdot)}} is subadditive over independent items if their type tit_{i} is drawn from a product distribution Di=×jDijD_{i}=\bigtimes_{j}D_{ij} and vi(,)v_{i}(\cdot,\cdot) satisfies the following properties:

  • υi(,)\upsilon_{i}{\mathchoice{\left(\cdot,\cdot\right)}{(\cdot,\cdot)}{(\cdot,\cdot)}{(\cdot,\cdot)}} has no externalities. For each type tit_{i} and any subset of items S[m]S\subseteq[m], υi(ti,S)\upsilon_{i}(t_{i},S) relies solely on tijjS{\mathchoice{\left\langle t_{ij}\right\rangle}{\langle t_{ij}\rangle}{\langle t_{ij}\rangle}{\langle t_{ij}\rangle}}_{j\in S}. More formally, for any ti,tit_{i},t_{i}^{\prime} such that tij=tijt_{ij}=t^{\prime}_{ij} for all jSj\in S, υi(ti,S)=υi(ti,S)\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}=\upsilon_{i}{\mathchoice{\left(t_{i}^{\prime},S\right)}{(t_{i}^{\prime},S)}{(t_{i}^{\prime},S)}{(t_{i}^{\prime},S)}}.

  • υi(,)\upsilon_{i}{\mathchoice{\left(\cdot,\cdot\right)}{(\cdot,\cdot)}{(\cdot,\cdot)}{(\cdot,\cdot)}} is monotone. For any type tit_{i} and UV[m]U\subseteq V\subseteq[m], υi(ti,U)υi(ti,V)\upsilon_{i}(t_{i},U)\leq\upsilon_{i}(t_{i},V).

  • υi(,)\upsilon_{i}{\mathchoice{\left(\cdot,\cdot\right)}{(\cdot,\cdot)}{(\cdot,\cdot)}{(\cdot,\cdot)}} is subadditive. For all tit_{i} and U,V[m]U,V\subseteq[m], υi(ti,UV)υi(ti,U)+υi(ti,V)\upsilon_{i}{\mathchoice{\left(t_{i},U\cup V\right)}{(t_{i},U\cup V)}{(t_{i},U\cup V)}{(t_{i},U\cup V)}}\leq\upsilon_{i}{\mathchoice{\left(t_{i},U\right)}{(t_{i},U)}{(t_{i},U)}{(t_{i},U)}}+\upsilon_{i}{\mathchoice{\left(t_{i},V\right)}{(t_{i},V)}{(t_{i},V)}{(t_{i},V)}}.

Similar to previous work, we use Vi(tij)V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}} to denote υi(ti,{j})\upsilon_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left\{j\right\}}{\{j\}}{\{j\}}{\{j\}}}\right)}{(t_{i},{\mathchoice{\left\{j\right\}}{\{j\}}{\{j\}}{\{j\}}})}{(t_{i},{\mathchoice{\left\{j\right\}}{\{j\}}{\{j\}}{\{j\}}})}{(t_{i},{\mathchoice{\left\{j\right\}}{\{j\}}{\{j\}}{\{j\}}})}} since it only depends on tijt_{ij}.

We provide an example in Appendix A to show how Definition 2.1 captures standard settings with independent items as special cases.

An important property that we use in the analysis is the Lipschitzness of the valuation function.

Definition 2.2.

A valuation function v(,)v(\cdot,\cdot) is \ell-Lipschitz if for any type t,tTt,t^{\prime}\in T, and set X,Y[m]X,Y\subseteq[m],

|v(t,X)v(t,Y)|(|XΔY|+|{jXY:tjtj}|),\left|v(t,X)-v(t^{\prime},Y)\right|\leq\ell\cdot\left(\left|X\Delta Y\right|+\left|\{j\in X\cap Y:t_{j}\not=t_{j}^{\prime}\}\right|\right),

where XΔY=(X\Y)(Y\X)X\Delta Y=\left(X\backslash Y\right)\cup\left(Y\backslash X\right) is the symmetric difference between XX and YY.

Combinatorial Auctions

We consider combinatorial auctions with nn bidders and mm items. In a combinatorial auction, each bidder observes their type tit_{i} and chooses their action (e.g., a bid to submit) according to their type. We allow the bidders to use mixed strategies, that is, bidder ii’s action bi{b}_{i} is drawn from a distribution si(ti){s}_{i}(t_{i}) that maps ii’s type tit_{i} to a distribution over possible actions. Given the action profile b=(b1,b2,,bn){b}={\mathchoice{\left({b}_{1},{b}_{2},\cdots,{b}_{n}\right)}{({b}_{1},{b}_{2},\cdots,{b}_{n})}{({b}_{1},{b}_{2},\cdots,{b}_{n})}{({b}_{1},{b}_{2},\cdots,{b}_{n})}}, the (possibly random) outcome of a combinatorial auction consists of a feasible allocation 𝑿(b)=(X1(b),X2(b),,Xn(b))(2[m])n\boldsymbol{X}{\mathchoice{\left({b}\right)}{({b})}{({b})}{({b})}}=(X_{1}({b}),X_{2}({b}),\cdots,X_{n}({b}))\in\left({2^{[m]}}\right)^{n}, where Xi(b)X_{i}({b}) is set of items allocated to bidder ii, and payments 𝒑(b)=(p1(b),p2(b),,pn(b))\boldsymbol{p}({b})=(p_{1}({b}),p_{2}({b}),\cdots,p_{n}({b})) for the bidders. ui(ti,b)=𝔼[υi(ti,Xi(b))pi(b)]u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}=\operatorname*{\mathbb{E}}{\mathchoice{\left[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}({b})\right)}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}}-p_{i}({b})\right]}{[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}({b})\right)}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}}-p_{i}({b})]}{[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}({b})\right)}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}}-p_{i}({b})]}{[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}({b})\right)}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}{(t_{i},X_{i}({b}))}}-p_{i}({b})]}} denotes the utility of bidder ii in the combinatorial auction when their type is tit_{i} under the action profile b{b}.

Simultaneous Auctions

A simultaneous auction consists of mm parallel single-item auctions {𝒜j}j[m]\left\{\mathcal{A}_{j}\right\}_{j\in[m]}. The action bi{b}_{i} chosen by bidder ii is an mm-dimensional vector in which the jj-th coordinate bi(j){b}_{i}^{(j)} represents the bid of bidder ii for item jj. Let b(j)=(b1(j),b2(j),,bn(j)){b}^{(j)}={\mathchoice{\left({b}_{1}^{(j)},{b}_{2}^{(j)},\cdots,{b}_{n}^{(j)}\right)}{({b}_{1}^{(j)},{b}_{2}^{(j)},\cdots,{b}_{n}^{(j)})}{({b}_{1}^{(j)},{b}_{2}^{(j)},\cdots,{b}_{n}^{(j)})}{({b}_{1}^{(j)},{b}_{2}^{(j)},\cdots,{b}_{n}^{(j)})}} represent the collection of bids for item jj. Each single-item auction 𝒜j\mathcal{A}_{j} runs independently to determine the allocation of item jj and each bidder’s payment in 𝒜j\mathcal{A}_{j} according to b(j){b}^{(j)}. We use Xi(j)(b(j)){j}X_{i}^{(j)}({b}^{(j)})\subseteq\{j\} to denote the item that bidder ii gets and pi(j)(b(j))p_{i}^{(j)}{\mathchoice{\left({b}^{(j)}\right)}{({b}^{(j)})}{({b}^{(j)})}{({b}^{(j)})}} to denote bidder ii’s payment in the jj-th auction. Notice that Xi(j)X_{i}^{(j)} and pi(j)p_{i}^{(j)} might be random as the auction 𝒜j\mathcal{A}_{j} is allowed to be randomized. In a simultaneous auction, bidder ii receives all items won in each single-item auction 𝒜j\mathcal{A}_{j}, i.e., Xi(b)=j[m]Xi(j)(b(j))X_{i}({b})=\bigcup_{j\in[m]}X_{i}^{(j)}({b}^{(j)}), and their overall-payment pi(b)=j[m]pi(j)(b(j))p_{i}({b})=\sum_{j\in[m]}p_{i}^{(j)}({b}^{(j)}) amounts to the sum of payments across the mm concurrent single-item auctions. We also provide bidders with an additional action, denoted \perp, allowing them to abstain from bidding in a single-item auction. Bidding \perp signifies that the bidder withdraws from competing for the item and incurs no payment for it.

In this paper, we study two simultaneous auctions – the simultaneous first-price auction (S1A) and the simultaneous all-pay auction (SAP). Both auctions satisfy the highest bid wins property, which states that, in each single-item auction, item jj is allocated to the bidder who submits the highest bid for jj. In a S1A, only the winning bidder for each item pays their bid; in a SAP, all bidders pay their bids regardless of the outcome.

We formally define the notion of Bayes-Nash equilibrium in Appendix A. Let s{s} be a Bayes-Nash equilibrium of auction 𝒜\mathcal{A} w.r.t. distribution DD, the expected revenue at equilibrium s{s} is defined as

RevD(s)(𝒜)=i[n]𝔼tDbs(t)[pi(b)].\mathrm{Rev}^{({s})}_{D}(\mathcal{A})=\sum_{i\in[n]}\operatorname*{\mathbb{E}}_{t\sim D\atop{b}\sim{s}(t)}{\mathchoice{\left[p_{i}({b})\right]}{[p_{i}({b})]}{[p_{i}({b})]}{[p_{i}({b})]}}.

If 𝒜\mathcal{A} is a simultaneous auction, we use RevD(s)(𝒜,S)\mathrm{Rev}^{({s})}_{D}(\mathcal{A},S) to denote the revenue of 𝒜\mathcal{A} collected from items in SS at equilibrium s{s}:

RevD(s)(𝒜,S)=i[n]jS𝔼tDbs(t)[pi(j)(b)]\mathrm{Rev}^{({s})}_{D}(\mathcal{A},S)=\sum_{\begin{subarray}{c}i\in[n]\\ j\in S\end{subarray}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t\sim D\\ {b}\sim{s}(t)\end{subarray}}{\mathchoice{\left[p_{i}^{(j)}({b})\right]}{[p_{i}^{(j)}({b})]}{[p_{i}^{(j)}({b})]}{[p_{i}^{(j)}({b})]}}

Finally, we define OPT(D)\operatorname{\mathrm{OPT}}(D) as the optimal revenue achievable by any randomized and Bayesian incentive compatible (BIC) mechanisms with respect to type distribution DD and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}. Due to the revelation principle, we know that the highest revenue achievable by any auction at an Bayes-Nash equilibrium is also OPT(D)\operatorname{\mathrm{OPT}}(D).

3 Our Mechanisms and Main Theorem

3.1 Our Mechanisms

We first introduce the two variations of simultaneous auctions that are used in our main theorem.

Simultaneous Auctions with Entry Fees.

Our version of simultaneous auctions with entry fees is nearly identical to the one proposed by Daskalakis et al. [30]. For each bidder ii, there is a personalized entry fee ei0e_{i}\in\mathbb{R}_{\geq 0}, which does not depend on the bids submitted by the other bidders. Note that eie_{i} could depend on other parameters of the problem, e.g., the type distribution DD, the valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}, and the equilibrium s{s} that we hope the bidders play. The entry fee is charged with probability 1δ1-\delta, and each bidder can decide whether to pay the entry fee to participate in the auction.

1 Input: A simultaneous auction 𝒜=(X,p)\mathcal{A}=(X,p)  and {ei}i[n]0n\{e_{i}\}_{i\in[n]}\in\mathbb{R}_{\geq 0}^{n};
2 Each bidder ii submits a pair (zi,bi)\left(z_{i},{b}_{i}\right) where zi{0,1}z_{i}\in\{0,1\} indicates whether bidder ii is willing to accept an entry fee eie_{i} to enter the auction, and bi{b}_{i} is a mm-dimensional vector representing bidder ii’s bid in 𝒜\mathcal{A};
3 Independently for each bidder ii, the entry fee Enti\textsc{Ent}_{i} is set to eie_{i} with probability 1δ1-\delta and is set of 0 with probability δ\delta;
4 Run auction 𝒜\mathcal{A} according to the bid profile b=(b1,b2,,bn){b}=({b}_{1},{b}_{2},\cdots,{b}_{n});
5 Let S={i:Enti=0 or zi=1}S=\{i:\textsc{Ent}_{i}=0\text{ or }z_{i}=1\} be the set of bidders that enters the auction, (i.e., bidders who agree to pay their entry fee);
Each bidder iSi\in S receives allocation Xi(b)X_{i}(b) and has payment pi(b)p_{i}(b). All other bidders receive nothing and pay nothing.
Mechanism 1 Simultaneous auction 𝒜\mathcal{A} with personalized entry fee {ei}i[n]\{e_{i}\}_{i\in[n]} (𝒜EF(e)\mathcal{A}^{(e)}_{\mathrm{EF}})

The probability that we do not charge the entry fee δ\delta should be thought of as a very small positive constant. In our proof, we choose δ\delta to be 0.010.01 and it suffices to guarantee Theorem 3.1.

Simultaneous Auction with Reserve Prices.

The mechanism first determines reserve prices rijr_{ij} for each bidder ii and item jj using only information about the distribution of Vi(tij)V_{i}(t_{ij}) (i.e., the distribution of bidder ii’s value for winning only item jj). As in standard simultaneous auctions, each bidder ii submits an mm-dimensional bid vector bi{b}_{i}, where the jj-th coordinate bi(j)b_{i}^{(j)} represents ii’s bid for item jj.

Given the bid profile, the allocation is directly determined by the simultaneous auction 𝒜\mathcal{A}. If ii wins item jj, ii’s payment for item jj is the maximum of the reserve price rijr_{ij} and ii’s payment for item jj determined by 𝒜j\mathcal{A}_{j}. For the bidders who do not win item jj, their payment for that item equals the payment determined by 𝒜j\mathcal{A}_{j}. The total payment of any bidder is the sum of their payments for all items.

1 Input: A simultaneous auction 𝒜=(X,p)\mathcal{A}=(X,p) and a collection of reserved prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]};
2
3Each bidder ii submits their bid vector bi{b}_{i}, a mm-dimensional vector, where bi(j){b}_{i}^{(j)} can be \perp for any jj;
4 Run auction 𝒜\mathcal{A} with bid profile b=(b1,b2,,bn){b}=({b}_{1},{b}_{2},\cdots,{b}_{n});
5 Each bidder ii receives allocation Xi(b)X_{i}({b}) and pays jXi(b)max{pi(j)(b(j)),rij}+Xi(b)pi()(b())\sum_{j\in X_{i}({b})}\max\left\{p_{i}^{(j)}\left({b}^{(j)}\right),r_{ij}\right\}+\sum_{\ell\notin X_{i}({b})}p_{i}^{(\ell)}\left(b^{(\ell)}\right);
6
Mechanism 2 𝒜\mathcal{A} with personalized reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} (𝒜RP(r)\mathcal{A}^{(r)}_{\mathrm{RP}})

3.2 Main Theorem

We introduce our main result in this section. We show that if a simultaneous auction 𝒜\mathcal{A} satisfies certain desirable properties at a Bayes-Nash equilibrium s{s}, then the same auction 𝒜\mathcal{A} that incorporates additional entry fees or reserved prices can generate a constant fraction of the optimal revenue OPT(D)\operatorname{\mathrm{OPT}}(D) when bidders’ valuations are subadditive over independent items.

We first formally define the desirable properties :

Definition 3.1 (cc-efficiency).

Let s{s} be a Bayes-Nash equilibrium of simultaneous auction 𝒜\mathcal{A} w.r.t. type distribution DD and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}. We define μi(s)(ti,S)\mu_{i}^{({s})}(t_{i},S) to be the optimal utility of bidder ii when their type is tit_{i}, and they are only allowed to participate in the auctions for items in set SS, while all other bidders bid according to sis_{-i}. More specifically,

μi(s)(ti,S)=supqi(0{})m𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)S)jSpi(j)(qi(j),bi(j))].\mu_{i}^{({s})}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}=\sup_{{q_{i}\in\left(\mathbb{R}_{\geq 0}\cup\{\perp\}\right)^{m}}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}]}}.

We say the tuple (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right) is cc-efficient if the following conditions hold:

  • The payment for any item is non-negative. When a bidder bids \perp on an item, they pay nothing on this item regardless of the outcome.

  • 𝒜\mathcal{A} satisfies the highest bid wins property, i.e., for each item jj, the bidder who has the highest bid wins item jj.

  • For any bidder ii, any type tit_{i}, and any set of items S[m]S\subseteq[m],

    μi(s)(ti,S)+RevD(s)(𝒜,S)cυi(ti,S).\mu_{i}^{({s})}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}+\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\right)}{(\mathcal{A},S)}{(\mathcal{A},S)}{(\mathcal{A},S)}}\geq c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}.

Before presenting our main theorem, we first discuss the definition of cc-efficiency and how it relates to several other important notions in mechanism design. In Definition 3.1, the first and second conditions are easily satisfied by many simultaneous auctions, while the third condition is crucial and more difficult to meet. Indeed, any tuple (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right) meeting the third condition implies that the equilibrium s{s} achieves at least cc fraction of the optimal welfare. However, attaining a high welfare does not directly imply the third condition. We show that for the simultaneous second-price auction, there exists an instance (D,{υi}i[n])\left(D,\{\upsilon_{i}\}_{i\in[n]}\right) with a no-overbidding equilibrium s{s} such that the third condition is violated for any c>0c>0, but high welfare is still achieved at this equilibrium in the simultaneous second-price auction. See Example 1 for the complete construction.

The third condition echoes the (λ,μ)(\lambda,\mu) smoothness condition introduced by Syrgkanis et al. [48], albeit with three significant distinctions. First, our condition is specifically designed for simultaneous auctions and pertains to a particular Bayes-Nash equilibrium, in contrast to the (λ,μ)(\lambda,\mu)-smoothness which is generally applicable to any mechanism. Second, our condition imposes a lower bound on the utility of a single bidder, unlike the smoothness condition that considers the aggregate utility of all bidders. Lastly, our condition mandates the inequality to hold for every bundle SS, a requirement absent in smooth mechanisms.

The third condition also notably aligns with the balanced prices framework [43, 35, 36, 33], despite significant differences. Let UU be a set of items. The balanced prices framework assigns a price pip_{i} to each item iUi\in U such that for any subset SUS\subseteq U, the buyer’s utility from purchasing SS (i.e., υ(S)iSpi\upsilon(S)-\sum_{i\in S}p_{i}) combined with the revenue from the remaining set (i.e., iU\Spi\sum_{i\in U\backslash S}p_{i}), approximates the total value of UU. In contrast, our condition mandates that for any subset SUS\subseteq U, the buyer’s utility, when bidding only on items in SS and acting in best response to other bidders’ equilibrium strategies, along with the revenue from the same set SS, must attain a constant fraction of the total value of UU. Additionally, while the balanced prices framework is limited to posted-price mechanisms, our definition can accommodate simultaneous auctions.

Hartline et al. [jason] introduce the concepts of competitive efficiency and individual efficiency for the single-dimensional setting. The third condition in Definition 3.1 can be viewed as a generalization of these concepts in multi-dimensional settings. More specifically, in the single-item setting, for any mechanism that is (η,μ)(\eta,\mu)-individual and competitive efficient, our third condition holds for any equilibrium s{s} with c=ημc=\eta\mu.

We now state our main theorem.

Theorem 3.1.

Let 𝒜\mathcal{A} be a simultaneous auction, and s{s} be a Bayes-Nash equilibrium of 𝒜\mathcal{A} w.r.t. type distribution D=×i[n],j[m]DijD=\bigtimes_{i\in[n],j\in[m]}D_{ij} and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}. If the distribution of bidder ii’s valuation vi(ti,)v_{i}(t_{i},\cdot) is subadditive over independent items (i.e., satisfies Definition 2.1) and (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right)is cc-efficient, then there exists a set of personalized entry fees {ei}i[n]\{e_{i}\}_{i\in[n]} and a set of personalized reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} so that

OPT(D)(21cRevD(s)(𝒜EF(e))+(87+51c)RevD(s)(𝒜RP(r))).\operatorname{\mathrm{OPT}}(D)\leq{\mathchoice{\left(\frac{21}{c}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}+{\mathchoice{\left(87+\frac{51}{c}\right)}{(87+\frac{51}{c})}{(87+\frac{51}{c})}{(87+\frac{51}{c})}}\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathcal{A}_{\mathrm{RP}}^{(r)}\right)}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}}\right)}{(\frac{21}{c}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}+{\mathchoice{\left(87+\frac{51}{c}\right)}{(87+\frac{51}{c})}{(87+\frac{51}{c})}{(87+\frac{51}{c})}}\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathcal{A}_{\mathrm{RP}}^{(r)}\right)}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}})}{(\frac{21}{c}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}+{\mathchoice{\left(87+\frac{51}{c}\right)}{(87+\frac{51}{c})}{(87+\frac{51}{c})}{(87+\frac{51}{c})}}\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathcal{A}_{\mathrm{RP}}^{(r)}\right)}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}})}{(\frac{21}{c}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}+{\mathchoice{\left(87+\frac{51}{c}\right)}{(87+\frac{51}{c})}{(87+\frac{51}{c})}{(87+\frac{51}{c})}}\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathcal{A}_{\mathrm{RP}}^{(r)}\right)}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}})}}{.}

Here 𝒜EF(e)\mathcal{A}^{(e)}_{\mathrm{EF}} is auction 𝒜\mathcal{A} with personalized entry fee {ei}i[n]\{e_{i}\}_{i\in[n]}. Note that 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} has the same set of Bayes-Nash equilibria as 𝒜\mathcal{A}, so ss is also a Bayes-Nash equilibrium of 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}. 𝒜RP(r)\mathcal{A}^{(r)}_{\mathrm{RP}} is auction 𝒜\mathcal{A} with reverse price {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]}, and s{s}^{\prime} is an arbitrary Bayes-Nash equilibrium.

