This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Optimisation and Logistics, School of Computer and Mathematical Sciences,
The University of Adelaide, Adelaide, Australia
11email: {xiankun.yan,aneta.neumann,frank.neumann}@adelaide.edu.au

Sliding Window Bi-Objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions

Xiankun Yan 11 0000-0002-2309-8034    Aneta Neumann 11 0000-0002-0036-4782    Frank Neumann 11 0000-0002-2721-3618
Abstract

Variants of the GSEMO algorithm using multi-objective formulations have been successfully analyzed and applied to optimize chance-constrained submodular functions. However, due to the effect of the increasing population size of the GSEMO algorithm considered in these studies from the algorithms, the approach becomes ineffective if the number of trade-offs obtained grows quickly during the optimization run. In this paper, we apply the sliding-selection approach introduced in [21] to the optimization of chance-constrained monotone submodular functions. We theoretically analyze the resulting SW-GSEMO algorithm which successfully limits the population size as a key factor that impacts the runtime and show that this allows it to obtain better runtime guarantees than the best ones currently known for the GSEMO. In our experimental study, we compare the performance of the SW-GSEMO to the GSEMO and NSGA-II on the maximum coverage problem under the chance constraint and show that the SW-GSEMO outperforms the other two approaches in most cases. In order to get additional insights into the optimization behavior of SW-GSEMO, we visualize the selection behavior of SW-GSEMO during its optimization process and show it beats other algorithms to obtain the highest quality of solution in variable instances.

Keywords:
chance constraints submodular function evolutionary algorithms runtime analysis.

1 Introduction

Evolutionary algorithms (EAs) have been successfully applied to solve a wide range of complex combinatorial optimization problems. The algorithms have received both theoretical and empirical studies, showing their ability to obtain good solutions within a reasonably expected runtime for problems with deterministic settings [3, 7, 8, 11, 19, 26, 31]. Additionally, it has been observed that some EAs also perform effectively on stochastic and dynamic optimization problems. Researchers are actively investigating the advantages and limitations of EAs in solving such problems, particularly within the field of evolutionary computation theory. A variety of studies [12, 14, 20, 18, 27, 29, 32] have been conducted, presenting both the challenges and the advanced implications of these algorithms.

In a stochastic environment, completely eliminating the negative and uncertain impact of stochastic components is challenging. Therefore, it is crucial to minimize these negative effects to prevent unpredictable disruptions in most complex systems. Chance constraint  [1, 5, 9, 15, 22, 23, 24, 25] is a useful technique for handling the effects of stochastic circumstances. It allows the deterministic bound in the constraint to be violated, but only with a very small probability during optimization. However, directly evaluating chance constraints is complex and time-consuming. A practical approach is to transform the stochastic constraint into its corresponding deterministic equivalent for a given confidence level, rather than statistically calculating the probability of violation when optimizing chance-constrained problems with known distribution elements [30, 32].

Submodular functions [16] represent various problems where the incremental benefit of adding solution elements diminishes with the increasing solution size. The optimization of submodular functions is significantly challenging and has been extensively investigated with different types of constraints in previous work [10, 13, 16, 21, 27, 33, 34]. In the paper, we study a chance-constrained version of the submodular optimization problem subject to a knapsack constraint. The problem seeks to find a subset of stochastic elements that maximizes the submodular function value, while ensuring that the actual weight exceeds a given bound with a very small probability. In the previous research, Doerr et al [4] analyzed the performance of the greedy algorithms on the problem. They constructed the surrogate functions using the tail inequalities (Chernoff bound and one-sided side Chebyshev’s inequality) to handle the chance constraint. Their findings demonstrated the greedy algorithms can achieve (1o(1))(11/e)(1-o(1))(1-1/e)-approximation and (1/2o(1)(11/e)(1/2-o(1)(1-1/e)-approximation for the problem with the uniform independent and identically distributed (IID) weights and the uniform weights with the same dispersion respectively. Subsequently, Neumann et al., [17] applied the Global Simple Evolutionary Multi-objective Algorithm (GSEMO) to the same problem. They employed a similar surrogate approach for estimating violation probability as done in [4] and considered both the submodular function value and the probability as objectives in their bi-objective fitness function. Their theoretical analysis demonstrated that the GSEMO can achieve similar approximation results as [17] within an expected runtime related to the max population size that it can generate. Additionally, their experimental results indicated that the GSEMO could obtain better solutions than the greedy algorithm and other evolutionary algorithms, in solving the problem involving uniform IID weights.

However, the runtime analysis presented in [17] indicates that the growing population size significantly impacts the efficiency of the GSEMO. This is particularly evident when dealing with uniform weights of the same dispersion, where the GSEMO can quickly maintain an exponential number of trade-off solutions in the population. To address this inefficiency, the sliding-selection approach has been introduced, leading to the development of an improved version of GSEMO, named the Sliding Window GSEMO (SW-GSEMO). Neumann and Witt [21] firstly presented the SW-GSEMO’s enhanced performance in solving submodular problems with deterministic weights. In brief, the sliding-selection method involves defining a weight window of size one, which is determined based on the given bound and the ratio of the current time to the total time. A solution is eligible for selection as a parent if its weight falls within the current window; otherwise, the algorithm uniformly selects one individual from the current population.

Within this paper, the SW-GSEMO is slightly updated in terms of the window selection method for optimizing chance-constrained monotone submodular functions. The individuals that are in the window are still potential parents for the mutation, however, when there is no individual in the window area, the algorithm chooses a current solution with the largest function value as the parent for the next mutation unless the current time exceeds the time budget. Following the approach in [17], the fitness function in our algorithm contains two objectives: the evaluated weight and the function value of the solution. We also employ the same surrogate methods based on tail inequalities for weight evaluation. Our study includes settings that include both IID weights, and uniform weights with the same dispersion. Our analysis reveals that the incorporation of the sliding-selection approach reduces the impact of growing population size on the expected runtime. As a result, the expected runtime of the SW-GSEMO to achieve similar expected approximation results shows improvement. Additionally, we empirically assess the performance of the SW-GSEMO on the maximum coverage problem under various settings, bounds, and violation probabilities. We compare its results with those from the original GSEMO and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II ). The initial solutions of all algorithms are empty sets and the NSGA-II uses population sizes of 2020 and 100100 respectively. Furthermore, we provide a visualization of the sliding window’s operation during optimization. Our investigation also seeks why algorithms using surrogates based on the Chernoff bound perform better than those using the one-sided Chebyshev’s inequality when the probability is smaller.

