This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: cxyue@lnnu.edu.cnthanks: wyq13889702166@163.comthanks: xcsun0315@163.comthanks: lxy91108@163.com

Single production of singlet vector-like leptons at the ILC

Chong-Xing Yue1,2    Yue-Qi Wang1,2 111Corresponding author    Xiao-Chen Sun1,2    Xin-Yang Li1,2 1Department of Physics, Liaoning Normal University, Dalian 116029, China
2Center for Theoretical and Experimental High Energy Physics, Liaoning Normal University, China
Abstract

Vector-like leptons (VLLs) as one kind of interesting new particles can produce rich phenomenology at low- and high-energy experiments. In the framework of the singlet vector-like lepton with scalar (VLS) model, we investigate the discovery potential of VLL via its single production at the International Linear Collider (ILC) with the center of mass energy s=\sqrt{s}= 1 TeV and the integrated luminosity \mathcal{L} = 1 ab-1, taking into account the appropriate polarization. For the signal and standard model (SM) background analysis, we have considered two kinds of decay channels for the W boson, i.e. pure leptonic and fully hadronic decay channels. Our analytic results show that the parameter space MFM_{F}\in [300, 675] GeV and κ\kappa\in [0.0294, 0.1] might be detected by the proposed ILC for pure leptonic decay channel. For fully hadronic decay channel, larger detection region of the parameter space are derived as MFM_{F}\in [300, 700] GeV and κ\kappa\in [0.0264, 0.0941].

I Introduction

With the discovery of the Higgs boson by the a toroidal large hadron collider apparatus (ATLAS) and compact muon solenoid (CMS) collaborations at the Large Hadron Collider (LHC) in 2012 Aad et al. (2012); Chatrchyan et al. (2012), the standard model (SM) of particle physics has was further validated. So far, the SM is a remarkably successful theory capable of explaining a large number of observations. However, it is clear that the SM lacks some of the vital ingredients to help us understand nature, such as the candidates of dark matter Bertone et al. (2005); Feng (2010), the excess of matter over antimatter Ade et al. (2014), gauge hierarchy Feng (2013), neutrino masses Gonzalez-Garcia and Maltoni (2008), as well as the fact that the masses and mixing patterns of the SM leptons cannot yet be clearly determined Morais et al. (2023). Besides, there are also deviations between the experimental measurements and the SM predictions for certain physical observations. For instance, the measurement of the muon anomalous magnetic moment (AMM) aμa_{\mu} indicates that the significance of the discrepancy between the experimental average and the SM prediction approaches to 4.2σ\sigma Abi et al. (2021). Therefore, we need new physical scenarios to provide a more natural solution to the above problems and the existed anomalies.

Considering the flavor democracy (FD) hypothesis that may enlighten mass pattern of the SM fermions, the existence of extra fermions beyond the three generations of the SM is necessary. The Higgs data from LHC imposes strong constraints on the additional chiral fermions, while the non-chiral fermions, generally referred to as vector-like fermions, are much less constrained Kuflik et al. (2013). Due to the vector-like nature of non-chiral fermions, they can evade constraints from fourth-generation searches Eberhardt et al. (2012). Vector-like fermions with masses generated independently of the Higgs mechanism become increasingly attractive and appear in numerous new physics models beyond the SM, such as little Higgs models Arkani-Hamed et al. (2002); Perelstein et al. (2004); Carena et al. (2007); Han et al. (2003), composite Higgs models Anastasiou et al. (2009); Kong et al. (2012); Gillioz et al. (2012); Keren-Zur et al. (2013); Falkowski et al. (2014), models of warped or universal extra-dimension Agashe et al. (2007); Contino et al. (2007); Li et al. (2012); Huang et al. (2012); Redi (2013), grand unified theories with non-minimal supersymmetric extensions Kang et al. (2008); Babu et al. (2008); Martin (2010); Graham et al. (2010). Very recently, Ref. Adhikary et al. (2024) has reexamined theoretical constraints on the new physics models with vector-like fermions.

Vector-like fermions include vector-like quarks (VLQs) and vector-like leptons (VLLs), where VLLs are defined as colourless, spin 1/2-1/2 fermions. The left- and right-handed components of VLLs transform in the same way under the electroweak symmetry group. Like the SM leptons, VLLs have three generations and the same lepton numbers with their corresponding SM leptons. VLLs might explain the ”Cabibbo angle anomaly” Crivellin et al. (2020), the muon AMM anomaly Megias et al. (2017) and help obtain the realistic Higgs mass within the framework of the composite Higgs model Carmona and Goertz (2015, 2016, 2018), while also being used to study the phenomenology of dark matter Guedes and Santiago (2022).

The current research status of VLLs can be discovered in Ref. Baspehlivan et al. (2022). Although VLLs have the same status as VLQs from particle phenomenology, there are not many direct searches for VLLs. Prior to direct searches at the LHC, a lower bound on the VLLs mass MVLL>101.2M_{VLL}>101.2 GeV is placed by L3 collaboration at the large electron-positron collider (LEP) Achard et al. (2001). Using the LHC data about multilepton events, collected in 2016-2018 corresponding to an integrated luminosity of 138 fb-1, the CMS collaboration has given the constraints on the VLL masses, which excludes the doublet VLLs with mass below 1045 GeV at 95% confidence level (CL), while the singlet VLLs with mass in the range from 125 GeV to 150 GeV are excluded Tumasyan et al. (2022). The analytical results of the ATLAS collaboration show that the doublet VLLs with mass in the range from 130 GeV to 900 GeV are excluded at 95% CL Aad et al. (2023). We believe that future runs of the LHC (LHC Run-3 and High Luminosity-LHC) will give more interesting results about searching for VLLs.

