This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Centre of Advanced Studies, Department of Physics, The University of Burdwan,
Burdwan 713 104, India

String and brane phenomenology Quantum cosmology Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

Single field slow-roll effective potential from Kähler moduli stabilizations in type IIB/F-theory

Abhijit Let    Arunoday Sarkar    Chitrak Sarkar    Buddhadeb Ghosh
Abstract

We derive a single field slow-roll inflaton potential in three intersecting D7D7 branes configuration under type IIB/F-theory compactification. Among three resulting Kähler moduli corresponding to three orthogonal directions, two are stabilized via perturbative corrections in Kähler potential arising from large volume scenario (α3\alpha^{\prime 3}) and four graviton scattering amplitude upto one loop level and the remaining Kähler modulus is stabilized by KKLT-type non-perturbative correction in superpotential. The symmetric combination of two canonically normalized and perturbatively stabilized Kähler moduli gives the inflaton field and the anti-symmetric combination manifests as an auxiliary field.

pacs:
11.25.Wx
pacs:
98.80.Qc
pacs:
98.80.Cq

In recent years, major efforts have been made [1, 2, 3, 4, 5, 6] to obtain cosmological inflation and inflaton potential(s) via Kähler moduli stabilization in type-IIB/F-theory since the inflationary picture in large scale limit is experimentally connected to the CMBR anisotropy and polarisation data [7, 8, 9]. In fact, Planck-2018 [7] has confirmed the efficacy of the single field slow-roll type potentials e.g. the α\alpha-attractors in explaining the observational bounds with significant precision. Quite obviously, moduli stabilization is essential in order to connect the string compactification to low energy effective theories, such as inflation. Therefore, obtaining a plateau-type inflaton potential via moduli stabilization is an important task in the interface of string theory and cosmology. We have already shown in an earlier publication [10] that the mode-dependent behaviours of cosmological parameters of α\alpha-attractor potentials conform to the Planck-2018 data to a great extent. This class of potentials originates from the geometry of Kähler manifold in 𝒩=1\mathcal{N}=1 minimal supergravity. Motivated by this success, we felt it is pertinent to extract such type of experimentally favoured potential from more fundamental theory viz., the superstring theory through stabilizing the Kähler moduli fields by quantum corrections in the topology of the internal compact manifold which is a Calabi-Yau threefold. In the string frame, one is concerned with two potentials: i) the Kähler potential [11] 𝒦\mathcal{K} which generates the metric of the moduli space of the internal manifold, ii) the superpotential [12] 𝒲\mathcal{W} which is generated by world volume fluxes of branes. Usually, 𝒦\mathcal{K} and 𝒲\mathcal{W} get contributions from perturbative [5, 11, 13, 14, 1, 15, 16] and non-perturbative [5, 17, 18, 19, 20] effects, respectively. In the process of compactification in string theory, many moduli fields (massless scalars in four dimension) appear which are related to 𝒦\mathcal{K} and 𝒲\mathcal{W}. The number of moduli fields may be reduced by fluxes [21, 22], DD brane compactification [23] and orientifold projection [24]. A single-field inflation is driven by a potential V(ϕ)V(\phi), where ϕ\phi is the inflaton field. In order to connect string theory to inflation one has to i) derive V(ϕ)V(\phi) from a potential V(𝒦,𝒲)V(\mathcal{K},\mathcal{W}), which is called the FF-term potential, and ii) make a transition from AdSAdS space to dSdS space, the latter having a positive cosmological constant, which is required for inflationary expansion of the universe. Moreover, the potential V(ϕ)V(\phi) has to be a slow-roll one. The main motivation of the present work is to obtain a slow-roll potential, V(ϕ)V(\phi), incorporating the perturbative (α3\alpha^{\prime 3}, four-graviton scattering upto genus one and 3 intersecting D7 branes wrapping over 4-cycles), non-perturbative (one instanton/gaugino condensation) corrections in V(𝒦,𝒲)V(\mathcal{K},\mathcal{W}). Obtaining a stable dSdS vacuum from superstring theory is a challenging task because of the recently proposed swampland conjecture [25, 26] in the context of quantum gravity. But still, efforts have been made to find an effective potential from the stringy perspective, which includes both perturbative[11, 14, 15] and non-perturbative[18, 19, 20] elements in the topology of compactified extra dimensions of space-time. Another aspect of this scenario is to uplift the single field effective potential from the AdSAdS to the dSdS space maintaining a slow-roll plateau. In this paper we have proposed a scheme for deriving a slow-roll dSdS-potential for the inflaton field by stabilizing all the Kähler moduli and suitably uplifting the AdSAdS minimum to the dSdS one. Our calculational framework is based on the type IIB superstring theory compactified on a 6d T6/NT^{6}/\mathbb{Z}_{N} orbifold limit of Calabi-Yau 3-fold (CY3)111or an elliptically fibered Calabi-Yau 4-fold in FF-theory [27], which will be designated as 𝒳6\mathcal{X}_{6} such that the target space is 4×𝒳6\mathcal{M}_{4}\times\mathcal{X}_{6}, where 4\mathcal{M}_{4} is the 4d Minkowski space. The internal space 𝒳6\mathcal{X}_{6} is equipped with some non-perturbative objects like D7D7 branes and O7O7 planes. These OO-planes are necessary to project out the 12d FF-theory in 10d type IIB theory [28, 29]. Furthermore, the simplest configuration of three magnetised non-interacting and intersecting D7D7 branes is considered which wrap around the 4-cycles and warp the metric topology of 𝒳6\mathcal{X}_{6} such that h1,1=3h^{1,1}=3. In this set-up, the complexified Kähler moduli which control the volume of 𝒳6\mathcal{X}_{6} are expressed as,

ρk=bk+iτk,k=1,2,3.\small\rho_{k}=b_{k}+i\tau_{k},\quad k=1,2,3. (1)

bkb_{k} is connected with RR C4C_{4} potential and τk\tau_{k} is identified as 4-cycle volume transverse to the 7-branes. The internal volume of 𝒳6\mathcal{X}_{6} can be expressed in terms of τ1,2,3\tau_{1,2,3} as,

𝒱=τ1τ2τ3=(ρ1ρ1¯)(ρ2ρ2¯)(ρ3ρ3¯)(2i)3,\small\mathcal{V}=\sqrt{\tau_{1}\tau_{2}\tau_{3}}=\sqrt{\frac{(\rho_{1}-\bar{\rho_{1}})(\rho_{2}-\bar{\rho_{2}})(\rho_{3}-\bar{\rho_{3}})}{(2i)^{3}}}, (2)

where we have assumed that the intersection number of the branes is one. Branes, wrapping the 𝒳6\mathcal{X}_{6}, produce generalised fluxes [23, 21] threading the 4-cycles of the internal manifold arising due to some potentials CpC_{p} and the associated form fields Fp=dCp1F_{p}=dC_{p-1}, p=0,2,4p=0,2,4, complexified axion-dilaton S=C0+ieφS=C_{0}+ie^{-\varphi}, where φ\varphi is the dilaton field which is related to the string coupling constant as φ=lngs\langle\varphi\rangle=\ln{g_{s}}; F3=dC2F_{3}=dC_{2}, the Kalb-Ramond field B2B_{2}, H3=dB2H_{3}=dB_{2} and G3=F3SH3G_{3}=F_{3}-SH_{3}. These fields depend on h2,1h^{2,1} complex structure moduli zaz_{a} which dictate the shape of 𝒳6\mathcal{X}_{6}. The CY3 being a compact Kähler manifold (which means it is an orientable Riemann surface having finite volume) with vanishing first Chern class and Ricci flatness [30] admits a non-zero closed holomorphic (3,0) form Ω(za)\Omega(z_{a}) [31] (i.e. dΩ(za)=0d\Omega(z_{a})=0) everywhere, which is a non-trivial element of Hodge-de Rham cohomology group H3,0H^{3,0}. The 3-form field G3G_{3} and Ω(za)\Omega(z_{a}) together define the compatibility of CY3 with supersymmetry [30, 21] through a flux-generated tree level superpotential [12],

𝒲0(S,za)=𝒳6G3(S,za)Ω(za),\small\mathcal{W}_{0}(S,z_{a})=\int_{\mathcal{X}_{6}}G_{3}(S,z_{a})\wedge\Omega(z_{a}), (3)

which is a holomorphic function of zaz_{a} and SS. Such type of potential is also described in the 𝒩=1\mathcal{N}=1 supergravity [32] except that, in that case it will be a function of superfields. The supersymmetric constraints require that zaz_{a} and SS should be supersymmetrically stabilized acquiring large masses at supersymmetric minimum. Therefore, the covariant derivative of 𝒲0\mathcal{W}_{0} w.r.t. zaz_{a} and SS must vanish, i.e.

