This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Singular oscillatory integrals on n\mathbb{R}^{n}

M. Papadimitrakis papadim@math.uoc.gr Department of Mathematics, University of Crete, Knossos Avenue 71409, Iraklio–Crete, Greece  and  I. R. Parissis ioannis.parissis@gmail.com Institutionen för Matematik, Kungliga Tekniska Högskolan, SE 100 44, Stockholm, SWEDEN.
Abstract.

Let 𝒫d,n\mathcal{P}_{d,n} denote the space of all real polynomials of degree at most dd on n\mathbb{R}^{n}. We prove a new estimate for the logarithmic measure of the sublevel set of a polynomial P𝒫d,1P\in\mathcal{P}_{d,1}. Using this estimate, we prove that

supP𝒫d,n|p.v.neiP(x)Ω(x/|x|)|x|ndx|clogd(ΩLlogL(Sn1)+1),\displaystyle\sup_{P\in\mathcal{P}_{d,n}}\bigg{|}p.v.\int_{\mathbb{R}^{n}}{e^{iP(x)}\frac{\Omega(x/|x|)}{|x|^{n}}dx}\bigg{|}\leq c\log d\,(\|\Omega\|_{L\log L(S^{n-1})}+1),

for some absolute positive constant c and every function Ω\Omega with zero mean value on the unit sphere Sn1S^{n-1}. This improves a result of Stein from [4].

2000 Mathematics Subject Classification:
Primary 42B20; Secondary 26D05

1. Introduction

We denote by 𝒫d,n\mathcal{P}_{d,n} the vector space of all real polynomials of degree at most dd in n\mathbb{R}^{n}. Let KK be a n-n homogeneous function on n\mathbb{R}^{n}, that is,

(1.1) K(x)=Ω(x/|x|)|x|n,K(x)=\frac{\Omega(x/|x|)}{|x|^{n}},

where Ω\Omega is some function on the unit sphere Sn1S^{n-1}. Consider the principal value integral

In(P)=|p.v.neiP(x)K(x)dx|.I_{n}(P)=\bigg{|}p.v.\int_{\mathbb{R}^{n}}e^{iP(x)}K(x)dx\bigg{|}.

Stein has proved in [4] that if Ω\Omega has zero mean value on the unit sphere, then

(1.2) |In(P)|cdΩL(Sn1),|I_{n}(P)|\leq c_{d}\|\Omega\|_{L^{\infty}(S^{n-1})},

for some constant cdc_{d} depending on dd. We wish to obtain sharp estimates of the form (1.2). The one dimensional analogue, namely the estimate

(1.3) |p.v.eiP(x)dxx|clogd,\bigg{|}p.v.\int_{\mathbb{R}}e^{iP(x)}\frac{dx}{x}\bigg{|}\leq c\log d,

which was proved in [3], suggests that the constant cdc_{d} in (1.2) could be replaced by clogdc\log d for some absolute positive constant cc. The fact that this is indeed the case is the content of the following theorem.

Theorem 1.1.

Suppose that K(x)=Ω(x/|x|)/|x|nK(x)=\Omega(x/|x|)/|x|^{n} where Ω\Omega has zero mean value on the unit sphere Sn1S^{n-1}. There exists an absolute positive constant cc such that

supP𝒫d,n|p.v.neiP(x)K(x)dx|clogd(ΩLlogL(Sn1)+1).\sup_{P\in\mathcal{P}_{d,n}}\bigg{|}p.v.\int_{\mathbb{R}^{n}}e^{iP(x)}K(x)dx\bigg{|}\leq c\log d\ (\|\Omega\|_{L\log L(S^{n-1})}+1).
Remark 1.2.

Suppose that K(x)=Ω(x/|x|)/|x|nK(x)=\Omega(x/|x|)/|x|^{n} where the function Ω\Omega is odd on the unit sphere. It is an immediate consequence of the one-dimensional result that

supP𝒫d,n|p.v.neiP(x)K(x)dx|clogdΩL1(Sn1)\sup_{P\in\mathcal{P}_{d,n}}\bigg{|}p.v.\int_{\mathbb{R}^{n}}e^{iP(x)}K(x)dx\bigg{|}\leq c\log d\ \|\Omega\|_{L^{1}(S^{n-1})}

for some absolute positive constant cc.

The main ingredient of the proof of Theorem 1.1 is an estimate for the logarithmic measure of the sublevel set of a real polynomial in one dimension. This is a lemma of independent interest which we now state.

Lemma 1.3 (The logarithmic measure lemma).

Let P(x)=k=0dbkxkP(x)=\sum_{k=0}^{d}b_{k}x^{k} be a real valued polynomial of degree at most dd, α>0\alpha>0 and M=max{|bk|:d2<kd}M=\max\{|b_{k}|:\frac{d}{2}<k\leq d\}. If E={x1:|P(x)|α}E=\{x\geq 1:|P(x)|\leq\alpha\}, then

Edxxcmin((αM)1d,1+1dlog+αM),\int_{E}\frac{dx}{x}\leq c\min\bigg{(}\bigg{(}\frac{\alpha}{M}\bigg{)}^{\frac{1}{d}},1+\frac{1}{d}\log^{+}\frac{\alpha}{M}\bigg{)},

where cc is an absolute positive constant.

Lemma 1.3 should be compared to the following variation of a classical result of Vinogradov which can be found in [6]:

Lemma 1.4.