The vector-like lepton with scalar (VLS) models Hiller et al. (2020a, b, 2019) satisfy asymptotically safety that tames the UV behavior towards the Planck scale Litim and Sannino (2014); Bond and Litim (2019, 2018); Bednyakov and Mukhaeva (2023); Litim et al. (2023) and are allowed to explain the discrepancies between the measured values of the electron and muon AMMs and the SM predicted values. The VLS models, which can be divided into the singlet and doublet VLS models, predict the existence of VLLs and new scalars. The couplings of these new particles with the SM particles through renormalizable Yukawa interactions. The masses of VLLs can be as light as a few hundred GeV, so they can be probed at different colliders Achard et al. (2001); Bißmann et al. (2021); Yue et al. (2024); Das et al. (2020); Das and Mandal (2021); Bhattacharya et al. (2022).

It is well known that lepton colliders can offer a cleaner environment compared to hadron colliders and the polarized incident beams can improve the discovery potential of new particles. Thus, in this work, we will explore the possibility of detecting VLLs at the International Linear Collider (ILC), taking into account the appropriate polarization for our analysis. Considering the lower limits on the masses of the singlet and doublet VLLs, we concentrate on the searches for VLL within the framework of the singlet VLS model through its single production with subsequent decays to the pure leptonic final state and the fully hadronic final state at the ILC with the center of mass energy s=\sqrt{s}= 1 TeV and the integrated luminosity \mathcal{L} = 1 ab-1 Aihara et al. (2019); Bambade et al. (2019).

This paper is organized as follows. In section II, we briefly present the main content of the singlet VLS model, which is related our numerical calculation. In section III, we offer a detailed analysis of the possible of detecting singlet VLL through its single production processes based on the ILC detector simulation. For the analysis of signal, we consider two kinds of decay modes for the W boson, i.e. pure leptonic and fully hadronic channels. Our conclusions are given in section IV.

II The Theory Framework

The VLS models  Hiller et al. (2020a, b, 2019) predict three generations of VLLs, denoted as ψL,R\psi_{L,R} and each generation of VLLs is colorless with hypercharge Y=1Y=-1 and 1/2-1/2, which can be regarded as SU(2)LSU(2)_{L} singlets and doublets, respectively. Considering the constraints on the masses of the doublet and singlet VLLs from the LHC Tumasyan et al. (2022); Aad et al. (2023), we will focus our attention on the possibility signal of the singlet VLL via its single production at the 1 TeV ILC.

The new Yukawa couplings in the framework of the singlet VLS model read Hiller et al. (2020a)

Ysinglet=κL¯HψRκE¯SψLyψ¯LSψR+h.c.,\displaystyle\begin{split}\mathcal{L}_{\text{Y}}^{\text{singlet}}=&-\kappa\bar{L}H\psi_{R}-\kappa^{\prime}\bar{E}S^{\dagger}\psi_{L}-y\bar{\psi}_{L}S\psi_{R}+h.c.,\end{split} (1)

where E, L and H denote the SM singlet, doublet leptons and Higgs boson, respectively. S represents new scalar introduced to the singlet VLS model that is singlet under the SM gauge groups. Due to the conservation of each lepton flavor meeting with SU(3)SU(3)-flavor symmetry, the new Yukawa couplings y,κ,κy,\kappa,\kappa^{\prime} become single couplings instead of tensors.

After electroweak symmertry breaking, the couplings of the singlet VLL with the electroweak gauge bosons and new scalars are given by Bißmann et al. (2021); Hiller et al. (2020a)

intsinglet=eψ¯γμψAμ+gcosθwψ¯γμψZμ+(κ2¯LψRhκ¯RSψL+gS¯RSL+gZ¯LγμψLZμ+gWν¯γμψLWμ++h.c.).\displaystyle\begin{split}\mathcal{L}_{\text{int}}^{\text{singlet}}=&-e\bar{\psi}\gamma^{\mu}\psi A_{\mu}+\frac{g}{\cos\theta_{w}}\bar{\psi}\gamma^{\mu}\psi Z_{\mu}+(-\frac{\kappa}{\sqrt{2}}\bar{\ell}_{L}\psi_{R}h-\kappa^{\prime}\bar{\ell}_{R}S^{\dagger}\psi_{L}+g_{S}\bar{\ell}_{R}S^{\dagger}\ell_{L}\\ &+g_{Z}\bar{\ell}_{L}\gamma^{\mu}\psi_{L}Z_{\mu}+g_{W}\bar{\nu}\gamma^{\mu}\psi_{L}W_{\mu}^{+}+h.c.).\end{split} (2)

Here, AμA_{\mu}, ZμZ_{\mu} and WμW_{\mu} denote photon, Z boson and W boson, respectively. ee, θw\theta_{w}, gg correspond to the electromagnetic coupling, the weak mixing angle and the SU(2)LSU(2)_{L} coupling. The coupling constants gSg_{S}, gZg_{Z} and gWg_{W} are represented by the following formulas

gS=κκ2υwMF,gZ=κg22cosθwυwMF,gW=κg2υwMF.\displaystyle\begin{split}&g_{S}=\frac{\kappa^{\prime}\kappa}{\sqrt{2}}\frac{\upsilon_{w}}{M_{F}},\\ &g_{Z}=-\frac{\kappa g}{2\sqrt{2}\cos\theta_{w}}\frac{\upsilon_{w}}{M_{F}},\\ &g_{W}=\frac{\kappa g}{2}\frac{\upsilon_{w}}{M_{F}}.\end{split} (3)

Where MFM_{F} is regarded as the common mass of the VLLs of all flavors, and υw\upsilon_{w}\simeq 246 GeV is the electroweak symmetry breaking scale.

