This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

𝐬𝐢𝐧𝟐𝜽𝑾\sin^{2}\theta_{W} theory and new physics

Hye-Sung Lee hlee@ibs.re.kr Center for Theoretical Physics of the Universe, IBS, Daejeon 34051, Korea
Abstract

After briefly discussing the importance of the precise measurement of the weak mixing angle, we discuss the implication of the dark ZZ on the low-Q2Q^{2} parity tests. The dark ZZ is a very light (roughly, MeV - GeV scale) gauge boson, which couples to the electromagnetic current as well as the weak neutral current.

keywords:
parity test, dark force, dark photon, dark ZZ
pacs:
1

4.70.Pw, 11.30.Er

1 Introduction

In this article111This article and the presentation at PhiPsi 15 meeting (USTC, Hefei, China, September 23-26, 2015) are mainly based on the works and discussions with H. Davoudiasl and W. Marciano at Brookhaven National Lab, USA., we emphasize the importance of the low-Q2Q^{2} parity test for the new physics searches. We illustrate our point with a specific example called the dark parity violation [1, 2, 3, 4], which means the parity violation induced by a dark gauge boson. This presentation shares some parts with Ref. [5], although updates and complementary descriptions are provided.

Let us briefly look back the history of the sin2θW\sin^{2}\theta_{W} physics. It is well documented in the review [6], and we will go over only some part very briefly. In 1961, Sheldon Glashow introduced the SU(2)L×U(1)LSU(2)_{L}\times U(1)_{L} symmetry, which has a mixing between two neutral gauge bosons [7]. In 1967, Steven Weinberg added the Higgs mechanism with a Higgs doublet and a vacuum expectation value, establishing the mass relation mW=mZcosθWm_{W}=m_{Z}\cos\theta_{W} with the weak mixing angle θW\theta_{W} [8]. He also predicted the weak neutral current mediated by the ZZ boson. In 1973, the neutral current was discovered in the neutrino scattering experiments at the CERN Gargamelle detector [9]. Whether the SU(2)L×U(1)YSU(2)_{L}\times U(1)_{Y} is a correct theory to describe this neutral current was not clear then though. One of the features of the SU(2)L×U(1)YSU(2)_{L}\times U(1)_{Y} was the mixing term in the weak neutral current interaction, proportional to sin2θW\sin^{2}\theta_{W}, and the parity test measuring this sin2θW\sin^{2}\theta_{W} can possibly test the Standard Model (SM).

In 1978, SLAC E122 experiment using the polarized electron beam and the deuteron target measured the parity violation asymmetry, which gave sin2θW0.22(2)\sin^{2}\theta_{W}\approx 0.22(2), agreeing to the SM [10]. It is noticeable that this establishment of the SU(2)L×U(1)YSU(2)_{L}\times U(1)_{Y} by the SLAC parity test in 1978 occurred much earlier than the direct discovery of the WW/ZZ boson resonances at the CERN SPS experiments in 1983 [11, 12]. In 1979, after only one year of the SLAC parity test, Glashow, Salam, and Weinberg received the Nobel prize in physics.

The lessons we can learn from this history include (i) the parity test (by the precise measurement of sin2θW\sin^{2}\theta_{W}) can be a critical way to search for a new gauge interaction, and (ii) its finding may precede the direct discovery of a gauge boson by the bump search.

Figure 1 taken from Ref. [4] shows the running of the sin2θW\sin^{2}\theta_{W} in the SM and the current experimental constraints. While the current data are more or less consistent with the SM prediction with the given error bars, more precise measurements in the future experiments (red bars) may reveal potential new physics effects that were elusive for the current constraints.

[Uncaptioned image]\figcaption

The running of the sin2θW\sin^{2}\theta_{W} with the momentum transfer QQ in the SM and the current experimental constraints taken from Ref. [4]. The red bars show the anticipated sensitivities in the future parity tests.

2 Dark Photon vs. Dark 𝒁Z

The dark gauge boson (we use ZZ^{\prime} for its notation) is a hypothetical particle with a very small mass and a small coupling to the SM particles. While the heavy ZZ^{\prime} (typically TeV scale) has been a traditional target of discovery (see Ref. [13] for a review), the light ZZ^{\prime} (typically MeV - GeV scale) is a recently highlighted subject with a growing interest (see Ref. [14] for a review.) For such a light particle to survive all experimental constraints, it should have extremely small couplings to the SM particles.