Let P(x)=k=0dbkxkP(x)=\sum_{k=0}^{d}b_{k}x^{k} be a real valued polynomial of degree at most dd, α>0\alpha>0 and Mr=max{|bk|:rkd}M_{r}=\max\{|b_{k}|:r\leq k\leq d\}. Let 1<R1<R. Then

|{x[1,R]:|P(x)|α}|cR1rdα1dMr1d,|\{x\in[1,R]:|P(x)|\leq\alpha\}|\leq cR^{1-\frac{r}{d}}\frac{\alpha^{\frac{1}{d}}}{M_{r}^{\frac{1}{d}}},

where cc is an absolute positive constant.

The estimates above depend on the length of the interval [1,R][1,R] in all cases but the one where r=dr=d. The dependence on RR is sharp as can be seen by a scaling argument.

When r=dr=d we get

(1.4) |{x[1,R]:|P(x)|α}|cα1d|bd|1d.|\{x\in[1,R]:|P(x)|\leq\alpha\}|\leq c\frac{\alpha^{\frac{1}{d}}}{|b_{d}|^{\frac{1}{d}}}.

The last inequality corresponds to the following more general result about sublevel sets which was proved in [1]:

Lemma 1.5.

Let ϕ\phi be a CkC^{k} function on the interval [1,R][1,R] for some k1k\geq 1 and R>1R>1. Suppose that |ϕ(k)(x)|M|\phi^{(k)}(x)|\geq M on [1,R][1,R]. Then

|{x[1,R]:|ϕ(x)|α}|ckα1kM1k,|\{x\in[1,R]:|\phi(x)|\leq\alpha\}|\leq ck\frac{\alpha^{\frac{1}{k}}}{M^{\frac{1}{k}}},

where cc is an absolute positive constant.

Observe that inequality (1.4) can be deduced by Lemma 1.5 by taking k=dk=d derivatives of the phase function ϕ(x)=P(x)\phi(x)=P(x).

In case n=1n=1 the “linear” part (aM)1d(\frac{a}{M})^{\frac{1}{d}} of the estimate of E1x𝑑x\int_{E}\frac{1}{x}dx in Lemma 1.3 is enough for the proof of Theorem 1.1. In fact, the author in [3] used Lemma 1.4 in some appropriate way to prove the above ”linear” estimate of Lemma 1.3.

In case n>1n>1 the “logarithmic” part of the estimate of E1x𝑑x\int_{E}\frac{1}{x}dx is essential in the proof of Theorem 1.1 as can easily be seen by examining the argument therein.

The structure of the rest of this work is as follows. In section 2 we state some preliminary results. In section 3 we present the proof of Lemma 1.3 and section 3 contains the proof of Theorem 1.1. Finally in section 4 we give a proof of Theorem 1.1 in case n=1n=1 which uses (the ”linear” estimate in) Lemma 1.3 and not Lemma 1.4 and which is thus simpler than the proof appearing in [3].

Notation.

We will use the letter cc to denote an absolute positive constant which might change even in the same line of text.

2. Preliminary Results

As is usually the case when one deals with oscillatory integrals, a key Lemma is the classical van der Corput Lemma.

Lemma 2.1 (van der Corput).

Let ϕ:[a,b]\phi:[a,b]\rightarrow\mathbb{R} be a C1C^{1} function and suppose that |ϕ(t)|1|\phi^{\prime}(t)|\geq 1 for all t[a,b]t\in[a,b] and ϕ\phi^{\prime} changes monotonicity NN times in [a,b][a,b]. Then, for every λ\lambda\in\mathbb{R},

|abeiλϕ(x)𝑑x|cN|λ|\bigg{|}\int_{a}^{b}e^{i\lambda\phi(x)}dx\bigg{|}\leq\frac{cN}{|\lambda|}

where cc is an absolute constant independent of a,b and ϕ\phi.

The proof of Lemma 2.1 is a simple integration by parts.

We will also need a precise estimate for the Lebesgue measure of the sublevel set of a polynomial on n\mathbb{R}^{n}.

Theorem 2.2 (Carbery,Wright).

Suppose that KnK\subset\mathbb{R}^{n} is a convex body of volume 11 and P𝒫d,nP\in\mathcal{P}_{d,n}. Let 1q1\leq q\leq\infty. Then,

|{xK:|P(x)|α}|cmin(qd,n)α1dPLq(K)1d.|\{x\in K:|P(x)|\leq\alpha\}|\leq c\min(qd,n)\alpha^{\frac{1}{d}}\|P\|_{L^{q}(K)}^{-\frac{1}{d}}.

This is a consequence of a more general Theorem of Carbery and Wright and can be found in [2].

Corollary 2.3.

Let PP be a real homogeneous polynomial of degree kk on n\mathbb{R}^{n}. Then

(2.1) Sn1PL(Sn1)12k|P(x)|12k𝑑σn1(x)c.\int_{S^{n-1}}\frac{\|P\|^{\frac{1}{2k}}_{L^{\infty}(S^{n-1})}}{|P(x^{\prime})|^{\frac{1}{2k}}}d\sigma_{n-1}(x^{\prime})\leq c.
Proof of Corollary 2.3.