Remark 1.

Note that the entry fees {ei}i[n]\{e_{i}\}_{i\in[n]} are selected based on s{s}. As stated in Lemma 4.1, a strategy profile s{s} is a Bayes-Nash equilibrium in 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} if and only if s{s} is also a Bayes-Nash equilibrium in 𝒜\mathcal{A}. This implies that the introduction of entry fees does not give rise to any new equilibria, and the same strategy profile s{s} continues to be an equilibrium. Therefore, it is reasonable to expect that the bidders to play according to the same equilibrium s{s} after introducing the entry fees.

See Section 4 for a detailed discussion about additional properties of equilibria in these two mechanisms. Next, we argue that all equilibria of S1A and SAP are 121\over 2-efficient when bidders valuations are subadditive.

Lemma 3.2.

For any type distribution DD, valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}, and any Bayes-Nash equilibrium s{s} of S1A, as long as for any bidder ii and any tit_{i}, vi(ti,)v_{i}(t_{i},\cdot) is a subadditive function over [m][m], (S1A,s,D,{vi}i[n])(\text{S1A},{s},D,\{v_{i}\}_{i\in[n]}) is 12\frac{1}{2}-efficient.

Lemma 3.3.

For any type distribution DD, valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}, and any Bayes-Nash equilibrium s{s} of SAP, as long as for any bidder ii and any tit_{i}, vi(ti,)v_{i}(t_{i},\cdot) is a subadditive function over [m][m], (SAP,s,D,{vi}i[n])(\text{SAP},{s},D,\{v_{i}\}_{i\in[n]}) is 12\frac{1}{2}-efficient.

Remark 2.

Note that Lemma 3.2 and 3.3 do not require the bidders’ valuations to be subadditive over independent items. We only use item-independence in the proof of Theorem 3.1.

The proofs of Lemma 3.2 and 3.3 are postponed to Appendix C. Combining Theorem 3.1 with Lemma 3.2 and Lemma 3.3, we show that S1A and SAP with personalized entry fees or reserved prices can extract a constant fraction of the optimal revenue when the valuations are subadditive over independent items.

Corollary 3.4.

For any type distribution D=×i[n],j[m]DijD=\bigtimes_{i\in[n],j\in[m]}D_{ij} and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}, such that the distribution of bidder ii’s valuation vi(ti,)v_{i}(t_{i},\cdot) is subadditive over independent items (i.e., satisfies Definition 2.1), if s{s} is a Bayes-Nash equilibrium of the simultaneous first-price auction (S1A), then there exists a set of entry fees {ei}i[n]\{e_{i}\}_{i\in[n]} and a set of reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} such that

OPT(D)42RevD(s)(S1AEF(e))+189RevD(s)(S1ARP(r)),\operatorname{\mathrm{OPT}}(D)\leq 42\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathrm{S1A}^{(e)}_{\mathrm{EF}}\right)}{(\mathrm{S1A}^{(e)}_{\mathrm{EF}})}{(\mathrm{S1A}^{(e)}_{\mathrm{EF}})}{(\mathrm{S1A}^{(e)}_{\mathrm{EF}})}}+189\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathrm{S1A}_{\mathrm{RP}}^{(r)}\right)}{(\mathrm{S1A}_{\mathrm{RP}}^{(r)})}{(\mathrm{S1A}_{\mathrm{RP}}^{(r)})}{(\mathrm{S1A}_{\mathrm{RP}}^{(r)})}},

where ss, a Bayes-Nash equilibrium of the original S1A, remains to be a Bayes-Nash equilibrium for the S1A with personalized entry fees, and ss^{\prime} is an arbitrary Bayes-Nash equilibrium of the S1A with reserve prices.

Corollary 3.5.

For any type D=×i[n],j[m]DijD=\bigtimes_{i\in[n],j\in[m]}D_{ij} and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}, such that the distribution of bidder ii’s valuation vi(ti,)v_{i}(t_{i},\cdot) is subadditive over independent items (i.e., satisfies Definition 2.1), if s{s} is a Bayes-Nash equilibrium of the simultaneous all-pay auction (SAP), then there exists a set of entry fees {ei}i[n]\{e_{i}\}_{i\in[n]} and a set of reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} such that

OPT(D)42RevD(s)(SAPEF(e))+189RevD(s)(SAPRP(r)),\operatorname{\mathrm{OPT}}(D)\leq 42\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathrm{SAP}^{(e)}_{\mathrm{EF}}\right)}{(\mathrm{SAP}^{(e)}_{\mathrm{EF}})}{(\mathrm{SAP}^{(e)}_{\mathrm{EF}})}{(\mathrm{SAP}^{(e)}_{\mathrm{EF}})}}+189\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathrm{SAP}_{\mathrm{RP}}^{(r)}\right)}{(\mathrm{SAP}_{\mathrm{RP}}^{(r)})}{(\mathrm{SAP}_{\mathrm{RP}}^{(r)})}{(\mathrm{SAP}_{\mathrm{RP}}^{(r)})}}{,}

where ss, a Bayes-Nash equilibrium of the original S1A, remains to be a Bayes-Nash equilibrium for the S1A with personalized entry fees, and ss^{\prime} is an arbitrary Bayes-Nash equilibrium of the S1A with reserve prices.

4 Equilibria of Our Mechanisms

In this section, we discuss some properties of the equilibrium in our mechanisms. Note that a Bayes-Nash equilibrium may not exist if the type spaces and action spaces are continuous. See Appendix B.2 for a more detailed discussion.

4.1 Mechanisms with Entry Fees

Notice that when the entry fee is charged deterministically, the bid vector bi{b}_{i} has no impact on bidder ii’s utility if they choose not to pay the entry fee. In this scenario, the bidder may report an arbitrary bi{b}_{i}, potentially introducing new equilibria. As we show in Lemma 4.1, charging the entry fees randomly incentivizes each bidder to keep their bids even when they decide not to enter the auction. Daskalakis et al. [30] provides an alternative mechanism with “ghost bidders”. Their mechanism deterministically charges an entry fee and samples a bid from a ”ghost bidder” in the execution of 𝒜\mathcal{A} whenever a real bidder ii declines to pay the entry fee. As discussed in their paper, this mechanism is credible as the mechanism does not use any private randomness, but it may introduce new equilibria. We highlight that if we replace the randomized entry fees with deterministic ones together with ghost bidders, all claims in Theorem 3.1 hold, except that now we need to evaluate the revenue of 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} at a “focal equilibrium” that can be computed based on s{s}.

Before examining the properties of 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}, it is essential to discuss a subtle detail concerning the actions of bidders in 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}. The actions available to bidder ii in 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} has an additional dimension zi{0,1}z_{i}\in\{0,1\}, that decides whether ii is willing to pay the entry fee. At any equilibrium s{s}, it is clear that bidder ii will choose to enter the auction if and only if 𝔼tiDibisi(ti)[ui(ti,(bi,bi))]\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}(t_{-i})\end{subarray}}{\mathchoice{\left[u_{i}(t_{i},(b_{i},b_{-i}))\right]}{[u_{i}(t_{i},(b_{i},b_{-i}))]}{[u_{i}(t_{i},(b_{i},b_{-i}))]}{[u_{i}(t_{i},(b_{i},b_{-i}))]}} exceeds eie_{i}. Therefore, ziz_{i} depends exclusively on bib_{i} at any equilibrium. This allows for a liberal use of notation, interpreting the strategies of 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} as a mapping from its type tit_{i} to an mm-dimensional bid vector bi{b}_{i} (rather than to (zi,bi)(z_{i},b_{i})).

Definition 4.1 (Strategy Profile of 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} at Equilibrium s{s}).

Suppose s{s} is a Bayes-Nash equilibrium in auction 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}. For each bidder ii, its strategy profile si{s}_{i} is defined as a mapping from type tit_{i} to a distribution of mm-dimensional bid vectors. Let

ui(ti,bi)=𝔼tiDi[𝔼bisi(ti)[ui(ti,(bi,bi))]]u_{i}(t_{i},b_{i})=\operatorname*{\mathbb{E}}_{t_{-i}\sim D_{-i}}{\mathchoice{\left[\operatorname*{\mathbb{E}}_{{b}_{-i}\sim{s}_{-i}(t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}\right]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}}\right]}{[\operatorname*{\mathbb{E}}_{{b}_{-i}\sim{s}_{-i}(t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}\right]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}}]}{[\operatorname*{\mathbb{E}}_{{b}_{-i}\sim{s}_{-i}(t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}\right]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}}]}{[\operatorname*{\mathbb{E}}_{{b}_{-i}\sim{s}_{-i}(t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}\right]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}{[u_{i}{\mathchoice{\left(t_{i},({b}_{i},{b}_{-i})\right)}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}{(t_{i},({b}_{i},{b}_{-i}))}}]}}]}}

be the utility function for bidder ii in auction 𝒜\mathcal{A} when their type is tit_{i} and bids are bi{b}_{i}. When bidder ii participates in 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} with type tit_{i}, she first samples a bid vector bisi(ti){b}_{i}\sim{s}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}. Let zi=𝟙[ui(ti,bi)ei]z_{i}=\mathbbm{1}{\mathchoice{\left[u_{i}(t_{i},b_{i})\geq e_{i}\right]}{[u_{i}(t_{i},b_{i})\geq e_{i}]}{[u_{i}(t_{i},b_{i})\geq e_{i}]}{[u_{i}(t_{i},b_{i})\geq e_{i}]}} where eie_{i} is the entry fee for bidder ii, she then submits (zi,bi)(z_{i},b_{i}) as their action. It is clear that every equilibrium s{s} of 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} could be expressed in this form.

The following lemma states that 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} has exactly the same set of Bayes-Nash equilibria as 𝒜\mathcal{A} for all δ(0,1)\delta\in(0,1).

Lemma 4.1.

For any δ(0,1)\delta\in(0,1), any set of entry fees {ei}i[n]\{e_{i}\}_{i\in[n]}, any type distribution DD, and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}, a strategy profile s{s} is a Bayes-Nash equilibrium in 𝒜\mathcal{A} if and only if it is also a Bayes-Nash equilibrium in 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}.

We now discuss the revenue obtained by our mechanism with entry fees. The revenue consists of two parts: (i) the revenue derived from auction 𝒜\mathcal{A}, i.e., RevD(s)(𝒜)\mathrm{Rev}_{D}^{({s})}(\mathcal{A}); (ii) the revenue obtained from the entry fees. We hereby provide a formal definition for the revenue generated from entry fees as follows.

Definition 4.2 (Entry Fee Revenue).
EF-RevD(s)(𝒜)=supe0ni[n]eiPrtiDi[𝔼tiDibs(t)[ui(ti,b)]ei].\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A})=\sup_{e\in\mathbb{R}^{n}_{\geq 0}}\sum_{i\in[n]}e_{i}\cdot\Pr_{\begin{subarray}{c}t_{i}\sim D_{i}\end{subarray}}{\mathchoice{\left[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim{D_{-i}}\\ {b}\sim{s}(t)\end{subarray}}{\mathchoice{\left[u_{i}(t_{i},b)\right]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}}\geq e_{i}\right]}{[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim{D_{-i}}\\ {b}\sim{s}(t)\end{subarray}}{\mathchoice{\left[u_{i}(t_{i},b)\right]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}}\geq e_{i}]}{[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim{D_{-i}}\\ {b}\sim{s}(t)\end{subarray}}{\mathchoice{\left[u_{i}(t_{i},b)\right]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}}\geq e_{i}]}{[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim{D_{-i}}\\ {b}\sim{s}(t)\end{subarray}}{\mathchoice{\left[u_{i}(t_{i},b)\right]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}{[u_{i}(t_{i},b)]}}\geq e_{i}]}}.

It is important to note that the auction 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} cannot fully obtain the revenue of auction 𝒜\mathcal{A}, i.e., RevD(s)(𝒜)\mathrm{Rev}_{D}^{({s})}(\mathcal{A}), and the revenue derived from entry fees, i.e., EF-RevD(s)(𝒜)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A}), at the same time. This is due to the fact that that when entry fees are imposed, bidders may refuse to enter the auction, which could potentially reduce the revenue generated by the auction 𝒜\mathcal{A}. Nevertheless, we could choose entry fees in a way to either maximize the revenue collected from the entry fees, thereby obtaining EF-RevD(s)(𝒜)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A}), or to set all entry fees to 0 and attain RevD(s)(𝒜)\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}. In other words, RevD(s)(𝒜EF(e))\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}} is at least max{RevD(s)(𝒜),(1δε)EF-RevD(s)(𝒜)}\max\left\{\mathrm{Rev}^{({s})}_{D}(\mathcal{A}),(1-\delta-\varepsilon)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A})\right\} for any ε>0\varepsilon>0.

Lemma 4.2.

For any ε>0\varepsilon>0, there exists a set of entry fees {ei}i[n]\{e_{i}\}_{i\in[n]} so that

RevD(s)(𝒜EF(e))max{RevD(s)(𝒜),(1δε)EF-RevD(s)(𝒜)}.\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}\geq{\max\left\{\mathrm{Rev}^{({s})}_{D}(\mathcal{A}),(1-\delta-\varepsilon)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A})\right\}}.

The proofs of Lemma 4.1 and Lemma 4.2 are postponed to Appendix D.1 and Appendix D.2, respectively.

4.2 Mechanisms with Reserve Prices

The following lemma provides a revenue guarantee for 𝒜RP(r)\mathcal{A}^{(r)}_{\mathrm{RP}}. Importantly, this guarantee holds for any Bayes-Nash equilibrium of 𝒜RP(r)\mathcal{A}^{(r)}_{\mathrm{RP}}.

Lemma 4.3.

For any type distribution DD and valuation functions {υi}i[n]\left\{\upsilon_{i}\right\}_{i\in[n]}, if the simultaneous auction 𝒜\mathcal{A} satisfies the first and second conditions of Definition 3.1, and {rij}i[n],j[m]\left\{r_{ij}\right\}_{i\in[n],j\in[m]} is a set of reserved prices that meets the following two conditions for some absolute constant b(0,1)b\in(0,1):

  • (1)

    i[n]Pr[Vi(tij)rij]b\sum_{i\in[n]}\Pr[V_{i}(t_{ij})\geq r_{ij}]\leq b, j[m]\forall j\in[m];

  • (2)

    j[m]Pr[Vi(tij)rij]12\sum_{j\in[m]}\Pr[V_{i}(t_{ij})\geq r_{ij}]\leq\frac{1}{2}, i[n]\forall i\in[n],

then for any Bayes-Nash equilibrium s{s} of the simultaneous auction with reserved prices 𝒜RP(r)\mathcal{A}_{\mathrm{RP}}^{(r)}, the following revenue guarantee holds:

21bRevD(s)(𝒜RP(r))i,jrijPr[Vi(tij)rij].\frac{2}{1-b}\cdot\mathrm{Rev}^{(s)}_{D}\left(\mathcal{A}^{(r)}_{\mathrm{RP}}\right)\geq\sum_{i,j}r_{ij}\cdot\Pr\left[V_{i}(t_{ij})\geq r_{ij}\right].

The proof of Lemma 4.3 is postponed to Appendix D.5.

5 Proof of Theorem 3.1

In this section, we complete the proof of Theorem 3.1. We extend the previous techniques, i.e., the duality framework [15, 20], to simultaneous auctions by developing a new core-tail analysis. A crucial structure from the preceding approach hinged on the subadditivity and Lipschitzness of the bidders’ utility functions. Fortunately, the structure of simultaneous auctions ensures that the maximum utility a bidder can derive from a set of items (by bidding on them) remains a subadditive function. However, the Lipschitzness of the utility functions introduces additional subtlety. In simultaneous auctions, where bidding strategies form a Bayes-Nash equilibrium, each bidder faces a distribution of prices, as opposed to a set of static prices, as encountered in posted price mechanisms analyzed in previous work. This shift introduces a new challenge in controlling the Lipschitz constant of the utility functions, which, in turn, affects the concentration result.

We first introduce some notation. As in [20], we assume that the type distributions are discrete. See their paper for a discussion on how to convert continuous distributions to discrete ones without much revenue loss. We fix type distribution DD in this section, and the probability mass functions of DiD_{i} and DijD_{ij} are denoted as fi()f_{i}(\cdot) and fij()f_{ij}(\cdot), respectively. Furthermore, the support of DiD_{i} and DijD_{ij} are represented by TiT_{i} and TijT_{ij}. Recall that we define Vi(tij)V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}} as υi(ti,{j})\upsilon_{i}{\mathchoice{\left(t_{i},\{j\}\right)}{(t_{i},\{j\})}{(t_{i},\{j\})}{(t_{i},\{j\})}}. We denote FijF_{ij} as the distribution of Vi(tij)V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}} and let φ~ij(x)\tilde{\varphi}_{ij}(x) be the Myerson’s ironed virtual value [45] of xx with respect to distribution FijF_{ij}.

For any direct-revelation Bayesian Incentive Compatible mechanism MM, the allocation rule of MM is represented by σ\sigma, wherein σiS(ti)\sigma_{iS}(t_{i}) denotes the probability that bidder ii is allocated set SS with type tit_{i}. Given a set of parameters β={βij}i[n],j[m]0nm\beta=\left\{\beta_{ij}\right\}_{i\in[n],j\in[m]}\in\mathbb{R}_{\geq 0}^{nm}, we partition TiT_{i} into m+1m+1 regions: (i) R0(βi)R_{0}^{(\beta_{i})} contains all types tit_{i} satisfying Vi(tij)<βijV_{i}(t_{ij})<\beta_{ij} for all j[m]j\in[m]. (ii) Rj(βi)R_{j}^{(\beta_{i})} contains all types tit_{i} such that Vi(tij)βijV_{i}(t_{ij})\geq\beta_{ij} and jj is the smallest index in argmaxk{Vi(tik)βik}\arg\max_{k}\left\{V_{i}(t_{ik})-\beta_{ik}\right\}. Intuitively, Rj(βi)R_{j}^{(\beta_{i})} contains all types tit_{i} for which item jj becomes the preferred item of bidder ii when the price for item jj is βij\beta_{ij}.

For each bidder ii, define

ci=inf{x0:jPrtij[Vi(tij)βij+x]12}.c_{i}=\inf\left\{x\geq 0:\sum_{j}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x]}}\leq\frac{1}{2}\right\}.

For each tiTit_{i}\in T_{i}, let 𝒯i(ti)={j:Vi(tij)βij+ci}\mathcal{T}_{i}(t_{i})=\left\{j:V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}\right\} be the set of items that is above the price and 𝒞i(ti)=[m]\𝒯i(ti)\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}=[m]\backslash\mathcal{T}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}} be its complement. Namely, if we set the reserve price (or posted price) of item jj for bidder ii at βij+ci\beta_{ij}+c_{i}, it is very likely that bidder ii will buy at most one item. Thus, we could expect that the contribution to revenue from 𝒯i\mathcal{T}_{i} can be approximated by 𝒜\mathcal{A} when incorporating reserve prices. We now formally define the three components used to upper bound the optimal revenue below.

Definition 5.1.

For any feasible interim allocation rule σ\sigma and any β\beta, denote

Single(σ,β)\displaystyle\textsc{Single}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}} =itiTifi(ti)j[m]𝟙[tiRj(βi)]πij(ti)φ~ij(tij),\displaystyle=\sum_{i}\sum_{t_{i}\in T_{i}}f_{i}(t_{i})\sum_{j\in[m]}\mathbbm{1}{\mathchoice{\left[t_{i}\in R_{j}^{(\beta_{i})}\right]}{[t_{i}\in R_{j}^{(\beta_{i})}]}{[t_{i}\in R_{j}^{(\beta_{i})}]}{[t_{i}\in R_{j}^{(\beta_{i})}]}}\cdot\pi_{ij}(t_{i})\cdot\tilde{\varphi}_{ij}(t_{ij}),
Tail(β)\displaystyle\textsc{Tail}{\mathchoice{\left(\beta\right)}{(\beta)}{(\beta)}{(\beta)}} =ijtij:Vi(tij)βij+cifij(tij)Vi(tij)kjPrtik[Vi(tik)βikVi(tij)βij],\displaystyle=\sum_{i}\sum_{j}\sum_{t_{ij}:V_{i}(t_{ij})\geq\beta_{ij}+c_{i}}f_{ij}(t_{ij})\cdot V_{i}(t_{ij})\sum_{k\neq j}\Pr_{t_{ik}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ik}\right)}{(t_{ik})}{(t_{ik})}{(t_{ik})}}-\beta_{ik}\geq V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\right]}{[V_{i}{\mathchoice{\left(t_{ik}\right)}{(t_{ik})}{(t_{ik})}{(t_{ik})}}-\beta_{ik}\geq V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}]}{[V_{i}{\mathchoice{\left(t_{ik}\right)}{(t_{ik})}{(t_{ik})}{(t_{ik})}}-\beta_{ik}\geq V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}]}{[V_{i}{\mathchoice{\left(t_{ik}\right)}{(t_{ik})}{(t_{ik})}{(t_{ik})}}-\beta_{ik}\geq V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}]}},
Core(σ,β)\displaystyle\textsc{Core}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}} =itiTifi(ti)S[m]σiS(ti)υi(ti,S𝒞i(ti)),\displaystyle=\sum_{i}\sum_{t_{i}\in T_{i}}f_{i}(t_{i})\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}},

where πij(ti)=S:jSσiS(ti)\pi_{ij}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}=\sum_{S:j\in S}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}} is the probability that item jj is alloctaed to bidder ii with type tit_{i}.

Let RevD(M)\mathrm{Rev}_{D}(M) be the revenue of mechanism MM while the bidders’ types are drawn from the distribution DD. Cai and Zhao [20] show that the optimal revenue could be upper bounded by Single, Tail and Core.

Lemma 5.1 ([20]).