Then the partial decay widths of the singlet VLL to SM final states can be written as

Γ(ψWν)=gW2MF32π(1rW2)2(2+1/rW2),Γ(ψZ)=gZ2MF32π(1rZ2)2(2+1/rZ2),Γ(ψh)=κ2MF64π(1rh2)2,\displaystyle\begin{split}&\Gamma(\psi\rightarrow W\nu)=g_{W}^{2}\frac{M_{F}}{32\pi}(1-r_{W}^{2})^{2}(2+1/r_{W}^{2}),\\ &\Gamma(\psi\rightarrow Z\ell)=g_{Z}^{2}\frac{M_{F}}{32\pi}(1-r_{Z}^{2})^{2}(2+1/r_{Z}^{2}),\\ &\Gamma(\psi\rightarrow h\ell)=\kappa^{2}\frac{M_{F}}{64\pi}(1-r_{h}^{2})^{2},\\ \end{split} (4)

where rX=MX/MFr_{X}=M_{X}/M_{F} for X=W,Z,hX=W,Z,h. Certainly, if the singlet VLL mass is larger than the mass of the new scalar SS, it is possible that the singlet VLL decays into SS and a SM charged lepton. However, in this paper, we assume that the new scalar SS is generally heavier than the singlet VLL, and thus do not consider this decay channel.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1: Feynman diagrams for single production of VLL at the ILC.

From Eq.(1) we can see that VLL can be single produced at the ILC via the process e+eψe^{+}e^{-}\rightarrow\psi\ell mediated by the gauge boson ZZ or the scalars SS and HH. The relevant Feynman diagrams are shown in Fig. 1. However, the main contributions come from exchange of the gauge boson ZZ. Furthermore, the t-channel contributions are smaller than those of the s-channel and only contribute to the final state ψe\psi e in the case of flavor conservation. All the same, we will consider all of these contributions in our numerical estimations.

If the lepton mass of the final state is disregarded, then the production cross sections of the processes e+ee^{+}e^{-}\rightarrow ψe\psi e, ψμ\psi\mu and ψτ\psi\tau are approximately equal to each other. Nevertheless, for τ\tau lepton, it decays more rapidly and the background is more intricate. For simplicity, we take the first generation of leptons as an example to conduct numerical calculation and the analysis of the signal and SM background in this paper. From above discussions we can see that the production cross sections are contingent upon the free parameters MF,MS,κ{M_{F}},{M_{S}},\kappa^{\prime} and κ\kappa. For better clarity, we give the expression form of the production cross section of the s-channel process e+ee^{+}e^{-}\rightarrow ψe\psi e only induced by exchange of the gauge boson ZZ

σ(e+eψe)=e2κ2υw2(8sin4θw4sin2θw+1)(sMF2)2(MF+2s)3072πsin4θwcos4θws2MF(sMZ2).\displaystyle\begin{split}\sigma(e^{+}e^{-}\rightarrow\psi~{}e)=\frac{e^{2}\kappa^{2}\upsilon_{w}^{2}(8\sin^{4}\theta_{w}-4\sin^{2}\theta_{w}+1)(s-M_{F}^{2})^{2}(M_{F}+2s)}{3072\pi\sin^{4}\theta_{w}\cos^{4}\theta_{w}s^{2}M_{F}(s-M_{Z}^{2})}.\end{split} (5)

The constraints on the free parameters of the VLS models have been extensively studied in Refs. Hiller et al. (2020a, b); Bißmann et al. (2021); Yue et al. (2024), which mainly come from measurements of the muon and electron AMMs and the relevant electroweak data. The contributions of the VLS models to the muon AMM, aμa_{\mu}, are given by Hiller et al. (2020a, b)

Δaμ=κ232π2mμ2MF2f(MS2MF2)\displaystyle\begin{split}&\Delta{a_{\mu}=\frac{\kappa^{\prime 2}}{32\pi^{2}}\frac{m_{\mu}^{2}}{M_{F}^{2}}f(\frac{M_{S}^{2}}{M_{F}^{2}})}\end{split} (6)

with f(t)=(2t3+3t26t2lnt6t+1)/(t1)4f(t)=(2t^{3}+3t^{2}-6t^{2}\ln{t}-6t+1)/(t-1)^{4} positive for any tt, and f(0)=1f(0)=1. If we demand the VLS models to solve the muon AMM anomaly, then the coupling κ\kappa^{\prime} can be expressed in terms of the mass parameters MFM_{F} and MSM_{S}. Similar to aμa_{\mu}, the contributions of the VLS models to the electron AMM, aea_{e}, is related to the coupling κ\kappa, the mass parameters MFM_{F} and MSM_{S}. According to both AMMs and electroweak data, we simply fix κ/κ=102\kappa/\kappa^{\prime}=10^{-2} with κ\kappa^{\prime} computed from Eq.(6) for MS=M_{S}= 500 GeV and κ\kappa\in (0.01, 0.1) in our following numerical calculation.

III Searching for singlet VLL via its single production at the ILC

As polarized e+e^{+} and ee^{-} beams can change the production cross sections, in Fig. 2, we plot the production cross section of the process e+eψe+e^{+}e^{-}\rightarrow\psi e^{+} with different polarization options as a function of the mass parameter MFM_{F} at the 1 TeV ILC for the coupling parameter κ=\kappa= 0.03. It can be observed from Fig. 2 that the values of the production cross section attains maximum when the polarization is -30% for positron beam and 80% for electron beam, which are in the range of 0.023 - 0.883 pb for 100 GeV<MF<<M_{F}< 700 GeV. In order to produce a heavier VLL in a larger parameter space of the singlet VLS model, we choose polarized beams with P(e+,e)=(30%,80%)P(e^{+},e^{-})=(-30\%,~{}80\%) in the following analysis of the signal and SM background.

Refer to caption
Figure 2: Production cross section of the process e+eψe+e^{+}e^{-}\rightarrow\psi e^{+} as a function of the mass parameter MFM_{F} for different polarization options with the coupling κ=\kappa= 0.03.