Let B=B(0,ρ)B=B(0,\rho) be the ball of volume 11 on n\mathbb{R}^{n}. For ϵ<1k\epsilon<\frac{1}{k} and some λ>0\lambda>0 to be defined later, we have

B|P(x)|ϵ𝑑x\displaystyle\int_{B}|P(x)|^{-\epsilon}dx =\displaystyle= 0|{xB:|P(x)|ϵα}|𝑑α\displaystyle\int_{0}^{\infty}|\{x\in B:|P(x)|^{-\epsilon}\geq\alpha\}|d\alpha
\displaystyle\leq λ+λ|{xB:|P(x)|<α1ϵ}|𝑑α\displaystyle\lambda+\int_{\lambda}^{\infty}|\{x\in B:|P(x)|<\alpha^{-\frac{1}{\epsilon}}\}|d\alpha
\displaystyle\leq λ+cnPL(B)1kλ1kϵ+11kϵ1,\displaystyle\lambda+cn\|P\|_{L^{\infty}(B)}^{-\frac{1}{k}}\frac{\lambda^{-\frac{1}{k\epsilon}+1}}{\frac{1}{k\epsilon}-1},

using Theorem 2.2. Optimizing in λ\lambda we get

B|P(x)|ϵ𝑑x(cnkϵ1kϵ)kϵPL(B)ϵ.\int_{B}|P(x)|^{-\epsilon}dx\leq\bigg{(}cn\frac{k\epsilon}{1-k\epsilon}\bigg{)}^{k\epsilon}\|P\|_{L^{\infty}(B)}^{-\epsilon}.

Using polar coordinates and setting ϵ=12k<1k\epsilon=\frac{1}{2k}<\frac{1}{k}, we then get

PL(Sn1)12kSn1|P(x)|12k𝑑σn1(x)\displaystyle\|P\|_{L^{\infty}(S^{n-1})}^{\frac{1}{2k}}\int_{S^{n-1}}|P(x^{\prime})|^{-\frac{1}{2k}}d\sigma_{n-1}(x^{\prime}) \displaystyle\leq cn32ρn=cn32πn2Γ(n2+1)\displaystyle c\frac{n^{\frac{3}{2}}}{\rho^{n}}=c\frac{n^{\frac{3}{2}}\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)}
\displaystyle\leq cn32(eπ)n2(n2+1)n+12c,\displaystyle c\frac{n^{\frac{3}{2}}(e\pi)^{\frac{n}{2}}}{(\frac{n}{2}+1)^{\frac{n+1}{2}}}\leq c,

which completes the proof. ∎

3. The logarithmic measure lemma

The proof of Lemma 1.3 is motivated by an argument of Vinogradov from [6], used to estimate the Lebesgue measure of the sublevel set of a polynomial in a bounded interval. We fix a polynomial P(x)=k=0dbkxkP(x)=\sum_{k=0}^{d}b_{k}x^{k} and look at the set E={x1:|P(x)|α}E=\{x\geq 1:|P(x)|\leq\alpha\}. Note that by replacing α\alpha with αM\alpha M in the statement of the lemma, it is enough to consider the case M=1M=1. Since EE is a closed set we can find points x0,x1,,xdEx_{0},x_{1},\ldots,x_{d}\in E such that x0<x1<<xdx_{0}<x_{1}<\cdots<x_{d} and

1dEdxx=E[xj,xj+1]dxxlogxj+1xj, 0jd1.\frac{1}{d}\int_{E}\frac{dx}{x}=\int_{E\cap[x_{j},x_{j+1}]}\frac{dx}{x}\leq\log\frac{x_{j+1}}{x_{j}},\ \ \ \ \ 0\leq j\leq d-1.

We set μ=Edxx\mu=\int_{E}\frac{dx}{x} and t=eμd>1t=e^{\frac{\mu}{d}}>1 and we have that xj+1txjx_{j+1}\geq tx_{j}, 0jd10\leq j\leq d-1. The Lagrange interpolation formula is

P(x)=j=0dP(xj)(xx0)(xxj^)(xxd)(xjx0)(xjxj^)(xjxd),x,P(x)=\sum_{j=0}^{d}P(x_{j})\frac{(x-x_{0})\cdots(\widehat{x-x_{j}})\cdots(x-x_{d})}{(x_{j}-x_{0})\cdots(\widehat{x_{j}-x_{j}})\cdots(x_{j}-x_{d})},\ x\in\mathbb{R},

where u^\hat{u} means that uu is omitted. Thus,

bk=j=0dP(xj)(1)dkσdk(x0,,xj^,,xd)(xjx0)(xjxj^)(xjxd),b_{k}=\sum_{j=0}^{d}P(x_{j})(-1)^{d-k}\frac{\sigma_{d-k}(x_{0},\ldots,\widehat{x_{j}},\ldots,x_{d})}{(x_{j}-x_{0})\cdots(\widehat{x_{j}-x_{j}})\cdots(x_{j}-x_{d})},

where σl\sigma_{l} is the ll-th elementary symmetric function of its variables. Therefore

|bk|\displaystyle|b_{k}| \displaystyle\leq αj=0dσdk(x0,,xj^,,xd)|xjx0||xjxj^||xjxd|\displaystyle\alpha\sum_{j=0}^{d}\frac{\sigma_{d-k}(x_{0},\ldots,\widehat{x_{j}},\ldots,x_{d})}{|x_{j}-x_{0}|\cdots|\widehat{x_{j}-x_{j}}|\cdots|x_{j}-x_{d}|}
=\displaystyle= αj=0dσk(1x0,,1xj^,,1xd)(xjx01)(xjxj11)(1xjxj+1)(1xjxd)\displaystyle\alpha\sum_{j=0}^{d}\frac{\sigma_{k}(\frac{1}{x_{0}},\ldots,\widehat{\frac{1}{x_{j}}},\ldots,\frac{1}{x_{d}})}{(\frac{x_{j}}{x_{0}}-1)\cdots(\frac{x_{j}}{x_{j-1}}-1)(1-\frac{x_{j}}{x_{j+1}})\cdots(1-\frac{x_{j}}{x_{d}})}
\displaystyle\leq αj=0dσk(1,,1t^,,1td)(tj1)(t1)(11t)(11tdj).\displaystyle\alpha\sum_{j=0}^{d}\frac{\sigma_{k}(1,\ldots,\widehat{\frac{1}{t}},\ldots,\frac{1}{t^{d}})}{(t^{j}-1)\cdots(t-1)(1-\frac{1}{t})\cdots(1-\frac{1}{t^{d-j}})}.