For any BIC mechanism MM and given any set of parameters β={βij}i[n],j[m]0nm\beta=\{\beta_{ij}\}_{i\in[n],j\in[m]}\in\mathbb{R}^{nm}_{\geq 0}, there exists a feasible interim allocation σ(β)\sigma^{(\beta)} so that

RevD(M)2Single(σ(β),β)+4Tail(β)+4Core(σ(β),β).\displaystyle\begin{split}\mathrm{Rev}_{D}(M)\leq 2\cdot\textsc{Single}{\mathchoice{\left(\sigma^{(\beta)},\beta\right)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}}+4\cdot\textsc{Tail}{\mathchoice{\left(\beta\right)}{(\beta)}{(\beta)}{(\beta)}}+4\cdot\textsc{Core}{\mathchoice{\left(\sigma^{(\beta)},\beta\right)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}}.\end{split}

Additionally, for any constant b(0,1)b\in(0,1) and any mechanism MM, there exists a set of parameters β\beta such that σ(β)\sigma^{(\beta)} satisfies the following two properties:

iPrtij[Vi(tij)βij]b,j[m]\displaystyle\sum_{i}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq\beta_{ij}\right]}{[V_{i}(t_{ij})\geq\beta_{ij}]}{[V_{i}(t_{ij})\geq\beta_{ij}]}{[V_{i}(t_{ij})\geq\beta_{ij}]}}\leq b,\quad\forall j\in[m] (1)
tiTifi(ti)πij(β)(ti)Prtij[Vi(tij)βij]/b,i[n],j[m], where πij(β)(ti)=S:jSσiS(β)(ti).\displaystyle\sum_{t_{i}\in T_{i}}f_{i}(t_{i})\cdot\pi_{ij}^{(\beta)}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\leq\Pr_{t_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq\beta_{ij}\right]}{[V_{i}(t_{ij})\geq\beta_{ij}]}{[V_{i}(t_{ij})\geq\beta_{ij}]}{[V_{i}(t_{ij})\geq\beta_{ij}]}}/b,\ \forall i\in[n],j\in[m],\text{ where }\pi^{(\beta)}_{ij}(t_{i})=\sum_{S:j\in S}\sigma_{iS}^{(\beta)}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}. (2)

The first part of Lemma 5.1, namely the revenue guarantee, is derived by combining Theorem 2 and Lemma 14 from [22] (the full version of [20]), and hence, the proof is omitted here. In the second part of Lemma 5.1, we assert that parameters β\beta can be chosen such that the corresponding interim allocation σ(β)\sigma^{(\beta)} satisfies two useful properties. This lemma is nearly identical to Lemma 5 in [22], albeit with a minor alteration. It can be readily verified that the proof for Lemma 5 suffices to demonstrate this variation.

Suppose the simultaneous auction 𝒜\mathcal{A} admits an equilibrium s{s} under type distribution DD and valuation functions {υi}i[n]\{\upsilon_{i}\}_{i\in[n]} so that (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right) is cc-efficient as defined in Definition 3.1.

We proceed to define the maximum revenue that can be achieved by simultaneous auction 𝒜\mathcal{A} with reserve prices.

Definition 5.2.

Define RPRev\mathrm{RPRev} as the revenue obtainable by a simultaneous auction with optimal reserve prices rijr_{ij}’s, such that the revenue at its worst equilibrium s{s} is maximized:

RPRev:=suprinfs is BNERevD(s)(𝒜RP(r))\mathrm{RPRev}:=\sup_{r}\inf_{{s}\text{ is BNE}}\mathrm{Rev}^{({s})}_{D}\Big{(}\mathcal{A}_{\mathrm{RP}}^{(r)}\Big{)}

Given that RPRev\mathrm{RPRev} is finite, the subsequent corollary directly follows.

Lemma 5.2.

For any ε>0\varepsilon>0, there exists a set of reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} so that for any equilibrium s{s} of 𝒜RP(r)\mathcal{A}_{\mathrm{RP}}^{(r)}, its revenue at s{s} achieves (1ε)RPRev(1-\varepsilon)\mathrm{RPRev}.

In the following proof, we respectively approximate Single,Tail\textsc{Single},\textsc{Tail} and Core. Figure 1 below offers a comprehensive overview of how we organize our proof.

\pgfmathresultptOptimal RevenueTheorem 3.1CoreLemma 5.5SingleLemma 5.3TailLemma 5.4Core^\widehat{\textsc{Core}}Lemma 5.9CoreCore^\textsc{Core}-\widehat{\textsc{Core}}Lemma 5.6Lemma 5.7Lemma 5.8Lemma 5.10Lemma 5.11Lemma 5.13
Figure 1: Relationships among lemmas and their roles in establishing the main result

We first show that under parameters β\beta and σ(β)\sigma^{(\beta)} that satisfy  (1) and (2) of Lemma 5.1, Single and Tail could be easily approximated by 𝒜RP(r)\mathcal{A}_{\mathrm{RP}}^{(r)} with appropriately selected reserve prices.

Lemma 5.3.

For any σ\sigma and β\beta that satisfy (1) and (2) as stipulated in Lemma 5.1444Here it means that σ\sigma satisfies  (2) when σ(β)\sigma^{(\beta)} is replaced by σ\sigma. Single(σ,β)\textsc{Single}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}} could be upper bounded by the revenue of a simultaneous auction with personalized reserve prices (Mechanism 2). That is to say,

Single(σ,β)8RPRev.\textsc{Single}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}}\leq 8\cdot\mathrm{RPRev}.
Lemma 5.4.

For any β\beta satisfying (1), there exists a simultaneous auction with personalized reserve prices (Mechanism 2), whose revenue is at least 1b2Tail(β)\frac{1-b}{2}\cdot\textsc{Tail}{\mathchoice{\left(\beta\right)}{(\beta)}{(\beta)}{(\beta)}}, i.e.,

Tail(β)21bRPRev.\textsc{Tail}{\mathchoice{\left(\beta\right)}{(\beta)}{(\beta)}{(\beta)}}\leq\frac{2}{1-b}\cdot\mathrm{RPRev}.

The proofs of Lemma 5.3 and Lemma 5.4 are postponed to Appendix E.1 and E.2.

5.1 The Analysis of the Core

We now proceed to show that Core could also be approximated by simultaneous auctions with entry fees or reserve prices.

Lemma 5.5.

For any σ\sigma and β\beta that satisfy (1) and (2) as specified in Lemma 5.1, and tuple (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right) that is cc-efficient,

Core(σ,β)4cEF-RevD(s)(𝒜)+1cRevD(s)(𝒜)+(2b+2b(1b)+10c(1b))RPRev,\textsc{Core}(\sigma,\beta)\leq\frac{4}{c}\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{1}{c}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+{\mathchoice{\left(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)}\right)}{(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)})}{(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)})}{(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)})}}\cdot\mathrm{RPRev},

where EF-RevD(s)(𝒜)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}} is defined in Definition 4.2.

To prove Lemma 5.5, we first introduce the double-core decomposition Core^\widehat{\textsc{Core}}.

Definition 5.3 (Double-core decomposition).

Let

τi:=inf{x0:jPrtij[Vi(tij)max{βij,x}]12}.\tau_{i}:=\inf\left\{x\geq 0:\sum_{j}\Pr_{t_{ij}}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},x\right\}\right]\leq\frac{1}{2}\right\}.

and define AiA_{i} to be the set {j:βijτi}\left\{j:\beta_{ij}\leq\tau_{i}\right\}. Define Core^\widehat{\textsc{Core}} as

Core^(σ,β)=itiTiS[m]fi(ti)σiS(ti)υi(ti,SYi(ti))\widehat{\textsc{Core}}(\sigma,\beta)=\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}(t_{i})\sigma_{iS}(t_{i})\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}(t_{i})\right)}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}}

where Yi(ti)={j:Vi(tij)<τi}Y_{i}(t_{i})=\{j:V_{i}(t_{ij})<\tau_{i}\}.

Remark 3.

We provide an alternative double-core decomposition compared to [20]. The main difference between these two decompositions is that the τi\tau_{i} defined in our paper is different and could potentially be larger than theirs. As Core^\widehat{\textsc{Core}} defined in [20] is designed for posted-price mechanisms, they assign a price QjQ_{j} for each item jj and replace max{βij,x}\max\left\{\beta_{ij},x\right\} by max{βij,x+Qj}\max\left\{\beta_{ij},x+Q_{j}\right\} in the definition of τi\tau_{i}. We show that the use of QjQ_{j} is unnecessary. By Lemma 5.13, iτi\sum_{i}\tau_{i} in our paper can still be approximated by simple mechanisms. This is crucial for our analysis, as our proof highly replies on the τi\tau_{i}-Lipschitzness of μi\mu_{i}, and it can fail to be τi\tau_{i}-Lipschitz if we use τi\tau_{i} defined in [20].

It suffices to demonstrate that our simultaneous auctions with either entry fees or reserve prices provide an upper bound for both the Core^\widehat{\textsc{Core}} and the difference between Core and Core^\widehat{\textsc{Core}}, i.e., CoreCore^\textsc{Core}-\widehat{\textsc{Core}}. We first show that the gap between these two cores could be approximated by the revenue of simultaneous auction with reserved prices.

Lemma 5.6.

For any σ\sigma, β\beta that satisfies (1) and (2) in Lemma 5.1,

Core(σ,β)Core^(σ,β)2(b+1)b(1b)RPRev.\textsc{Core}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}}-\widehat{\textsc{Core}}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}}\leq\frac{2(b+1)}{b(1-b)}\cdot\mathrm{RPRev}.

To prove Lemma 5.6, we first introduce a technical lemma that will be used in our proof.

Lemma 5.7.

For any β\beta that satisfies (1) in Lemma 5.1,

i,jmax{βij,τi}Prtij[Vi(tij)>max{βij,τi}]21bRPRev\sum_{i,j}\max\left\{\beta_{ij},\tau_{i}\right\}\Pr_{t_{ij}}\left[V_{i}(t_{ij})>\max\left\{\beta_{ij},\tau_{i}\right\}\right]\leq\frac{2}{1-b}\cdot\mathrm{RPRev}
Proof.

According to the definition of τi\tau_{i}, for every buyer ii, jPrtij[Vi(tij)>max{βij,τi}]12\sum_{j}\Pr_{t_{ij}}\left[V_{i}(t_{ij})>\max\left\{\beta_{ij},\tau_{i}\right\}\right]\leq\frac{1}{2}. For each item jj, since β\beta satisfies (1), it holds that

iPrtij[Vi(tij)>max{βij,τi}]iPrtij[Vi(tij)>βij]b.\sum_{i}\Pr_{t_{ij}}\left[V_{i}(t_{ij})>\max\left\{\beta_{ij},\tau_{i}\right\}\right]\leq\sum_{i}\Pr_{t_{ij}}\left[V_{i}(t_{ij})>\beta_{ij}\right]\leq b.

Applying lemma 4.3, we then complete our proof. ∎

Before proving Lemma 5.6, we need one more lemma about ici\sum_{i}c_{i}.

Lemma 5.8.

For any β\beta that satisfies (1) in Lemma 5.1,

ici41bRPRev.\sum_{i}c_{i}\leq\frac{4}{1-b}\mathrm{RPRev}.
Proof.

Recall that cic_{i} is defined as follows:

ci:=inf{x0:jPrtij[Vi(tij)βij+x]12}.c_{i}:=\inf\left\{x\geq 0:\sum_{j}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+x]}}\leq\frac{1}{2}\right\}.

From the definition of cic_{i}, it directly follows that

jPrtij[Vi(tij)βij+ci]12\sum_{j}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}}\leq\frac{1}{2}

for all i[n]i\in[n]. Moreover, as the βij\beta_{ij}’s satisfy (1), the following is clearly true.

iPrtij[Vi(tij)βij+ci]iPrtij[Vi(tij)βij]b,j[m].\sum_{i}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}}\leq\sum_{i}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}]}}\leq b,\ \forall j\in[m].

Consequently, the set {βij+ci}i[n],j[m]\left\{\beta_{ij}+c_{i}\right\}_{i\in[n],j\in[m]} meets all conditions in Lemma 4.3. This leads to the implication that:

ij(βij+ci)Prti[Vi(tij)βij+ci]21bRPRev.\sum_{i}\sum_{j}{\mathchoice{\left(\beta_{ij}+c_{i}\right)}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}}\cdot\Pr_{t_{i}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}}\leq\frac{2}{1-b}\cdot\mathrm{RPRev}.

On the other hand,

ij(βij+ci)Prti[Vi(tij)βij+ci]ijciPrti[Vi(tij)βij+ci]12ici.\sum_{i}\sum_{j}{\mathchoice{\left(\beta_{ij}+c_{i}\right)}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}}\cdot\Pr_{t_{i}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}}\geq\sum_{i}\sum_{j}c_{i}\cdot\Pr_{t_{i}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}}\geq\frac{1}{2}\cdot\sum_{i}c_{i}.

The last inequality arises since, when ci>0c_{i}>0, jPrti[Vi(tij)βij+ci]=12\sum_{j}\Pr_{t_{i}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+c_{i}]}}=\frac{1}{2}. Combining the two inequalities above, we know that ici/221bRPRev\sum_{i}c_{i}/2\leq\frac{2}{1-b}\cdot\mathrm{RPRev}. ∎

Now we are ready to prove Lemma 5.6.

Proof of Lemma 5.6.

Recall that

Core(σ,β)\displaystyle\textsc{Core}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}} =itiTifi(ti)S[m]σiS(ti)υi(ti,S𝒞i(ti))\displaystyle=\sum_{i}\sum_{t_{i}\in T_{i}}f_{i}(t_{i})\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\upsilon_{i}{\mathchoice{\left(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}
Core^(σ,β)\displaystyle\widehat{\textsc{Core}}(\sigma,\beta) =itiTifi(ti)S[m]σiS(ti)υi(ti,SYi(ti))\displaystyle=\sum_{i}\sum_{t_{i}\in T_{i}}f_{i}(t_{i})\sum_{S\subseteq[m]}\sigma_{iS}(t_{i})\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}(t_{i})\right)}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}}

where 𝒞i(ti)={j:Vi(tij)<βij+ci},Yi(ti)={j:Vi(tij)<τi}\mathcal{C}_{i}\left(t_{i}\right)=\{j:V_{i}(t_{ij})<\beta_{ij}+c_{i}\},Y_{i}(t_{i})=\{j:V_{i}(t_{ij})<\tau_{i}\}.

Firstly, notice that

υi(ti,S𝒞i(ti))υi(ti,SYi(ti))υi(ti,S(𝒞i(ti)\Yi(ti)))jS(𝒞i(ti)\Yi(ti))Vi(tij)jSVi(tij)𝟙[τiVi(tij)βij+ci]jS(βij𝟙[Vi(tij)τi]+ci𝟙[Vi(tij)max{βij,τi}])\displaystyle\begin{split}\upsilon_{i}{\mathchoice{\left(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap\mathcal{C}_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}(t_{i})\right)}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}}&\leq\upsilon_{i}{\mathchoice{\left(t_{i},S\cap(\mathcal{C}_{i}(t_{i})\backslash Y_{i}(t_{i}))\right)}{(t_{i},S\cap(\mathcal{C}_{i}(t_{i})\backslash Y_{i}(t_{i})))}{(t_{i},S\cap(\mathcal{C}_{i}(t_{i})\backslash Y_{i}(t_{i})))}{(t_{i},S\cap(\mathcal{C}_{i}(t_{i})\backslash Y_{i}(t_{i})))}}\\ &\leq\sum_{j\in S\cap\left(\mathcal{C}_{i}(t_{i})\backslash Y_{i}(t_{i})\right)}V_{i}\left(t_{ij}\right)\\ &\leq\sum_{j\in S}V_{i}(t_{ij})\cdot\mathbbm{1}\left[\tau_{i}\leq V_{i}(t_{ij})\leq\beta_{ij}+c_{i}\right]\\ &\leq\sum_{j\in S}{\mathchoice{\left(\beta_{ij}\cdot\mathbbm{1}{\mathchoice{\left[V_{i}(t_{ij})\geq\tau_{i}\right]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}}+c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right]\right)}{(\beta_{ij}\cdot\mathbbm{1}{\mathchoice{\left[V_{i}(t_{ij})\geq\tau_{i}\right]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}}+c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right])}{(\beta_{ij}\cdot\mathbbm{1}{\mathchoice{\left[V_{i}(t_{ij})\geq\tau_{i}\right]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}}+c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right])}{(\beta_{ij}\cdot\mathbbm{1}{\mathchoice{\left[V_{i}(t_{ij})\geq\tau_{i}\right]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}{[V_{i}(t_{ij})\geq\tau_{i}]}}+c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right])}}\\ \end{split} (3)

The last inequality is because when τiVi(tij)βij+ci\tau_{i}\leq V_{i}(t_{ij})\leq\beta_{ij}+c_{i}, Vi(tij)V_{i}(t_{ij}) is upper bounded by βij\beta_{ij} when Vi(tij)βijV_{i}(t_{ij})\leq\beta_{ij} and upper bounded by βij+ci\beta_{ij}+c_{i} when Vi(tij)βijV_{i}(t_{ij})\geq\beta_{ij}. Hence

CoreCore^itiS[m]jSfi(ti)σiS(ti)(βij𝟙[Vi(tij)τi]+ci𝟙[Vi(tij)max{βij,τi}])=ijtifi(ti)πij(ti)(βij𝟙[Vi(tij)τi]+ci𝟙[Vi(tij)max{βij,τi}]).\displaystyle\begin{split}&\textsc{Core}-\widehat{\textsc{Core}}\\ &\leq\sum_{i}\sum_{t_{i}}\sum_{S\subseteq[m]}\sum_{j\in S}f_{i}(t_{i})\sigma_{iS}(t_{i})\cdot\left(\beta_{ij}\cdot\mathbbm{1}[V_{i}(t_{ij})\geq\tau_{i}]+c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\{\beta_{ij},\tau_{i}\}\right]\right)\\ &=\sum_{i}\sum_{j}\sum_{t_{i}}f_{i}(t_{i})\cdot\pi_{ij}(t_{i})\cdot\left(\beta_{ij}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\tau_{i}\right]+c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right]\right).\\ \end{split} (4)

First we bound ijtifi(ti)πij(ti)βij𝟙[Vi(tij)τi]\sum_{i}\sum_{j}\sum_{t_{i}}f_{i}(t_{i})\cdot\pi_{ij}(t_{i})\cdot\beta_{ij}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\tau_{i}\right].

ijtifi(ti)πij(ti)βij𝟙[Vi(tij)τi]ijAiβijtifi(ti)𝟙[Vi(tij)τi]+ijAiβijtifi(ti)πij(ti)ijAiβijPrtij[Vi(tij)τi]+ijAiβijPrtij[Vi(tij)βij]/b1bi,jmax{βij,τi}Prtij[Vi(tij)max{βij,τi}]2b(1b)RPRev\displaystyle\begin{split}&\sum_{i}\sum_{j}\sum_{t_{i}}f_{i}(t_{i})\pi_{ij}(t_{i})\cdot\beta_{ij}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\tau_{i}\right]\\ \leq&{\sum_{i}}\sum_{j\in A_{i}}\beta_{ij}\cdot\sum_{t_{i}}f_{i}(t_{i})\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\tau_{i}\right]+\sum_{i}\sum_{j\notin A_{i}}\beta_{ij}\cdot\sum_{t_{i}}f_{i}(t_{i})\pi_{ij}(t_{i})\\ \leq&{\sum_{i}}\sum_{j\in A_{i}}\beta_{ij}\cdot\Pr_{t_{ij}}\left[V_{i}(t_{ij})\geq\tau_{i}\right]+\sum_{i}\sum_{j\notin A_{i}}\beta_{ij}\cdot\Pr_{t_{ij}}\left[V_{i}(t_{ij})\geq\beta_{ij}\right]/b\\ \leq&\frac{1}{b}\cdot\sum_{i,j}\max\left\{\beta_{ij},\tau_{i}\right\}\cdot\Pr_{t_{ij}}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right]\\ \leq&\frac{2}{b(1-b)}\cdot\mathrm{RPRev}\\ \end{split} (5)

The set AiA_{i} is defined as {j:βijτi}\{j:\beta_{ij}\leq\tau_{i}\} in Definition 5.3. The parameters βij\beta_{ij}’s satisfy Inequality (2), as presented in the statement of the lemma, which substantiates the second inequality. The third inequality is due to the definition of AiA_{i} and the last inequality follows from lemma 5.7.

Secondly, we bound ijtifi(ti)πij(ti)ci𝟙[Vi(tij)max{βij,τi}]\sum_{i}\sum_{j}\sum_{t_{i}}f_{i}(t_{i})\pi_{ij}(t_{i})\cdot c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right].

ijtifi(ti)πij(ti)ci𝟙[Vi(tij)max{βij,τi}]icijtifi(ti)𝟙[Vi(tij)max{βij,τi}]=icijPr[Vij(ti)max{βij,τi}]ici/221bRPRev\displaystyle\begin{split}&\sum_{i}\sum_{j}\sum_{t_{i}}f_{i}(t_{i})\pi_{ij}(t_{i})\cdot c_{i}\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right]\\ \leq&\sum_{i}c_{i}\sum_{j}\sum_{t_{i}}f_{i}(t_{i})\cdot\mathbbm{1}\left[V_{i}(t_{ij})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right]\\ =&\sum_{i}c_{i}\sum_{j}\Pr\left[V_{ij}(t_{i})\geq\max\left\{\beta_{ij},\tau_{i}\right\}\right]\\ \leq&\sum_{i}c_{i}/2\\ \leq&\frac{2}{1-b}\cdot\mathrm{RPRev}\\ \end{split} (6)

where the second inequality is due to the definition of τi\tau_{i} (Definition 5.3) and the last inequality is due to Lemma 5.8. Combining (4), (5) and (6), we complete our proof. ∎

Next, we argue that Core^\widehat{\textsc{Core}} could be approximated by auction 𝒜\mathcal{A} with either entry fees or reserve prices.

Lemma 5.9.