𝒟S𝒲0=𝒟za𝒲0=0\small\mathcal{D}_{S}\mathcal{W}_{0}=\mathcal{D}_{z_{a}}\mathcal{W}_{0}=0 (4)

where, 𝒟𝒲0=𝒲0+𝒲0𝒦\mathcal{D}\mathcal{W}_{0}=\partial\mathcal{W}_{0}+\mathcal{W}_{0}\partial\mathcal{K}. 𝒦\partial\mathcal{K} is the connection on the moduli space of CY3. This stabilization ensures that those moduli fields can never appear in large four dimensions. Now, so far as the Kähler structure (which is the complex structure with a Riemannian metric) of 𝒳6\mathcal{X}_{6} is concerned, the metric of the moduli space (𝒳6)=2,1(𝒳6)×1,1(𝒳6)\mathcal{M}(\mathcal{X}_{6})=\mathcal{M}^{2,1}(\mathcal{X}_{6})\times\mathcal{M}^{1,1}(\mathcal{X}_{6}), 𝒦IJ¯\mathcal{K}_{I\bar{J}} being an exact 2-form i.e. it is derivable (at least locally) from a scalar potential called Kähler potential 𝒦0\mathcal{K}_{0},

KIJ¯=IJ¯𝒦0.\small K_{I\bar{J}}=\partial_{I}\partial_{\bar{J}}\mathcal{K}_{0}. (5)

Here 𝒦0\mathcal{K}_{0} is the classical version of the Kähler potential and it depends on three moduli viz., SS, zaz_{a} and ρk\rho_{k} as [31, 21],

𝒦0(S,za,ρk)=k=13ln(i(ρkρ¯k))ln(i(SS¯))ln(iΩΩ¯).\small\begin{split}\mathcal{K}_{0}(S,z_{a},\rho_{k})=&-\sum_{k=1}^{3}\ln(-i(\rho_{k}-\bar{\rho}_{k}))-\ln(-i(S-\bar{S}))\\ &-\ln(-i\int\Omega\wedge\bar{\Omega}).\end{split} (6)

Using Eq. (2) we get,

𝒦0(S,za,ρk)=2ln𝒱𝒦0(za,S),\small\mathcal{K}_{0}(S,z_{a},\rho_{k})=-2\ln\mathcal{V}-\mathcal{K}_{0}(z_{a},S), (7)

where a constant factor ln8\ln 8 has been absorbed in 𝒦0(za,S)\mathcal{K}_{0}(z_{a},S). 𝒦0(S,za,ρk)\mathcal{K}_{0}(S,z_{a},\rho_{k}) satisfies an interesting condition,

k,k1,1(𝒳6)h1,1=3𝒦0ρkρ¯kρk𝒦0ρ¯k𝒦0=3\small\sum_{k,k^{\prime}\in\mathcal{M}^{1,1}({\mathcal{X}_{6}})}^{h^{1,1}=3}{\mathcal{K}_{0}}^{{\rho_{k}}\bar{\rho}_{k^{\prime}}}\partial_{\rho_{k}}\mathcal{K}_{0}\partial_{\bar{\rho}_{k^{\prime}}}\mathcal{K}_{0}=3 (8)

called the ‘no-scale’ structure, which is necessary to maintain the supersymmetry [32]. The superpotential 𝒲0\mathcal{W}_{0} and the Kähler potential 𝒦0(S,za,ρk)\mathcal{K}_{0}(S,z_{a},\rho_{k}) together provide a 4d effective potential called the FF-term potential,

VF=e𝒦0I,J(𝒳6)(𝒦0IJ¯𝒟I𝒲0𝒟J¯𝒲¯03𝒲0𝒲¯0)=e𝒦0𝒦0SS¯𝒟S𝒲0𝒟S¯𝒲0¯+e𝒦0a,b2,1(𝒳6)h2,1𝒦0zaz¯b𝒟za𝒲0𝒟z¯b𝒲0¯+e𝒦0(k,k1,1(𝒳6)h1,1=3𝒦0ρkρ¯k𝒟ρk𝒲0𝒟ρ¯k𝒲0¯3𝒲0𝒲0¯)\small\begin{split}V_{F}&=e^{\mathcal{K}_{0}}\sum_{I,J\in\mathcal{M}({\mathcal{X}_{6}})}\left({\mathcal{K}_{0}}^{I\bar{J}}\mathcal{D}_{I}\mathcal{W}_{0}\mathcal{D}_{\bar{J}}\mathcal{\bar{W}}_{0}-3\mathcal{W}_{0}\mathcal{\bar{W}}_{0}\right)\\ &=e^{\mathcal{K}_{0}}{\mathcal{K}_{0}}^{S\bar{S}}\mathcal{D}_{S}\mathcal{W}_{0}\mathcal{D}_{\bar{S}}\bar{\mathcal{W}_{0}}\\ &+e^{\mathcal{K}_{0}}\sum_{a,b\in\mathcal{M}^{2,1}({\mathcal{X}_{6}})}^{h^{2,1}}{\mathcal{K}_{0}}^{z_{a}\bar{z}_{b}}\mathcal{D}_{z_{a}}\mathcal{W}_{0}\mathcal{D}_{\bar{z}_{b}}\bar{\mathcal{W}_{0}}\\ &+e^{\mathcal{K}_{0}}(\sum_{k,k^{\prime}\in\mathcal{M}^{1,1}({\mathcal{X}_{6}})}^{h^{1,1}=3}{\mathcal{K}_{0}}^{\rho_{k}\bar{\rho}_{k^{\prime}}}\mathcal{D}_{\rho_{k}}\mathcal{W}_{0}\mathcal{D}_{\bar{\rho}_{k^{\prime}}}\bar{\mathcal{W}_{0}}\\ &-3\mathcal{W}_{0}\bar{\mathcal{W}_{0}})\\ \end{split} (9)

which vanishes at classical level due to Eqs. (4) and (8). Therefore, the Kähler moduli are not fixed at tree level leading to the ‘moduli stabilization problem’. In order to avoid this problem we have to come out of the classical description and turn on quantum corrections to break the supersymmetric no-scale structure of the Kähler potential which will give a non-zero FF-term potential. Let us first focus on the non-perturbative contributions of the Kähler moduli to 𝒲0\mathcal{W}_{0} as [17]

𝒲(S,za,ρk)=𝒲0(S,za)+k=13Ak(za)eiαkρk\small\mathcal{W}(S,z_{a},\rho_{k})=\mathcal{W}_{0}(S,z_{a})+\sum_{k=1}^{3}A_{k}(z_{a})e^{i\alpha_{k}\rho_{k}} (10)

arising from various non-perturbative effects like gaugino condensation [19] and instanton correction [20] where αk\alpha_{k}’s are small constants. According to the large volume scenario (LVS) [14], in non-compact limit, all 4-cycles do not expand to infinity, rather, at least one of the 4-cycles must be smaller than others. Also Ref. [33] says that due to certain choices of world volume fluxes in the presence of E3E3 magnetised branes, some of the Kähler moduli will have non-vanishing contributions to superpotential, which help in applying perturbative string loop effects in Kähler potential as explained in [15]. In our framework we consider τ1\tau_{1} to be smallest among τ1,2,3\tau_{1,2,3} and thus suppressing the effects of larger ρ\rho’s we get from Eq. (10)