It is easy to see that there exists precisely one jj, 0jd12<d0\leq j\leq\frac{d-1}{2}<d, for which

(3.1) tj1<2tdtd+1+1tj.t^{j-1}<\frac{2t^{d}}{t^{d+1}+1}\leq t^{j}.

It is exactly for this jj that (tj1)(t1)(11t)(11tdj)(t^{j}-1)\cdots(t-1)(1-\frac{1}{t})\cdots(1-\frac{1}{t^{d-j}}) takes its minimum value as jj runs from 0 to dd. On the other hand we have

j=0dσk(1,,1tj^,,1tk)=(d+1k)σk(1,,1td)\sum_{j=0}^{d}\sigma_{k}\bigg{(}1,\ldots,\widehat{\frac{1}{t_{j}}},\ldots,\frac{1}{t^{k}}\bigg{)}=(d+1-k)\sigma_{k}\bigg{(}1,\ldots,\frac{1}{t^{d}}\bigg{)}

and, hence

|bk|\displaystyle|b_{k}| \displaystyle\leq α(d+1k)σk(1,,1td)1(tj1)(t1)(11t)(11tdj)\displaystyle\alpha\ (d+1-k)\sigma_{k}\bigg{(}1,\ldots,\frac{1}{t^{d}}\bigg{)}\frac{1}{(t^{j}-1)\cdots(t-1)(1-\frac{1}{t})\cdots(1-\frac{1}{t^{d-j}})}
\displaystyle\leq α(d+1k)(d+1k)1ttk1(tj1)(t1)(11t)(11tdj).\displaystyle\frac{\alpha\ (d+1-k)\binom{d+1}{k}}{1\cdot t\cdots t^{k}}\frac{1}{(t^{j}-1)\cdots(t-1)(1-\frac{1}{t})\cdots(1-\frac{1}{t^{d-j}})}.

From (3.1) we easily see that tj<2t^{j}<2 and, since log(x1)x\frac{\log(x-1)}{x} is increasing in the interval (1,2)(1,2), we find

log(t1)++log(tj1)\displaystyle\log(t-1)+\cdots+\log(t^{j}-1)
=\displaystyle= tt1(log(t1)t(t1)++log(tj1)tj(tjtj1))\displaystyle\frac{t}{t-1}\bigg{(}\frac{\log(t-1)}{t}(t-1)+\cdots+\frac{\log(t^{j}-1)}{t^{j}}(t^{j}-t^{j-1})\bigg{)}
\displaystyle\geq tt11tjlog(x1)x𝑑x=tt10tj1logx1+x𝑑x.\displaystyle\frac{t}{t-1}\int_{1}^{t^{j}}\frac{\log(x-1)}{x}dx=\frac{t}{t-1}\int_{0}^{t^{j}-1}\frac{\log x}{1+x}dx.

Similarly, since log(1x)x\frac{\log(1-x)}{x} is decreasing in the interval (0,1)(0,1) we get

log(11tdj)++log(11t)\displaystyle\log\bigg{(}1-\frac{1}{t^{d-j}}\bigg{)}+\cdots+\log\bigg{(}1-\frac{1}{t}\bigg{)}
=\displaystyle= 1t1(log(11tdj)1tdj(1tdj11tdj)++log(11t)1t(11t))\displaystyle\frac{1}{t-1}\bigg{(}\frac{\log(1-\frac{1}{t^{d-j}})}{\frac{1}{t^{d-j}}}\bigg{(}\frac{1}{t^{d-j-1}}-\frac{1}{t^{d-j}}\bigg{)}+\cdots+\frac{\log(1-\frac{1}{t})}{\frac{1}{t}}\bigg{(}1-\frac{1}{t}\bigg{)}\bigg{)}
\displaystyle\geq 1t11tdj1log(1x)x𝑑x=1t1011tdjlogx1x𝑑x.\displaystyle\frac{1}{t-1}\int_{\frac{1}{t^{d-j}}}^{1}\frac{\log(1-x)}{x}dx=\frac{1}{t-1}\int_{0}^{1-\frac{1}{t^{d-j}}}\frac{\log x}{1-x}dx.

We let

A=td1td+1,B=tj1,Γ=11tdj,A=\frac{t^{d}-1}{t^{d}+1},\ \ B=t^{j}-1,\ \ \Gamma=1-\frac{1}{t^{d-j}},

and, obviously, 0<A,B,Γ<10<A,B,\Gamma<1. From (3) and (3) we have

log(t1)++log(tj1)+log(11tdj)++log(11t)\displaystyle\log(t-1)+\cdots+\log(t^{j}-1)+\log\bigg{(}1-\frac{1}{t^{d-j}}\bigg{)}+\cdots+\log\bigg{(}1-\frac{1}{t}\bigg{)}
\displaystyle\geq tt10tj1logx1+x𝑑x+1t1011tdjlogx1x𝑑x\displaystyle\frac{t}{t-1}\int_{0}^{t^{j}-1}\frac{\log x}{1+x}dx+\frac{1}{t-1}\int_{0}^{1-\frac{1}{t^{d-j}}}\frac{\log x}{1-x}dx
=\displaystyle= tt10Blogx1+x𝑑x+1t10Γlogx1x𝑑x\displaystyle\frac{t}{t-1}\int_{0}^{B}\frac{\log x}{1+x}dx+\frac{1}{t-1}\int_{0}^{\Gamma}\frac{\log x}{1-x}dx
=\displaystyle= tt1Blog1B1t1Γlog1ΓO(tt1B)O(1t1Γ).\displaystyle-\frac{t}{t-1}B\log\frac{1}{B}-\frac{1}{t-1}\Gamma\log\frac{1}{\Gamma}-O\bigg{(}\frac{t}{t-1}B\bigg{)}-O\bigg{(}\frac{1}{t-1}\Gamma\bigg{)}.