For any σ\sigma and β\beta that satisfy (1) and (2) in Lemma 5.1, and tuple (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right) that is cc-efficient,, it holds that

Core^(σ,β)1c(4EF-RevD(s)(𝒜)+RevD(s)(𝒜)+101bRPRev),\widehat{\textsc{Core}}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}}\leq\frac{1}{c}{\mathchoice{\left(4\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{10}{1-b}\cdot\mathrm{RPRev}\right)}{(4\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{10}{1-b}\cdot\mathrm{RPRev})}{(4\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{10}{1-b}\cdot\mathrm{RPRev})}{(4\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{10}{1-b}\cdot\mathrm{RPRev})}},

where EF-RevD(s)(𝒜)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}} denotes the revenue derived from entry fees, as defined in Definition 4.2.

Recall that in Definition 3.1, we define μi(s)(ti,S)\mu_{i}^{({s})}(t_{i},S) as the optimal utility that bidder ii can attain when only the bundle SS is available. We further define μ^i(ti,S)\hat{\mu}_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}} as μi(s)(ti,SYi(ti))\mu_{i}^{({s})}{\mathchoice{\left(t_{i},S\cap Y_{i}(t_{i})\right)}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}} where Yi(ti)={j:Vi(tij)<τi}Y_{i}(t_{i})=\left\{j:V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}<\tau_{i}\right\}. Lemma D.1 demonstrates that μ^(ti,)\hat{\mu}{\mathchoice{\left(t_{i},\cdot\right)}{(t_{i},\cdot)}{(t_{i},\cdot)}{(t_{i},\cdot)}} satisfies monotonicity, subadditivity, no externalities and τi\tau_{i}-Lipschitzness. Our proof of Lemma 5.9 can be divided into the following three steps. The first step, summarized in Lemma 5.10, argues that the “truncated” utility, represented as i𝔼tiDi[μ^i(ti,[m])]\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}, together with the revenue of the auction 𝒜\mathcal{A} serves as a cc-approximation to Core^\widehat{\textsc{Core}} by employing the third property in the definition of cc-efficiency. The second step, i.e., Lemma 5.11, shows how to extract revenue from the “truncated” utility by setting a entry fee at the median of the utility function. We demonstrate that the corresponding revenue is high enough using a concentration inequality for subadditive functions. The last step, i.e., Lemma 5.13 shows that the difference between the revenue from the entry fees and the truncated utilities can be approximated by the revenue from another simultaneous auction with reserved prices.

Lemma 5.10.

For any σ\sigma, β\beta that satisfies (1) and (2) in Lemma 5.1,

i𝔼tiDi[μ^i(ti,[m])]cCore^(σ,β)RevD(s)(𝒜).\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}\geq c\cdot\widehat{\textsc{Core}}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}}-\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}.
Proof.

The third property of cc-efficiency (Definition 3.1) states that for any S[m]S\subseteq[m],

μi(s)(ti,SYi(ti))cυi(ti,SYi(ti))RevD(s)(𝒜,SYi(ti)).\mu_{i}^{{\mathchoice{\left({s}\right)}{({s})}{({s})}{({s})}}}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}\geq c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}.

By the definition of μ^i\hat{\mu}_{i} and the monotonicity of μi(s)(ti,)\mu_{i}^{{\mathchoice{\left({s}\right)}{({s})}{({s})}{({s})}}}{\mathchoice{\left(t_{i},\cdot\right)}{(t_{i},\cdot)}{(t_{i},\cdot)}{(t_{i},\cdot)}}, it follows that

i𝔼tiDi[μ^i(ti,[m])]i𝔼tiDi[S[m]σiS(ti)μi(s)(ti,SYi(ti))]i𝔼tiDi[S[m]σiS(ti)(cυi(ti,SYi(ti))RevD(s)(𝒜,SYi(ti)))]=citiTiS[m]fi(ti)σiS(ti)υi(ti,SYi(ti))itiTiS[m]fi(ti)σiS(ti)RevD(s)(𝒜,SYi(ti))\displaystyle\begin{split}&\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}\\ &\geq\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{{\mathchoice{\left({s}\right)}{({s})}{({s})}{({s})}}}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}\right]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{{\mathchoice{\left({s}\right)}{({s})}{({s})}{({s})}}}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{{\mathchoice{\left({s}\right)}{({s})}{({s})}{({s})}}}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{{\mathchoice{\left({s}\right)}{({s})}{({s})}{({s})}}}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}]}}\\ &\geq\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}}\right]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}}]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}}]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(c\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\mathcal{A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}}]}}\\ &=c\cdot\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left({\mathcal{A},}S\cap Y_{i}(t_{i})\right)}{({\mathcal{A},}S\cap Y_{i}(t_{i}))}{({\mathcal{A},}S\cap Y_{i}(t_{i}))}{({\mathcal{A},}S\cap Y_{i}(t_{i}))}}\\ \end{split} (7)

The first term here is exactly cCore^c\cdot\widehat{\textsc{Core}}. Recall the definition of Core^\widehat{\textsc{Core}}:

Core^(σ,β)=itiTiS[m]fi(ti)σiS(ti)υi(ti,SYi(ti)).\displaystyle\begin{split}\widehat{\textsc{Core}}(\sigma,\beta)=\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}(t_{i})\sigma_{iS}(t_{i})\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}(t_{i})\right)}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}}.\end{split} (8)

We are only left to upper bound the second term. Recall that πij(ti)\pi_{ij}\left(t_{i}\right) represents the probability that item jj is allocated to bidder ii, meaning that itifi(ti)πij(ti)1\sum_{i}\sum_{t_{i}}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\pi_{ij}(t_{i})\leq 1 for all j[m]j\in[m]. Consequently,

itiTiS[m]fi(ti)σiS(ti)RevD(s)(𝒜,SYi(ti))itiTiS[m]fi(ti)σiS(ti)RevD(s)(𝒜,S)=jRevD(s)(𝒜,{j})itifi(ti)S:jSσiS(S)=jRevD(s)(𝒜,{j})itifi(ti)πij(ti)RevD(s)(𝒜,[m]).\displaystyle\begin{split}\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left({\mathcal{A},}S\cap Y_{i}(t_{i})\right)}{({\mathcal{A},}S\cap Y_{i}(t_{i}))}{({\mathcal{A},}S\cap Y_{i}(t_{i}))}{({\mathcal{A},}S\cap Y_{i}(t_{i}))}}&\leq\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left({\mathcal{A},}S\right)}{({\mathcal{A},}S)}{({\mathcal{A},}S)}{({\mathcal{A},}S)}}\\ &=\sum_{j}\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left(\mathcal{A},\left\{j\right\}\right)}{(\mathcal{A},\left\{j\right\})}{(\mathcal{A},\left\{j\right\})}{(\mathcal{A},\left\{j\right\})}}\sum_{i}\sum_{t_{i}}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sum_{S:j\in S}\sigma_{iS}{\mathchoice{\left(S\right)}{(S)}{(S)}{(S)}}\\ &=\sum_{j}\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left(\mathcal{A},\left\{j\right\}\right)}{(\mathcal{A},\left\{j\right\})}{(\mathcal{A},\left\{j\right\})}{(\mathcal{A},\left\{j\right\})}}\sum_{i}\sum_{t_{i}}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\pi_{ij}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\\ &\leq\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left(\mathcal{A},[m]\right)}{(\mathcal{A},[m])}{(\mathcal{A},[m])}{(\mathcal{A},[m])}}.\end{split} (9)

The first inequality employs the monotonicity of RevD(s)\mathrm{Rev}_{D}^{({s})}, and the first equation is because that 𝒜\mathcal{A} is a simultaneous auction, thereby making its revenue additive across items.

Putting (7),(8) and (9) together, we then finish our proof.

Finally, notice that μ^i(,)\hat{\mu}_{i}(\cdot,\cdot) is a subadditive function that is τi\tau_{i}-Lipschitz. To approximate i𝔼tiDi[μ^i(ti,[m])]\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}, the concentration inequality for subadditive functions tells us that we can extract the revenue from the bidder’s utility by setting an entry fee at its median.

Lemma 5.11.

There exists bidder-specific entry-fees {ei}i[n]\{e_{i}\}_{i\in[n]}, such that

i𝔼tiDi[μ^i(ti,[m])]4EF-RevD(s)(𝒜)+52iτi.\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}\leq 4\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{5}{2}\sum_{i}\tau_{i}.
Proof.

We first introduce a concentration inequality for subadditive function from Corollary 1 in [22].

Lemma 5.12 ([20]).

Let g(t,)g(t,\cdot) with tD=×jDjt\sim D=\bigtimes_{j}D_{j} be a function drawn from a distribution that is subadditive over independent items of ground set II. Assume that the function g(,)g(\cdot,\cdot) exhibits cc-Lipschitzness. Let aa represent the median of the random variable g(t,I)g(t,I), that is, a=inf{x0:Prt[g(t,I)x]12}a=\inf\left\{x\geq 0:{\Pr_{t}[g(t,I)\leq x]}\geq\frac{1}{2}\right\}.Therefore,

𝔼t[g(t,I)]2a+5c2.\operatorname*{\mathbb{E}}_{t}[g(t,I)]\leq 2a+\frac{5c}{2}.

Notice that μ^(ti,[m])\hat{\mu}(t_{i},[m]) is a random variable in which the randomness comes from its random type tit_{i}. Let eie_{i} be the median of μ^i(ti,[m])\hat{\mu}_{i}(t_{i},[m]). Since μ^(,)\hat{\mu}{\mathchoice{\left(\cdot,\cdot\right)}{(\cdot,\cdot)}{(\cdot,\cdot)}{(\cdot,\cdot)}} is subadditive over independent items and τi\tau_{i}-Lipschitz by Lemma D.1, Lemma 5.12 implies the following

𝔼tiDi[μ^(ti,[m])]2ei+52τi.\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}\leq 2e_{i}+\frac{5}{2}\tau_{i}. (10)

The monotonicity of μi\mu_{i} implies that μi(ti,[m])μ^i(ti,[m])\mu_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\geq\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}. Therefore, if we set the entry fee as eie_{i}, i.e., the median of μ^i(ti,[m])\hat{\mu}_{i}(t_{i},[m]), the probability that bidder ii pays the entry fee is at least 1/21/2. Thus

EF-RevD(s)(𝒜)ieiPrtiDi[μi(ti,[m])ei]12iei.\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}\geq\sum_{i}e_{i}\Pr_{t_{i}\sim D_{i}}\left[\mu_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\geq e_{i}\right]\geq\frac{1}{2}\sum_{i}e_{i}. (11)

Combining (10) and (11),we then get

i𝔼tiDi[μ^i(ti,[m])]\displaystyle\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}} 2iei+52iτi\displaystyle\leq 2\sum_{i}e_{i}+\frac{5}{2}\sum_{i}\tau_{i}
4EF-RevD(s)(𝒜)+52iτi.\displaystyle\leq 4\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{5}{2}\sum_{i}\tau_{i}.

As the last step, we show that the sum of the Lipschitz constant iτi\sum_{i}\tau_{i} can be approximated by RPRev\mathrm{RPRev}.

Lemma 5.13.

For any β\beta that satisfies (1) in Lemma 5.1,

iτi41bRPRev.\sum_{i}\tau_{i}\leq\frac{4}{1-b}\cdot\mathrm{RPRev}.
Proof.

Notice that

i,jmax{βij,τi}Prtij[Vi(tij)>max{βij,τi}]i,jτiPrtij[Vi(tij)>max{βij,τi}].\sum_{i,j}\max\left\{\beta_{ij},\tau_{i}\right\}\Pr_{t_{ij}}\left[V_{i}(t_{ij})>\max\left\{\beta_{ij},\tau_{i}\right\}\right]\geq\sum_{i,j}\tau_{i}\Pr_{t_{ij}}\left[V_{i}(t_{ij})>\max\left\{\beta_{ij},\tau_{i}\right\}\right]. (12)

According to the definition of τi\tau_{i}, when τi>0\tau_{i}>0,

jPrtij[Vi(tij)>max{βij,τi}]=12.\sum_{j}\Pr_{t_{ij}}\left[V_{i}(t_{ij})>\max\left\{\beta_{ij},\tau_{i}\right\}\right]=\frac{1}{2}. (13)

Combining (12), (13) and Lemma 5.7, we then get iτi41bRPRev\sum_{i}\tau_{i}\leq\frac{4}{1-b}\cdot\mathrm{RPRev}. ∎

It is evident that Lemma 5.9 is a direct consequence of the amalgamation of Lemma 5.10, Lemma 5.11, and Lemma 5.13. Analogously, by combining Lemma 5.6 and Lemma 5.9, we subsequently obtain Lemma 5.5.

Finally, we are now ready to prove our main theorem, i.e., Theorem 3.1.

Proof of Theorem 3.1.

From the statement of Lemma 5.3, Lemma 5.4 and Lemma 5.5, we get that

Single(σ(β),β)8RPRevTail(β)21bRPRevCore(σ(β),β)4cEF-RevD(s)(𝒜)+1cRevD(s)(𝒜)+(2b+2b(1b)+10c(1b))RPRev\displaystyle\begin{split}\textsc{Single}{\mathchoice{\left(\sigma^{(\beta)},\beta\right)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}}&\leq 8\cdot\mathrm{RPRev}\\ \textsc{Tail}{\mathchoice{\left(\beta\right)}{(\beta)}{(\beta)}{(\beta)}}&\leq\frac{2}{1-b}\cdot\mathrm{RPRev}\\ \textsc{Core}(\sigma^{(\beta)},\beta)&\leq\frac{4}{c}\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{1}{c}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+{\mathchoice{\left(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)}\right)}{(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)})}{(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)})}{(\frac{2b+2}{b(1-b)}+\frac{10}{c(1-b)})}}\cdot\mathrm{RPRev}\end{split} (14)

Lemma 5.1 demonstrates that

RevD(M)2Single(σ(β),β)+4Tail(β)+4Core(σ(β),β).\displaystyle\begin{split}\mathrm{Rev}_{D}(M)\leq 2\cdot\textsc{Single}{\mathchoice{\left(\sigma^{(\beta)},\beta\right)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}}+4\cdot\textsc{Tail}{\mathchoice{\left(\beta\right)}{(\beta)}{(\beta)}{(\beta)}}+4\cdot\textsc{Core}{\mathchoice{\left(\sigma^{(\beta)},\beta\right)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}{(\sigma^{(\beta)},\beta)}}.\end{split} (15)

Combining (14) and (15), we then get

RevD(M)16cEF-RevD(s)(𝒜)+4cRevD(s)(𝒜)+(16b+8b(1b)+40c(1b)+16)RPRev.\mathrm{Rev}_{D}(M)\leq\frac{16}{c}\cdot\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\frac{4}{c}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}\right)}{(\mathcal{A})}{(\mathcal{A})}{(\mathcal{A})}}+\left(\frac{16b+8}{b(1-b)}+\frac{40}{c(1-b)}+{16}\right)\cdot\mathrm{RPRev}.

By Lemma 5.2 and Lemma 4.2, we then know that there exists a set of entry fees {ei}i[n]\{e_{i}\}_{i\in[n]} and a set of reserve prices {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} so that for any equilibrium s{s} of auction 𝒜\mathcal{A} with reserve price rr, i.e., 𝒜RP(r)\mathcal{A}_{\mathrm{RP}}^{(r)}, and any ε1,ε2,δ(0,1)\varepsilon_{1},\varepsilon_{2},\delta\in(0,1), it holds that

RevD(M)20c(1δε1)RevD(s)(𝒜EF(e))+(1ε2)1(16b+8b(1b)+40c(1b)+16)RevD(s)(𝒜RP(r)).\mathrm{Rev}_{D}(M)\leq\frac{20}{c\cdot(1-\delta-\varepsilon_{1})}\cdot\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}+{\mathchoice{\left(1-\varepsilon_{2}\right)}{(1-\varepsilon_{2})}{(1-\varepsilon_{2})}{(1-\varepsilon_{2})}}^{-1}\left(\frac{16b+8}{b(1-b)}+\frac{40}{c(1-b)}+{16}\right)\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathcal{A}_{\mathrm{RP}}^{(r)}\right)}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}}.

Taking δ=ε1=ε2=0.01\delta=\varepsilon_{1}=\varepsilon_{2}=0.01 and b=15b=\frac{1}{5}, we get that

RevD(M)21cRevD(s)(𝒜EF(e))+(87+51c)RevD(s)(𝒜RP(r)).\mathrm{Rev}_{D}(M)\leq\frac{21}{c}\cdot\mathrm{Rev}^{({s})}_{D}{{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}}+\left(87+\frac{51}{c}\right)\cdot\mathrm{Rev}^{({s}^{\prime})}_{D}{\mathchoice{\left(\mathcal{A}_{\mathrm{RP}}^{(r)}\right)}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}{(\mathcal{A}_{\mathrm{RP}}^{(r)})}}.

Since this inequality holds for any BIC mechanism MM, we have proved our claim. ∎

References

  • [1] Mohammad Akbarpour and Shengwu Li. Credible Mechanisms. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages 371–371, Ithaca NY USA, June 2018. ACM.
  • [2] Saeed Alaei. Bayesian Combinatorial Auctions: Expanding Single Buyer Mechanisms to Many Buyers. In the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2011.
  • [3] Susan Athey, Jonathan Levin, and Enrique Seira. Comparing open and Sealed Bid Auctions: Evidence from Timber Auctions*. The Quarterly Journal of Economics, 126(1):207–257, February 2011.
  • [4] Moshe Babaioff, Yannai A. Gonczarowski, and Noam Nisan. The menu-size complexity of revenue approximation. Games and Economic Behavior, 134:281–307, July 2022.
  • [5] Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S. Matthew Weinberg. A Simple and Approximately Optimal Mechanism for an Additive Buyer. In the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2014.
  • [6] Kshipra Bhawalkar and Tim Roughgarden. Welfare Guarantees for Combinatorial Auctions with Item Bidding. In SODA, pages 700–709, 2011.
  • [7] Patrick Briest, Shuchi Chawla, Robert Kleinberg, and S. Matthew Weinberg. Pricing Randomized Allocations. In the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010.
  • [8] Patrick Briest, Shuchi Chawla, Robert Kleinberg, and S Matthew Weinberg. Pricing lotteries. Journal of Economic Theory, 156:144–174, 2015. Publisher: Elsevier.
  • [9] Yang Cai and Constantinos Daskalakis. Learning Multi-Item Auctions with (or without) Samples. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 516–527, October 2017. ISSN: 0272-5428.
  • [10] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. On optimal multidimensional mechanism design. ACM SIGecom Exchanges, 10(2):29–33, June 2011.
  • [11] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. An algorithmic characterization of multi-dimensional mechanisms. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, STOC ’12, pages 459–478, New York, NY, USA, May 2012. Association for Computing Machinery.
  • [12] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Optimal Multi-dimensional Mechanism Design: Reducing Revenue to Welfare Maximization. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 130–139, October 2012. ISSN: 0272-5428.
  • [13] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Reducing Revenue to Welfare Maximization: Approximation Algorithms and other Generalizations. In Proceedings of the 2013 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages 578–595. Society for Industrial and Applied Mathematics, January 2013.
  • [14] Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. Understanding Incentives: Mechanism Design Becomes Algorithm Design. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 618–627, October 2013. ISSN: 0272-5428.
  • [15] Yang Cai, Nikhil R. Devanur, and S. Matthew Weinberg. A Duality-Based Unified Approach to Bayesian Mechanism Design. SIAM Journal on Computing, 50(3):STOC16–160, January 2021. Num Pages: STOC16-200 Publisher: Society for Industrial and Applied Mathematics.
  • [16] Yang Cai and Zhiyi Huang. Simple and Nearly Optimal Multi-Item Auctions. In Proceedings of the 2013 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages 564–577. Society for Industrial and Applied Mathematics, January 2013.
  • [17] Yang Cai and Argyris Oikonomou. On Simple Mechanisms for Dependent Items. In Proceedings of the 22nd ACM Conference on Economics and Computation, EC ’21, pages 242–262, New York, NY, USA, July 2021. Association for Computing Machinery.
  • [18] Yang Cai, Argyris Oikonomou, Grigoris Velegkas, and Mingfei Zhao. An Efficient eps-BIC to BIC Transformation and Its Application to Black-Box Reduction in Revenue Maximization. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages 1337–1356. Society for Industrial and Applied Mathematics, January 2021.
  • [19] Yang Cai, Argyris Oikonomou, and Mingfei Zhao. Computing simple mechanisms: Lift-and-round over marginal reduced forms. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 704–717, New York, NY, USA, June 2022. Association for Computing Machinery.
  • [20] Yang Cai and Mingfei Zhao. Simple mechanisms for subadditive buyers via duality. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 170–183, New York, NY, USA, June 2017. Association for Computing Machinery.
  • [21] Yang Cai and Mingfei Zhao. Simple Mechanisms for Profit Maximization in Multi-item Auctions. In Proceedings of the 2019 ACM Conference on Economics and Computation, EC ’19, pages 217–236, New York, NY, USA, June 2019. Association for Computing Machinery.
  • [22] Yang Cai and Mingfei Zhao. Simple Mechanisms for Subadditive Buyers via Duality, August 2019. arXiv:1611.06910 [cs].
  • [23] Shuchi Chawla, Jason D. Hartline, and Robert D. Kleinberg. Algorithmic Pricing via Virtual Valuations. In the 8th ACM Conference on Electronic Commerce (EC), 2007.
  • [24] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. Multi-Parameter Mechanism Design and Sequential Posted Pricing. In the 42nd ACM Symposium on Theory of Computing (STOC), 2010.
  • [25] Shuchi Chawla and J. Benjamin Miller. Mechanism Design for Subadditive Agents via an Ex-Ante Relaxation. In Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, pages 579–596, 2016. Journal Abbreviation: CoRR.
  • [26] Xi Chen, Ilias Diakonikolas, Anthi Orfanou, Dimitris Paparas, Xiaorui Sun, and Mihalis Yannakakis. On the complexity of optimal lottery pricing and randomized mechanisms. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pages 1464–1479. IEEE, 2015.
  • [27] George Christodoulou, Annamária Kovács, and Michael Schapira. Bayesian Combinatorial Auctions. In ICALP (1), pages 820–832, 2008.
  • [28] Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. The Complexity of Optimal Mechanism Design. In the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014.
  • [29] Constantinos Daskalakis, Alan Deckelbaum, and Christos Tzamos. Strong Duality for a Multiple-Good Monopolist. Econometrica, 85(3):735–767, 2017. Publisher: Wiley Online Library.
  • [30] Constantinos Daskalakis, Maxwell Fishelson, Brendan Lucier, Vasilis Syrgkanis, and Santhoshini Velusamy. Multi-item Non-truthful Auctions Achieve Good Revenue, September 2022. arXiv:2002.06702 [cs, econ].
  • [31] Shaddin Dughmi, Li Han, and Noam Nisan. Sampling and representation complexity of revenue maximization. In Proceedings of the 10th International Conference on Web and Internet Economics (WINE), 2014.
  • [32] Paul Dütting, Monika Henzinger, and Martin Starnberger. Valuation Compressions in VCG-Based Combinatorial Auctions. In Yiling Chen and Nicole Immorlica, editors, Web and Internet Economics, Lecture Notes in Computer Science, pages 146–159, Berlin, Heidelberg, 2013. Springer.
  • [33] Paul Dütting, Thomas Kesselheim, and Brendan Lucier. An O(log log m) Prophet Inequality for Subadditive Combinatorial Auctions. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 306–317. IEEE, 2020.
  • [34] Michal Feldman, Hu Fu, Nick Gravin, and Brendan Lucier. Simultaneous auctions are (almost) efficient. In STOC, pages 201–210, 2013.
  • [35] Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial Auctions via Posted Prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 123–135, 2015.
  • [36] Moran Feldman, Ola Svensson, and Rico Zenklusen. Online Contention Resolution Schemes. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1014–1033, 2016.
  • [37] Sergiu Hart and Noam Nisan. Approximate Revenue Maximization with Multiple Items. In the 13th ACM Conference on Electronic Commerce (EC), 2012.
  • [38] Sergiu Hart and Noam Nisan. Selling multiple correlated goods: Revenue maximization and menu-size complexity. Journal of Economic Theory, 183:991 – 1029, 2019.
  • [39] Sergiu Hart and Philip J. Reny. Maximal revenue with multiple goods: Nonmonotonicity and other observations. Theoretical Economics, 10(3):893–922, 2015. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/TE1517.
  • [40] Jason Hartline, Darrell Hoy, and Sam Taggart. Price of anarchy for auction revenue. In Proceedings of the fifteenth ACM conference on Economics and computation, EC ’14, pages 693–710, New York, NY, USA, June 2014. Association for Computing Machinery.
  • [41] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, and Noam Nisan. Non-price equilibria in markets of discrete goods. In ACM Conference on Electronic Commerce, pages 295–296, 2011.
  • [42] José Correa and Andrés Cristi. A Constant Factor Prophet Inequality for Online Combinatorial Auctions. In 55th annual ACM symposium on Theory of Computing, 2023.
  • [43] Robert Kleinberg and S. Matthew Weinberg. Matroid Prophet Inequalities. In the 44th Annual ACM Symposium on Theory of Computing (STOC), 2012.
  • [44] Pravesh Kothari, Divyarthi Mohan, Ariel Schvartzman, Sahil Singla, and S. Matthew Weinberg. Approximation Schemes for a Unit-Demand Buyer with Independent Items via Symmetries. 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 220–232, November 2019. arXiv: 1905.05231.
  • [45] Roger B. Myerson. Optimal Auction Design. Mathematics of Operations Research, 6(1):58–73, 1981.
  • [46] Tim Roughgarden, Vasilis Syrgkanis, and Eva Tardos. The Price of Anarchy in Auctions. Journal of Artificial Intelligence Research, 59:59–101, May 2017.
  • [47] Aviad Rubinstein and S. Matthew Weinberg. Simple Mechanisms for a Subadditive Buyer and Applications to Revenue Monotonicity. In Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015, pages 377–394, 2015.
  • [48] Vasilis Syrgkanis and Éva Tardos. Composable and efficient mechanisms. In STOC, pages 211–220, 2013.
  • [49] Andrew Chi-Chih Yao. An n-to-1 Bidder Reduction for Multi-item Auctions and its Applications. In SODA, 2015. Journal Abbreviation: CoRR.
  • [50] Andrew Chi-Chih Yao. On Revenue Monotonicity in Combinatorial Auctions. arXiv preprint arXiv:1709.03223, 2017.