The paper is structured as follows. Section 2 introduces the chance-constrained monotone submodular problem and the investigated settings. Section 3 describes the adopted multi-objective evolutionary algorithms. Our theoretical runtime analysis and proofs of the SW-GSEMO are presented in Section 4. Then we investigate the performance of the different algorithms and visualize the selection behavior in Section 5. Finally, we end with some conclusions in Section 6.

2 Preliminaries

Given a set V={v1,,vn}V=\{v_{1},...,v_{n}\}, we consider the optimization of a monotone submodular function f:2V+f:2^{V}\to\mathbb{R}_{+}. A function is called monotone iff for every S,TVS,T\subseteq V with STS\subseteq T, f(S)f(T)f(S)\leq f(T) holds. A function ff is called submodular iff for every S,TVS,T\subseteq V with STS\subseteq T, viVv_{i}\in V and viTv_{i}\notin T, f(S{v})f(S)f(T{v})f(T)f(S\cup\{v\})-f(S)\geq f(T\cup\{v\})-f(T) holds. We consider the optimization of such a function ff subjected to the chance constraint where each element viv_{i} takes on a random weight W(vi)W(v_{i}). Here, the chance-constrained optimization problem can be formulated as

Maximize\displaystyle Maximize f(S)\displaystyle\quad f(S)
S.t.\displaystyle S.t. Pr[W(S)>B]α,\displaystyle\quad Pr[W(S)>B]\leq\alpha,

where W(S)=viSW(vi)W(S)=\sum_{v_{i}\in S}W(v_{i}) is the total weight of the subset SS, and BB is the given deterministic bound. The parameter α\alpha quantifies the probability of exceeding the bound BB that can be tolerated.

Following previous work [4, 17], we consider two different settings, which are (1) Uniform IID Weights: the weight of each element viVv_{i}\in V is sampled from the uniform distribution with the same expected value EW(vi)=aE_{W}(v_{i})=a and dispersion δ(vi)=d\delta(v_{i})=d (i.e., W(vi)[ad,a+dW(v_{i})\in[a-d,a+d] and 0<da0<d\leq a); and (2) Uniform Weights with the Same Dispersion: the weight of element viVv_{i}\in V is sampled from the uniform distribution with the different expected value EW(vi)=aiE_{W}(v_{i})=a_{i} but the same dispersion δ(vi)=d\delta(v_{i})=d (i.e., W(vi)[aid,ai+d]W(v_{i})\in[a_{i}-d,a_{i}+d] and 0<dai0<d\leq a_{i}). In both settings, we assume that the expected weight of each element is a positive integer. For further discussion, the subset SS is encoded as a decision vector x=x1,x2,,xnx=x_{1},x_{2},...,x_{n} with length nn, where xi=1x_{i}=1 means that the element viVv_{i}\in V is selected into the subset SS. Besides, we denote |x|1|x|_{1} the number of elements packed into the subset SS. Since all the settings are based on the uniform distribution, we have the expected weight and variance of the solution xx as

E[W(x)]=i=0nEW(vi)xi,E[W(x)]=\sum_{i=0}^{n}E_{W}(v_{i})x_{i},

and

Var[W(x)]=d2|x|1/3.Var[W(x)]=d^{2}|x|_{1}/3.

To handle the chance constraint, we establish the surrogate function based on One Chebyshev’s inequality and Chernoff bound as described in the previous work [4, 17]. The weight calculated by different surrogate functions are respectively formulated as

Wcheb(x,α)=E[W(x)]+(1α)Var[W(x)]α,W_{cheb}(x,\alpha)=E[W(x)]+\sqrt{\frac{(1-\alpha)Var[W(x)]}{\alpha}},

and

Wchern(x,α)=E[W(x)]+3d|x|1ln(1/α).W_{chern}(x,\alpha)=E[W(x)]+\sqrt{3d|x|_{1}\ln{(1/\alpha)}}.

It had been proved that if the surrogate weight of a solution xx is less than the bound BB, then xx is feasible [4].

3 Multi-Objective Evolutionary Algorithm

Algorithm 1 GSEMO

Input: Probability α\alpha, bound BB
Output: the best individual xx

1:  Set x=0nx=0^{n};
2:  P{x}P\leftarrow\{x\};
3:  repeat
4:     Choose xPx\in P uniformly at random;
5:     yy\leftarrow flip each bit of xx with probability 1n\frac{1}{n};
6:     if wP:wy\nexists w\in P:w\succ y then
7:        P(P{zP|yz}){y}P\leftarrow(P\setminus\{z\in P|y\succeq z\})\cup\{y\};
8:     end if
9:  until stop;
Algorithm 2 SW-GSEMO

Input: Total time tmaxt_{max}, probability α\alpha, bound BB
Output: the best individual xx

1:  Set x=0nx=0^{n};
2:  P{x}P\leftarrow\{x\};
3:  t0t\leftarrow 0;
4:  repeat
5:     t=t+1t=t+1
6:     Choose x=x=sliding-selection(P,t,tmax,α,B)(P,t,t_{max},\alpha,B);
7:     yy\leftarrow flip each bit of xx with probability 1n\frac{1}{n};
8:     if wP:wy\nexists w\in P:w\succ y then
9:        P(P{zP|yz}){y}P\leftarrow(P\setminus\{z\in P|y\succeq z\})\cup\{y\}
10:     end if
11:  until ttmaxt\geq t_{max};
Algorithm 3 sliding-selection

Input: Population P, current iteration tt, total time tmaxt_{max}, probability α\alpha, bound BB
Output: the selected individual xx

1:  if ttmaxt\leq t_{max} then
2:     c^(t/tmax)B\hat{c}\leftarrow(t/t_{max})\cdot B;
3:     P^={xPc^g2(x,α)c^}\widehat{P}=\{x\in P\mid\lfloor\hat{c}\rfloor\leq g_{2}(x,\alpha)\leq\lceil\hat{c}\rceil\};
4:     if P^=\widehat{P}=\emptyset then
5:        P{xP|g2(x,α)c^}P^{\prime}\leftarrow\{x\in P|g_{2}(x,\alpha)\leq\lfloor\hat{c}\rfloor\}
6:        xargmaxxPg1(x)x\leftarrow\operatorname*{argmax}_{x^{\prime}\in P^{\prime}}g_{1}(x^{\prime});
7:     else
8:        Choose xP^x\in\widehat{P} uniformly at random;
9:     end if
10:  else
11:     Choose xPx\in P uniformly at random;
12:  end if
13:  Return xx;

Within the paper, we primarily investigate multi-objective evolutionary algorithms on the given monotone submodular problem. Each solution is considered to be a two-dimensional search point in the objective space. The bi-objective fitness function of the solution xx is expressed as

g1(x)={f(x)g2(x,α)B1g2(x,α)>Bg_{1}(x)=\left\{\begin{array}[]{ccl}f(x)&&{g_{2}(x,\alpha)\leq B}\\ -1&&{g_{2}(x,\alpha)>B}\end{array}\right. (1)
g2(x,α)=Wsg(x,α),g_{2}(x,\alpha)={W_{sg}}(x,\alpha), (2)

where f(x)f(x) denotes the submodular function value of xx, Wsg(x,α)W_{sg}(x,\alpha) denotes the surrogate weight of xx. Let y{0,1}ny\in\{0,1\}^{n} be another solution in the search space. We say that xx (weakly) dominates y(xy)y(x\succeq y) iff g1(x)g1(y)g_{1}(x)\geq g_{1}(y) and g2(x,α)g2(y,α)g_{2}(x,\alpha)\leq g_{2}(y,\alpha). Note that the infeasible solution is strongly dominated by the feasible one because of the objective function g1g_{1}. Besides, the objective function g2g_{2} guides the generated solutions approach to the feasible search space.