From (3.1) we get B,Γtd+11td+1+1B,\Gamma\leq\frac{t^{d+1}-1}{t^{d+1}+1} and, since t+1t1td+11td+1+1\frac{t+1}{t-1}\frac{t^{d+1}-1}{t^{d+1}+1} is decreasing in t(1,+)t\in(1,+\infty), we find

tt1Bt+1t1td+11td+1+1d+1\frac{t}{t-1}B\leq\frac{t+1}{t-1}\frac{t^{d+1}-1}{t^{d+1}+1}\leq d+1

and, similarly,

1t1Γt+1t1td+11td+1+1d+1.\frac{1}{t-1}\Gamma\leq\frac{t+1}{t-1}\frac{t^{d+1}-1}{t^{d+1}+1}\leq d+1.

Therefore

log(t1)++log(tj1)+log(11tdj)++log(11t)\displaystyle\log(t-1)+\cdots+\log(t^{j}-1)+\log\bigg{(}1-\frac{1}{t^{d-j}}\bigg{)}+\cdots+\log\bigg{(}1-\frac{1}{t}\bigg{)}
\displaystyle\geq tt1Blog1B1t1Γlog1Γcd\displaystyle-\frac{t}{t-1}B\log\frac{1}{B}-\frac{1}{t-1}\Gamma\log\frac{1}{\Gamma}-cd
\displaystyle\geq 2t1Alog1A1t1(Blog1B+Γlog1Γ2Alog1A)cd.\displaystyle-\frac{2}{t-1}A\log\frac{1}{A}-\frac{1}{t-1}\bigg{(}B\log\frac{1}{B}+\Gamma\log\frac{1}{\Gamma}-2A\log\frac{1}{A}\bigg{)}-cd.

Now

Blog1B+Γlog1Γ2Alog1A\displaystyle B\log\frac{1}{B}+\Gamma\log\frac{1}{\Gamma}-2A\log\frac{1}{A} =\displaystyle= (B+Γ2A)log1A+ABAlogAB+AΓAlogAΓ\displaystyle(B+\Gamma-2A)\log\frac{1}{A}+A\frac{B}{A}\log\frac{A}{B}+A\frac{\Gamma}{A}\log\frac{A}{\Gamma}
\displaystyle\leq (B+ΓA2)Alog1A+cA.\displaystyle\ \bigg{(}\frac{B+\Gamma}{A}-2\bigg{)}A\log\frac{1}{A}+cA.

Using (3.1)

B+ΓA12(t1)td+1+1\frac{B+\Gamma}{A}-1\leq\frac{2(t-1)}{t^{d+1}+1}

and we conclude that

1t1(Blog1B+Γlog1Γ2Alog1A)\displaystyle\frac{1}{t-1}\bigg{(}B\log\frac{1}{B}+\Gamma\log\frac{1}{\Gamma}-2A\log\frac{1}{A}\bigg{)} \displaystyle\leq 2td+1+1Alog1A+ct1A\displaystyle\frac{2}{t^{d+1}+1}A\log\frac{1}{A}+\frac{c}{t-1}A
\displaystyle\leq c+ct+1t1td1td+1cd.\displaystyle c+c\frac{t+1}{t-1}\frac{t^{d}-1}{t^{d}+1}\leq cd.

Therefore

log(t1)++log(tj1)+log(11tdj)++log(11t)\displaystyle\log(t-1)+\cdots+\log(t^{j}-1)+\log\bigg{(}1-\frac{1}{t^{d-j}}\bigg{)}+\cdots+\log\bigg{(}1-\frac{1}{t}\bigg{)}
\displaystyle\geq 2t1Alog1Acd\displaystyle-\frac{2}{t-1}A\log\frac{1}{A}-cd

and, finally, (3) implies that for some k>d2k>\frac{d}{2}

1codαtk(k1)2(1A)2At1,1\leq\frac{c_{o}^{d}\alpha}{t^{\frac{k(k-1)}{2}}}\bigg{(}\frac{1}{A}\bigg{)}^{\frac{2A}{t-1}},

where coc_{o} is an absolute positive constant.

case 1: coα1d<12c_{o}\alpha^{\frac{1}{d}}<\frac{1}{2}. Then, since 2At1t+1t1Ad\frac{2A}{t-1}\leq\frac{t+1}{t-1}A\leq d, we get

AdA2At1codαA^{d}\leq A^{\frac{2A}{t-1}}\leq c_{o}^{d}\alpha

which implies

td1td+1=Acoα1d\frac{t^{d}-1}{t^{d}+1}=A\leq c_{o}\ \alpha^{\frac{1}{d}}

and, finally,

μeμ1=td14coα1d.\mu\leq e^{\mu}-1=t^{d}-1\leq 4c_{o}\alpha^{\frac{1}{d}}.

case 2: coα1d12c_{o}\alpha^{\frac{1}{d}}\geq\frac{1}{2}, td<2t^{d}<2. Then

1<eμ=td<4coα1d1<e^{\mu}=t^{d}<4c_{o}\alpha^{\frac{1}{d}}

which shows that

μ<log+(4co)+log+αd.\mu<\log^{+}(4c_{o})+\frac{\log^{+}\alpha}{d}.

case 3: coα1d12c_{o}\alpha^{\frac{1}{d}}\geq\frac{1}{2}, td2t^{d}\geq 2. Then A13A\geq\frac{1}{3} and 2At1t+1t1Ad\frac{2A}{t-1}\leq\frac{t+1}{t-1}A\leq d and, hence,

13dtk(k1)2codα.\frac{1}{3^{d}}t^{\frac{k(k-1)}{2}}\leq c_{o}^{d}\alpha.