Appendix A Additional Preliminaries

Bayes-Nash Equilibrium

A strategy profile s=(s1,s2,,sn){s}={\mathchoice{\left({s}_{1},{s}_{2},\cdots,{s}_{n}\right)}{({s}_{1},{s}_{2},\cdots,{s}_{n})}{({s}_{1},{s}_{2},\cdots,{s}_{n})}{({s}_{1},{s}_{2},\cdots,{s}_{n})}} is a Bayes-Nash equilibrium (BNE) with respect to type distribution DD and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]} if and only if for any bidder ii, any type tit_{i}, and any strategy s~i:Ti0m\tilde{{s}}_{i}:T_{i}\rightarrow\mathbb{R}^{m}_{\geq 0}, the following inequality holds

𝔼tiDi[𝔼b(si(ti),si(ti))[ui(ti,b)]]𝔼tiDi[𝔼b~is~i(ti)bisi(ti)[ui(ti,(b~i,bi))]].\displaystyle\operatorname*{\mathbb{E}}_{t_{-i}\sim D_{-i}}{\mathchoice{\left[\operatorname*{\mathbb{E}}_{{b}\sim\left({s}_{i}(t_{i}),{s}_{-i}(t_{-i})\right)}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}\right]}{[\operatorname*{\mathbb{E}}_{{b}\sim\left({s}_{i}(t_{i}),{s}_{-i}(t_{-i})\right)}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}]}{[\operatorname*{\mathbb{E}}_{{b}\sim\left({s}_{i}(t_{i}),{s}_{-i}(t_{-i})\right)}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}]}{[\operatorname*{\mathbb{E}}_{{b}\sim\left({s}_{i}(t_{i}),{s}_{-i}(t_{-i})\right)}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}]}}\geq\operatorname*{\mathbb{E}}_{t_{-i}\sim D_{-i}}{\mathchoice{\left[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\tilde{{b}}_{i}\sim{\tilde{{s}}_{i}(t_{i})}\\ {b}_{-i}\sim s_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}\right]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}}\right]}{[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\tilde{{b}}_{i}\sim{\tilde{{s}}_{i}(t_{i})}\\ {b}_{-i}\sim s_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}\right]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}}]}{[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\tilde{{b}}_{i}\sim{\tilde{{s}}_{i}(t_{i})}\\ {b}_{-i}\sim s_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}\right]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}}]}{[\operatorname*{\mathbb{E}}_{\begin{subarray}{c}\tilde{{b}}_{i}\sim{\tilde{{s}}_{i}(t_{i})}\\ {b}_{-i}\sim s_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}\right]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}{[u_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}}\right)}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}{(t_{i},{\mathchoice{\left(\tilde{{b}}_{i},{b}_{-i}\right)}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}{(\tilde{{b}}_{i},{b}_{-i})}})}}]}}]}}.

Examples of Valuations

Suppose t=tjj[m]t={\mathchoice{\left\langle t_{j}\right\rangle}{\langle t_{j}\rangle}{\langle t_{j}\rangle}{\langle t_{j}\rangle}}_{j\in[m]} where tjt_{j} is drawn independently from DjD_{j}. We show how subadditive functions over independent items capture various families of valuation functions.

  • Additive: tjt_{j} is the value of item jj, and υ(t,S)=jStj\upsilon{\mathchoice{\left(t,S\right)}{(t,S)}{(t,S)}{(t,S)}}=\sum_{j\in S}t_{j}.

  • Unit-demand: tjt_{j} is the value of item jj, and υ(t,S)=maxjStj\upsilon{\mathchoice{\left(t,S\right)}{(t,S)}{(t,S)}{(t,S)}}=\max_{j\in S}t_{j}.

  • Constrained Additive: tjt_{j} is the value of item jj, and suppose \mathcal{I} is a family of feasible sets. υ(t,S)=maxYS,YiYti\upsilon(t,S)=\max_{{Y\subseteq S,Y\in\mathcal{I}}}\sum_{i\in Y}t_{i}.

  • XOS/Fractionally Subadditive: let tj={tj(k)}k[K]t_{j}=\left\{t_{j}^{(k)}\right\}_{k\in[K]} be the collection of values of item jj for each of the KK additive functions, and υ(t,S)=maxk[K]jStj(k)\upsilon(t,S)=\max_{k\in[K]}\sum_{j\in S}t_{j}^{(k)}.

Appendix B Tie-breaking and the Existence of Equilibrium

B.1 Tie-breaking

For distribution DD with point masses, the following reduction will convert it to a continuous one. We will overload the notation of DD and think of it as a bivariate distribution with the first coordinate drawn from the previous single-variate distribution DD and the second tie-breaker coordinate drawn independently and uniformly from [0,1][0,1]. And (X1,t1)>(X2,t2)(X_{1},t_{1})>(X_{2},t_{2}) if and only if either X1>X2X_{1}>X_{2}, or X1=X2X_{1}=X_{2} and t1>t2t_{1}>t_{2}. Since the tie-breaker coordinate is continuous, the probability of having (X1,t1)=(X2,t2)(X_{1},t_{1})=(X_{2},t_{2}) for any two values during a run of any mechanism is zero.

Remind the second coordinate is only used to break ties, and it does not affect the calculation of payment. Note that when we run a mechanism with entry fees {ei}\{e_{i}\}, the second coordinate does not affect whether bidder ii chooses to pay the entry fee or not. It is only used to break ties in the execution of 𝒜\mathcal{A}. This means that we can even remove the second coordinate when implementing the mechanism with entry fees and still use the same ways to break ties as in 𝒜\mathcal{A}. Therefore, by adding the second tie-breaker coordinate, we get a continuous distribution, and do not change the structure of equilibrium of mechanisms with entry fees.

B.2 The Existence of Equilibrium

Our result applies to every equilibrium in simultaneous auctions that satisfies cc-efficient. However, equilibria may not exist when the type spaces and and strategy spaces are both continuous. To fix this, we can restrict the strategy spaces to be discrete and bounded, e.g., ε\varepsilon-grid in [0,H][0,H], and assume the type spaces to be finite. Consequently, this transforms the game into a finite one, and thus an equilibrium must inherently exist.

We refer readers to [34] for a detailed discussion of existence of equilibrium in simultaneous auctions.

Appendix C Proof of Lemma 3.2 and 3.3

The proof here is inspired by [34].

The first and second condition is obviously true for simultaneous first-price auctions and simultaneous all-pay auctions. Now we argue that the third condition with c=12c=\frac{1}{2} is satisfied by simultaneous first-price auctions and simultaneous all-pay auctions. Consider any bidder ii with type tit_{i} and a set of items S[m]S\subseteq[m].

We let PiP_{-i} be the distribution of mm-dimensional vector maxiibi=(maxiibi(j))j[m]\max_{i\neq i}{b}_{i^{\prime}}=\left(\max_{i^{\prime}\neq i}{b}_{i^{\prime}}^{(j)}\right)_{j\in[m]} where the randomness is from both tit_{-i} and si(ti){s}_{-i}(t_{-i}). Let qiq_{i} be a random variable sampled from the distribution PiP_{-i}. Consider the random bid of bidder ii, which is qiq_{i} plus a small constant ε>0\varepsilon>0 added to each component, with the entire vector constrained to the set SS. For ease of notation, we denote this vector by (qi+ε)|S(q_{i}+\varepsilon)|_{S}, whose jj-th coordinate is qi(j)+εq_{i}^{(j)}+\varepsilon when jSj\in S, and equals to 0 otherwise.

𝔼tiDiqiPi,bisi(ti)[υi(ti,Xi((qi+ε)|S,bi(ti))S)]𝔼tiDiqiPi,bisi(ti)[υi(ti,{j:qi(j)+ε>maxiibi(j)}S)]=𝔼qiPiriPi[υi(ti,{j:qi(j)+ε>ri(j)}S)]=12𝔼qiPiriPi[υi(ti,{j:qi(j)+ε>ri(j)}S)+υi(ti,{j:ri(j)+ε>qi(j)}S)]12υi(ti,S).\displaystyle\begin{split}&\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ q_{i}\sim P_{-i},~{}{b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}}\right]}{[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\right)}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}{((q_{i}+\varepsilon)|_{S},{b}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}})}}\cap S)}}]}}\\ &\geq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ q_{i}\sim P_{-i},~{}{b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}}\right]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>\max_{i^{\prime}\neq i}b_{i^{\prime}}^{(j)}\right\}\cap S)}}]}}\\ &=\operatorname*{\mathbb{E}}_{\begin{subarray}{c}q_{i}\sim P_{-i}\\ r_{i}\sim P_{-i}\end{subarray}}{\mathchoice{\left[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}\right]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}]}}\\ &=\frac{1}{2}\cdot\operatorname*{\mathbb{E}}_{\begin{subarray}{c}q_{i}\sim P_{-i}\\ r_{i}\sim P_{-i}\end{subarray}}{\mathchoice{\left[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}+\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}}\right]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}+\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}+\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}}]}{[\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\}\cap S)}}+\upsilon_{i}{\mathchoice{\left(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S\right)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}{(t_{i},\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\}\cap S)}}]}}\\ &\geq\frac{1}{2}\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}.\end{split} (16)

The last inequality is because the union of {j:qi(j)+ε>ri(j)}\left\{j:q_{i}^{(j)}+\varepsilon>r_{i}^{(j)}\right\} and {j:ri(j)+ε>qi(j)}\left\{j:r_{i}^{(j)}+\varepsilon>q_{i}^{(j)}\right\} is [m][m], and vi(ti,)v_{i}(t_{i},\cdot) is a subadditive function. Also notice that in simultaneous first-price or all-pay auctions, the payment on a single item does not exceed the bid on the item, so the total payment of a bidder does not exceed the sum of their bids.

μi(ti,S)𝔼tiDiqiPi,bisi(ti)[υi(ti,Xi(qi|S,bi)S)jSpi(j)(qi(j),bi(j))]12υi(ti,S)jS𝔼qiPi[qi(j)]|S|ε=12υi(ti,S)jS𝔼tiDibisi(ti)[maxiibi(j)]|S|ε.\displaystyle\begin{split}\mu_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}&\geq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ q_{i}\sim P_{-i},~{}{b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{S},{b}_{-i}\right)}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}{(q_{i}|_{S},{b}_{-i})}}\cap S)}}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}]}}\\ &\geq\frac{1}{2}\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}-\sum_{j\in S}\operatorname*{\mathbb{E}}_{q_{i}\sim P_{-i}}{{\mathchoice{\left[q_{i}^{(j)}\right]}{[q_{i}^{(j)}]}{[q_{i}^{(j)}]}{[q_{i}^{(j)}]}}}-\left|S\right|\cdot\varepsilon\\ &=\frac{1}{2}\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}-\sum_{j\in S}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}\right]}{[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}]}{[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}]}{[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}]}}-\left|S\right|\cdot\varepsilon.\\ \end{split} (17)

At the end, since in first-price or all-pay auction the revenue from a item is at least the maximum of bid on this item, so

Rev(b)(𝒜,{j})𝔼tDbs(t)[maxibi(j)].\mathrm{Rev}^{({b})}{\mathchoice{\left(\mathcal{A},\left\{j\right\}\right)}{(\mathcal{A},\left\{j\right\})}{(\mathcal{A},\left\{j\right\})}{(\mathcal{A},\left\{j\right\})}}\geq\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t\sim D\\ {b}\sim{s}{\mathchoice{\left(t\right)}{(t)}{(t)}{(t)}}\end{subarray}}{\mathchoice{\left[{\max_{i}{b}_{i}^{(j)}}\right]}{[{\max_{i}{b}_{i}^{(j)}}]}{[{\max_{i}{b}_{i}^{(j)}}]}{[{\max_{i}{b}_{i}^{(j)}}]}}.

Therefore,

μi(ti,S)\displaystyle\mu_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}} 12υi(ti,S)jS𝔼tiDibisi(ti)[maxiibi(j)]|S|ε\displaystyle\geq\frac{1}{2}\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}-\sum_{j\in S}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}\right]}{[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}]}{[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}]}{[\max_{i^{\prime}\neq i}{{b}_{i^{\prime}}^{(j)}}]}}-\left|S\right|\cdot\varepsilon
12υi(ti,S)jS𝔼tDbs(t)[maxibi(j)]|S|ε\displaystyle\geq\frac{1}{2}\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}-\sum_{j\in S}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t\sim D\\ {b}\sim{s}{\mathchoice{\left(t\right)}{(t)}{(t)}{(t)}}\end{subarray}}{\mathchoice{\left[\max_{i}{{b}_{i}^{(j)}}\right]}{[\max_{i}{{b}_{i}^{(j)}}]}{[\max_{i}{{b}_{i}^{(j)}}]}{[\max_{i}{{b}_{i}^{(j)}}]}}-\left|S\right|\cdot\varepsilon
12υi(ti,S)RevD(b)(𝒜,S)|S|ε.\displaystyle\geq\frac{1}{2}\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}-\mathrm{Rev}_{D}^{({b})}{\mathchoice{\left(\mathcal{A},S\right)}{(\mathcal{A},S)}{(\mathcal{A},S)}{(\mathcal{A},S)}}-\left|S\right|\cdot\varepsilon.

Taking ε0\varepsilon\rightarrow 0, by definition of μi(ti,S)\mu_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}, we know

μi(ti,S)12υi(ti,S)RevD(b)(𝒜,S).\mu_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}\geq\frac{1}{2}\upsilon_{i}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}-\mathrm{Rev}_{D}^{({b})}{\mathchoice{\left(\mathcal{A},S\right)}{(\mathcal{A},S)}{(\mathcal{A},S)}{(\mathcal{A},S)}}.

Appendix D Missing Proofs in Section 4

D.1 Proof of Lemma 4.1

For any strategy profile ss with respect to a prior distribution of types DD in auction 𝒜\mathcal{A}, we slightly abuse notation and let ui(s)(ti)u_{i}^{({s})}(t_{i}) be the interim utility of bidder ii with type tit_{i}. Namely,

ui(s)(ti)=𝔼tiDi[𝔼bs(ti,ti)[ui(ti,b)]].u_{i}^{({s})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}=\operatorname*{\mathbb{E}}_{t_{-i}\sim D_{-i}}{\mathchoice{\left[\operatorname*{\mathbb{E}}_{{b}\sim{s}(t_{i},t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}\right]}{[\operatorname*{\mathbb{E}}_{{b}\sim{s}(t_{i},t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}]}{[\operatorname*{\mathbb{E}}_{{b}\sim{s}(t_{i},t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}]}{[\operatorname*{\mathbb{E}}_{{b}\sim{s}(t_{i},t_{-i})}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}]}}.

Then by definition a strategy profile s{s} is a Bayes-Nash equilibrium in 𝒜\mathcal{A} iff for any bidder ii, type tit_{i} and a mixed strategy si{s}_{i}^{\prime}, ui(s)(ti)ui(si,si)(ti)u_{i}^{({s})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\geq u_{i}^{({s}_{i}^{\prime},{s}_{-i})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}.

Given a strategy profile s{s} in auction 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}, for the bidder ii with type tit_{i}, ii receives δ\delta times their interim utility ui(s)(ti)u_{i}^{({s})}(t_{i}) in auction 𝒜\mathcal{A} by reporting zi=0z_{i}=0 If ii reports zi=1z_{i}=1, the interim utility is ui(s)(ti)u_{i}^{({s})}(t_{i}) minus (1δ)ei(1-\delta)e_{i}. Hence, in auction 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)} the interim utility of bidder ii with type tit_{i} is

u~i(s)(ti):=max{δui(s)(ti),ui(s)(ti)(1δ)ei}\tilde{u}_{i}^{({s})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}:=\max\left\{\delta\cdot u_{i}^{({s})}(t_{i}),u_{i}^{({s})}(t_{i})-(1-\delta)e_{i}\right\}

Notice that max{δx,x(1δ)ei}\max\left\{\delta\cdot x,x-(1-\delta)e_{i}\right\} is a strictly increasing function with respect to xx for δ(0,1)\delta\in(0,1), which means that u~i(s)(ti)\tilde{u}_{i}^{({s})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}} is a strictly increasing function with respect to ui(s)(ti)u_{i}^{({s})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}. Thus, u~i(s)(ti)u~i(si,si)(ti)\tilde{u}_{i}^{({s})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\geq\tilde{u}_{i}^{({s}_{i}^{\prime},{s}_{-i})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}} is equivalent to ui(s)(ti)ui(si,si)(ti)u_{i}^{({s})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\geq u_{i}^{({s}_{i}^{\prime},{s}_{-i})}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}. As a result, we know that a strategy profile s{s} is a equilibrium in 𝒜\mathcal{A} if and only if it is a equilibrium in 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}.

D.2 Proof of Lemma 4.2

We use the same notation ui(s)(ti)u_{i}^{({s})}(t_{i}) to denote the interim utility of bidder ii with type tit_{i} in auction 𝒜\mathcal{A}, when all bidders bid according to strategy profile ss.

Taking ei=0e_{i}=0 for all i[n]i\in[n], we know RevD(s)(𝒜EF(e))=RevD(s)(𝒜)\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}=\mathrm{Rev}^{({s})}_{D}(\mathcal{A}),

If EF-RevD(s)(𝒜)=0\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A})=0, we have already finished the proof.