In previous work [17], the GSEMO (see Algorithm 1) is studied on the chance-constrained monotone submodular problem. Here the GSEMO starts with an initial solution represented by a 0n0^{n} bitstring, signifying an empty set. During the optimization, it maintains a set of non-dominated solutions, continually updating this set as new solutions are generated. In each iteration, the GSEMO randomly and uniformly selects an individual xx from the population to serve as a parent for creating offspring yy via a standard bit-flip operator, which flips each bit of xx independently with a probability of 1/n1/n. The offspring yy is accepted into the population if it is not strictly dominated by any existing solution. Subsequently, any solution in the population that is weakly dominated by yy is removed.

The modified SW-GSEMO algorithm is outlined in Algorithm 2. It also begins with a 0n0^{n} bitstring, maintains a population of non-dominating individuals, and employs the standard mutation to generate offspring. However, it differs from the GSEMO in its parent selection method, which defines a sliding window (see Algorithm 3) to select the potential parents instead of applying the random uniform selection in the whole population directly. Within this method, given the total runtime tmaxt_{max} and the current time tt, a current bound c^\hat{c} is defined as c^=tB/tmax\hat{c}=t\cdot B/t_{max}. A window is established as an interval between [c^,c^][\lfloor\hat{c}\rfloor,\lceil\hat{c}\rceil]. Unlike the deterministic case where it selects solutions based on deterministic weight, the SW-GSEMO chooses some eligible individuals whose surrogate weights fall within this window. The parent is then randomly selected from these eligible solutions. As the current time tt increases, the SW-GSEMO would select solutions with larger surrogate weights that are still within the window. When no individual lies within the current window, the SW-GSEMO generates a sub-population PP^{\prime} where the solution xx from the original population has the surrogate weight g2(x)g_{2}(x) that is lower than c^\lfloor\hat{c}\rfloor. Then the solution xPx^{\prime}\in P^{\prime} with the largest g1g_{1}-value is assigned for the mutation. Moreover, when ttmaxt\geq t_{max}, the SW-GSEMO reverts to selecting parents from the entire population PP, similar to the GSEMO.

4 Performance of SW-GSEMO based on Surrogate

To illustrate that the SW-GSEMO works more efficiently in optimizing the chance-constrained monotone submodular problem than the GSEMO, the expected runtime of SW-GSEMO with the surrogates to reach the same expected result for the problem is analyzed in this section.

4.1 Uniform IID Weights

The previous work [17] illustrates that the classical GSEMO reaches a (1o(1))(11/e)(1-o(1))(1-1/e)-approximation for the chance-constrained problem with uniform IID weights in the expected time O(nk(k+logn))O(nk(k+\log n)), where k=min{n+1,(B/a)+1}k=min\{n+1,\lfloor(B/a)+1\rfloor\}. However, with the help of the sliding-selection, the size of the potential parents is bounded, so the time to get a result with the same approximation is optimized.

Theorem 4.1

Consider SW-GSEMO with tmax=eknln(nk)t_{max}=ekn\ln{(nk)} on a monotone submodular function ff under a chance constraint with uniform IID weights. Then with probability 1o(1)1-o(1), the time that the algorithm finds a solution is no worse than (1o(1))(11/e)(1-o(1))(1-1/e)-approximation is bounded by O(nklogn)O(nk\log{n}) if B/a=ω(1)\lfloor B/a\rfloor=\omega(1).

Proof

Let kopt=B/ak_{opt}=\lfloor B/a\rfloor. As far as the previous work [17] proved, the initial bitstring 0n0^{n} will stay in the population since it is the best individual with respect to g2(0n,α)=0g_{2}(0^{n},\alpha)=0. Besides, note that g2g_{2} is a strictly monotonically increasing function with the number of elements, and solutions with the same number of elements have the same g2g_{2}-value because of the IID weights. From [17], it says that the element xjx_{j} with the largest marginal gain g1(x{xj})g1(x)g_{1}(x\cup\{x_{j}\})-g_{1}(x) to the solution xx is picked up in the mutation with the probability Ω(1/en)\Omega(1/en), the solution x={x1,,xk}x^{*}=\{x_{1},...,x_{k^{*}}\} that includes the largest kk^{*} elements is kept in population and satisfies the chance constraint, and xx^{*} holds

f(x)(1(1kopt)k)f(OPT).f(x^{*})\geq(1-(1-k_{opt})^{k^{*}})\cdot f(OPT).

Note that k<koptkk^{*}<k_{opt}\leq k because of the chance constraint.

We denote xjx^{*}_{j} a subset of xx^{*} with first jj elements (i.e., 1jk1\leq j\leq k^{*} and xj={x1,,xj}xx^{*}_{j}=\{x_{1},...,x_{j}\}\subseteq x^{*}). First, we consider how the SW-GSEMO includes the element xj+1xx_{j+1}\in x^{*} when the solution xjx^{*}_{j} is not dominated by other solutions from the population. Recall that the solution with an empty set is kept in the population already at the beginning. Besides, the surrogate weight of xjx^{*}_{j} is increasing with respect to jj. We assume that the solution xjx^{*}_{j} is in the population at time tj:=enWsg(xj)ln(nk)t_{j}:=enW_{sg}(x^{*}_{j})\ln{(nk)}. By definition of P^\widehat{P}, xjx^{*}_{j} is available for the selection up to time

tj+11=e(Wsg(xj)+1)nln(nk)1t_{j+1}-1=e(W_{sg}(x^{*}_{j})+1)n\ln{(nk)}-1

since

e(Wsg(xj)+1)nln(nk)1tmaxB=Wsg(xj).\left\lfloor\frac{e(W_{sg}(x^{*}_{j})+1)n\ln{(nk)}-1}{t_{max}}\cdot B\right\rfloor=\lfloor W_{sg}(x^{*}_{j})\rfloor.