According to the discussions given in Ref. Bißmann et al. (2021) about the branching ratios for various possible decay channels of singlet VLL and the decay formulas given above, we find that the value of the branching ratio Br(ψWν)Br(\psi\rightarrow W\nu) is the largest. So, we prefer to choose the most outstanding decay channel for our analysis. Furthermore, in the following analysis of the signal and SM background, we assume that W boson decays through two kinds of mode, that are pure leptonic and fully hadronic decay channels. The production and decay chain are presented as follows:
(1) pure leptonic decay channel:         e+eψe+Wνee+ν¯νee+e^{+}e^{-}\rightarrow\psi e^{+}\rightarrow W^{-}\nu_{e}e^{+}\rightarrow\ell^{-}\bar{\nu_{\ell}}\nu_{e}e^{+};
(2) fully hadronic decay channel:       e+eψe+Wνee+jjνee+e^{+}e^{-}\rightarrow\psi e^{+}\rightarrow W^{-}\nu_{e}e^{+}\rightarrow jj\nu_{e}e^{+}.

For further calculation, we use FeynRules package Alloul et al. (2014) to generate the model file and export it to the UFO format Degrande et al. (2012). The simulation of the signal and SM background at leading order (LO) is performed with MadGraph5_aMC@NLO Alwall et al. (2014); Frederix et al. (2018). The basic cuts we use first are given by

pT>10GeV,|η|<2.5,pTj>20GeV,|ηj|<5.0,ΔR(x,y)>0.4,withx,y=,j(u,d,c,s).\begin{array}[]{l}~{}~{}~{}~{}~{}~{}\textit{p}_{T}^{\ell}>10\mathrm{GeV},~{}~{}\quad\lvert\eta_{\ell}\rvert<2.5,\\ ~{}~{}~{}~{}~{}~{}\textit{p}_{T}^{j}>20\mathrm{GeV},~{}~{}\quad\lvert\eta_{j}\rvert<5.0,\\ ~{}\quad\Delta R(x,~{}y)>0.4,~{}with~{}x,y=\ell,~{}j(u,d,c,s).\\ \end{array}

pT\textit{p}_{T}^{\ell} and pTj\textit{p}_{T}^{j} are the transverse momentum of leptons and jets. |η|\lvert\eta_{\ell}\rvert and |ηj|\lvert\eta_{j}\rvert are the pseudo-rapidity of leptons and jets. ΔR(x,y)\Delta R(x,~{}y) is defined as the separation in the rapidity-azimuth plane, ΔR(x,y)=(Δϕ)2+(Δη)2\Delta R(x,y)=\sqrt{(\Delta\phi)^{2}+(\Delta\eta)^{2}} with ϕ\phi being azimuthal angle. Then we use PYTHIA8 Sjöstrand et al. (2015) to simulate initial state radiation, final state radiation and hadronization. The fast detector simulation is made by DELPHES 3 de Favereau et al. (2014) using the International Linear Detector (ILD) detector card. To realize the kinematic and cut-based analysis, the package MADANALYSIS 5 Conte et al. (2013, 2014); Conte and Fuks (2018) is adopted.

III.1 Pure leptonic decay channel

For the pure leptonic decay channel, the final state is composed of two charged leptons and missing energy. The corresponding SM background mainly comes from the processes e+e+νν¯e^{+}e^{-}\rightarrow\ell^{+}\ell^{-}\nu_{\ell}\bar{\nu_{\ell}}  and  e+e+ννν¯ν¯e^{+}e^{-}\rightarrow\ell^{+}\ell^{-}\nu_{\ell}\nu_{\ell}\bar{\nu_{\ell}}\bar{\nu_{\ell}} with =e,μ\ell=e,~{}\mu. The possible subprocesses that lead to the similar final states comprise of  e+eW+W+νν¯e^{+}e^{-}\rightarrow W^{+}W^{-}\rightarrow\ell^{+}\ell^{-}\nu_{\ell}\bar{\nu_{\ell}},  e+eZZ+νν¯e^{+}e^{-}\rightarrow ZZ\rightarrow\ell^{+}\ell^{-}\nu_{\ell}\bar{\nu_{\ell}},  e+eW+WZ+ννν¯ν¯e^{+}e^{-}\rightarrow W^{+}W^{-}Z\rightarrow\ell^{+}\ell^{-}\nu_{\ell}\nu_{\ell}\bar{\nu_{\ell}}\bar{\nu_{\ell}}  and  e+eZZZ+ννν¯ν¯e^{+}e^{-}\rightarrow ZZZ\rightarrow\ell^{+}\ell^{-}\nu_{\ell}\nu_{\ell}\bar{\nu_{\ell}}\bar{\nu_{\ell}}. For the SM background, the value of the production cross section is about 0.08931 pb. As for the signal, the values of the production cross section can respectively reach 3.8301×1073.8301\times 10^{-7} pb, 5.2597×1085.2597\times 10^{-8} pb and 9.8058×1099.8058\times 10^{-9} pb for MF=M_{F}= 600 GeV, 700 GeV and 800 GeV. Considering collision energy and the lower limits of current experiments on the masses of the singlet VLLs, we take the VLL mass as MFM_{F}\in (300, 700) GeV.

We perform a cut-based analysis by looking at some relevant kinematic variables. In order to improve the signal-to-noise ratio, appropriate cuts are applied to these variables. The normalized distributions of E/E\mkern-10.5mu/,  ETE_{T},  η\eta_{\ell^{-}},  η+\eta_{\ell^{+}} are presented in Fig. 3, where the solid lines stand for signal events and dashed lines stand for background events. The benchmark points MF=M_{F}= 300 GeV, 400 GeV, 500 GeV, 600 GeV and 700 GeV are selected with the assumption of κ=\kappa= 0.03.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: The normalized distributions of E/E\mkern-10.5mu/ (a), ETE_{T} (b), η\eta_{\ell^{-}} (c) and η+\eta_{\ell^{+}} (d) of signal and background for various benchmarks in pure leptonic decay channel at the 1 TeV ILC with =\mathcal{L}= 1 ab-1. The solid and dashed lines stand for the signal and background events, respectively.