𝒲(S,za,ρk)=𝒲0(S,za)+A(za)eiαρ1=𝒲0(S,za)+A(za)eατ1,\small\begin{split}\mathcal{W}(S,z_{a},\rho_{k})&=\mathcal{W}_{0}(S,z_{a})+A(z_{a})e^{i\alpha\rho_{1}}\\ &=\mathcal{W}_{0}(S,z_{a})+A^{\prime}(z_{a})e^{-\alpha\tau_{1}},\end{split} (11)

where A(za)=A(za)eiαb1A^{\prime}(z_{a})=A(z_{a})e^{i\alpha b_{1}}. The non-renormalization theorem [34] forbids us to modify the superpotential by perturbative corrections. The tree level Kähler potential is perturbatively corrected through the stabilization of the volume term in Eq. (7) by the classical α3\alpha^{\prime 3} correction [11] and quantum string loop effects due to multi-graviton scattering [15]. The second type of correction is related to the 4d localized Einstein-Hilbert term (second part of Eq. (12)), originating through the process of compactification from the 10d effective action in gravitational sector given in Ref. [15], containing higher derivative objects222Higher derivative terms like 4R4\nabla^{4}R^{4} are neglected as their effects are very small in four-graviton scattering amplitude [35, 36]. like R4R^{4} which is also proportional to the non-zero Euler number (χ\chi) of the internal manifold. In this way the 10d effective action reduces to (see [15, 5] for details),

Sgrav=1(2π)7α44×𝒳6e2φR(10)+(α)3χ(2πα)44(2ζ(3)e2φ+4ζ(2))R(4),\small\begin{split}S_{\mathrm{grav}}&=\frac{1}{(2\pi)^{7}\alpha^{\prime 4}}\int_{\mathcal{M}_{4}\times\mathcal{X}_{6}}e^{-2\varphi}R_{(10)}\\ &+(\alpha^{\prime})^{3}\frac{\chi}{(2\pi\alpha^{\prime})^{4}}\int_{\mathcal{M}_{4}}(2\zeta(3)e^{-2\varphi}+4\zeta(2))R_{(4)},\end{split} (12)

where R(10)=Re8R_{(10)}=R\wedge e^{8} and R(4)=Re2R_{(4)}=R\wedge e^{2}. Here RR is the Ricci curvature 2-form with ee being some generalized basis vector over 𝒳6\mathcal{X}_{6} (also called vielbein), and

χ=3!(2π)3𝒳6RRR.\small\chi=\frac{3!}{(2\pi)^{3}}\int_{\mathcal{X}_{6}}R\wedge R\wedge R. (13)

The terms associated with ζ(3)\zeta(3) and ζ(2)\zeta(2) come from genus zero scattering amplitude which is actually analogous to α3\alpha^{\prime 3} correction in large volume limit and genus one amplitude which arises from one loop correction, respectively. This computation is done in T6/NT^{6}/\mathbb{Z}_{N} orbifold limit of CY3 (see [37, 38] for similar calculations), where there are some points which remain invariant under discrete N\mathbb{Z}_{N} group of transformations, called orbifold fixed points or EH vertices, where χ0\chi\neq 0 333Although Ref. [15] shows that for orbifolds tree level contribution vanishes, which creates a little paradoxical situation.. They act as the sources of emission of massless gravitons and massive Kaluza-Klein (KK) modes in the internal space. The one loop term in the action of Eq. (12) is modified by a correction arising from the effect of exchange of massless as well as massive closed string excitations between EH vertices and D7D7 branes and O7O7 planes, viz., logarithmic correction [15], which takes the form

Sgrav=1(2π)7α44×𝒳6e2φR(10)+(α)3χ(2πα)44(2ζ(3)e2φ+4ζ(2)(1ke2φTkln(Rk/w)))R(4),\small\begin{split}S_{\mathrm{grav}}&=\frac{1}{(2\pi)^{7}\alpha^{\prime 4}}\int_{\mathcal{M}_{4}\times\mathcal{X}_{6}}e^{-2\varphi}R_{(10)}\\ &+(\alpha^{\prime})^{3}\frac{\chi}{(2\pi\alpha^{\prime})^{4}}\int_{\mathcal{M}_{4}}(2\zeta(3)e^{-2\varphi}\\ &+4\zeta(2)(1-\sum_{k}e^{2\varphi}T_{k}\ln(R_{\perp}^{k}/w)))R_{(4)},\end{split} (14)

where TkT_{k} is the tension of kkth D7D7 brane, RR_{\perp} stands for size of the transverse 2-cycle volume and ww is the width of effective UV cut-off for graviton/KK modes [38]. Considering all these corrections, the volume term can be re-written as [39, 5]

𝒱=𝒱+ξ+k=13ηkln(τk).\small\mathcal{V^{\prime}}=\mathcal{V}+\xi+\sum_{k=1}^{3}\eta_{k}\ln(\tau_{k}). (15)

For the sake of simplicity, it is assumed that all branes are identical so that they all have same tension of constant magnitude viz., eφT0e^{-\varphi}T_{0}. Therefore,

ηk=η=12eφT0ξ,\small\small\eta_{k}=\eta=-\frac{1}{2}e^{\varphi}T_{0}\xi, (16)

where η<0\eta<0, ξ,T0,eφ>0\xi,T_{0},e^{\varphi}>0 and |η|<<ξ|\eta|<<\xi [15]. Then,

𝒱=𝒱+ξ+ηk=13ln(τk)=𝒱+ξ+ηln(𝒱),\small\mathcal{V^{\prime}}=\mathcal{V}+\xi+\eta\sum_{k=1}^{3}\ln(\tau_{k})=\mathcal{V}+\xi+\eta\ln(\mathcal{V}), (17)

where a factor 22 is temporarily absorbed in η\eta. ξ=χ2ζ(2)e2φ\xi=-\frac{\chi}{2}\zeta(2)e^{2\varphi} for orbifold and χ4ζ(3)-\frac{\chi}{4}\zeta(3) for smooth CY3 [15], that means χ<0\chi<0 so that ξ>0\xi>0 which will be used later. Now, we can finally write the modified version of Eq. (7),

𝒦(S,za,ρk)=2ln(𝒱+ξ+ηln𝒱)𝒦0(S,za)\small\mathcal{K}(S,z_{a},\rho_{k})=-2\ln(\mathcal{V}+\xi+\eta\ln\mathcal{V})-\mathcal{K}_{0}(S,z_{a}) (18)

where the 6-cycle CY-volume satisfies Eq. (2). As we are interested only in Kähler moduli stabilization, afterwards we will safely ignore the 𝒦0(S,za)\mathcal{K}_{0}(S,z_{a}) term (which is also clear from the third term of Eq. (9)) and will proceed with only the Kähler moduli dependent term

𝒦(ρk)=2ln(𝒱+ξ+ηln𝒱).\small\mathcal{K}(\rho_{k})=-2\ln(\mathcal{V}+\xi+\eta\ln\mathcal{V}). (19)