Furthermore, since 0<da0<d\leq a and c^c^=1\lceil\hat{c}\rceil-\lfloor\hat{c}\rfloor=1, the size of P^\widehat{P} is at most 1 with the effect from the dispersion dd. Consequently, the probability of choosing the subset xjx_{j}^{*} and mutating the element xj+1x_{j+1} is at least 1/en1/en between the time tjt_{j} and tj+11t_{j+1}-1, i.e., for a period of enln(nk)en\ln{(nk)} steps, the probability of those events not processing is at most

(11/(en))enln(nk)1/nk.(1-1/(en))^{en\ln{(nk)}}\leq 1/nk.

Then, we study the case where the solution xjx^{*}_{j} is dominated by an individual solution yy with a larger g1g_{1}-value from the population. That also means xjx^{*}_{j} is not in the current window at time tjt_{j}. We denote yy^{\prime} as the solution if it exists in the current window. Regarding the domination scheme of the algorithm, it implies that g1(xj)g1(y)<g1(y)g_{1}(x^{*}_{j})\leq g_{1}(y)<g_{1}(y^{\prime}) and g2(y,α)<g2(xj,α)g2(y,α)g_{2}(y,\alpha)<g_{2}(x^{*}_{j},\alpha)\leq g_{2}(y^{\prime},\alpha). Considering the Line 6 of sliding-selection in Algorithm 3, the SW-GSEMO uses the solution yy^{\prime} (or yy when no individual is in the current window) for the next mutation. With the probability of at least 1/en1/en, the element xj+1x_{j+1} can be added to the selected solution within the same time period. Consequently, the failure probability is also at most 1/kn1/kn. Besides, the feasible offspring still satisfies f(y{xj+1})f(xj+1)(1(1kopt)j+1)f(OPT)f(y^{\prime}\cup\{x_{j+1}\})\geq f(x^{*}_{j+1})\geq(1-(1-k_{opt})^{j+1})\cdot f(OPT).

By a union bound over the at most kk required successes, the probability of missing including xj+1x_{j+1} to the solution in the period by time tjt_{j} is O(1/n)O(1/n). Then following [17], applying the surrogate for bounding the value of kk^{*} can get (1o(1))(11/e)(1-o(1))(1-1/e)-approximation. ∎

4.2 Uniform Weights with the Same Dispersion

Following the definition from [17], we use the objective function g2^=EW(x)\hat{g_{2}}=E_{W}(x) instead of g2g_{2} and the already mentioned objective function g1g_{1} in the two-dimensional fitness function. Thus, the fitness of a solution xx is evaluated by g^(x)=(g1(x),g^2(x))\hat{g}(x)=(g_{1}(x),\hat{g}_{2}(x)). Consequently, it has another solution yy such that yy is (weakly) dominated by xx iff g1(x)g1(y)g_{1}(x)\geq g_{1}(y) and g2^(x)g2^(y)\hat{g_{2}}(x)\leq\hat{g_{2}}(y). Note that g^2(x)\hat{g}_{2}(x) will be also used in Algorithm 3.

Additionally, let amax=maxviVaia_{max}=\max_{v_{i}\in V}a_{i}, amin=minviVaia_{min}=\min_{v_{i}\in V}a_{i}, and 0<δamin0<\delta\leq a_{min}. Then we show that the SW-GSEMO can get a result with (1/2o(1))(11/e)(1/2-o(1))(1-1/e)-approximation in an efficient runtime if the solution has at least one element (i.e., B/amax=ω(1)B/a_{max}=\omega(1)) in the following theorem.

Theorem 4.2

Let PmaxP_{max} be the maximal size of the population. Consider SW-GSEMO with tmax=2en(B/amin)ln(nB/amin)t_{max}=2en(B/a_{min})\ln(nB/a_{min}) on a monotone submodular function under a chance constraint with uniform weights having the same dispersion. Then with probability 1o(1)1-o(1), a solution that is no worse than (11/2)(1o(1))(1-1/2)(1-o(1))-approximation is obtained within time O(n((B/amin)logn+Pmax))O(n((B/a_{min})\log n+P_{max})).

Proof

Following the proof of theorem 2 in [17], we also adopt g^2\hat{g}_{2}^{*}, the maximal g^2\hat{g}_{2}-value for which g^2g^2\hat{g}_{2}\leq\hat{g}_{2}^{*}, to track the progress of the SW-GSEMO. Recall that the bitstring 0n0^{n} exists in the population at the beginning and g^2\hat{g}_{2}^{*} is non-decreasing. Considering a chosen solution xx for mutation, the algorithm flips a 0-bit of xx corresponding to the largest ratio between the additional gain in g1g_{1} and g^2\hat{g}_{2}. After mutation, the generated solution yy holds

g1(y)[1(1g^2+aminB(k+1))k+1]f(OPT),g_{1}(y)\geq\left[1-\left(1-\frac{\hat{g}_{2}^{*}+a_{min}}{B(k+1)}\right)^{k+1}\right]\cdot f(OPT),

where k=|y|1k=|y|_{1} and OPTOPT is the deterministic optimal solution for the problem with the deterministic uniform weight setting. Note that g^2\hat{g}_{2}^{*} increase by at least amina_{min}.

First, we consider such solution xx is not dominated by any solution in the current population. We prove that the solution xx is chosen and such mutation in xx happens with a high probability in the SW-GSEMO. Note that the g^2(x)\hat{g}_{2}(x) is growing with respect to its size of elements kk. By the definition of the subset P^\widehat{P}, such mutation happens in the time between 2eng^2(x)ln(nB/amin)2en\hat{g}_{2}(x)\ln{(nB/a_{min})} to 2en(g^2(x)+1)ln(nB/amin)12en(\hat{g}_{2}(x)+1)\ln{(nB/a_{min})}-1, since

2en(g^2(x)+1)ln(nB/amin)1tmaxB=g^2(x).\left\lfloor\frac{2en(\hat{g}_{2}(x)+1)\ln{(nB/a_{min})}-1}{t_{max}}\cdot B\right\rfloor=\hat{g}_{2}(x).

Thus, the available period is 2enln(nB/amin)2en\ln{(nB/a_{min})}. Since c^c^=1\lceil\hat{c}\rceil-\lfloor\hat{c}\rfloor=1, the size of P^\widehat{P} consequently is bound by 22 as g^2(x)=Ew(x)\hat{g}_{2}(x)=E_{w}(x) (recall the setting where all the expected weighs are positive integers). Then we have such one bit of flipping that occurs with a probability of at least 1/2en1/2en. Furthermore, the probability of the mutation that does not happen in the period is bounded by

(11/(2en))2enln(nB/amin)1n(B/amin).(1-1/(2en))^{2en\ln{(nB/a_{min})}}\leq\frac{1}{n(B/a_{min)}}.