E/E\mkern-10.5mu/ denotes missing transverse energy and its distribution is shown in Fig. 3(a). For the SM background, the distribution peaks at lower values of E/E\mkern-10.5mu/, while for signal it is distributed at higher values. The reason is that the missing particles ν\nu_{\ell} decay from the heavier mother particle ψ\psi for the signal events, so more mass turns into the momentum of missing particles. A lower cut of E/>E\mkern-10.5mu/> 100 GeV helps to diminish the SM background.

ETE_{T} presents scalar sum of the transverse energy of all final-state particles. From Fig. 3(b), we can see that the signal events with different MFM_{F} are almost distributed in the region with around 400 GeV and the background events are distributed at around 150 GeV. So we take the cut ET>E_{T}> 200 GeV to suppress the SM background peak.

The normalized pseudorapidity distribution of the charged lepton \ell^{-}, +\ell^{+} are depicted in Fig. 3(c) and (d). As shown in these pictures, the SM background has a peak at low values for η\eta_{\ell^{-}}, while the SM background has a peak at high values for η+\eta_{\ell^{+}}. It is because the leptons can produced via s-channel and t-channel exchange of γ\gamma, ZZ and ν\nu. Whereas, as for the signal, the leading and sub-leading leptons are mainly produced via s-channel processes. So, the η\eta distribution for the signal is more centrally peaked. Thus, we choose η>\eta_{\ell^{-}}> - 1.0 and η+<\eta_{\ell^{+}}< ++ 1.0 to reduce the background significantly.

Table 1: All cuts on the signal and SM background for pure leptonic decay channel.
    Basic cuts pT>10GeV,|η|<2.5,pTj>20GeV,\textit{p}_{T}^{\ell}>10\mathrm{GeV},~{}~{}\quad\lvert\eta_{\ell}\rvert<2.5,~{}~{}\quad\textit{p}_{T}^{j}>20\mathrm{GeV},
  |ηj|<5.0,ΔR(x,y)>0.4,withx,y=,j\quad\lvert\eta_{j}\rvert<5.0,~{}\quad\Delta R(x,~{}y)>0.4,~{}with~{}x,y=\ell,~{}j~{}~{}~{}
    Cut 1 E/>100GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}E\mkern-10.5mu/>100~{}GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}
    Cut 2 ET>200GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}E_{T}>200~{}GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}
    Cut 3 η>1.0~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\eta_{\ell^{-}}>-1.0~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}
    Cut 4 η+<1.0~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\eta_{\ell^{+}}<~{}1.0~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}

The optimized selection cuts based on the characteristics of the kinematics distributions are listed in Table 1. In Table 2, we tabulate the cross sections of the signal and SM background surviving after the application of each cut for five benchmarks. The statistical significance (SS) is evaluated by the formula SS=S/S+BSS=S/\sqrt{S+B} for an integrated luminosity of 1 ab-1, where SS and BB are the number of events for the signal and background, respectively. From Table 2 we infer that, to attain 5σ\sigma significance, the mass of VLL must be less than 400 GeV. The SS can reach 6.282 for MF=M_{F}= 300 GeV and κ=\kappa= 0.03.

Table 2: The cross sections of the signal and SM background processes after the improved cuts applied for κ=0.03\kappa=0.03 at the 1TeV ILC with benchmark points for pure leptonic decay channel. 
Cuts cross sections for signal (background) [pb]
MF=300M_{F}=300 GeV MF=400M_{F}=400 GeV MF=500M_{F}=500 GeV MF=600M_{F}=600 GeV MF=700M_{F}=700 GeV
Basic Cuts 7.9396×1047.9396\times 10^{-4} (0.08931)(0.08931) 4.4850×1044.4850\times 10^{-4} (0.08931)(0.08931) 6.0852×1056.0852\times 10^{-5} (0.08931)(0.08931) 3.8301×1073.8301\times 10^{-7} (0.08931)(0.08931) 5.2597×1085.2597\times 10^{-8} (0.08931)(0.08931)
Cut 1 7.4610×1047.4610\times 10^{-4} (0.04272)(0.04272) 4.2487×1044.2487\times 10^{-4} (0.04272)(0.04272) 5.7407×1055.7407\times 10^{-5} (0.04272)(0.04272) 3.5401×1073.5401\times 10^{-7} (0.04272)(0.04272) 4.7297×1084.7297\times 10^{-8} (0.04272)(0.04272)
Cut 2 7.0624×1047.0624\times 10^{-4} (0.02505)(0.02505) 4.0523×1044.0523\times 10^{-4} (0.02505)(0.02505) 5.5127×1055.5127\times 10^{-5} (0.02505)(0.02505) 3.3601×1073.3601\times 10^{-7} (0.02505)(0.02505) 4.2698×1084.2698\times 10^{-8} (0.02505)(0.02505)
Cut 3 5.6228×1045.6228\times 10^{-4} (0.01216)(0.01216) 3.1377×1043.1377\times 10^{-4} (0.01216)(0.01216) 4.1767×1054.1767\times 10^{-5} (0.01216)(0.01216) 2.5301×1072.5301\times 10^{-7} (0.01216)(0.01216) 3.2698×1083.2698\times 10^{-8} (0.01216)(0.01216)
Cut 4 5.1152×1045.1152\times 10^{-4} (6.1029×103)(6.1029\times 10^{-3}) 2.8332×1042.8332\times 10^{-4} (6.1029×103)(6.1029\times 10^{-3}) 3.7550×1053.7550\times 10^{-5} (6.1029×103)(6.1029\times 10^{-3}) 2.2701×1072.2701\times 10^{-7} (6.1029×103)(6.1029\times 10^{-3}) 2.9498×1082.9498\times 10^{-8} (6.1029×103)(6.1029\times 10^{-3})
SSSS 6.2826.282 3.5413.541 0.4790.479 0.002910.00291 0.0003780.000378

III.2 Fully hadronic decay channel

In this subsection, we investigate the signal induced by the boson W decaying into hadrons, utilizing an analysis method similar to the pure leptonic decay channel. The SM background is dominantly from the process e+ejj+νe^{+}e^{-}\rightarrow jj\ell^{+}\nu_{\ell}. In order to effectively distinguish the signal from the SM background, we select the cuts on two important kinematic variables: MeffM_{eff}, ETE_{T}.