There are number of dark force models in the literature, but we consider only two of them. Both models commonly assume the kinetic mixing between the U(1)YU(1)_{Y} and the U(1)darkU(1)_{\rm dark} [15]. The SM particles have zero charges under the new gauge group U(1)darkU(1)_{\rm dark}, yet the gauge boson ZZ^{\prime} of the U(1)darkU(1)_{\rm dark} can still couple to the SM fermions through the mixing with the SM gauge bosons.

One model is the dark photon [16], which couples only to the electromagnetic current at the leading order. Another is a relatively new model, the dark ZZ [1], which couples to the electromagnetic current as well as the weak neutral current. Their interactions are given by

darkγ\displaystyle{\cal L}_{{\rm dark}~\gamma} =\displaystyle= εeJEMμZμ\displaystyle-\varepsilon eJ^{\mu}_{EM}Z^{\prime}_{\mu} (1)
darkZ\displaystyle{\cal L}_{{\rm dark}~Z} =\displaystyle= [εeJEMμ+εZ(g/2cosθW)JNCμ]Zμ\displaystyle-\left[\varepsilon eJ^{\mu}_{EM}+\varepsilon_{Z}(g/2\cos\theta_{W})J^{\mu}_{NC}\right]Z^{\prime}_{\mu} (2)

with JμEM=Qff¯γμfJ_{\mu}^{EM}=Q_{f}\bar{f}\gamma_{\mu}f and JμNC=(T3f2Qfsin2θW)f¯γμf(T3f)f¯γμγ5fJ_{\mu}^{NC}=(T_{3f}-2Q_{f}\sin^{2}\theta_{W})\bar{f}\gamma_{\mu}f-(T_{3f})\bar{f}\gamma_{\mu}\gamma_{5}f. ε\varepsilon and εZ\varepsilon_{Z} are the parametrization of the effective γZ\gamma-Z^{\prime} mixing and ZZZ-Z^{\prime} mixing, respectively.

The difference of the two models comes from how the ZZ^{\prime} gets a mass or the details of the Higgs sector. Because of the ZZ coupling, the ZZ^{\prime} in the dark ZZ model inherits some properties of the ZZ boson such as the parity violating nature. In a rough sense, the dark photon is a heavier version of the photon, and the dark ZZ is a lighter version of the ZZ boson.

Because of the new coupling, some experiments that are irrelevant to the dark photon searches are relevant to the dark ZZ searches [1, 2, 3, 4, 19, 17, 18, 20]. They include the low-Q2Q^{2} parity test, which will be discussed later in this article.

3 Bump Hunt

There are many ongoing and proposed searches for the dark force in the labs around the world [14]. A particularly attractive feature about the dark force is that it is one of the rare new physics scenarios that can be tested/discovered at the low-energy experiments, which are typically built for nuclear or hadronic physics. Of course, it is possible because the dark force carrier ZZ^{\prime} is very light (MeV - GeV scale).

Figure 2 in Ref. [21] shows the parameter space of the dark photon with the current bounds. The bounds come from the electron [22, 23] and muon [24, 25, 26] anomalous magnetic moments, fixed target experiments [27, 28], beam dump experiments [29], meson decays [30, 31, 32, 33, 34, 35], e+ee^{+}e^{-} collision (e+eγ++e^{+}e^{-}\to\gamma+\ell^{+}\ell^{-}) experiments [36, 37]. Except for the anomalous magnetic moments, the searches are all based on the dilepton searches from the ZZ^{\prime}, that is the bump hunt.

If we put some of these experimental efforts on the map (Figure 3), we can see the search is practically a global activity. Quite obviously, we are going through a very exciting time with so many contemporary searches to find a new fundamental force of nature.

[Uncaptioned image]\figcaption

Dark force searches all around the world.