This Kähler potential breaks the supersymmetric no-scale structure i.e., now,

k,k1,1(𝒳6)3𝒦ρkρ¯kρk𝒦ρ¯k𝒦3\small\sum_{k,k^{\prime}\in\mathcal{M}^{1,1}({\mathcal{X}_{6}})}^{3}{\mathcal{K}}^{{\rho_{k}}\bar{\rho}_{k^{\prime}}}\partial_{\rho_{k}}\mathcal{K}\partial_{\bar{\rho}_{k^{\prime}}}\mathcal{K}\neq 3 (20)

leading to a non-vanishing FF-term potential

VF=e𝒦(k,k1,1(𝒳6)3𝒦ρkρ¯k𝒟ρk𝒲𝒟ρ¯k𝒲¯3𝒲𝒲¯),\small V_{F}=e^{\mathcal{K}}\left(\sum_{k,k^{\prime}\in\mathcal{M}^{1,1}({\mathcal{X}_{6}})}^{3}{\mathcal{K}}^{\rho_{k}\bar{\rho}_{k^{\prime}}}\mathcal{D}_{\rho_{k}}\mathcal{W}\mathcal{D}_{\bar{\rho}_{k^{\prime}}}\bar{\mathcal{W}}-3\mathcal{W}\bar{\mathcal{W}}\right), (21)

where 𝒲\mathcal{W} is the corrected fluxed superpotential of Eq. (11). Thus, the Kähler moduli sector of 𝒳6\mathcal{X}_{6} is stabilized by perturbative and non-perturbative quantum corrections in classical FF-term potential. We assume that the non-supersymmetrically stabilized τ2,3\tau_{2,3} will be just massive enough to be able to sneak out to 4\mathcal{M}_{4}, for which cosmological inflation will be possible. Now we split the Eq. (21) into V1V_{1}, V2V_{2} and V3V_{3} such that VF=V1+V2+V3V_{F}=V_{1}+V_{2}+V_{3}:

V1=e𝒦(k,k1,1(𝒳6)3𝒦ρkρ¯kρk𝒦ρ¯k𝒦3)𝒲𝒲¯,\small V_{1}=e^{\mathcal{K}}\left(\sum_{k,k^{\prime}\in\mathcal{M}^{1,1}({\mathcal{X}_{6}})}^{3}{\mathcal{K}}^{\rho_{k}\bar{\rho}_{k^{\prime}}}\partial_{\rho_{k}}\mathcal{K}\partial_{\bar{\rho}_{k^{\prime}}}\mathcal{K}-3\right)\mathcal{W}\bar{\mathcal{W}}, (22)
V2=e𝒦k,k1,1(𝒳6)3𝒦ρkρ¯kρk𝒲ρ¯k𝒲¯,\small V_{2}=e^{\mathcal{K}}\sum_{k,k^{\prime}\in\mathcal{M}^{1,1}({\mathcal{X}_{6}})}^{3}{\mathcal{K}}^{\rho_{k}\bar{\rho}_{k^{\prime}}}\partial_{\rho_{k}}\mathcal{W}\partial_{\bar{\rho}_{k^{\prime}}}\bar{\mathcal{W}}, (23)
V3=e𝒦k,k1,1(𝒳6)3𝒦ρkρ¯k(𝒲¯ρk𝒲ρ¯k𝒦+𝒲ρk𝒦ρ¯k𝒲¯).\small\begin{split}&V_{3}=\\ &e^{\mathcal{K}}\sum_{k,k^{\prime}\in\mathcal{M}^{1,1}({\mathcal{X}_{6}})}^{3}{\mathcal{K}}^{\rho_{k}\bar{\rho}_{k^{\prime}}}\left(\bar{\mathcal{W}}\partial_{\rho_{k}}\mathcal{W}\partial_{\bar{\rho}_{k^{\prime}}}\mathcal{K}+\mathcal{W}\partial_{\rho_{k}}\mathcal{K}\partial_{\bar{\rho}_{k^{\prime}}}\bar{\mathcal{W}}\right).\end{split} (24)

The term e𝒦e^{\mathcal{K}} can be approximated using Eq. (19) as

e𝒦1𝒱22(ξ+ηln𝒱)𝒱3+6ξη𝒱4,\small e^{\mathcal{K}}\approx\frac{1}{\mathcal{V}^{2}}-\frac{2(\xi+\eta\ln\mathcal{V})}{\mathcal{V}^{3}}+\frac{6\xi\eta}{\mathcal{V}^{4}}, (25)

where the terms 𝒪(ξ2)\mathcal{O}(\xi^{2}), 𝒪(η2)\mathcal{O}(\eta^{2}) and 𝒪(1𝒱5)\mathcal{O}(\frac{1}{\mathcal{V}^{5}}) are neglected in large volume limit. Similarly, we compute the three terms V1V_{1}, V2V_{2} and V3V_{3} using Eqs. (1), (2), (11) and (19) in WOLFRAM MATHEMATICA 12 and write the results,

V1=3e𝒦(A~+𝒲0)2(8η+2ξ+2ηln𝒱)𝒱22η𝒱(η+2ξ+2ηln𝒱)(16η2ξ2ηln𝒱+4𝒱)𝒱2+2η𝒱(3η+2ξ+2ηln𝒱),\small\begin{split}V_{1}&=3e^{\mathcal{K}}(\tilde{A}+\mathcal{W}_{0})^{2}\\ &\frac{(-8\eta+2\xi+2\eta\ln\mathcal{V})\mathcal{V}^{2}-2\eta\mathcal{V}(\eta+2\xi+2\eta\ln\mathcal{V})}{(16\eta-2\xi-2\eta\ln\mathcal{V}+4\mathcal{V})\mathcal{V}^{2}+2\eta\mathcal{V}(3\eta+2\xi+2\eta\ln\mathcal{V})},\end{split} (26)
V2=4e𝒦A~2α2τ12𝒱(2η𝒱(η+ξ+ηln𝒱)+2𝒱2(3η+𝒱))(2ηln𝒱+2(ξ+𝒱))(𝒱2+η𝒱)(2η𝒱(3η+2ξ+2ηln𝒱)+𝒱2(16η2ξ2ηln𝒱+4𝒱)),\small\begin{split}V_{2}&=4e^{\mathcal{K}}\tilde{A}^{2}\alpha^{2}\tau_{1}^{2}\mathcal{V}\\ &\frac{(2\eta\mathcal{V}(\eta+\xi+\eta\ln\mathcal{V})+2\mathcal{V}^{2}(3\eta+\mathcal{V}))(2\eta\ln\mathcal{V}+2(\xi+\mathcal{V}))}{(\mathcal{V}^{2}+\eta\mathcal{V})(2\eta\mathcal{V}(3\eta+2\xi+2\eta\ln\mathcal{V})+\mathcal{V}^{2}(16\eta-2\xi-2\eta\ln\mathcal{V}+4\mathcal{V}))},\end{split} (27)
V3=8e𝒦ατ1A~(A~+𝒲0)(𝒱2+η𝒱)(2ηln𝒱+2ξ+2𝒱)2η𝒱(3η+2ξ+2ηln𝒱)+𝒱2(16η2ξ2ηln𝒱+4𝒱),\small\begin{split}V_{3}&=8e^{\mathcal{K}}\alpha\tau_{1}\tilde{A}(\tilde{A}+\mathcal{W}_{0})\\ &\frac{(\mathcal{V}^{2}+\eta\mathcal{V})(2\eta\ln\mathcal{V}+2\xi+2\mathcal{V})}{2\eta\mathcal{V}(3\eta+2\xi+2\eta\ln\mathcal{V})+\mathcal{V}^{2}(16\eta-2\xi-2\eta\ln\mathcal{V}+4\mathcal{V})},\end{split} (28)

where A~=Aeατ1\tilde{A}=Ae^{-\alpha\tau_{1}}. Using Eq. (25) we binomially expand V1,2,3V_{1,2,3} in large volume limit and release the 22 factor in η\eta (which was absorbed in Eq. (17)) to obtain,