Now we investigate the case when there is a solution yy^{\prime} dominates the solution xx. That means xx does not exist in the current window at the time 2eng^2(x)ln(nB/amin)2en\hat{g}_{2}(x)\ln{(nB/a_{min})}. Recall that there are at most two individuals in the current window. We denote them by y1y^{\prime}_{1} and y2y^{\prime}_{2}, which are satisfies g1(x)g1(y)<g1(y1)<g1(y2)g_{1}(x)\leq g_{1}(y^{\prime})<g_{1}(y^{\prime}_{1})<g_{1}(y^{\prime}_{2}) and g^2(y)g^2(x)=g^2(y1)<g^2(y2)\hat{g}_{2}(y^{\prime})\leq\hat{g}_{2}(x)=\hat{g}_{2}(y^{\prime}_{1})<\hat{g}_{2}(y^{\prime}_{2}) (or g^2(y)g^2(y1)<g^2(x)=g^2(y2)\hat{g}_{2}(y^{\prime})\leq\hat{g}_{2}(y^{\prime}_{1})<\hat{g}_{2}(x)=\hat{g}_{2}(y^{\prime}_{2})). Regarding the sliding selection, Both solutions y1y^{\prime}_{1} and y2y^{\prime}_{2} (or yy^{\prime} when no individual is in the current window) are good to be selected for the mutation since their function values are larger than the value of solution xx. Therefore, such a 1-bit flipping to get a qualified solution yy is under the probability 1/en1/en. Within the same period, the probability of failure is bounded by o(amin/nB)o(a_{min}/{nB}).

By a union bound over at most B/aminB/a_{min} required successes, the probability of failing to achieve at least one success is at most 1/n1/n. Therefore, the solution yy can be obtained in the SW-GSEMO with the probability of at least 11/n=1o(1)1-1/n=1-o(1).

Let xx^{*} be the feasible solution with |x|1=k|x^{*}|_{1}=k^{*} in the population, which has the largest surrogate weights. Here we consider the single element vv^{*} having the largest g1g_{1}-value but not included in xx^{*}. Following the work [17], the algorithm can obtain a solution xx^{\prime} that only contains vv^{*} from the initial solution 0n0^{n} by flipping only one zero bit in the expected time O(Pmaxn)O(P_{max}n), where PmaxP_{max} is the maximal size of population for the algorithm. Then after applying the surrogate for bounding the value of kk^{*} as desired in [17], the quality of xx^{*} or xx^{\prime} is (1/2o(1))(11/e)(1/2-o(1))(1-1/e). Finally, the expected time of SW-GSEMO to get the expected result is O(n((B/amin)logn+Pmax))O(n((B/a_{min})\log n+P_{max})). ∎

Backing into the special case of uniform IID weights, we note that a=amax=amina=a_{max}=a_{min}, the size of the population is at most k=min{n+1,B/a+1}k=\min\{n+1,\lfloor B/a\rfloor+1\}, and the solution xx^{*} already contains the element with the largest g1g_{1}-value. Besides, as the effect of the uncertainty, the window only includes at most 1 solution. Therefore, xx^{*} gives a (1o(1))(11/e)(1-o(1))(1-1/e)- approximation and the expected time to get xx^{*} is bounded by O(nklogn)O(nk\log n), which matches the result proved in Theorem 4.1.

5 Experiments

The experimental investigations of the SW-GSEMO based on the different surrogate functions are proposed here. The results are compared with those generated from the GSEMO and the NSGA-II in various instances.

5.1 Experimental setup

The maximum coverage problem (MCP) based on the graph [6, 10] is studied in the experiments, which is one of the famous submodular combinatorial optimization problems. For the MCP, given an undirected graph G={V,E}G=\{V,E\} with n=|V|n=|V| nodes, we denote N(V)N(V^{\prime}) the number of all nodes of VVV^{\prime}\subseteq V and their neighbors in the graph GG. The goal of the problem is to find a subset of nodes VV^{\prime} so that the nodes in the subset can cover more to their neighbors and themselves under the chance constraint with a deterministic bound BB. Also, each node vVv\in V has a stochastic weight W(v)W(v). Therefore, the chance-constrained version of the problem is formulated as

argmaxVVN(V)s.tPr[W(V)>B]α.\operatorname*{argmax}_{V^{\prime}\subseteq V}N(V^{\prime})~{}s.t~{}Pr[W(V^{\prime})>B]\leq\alpha. (3)

Here some larger sparse graphs from the network data repository [28] are considered to construct the instance of MCP. The previous works [17] studied the performance of GSEMO on the problem based on some small and dense graphs and showed it can easily cover most nodes even given a small bound. Thus, utilizing the larger sparse graphs can help us easily compare the results between the different algorithms. Those graphs ca-CSphd, ca-GrQc, and ca-ConMat are applied, which respectively contain 1,8821,882, 4,1584,158, and 21,36321,363 nodes.

For the experiments under uniform IID weights, each node vv is assigned a unit expected weight (i.e., a=1a=1) and the dispersion d=0.5.d=0.5. Additionally, for the experiments considering uniform weights with the same dispersion, the expected weight of each node is based on its degree, which is expressed as ai=D(vi)+1a_{i}=D(v_{i})+1 where D(vi)D(v_{i}) is the degree of viv_{i} in graph GG. For the dispersion, we set d=1d=1 to ensure daid\leq a_{i}. Besides, we employ B{n,n/20,n/10}B\in\{\sqrt{n},\lfloor n/20\rfloor,\lfloor n/10\rfloor\} to ensure that the bounds are proportional to the number of nodes in the graphs under study.

For all experiments, the problem is tested with α[0.001,0.1]\alpha\in[0.001,0.1]. In terms of the GSEMO and the SW-GSEMO, the total iterations (or total time) are considered different as tmax{500000,1000000,1500000}.t_{max}\in\{500000,1000000,1500000\}. Regarding the NSGA-II , the initial solutions are set to the 0n0^{n} strings. Its population sizes are set as 2020 and 100100 with the numbers of generated children 1010 and 5050 respectively. Thus, to keep the same fitness evaluation counts as other algorithms, the max iterations for the NSGA-II are tmax/10t_{max}/10 and tmax/50t_{max}/50 respectively. Moreover, we adopt the Kruskal-Wallis test with 95% confidence in order to assess the statistical validity of our results. The Bonferroni post-hoc statistical procedure is employed for multiple comparisons of a control algorithm [2]. For the given instance, X(+)X^{(+)} is equivalent to the statement that the algorithm in the column is statistically better than the algorithm XX for the tested instance. Conversely, X()X^{(-)} is equivalent to the statement that XX outperformed the algorithm, while X(=)X^{(=)} demonstrates that the algorithm given in the column and XX have a comparable performance.