MeffM_{eff} is defined as the scalar sum of the lepton transverse momentum pT\textit{p}_{T} and the missing energy E/E\mkern-10.5mu/. We find that putting a cut on MeffM_{eff} is more effective for rejecting background than giving cuts on pT\textit{p}_{T} and E/E\mkern-10.5mu/ separately. From the distribution shown in Fig. 4(a), we impose a cut Meff>M_{eff}> 200 GeV to improve the signal over the background.

From Fig. 4(b), it can be seen that the peak distribution of ETE_{T} for the signal of fully hadronic decay channel is between 500 - 600 GeV, which is shifted to the right compared to the peak distribution of the pure leptonic decay channel given in Fig. 3(b), which is between 400 - 500 GeV. This is mainly because there is only one missing particle in fully hadronic decay channel, which makes the sum of the transverse momenta of the visible particles larger than that in pure leptonic decay channel. For the SM background, the distribution peaks at around 170 GeV, while for the signal it peaks at 500 GeV approximately. So we take ET>E_{T}> 300 GeV to enhance the signal significance.

Refer to caption
Refer to caption
Figure 4: The normalized distributions of MeffM_{eff} (a) and ETE_{T} (b) for fully hadronic decay channel at the 1 TeV ILC with =\mathcal{L}= 1 ab-1.
Table 3: All cuts on the signal and SM background for fully hadronic decay channel.
    Basic cuts pT>10GeV,|η|<2.5,pTj>20GeV,\textit{p}_{T}^{\ell}>10\mathrm{GeV},~{}~{}\quad\lvert\eta_{\ell}\rvert<2.5,~{}~{}\quad\textit{p}_{T}^{j}>20\mathrm{GeV},
  |ηj|<5.0,ΔR(x,y)>0.4,withx,y=,j\quad\lvert\eta_{j}\rvert<5.0,~{}\quad\Delta R(x,~{}y)>0.4,~{}with~{}x,y=\ell,~{}j~{}~{}~{}
    Cut 1 Meff>200GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}M_{eff}>200~{}GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}
    Cut 2 ET>300GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}E_{T}>300~{}GeV~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}

All selected cuts on fully decay hadronic channel are organized in Table 3. The values of the significance SSSS are summarized in the last column of Table 4 for benchmark points. It is obvious that this decay channel performs better than the pure leptonic decay channel. The value of SSSS can reach 7.65 for MF=M_{F}= 400 GeV and the integrated luminosity \mathcal{L} = 1 ab-1. Certainly, the value of SSSS decreases as the singlet VLL mass MFM_{F} increasing, and its value becomes very small for MFM_{F}\geq 600 GeV.

Table 4: The cross sections of the signal and background processes after the improved cuts applied for κ=0.03\kappa=0.03 at the 1TeV ILC with benchmark points for fully hadronic decay channel. 
Cuts cross sections for signal (background) [pb]
MF=300M_{F}=300 GeV MF=400M_{F}=400 GeV MF=500M_{F}=500 GeV MF=600M_{F}=600 GeV MF=700M_{F}=700 GeV
Basic Cuts 2.3803×1032.3803\times 10^{-3} (0.07540)(0.07540) 1.3456×1031.3456\times 10^{-3} (0.07540)(0.07540) 1.8250×1041.8250\times 10^{-4} (0.07540)(0.07540) 1.1485×1061.1485\times 10^{-6} (0.07540)(0.07540) 1.5774×1071.5774\times 10^{-7} (0.07540)(0.07540)
Cut 1 2.3540×1032.3540\times 10^{-3} (0.04458)(0.04458) 1.3362×1031.3362\times 10^{-3} (0.04458)(0.04458) 1.8192×1041.8192\times 10^{-4} (0.04458)(0.04458) 1.1383×1061.1383\times 10^{-6} (0.04458)(0.04458) 1.5554×1071.5554\times 10^{-7} (0.04458)(0.04458)
Cut 2 2.1566×1032.1566\times 10^{-3} (0.02510)(0.02510) 1.2427×1031.2427\times 10^{-3} (0.02510)(0.02510) 1.7271×1041.7271\times 10^{-4} (0.02510)(0.02510) 1.0786×1061.0786\times 10^{-6} (0.02510)(0.02510) 1.4476×1071.4476\times 10^{-7} (0.02510)(0.02510)
SSSS 13.0613.06 7.65317.6531 1.08341.0834 0.006830.00683 0.0009160.000916

In Fig. 5, we plot the 2σ\sigma, 3σ\sigma and 5σ\sigma curves for the 1 TeV ILC with \mathcal{L} = 1 ab-1 in the plane (MFM_{F}, κ\kappa). As shown in Fig. 5, the signal of singlet VLL might be probed via the pure leptonic and fully hadronic decay channels. However, the latter is more sensitive to search for singlet VLL in the studied mass range via its single production at the 1 TeV ILC with \mathcal{L} = 1 ab-1. The prospective sensitivities to the coupling coefficient κ\kappa can be as low as 0.0260, 0.0272, 0.0294 and 0.0236, 0.0248, 0.0264 at 2σ\sigma, 3σ\sigma, 5σ\sigma levels for pure leptonic and fully hadronic decay channels, respectively. Thus, we can say that the future lepton collider ILC has the potential for detecting singlet VLLs in most of the mass range considered in this paper.