V132𝒲02ξ2η(4ln𝒱)𝒱39𝒲02ξηln𝒱𝒱4+(2𝒲0A~+A~2)(3(ξ2η(4ln𝒱))2𝒱39ξηln𝒱𝒱4)=V1p+V1m,\small\begin{split}V_{1}&\approx\frac{3}{2}\mathcal{W}_{0}^{2}\frac{\xi-2\eta(4-\ln\mathcal{V})}{\mathcal{V}^{3}}-9\mathcal{W}_{0}^{2}\frac{\xi\eta\ln\mathcal{V}}{\mathcal{V}^{4}}\\ &+(2\mathcal{W}_{0}\tilde{A}+\tilde{A}^{2})\left(\frac{3(\xi-2\eta(4-\ln\mathcal{V}))}{2\mathcal{V}^{3}}-\frac{9\xi\eta\ln\mathcal{V}}{\mathcal{V}^{4}}\right)\\ &=V_{1\mathrm{p}}+V_{1\mathrm{m}},\end{split} (29)
V24ατ1A~(ατ1A~)𝒱22ατ1A~(ατ1A~)(ξ+2η(4+ln𝒱)𝒱3+2ξη(23ln𝒱)𝒱4)=V2np+V2m,\small\begin{split}V_{2}&\approx\frac{4\alpha\tau_{1}\tilde{A}(\alpha\tau_{1}\tilde{A})}{\mathcal{V}^{2}}\\ &-2\alpha\tau_{1}\tilde{A}(\alpha\tau_{1}\tilde{A})\left(\frac{\xi+2\eta(4+\ln\mathcal{V})}{\mathcal{V}^{3}}+\frac{2\xi\eta(2-3\ln\mathcal{V})}{\mathcal{V}^{4}}\right)\\ &=V_{2\mathrm{np}}+V_{2\mathrm{m}},\end{split} (30)
V34ατ1A~(A~+𝒲0)𝒱22ατ1A~(A~+𝒲0)(ξ+2η(6+ln𝒱)𝒱3+6ξη(1ln𝒱)𝒱4)=V3np+V3m,\small\begin{split}V_{3}&\approx\frac{4\alpha\tau_{1}\tilde{A}(\tilde{A}+\mathcal{W}_{0})}{\mathcal{V}^{2}}-2\alpha\tau_{1}\tilde{A}(\tilde{A}+\mathcal{W}_{0})\\ &\left(\frac{\xi+2\eta(6+\ln\mathcal{V})}{\mathcal{V}^{3}}+\frac{6\xi\eta(1-\ln\mathcal{V})}{\mathcal{V}^{4}}\right)\\ &=V_{3\mathrm{np}}+V_{3\mathrm{m}},\end{split} (31)

where the indices ‘p’, ‘np’ and ‘m’ respectively refer to perturbative, non-perturbative and mixed terms in V1,2,3V_{1,2,3}. Assembling all terms we finally obtain the perturbative, non-perturbative and mixed parts of VFV_{F} as,

VF1=V1p=32𝒲02ξ2η(4ln𝒱)𝒱39𝒲02ξηln𝒱𝒱4,\small V_{F_{1}}=V_{1\mathrm{p}}=\frac{3}{2}\mathcal{W}_{0}^{2}\frac{\xi-2\eta(4-\ln\mathcal{V})}{\mathcal{V}^{3}}-9\mathcal{W}_{0}^{2}\frac{\xi\eta\ln\mathcal{V}}{\mathcal{V}^{4}}, (32)
VF2=V2np+V3np=4ατ1𝒱2A~(A~+ατ1A~+𝒲0)\small V_{F_{2}}=V_{2\mathrm{np}}+V_{3\mathrm{np}}=\frac{4\alpha\tau_{1}}{\mathcal{V}^{2}}\tilde{A}(\tilde{A}+\alpha\tau_{1}\tilde{A}+\mathcal{W}_{0}) (33)

and

VF3=V1m+V2m+V3m=A~(A~f+𝒲0g)\small V_{F_{3}}=V_{1\mathrm{m}}+V_{2\mathrm{m}}+V_{3\mathrm{m}}=\tilde{A}(\tilde{A}f+\mathcal{W}_{0}g) (34)

where,

f=(3ξ8η(2ατ1(2ατ1+3)+3)4ξατ1(ατ1+1)2η(2ατ11)(2ατ1+3)ln𝒱)/(2𝒱3)+ηξ(2ατ1+3)((6ατ13)ln𝒱4ατ1)𝒱4,\small\begin{split}f=&(3\xi-8\eta(2\alpha\tau_{1}(2\alpha\tau_{1}+3)+3)-4\xi\alpha\tau_{1}(\alpha\tau_{1}+1)\\ &-2\eta(2\alpha\tau_{1}-1)(2\alpha\tau_{1}+3)\ln\mathcal{V})/(2\mathcal{V}^{3})\\ &+\frac{\eta\xi(2\alpha\tau_{1}+3)((6\alpha\tau_{1}-3)\ln\mathcal{V}-4\alpha\tau_{1})}{\mathcal{V}^{4}},\end{split} (35)
g=(32ατ1)(ξ+2ηln𝒱)24η(1+ατ1)𝒱36ηξ(32ατ1)ln𝒱+2ατ1𝒱4.\small\begin{split}g=&\frac{(3-2\alpha\tau_{1})(\xi+2\eta\ln\mathcal{V})-24\eta(1+\alpha\tau_{1})}{\mathcal{V}^{3}}\\ &-6\eta\xi\frac{(3-2\alpha\tau_{1})\ln\mathcal{V}+2\alpha\tau_{1}}{\mathcal{V}^{4}}.\end{split} (36)

To stabilize the smallest Kähler modulus τ1\tau_{1} supersymmetrically we first approximate the Kähler potential as,

𝒦2ln𝒱\small\mathcal{K}\approx-2\ln\mathcal{V} (37)

by considering the perturbative corrections ξ\xi and η\eta to have negligible contributions, which will make calculations simpler. Then equating the covariant derivative of 𝒲\mathcal{W} of Eq. (11) w.r.t ρ1\rho_{1} to zero at ρ1=iτ1\rho_{1}=i\tau_{1} we get,

Dρ1𝒲|ρ1=iτ1=ieατ1(αA+A+𝒲0eατ12τ1)=0or,(ατ112)e(ατ112)=𝒲02Ae.\small\begin{split}&D_{\rho_{1}}\mathcal{W}|_{\rho_{1}=i\tau_{1}}=ie^{-\alpha\tau_{1}}\left(\alpha A+\frac{A+\mathcal{W}_{0}e^{\alpha\tau_{1}}}{2\tau_{1}}\right)=0\\ &\mathrm{or,}\quad(-\alpha\tau_{1}-\frac{1}{2})e^{(-\alpha\tau_{1}-\frac{1}{2})}=\frac{\mathcal{W}_{0}}{2A\sqrt{e}}\in\mathbb{R}.\end{split} (38)

The physical solution of this equation is called the ‘Lambert W-function’, w=W0(𝒲02Ae)w=W_{0}(\frac{\mathcal{W}_{0}}{2A\sqrt{e}}) corresponding to the 0-branch [5]. Therefore,

ατ112=wτ1=1+2w2α.\small-\alpha\tau_{1}-\frac{1}{2}=w\\ \longrightarrow\tau_{1}=-\frac{1+2w}{2\alpha}. (39)

Here τ1\tau_{1} will be chosen as 40 as in [5]. Also from Eq. (38) we get,

A~=Aeατ1=𝒲01+2ατ1=𝒲02w.\small\tilde{A}=Ae^{-\alpha\tau_{1}}=-\frac{\mathcal{W}_{0}}{1+2\alpha\tau_{1}}=\frac{\mathcal{W}_{0}}{2w}. (40)

Let, ϵ=1+2ww(1\epsilon=\frac{1+2w}{w}\quad(\approx 1) [5], then from Eqs. (39) and (40) we obtain,