4 Low-Energy Parity Test

Now, we discuss the low-energy parity test [1, 2, 3, 4] as another mean to search for the dark force. The presence of the dark ZZ modifies the effective lagrangian of the weak neutral current scattering,

eff\displaystyle{\cal L}_{\rm eff} =\displaystyle= 4GF2JNCμ(sin2θW)JμNC(sin2θW)\displaystyle-\frac{4G_{F}}{\sqrt{2}}J^{\mu}_{NC}(\sin^{2}\theta_{W})J_{\mu}^{NC}(\sin^{2}\theta_{W}) (3)
GF\displaystyle G_{F}\!\!\!\! \displaystyle\to (1+δ211+Q2/mZ2)GF\displaystyle\!\!\!\!\left(1+\delta^{2}\frac{1}{1+Q^{2}/m_{Z^{\prime}}^{2}}\right)G_{F} (4)
sin2θW\displaystyle\sin^{2}\theta_{W}\!\!\!\! \displaystyle\to (1εδmZmZcosθWsinθW11+Q2/mZ2)sin2θW\displaystyle\!\!\!\!\left(1-\varepsilon\delta\frac{m_{Z}}{m_{Z^{\prime}}}\frac{\cos\theta_{W}}{\sin\theta_{W}}\frac{1}{1+Q^{2}/m_{Z^{\prime}}^{2}}\right)\sin^{2}\theta_{W}~~ (5)

where QQ is the momentum transfer between the two neutral currents, and δ\delta is a reparametrization of the εZ\varepsilon_{Z} with εZ(mZ/mZ)δ\varepsilon_{Z}\equiv(m_{Z^{\prime}}/m_{Z})\delta. One salient feature is that these shifts are sensitive only to the low-Q2Q^{2} (low momentum transfer). Thus, the dark ZZ effectively changes the weak neutral current scattering, including the effective sin2θW\sin^{2}\theta_{W}, which describes the parity violation, but only for the low momentum transfer.

Figure 4 (from Ref. [3] with a slight modification) shows an example of how the effective sin2θW\sin^{2}\theta_{W} changes with QQ in the presence of a dark ZZ for mZ=100MeVm_{Z^{\prime}}=100~{\rm MeV} (blue band), 200MeV200~{\rm MeV} (red band) cases. Although there are some details in the figure, the important point is that the deviations appear only in the low QQ values, roughly QmZQ\leq m_{Z^{\prime}}. They never appears in the high QQ values relevant to the high-energy experiments, which tells us that we need low-energy experiments to see the dark ZZ mediated scattering effects.

[Uncaptioned image]\figcaption

Effective sin2θW\sin^{2}\theta_{W} running taken from Ref. [3]. Dark ZZ of 100 MeV (blue) and 200 MeV (red) were taken. Note that the deviations appear only in the low-Q2Q^{2} regime (Q2mZ2Q^{2}\leq m_{Z^{\prime}}^{2}).

In this region, non-perturbative QCD contributions to the SM value become important. They have traditionally been determined utilizing dispersion relations [38, 39]. Recently, also first-principle lattice QCD determinations of the leading-order hadronic effects have become available [40, 41].

For the low-Q2Q^{2} parity tests, one can use the atomic parity violation in Cs [42, 43, 44], Ra+ ion [45, 46] or the low-Q2Q^{2} polarized electron scattering experiments SLAC E158 [47], JLAB Qweak [48], JLAB Moller [49] and Mainz P2 [50]. The possible deviations due to the dark ZZ can be large enough to be observed with the future experiments.

For the intermediate scale ZZ^{\prime} of mZ𝒪(10)GeVm_{Z^{\prime}}\approx{\cal O}(10)~\rm GeV, the deep inelastic scattering experiments such as JLAB PVDIS [51] and JLAB SOLID [52] may be also sensitive. In fact, as Fig. 4 taken from Ref. [4] shows, the intermediate scale ZZ^{\prime} can address the NuTeV (Q5GeV\left<Q\right>\approx 5~\rm GeV) anomaly [53].

[Uncaptioned image]\figcaption

The 15 GeV dark ZZ case taken from Ref. [4]. The NuTeV anomaly can be addressed by this intermediate scale dark ZZ.

5 Summary

The parity test by precise measurement of the sin2θW\sin^{2}\theta_{W} has been important in studying new gauge interactions. Especially, it critically helped establishing the SU(2)L×U(1)YSU(2)_{L}\times U(1)_{Y} electroweak theory. There is a growing interest in the dark gauge interaction (mediated by a light ZZ^{\prime} gauge boson) around the world partly because many existing low-energy facilities can join the searches. While most searches of the light ZZ^{\prime} are based on the direct bump searches, the parity tests in the low-Q2Q^{2} (such as the atomic parity violation, polarized electron scattering, deep inelastic scattering) are important and complementary searches for the dark force. The latter are also independent of the ZZ^{\prime} decay branching ratios.