When EF-RevD(s)(𝒜)>0\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A})>0, we only need to prove for any ε>0\varepsilon>0, there exists a set of entry fees {ei}i[n]\{e_{i}\}_{i\in[n]} so that

RevD(s)(𝒜EF(e))(1δε)EF-RevD(s)(𝒜).\mathrm{Rev}^{({s})}_{D}{\mathchoice{\left(\mathcal{A}^{(e)}_{\mathrm{EF}}\right)}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}{(\mathcal{A}^{(e)}_{\mathrm{EF}})}}\geq\left(1-\delta-\varepsilon\right)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A}).

Now consider any ε>0\varepsilon>0, by definition of EF-RevD(s)(𝒜)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A}), there exists a set of eie_{i} such that

ieiPrtiDi[ui(s)(ti)ei](1ε)EF-RevD(s)(𝒜)\sum_{i}e_{i}\cdot\Pr_{\begin{subarray}{c}t_{i}\sim D_{i}\end{subarray}}{\mathchoice{\left[u_{i}^{({s})}(t_{i})\geq e_{i}\right]}{[u_{i}^{({s})}(t_{i})\geq e_{i}]}{[u_{i}^{({s})}(t_{i})\geq e_{i}]}{[u_{i}^{({s})}(t_{i})\geq e_{i}]}}\geq\left(1-\varepsilon\right)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A})

Now simply consider the mechanism 𝒜\mathcal{A} with entry fee {ei}i[n]\{e_{i}\}_{i\in[n]}, i.e., 𝒜EF(e)\mathcal{A}_{\mathrm{EF}}^{(e)}. It’s clear that bidder ii will pay entry fee iff ui(s)(ti)eiu_{i}^{({s})}(t_{i})\geq e_{i}. The revenue of 𝒜EF(e)\mathcal{A}^{(e)}_{\mathrm{EF}} is at least its revenue from entry fees, so

RevD(s)(𝒜EF(e))\displaystyle\mathrm{Rev}_{D}^{({s})}{\mathchoice{\left(\mathcal{A}_{\mathrm{EF}}^{(e)}\right)}{(\mathcal{A}_{\mathrm{EF}}^{(e)})}{(\mathcal{A}_{\mathrm{EF}}^{(e)})}{(\mathcal{A}_{\mathrm{EF}}^{(e)})}} (1δ)ieiPrtiDi[ui(s)(ti)ei]\displaystyle\geq(1-\delta)\sum_{i}e_{i}\cdot\Pr_{\begin{subarray}{c}t_{i}\sim D_{i}\end{subarray}}{\mathchoice{\left[u_{i}^{({s})}(t_{i})\geq e_{i}\right]}{[u_{i}^{({s})}(t_{i})\geq e_{i}]}{[u_{i}^{({s})}(t_{i})\geq e_{i}]}{[u_{i}^{({s})}(t_{i})\geq e_{i}]}}
(1δε)EF-RevD(s)(𝒜).\displaystyle\geq(1-\delta-\varepsilon)\mathrm{EF{\hbox{-}}Rev}^{({s})}_{D}(\mathcal{A}).

By choosing the better entry fee between 0 and {ei}i[n]\{e_{i}\}_{i\in[n]}, we conclude our proof.

D.3 A Hard Instance for the Simultaneous Second Price Auction

We first provide a counter-example to show that not every equilibrium of the simultaneous second price auction satisfies the third condition in Definition 3.1.

Example 1.

Consider the following deterministic instance. There are nn unit-demand bidders and nn items. For each bidder ii, their favourite item is the ii-th item, and their value towards that item is 11. For any other item, their value is ε\varepsilon, where ε\varepsilon is a constant strictly less than 11.

1122\cdotsn{n}Bidders1122\cdotsnnItems11ε\varepsilonε\varepsilonε\varepsilon11ε\varepsilonε\varepsilonε\varepsilon11
Figure 2: A Counter-Example for Simultaneous Second Price Auction

For this instance, suppose each bidder ii bids 11 on their favorite item, i.e., item ii, and bids 0 on any item else. It is clear that this is a no over-bidding pure Nash equilibrium as everyone gets their favorite item and pays nothing. Therefore, in this equilibrium s{s}, RevD(s)(𝒜)=0\mathrm{Rev}_{D}^{({s})}(\mathcal{A})=0. What’s more, it is easy to see that this equilibrium is optimal in welfare.

Let Si=[n]\{i}S_{i}=[n]\backslash\{i\}. However, we can see that μi(s)(ti,Si)=0\mu_{i}^{({s})}{\mathchoice{\left(t_{i},S_{i}\right)}{(t_{i},S_{i})}{(t_{i},S_{i})}{(t_{i},S_{i})}}=0 as for every item jij\neq i, the maximum bid at equilibrium s{s} is 11, and consequently, bidder ii has no motivation to engage in competition for that item. Also note that υi(ti,Si)=ε\upsilon_{i}(t_{i},S_{i})=\varepsilon. This implies that

μi(s)(ti,Si)+RevD(s)(𝒜)=0<cυi(ti,Si)\mu_{i}^{({s})}{\mathchoice{\left(t_{i},S_{i}\right)}{(t_{i},S_{i})}{(t_{i},S_{i})}{(t_{i},S_{i})}}+\mathrm{Rev}_{D}^{({s})}(\mathcal{A})=0<c\cdot\upsilon_{i}(t_{i},S_{i})

for any c>0c>0.

D.4 A More Detailed Discussion of cc-efficient simultaneous auctions

We introduce a property of μ(s)(ti,)\mu^{({s})}(t_{i},\cdot) that is essential in approximating the optimal revenue.

Lemma D.1.

For any ii and any constant li0l_{i}\geq 0, let Li(ti)L_{i}(t_{i}) be the set {j:Vi(tij)<li}\{j:V_{i}(t_{ij})<l_{i}\}, and define μ^i(s)(ti,S)=μi(s)(ti,SLi(ti))\hat{\mu}_{i}^{({s})}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}=\mu_{i}^{({s})}{\mathchoice{\left(t_{i},S\cap L_{i}(t_{i})\right)}{(t_{i},S\cap L_{i}(t_{i}))}{(t_{i},S\cap L_{i}(t_{i}))}{(t_{i},S\cap L_{i}(t_{i}))}}. Recall that μi(s)(ti,SLi(ti))\mu_{i}^{({s})}{\mathchoice{\left(t_{i},S\cap L_{i}(t_{i})\right)}{(t_{i},S\cap L_{i}(t_{i}))}{(t_{i},S\cap L_{i}(t_{i}))}{(t_{i},S\cap L_{i}(t_{i}))}} is defined in Definition 3.1. If the first condition of Definition 3.1 is satisfied by (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right), μ^i(s)(,)\hat{\mu}^{({s})}_{i}{\mathchoice{\left(\cdot,\cdot\right)}{(\cdot,\cdot)}{(\cdot,\cdot)}{(\cdot,\cdot)}} satisfies monotonicity, subadditivity, no externalities and is lil_{i}-Lipschitz.

Proof.

We first prove μi\mu_{i} satisfies monotonicity, subadditivity and no externalities.

For any types ti,tit_{i},t_{i}^{\prime}, such that tij=tijt_{ij}=t_{ij}^{\prime} for all jSj\in S,

μi(b)(ti,S)\displaystyle\mu_{i}^{({b})}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}} =supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)S)jSpi(j)(qi(j),bi(j))]\displaystyle=\sup_{q_{i}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}}
=supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)S)jSpi(j)(qi(j),bi(j))]\displaystyle=\sup_{q_{i}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i}^{\prime},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}}
=μi(b)(ti,S).\displaystyle=\mu_{i}^{({b})}{\mathchoice{\left(t_{i}^{\prime},S\right)}{(t_{i}^{\prime},S)}{(t_{i}^{\prime},S)}{(t_{i}^{\prime},S)}}.

where second equality is by no externalities of υi\upsilon_{i}. Thus, μi\mu_{i} has no externalities.

For any set UV[m]U\subseteq V\subseteq[m],

μi(b)(ti,U)\displaystyle\mu_{i}^{({b})}{\mathchoice{\left(t_{i},U\right)}{(t_{i},U)}{(t_{i},U)}{(t_{i},U)}} =supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)U)jSpi(j)(qi(j),bi(j))]\displaystyle=\sup_{q_{i}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}}
supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)V)jSpi(j)(qi(j),bi(j))]\displaystyle\leq\sup_{q_{i}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap V)}}-{\sum_{j\in S}p_{i}^{\left(j\right)}{\mathchoice{\left(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)}\right)}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}{(q_{i}^{\left(j\right)},{b}_{-i}^{\left(j\right)})}}}}]}}
=μi(b)(ti,V).\displaystyle=\mu_{i}^{({b})}{\mathchoice{\left(t_{i},V\right)}{(t_{i},V)}{(t_{i},V)}{(t_{i},V)}}.

The inequality is because υi\upsilon_{i} is monotone. So μi\mu_{i} is monotone.

We use qi|Sq_{i}|_{S} to denote the bid vector qiq_{i} restricted to bundle SS, which means that (qi|S)j(q_{i}|_{S})^{j} equals qijq_{i}^{j} when jSj\in S, and equals to the null action \perp otherwise. For all tit_{i} and U,V[m]U,V\subseteq[m], let W=(UV)\UW={\mathchoice{\left(U\cup V\right)}{(U\cup V)}{(U\cup V)}{(U\cup V)}}\backslash U. Then UW=U\cap W=\emptyset, UW=UVU\cup W=U\cup V and WVW\subseteq V. To prove subadditivity of μi\mu_{i}, we first prove the following claims, one equality and one inequality, which are true for any bid profile bib_{-i}.

Xi(qi,bi)(UW)=jUWXi(j)(qij,bi(j))=(jUXi(j)(qij,bi(j)))(jWXi(j)(qij,bi(j)))=(Xi(qi|U,bi)U)(Xi(qi|W,bi)W)\displaystyle\begin{split}X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}}&=\bigcup_{j\in U\cup W}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}}\\ &={\mathchoice{\left(\bigcup_{j\in U}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}}\right)}{(\bigcup_{j\in U}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}})}{(\bigcup_{j\in U}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}})}{(\bigcup_{j\in U}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}})}}\bigcup{\mathchoice{\left(\bigcup_{j\in W}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}}\right)}{(\bigcup_{j\in W}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}})}{(\bigcup_{j\in W}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}})}{(\bigcup_{j\in W}X_{i}^{(j)}{\mathchoice{\left(q_{i}^{j},{b}_{-i}^{(j)}\right)}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}{(q_{i}^{j},{b}_{-i}^{(j)})}})}}\\ &={\mathchoice{\left(X_{i}{\mathchoice{\left(q_{i}|_{U},{b}_{-i}\right)}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}}\cap U\right)}{(X_{i}{\mathchoice{\left(q_{i}|_{U},{b}_{-i}\right)}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}}\cap U)}{(X_{i}{\mathchoice{\left(q_{i}|_{U},{b}_{-i}\right)}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}}\cap U)}{(X_{i}{\mathchoice{\left(q_{i}|_{U},{b}_{-i}\right)}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}{(q_{i}|_{U},{b}_{-i})}}\cap U)}}\cup{\mathchoice{\left(X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W\right)}{(X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}}\end{split} (18)

Therefore,

μi(ti,UV)=\displaystyle\mu_{i}{\mathchoice{\left(t_{i},U\cup V\right)}{(t_{i},U\cup V)}{(t_{i},U\cup V)}{(t_{i},U\cup V)}}= μi(ti,UW)\displaystyle\mu_{i}{\mathchoice{\left(t_{i},U\cup W\right)}{(t_{i},U\cup W)}{(t_{i},U\cup W)}{(t_{i},U\cup W)}}
=\displaystyle= supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)(UW))jUWpi(j)(qi(j),bi(j))]\displaystyle\sup_{q_{i}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}}\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}}-{\sum_{j\in U\cup W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}}\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}}-{\sum_{j\in U\cup W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}}\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}}-{\sum_{j\in U\cup W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}}\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap{\mathchoice{\left(U\cup W\right)}{(U\cup W)}{(U\cup W)}{(U\cup W)}})}}-{\sum_{j\in U\cup W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}}
\displaystyle\leq supqi\bBigg@4{𝔼tiDibisi(ti)\displaystyle\sup_{q_{i}}\ \bBigg@{4}\{\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}
+𝔼tiDibisi(ti)[υi(ti,Xi(qi|W,bi)W)jWpi(j)(qi(j),bi(j))]\bBigg@4}\displaystyle+\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i}|_{W},{b}_{-i}\right)}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}{(q_{i}|_{W},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}}\bBigg@{4}\}
\displaystyle\leq supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)U)jUpi(j)(qi(j),bi(j))]\displaystyle\sup_{q_{i}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in U}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in U}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in U}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap U)}}-{\sum_{j\in U}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}}
+supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)W)jWpi(j)(qi(j),bi(j))]\displaystyle+\sup_{q_{i}}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}\sim D_{-i}\\ {b}_{-i}\sim{s}_{-i}{\mathchoice{\left(t_{-i}\right)}{(t_{-i})}{(t_{-i})}{(t_{-i})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap W)}}-{\sum_{j\in W}p_{i}^{(j)}{\mathchoice{\left(q_{i}^{(j)},{b}_{-i}^{(j)}\right)}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}{(q_{i}^{(j)},{b}_{-i}^{(j)})}}}}]}}
=\displaystyle= μi(ti,U)+μi(ti,W)\displaystyle\mu_{i}{\mathchoice{\left(t_{i},U\right)}{(t_{i},U)}{(t_{i},U)}{(t_{i},U)}}+\mu_{i}{\mathchoice{\left(t_{i},W\right)}{(t_{i},W)}{(t_{i},W)}{(t_{i},W)}}
\displaystyle\leq μi(ti,U)+μi(ti,V).\displaystyle\mu_{i}{\mathchoice{\left(t_{i},U\right)}{(t_{i},U)}{(t_{i},U)}{(t_{i},U)}}+\mu_{i}{\mathchoice{\left(t_{i},V\right)}{(t_{i},V)}{(t_{i},V)}{(t_{i},V)}}.

The first inequality is by (18), the subadditivity of υi\upsilon_{i}, and the fact that UW=U\cap W=\varnothing. The second inequality is from the property of the sup\sup operator, and the third inequality is because μi\mu_{i} is monotone. Thus, μi\mu_{i} is subadditive.

Consider any constant lil_{i} in the definition of μ^i\hat{\mu}_{i}. By the monotonicity and subadditivity of μi\mu_{i}, we can directly conclude that μ^i\hat{\mu}_{i} is also monotone and subadditive.

For any types ti,tit_{i},t_{i}^{\prime}, such that tij=tijt_{ij}=t_{ij}^{\prime} for all jSj\in S, we know SLi(ti)=SLi(ti)S\cap L_{i}(t_{i})=S\cap L_{i}(t_{i}^{\prime}), since for any jSj\in S,

jLi(ti)Vi(tij)<liVi(tij)<lijLi(ti)j\in L_{i}(t_{i})\Leftrightarrow V_{i}(t_{ij})<l_{i}\Leftrightarrow V_{i}(t_{ij}^{\prime})<l_{i}\Leftrightarrow j\in L_{i}(t_{i}^{\prime})

Hence

μ^i(ti,S)=μi(ti,SLi(ti))=μi(ti,SLi(ti))=μ^i(ti,S).\hat{\mu}_{i}(t_{i},S)=\mu_{i}(t_{i},S\cap L_{i}(t_{i}))=\mu_{i}(t_{i}^{\prime},S\cap L_{i}(t_{i}^{\prime}))=\hat{\mu}_{i}(t_{i}^{\prime},S).

Thus, μ^i\hat{\mu}_{i} satisfies monotonicity, subadditivity and no externalities.

Finally, we prove μ^i\hat{\mu}_{i} is lil_{i}-Lipschitz.

For any ti,tiTit_{i},t_{i}^{\prime}\in T_{i}, and set X,Y[m]X,Y\subseteq[m], define set H={jXY:tij=tij}H=\left\{j\in X\cap Y~{}:~{}t_{ij}=t_{ij}^{\prime}\right\}. Because of the no externalities property of μ^i\hat{\mu}_{i}, we know μ^i(ti,H)=μ^i(ti,H)\hat{\mu}_{i}(t_{i},H)=\hat{\mu}_{i}(t_{i}^{\prime},H).

|μ^i(ti,X)μ^i(ti,Y)|\displaystyle\left|\hat{\mu}_{i}{\mathchoice{\left(t_{i},X\right)}{(t_{i},X)}{(t_{i},X)}{(t_{i},X)}}-\hat{\mu}_{i}{\mathchoice{\left(t_{i}^{\prime},Y\right)}{(t_{i}^{\prime},Y)}{(t_{i}^{\prime},Y)}{(t_{i}^{\prime},Y)}}\right| =max{μ^i(ti,X)μ^i(ti,Y),μ^i(ti,Y)μ^i(ti,X)}\displaystyle={\max}\left\{\hat{\mu}_{i}{\mathchoice{\left(t_{i},X\right)}{(t_{i},X)}{(t_{i},X)}{(t_{i},X)}}-\hat{\mu}_{i}{\mathchoice{\left(t_{i}^{\prime},Y\right)}{(t_{i}^{\prime},Y)}{(t_{i}^{\prime},Y)}{(t_{i}^{\prime},Y)}},\hat{\mu}_{i}{\mathchoice{\left(t_{i}^{\prime},Y\right)}{(t_{i}^{\prime},Y)}{(t_{i}^{\prime},Y)}{(t_{i}^{\prime},Y)}}-\hat{\mu}_{i}{\mathchoice{\left(t_{i},X\right)}{(t_{i},X)}{(t_{i},X)}{(t_{i},X)}}\right\}
max{μ^i(ti,X)μ^i(ti,H),μ^i(ti,X)μ^i(ti,H)}\displaystyle\leq{\max}\left\{\hat{\mu}_{i}{\mathchoice{\left(t_{i},X\right)}{(t_{i},X)}{(t_{i},X)}{(t_{i},X)}}-\hat{\mu}_{i}{\mathchoice{\left(t_{i}^{\prime},H\right)}{(t_{i}^{\prime},H)}{(t_{i}^{\prime},H)}{(t_{i}^{\prime},H)}},\hat{\mu}_{i}{\mathchoice{\left(t_{i}^{\prime},X\right)}{(t_{i}^{\prime},X)}{(t_{i}^{\prime},X)}{(t_{i}^{\prime},X)}}-\hat{\mu}_{i}{\mathchoice{\left(t_{i},H\right)}{(t_{i},H)}{(t_{i},H)}{(t_{i},H)}}\right\}
max{μ^i(ti,X\H),μ^i(ti,Y\H)}\displaystyle\leq{\max}\left\{\hat{\mu}_{i}{\mathchoice{\left(t_{i},X\backslash H\right)}{(t_{i},X\backslash H)}{(t_{i},X\backslash H)}{(t_{i},X\backslash H)}},\hat{\mu}_{i}{\mathchoice{\left(t_{i}^{\prime},Y\backslash H\right)}{(t_{i}^{\prime},Y\backslash H)}{(t_{i}^{\prime},Y\backslash H)}{(t_{i}^{\prime},Y\backslash H)}}\right\}
=max{μi(ti,(X\H)Li(ti)),μi(ti,(Y\H)Li(ti))}\displaystyle={\max}\left\{\mu_{i}{\mathchoice{\left(t_{i},{\mathchoice{\left(X\backslash H\right)}{(X\backslash H)}{(X\backslash H)}{(X\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},{\mathchoice{\left(X\backslash H\right)}{(X\backslash H)}{(X\backslash H)}{(X\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},{\mathchoice{\left(X\backslash H\right)}{(X\backslash H)}{(X\backslash H)}{(X\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},{\mathchoice{\left(X\backslash H\right)}{(X\backslash H)}{(X\backslash H)}{(X\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}},\mu_{i}{\mathchoice{\left(t_{i}^{\prime},{\mathchoice{\left(Y\backslash H\right)}{(Y\backslash H)}{(Y\backslash H)}{(Y\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}^{\prime}\right)}{(t_{i}^{\prime})}{(t_{i}^{\prime})}{(t_{i}^{\prime})}}\right)}{(t_{i}^{\prime},{\mathchoice{\left(Y\backslash H\right)}{(Y\backslash H)}{(Y\backslash H)}{(Y\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}^{\prime}\right)}{(t_{i}^{\prime})}{(t_{i}^{\prime})}{(t_{i}^{\prime})}})}{(t_{i}^{\prime},{\mathchoice{\left(Y\backslash H\right)}{(Y\backslash H)}{(Y\backslash H)}{(Y\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}^{\prime}\right)}{(t_{i}^{\prime})}{(t_{i}^{\prime})}{(t_{i}^{\prime})}})}{(t_{i}^{\prime},{\mathchoice{\left(Y\backslash H\right)}{(Y\backslash H)}{(Y\backslash H)}{(Y\backslash H)}}\cap L_{i}{\mathchoice{\left(t_{i}^{\prime}\right)}{(t_{i}^{\prime})}{(t_{i}^{\prime})}{(t_{i}^{\prime})}})}}\right\}
limax{|X\H|,|Y\H|}\displaystyle\leq l_{i}\cdot\max\left\{|X\backslash H|,|Y\backslash H|\right\}
li(|XΔY|+|XY||H|).\displaystyle\leq l_{i}\cdot{\mathchoice{\left(\left|X\Delta Y\right|+\left|X\cap Y\right|-\left|H\right|\right)}{(\left|X\Delta Y\right|+\left|X\cap Y\right|-\left|H\right|)}{(\left|X\Delta Y\right|+\left|X\cap Y\right|-\left|H\right|)}{(\left|X\Delta Y\right|+\left|X\cap Y\right|-\left|H\right|)}}.