2ατ1=ϵϵ2\small 2\alpha\tau_{1}=-\frac{\epsilon}{\epsilon-2} (41)

and

A~=ϵ22𝒲0.\small\tilde{A}=\frac{\epsilon-2}{2}\mathcal{W}_{0}. (42)

Using Eqs. (41) and (42) we can rewrite Eqs. (32), (33) and (34) as,

VF1=32𝒲02ξ2η(4ln𝒱)𝒱39𝒲02ξηln𝒱𝒱4,\small V_{F_{1}}=\frac{3}{2}\mathcal{W}_{0}^{2}\frac{\xi-2\eta(4-\ln\mathcal{V})}{\mathcal{V}^{3}}-9\mathcal{W}_{0}^{2}\frac{\xi\eta\ln\mathcal{V}}{\mathcal{V}^{4}}, (43)
VF2=(ϵ𝒲0)2𝒱4𝒱3\small V_{F_{2}}=-(\epsilon\mathcal{W}_{0})^{2}\frac{\mathcal{V}}{4\mathcal{V}^{3}} (44)

and

VF3=(ϵ𝒲0)2(2ξ+4η(ln𝒱1)4𝒱3ηξ3ln𝒱1𝒱4)(32𝒲02ξ2η(4ln𝒱)𝒱39𝒲02ξηln𝒱𝒱4).\small\begin{split}V_{F_{3}}&=(\epsilon\mathcal{W}_{0})^{2}\left(\frac{2\xi+4\eta(\ln\mathcal{V}-1)}{4\mathcal{V}^{3}}-\eta\xi\frac{3\ln\mathcal{V}-1}{\mathcal{V}^{4}}\right)\\ &-\left(\frac{3}{2}\mathcal{W}_{0}^{2}\frac{\xi-2\eta(4-\ln\mathcal{V})}{\mathcal{V}^{3}}-9\mathcal{W}_{0}^{2}\frac{\xi\eta\ln\mathcal{V}}{\mathcal{V}^{4}}\right).\end{split} (45)

Now we can finally write the FF-term potential as,

VF=VF1+VF2+VF3=(ϵ𝒲0)2(𝒱2ξ+4η(1ln𝒱)4𝒱3ηξ13ln𝒱𝒱4)\small\begin{split}V_{F}&=V_{F_{1}}+V_{F_{2}}+V_{F_{3}}\\ &=-(\epsilon\mathcal{W}_{0})^{2}\left(\frac{\mathcal{V}-2\xi+4\eta(1-\ln\mathcal{V})}{4\mathcal{V}^{3}}-\eta\xi\frac{1-3\ln\mathcal{V}}{\mathcal{V}^{4}}\right)\end{split} (46)

which matches with the corresponding expression in [5]. This FF-term potential arises because of deviation from the no-scale structure of the tree level Kähler potential vis-à-vis the supersymmetry breaking through non-perturbative quantum correction of fluxed superpotential by the smallest Kähler modulus τ1\tau_{1}, which ensures that τ1\tau_{1} is stabilized supersymmetrically and lies in compactified dimensions. The other two moduli τ2,3\tau_{2,3} are perturbatively stabilized through overall volume correction of the internal space 𝒳6\mathcal{X}_{6}. Being just massive enough, they can come out of the compactified dimensions and appear in non-compact 4-manifold 4\mathcal{M}_{4}. These relatively larger moduli τ2,3\tau_{2,3} play very significant role in cosmology. Certain symmetric combination of them will give rise to the inflaton field ϕ\phi which drives the inflation by providing required large vacuum energy, whereas their anti-symmetric combination is another field which will remain in the background. Now, it is quite clear from Eq. (46) that this VFV_{F} can not alone be responsible for cosmological inflation because its minima is at AdSAdS space. It requires some uplifting agent to obtain a slow-roll like dSdS vacuum. There are actually so many uplifting mechanisms which include applying D3¯\bar{D3} brane [40], Fayet-Iliopoulos (FI) DD-term [41] and nilpotent superfield [42]. Here we use DD-term contributions associated with U(1)U(1) factors in the models of intersecting D7D7 branes [3, 1, 43, 19, 44] and the corresponding DD-term potential takes the form [1, 5]

VD=i=13gi22(1Qiρi𝒦+jqj|Φj|2)2i=13diτi3,\small V_{D}=\sum_{i=1}^{3}\frac{g_{i}^{2}}{2}\left(\sqrt{-1}Q_{i}\partial_{\rho_{i}}\mathcal{K}+\sum_{j}q_{j}|\langle\Phi_{j}\rangle|^{2}\right)^{2}\approx\sum_{i=1}^{3}\frac{d_{i}}{\tau_{i}^{3}}, (47)

where gig_{i}’s (gi2=τi{g_{i}}^{-2}=\tau_{i} + flux dependent and curvature corrections involving dilaton [19]) are the U(1)U(1) gauge couplings and di=Qi2/8>0d_{i}={Q_{i}}^{2}/8>0 (i=1,2,3i=1,2,3) correspond to the charges carried out by the 7-branes. qjq_{j}’s are the charges of the matter fields Φj\Phi_{j}’s whose VEVs are considered to be zero. This is a valid approximation because we are considering only the gravitational sector (see Eq. (12)) and also this is a safe and simple assumption for obtaining a non-vanishing VDV_{D} (see [19] and [44] for more details). d1τ13\frac{d_{1}}{\tau_{1}^{3}} acts as constant uplifting factor similar to FI DD-term. Remaining two terms will manifest through inflaton and an auxiliary field. The effective potential can now be expressed using Eqs. (46) and (47) as

Veff=VF+VD=(ϵ𝒲0)2(𝒱2ξ+4η(1ln𝒱)4𝒱3ηξ13ln𝒱𝒱4)+i=13diτi3.\small\begin{split}V_{\mathrm{eff}}&=V_{F}+V_{D}=\\ &-(\epsilon\mathcal{W}_{0})^{2}\left(\frac{\mathcal{V}-2\xi+4\eta(1-\ln\mathcal{V})}{4\mathcal{V}^{3}}-\eta\xi\frac{1-3\ln\mathcal{V}}{\mathcal{V}^{4}}\right)\\ &+\sum_{i=1}^{3}\frac{d_{i}}{\tau_{i}^{3}}.\end{split} (48)

Let us transform τ2,3\tau_{2,3} into two canonically normalized fields t2,3t_{2,3} as

t2=12ln(τ1τ2),t3=12ln(τ1τ3)\small t_{2}=\frac{1}{\sqrt{2}}\ln(\sqrt{\tau_{1}}\tau_{2}),\quad t_{3}=\frac{1}{\sqrt{2}}\ln(\sqrt{\tau_{1}}\tau_{3}) (49)

where τ1\tau_{1} is considered to be constant according to Eq. (39) as it is supersymmetrically stabilized. A symmetric combination of t2,3t_{2,3} yields

ϕ=12(t2+t3)=12ln(τ1τ2τ3)=ln𝒱.\small\phi=\frac{1}{\sqrt{2}}(t_{2}+t_{3})=\frac{1}{2}\ln(\tau_{1}\tau_{2}\tau_{3})=\ln\mathcal{V}. (50)

Thus, the inflaton field manifests as logarithm of the CY3 volume. Also from Eq. (50) we can write

τ2τ3=e2ϕτ1.\small\tau_{2}\tau_{3}=\frac{e^{2\phi}}{\tau_{1}}. (51)

By antisymmetrizing t2,3t_{2,3} we obtain

u=12(t2t3)=12ln(τ2τ3)τ2τ3=e2u.\small u=\frac{1}{\sqrt{2}}(t_{2}-t_{3})=\frac{1}{2}\ln\left(\frac{\tau_{2}}{\tau_{3}}\right)\longrightarrow\quad\frac{\tau_{2}}{\tau_{3}}=e^{2u}. (52)