If the history may repeat, the dark force evidence from the low-Q2Q^{2} parity test might precede the discovery of a new resonance just like what happened in the electroweak interaction case.

Acknowledgements.
I am very grateful to H. Davoudiasl and W. Marciano for a long-term collaboration. This work was supported in part by the IBS (Project Code IBS-R018-D1).

References

  • [1] H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 85, 115019 (2012) [arXiv:1203.2947 [hep-ph]].
  • [2] H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. Lett.  109, 031802 (2012) [arXiv:1205.2709 [hep-ph]].
  • [3] H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 89, 095006 (2014) [arXiv:1402.3620 [hep-ph]].
  • [4] H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 92, no. 5, 055005 (2015) [arXiv:1507.00352 [hep-ph]].
  • [5] H. S. Lee, arXiv:1410.8435 [hep-ph].
  • [6] K. S. Kumar, S. Mantry, W. J. Marciano and P. A. Souder, Ann. Rev. Nucl. Part. Sci.  63, 237 (2013) [arXiv:1302.6263 [hep-ex]].
  • [7] S. L. Glashow, Nucl. Phys.  22, 579 (1961).
  • [8] S. Weinberg, Phys. Rev. Lett.  19, 1264 (1967).
  • [9] F. J. Hasert et al. [Gargamelle Neutrino Collaboration], Phys. Lett. B 46, 138 (1973).
  • [10] C. Y. Prescott et al., Phys. Lett. B 77, 347 (1978).
  • [11] M. Banner et al. [UA2 Collaboration], Phys. Lett. B 122, 476 (1983).
  • [12] G. Arnison et al. [UA1 Collaboration], Phys. Lett. B 126, 398 (1983).
  • [13] P. Langacker, Rev. Mod. Phys.  81, 1199 (2009) [arXiv:0801.1345 [hep-ph]].
  • [14] R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, S. Andreas, T. Averett, O. Baker and B. Batell et al., arXiv:1311.0029 [hep-ph].
  • [15] B. Holdom, Phys. Lett. B 166, 196 (1986).
  • [16] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer and N. Weiner, Phys. Rev. D 79, 015014 (2009) [arXiv:0810.0713 [hep-ph]].
  • [17] H. Davoudiasl, H. S. Lee, I. Lewis and W. J. Marciano, Phys. Rev. D 88, no. 1, 015022 (2013) [arXiv:1304.4935 [hep-ph]].
  • [18] H. Davoudiasl, W. J. Marciano, R. Ramos and M. Sher, Phys. Rev. D 89, 115008 (2014) [arXiv:1401.2164 [hep-ph]].
  • [19] K. Kong, H. S. Lee and M. Park, Phys. Rev. D 89, 074007 (2014) [arXiv:1401.5020 [hep-ph]].
  • [20] D. Kim, H. S. Lee and M. Park, JHEP 1503, 134 (2015) [arXiv:1411.0668 [hep-ph]].
  • [21] A. Soffer, arXiv:1507.02330 [hep-ex].
  • [22] H. Davoudiasl, H. S. Lee and W. J. Marciano, Phys. Rev. D 86, 095009 (2012) [arXiv:1208.2973 [hep-ph]].
  • [23] M. Endo, K. Hamaguchi and G. Mishima, Phys. Rev. D 86, 095029 (2012) [arXiv:1209.2558 [hep-ph]].
  • [24] S. N. Gninenko and N. V. Krasnikov, Phys. Lett. B 513, 119 (2001) [hep-ph/0102222].
  • [25] P. Fayet, Phys. Rev. D 75, 115017 (2007) [hep-ph/0702176 [HEP-PH]].
  • [26] M. Pospelov, Phys. Rev. D 80, 095002 (2009) [arXiv:0811.1030 [hep-ph]].
  • [27] S. Abrahamyan et al. [APEX Collaboration], Phys. Rev. Lett.  107, 191804 (2011) [arXiv:1108.2750 [hep-ex], arXiv:1108.2750 [hep-ex]].