We conclude that

μ2d2k(k1)(log+(3co)+log+αd)c(1+log+αd)\mu\leq\frac{2d^{2}}{k(k-1)}\bigg{(}\log^{+}(3c_{o})+\frac{\log^{+}\alpha}{d}\bigg{)}\leq c\bigg{(}1+\frac{\log^{+}\alpha}{d}\bigg{)}

since k>d2k>\frac{d}{2}. fsectionProof of Theorem 1.1

Let Ω\Omega be a function with zero mean value on the unit sphere Sn1S^{n-1} belonging to the class LlogL(Sn1)L\log L(S^{n-1}), that is

ΩLlogL(Sn1)=Sn1|Ω(x)|(1+log+|Ω(x)|)𝑑σn1(x)<.\|\Omega\|_{L\log L(S^{n-1})}=\int_{S^{n-1}}|\Omega(x^{\prime})|(1+\log^{+}|\Omega(x^{\prime})|)d\sigma_{n-1}(x^{\prime})<\infty.

Set K(x)=Ω(x/|x|)/|x|nK(x)=\Omega(x/|x|)/|x|^{n} and let P𝒫d,nP\in\mathcal{P}_{d,n}. We will show the theorem for d=2md=2^{m}, for some m0m\geq 0. The general case is then an immediate consequence.

We set

Cd=sup0<ϵ<RP𝒫d,n|ϵ|x|ReiP(x)K(x)𝑑x|,C_{d}=\sup_{\begin{subarray}{c}0<\epsilon<R\\ P\in\mathcal{P}_{d,n}\end{subarray}}\left|\int_{\epsilon\leq|x|\leq R}e^{iP(x)}K(x)dx\right|,

where CdC_{d} is a constant depending on dd, Ω\Omega and nn. For 0<ϵ<R0<\epsilon<R and P𝒫d,nP\in\mathcal{P}_{d,n} we write,

Iϵ,R(P)=ϵ|x|ReiP(x)K(x)𝑑x=Sn1ϵReiP(rx)drrΩ(x)𝑑σn1(x).I_{\epsilon,R}(P)=\int_{\epsilon\leq|x|\leq R}e^{iP(x)}K(x)dx=\int_{S^{n-1}}\int_{\epsilon}^{R}e^{iP(rx^{\prime})}\frac{dr}{r}\Omega(x^{\prime})d\sigma_{n-1}(x^{\prime}).

For xSn1x^{\prime}\in S^{n-1}, we have that P(rx)=j=1dPj(x)rjP(rx^{\prime})=\sum_{j=1}^{d}P_{j}(x^{\prime})r^{j} where PjP_{j} is a homogeneous polynomial of degree jj. Observe that we can omit the constant term, without loss of generality. Set also mj=PjL(Sn1)m_{j}=\|P_{j}\|_{L^{\infty}(S^{n-1})}. Since ϵ\epsilon and RR are arbitrary positive numbers, by a dilation in rr we can assume that maxd2<jdmj=1\max_{\frac{d}{2}<j\leq d}m_{j}=1 and, in particular, that mjo=1m_{j_{o}}=1 for some d2<jod\frac{d}{2}<j_{o}\leq d. We also write Q(x)=j=1d2Pj(x)Q(x)=\sum_{j=1}^{\frac{d}{2}}P_{j}(x). We split the integral in two parts as follows

|Iϵ,R(P)|\displaystyle|I_{\epsilon,R}(P)| \displaystyle\leq |Sn1ϵ1eiP(rx)drrΩ(x)𝑑σn1(x)|\displaystyle\left|\int_{S^{n-1}}\int_{\epsilon}^{1}e^{iP(rx^{\prime})}\frac{dr}{r}\Omega(x^{\prime})d\sigma_{n-1}(x^{\prime})\right|
+\displaystyle+ |Sn11ReiP(rx)drrΩ(x)𝑑σn1(x)|=I1+I2.\displaystyle\left|\int_{S^{n-1}}\int_{1}^{R}e^{iP(rx^{\prime})}\frac{dr}{r}\Omega(x^{\prime})d\sigma_{n-1}(x^{\prime})\right|=I_{1}+I_{2}.

For I1I_{1} we have that

I1\displaystyle I_{1} \displaystyle\leq Sn101|eiP(rx)eiQ(rx)|drr|Ω(x)|𝑑σn1(x)\displaystyle\int_{S^{n-1}}\int_{0}^{1}\left|e^{iP(rx^{\prime})}-e^{iQ(rx^{\prime})}\right|\frac{dr}{r}|\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime})
+\displaystyle+ |Sn1ϵ1eiQ(rx)drrΩ(x)𝑑σn1(x)|\displaystyle\left|\int_{S^{n-1}}\int_{\epsilon}^{1}e^{iQ(rx^{\prime})}\frac{dr}{r}\Omega(x^{\prime})d\sigma_{n-1}(x^{\prime})\right|
\displaystyle\leq d2<jdmjjΩL1(Sn1)+Cd2cΩL1(Sn1)+Cd2.\displaystyle\sum_{\frac{d}{2}<j\leq d}\frac{m_{j}}{j}\|\Omega\|_{L^{1}(S^{n-1})}+C_{\frac{d}{2}}\leq c\|\Omega\|_{L^{1}(S^{n-1})}+C_{\frac{d}{2}}.