Refer to caption
Refer to caption
Figure 5: The 2σ\sigma, 3σ\sigma and 5σ\sigma curves in the MFκM_{F}-\kappa plane for pure leptonic (left) and fully hadronic (right) decay channels at the 1 TeV ILC with =\mathcal{L}= 1 ab-1 .

IV Conclusions

So far, a large number of new physics models have been proposed to solve the SM problems and the existed anomalies, which predict the existence of new particles. Searching for the possible physics signals of various new particles are the main goals of current and future collider experiments. VLLs as one kind of interesting new particles can produce rich phenomenology at low- and high-energy experiments, which should be extensively studied.

In this paper, we investigate the possibility of detecting singlet VLL through its single production at the 1 TeV ILC with \mathcal{L} = 1 ab-1 and the polarization option P(e+,e)=(30%,80%)P(e^{+},e^{-})=(-30\%,80\%). For the signal and SM background analysis, we have considered two kinds of decay channels for the W boson, i.e. pure leptonic and fully hadronic decay channels, which produce two kinds of the signals: one is two charged leptons plus missing energy, the other is two jets, one charged lepton plus missing energy. Our analytic results for the first and second generations of singlet VLLs show that the parameter space MFM_{F}\in [300, 675] GeV and κ\kappa\in [0.0294, 0.1] might be detected by the proposed ILC for pure leptonic decay channel. For fully hadronic decay channel, larger detection regions of MFM_{F}\in [300, 700] GeV and κ\kappa\in [0.0264, 0.0941] are derived. Comparing the results of the two cases, we can see that singlet VLL might be more easily detected at the ILC via its single production in fully hadronic decay than that in pure leptonic decay channel.

ACKNOWLEDGMENT

This work was partially supported by the National Natural Science Foundation of China under Grant No. 11875157, No. 12147214 and No. 11905093.