  • [28] H. Merkel, P. Achenbach, C. A. Gayoso, T. Beranek, J. Bericic, J. C. Bernauer, R. Boehm and D. Bosnar et al., Phys. Rev. Lett.  112, 221802 (2014) [arXiv:1404.5502 [hep-ex]].
  • [29] S. Andreas, C. Niebuhr and A. Ringwald, Phys. Rev. D 86, 095019 (2012) [arXiv:1209.6083 [hep-ph]].
  • [30] J. D. Bjorken, R. Essig, P. Schuster and N. Toro, Phys. Rev. D 80, 075018 (2009) [arXiv:0906.0580 [hep-ph]].
  • [31] D. Babusci et al. [KLOE-2 Collaboration], Phys. Lett. B 720, 111 (2013) [arXiv:1210.3927 [hep-ex]].
  • [32] G. Agakishiev et al. [HADES Collaboration], Phys. Lett. B 731, 265 (2014) [arXiv:1311.0216 [hep-ex]].
  • [33] A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 91, no. 3, 031901 (2015) [arXiv:1409.0851 [nucl-ex]].
  • [34] T. Gunji [ALICE Collaboration], “Dark Photon Searches at ALICE,” Presented at Dark Interactions 2014 workshop at Brookhaven National Laboratory, USA.
  • [35] J. R. Batley et al. [NA48/2 Collaboration], Phys. Lett. B 746, 178 (2015) [arXiv:1504.00607 [hep-ex]].
  • [36] D. Babusci et al. [KLOE-2 Collaboration], Phys. Lett. B 736, 459 (2014) [arXiv:1404.7772 [hep-ex]].
  • [37] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett.  113, no. 20, 201801 (2014) [arXiv:1406.2980 [hep-ex]].
  • [38] J. Erler and M. J. Ramsey-Musolf, Phys. Rev. D 72, 073003 (2005) doi:10.1103/PhysRevD.72.073003 [hep-ph/0409169].
  • [39] F. Jegerlehner, Nuovo Cim. C 034S1, 31 (2011) doi:10.1393/ncc/i2011-11011-0 [arXiv:1107.4683 [hep-ph]].
  • [40] F. Burger, K. Jansen, M. Petschlies and G. Pientka, arXiv:1505.03283 [hep-lat].
  • [41] A. Francis, V. G lpers, G. Herdo za, H. Horch, B. J ger, H. B. Meyer and H. Wittig, PoS LATTICE 2015, 110 (2015) [arXiv:1511.04751 [hep-lat]].
  • [42] S. L. Gilbert, M. C. Noecker, R. N. Watts and C. E. Wieman, Phys. Rev. Lett.  55, 2680 (1985).
  • [43] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner and C. E. Wieman, Science 275, 1759 (1997).
  • [44] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett.  82, 2484 (1999) [Erratum-ibid.  83, 889 (1999)] [hep-ex/9903022].
  • [45] M. Nunez Portela, E. A. Dijck, A. Mohanty, H. Bekker, J. E. Berg, G. S. Giri, S. Hoekstra, C. J. G. Onderwater, S. Schlesser, R. G. E. Timmermans, O. O. Versolato, L. Willmann, H. W. Wilschut, K. Jungmann, Applied Physics B 114, 173 (2014).
  • [46] K. P. Jungmann, Hyperfine Interact.  227, 5 (2014).
  • [47] P. L. Anthony et al. [SLAC E158 Collaboration], Phys. Rev. Lett.  95, 081601 (2005) [hep-ex/0504049].
  • [48] D. Androic et al. [Qweak Collaboration], Phys. Rev. Lett.  111, no. 14, 141803 (2013) [arXiv:1307.5275 [nucl-ex]].
  • [49] J. Mammei [MOLLER Collaboration], Nuovo Cim. C 035N04, 203 (2012) [arXiv:1208.1260 [hep-ex]].
  • [50] K. Aulenbacher, Hyperfine Interact.  200, 3 (2011).
  • [51] D. Wang et al. [PVDIS Collaboration], Nature 506, no. 7486, 67 (2014).
  • [52] P. E. Reimer [JLab SoLID and JLab 6 GeV PVDIS Collaborations], Nuovo Cim. C 035N04, 209 (2012).
  • [53] G. P. Zeller et al. [NuTeV Collaboration], Phys. Rev. Lett.  88, 091802 (2002) [Phys. Rev. Lett.  90, 239902 (2003)] [hep-ex/0110059].