Table 1: Results for maximum coverage problem with IID weight
GSEMO with WchebW_{cheb} (1) SW-GSEMO with WchebW_{cheb} (2) NSGAII20NSGA-II_{20} with WchebW_{cheb}(3) NSGAII100NSGA-II_{100} with WchebW_{cheb}(4)
Graph Surrogate BB tmaxt_{max} α\alpha Mean std stat Mean std stat Mean std stat Mean std stat
ca-CondaMat Chebyshev 146 1500000 0.1 5588 47.265 2(-),3(+),4(-) 6790.966 12.335 1(+),3(+),4(+) 5187.966 95.708 1(-),2(-),4(-) 6330.3 36.893 1(+),2(-),3(+)
0.001 4153.733 43.338 2(-),3(+),4(-) 4748.166 7.585 1(+),3(+),4(+) 3802.733 75.95 1(-),2(-),4(-) 4531.83 33.061 1(+),2(-),3(+)
1000000 0.1 5500.73 47.67 2(-),3(+),4(-) 6771.366 16.3 1(+),3(+),4(+) 4945.9 113.293 1(-),2(-),4(-) 6281 46.322 1(+),2(-),3(+)
0.001 3957.5 40.782 2(-),3(+),4(-) 4736.133 10.375 1(+),3(+),4(+) 3709.06 96.656 1(-),2(-),4(-) 4496.7 28.765 1(+),2(-),3(+)
500000 0.1 4818.53 47.71 2(-),3(+),4(-) 6708.366 27.316 1(+),3(+),4(+) 4685.333 114.8373 1(-),2(-),4(-) 6115.233 54.393 1(+),2(-),3(+)
0.001 3648.3 65.33 2(-),3(+),4(-) 4581.633 36.88 1(+),3(+),4(+) 3469.766 73.953 1(-),2(-),4(-) 4395.566 43.076 1(+),2(-),3(+)
1068 1500000 0.1 11787.533 57.133 2(-),3(+),4(-) 16650.933 14.163 1(+),3(+),4(+) 12284.866 142.248 1(-),2(-),4(-) 13394.133 75.448 1(+),2(-),3(+)
0.001 10893.9 61.683 2(-),3(+),4(-) 15217.3 14.45 1(+),3(+),4(+) 10950.3 122.3 1(-),2(-),4(-) 12241.966 72.716 1(+),2(-),3(+)
1000000 0.1 11194.23 72.488 2(-),3(-),4(-) 16573.6 19.608 1(+),3(+),4(+) 11623.93 119.467 1(+),2(-),4(-) 13164.2 60.07 1(+),2(-),3(+)
0.001 10364.53 58.95 2(-),3(+),4(-) 15145.666 14.485 1(+),3(+),4(+) 9987.13 123.936 1(-),2(-),4(-) 12040.166 99.78 1(+),2(-),3(+)
500000 0.1 9474.733 111.851 2(-),3(-),4(-) 16368.6 27.005 1(+),3(+),4(+) 10729.133 180.573 1(+),2(-),4(-) 12708.533 82.447 1(+),2(-),3(+)
0.001 9344.733 84.931 2(-),3(-),4(-) 14947.6 22.553 1(+),3(+),4(+) 9502.2 142.003 1(+),2(-),4(-) 11581.066 84.55 1(+),2(-),3(+)
2136 1500000 0.1 12749.533 93.378 2(-),3(-),4(-) 20078.833 11.066 1(+),3(+),4(+) 16361.766 67.76 1(+),2(-),4(-) 16243.166 68.601 1(+),2(-),3(+)
0.001 12730.3 91.025 2(-),3(-),4(-) 19327.433 11.221 1(+),3(+),4(+) 15224.733 66.313 1(+),2(-),4(-) 15402.133 96.35 1(+),2(-),3(+)
1000000 0.1 11520.966 129.843 2(-),3(-),4(-) 20016.2 16.172 1(+),3(+),4(+) 15696.5 116.216 1(+),2(-),4(-) 16020.633 88.739 1(+),2(-),3(+)
0.001 11500.633 114.875 2(-),3(-),4(-) 19245.233 15.532 1(+),3(+),4(+) 14544.63 98.014 1(+),2(-),4(-) 15155.4 74.248 1(+),2(-),3(+)
500000 0.1 9488.333 90.631 2(-),3(-),4(-) 19822.566 20.619 1(+),3(+),4(+) 14592.466 104.587 1(+),2(-),4(-) 14734.2 230.948 1(+),2(-),3(+)
0.001 9483.6 88.03 2(-),3(-),4(-) 19030.533 21.451 1(+),3(+),4(+) 13456.133 89.165 1(+),2(-),4(-) 14399.233 152.192 1(+),2(-),3(+)
ca-CondaMat Chernoff 146 1500000 0.1 5321.1333 40.291 2(-),3(+),4(-) 6424.2 10.403 1(+),3(+),4(+) 4931.833 82.145 1(-),2(-),4(-) 6018.066 41.946 1(+),2(-),3(+)
0.001 5027.166 49.31 2(-),3(+),4(-) 5994.833 10.96 1(+),3(+),4(+) 4622.866 96.07 1(-),2(-),4(-) 5652.833 41.121 1(+),2(-),3(+)
1000000 0.1 5059.6 39.678 2(-),3(+),4(-) 6397.966 14.943 1(+),3(+),4(+) 4755.133 73.411 1(-),2(-),4(-) 5954.966 50.251 1(+),2(-),3(+)
0.001 4784.766 54.93 2(-),3(+),4(-) 5979.9 16.912 1(+),3(+),4(+) 4441.5 126.327 1(-),2(-),4(-) 5582.666 38.694 1(+),2(-),3(+)
500000 0.1 4625.4 60.563 2(-),3(+),4(-) 6328.2 31.971 1(+),3(+),4(+) 4443.2 84.517 1(-),2(-),4(-) 5787.266 63.911 1(+),2(-),3(+)
0.001 4344.33 59.972 2(-),3(+),4(-) 5898.133 22.47 1(+),3(+),4(+) 4170 103.826 1(-),2(-),4(-) 5437.7 43.076 1(+),2(-),3(+)
1068 1500000 0.1 11632.833 52.573 2(-),3(-),4(-) 16650.933 14.163 1(+),3(+),4(+) 12054.233 126.656 1(+),2(-),4(-) 13206.26 65.605 1(+),2(-),3(+)
0.001 11464.966 61.738 2(-),3(-),4(-) 15217.3 14.45 1(+),3(+),4(+) 11783.9 95.969 1(+),2(-),4(-) 12974.86 85.587 1(+),2(-),3(+)
1000000 0.1 11059.2 73.482 2(-),3(-),4(-) 16343.833 16.806 1(+),3(+),4(+) 11441.2 145.704 1(+),2(-),4(-) 12961.266 85.324 1(+),2(-),3(+)
0.001 10914.833 76.11 2(-),3(-),4(-) 16052.866 19.687 1(+),3(+),4(+) 11208.1 91.525 1(+),2(-),4(-) 12779.033 59.812 1(+),2(-),3(+)
500000 0.1 9482.966 92.698 2(-),3(-),4(-) 16129.133 27.284 1(+),3(+),4(+) 10487.566 128.411 1(+),2(-),4(-) 12489.3 88.034 1(+),2(-),3(+)
0.001 9466.433 113.403 2(-),3(-),4(-) 15840.433 26.94 1(+),3(+),4(+) 10254.133 130.19 1(+),2(-),4(-) 12309.4 81.884 1(+),2(-),3(+)
2136 1500000 0.1 12719.533 106.011 2(-),3(-),4(-) 19955.3 10.312 1(+),3(+),4(+) 16187.466 93.583 1(+),2(-),4(-) 16130.1 80.711 1(+),2(-),3(+)
0.001 12701.7 90.339 2(-),3(-),4(-) 19813.8 14.041 1(+),3(+),4(+) 16006.8 109.226 1(+),2(-),4(-) 15964.933 75.003 1(+),2(-),3(+)
1000000 0.1 11481.066 98.619 2(-),3(-),4(-) 19891.466 13.197 1(+),3(+),4(+) 15519.3 102.403 1(+),2(-),4(-) 15812.433 93.623 1(+),2(-),3(+)
0.001 11458.1 116.396 2(-),3(-),4(-) 19750.366 12.084 1(+),3(+),4(+) 15323.266 103.988 1(+),2(-),4(-) 15684.533 83.137 1(+),2(-),3(+)
500000 0.1 9451.033 105.529 2(-),3(-),4(-) 19697.033 17.995 1(+),3(+),4(+) 14435.233 101.01 1(+),2(-),4(-) 14650.033 289.611 1(+),2(-),3(+)
0.001 9460.666 116.783 2(-),3(-),4(-) 19540.266 18.77 1(+),3(+),4(+) 14218.8 129.106 1(+),2(-),4(-) 14586.566 214.181 1(+),2(-),3(+)