In the following, we show that for any (𝒜,s,D,{vi}i[n])\left(\mathcal{A},{s},D,\{v_{i}\}_{i\in[n]}\right) that satisfies the third condition, it also achieves a high welfare at the equilibrium s{s}. Let us define WelD(s)(𝒜)\mathrm{Wel}^{({s})}_{D}(\mathcal{A}) as the social welfare of auction 𝒜\mathcal{A} at s{s}, and OPTi(t)\operatorname{\mathrm{OPT}}_{i}(t) as the set of items allocated to bidder ii in the allocation that maximizes social welfare when the bidders’ types are tt. We give a formal proof that the welfare at s{s} is at least cc fraction of the optimal welfare:

WelD(s)(𝒜)\displaystyle\mathrm{Wel}^{({s})}_{D}(\mathcal{A}) =i[n]𝔼tDbs(t)[ui(ti,b)]+RevD(s)(𝒜)\displaystyle=\sum_{i\in[n]}\operatorname*{\mathbb{E}}_{\begin{subarray}{c}t\sim D\\ {b}\sim{s}(t)\end{subarray}}{\mathchoice{\left[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}\right]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}{[u_{i}{\mathchoice{\left(t_{i},b\right)}{(t_{i},b)}{(t_{i},b)}{(t_{i},b)}}]}}+\mathrm{Rev}_{D}^{({s})}(\mathcal{A})
=𝔼tD[i[n]μi(s)(ti,[m])+RevD(s)(𝒜,[m])]\displaystyle=\operatorname*{\mathbb{E}}_{t\sim D}{\mathchoice{\left[\sum_{i\in[n]}\mu_{i}^{({s})}(t_{i},[m])+\mathrm{Rev}_{D}^{({s})}\left(\mathcal{A},[m]\right)\right]}{[\sum_{i\in[n]}\mu_{i}^{({s})}(t_{i},[m])+\mathrm{Rev}_{D}^{({s})}\left(\mathcal{A},[m]\right)]}{[\sum_{i\in[n]}\mu_{i}^{({s})}(t_{i},[m])+\mathrm{Rev}_{D}^{({s})}\left(\mathcal{A},[m]\right)]}{[\sum_{i\in[n]}\mu_{i}^{({s})}(t_{i},[m])+\mathrm{Rev}_{D}^{({s})}\left(\mathcal{A},[m]\right)]}}
𝔼tD[i[n](μi(s)(ti,OPTi(t))+RevD(s)(𝒜,OPTi(t))]\displaystyle\geq\operatorname*{\mathbb{E}}_{t\sim D}{\mathchoice{\left[\sum_{i\in[n]}\left(\mu_{i}^{({s})}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))+\mathrm{Rev}_{D}^{({s})}(\mathcal{A},\operatorname{\mathrm{OPT}}_{i}(t)\right)\right]}{[\sum_{i\in[n]}\left(\mu_{i}^{({s})}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))+\mathrm{Rev}_{D}^{({s})}(\mathcal{A},\operatorname{\mathrm{OPT}}_{i}(t)\right)]}{[\sum_{i\in[n]}\left(\mu_{i}^{({s})}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))+\mathrm{Rev}_{D}^{({s})}(\mathcal{A},\operatorname{\mathrm{OPT}}_{i}(t)\right)]}{[\sum_{i\in[n]}\left(\mu_{i}^{({s})}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))+\mathrm{Rev}_{D}^{({s})}(\mathcal{A},\operatorname{\mathrm{OPT}}_{i}(t)\right)]}}
c𝔼tD[i[n]υi(ti,OPTi(t))]\displaystyle\geq c\cdot\operatorname*{\mathbb{E}}_{t\sim D}{\mathchoice{\left[\sum_{i\in[n]}\upsilon_{i}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))\right]}{[\sum_{i\in[n]}\upsilon_{i}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))]}{[\sum_{i\in[n]}\upsilon_{i}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))]}{[\sum_{i\in[n]}\upsilon_{i}(t_{i},\operatorname{\mathrm{OPT}}_{i}(t))]}}

The second equation holds since s{s} is a Bayes-Nash equilibrium. The first inequality comes from the monotonicity of μi(s)(ti,)\mu_{i}^{({s})}(t_{i},\cdot) which is proved in Lemma D.1 and the second inequality directly follows from the third condition.

D.5 Proof of Lemma 4.3

Proof of Lemma 4.3: Notice that by the first condition and the union bound, for any item jj, the probability that each bidder ii’s value on item jj is smaller than their reserve price on item jj, ri,jr_{i,j}, is at least 1i[n]Pr[Vi(tij)rij]1b1-\sum_{i\in[n]}\Pr[V_{i}(t_{ij})\geq r_{ij}]\geq 1-b. Similarly, by the second condition, we know that for any bidder ii, the probability that their value of any item jj is below the reserve price rijr_{ij} is at least 12\frac{1}{2}.

We first prove that for any equilibrium ss of 𝒜RP(r)\mathcal{A}^{(r)}_{\mathrm{RP}}, any bidder ii will always take the null action \perp when their value on this item is smaller than the reserved price. Suppose there exists a bid equilibrium that does not follow this. For any j[m]j\in[m] let Ij={i:Prti,bisi(ti)[Vi(tij)<rijbij]>0}I_{j}=\{i:\Pr_{t_{i},b_{i}\sim s_{i}(t_{i})}[V_{i}(t_{ij})<r_{ij}\wedge b_{i}^{j}\neq\perp]>0\} be the set of bidders that have a non-zero probability to compete for item jj while their value is less than the reserve. Assume that IkI_{k} is non-empty for some kk. Consider the event that satisfies the following: (i) for any bidder iIki\notin I_{k}, ii’s value on item kk is strictly less than rikr_{ik}; (ii) for any bidder iIki\in I_{k}, Vi(tik)<rikV_{i}(t_{ik})<r_{ik} and bikb_{i}^{k}\neq\perp. It is not hard to see that this event happens with non-zero probability. Conditioning on this event, the winner of item kk must be some bidder ii^{*} in IkI_{k}. We argue that ii^{*}’s expected utility is strictly worse compared to the scenario where their bids remain unchanged for other items, and bikb_{i^{*}}^{k} is replaced with \perp. The reason is that ii^{*} has a subadditive valuation, so ii^{*}’s utility is strictly worse after acquiring item kk at a price larger than Vi(tik)V_{i^{*}}(t_{i^{*}k}).

Now consider bidder ii with type tit_{i} satisfying two conditions (i) Vi(tij)rijV_{i}(t_{ij})\geq r_{ij}, (ii) kj,Vi(tij)<rik\forall k\neq j,V_{i}(t_{ij})<r_{ik}. Then , as we argued in the previous paragraph, ii will take the null action \perp on items other than jj. Now since bidding rijr_{ij} for item jj will give ii a non-negative utility, ii will not bid \perp for item jj. Further consider (iii) ii,Vi(tij)<rij\forall i^{\prime}\neq i,V_{i^{\prime}}(t_{i^{\prime}j})<r_{i^{\prime}j} which implies that any bidder other than ii bill bid \perp for item jj. Then if all of (i), (ii), (iii) holds, bidder ii will receive item jj. The probability of (ii) and (iii) holds is greater than 12\frac{1}{2} and 1b1-b by the first paragraph. Because conditions (i), (ii) and (iii) are independent, bidder ii wins item jj with probability at least 1b2Pr[Vi(tij)rij]\frac{1-b}{2}\cdot\Pr[V_{i}(t_{ij})\geq r_{ij}]. Thus the expected revenue of the mechanism is at least 1b2i,jrijPr[Vi(tij)rij]\frac{1-b}{2}\cdot\sum_{i,j}r_{ij}\cdot\Pr[V_{i}(t_{ij})\geq r_{ij}].

\hfill\blacksquare

Appendix E Missing Proofs in Section 5

E.1 Proof of Lemma 5.3

Proof of Lemma 5.3: Our proof here is very similar to the proof of Lemma 13 in [20]. We introduce the single-dimensional copies setting defined in [24]. In this setting, there are nmnm agents, in which each agent (i,j)(i,j) has a value of Vi(tij)V_{i}(t_{ij}) of being served with tijt_{ij} sampled from DijD_{ij} independently. The allocation must be a matching, meaning that for each i[n]i\in[n], there is at most one k[m]k\in[m] so that (i,k)(i,k) is served, and for each j[m]j\in[m], there is at most one k[n]k\in[n] so that (k,j)(k,j) is served. Fix the distribution DD and valuation function Vi()V_{i}(\cdot), we denote the optimal BIC revenue in this setting as OPTCopies-UD\mathrm{OPT}^{\textsc{Copies-UD}}. In [20], they prove that for any σ,β\sigma,\beta, Single(σ,β)OPTCopies-UD\textsc{Single}{\mathchoice{\left(\sigma,\beta\right)}{(\sigma,\beta)}{(\sigma,\beta)}{(\sigma,\beta)}}\leq\mathrm{OPT}^{\textsc{Copies-UD}}.

For every i[n],j[m]i\in[n],j\in[m], let qijq_{ij} be the ex-ante probability that (i,j)(i,j) is served in the Myerson’s auction for the above copies settings. By definition, we have jqij1,i[n]\sum_{j}q_{ij}\leq 1,\forall i\in[n] and iqij1,j[m]\sum_{i}q_{ij}\leq 1,\forall j\in[m].

The ironed virtual welfare contributed from (i,j)(i,j) is at most R~ij(qij)\tilde{R}_{ij}(q_{ij}), where R~ij\tilde{R}_{ij} is the ironed revenue curve of Rij(q)=qFij1(1q)R_{ij}(q)=q\cdot F_{ij}^{-1}(1-q), where FijF_{ij} is the CDF for the random variable Vi(tij)V_{i}(t_{ij}), and Fij1F_{ij}^{-1} is the corresponding quantile function. Thus, there exist two quantiles qijq_{ij}^{\prime} and qij′′q_{ij}^{\prime\prime}, and a pair of corresponding convex representation coefficients xij+yij=1x_{ij}+y_{ij}=1, such that R~ij(qij)=xijRij(qij)+yijRij(qij′′)\tilde{R}_{ij}(q_{ij})=x_{ij}\cdot R_{ij}(q_{ij}^{\prime})+y_{ij}\cdot R_{ij}(q_{ij}^{\prime\prime}) and qij=xijqij+yijqij′′q_{ij}=x_{ij}\cdot q_{ij}^{\prime}+y_{ij}\cdot q_{ij}^{\prime\prime}. Hence,

OPTCopies-UDi,jR~ij(qij)=i,jxijRij(qij)+yijRij(qij′′)2i,j(xijqij2Fij1(1qij/2)+yijqij′′2Fij1(1qij′′/2))=2i,j𝔼pij[pijPr[Vi(tij)pij]].\displaystyle\begin{split}\mathrm{OPT}^{\textsc{Copies-UD}}&\leq\sum_{i,j}\tilde{R}_{ij}(q_{ij})\\ &=\sum_{i,j}x_{ij}\cdot R_{ij}(q_{ij}^{\prime})+y_{ij}\cdot R_{ij}(q_{ij}^{\prime\prime})\\ &\leq 2\cdot\sum_{i,j}{\mathchoice{\left(x_{ij}\cdot\frac{q_{ij}^{\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime}/2\right)+y_{ij}\cdot\frac{q_{ij}^{\prime\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime\prime}/2\right)\right)}{(x_{ij}\cdot\frac{q_{ij}^{\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime}/2\right)+y_{ij}\cdot\frac{q_{ij}^{\prime\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime\prime}/2\right))}{(x_{ij}\cdot\frac{q_{ij}^{\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime}/2\right)+y_{ij}\cdot\frac{q_{ij}^{\prime\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime\prime}/2\right))}{(x_{ij}\cdot\frac{q_{ij}^{\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime}/2\right)+y_{ij}\cdot\frac{q_{ij}^{\prime\prime}}{2}\cdot F_{ij}^{-1}\left(1-q_{ij}^{\prime\prime}/2\right))}}\\ &=2\cdot\sum_{i,j}\operatorname*{\mathbb{E}}_{p_{ij}}{\mathchoice{\left[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}\right]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}}.\end{split} (19)

pijp_{ij} is a random price which equals to Fij1(1qij/2)F_{ij}^{-1}\left(1-q_{ij}^{\prime}/2\right) with probability xijx_{ij} and equals to Fij1(1qij′′/2)F_{ij}^{-1}\left(1-q_{ij}^{\prime\prime}/2\right) with probability yijy_{ij}. The second inequality here is because F1(1q)F1(1q/2)F^{-1}(1-q)\leq F^{-1}(1-q/2) for any CDF function FF. To upper bound ij𝔼pij[pijPr[Vi(tij)pij]]\sum_{ij}\operatorname*{\mathbb{E}}_{p_{ij}}{\mathchoice{\left[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}\right]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}}, we introduce an extension of lemma  4.3.

Lemma E.1.

For a type distribution DD, suppose simultaneous auction 𝒜\mathcal{A} satisfies the first and second condition of Definition 3.1, and {rij}i[n],j[m]\{r_{ij}\}_{i\in[n],j\in[m]} is a set of independent random prices that satisfy the following for some constant b(0,1)b\in(0,1),

  • (1)

    i[n]Prrij,tij[Vi(tij)rij]b,j[m]\sum_{i\in[n]}\Pr_{r_{ij},t_{ij}}[V_{i}(t_{ij})\geq r_{ij}]\leq b,\ \forall j\in[m];

  • (2)

    j[m]Prrij,tij[Vi(tij)rij]12,i[n]\sum_{j\in[m]}\Pr_{r_{ij},t_{ij}}[V_{i}(t_{ij})\geq r_{ij}]\leq\frac{1}{2},\ \forall i\in[n].

Then for any Bayes-Nash equilibrium strategy profile s{s} of simultaneous auction 𝒜\mathcal{A} with independently randomized reserve price rijr_{ij},

i,j𝔼rij[rijPr[Vi(tij)rij]]21bRevD(s)(𝒜RP(r))\sum_{i,j}\operatorname*{\mathbb{E}}_{r_{ij}}{\mathchoice{\left[r_{ij}\cdot\Pr\left[V_{i}(t_{ij})\geq r_{ij}\right]\right]}{[r_{ij}\cdot\Pr\left[V_{i}(t_{ij})\geq r_{ij}\right]]}{[r_{ij}\cdot\Pr\left[V_{i}(t_{ij})\geq r_{ij}\right]]}{[r_{ij}\cdot\Pr\left[V_{i}(t_{ij})\geq r_{ij}\right]]}}\leq\frac{2}{1-b}\cdot\mathrm{Rev}^{(s)}_{D}\left(\mathcal{A}^{(r)}_{\mathrm{RP}}\right)

To be more clear, the simultaneous mechanism with randomized reserve price, 𝒜RP(r)\mathcal{A}^{(r)}_{\mathrm{RP}}, is defined to be the mechanism that first publicly independently draws rijr_{ij} for each i[n]i\in[n] and j[m]j\in[m], and then implements the simultaneous auction 𝒜\mathcal{A} with realized reserve prices rijr_{ij}’s. This is a distribution of simultaneous auctions with deterministic reserved prices, and thus its expected revenue is the expectation of these deterministic reserve prices auctions and is not larger than RPRev\mathrm{RPRev}.

Proof.

For the similar reason in Lemma  4.3, by the first condition, for any item jj, the probability that each bidder’s value on item jj is smaller than their reserve price on item jj, rijr_{ij}, is at least 1b1-b. By the second condition, we know that, for any bidder ii, the probability of their value for every item jj is below the reserve price rijr_{ij} is at least 12\frac{1}{2}. Moreover, using a similar argument as in Lemma  4.3, we can show that at any equilibrium, any bidder whose value on an item is smaller than its reserve price will take the null action \perp on that item.

Consider bidder ii with type tit_{i} satisfying two conditions (i) Vi(tij)rijV_{i}(t_{ij})\geq r_{ij}, (ii) kj,Vi(tij)<rik\forall k\neq j,V_{i}(t_{ij})<r_{ik}. Then ii must bid \perp on items other than jj. Thus bidding rijr_{ij} on item jj will lead to a non-negative utility Vi(tij)rijV_{i}(t_{ij})-r_{ij} which is better than bidding \perp on item jj.

We introduce the third condition (iii) ii,Vi(tij)<rij\forall i^{\prime}\neq i,V_{i^{\prime}}(t_{i^{\prime}j})<r_{i^{\prime}j}. Given that both conditions (ii) and (iii) are satisfied, as discussed in the preceding paragraph, bidder ii will bid at least rijr_{ij} on item jj whenever their value of item jj is not less than the reserve price rijr_{ij}, and will subsequently secure item jj. Hence, the expected revenue from bidder ii’s payment on item jj is at least 𝔼rij[rijPr[Vi(tij)rij]]\operatorname*{\mathbb{E}}_{r_{ij}}\left[r_{ij}\cdot\Pr[V_{i}(t_{ij})\geq r_{ij}]\right]. Since (ii) and (iii) are independent events, the joint probability of both conditions being satisfied is at least 1b2\frac{1-b}{2}. Consequently, the expected revenue generated by the randomized mechanism 𝒜RP(r)\mathcal{A}^{(r)}_{\mathrm{RP}} is at least 1b2i,j𝔼rij[rijPr[Vi(tij)rij]]\frac{1-b}{2}\cdot\sum_{i,j}\operatorname*{\mathbb{E}}_{r_{ij}}\left[r_{ij}\cdot\Pr[V_{i}(t_{ij})\geq r_{ij}]\right].

Since for any j[m]j\in[m], iPr[Vi(tij)pij]=ixij(qi/2)+yij(qi′′/2)=iqij/21/2\sum_{i}\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}=\sum_{i}x_{ij}\cdot(q_{i}^{\prime}/2)+y_{ij}\cdot(q_{i}^{\prime\prime}/2)=\sum_{i}q_{ij}/2\leq 1/2 and for any i[n]i\in[n], jPr[Vi(tij)pij]=ixij(qi/2)+yij(qi′′/2)=jqij/21/2\sum_{j}\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}=\sum_{i}x_{ij}\cdot(q_{i}^{\prime}/2)+y_{ij}\cdot(q_{i}^{\prime\prime}/2)=\sum_{j}q_{ij}/2\leq 1/2, we can apply lemma  E.1 to show i,j𝔼pij[pijPr[Vi(tij)pij]]4Rev(𝒜RP(p))\sum_{i,j}\operatorname*{\mathbb{E}}_{p_{ij}}{\mathchoice{\left[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}\right]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}{[p_{ij}\cdot\Pr{\mathchoice{\left[V_{i}(t_{ij})\geq p_{ij}\right]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}{[V_{i}(t_{ij})\geq p_{ij}]}}]}}\leq 4\cdot\mathrm{Rev}{\mathchoice{\left(\mathcal{A}^{(p)}_{\mathrm{RP}}\right)}{(\mathcal{A}^{(p)}_{\mathrm{RP}})}{(\mathcal{A}^{(p)}_{\mathrm{RP}})}{(\mathcal{A}^{(p)}_{\mathrm{RP}})}}. Combining this with (19) and Rev(𝒜RP(p))RPRev\mathrm{Rev}{\mathchoice{\left(\mathcal{A}^{(p)}_{\mathrm{RP}}\right)}{(\mathcal{A}^{(p)}_{\mathrm{RP}})}{(\mathcal{A}^{(p)}_{\mathrm{RP}})}{(\mathcal{A}^{(p)}_{\mathrm{RP}})}}\leq\mathrm{RPRev}, we have proved the statement of our lemma. \hfill\blacksquare

E.2 Proof of Lemma 5.4

Proof of Lemma 5.4: Let

Pijargmaxxci(x+βij)Prtij[Vi(tij)βijx],P_{ij}\in\text{argmax}_{x\geq c_{i}}{\mathchoice{\left(x+\beta_{ij}\right)}{(x+\beta_{ij})}{(x+\beta_{ij})}{(x+\beta_{ij})}}\cdot\Pr_{t_{ij}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x]}},

and define

rij:=(Pij+βij)Prti[Vi(tij)βijPij]=maxxci(x+βij)Prti[Vi(tij)βijx],r_{ij}:={\mathchoice{\left(P_{ij}+\beta_{ij}\right)}{(P_{ij}+\beta_{ij})}{(P_{ij}+\beta_{ij})}{(P_{ij}+\beta_{ij})}}\cdot\Pr_{t_{i}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq P_{ij}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq P_{ij}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq P_{ij}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq P_{ij}]}}=\max_{x\geq c_{i}}\ {\mathchoice{\left(x+\beta_{ij}\right)}{(x+\beta_{ij})}{(x+\beta_{ij})}{(x+\beta_{ij})}}\cdot\Pr_{t_{i}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}-\beta_{ij}\geq x]}},

ri=jrijr_{i}=\sum_{j}r_{ij}, and r=irir=\sum_{i}r_{i}. We below show that Tail(β)\textsc{Tail}(\beta) is upper bounded by rr.