These ϕ\phi and uu fields are just two new avatars of τ2,3\tau_{2,3} and therefore we can express ϕ\phi and uu in terms of τ2,3\tau_{2,3} by inverting Eqs. (51) and (52) as

τ2=e(ϕ+u)τ1,τ3=e(ϕu)τ1.\small\tau_{2}=\frac{e^{(\phi+u)}}{\sqrt{\tau_{1}}},\quad\tau_{3}=\frac{e^{(\phi-u)}}{\sqrt{\tau}_{1}}. (53)

Now, we can transform the effective potential of Eq. (48) as a 2-field potential (see Figure 3)

Veff(ϕ,u)=(ϵ𝒲0)2(eϕ2ξ+4η(1ϕ)4e3ϕηξ13ϕe4ϕ)+d1τ13+τ13/2(d2e3(ϕ+u)+d3e3(ϕu)).\small\begin{split}&V_{\mathrm{eff}}(\phi,u)=-(\epsilon\mathcal{W}_{0})^{2}\left(\frac{e^{\phi}-2\xi+4\eta(1-\phi)}{4e^{3\phi}}-\eta\xi\frac{1-3\phi}{e^{4\phi}}\right)\\ &+\frac{d_{1}}{\tau_{1}^{3}}+\tau_{1}^{3/2}(d_{2}e^{-3(\phi+u)}+d_{3}e^{-3(\phi-u)}).\end{split} (54)

Now, in order to stabilize the uu field we set,

(Veff(ϕ,u)u)u=u0=0u0=16ln(d2d3)\small\left(\frac{\partial V_{\mathrm{eff}}(\phi,u)}{\partial u}\right)_{u=u_{0}}=0\longrightarrow u_{0}=\frac{1}{6}\ln\left(\frac{d_{2}}{d_{3}}\right) (55)

and

(2Veff(ϕ,u)u2)u=u0=9dτ13/2e3ϕ>0\small\left(\frac{\partial^{2}V_{\mathrm{eff}}(\phi,u)}{\partial u^{2}}\right)_{u=u_{0}}=9d\tau_{1}^{3/2}e^{-3\phi}>0 (56)

where d=2d2d3d=2\sqrt{d_{2}d_{3}}. Now, we finally obtain the single field slow-roll inflaton potential with a stable dSdS vacuum,

V(ϕ,u0)V(ϕ)=η(ϵ𝒲0)2e3ϕ[ϕ+(ξ2η1+dτ13/2ηϵ2𝒲02)eϕ4η+ξeϕ(13ϕ)]+d1τ13.\small\begin{split}&V(\phi,u_{0})\equiv V(\phi)=\eta(\epsilon\mathcal{W}_{0})^{2}e^{-3\phi}\\ &\left[\phi+\left(\frac{\xi}{2\eta}-1+\frac{d\tau_{1}^{3/2}}{\eta\epsilon^{2}\mathcal{W}_{0}^{2}}\right)-\frac{e^{\phi}}{4\eta}+\xi e^{-\phi}(1-3\phi)\right]+\frac{d_{1}}{\tau_{1}^{3}}.\end{split} (57)

We can compress this equation by considering

α=η(ϵ𝒲0)2,β=(ξ2η1+dτ13/2ηϵ2𝒲02),γ=14η,λ=d1τ13\small\alpha=\eta(\epsilon\mathcal{W}_{0})^{2},\beta=\left(\frac{\xi}{2\eta}-1+\frac{d\tau_{1}^{3/2}}{\eta\epsilon^{2}\mathcal{W}_{0}^{2}}\right),\\ \gamma=\frac{1}{4\eta},\lambda=\frac{d_{1}}{\tau_{1}^{3}} (58)

as

V(ϕ)=αe3ϕ[ϕ+βγeϕ+ξeϕ(13ϕ)]+λ.\small\boxed{V(\phi)=\alpha e^{-3\phi}\left[\phi+\beta-\gamma e^{\phi}+\xi e^{-\phi}(1-3\phi)\right]+\lambda}. (59)

Our derived inflaton potential V(ϕ)V(\phi) (Eq. (59)) crucially depends on four parameters α\alpha, β\beta, γ\gamma and λ\lambda which in turn depend on perturbative and non-perturbative string theoretic parameters: ϵ\epsilon, 𝒲0\mathcal{W}_{0}, ξ\xi, η\eta, gsg_{s}, T0T_{0}, χ\chi, τ1\tau_{1}, d1d_{1} and dd according to the Eq. (58). In our framework we choose these parameters as follows:

ϵ\epsilon 𝒲0\mathcal{W}_{0} ξ\xi η\eta gsg_{s} T0T_{0} χ\chi τ1\tau_{1}
1 1.59 23 -0.71 0.6 0.103 -77 40
1 1.59 52 -0.71 0.6 0.045 -173 40
1 1.59 65 -0.71 0.6 0.037 -217 40
1 1.59 65 -0.71 0.6 0.037 -217 40
1 1.59 65 -0.71 0.6 0.037 -217 40
1 1.59 80 -0.71 0.6 0.029 -267 40
Table 1: In our first parameter space we have chosen ϵ\epsilon, 𝒲0\mathcal{W}_{0}, η\eta, gsg_{s} and τ1\tau_{1} to be fixed parameters while ξ\xi, T0T_{0} and χ\chi are varied. The parameters are consistent with the constraints given in [5, 15]. T0T_{0} and χ\chi are parameterized in such a way so that η\eta remains almost fixed.
α\alpha β\beta γ\gamma λ\lambda d1d_{1} dd
-1.805 -70 -0.35 5.47×1065.47\times 10^{-6} 0.35 0.45
-1.805 -80 -0.35 5.47×1065.47\times 10^{-6} 0.35 0.45
-1.805 -90 -0.35 5.47×1065.47\times 10^{-6} 0.35 0.17
-1.805 -100 -0.35 5.47×1065.47\times 10^{-6} 0.35 0.31
-1.805 -110 -0.35 5.47×1065.47\times 10^{-6} 0.35 0.45
-1.805 -120 -0.35 5.47×1065.47\times 10^{-6} 0.35 0.45
Table 2: In our second parameter space we have treated α\alpha, γ\gamma, λ\lambda and d1d_{1} as constants and β\beta, dd to be variables. The α\alpha, β\beta, γ\gamma and λ\lambda are obtained from the Eq. (58) using the parameters in Table 1 and d1d_{1}, dd are suitably fixed to yield the slow-roll structure of the potential. Although d1d_{1} satisfies the condition given in [5].

In Figure 1 we have shown the inflaton potential V(ϕ)V(\phi) against the inflaton field ϕ\phi from Eq. (59) without the uplifting term λ\lambda. This potential has a plateau-type slow-roll feature with an AdSAdS minimum at ϕ6.02\phi\approx 6.02, which can not drive the inflationary expansion. In Figures 2 we have described the actual inflaton potentials in dSdS space for two sets of the parameter β\beta (see Eq. (58)): one is β=70,90,110\beta=-70,-90,-110 for three values of the non-perturbative parameter d=0.17,0.31,0.45d=0.17,0.31,0.45 respectively keeping the perturbative parameter fixed at ξ=65\xi=65 (see upper figure) and the other is β=80,100,120\beta=-80,-100,-120 by varying ξ=23,52,80\xi=23,52,80 respectively for a particular value of d=0.45d=0.45 (see lower figure). Both the figures highlight an uplifting and a slight shift in ϕ\phi direction of the dSdS vacuum by the increase of β\beta maintaining the same slow-roll plateau as found in AdSAdS space. We find that, in these two figures, uplifting the dSdS vacuum does not disturb the flat direction, necessary for inflation. It is observed that the two perturbative parameters ξ\xi and η\eta play a major role for shaping the inflaton potential as slow-roll one, the non-perturbative parameters dd and d1d_{1} are responsible for the uplifting and the α\alpha fixes the overall energy scale of inflation which is 106\sim 10^{-6} in our case. The smallness of this energy scale firmly indicates the microscopic origin of our inflaton potential viz., the moduli stabilization in type IIB/F-theory compactification with string, brane, orientifold and fluxes- which is certainly a prime motivation of our approach.