References

  • Aad et al. (2012) G. Aad et al. (ATLAS), Phys. Lett. B 716, 1 (2012), eprint 1207.7214.
  • Chatrchyan et al. (2012) S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30 (2012), eprint 1207.7235.
  • Bertone et al. (2005) G. Bertone, D. Hooper, and J. Silk, Phys. Rept. 405, 279 (2005), eprint hep-ph/0404175.
  • Feng (2010) J. L. Feng, Ann. Rev. Astron. Astrophys. 48, 495 (2010), eprint 1003.0904.
  • Ade et al. (2014) P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A16 (2014), eprint 1303.5076.
  • Feng (2013) J. L. Feng, Ann. Rev. Nucl. Part. Sci. 63, 351 (2013), eprint 1302.6587.
  • Gonzalez-Garcia and Maltoni (2008) M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460, 1 (2008), eprint 0704.1800.
  • Morais et al. (2023) A. P. Morais, A. Onofre, F. F. Freitas, J. a. Gonçalves, R. Pasechnik, and R. Santos, Eur. Phys. J. C 83, 232 (2023), eprint 2108.03926.
  • Abi et al. (2021) B. Abi et al. (Muon g-2), Phys. Rev. Lett. 126, 141801 (2021), eprint 2104.03281.
  • Kuflik et al. (2013) E. Kuflik, Y. Nir, and T. Volansky, Phys. Rev. Lett. 110, 091801 (2013), eprint 1204.1975.
  • Eberhardt et al. (2012) O. Eberhardt, G. Herbert, H. Lacker, A. Lenz, A. Menzel, U. Nierste, and M. Wiebusch, Phys. Rev. Lett. 109, 241802 (2012), eprint 1209.1101.
  • Arkani-Hamed et al. (2002) N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson, JHEP 07, 034 (2002), eprint hep-ph/0206021.
  • Perelstein et al. (2004) M. Perelstein, M. E. Peskin, and A. Pierce, Phys. Rev. D 69, 075002 (2004), eprint hep-ph/0310039.
  • Carena et al. (2007) M. Carena, J. Hubisz, M. Perelstein, and P. Verdier, Phys. Rev. D 75, 091701 (2007), eprint hep-ph/0610156.
  • Han et al. (2003) T. Han, H. E. Logan, B. McElrath, and L.-T. Wang, Phys. Rev. D 67, 095004 (2003), eprint hep-ph/0301040.
  • Anastasiou et al. (2009) C. Anastasiou, E. Furlan, and J. Santiago, Phys. Rev. D 79, 075003 (2009), eprint 0901.2117.
  • Kong et al. (2012) K. Kong, M. McCaskey, and G. W. Wilson, JHEP 04, 079 (2012), eprint 1112.3041.
  • Gillioz et al. (2012) M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner, and E. Salvioni, JHEP 10, 004 (2012), eprint 1206.7120.
  • Keren-Zur et al. (2013) B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi, and L. Vecchi, Nucl. Phys. B 867, 394 (2013), eprint 1205.5803.
  • Falkowski et al. (2014) A. Falkowski, D. M. Straub, and A. Vicente, JHEP 05, 092 (2014), eprint 1312.5329.
  • Agashe et al. (2007) K. Agashe, G. Perez, and A. Soni, Phys. Rev. D 75, 015002 (2007), eprint hep-ph/0606293.
  • Contino et al. (2007) R. Contino, T. Kramer, M. Son, and R. Sundrum, JHEP 05, 074 (2007), eprint hep-ph/0612180.
  • Li et al. (2012) T. Li, Z. Murdock, S. Nandi, and S. K. Rai, Phys. Rev. D 85, 076010 (2012), eprint 1201.5616.
  • Huang et al. (2012) G.-Y. Huang, K. Kong, and S. C. Park, JHEP 06, 099 (2012), eprint 1204.0522.
  • Redi (2013) M. Redi, JHEP 09, 060 (2013), eprint 1306.1525.
  • Kang et al. (2008) J. Kang, P. Langacker, and B. D. Nelson, Phys. Rev. D 77, 035003 (2008), eprint 0708.2701.
  • Babu et al. (2008) K. S. Babu, I. Gogoladze, M. U. Rehman, and Q. Shafi, Phys. Rev. D 78, 055017 (2008), eprint 0807.3055.
  • Martin (2010) S. P. Martin, Phys. Rev. D 81, 035004 (2010), eprint 0910.2732.
  • Graham et al. (2010) P. W. Graham, A. Ismail, S. Rajendran, and P. Saraswat, Phys. Rev. D 81, 055016 (2010), eprint 0910.3020.
  • Adhikary et al. (2024) A. Adhikary, M. Olechowski, J. Rosiek, and M. Ryczkowski (2024), eprint 2406.16050.
  • Crivellin et al. (2020) A. Crivellin, F. Kirk, C. A. Manzari, and M. Montull, JHEP 12, 166 (2020), eprint 2008.01113.
  • Megias et al. (2017) E. Megias, M. Quiros, and L. Salas, JHEP 05, 016 (2017), eprint 1701.05072.
  • Carmona and Goertz (2015) A. Carmona and F. Goertz, JHEP 05, 002 (2015), eprint 1410.8555.
  • Carmona and Goertz (2016) A. Carmona and F. Goertz, Phys. Rev. Lett. 116, 251801 (2016), eprint 1510.07658.
  • Carmona and Goertz (2018) A. Carmona and F. Goertz, Eur. Phys. J. C 78, 979 (2018), eprint 1712.02536.
  • Guedes and Santiago (2022) G. Guedes and J. Santiago, JHEP 01, 111 (2022), eprint 2107.03429.
  • Baspehlivan et al. (2022) F. Baspehlivan, B. Dagli, O. E. Delialioglu, and S. Sultansoy (2022), eprint 2201.08251.
  • Achard et al. (2001) P. Achard et al. (L3), Phys. Lett. B 517, 75 (2001), eprint hep-ex/0107015.
  • Tumasyan et al. (2022) A. Tumasyan et al. (CMS), Phys. Rev. D 105, 112007 (2022), eprint 2202.08676.
  • Aad et al. (2023) G. Aad et al. (ATLAS), JHEP 07, 118 (2023), eprint 2303.05441.
  • Hiller et al. (2020a) G. Hiller, C. Hormigos-Feliu, D. F. Litim, and T. Steudtner, Phys. Rev. D 102, 095023 (2020a), eprint 2008.08606.
  • Hiller et al. (2020b) G. Hiller, C. Hormigos-Feliu, D. F. Litim, and T. Steudtner, Phys. Rev. D 102, 071901 (2020b), eprint 1910.14062.
  • Hiller et al. (2019) G. Hiller, C. Hormigos-Feliu, D. F. Litim, and T. Steudtner, in 54th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2019), pp. 415–418, eprint 1905.11020.
  • Litim and Sannino (2014) D. F. Litim and F. Sannino, JHEP 12, 178 (2014), eprint 1406.2337.
  • Bond and Litim (2019) A. D. Bond and D. F. Litim, Phys. Rev. Lett. 122, 211601 (2019), eprint 1801.08527.
  • Bond and Litim (2018) A. D. Bond and D. F. Litim, Phys. Rev. D 97, 085008 (2018), eprint 1707.04217.
  • Bednyakov and Mukhaeva (2023) A. Bednyakov and A. Mukhaeva, Symmetry 15, 1497 (2023), eprint 2309.08258.
  • Litim et al. (2023) D. F. Litim, N. Riyaz, E. Stamou, and T. Steudtner, Phys. Rev. D 108, 076006 (2023), eprint 2307.08747.
  • Bißmann et al. (2021) S. Bißmann, G. Hiller, C. Hormigos-Feliu, and D. F. Litim, Eur. Phys. J. C 81, 101 (2021), eprint 2011.12964.
  • Yue et al. (2024) C.-X. Yue, Y.-Q. Wang, H. Wang, Y.-H. Wang, and S. Li, Nucl. Phys. B 1000, 116482 (2024), eprint 2402.02072.
  • Das et al. (2020) A. Das, S. Mandal, and T. Modak, Phys. Rev. D 102, 033001 (2020), eprint 2005.02267.
  • Das and Mandal (2021) A. Das and S. Mandal, Nucl. Phys. B 966, 115374 (2021), eprint 2006.04123.
  • Bhattacharya et al. (2022) S. Bhattacharya, S. Jahedi, and J. Wudka, JHEP 05, 009 (2022), eprint 2106.02846.
  • Aihara et al. (2019) H. Aihara et al. (ILC) (2019), eprint 1901.09829.
  • Bambade et al. (2019) P. Bambade et al. (2019), eprint 1903.01629.
  • Alloul et al. (2014) A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014), eprint 1310.1921.
  • Degrande et al. (2012) C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, and T. Reiter, Comput. Phys. Commun. 183, 1201 (2012), eprint 1108.2040.
  • Alwall et al. (2014) J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, JHEP 07, 079 (2014), eprint 1405.0301.
  • Frederix et al. (2018) R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H. S. Shao, and M. Zaro, JHEP 07, 185 (2018), [Erratum: JHEP 11, 085 (2021)], eprint 1804.10017.
  • Sjöstrand et al. (2015) T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, Comput. Phys. Commun. 191, 159 (2015), eprint 1410.3012.
  • de Favereau et al. (2014) J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi (DELPHES 3), JHEP 02, 057 (2014), eprint 1307.6346.
  • Conte et al. (2013) E. Conte, B. Fuks, and G. Serret, Comput. Phys. Commun. 184, 222 (2013), eprint 1206.1599.
  • Conte et al. (2014) E. Conte, B. Dumont, B. Fuks, and C. Wymant, Eur. Phys. J. C 74, 3103 (2014), eprint 1405.3982.
  • Conte and Fuks (2018) E. Conte and B. Fuks, Int. J. Mod. Phys. A 33, 1830027 (2018), eprint 1808.00480.