5.2 Experimental results

In the experiments, we first investigate the performance of SW-GSEMO on the problem with different settings. Then, we visualize and demonstrate the behavior of the sliding-selection approach working in the optimization.

5.2.1 Results comparison

Table 1 and 2 displays the final function values achieved by the algorithms in the problem with different settings, which vary based on the surrogate functions used, and are tested across different iterations and values of α\alpha. Additional results are provided in Tables 4, 5, 6 and 7 in Appendix111Appendix is in here.. Overall, for smaller graphs with a lower bound BB, the SW-GSEMO, GSEMO, and NSGA-II with different population sizes perform comparably. However, the NSGA-II can get better results when the expected weights are uniform, which is reflected in Table 2. For larger graph instances with larger bounds, the SW-GSEMO gradually surpasses the other algorithms in performance. The mean and standard deviation of the SW-GSEMO’s results are also comparable to those of other algorithms across instances with varying tmaxt_{max}. It is observed that as tmaxt_{max} increases, the general performance of all algorithms improves. Moreover, while the function value differences for various α\alpha are not significant in larger graphs with higher bounds, they become substantial in smaller graphs. Interestingly, the performance of the NSGA-II with population sizes of 20 and 100 is superior to that of the GSEMO in larger, sparser graph cases. This observation contrasts with findings from previous work [17], which uses dense graphs. In terms of evaluating the problem with chance constraints by different surrogate methods, the results from Table 1 and 2 suggest that algorithms employing the one-sided Chebyshev’s inequality are better than those using the Chernoff bound when α\alpha is large. On the other hand, the performance of algorithms based on the Chernoff bound becomes worse with smaller α\alpha values.