\onefigure

[width=0.5]New_plots/AdS_pot.eps

Figure 1: Inflaton potential with AdSAdS minima at ϕ6.02\phi\approx 6.02 for ξ=52\xi=52, d=0.45d=0.45 and β=100\beta=-100.
\onefigure

[width=0.5]New_plots/Pot_param_1.eps \onefigure[width=0.5]New_plots/Pot_param_2.eps

Figure 2: Uplifted inflaton potentials with dSdS minima for different values of β\beta, dd with fixed value of ξ\xi (upper figure) and different values of β\beta, ξ\xi with fixed value of dd (lower figure). The dSdS vacua are uplifted as well as shifted in right direction keeping the slow-roll plateau same.
\onefigure

[width=0.6]New_plots/3D.eps

Figure 3: Three dimensional plot of the 2-field inflaton potential of Eq. (54) against the ϕ\phi and uu. The auxiliary field uu remains at its minimum and its component corresponding to the potential has almost no effect, during inflation.

At the end, we would like to mention that with the slow-roll potential of Eq. (59) and following the formalism in Ref. [10] we have obtained the values of some cosmological parameters such as, scalar power spectrum (Δs\Delta_{s}): 3.38×1043.38\times 10^{-4} - 3.60×1043.60\times 10^{-4}, tensor power spectrum (Δt\Delta_{t}): 2.1015×1072.1015\times 10^{-7} - 2.1018×1072.1018\times 10^{-7}, number of e-folds (NN): 55.055.0 - 56.756.7, scalar spectral index (nsn_{s}): 0.96520.9652 - 0.96620.9662, tensor spectral index (ntn_{t}): (7.28×105)(-7.28\times 10^{-5}) - (7.76×105)(-7.76\times 10^{-5}) and tensor-to-scalar ratio (rr): 5.8×1045.8\times 10^{-4} - 6.2×1046.2\times 10^{-4} at k=0.001k=0.001 - 0.0090.009 Mpc-1 for ξ=52\xi=52, d=0.45d=0.45 and β=100\beta=-100. We plan to report the details of these calculations in a future publication.

In conclusion, we have derived, effectively, a single-field slow-roll inflaton potential from Kähler moduli stabilizations in type IIB/F-theory.

Acknowledgements.
The authors acknowledge the University Grants Commission for the CAS-II program. AL acknowledges CSIR, the Government of India for NET fellowship. AS and CS acknowledge Government of West Bengal for granting them Swami Vivekananda fellowship.

References

  • [1] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWEur. Phys. J. C782018766.
  • [2] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWInt. J. Mod. Phys. A3420191950042.
  • [3] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWPoSCORFU20182019068.
  • [4] \NameAntoniadis I., Lacombe O. Leontaris G. K. \REVIEWEur. Phys. J. C8020201014.
  • [5] \NameBasiouris V. Leontaris G. K. \REVIEWPhys. Lett. B8102020135809.
  • [6] \NameBasiouris V. Leontaris G. K. \REVIEWFortsch. Phys.7020222100181.
  • [7] \NameAkrami Y. et al. \REVIEWAstron. Astrophys.6412020A10.
  • [8] \NameAghanim N. et al. \REVIEWAstron. Astrophys.6412020A6 [Erratum: Astron.Astrophys. 652, C4 (2021)].
  • [9] \NameAde P. A. R. et al. \REVIEWPhys. Rev. Lett.1272021151301.
  • [10] \NameSarkar A., Sarkar C. Ghosh B. \REVIEWJCAP112021029.
  • [11] \NameBecker K., Becker M., Haack M. Louis J. \REVIEWJHEP062002060.
  • [12] \NameGukov S., Vafa C. Witten E. \REVIEWNucl. Phys. B584200069 [Erratum: Nucl.Phys.B 608, 477–478 (2001)].
  • [13] \NameConlon J. P., Quevedo F. Suruliz K. \REVIEWJHEP082005007.
  • [14] \NameBalasubramanian V., Berglund P., Conlon J. P. Quevedo F. \REVIEWJHEP032005007.
  • [15] \NameAntoniadis I., Chen Y. Leontaris G. K. \REVIEWJHEP012020149.
  • [16] \NameBobkov K. \REVIEWJHEP052005010.
  • [17] \NameWitten E. \REVIEWNucl. Phys. B4741996343.
  • [18] \NameKachru S., Kallosh R., Linde A. D. Trivedi S. P. \REVIEWPhys. Rev. D682003046005.
  • [19] \NameHaack M., Krefl D., Lust D., Van Proeyen A. Zagermann M. \REVIEWJHEP012007078.
  • [20] \NameBaume F., Marchesano F. Wiesner M. \REVIEWJHEP042020174.
  • [21] \NameGiddings S. B., Kachru S. Polchinski J. \REVIEWPhys. Rev. D662002106006.
  • [22] \NameGrana M. \REVIEWPhys. Rept.423200691.
  • [23] \NameBlumenhagen R., Kors B., Lust D. Stieberger S. \REVIEWPhys. Rept.44520071.
  • [24] \NameKachru S., Schulz M. B. Trivedi S. \REVIEWJHEP102003007.
  • [25] \NameOoguri H. Vafa C. \REVIEWNucl. Phys. B766200721.
  • [26] \NameAgrawal P., Obied G., Steinhardt P. J. Vafa C. \REVIEWPhys. Lett. B7842018271.
  • [27] \NameIizuka N. Trivedi S. P. \REVIEWPhys. Rev. D702004043519.
  • [28] \NameSen A. \REVIEWPhys. Rev. D551997R7345.
  • [29] \NameBlumenhagen R. \REVIEWFortsch. Phys.582010820.
  • [30] \NameCandelas P., Horowitz G. T., Strominger A. Witten E. \REVIEWNucl. Phys. B258198546.
  • [31] \NameCandelas P. de la Ossa X. \REVIEWNucl. Phys. B3551991455.
  • [32] \NameFreedman D. Z. Van Proeyen A. \BookSupergravity (Cambridge Univ. Press, Cambridge, UK) 2012.
  • [33] \NameBianchi M., Collinucci A. Martucci L. \REVIEWJHEP122011045.
  • [34] \NameBurgess C. P., Escoda C. Quevedo F. \REVIEWJHEP062006044.
  • [35] \NameGreen M. B., Russo J. G. Vanhove P. \REVIEWJHEP022008020.
  • [36] \NameBasu A. \REVIEWPhys. Rev. D772008106003.
  • [37] \NameAntoniadis I., Ferrara S., Minasian R. Narain K. S. \REVIEWNucl. Phys. B5071997571.
  • [38] \NameAntoniadis I., Minasian R. Vanhove P. \REVIEWNucl. Phys. B648200369.
  • [39] \NameHaack M. Kang J. U. \REVIEWJHEP082018019.
  • [40] \NameBaumann D., Dymarsky A., Kachru S., Klebanov I. R. McAllister L. \REVIEWJHEP062010072.
  • [41] \NameCribiori N., Farakos F., Tournoy M. van Proeyen A. \REVIEWJHEP042018032.
  • [42] \NameFerrara S., Kallosh R. Linde A. \REVIEWJHEP102014143.
  • [43] \NameCremades D., Garcia del Moral M. P., Quevedo F. Suruliz K. \REVIEWJHEP052007100.
  • [44] \NameBurgess C. P., Kallosh R. Quevedo F. \REVIEWJHEP102003056.