Tail(β)ijtij:Vi(tij)β+cifi(tij)(βij+ci)kjPrtik[Vi(tik)βikVi(tij)βij]+ijtij:Vi(tij)β+cifi(tij)(Vi(tij)βij)kjPrtik[Vi(tik)βikVi(tij)βij]12ijtij:Vi(tij)β+cifi(tij)(βij+ci)+ijtij:Vi(tij)β+cifi(tij)kjrik12ijPrtij[Vi(tij)βij+ci](βij+ci)+irijPrtij[Vi(tij)βij+ci]12ijrij+12iri=r.\displaystyle\begin{split}\textsc{Tail}(\beta)\leq&\sum_{i}\sum_{j}\sum_{t_{ij}:V_{i}(t_{ij})\geq\beta+c_{i}}f_{i}(t_{ij})\cdot{\mathchoice{\left(\beta_{ij}+c_{i}\right)}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}}\cdot\sum_{k\neq j}\Pr_{t_{ik}}{\mathchoice{\left[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}\right]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}}\\ &+\sum_{i}\sum_{j}\sum_{t_{ij}:V_{i}(t_{ij})\geq\beta+c_{i}}f_{i}(t_{ij}){\mathchoice{\left(V_{i}(t_{ij})-\beta_{ij}\right)}{(V_{i}(t_{ij})-\beta_{ij})}{(V_{i}(t_{ij})-\beta_{ij})}{(V_{i}(t_{ij})-\beta_{ij})}}\cdot\sum_{k\neq j}\Pr_{t_{ik}}{\mathchoice{\left[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}\right]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}}\\ \leq&\frac{1}{2}\cdot\sum_{i}\sum_{j}\sum_{t_{ij}:V_{i}(t_{ij})\geq\beta+c_{i}}f_{i}(t_{ij})\cdot{\mathchoice{\left(\beta_{ij}+c_{i}\right)}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}}+\sum_{i}\sum_{j}\sum_{t_{ij}:V_{i}(t_{ij})\geq\beta+c_{i}}f_{i}(t_{ij})\cdot\sum_{k\neq j}r_{ik}\\ \leq&\frac{1}{2}\sum_{i}\sum_{j}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}\right]}{[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}]}{[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}]}{[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}]}}\cdot{\mathchoice{\left(\beta_{ij}+c_{i}\right)}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}{(\beta_{ij}+c_{i})}}+\sum_{i}r_{i}\cdot\sum_{j}\Pr_{t_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}\right]}{[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}]}{[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}]}{[V_{i}(t_{ij})\geq\beta_{ij}+c_{i}]}}\\ \leq&\frac{1}{2}\cdot\sum_{i}\sum_{j}r_{ij}+\frac{1}{2}\cdot\sum_{i}r_{i}\\ =&r.\end{split} (20)

In the second inequality, the first term is by Vi(tij)βijciV_{i}(t_{ij})-\beta_{ij}\geq c_{i}, so

kjPrtik[Vi(tik)βikVi(tij)βij]kjPrtik[Vi(tik)βikci]12.\sum_{k\neq j}\Pr_{t_{ik}}{\mathchoice{\left[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}\right]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}}\leq\sum_{k\neq j}\Pr_{t_{ik}}{\mathchoice{\left[V_{i}(t_{ik})-\beta_{ik}\geq c_{i}\right]}{[V_{i}(t_{ik})-\beta_{ik}\geq c_{i}]}{[V_{i}(t_{ik})-\beta_{ik}\geq c_{i}]}{[V_{i}(t_{ik})-\beta_{ik}\geq c_{i}]}}\leq\frac{1}{2}.

The second term is because Vi(tij)βijciV_{i}(t_{ij})-\beta_{ij}\geq c_{i} and definiton of rikr_{ik},

(Vi(tij)βij)kjPrtik[Vi(tik)βikVi(tij)βij](βik+Vi(tij)βij)kjPrtik[Vi(tik)βikVi(tij)βij]rik.{\mathchoice{\left(V_{i}(t_{ij})-\beta_{ij}\right)}{(V_{i}(t_{ij})-\beta_{ij})}{(V_{i}(t_{ij})-\beta_{ij})}{(V_{i}(t_{ij})-\beta_{ij})}}\cdot\sum_{k\neq j}\Pr_{t_{ik}}{\mathchoice{\left[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}\right]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}}\leq{\mathchoice{\left(\beta_{ik}+V_{i}(t_{ij})-\beta_{ij}\right)}{(\beta_{ik}+V_{i}(t_{ij})-\beta_{ij})}{(\beta_{ik}+V_{i}(t_{ij})-\beta_{ij})}{(\beta_{ik}+V_{i}(t_{ij})-\beta_{ij})}}\cdot\sum_{k\neq j}\Pr_{t_{ik}}{\mathchoice{\left[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}\right]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}{[V_{i}(t_{ik})-\beta_{ik}\geq V_{i}(t_{ij})-\beta_{ij}]}}\leq r_{ik}.

As PijciP_{ij}\geq c_{i} and definition of cic_{i}, {βij+Pij}i[n],j[m]\left\{\beta_{ij}+P_{ij}\right\}_{i\in[n],j\in[m]} satisfies the conditions in lemma 4.3. Thus,

r=ij(βij+Pij)Prti[Vi(tij)βij+Pij]21bRPRev.r=\sum_{i}\sum_{j}{\mathchoice{\left(\beta_{ij}+P_{ij}\right)}{(\beta_{ij}+P_{ij})}{(\beta_{ij}+P_{ij})}{(\beta_{ij}+P_{ij})}}\cdot\Pr_{t_{i}}{\mathchoice{\left[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+P_{ij}\right]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+P_{ij}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+P_{ij}]}{[V_{i}{\mathchoice{\left(t_{ij}\right)}{(t_{ij})}{(t_{ij})}{(t_{ij})}}\geq\beta_{ij}+P_{ij}]}}\leq\frac{2}{1-b}\cdot\mathrm{RPRev}.

Then our statement follows from this inequality and (20). \hfill\blacksquare

Appendix F Approximate Revenue Monotonicity

Theorem F.1.

Let {vi}i[n]\{v_{i}\}_{i\in[n]} be a set of valuation functions satisfying the properties of monotonicity, subadditivity, and no externalities. Consider two distributions, denoted by D=×i[n]Di=×i[n],j[m]DijD=\bigtimes_{i\in[n]}D_{i}=\bigtimes_{i\in[n],j\in[m]}D_{ij} and D=×i[n]Di=×i[n],j[m]DijD^{\prime}=\bigtimes_{i\in[n]}D^{\prime}_{i}=\bigtimes_{i\in[n],j\in[m]}D^{\prime}_{ij}, such that for each ii, distribution DiD_{i}^{\prime} stochastically dominates distribution DiD_{i} with respect to valuation function viv_{i}. Specifically, there exists a coupling (ti,ti)(t_{i},t_{i}^{\prime}) such that: (i) vi(ti,S)vi(ti,S)v_{i}(t_{i},S)\leq v_{i}(t_{i}^{\prime},S) for all S[m]S\subseteq[m], and (ii) the marginal distributions over tit_{i} and tit^{\prime}_{i} correspond to DiD_{i} and DiD_{i}^{\prime}, respectively. Then, the following inequality holds:

OPT(D)1229OPT(D).\operatorname{\mathrm{OPT}}(D^{\prime})\geq\frac{1}{{229}}\cdot\operatorname{\mathrm{OPT}}(D).
Proof.

We define PRev\mathrm{PRev} as follows for distribution F=×i[n]Fi=×i[n],j[m]FijF=\bigtimes_{i\in[n]}F_{i}=\bigtimes_{i\in[n],j\in[m]}F_{ij},

PRev(F):=maxbmaxrR(b)1b2i,j𝔼rij[rijPrtijFij[Vi(tij)rij]],\mathrm{PRev}(F):=\max_{b}\max_{r\in R(b)}\frac{1-b}{2}\sum_{i,j}\operatorname*{\mathbb{E}}_{r_{ij}}{\mathchoice{\left[r_{ij}\cdot\Pr_{t_{ij}\sim F_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq r_{ij}\right]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}}\right]}{[r_{ij}\cdot\Pr_{t_{ij}\sim F_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq r_{ij}\right]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}}]}{[r_{ij}\cdot\Pr_{t_{ij}\sim F_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq r_{ij}\right]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}}]}{[r_{ij}\cdot\Pr_{t_{ij}\sim F_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq r_{ij}\right]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}}]}},

where r={rij}i[n],j[m]r=\{r_{ij}\}_{i\in[n],j\in[m]} and we use R(b)R(b) to denote the set of reserve prices (possibly random) rijr_{ij}’s that satisfies the two conditions in Lemma E.1, i.e., (1) i[n]Prrij,tijFij[Vi(tij)rij]b\sum_{i\in[n]}\Pr_{r_{ij},t_{ij}\sim F_{ij}}[V_{i}(t_{ij})\geq r_{ij}]\leq b, j[m]\forall j\in[m]; (2) j[m]Prrij,tijFij[Vi(tij)rij]12\sum_{j\in[m]}\Pr_{r_{ij},t_{ij}\sim F_{ij}}[V_{i}(t_{ij})\geq r_{ij}]\leq\frac{1}{2}, i[n]\forall i\in[n].

An easy fact is that PRev(D)PRev(D)\mathrm{PRev}(D^{\prime})\geq\mathrm{PRev}(D), because for any i[n]i\in[n], j[m]j\in[m] and rij0r_{ij}\geq 0, there exists rij0r_{ij}^{\prime}\geq 0 such that PrtijDij[Vi(tij)rij]=PrtijDij[Vi(tij)rij]\Pr_{t_{ij}\sim D^{\prime}_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq r_{ij}^{\prime}\right]}{[V_{i}(t_{ij})\geq r_{ij}^{\prime}]}{[V_{i}(t_{ij})\geq r_{ij}^{\prime}]}{[V_{i}(t_{ij})\geq r_{ij}^{\prime}]}}=\Pr_{t_{ij}\sim D_{ij}}{\mathchoice{\left[V_{i}(t_{ij})\geq r_{ij}\right]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}{[V_{i}(t_{ij})\geq r_{ij}]}}, and rijr_{ij}^{\prime} is greater than rijr_{ij} as DijD_{ij} is stochastically dominated by DijD_{ij}^{\prime}.

By Lemma 5.1, and the proof of Lemma 5.3, Lemma 5.4 and Lemma 5.6, we know for any bb,

OPT(D)4Core^+(16b+8b(1b)+16)PRev(D),\operatorname{\mathrm{OPT}}(D)\leq 4\cdot\widehat{\textsc{Core}}+\left(\frac{16b+8}{b(1-b)}+16\right)\cdot\mathrm{PRev}(D), (21)

where

Core^=itiTiS[m]fi(ti)σiS(ti)υi(ti,SYi(ti)).\widehat{\textsc{Core}}=\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}(t_{i})\sigma_{iS}(t_{i})\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}(t_{i})\right)}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}{(t_{i},S\cap Y_{i}(t_{i}))}}.

Here fif_{i} is the density function of DiD_{i}, and Yi(ti)={j:Vi(tij)<τi}Y_{i}(t_{i})=\{j:V_{i}(t_{ij})<\tau_{i}\}, where {τi}i[n]\{\tau_{i}\}_{i\in[n]} satisfies that iτi41bPRev(D)\sum_{i}\tau_{i}\leq\frac{4}{1-b}\cdot\mathrm{PRev}(D).

Let ss^{\prime} be a Bayes-Nash equilibrium of simultaneous first price auction S1A w.r.t. type distribution DD^{\prime} and valuation functions {vi}i[n]\{v_{i}\}_{i\in[n]}. Following Definition 3.1, we define μi(s)(ti,S)\mu_{i}^{(s^{\prime})}(t_{i},S) to be the optimal interim utility of bidder ii with type tit_{i}, when (a) all other bidders with type distributions DiD_{-i}^{\prime} bid according to sis_{-i}^{\prime} and (b) they can only participate in the competition for items in SS. Formally,

μi(s)(ti,S)=supqi𝔼tiDibisi(ti)[υi(ti,Xi(qi,bi)S)jSpi(j)(qi(j),bi(j))].\mu_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},S\right)}{(t_{i},S)}{(t_{i},S)}{(t_{i},S)}}=\sup_{q_{i}}\ \operatorname*{\mathbb{E}}_{\begin{subarray}{c}t_{-i}^{\prime}\sim D_{-i}^{\prime}\\ {b}_{-i}\sim{s}_{-i}^{\prime}{\mathchoice{\left(t_{-i}^{\prime}\right)}{(t_{-i}^{\prime})}{(t_{-i}^{\prime})}{(t_{-i}^{\prime})}}\end{subarray}}{\mathchoice{\left[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q^{(j)}_{i},{b}^{(j)}_{-i}\right)}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}}}}\right]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q^{(j)}_{i},{b}^{(j)}_{-i}\right)}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q^{(j)}_{i},{b}^{(j)}_{-i}\right)}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}}}}]}{[{\upsilon_{i}{\mathchoice{\left(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S\right)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}{(t_{i},X_{i}{\mathchoice{\left(q_{i},{b}_{-i}\right)}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}{(q_{i},{b}_{-i})}}\cap S)}}-{\sum_{j\in S}p_{i}^{(j)}{\mathchoice{\left(q^{(j)}_{i},{b}^{(j)}_{-i}\right)}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}{(q^{(j)}_{i},{b}^{(j)}_{-i})}}}}]}}.

Now, by Lemma 3.2, (S1A,s,D,{vi}i[n])(\text{S1A},{s^{\prime}},D,\{v_{i}\}_{i\in[n]}) is 12\frac{1}{2}-efficient, which means

μi(s)(ti,S)+RevD(s)(S1A,S)12vi(ti,S).\mu_{i}^{(s^{\prime})}(t_{i},S)+\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\right)}{(\text{S1A},S)}{(\text{S1A},S)}{(\text{S1A},S)}}\geq\frac{1}{2}\cdot v_{i}(t_{i},S).

By Lemma D.1, we know that μ^i(s)(ti,S)=μi(s)(ti,SYi(ti))\hat{\mu}_{i}^{(s^{\prime})}(t_{i},S)=\mu_{i}^{(s^{\prime})}(t_{i},S\cap Y_{i}(t_{i})) satisfies monotonicity, subadditivity, and no externalities. Similar to the proof of Lemma 5.10, we can lower bound i𝔼tiDi[μ^i(s)(ti,[m])]\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}},

i𝔼tiDi[μ^i(s)(ti,[m])]\displaystyle\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}} i𝔼tiDi[S[m]σiS(ti)μi(s)(ti,SYi(ti))]\displaystyle\geq\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}\right]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}]}{[\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mu_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}]}}
i𝔼tiDi(S[m]σiS(ti)(12υi(ti,SYi(ti))RevD(s)(S1A,SYi(ti))))\displaystyle\geq\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left(\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}}\right)}{(\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}})}{(\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}})}{(\sum_{S\subseteq[m]}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}{\mathchoice{\left(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}}\right)}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}{(\frac{1}{2}\cdot\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-{\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(\text{S1A},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}})}})}}
12itiTiS[m]fi(ti)σiS(ti)υi(ti,SYi(ti))itiTiS[m]fi(ti)σiS(ti)RevD(s)(S1A,S)\displaystyle\geq\frac{1}{2}\cdot\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\upsilon_{i}{\mathchoice{\left(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\right)}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}{(t_{i},S\cap Y_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}})}}-\sum_{i}\sum_{t_{i}\in T_{i}}\sum_{S\subseteq[m]}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sigma_{iS}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left({\text{S1A},}S\right)}{({\text{S1A},}S)}{({\text{S1A},}S)}{({\text{S1A},}S)}}
=12Core^jRevD(s)(S1A,{j})itifi(ti)S:jSσiS(S)\displaystyle=\frac{1}{2}\cdot\widehat{\textsc{Core}}-\sum_{j}\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left(\text{S1A},\left\{j\right\}\right)}{(\text{S1A},\left\{j\right\})}{(\text{S1A},\left\{j\right\})}{(\text{S1A},\left\{j\right\})}}\sum_{i}\sum_{t_{i}}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\sum_{S:j\in S}\sigma_{iS}{\mathchoice{\left(S\right)}{(S)}{(S)}{(S)}}
=12Core^jRevD(s)(S1A,{j})itifi(ti)πij(ti)\displaystyle=\frac{1}{2}\cdot\widehat{\textsc{Core}}-\sum_{j}\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left(\text{S1A},\left\{j\right\}\right)}{(\text{S1A},\left\{j\right\})}{(\text{S1A},\left\{j\right\})}{(\text{S1A},\left\{j\right\})}}\sum_{i}\sum_{t_{i}}f_{i}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}\pi_{ij}{\mathchoice{\left(t_{i}\right)}{(t_{i})}{(t_{i})}{(t_{i})}}
12Core^RevD(s)(S1A,[m]).\displaystyle\geq\frac{1}{2}\cdot\widehat{\textsc{Core}}-\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left(\text{S1A},[m]\right)}{(\text{S1A},[m])}{(\text{S1A},[m])}{(\text{S1A},[m])}}.

And similar to the proof of Lemma 5.11, let eie_{i} be the median of μ^i(s)(ti,[m])\hat{\mu}_{i}^{(s^{\prime})}(t_{i},[m]) when tit_{i} is sampled from DiD_{i}. Since μ^i(,)\hat{\mu}_{i}{\mathchoice{\left(\cdot,\cdot\right)}{(\cdot,\cdot)}{(\cdot,\cdot)}{(\cdot,\cdot)}} is subadditive over independent items and τi\tau_{i}-Lipschitz, we could apply Lemma 5.12 to get

𝔼tiDi[μ^i(s)(ti,[m])]2ei+52τi.\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}^{{(s^{\prime})}}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}^{{(s^{\prime})}}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{{(s^{\prime})}}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{{(s^{\prime})}}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}\leq 2e_{i}+\frac{5}{2}\cdot\tau_{i}.

Now consider drawing a sample (ti,ti)(t_{i},t_{i}^{\prime}) from the joint distribution as described in the statement. Since υi(ti,S)υi(ti,S)\upsilon_{i}(t_{i}^{\prime},S)\geq\upsilon_{i}(t_{i},S) for all S[m]S\subseteq[m], the interim utility of bidder ii with type tit_{i}^{\prime} is greater than μi(s)(ti,[m])\mu_{i}^{(s^{\prime})}(t_{i},[m]). And monotonicity of μi(s)\mu_{i}^{(s^{\prime})} implies that μi(s)(ti,[m])μ^i(s)(ti,[m])\mu_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\geq\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}. Therefore, the interim utility of bidder ii with type tit_{i}^{\prime} where tit_{i}^{\prime} is sampled from DiD_{i}^{\prime} stochastically dominates the μ^i(s)(ti,[m])\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}} where tit_{i} is from DiD_{i}. Thus, if we set the entry fee as eie_{i}, i.e., the median of μ^i(s)(ti,[m])\hat{\mu}_{i}^{(s^{\prime})}(t_{i},[m]), the probability that bidder ii from distribution DiD_{i}^{\prime} pays the entry fee is at least 1/21/2. Thus

EF-RevD(s)(S1A)ieiPrtiDi[μi(s)(ti,[m])ei]12iei.\mathrm{EF{\hbox{-}}Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}\geq\sum_{i}e_{i}\Pr_{t_{i}^{\prime}\sim D_{i}^{\prime}}\left[\mu_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i}^{\prime},[m]\right)}{(t_{i}^{\prime},[m])}{(t_{i}^{\prime},[m])}{(t_{i}^{\prime},[m])}}\geq e_{i}\right]\geq\frac{1}{2}\cdot\sum_{i}e_{i}.

Combining the two inequalities above, we know

i𝔼tiDi[μ^i(s)(ti,[m])]\displaystyle\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}} 2iei+52iτi\displaystyle\leq 2\sum_{i}e_{i}+\frac{5}{2}\sum_{i}\tau_{i}
4EF-RevD(s)(S1A)+52iτi.\displaystyle\leq 4\cdot\mathrm{EF{\hbox{-}}Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+\frac{5}{2}\sum_{i}\tau_{i}.

By the obtained lower and upper bound of i𝔼tiDi[μ^i(s)(ti,[m])]\sum_{i}\operatorname*{\mathbb{E}}_{t_{i}\sim D_{i}}{\mathchoice{\left[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}\right]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}{[\hat{\mu}_{i}^{(s^{\prime})}{\mathchoice{\left(t_{i},[m]\right)}{(t_{i},[m])}{(t_{i},[m])}{(t_{i},[m])}}]}}, we have

Core^\displaystyle\widehat{\textsc{Core}} 8EF-RevD(s)(S1A)+2RevD(s)(S1A)+5iτi\displaystyle\leq 8\cdot\mathrm{EF{\hbox{-}}Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+2\cdot\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+5\cdot\sum_{i}\tau_{i}
8EF-RevD(s)(S1A)+2RevD(s)(S1A)+201bPRev(D).\displaystyle\leq 8\cdot\mathrm{EF{\hbox{-}}Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+2\cdot\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+\frac{20}{1-b}\cdot\mathrm{PRev}(D).

Plugging this into (21), and taking b=15b=\frac{1}{5},

OPT(D)\displaystyle\operatorname{\mathrm{OPT}}(D) 32EF-RevD(s)(S1A)+8RevD(s)(S1A)+186PRev(D)\displaystyle\leq 32\cdot\mathrm{EF{\hbox{-}}Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+8\cdot\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+186\cdot\mathrm{PRev}(D)
32EF-RevD(s)(S1A)+8RevD(s)(S1A)+186RPRev(D)\displaystyle\leq 32\cdot\mathrm{EF{\hbox{-}}Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+8\cdot\mathrm{Rev}_{D^{\prime}}^{(s^{\prime})}{\mathchoice{\left(\text{S1A}\right)}{(\text{S1A})}{(\text{S1A})}{(\text{S1A})}}+186\cdot\mathrm{RPRev}(D^{\prime})
42RevD(s)(S1AEF(e))+187OPT(D)\displaystyle\leq 42\cdot\mathrm{Rev}^{(s^{\prime})}_{D^{\prime}}{\mathchoice{\left(\mathrm{S1A}^{(e)}_{\mathrm{EF}}\right)}{(\mathrm{S1A}^{(e)}_{\mathrm{EF}})}{(\mathrm{S1A}^{(e)}_{\mathrm{EF}})}{(\mathrm{S1A}^{(e)}_{\mathrm{EF}})}}+{187\cdot\operatorname{\mathrm{OPT}}(D^{\prime})}
229OPT(D).\displaystyle\leq{229}\cdot\operatorname{\mathrm{OPT}}(D^{\prime}).

The second inequality is due to PRev(D)PRev(D)\mathrm{PRev}(D)\leq\mathrm{PRev}(D^{\prime}) and PRev(D)RPRev(D)\mathrm{PRev}(D^{\prime})\leq\mathrm{RPRev}(D^{\prime}) by Lemma E.1. The third inequality is by lemma 4.2.