For I2I_{2} we write

I2\displaystyle I_{2} \displaystyle\leq Sn1|{r[1,R]:|P(rx)r|>d}eiP(rx)drr||Ω(x)|𝑑σn1(x)\displaystyle\int_{S^{n-1}}\left|\int_{\{r\in[1,R]:|\frac{\partial P(rx^{\prime})}{\partial r}|>d\}}e^{iP(rx^{\prime})}\frac{dr}{r}\right||\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime})
+\displaystyle+ Sn1{r[1,R]:|P(rx)r|d}drr|Ω(x)|𝑑σn1(x).\displaystyle\int_{S^{n-1}}\int_{\{r\in[1,R]:|\frac{\partial P(rx^{\prime})}{\partial r}|\leq d\}}\frac{dr}{r}|\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime}).

Since {r[1,R]:|P(rx)r|>d}\{r\in[1,R]:|\frac{\partial P(rx^{\prime})}{\partial r}|>d\} consists of at most O(d)O(d) intervals where P(rx)r\frac{\partial P(rx^{\prime})}{\partial r} is monotonic, a simple corollary to van der Corput’s lemma for the first derivative [5, corollary on p. 334] gives the bound

Sn1|{r[1,R]:|P(rx)r|>d}eiP(rx)drr||Ω(x)|𝑑σn1(x)cΩL1(Sn1).\int_{S^{n-1}}\left|\int_{\{r\in[1,R]:|\frac{\partial P(rx^{\prime})}{\partial r}|>d\}}e^{iP(rx^{\prime})}\frac{dr}{r}\right||\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime})\leq c\|\Omega\|_{L^{1}(S^{n-1})}.

On the other hand, the logarithmic measure lemma implies that

Sn1{r[1,R]:|P(rx)r|d}drr|Ω(x)|𝑑σn1(x)\displaystyle\int_{S^{n-1}}\int_{\{r\in[1,R]:|\frac{\partial P(rx^{\prime})}{\partial r}|\leq d\}}\frac{dr}{r}|\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime})
\displaystyle\leq cΩL1(Sn1)+c1dSn1logdmaxd2<jd{j|Pj(x)|}|Ω(x)|dσn1(x).\displaystyle c\|\Omega\|_{L^{1}(S^{n-1})}+c\frac{1}{d}\int_{S^{n-1}}\log\frac{d}{\max_{\frac{d}{2}<j\leq d}\{j|P_{j}(x^{\prime})|\}}|\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime}).

Combining the estimates we get

CdcΩL1(Sn1)+Cd2+c2jodSn1logPjoL(Sn1)12jo|Pjo(x)|12jo|Ω(x)|dσn1(x)C_{d}\leq c\|\Omega\|_{L^{1}(S^{n-1})}+C_{\frac{d}{2}}+c\frac{2j_{o}}{d}\int_{S^{n-1}}\ \log\frac{\|P_{j_{o}}\|^{\frac{1}{2j_{o}}}_{L^{\infty}(S^{n-1})}}{|P_{j_{o}}(x^{\prime})|^{\frac{1}{2j_{o}}}}|\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime})

and, from Young’s inequality,

CdcΩL1(Sn1)+Cd2\displaystyle C_{d}\leq c\|\Omega\|_{L^{1}(S^{n-1})}+C_{\frac{d}{2}} +\displaystyle+ cSn1PjoL(Sn1)12jo|Pjo(x)|12jo𝑑σn1(x)\displaystyle c\int_{S^{n-1}}\ \frac{\|P_{j_{o}}\|^{\frac{1}{2j_{o}}}_{L^{\infty}(S^{n-1})}}{|P_{j_{o}}(x^{\prime})|^{\frac{1}{2j_{o}}}}d\sigma_{n-1}(x^{\prime})
+\displaystyle+ cSn1|Ω(x)|(1+log+|Ω(x)|)𝑑σn1(x).\displaystyle c\int_{S^{n-1}}|\Omega(x^{\prime})|(1+\log^{+}|\Omega(x^{\prime})|)d\sigma_{n-1}(x^{\prime}).

Now, using corollary 2.3 we get

CdCd2+c(ΩLlogL(Sn1)+1).C_{d}\leq C_{\frac{d}{2}}+c(\|\Omega\|_{L\log L(S^{n-1})}+1).

Since d=2md=2^{m}, this means that

C2mC2m1+c(ΩLlogL(Sn1)+1).C_{2^{m}}\leq C_{2^{m-1}}+c(\|\Omega\|_{L\log L(S^{n-1})}+1).

Using induction on mm we get that C2mC1+cm(ΩLlogL(Sn1)+1)C_{2^{m}}\leq C_{1}+cm(\|\Omega\|_{L\log L(S^{n-1})}+1). Observe that C1C_{1} corresponds to some polynomial P(x)=b1x1++bnxnP(x)=b_{1}x_{1}+\cdots+b_{n}x_{n}. We write

|ϵ<|x|<ReiP(x)K(x)𝑑x|=\displaystyle\left|\int_{\epsilon<|x|<R}e^{iP(x)}K(x)dx\right|=
=|Sn1ϵR{eirP(x)eirPL(Sn1)}drrΩ(x)𝑑σn1(x)|.\displaystyle=\left|\int_{S^{n-1}}\int_{\epsilon}^{R}\{e^{irP(x^{\prime})}-e^{ir\|P\|_{L^{\infty}(S^{n-1})}}\}\frac{dr}{r}\Omega(x^{\prime})d\sigma_{n-1}(x^{\prime})\right|.

Using the simple estimate

|ϵR{eiareibr}drr|c+c|log|ba||\left|\int_{\epsilon}^{R}\{e^{iar}-e^{ibr}\}\frac{dr}{r}\right|\leq c+c\left|\log\left|\frac{b}{a}\right|\right|

we get

|ϵ<|x|<ReiP(x)K(x)𝑑x|\displaystyle\left|\int_{\epsilon<|x|<R}e^{iP(x)}K(x)dx\right| \displaystyle\leq cΩL1(Sn1)+\displaystyle c\|\Omega\|_{L^{1}(S^{n-1})}+
+cSn1logPL(Sn1)12|P(x)|12|Ω(x)|dσn1(x).\displaystyle+c\int_{S^{n-1}}\log\frac{\|P\|^{\frac{1}{2}}_{L^{\infty}(S^{n-1})}}{|P(x^{\prime})|^{\frac{1}{2}}}|\Omega(x^{\prime})|d\sigma_{n-1}(x^{\prime}).

Hence, C1cΩL1(Sn1)+c+ΩLlogL(Sn1)C_{1}\leq c\|\Omega\|_{L^{1}(S^{n-1})}+c+\|\Omega\|_{L\log L(S^{n-1})} and

C2mcm(ΩLlogL(Sn1)+1).C_{2^{m}}\leq cm(\|\Omega\|_{L\log L(S^{n-1})}+1).

The case of general d is now trivial. If 2m1<d2m2^{m-1}<d\leq 2^{m} then

CdC2mcm(ΩLlogL(Sn1)+1)clogd(ΩLlogL(Sn1)+1).C_{d}\leq C_{2^{m}}\leq cm(\|\Omega\|_{L\log L(S^{n-1})}+1)\leq c\log d(\|\Omega\|_{L\log L(S^{n-1})}+1).

4. The one dimensional case revisited

We will attempt to give a short proof of the one dimensional analogue of theorem 1.1. This is a slight simplification of the proof in [3], with the aid of the logarithmic measure lemma.

So, fix a real polynomial P(x)=b0+b1x++bdxdP(x)=b_{0}+b_{1}x+\cdots+b_{d}x^{d} and consider the quantity

Cd=sup0<ϵ<R|ϵ<|x|<ReiP(x)dxx|.C_{d}=\sup_{0<\epsilon<R}\left|\int_{\epsilon<|x|<R}e^{iP(x)}\frac{dx}{x}\right|.

By the same considerations as in the nn-dimensional case, we can assume that PP has no constant term and that it can be decomposed in the form

P(x)=0<jd2bjxj+d2<jdbjxj=Q(x)+R(x),P(x)=\sum_{0<j\leq\frac{d}{2}}b_{j}x^{j}+\sum_{\frac{d}{2}<j\leq d}b_{j}x^{j}=Q(x)+R(x),

where maxd2<jd|bj|=1\max_{\frac{d}{2}<j\leq d}|b_{j}|=1. As a result

|ϵ<|x|<ReiP(x)dxx|\displaystyle\left|\int_{\epsilon<|x|<R}e^{iP(x)}\frac{dx}{x}\right| \displaystyle\leq Cd2+0<|x|<1|R(x)|x𝑑x+|1<|x|<ReiP(x)dxx|\displaystyle C_{\frac{d}{2}}+\int_{0<|x|<1}\frac{|R(x)|}{x}dx+\left|\int_{1<|x|<R}e^{iP(x)}\frac{dx}{x}\right|
\displaystyle\leq Cd2+c+I.\displaystyle C_{\frac{d}{2}}+c+I.

We split II as follows

I|{x[1,R):|P(x)|>d}eiP(x)dxx|+{x1:|P(x)|d}dxx.\displaystyle I\leq\left|\int_{\{x\in[1,R):|P^{\prime}(x)|>d\}}e^{iP(x)}\frac{dx}{x}\right|+\int_{\{x\geq 1:|P^{\prime}(x)|\leq d\}}\frac{dx}{x}.

Now, using Proposition 2.1 for the first summand in the above estimate and the logarithmic measure lemma to estimate the second summand, we get that IcI\leq c. But this means that CdCd2+cC_{d}\leq C_{\frac{d}{2}}+c which completes the proof by considering first the case d=2md=2^{m} for some mm, as in the nn-dimensional case.

References

  • [1] G. I. Arkhipov, A. A. Karacuba, and V. N. Čubarikov, Trigonometric integrals, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 5, 971–1003, 1197. MR MR552548 (81f:10050)
  • [2] A. Carbery and J. Wright, Distributional and LqL^{q} norm inequalities for polynomials over convex bodies in n\mathbb{R}^{n}, Math. Res. Lett. 8 (2001), no. 3, 233–248. MR MR1839474 (2002h:26033)
  • [3] I. R. Parissis, A sharp bound for the Stein-Wainger oscillatory integral, Proc. Amer. Math. Soc. 136 (2008), no. 3, 963–972 (electronic). MR MR2361870
  • [4] E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355. MR MR864375 (88g:42022)
  • [5] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. MR MR1232192 (95c:42002)
  • [6] I. M. Vinogradov, Selected works, Springer-Verlag, Berlin, 1985, With a biography by K. K. Mardzhanishvili, Translated from the Russian by Naidu Psv [P. S. V. Naidu], Translation edited by Yu. A. Bakhturin. MR MR807530 (87a:01042)