Table 2: Results for maximum coverage problem with uniform weights with same dispersion
GSEMO (9) SW-GSEMO (10) NSGAII20NSGA-II_{20} (11) NSGAII100NSGA-II_{100} (12)
Graph Surrogate BB tmaxt_{max} α\alpha Mean std stat Mean std stat Mean std stat Mean std stat
ca-CondaMat Chebyshev 146 1500000 0.1 141.266 0.679 10(=),11(=),12(=) 141.8 0.979 9(=),11(=),12(=) 141.266 0.813 9(=),10(=),12(=) 141.8 0.979 9(=),10(=),11(=)
0.001 122.9 3.014 10(-),11(-),12(-) 125.933 0.249 9(+),11(=),12(=) 125.7 0.458 9(+),10(=),12(=) 126 0 9(+),10(=),11(=)
1000000 0.1 141.2 0.6 10(=),11(=),12(=) 141.733 0.963 9(=),11(=),12(=) 141 0.632 9(=),10(=),12(=) 141.533 0.884 9(=),10(=),11(=)
0.001 122.23 3.051 10(-),11(-),12(-) 125.9 0.3 9(+),11(=),12(=) 125.366 1.048 9(+),10(=),12(=) 126 0 9(+),10(=),11(=)
500000 0.1 141.133 0.498 10(=),11(=),12(=) 141.8 0.979 9(=),11(=),12(=) 140.833 0.734 9(=),10(=),12(=) 141.333 0.745 9(=),10(=),11(=)
0.001 120.733 3.172 10(-),11(-),12(-) 125.6 0.663 9(+),11(=),12(=) 124.066 2.657 9(+),10(=),12(=) 125.7 0.458 9(+),10(=),11(=)
1068 1500000 0.1 1037.266 1.093 10(-),11(+),12(=) 1044.833 0.933 9(+),11(+),12(+) 1015.333 4.706 9(-),10(-),12(-) 1037.833 2.646 9(=),10(-),12(+)
0.001 978.4 2.751 10(-),11(+),12(-) 991.766 2.347 9(+),11(+),12(=) 959.566 10.892 9(-),10(-),12(-) 992.2 3.664 9(+),10(=),11(+)
1000000 0.1 1034.933 1.152 10(-),11(+),12(=) 1044.133 1.231 9(+),11(+),12(+) 1012.333 5.204 9(-),10(-),12(-) 1036.833 2.956 9(=),10(-),12(+)
0.001 975.1 2.3288 10(-),11(+),12(-) 989.5 2.202 9(+),11(+),12(=) 954.866 10.616 9(-),10(-),12(-) 991.3 3.377 9(+),10(=),11(+)
500000 0.1 1030.833 1.293 10(-),11(+),12(+) 1041.633 1.251 9(+),11(+),12(+) 1008.633 6.441 9(-),10(-),12(-) 1035.233 2.641 9(+),10(-),12(+)
0.001 967.666 3.418 10(-),11(+),12(-) 985.9 2.748 9(+),11(+),12(=) 947.233 10.932 9(-),10(-),12(-) 988.866 4.145 9(+),10(=),11(+)
2136 1500000 0.1 2035.066 2.92 10(-),11(+),12(+) 2071.066 1.412 9(+),11(+),12(+) 1963.4 9.844 9(-),10(-),12(-) 2025.6 5.689 9(+),10(-),11(+)
0.001 1925.3 3.671 10(-),11(+),12(-) 1972.433 3.402 9(+),11(+),12(+) 1850.633 13.345 9(-),10(-),12(-) 1942.566 6.189 9(+),10(-),11(+)
1000000 0.1 2026.966 3.341 10(-),11(+),12(+) 2068.033 1.905 9(+),11(+),12(+) 1956.3 9.987 9(-),10(-),12(-) 2022.6 6.58 9(+),10(-),11(+)
0.001 1914.7 3.831 10(-),11(+),12(-) 1969.433 3.666 9(+),11(+),12(+) 1839.766 13.313 9(-),10(-),12(-) 1939.833 7.55 9(+),10(-),11(+)
500000 0.1 2009.366 4.214 10(-),11(+),12(-) 2063.166 2.852 9(+),11(+),12(+) 1941.3 11.346 9(-),10(-),12(-) 2016.5 5.942 9(+),10(-),11(+)
0.001 1893.5 4.055 10(-),11(+),12(-) 1960 3.705 9(+),11(+),12(+) 1821 14.61 9(-),10(-),12(-) 1931.866 6.443 9(+),10(-),11(+)
ca-CondaMat Chernoff 146 1500000 0.1 139 0 10(=),11(=),12(=) 139 0 9(=),11(=),12(=) 139 0 9(=),10(=),12(=) 139 0 9(=),10(=),11(=)
0.001 137.1 1.445 10(=),11(=),12(=) 138.2 1.326 9(=),11(=),12(=) 136.9 1.374 9(=),10(=),12(=) 138.3 1.268 9(=),10(=),11(=)
1000000 0.1 139 0 10(=),11(=),12(=) 139 0 9(=),11(=),12(=) 139 0 9(=),10(=),12(=) 139 0 9(=),10(=),11(=)
0.001 136.7 1.1268 10(=),11(=),12(=) 137.8 1.469 9(=),11(=),12(=) 136.5 1.118 9(=),10(=),12(=) 138 1.414 9(=),10(=),11(=)
500000 0.1 139 0 10(=),11(+),12(=) 139 0 9(=),11(+),12(=) 138.966 0.179 9(-),10(-),12(-) 139 0 9(=),10(=),11(+)
0.001 136.4 1.019 10(=),11(=),12(=) 136.8 1.326 9(=),11(=),12(=) 136.266 0.928 9(=),10(=),12(=) 137.1 1.445 9(=),10(=),11(=)
1068 1500000 0.1 1031.266 1.59 10(-),11(+),12(=) 1039.366 1.139 9(+),11(+),12(+) 1008.4 5.505 9(-),10(-),12(-) 1033.966 2.994 9(=),10(-),11(+)
0.001 1022.533 1.726 10(-),11(+),12(-) 1031.533 0.956 9(+),11(+),12(+) 1001.133 5.754 9(-),10(-),12(-) 1026.966 2.575 9(+),10(-),11(+)
1000000 0.1 1029.066 1.31 10(-),11(+),12(-) 1038.166 1.097 9(+),11(+),12(+) 1005.833 6.044 9(-),10(-),12(-) 1033.266 3.203 9(+),10(-),11(+)
0.001 1019.466 1.783 10(-),11(+),12(-) 1030.366 1.425 9(+),11(+),12(=) 997.466 6.463 9(-),10(-),12(-) 1026.066 2.249 9(+),10(=),11(+)
500000 0.1 1024.633 1.87 10(-),11(+),12(-) 1036.133 0.956 9(+),11(+),12(+) 1000.7 7.299 9(-),10(-),12(-) 1031.766 3.921 9(+),10(-),11(+)
0.001 1014.1 2.211 10(-),11(+),12(-) 1027.833 1.507 9(+),11(+),12(=) 992.5 7.069 9(-),10(-),12(-) 1024.866 2.459 9(+),10(=),11(+)
2136 1500000 0.1 2023.533 2.704 10(-),11(+),12(+) 2062.166 1.881 9(+),11(+),12(+) 1949.366 9.064 9(-),10(-),12(-) 2019.5 6.687 9(+),10(-),11(+)
0.001 2006.533 2.376 10(-),11(+),12(+) 2041.2 2.072 9(+),11(+),12(+) 1932.4 10.694 9(-),10(-),12(-) 2003.3 5.502 9(+),10(-),11(+)
1000000 0.1 2015.366 3.219 10(-),11(+),12(=) 2059.433 1.994 9(+),11(+),12(+) 1942.266 9.051 9(-),10(-),12(-) 2014.9 5.497 9(+),10(-),11(+)
0.001 1997.5 3.232 10(-),11(+),12(-) 2046.233 1.977 9(+),11(+),12(+) 1924.566 11.632 9(-),10(-),12(-) 2000.533 6.173 9(+),10(-),11(+)
500000 0.1 1995.8 3.187 10(-),11(+),12(-) 2052.833 2.296 9(+),11(+),12(+) 1929.9 10.077 9(-),10(-),12(-) 2008.766 6.897 9(+),10(-),11(+)
0.001 1977.633 2.857 10(-),11(+),12(-) 2037.933 2.555 9(+),11(+),12(+) 1909.133 12.164 9(-),10(-),12(-) 1993.9 7.449 9(+),10(-),11(+)
Table 3: Average number of trade-off solutions obtained by GSEMO and SW-GSEMO in ca-CondaMat with IID weights
BB tmaxt_{max} α\alpha
GSEMO
WchebW_{cheb}
SW-GSEMO
WchebW_{cheb}
GSEMO
WchernW_{chern}
SW-GSEMO
WchernW_{chern}
ca-CondaMat 146 1.5M 0.1 136 136 122 122
0.001 70 70 107 107
1.0M 0.1 135 136 122 122
0.001 70 70 107 107
0.5M 0.1 136 136 122 122
0.001 70 70 107 107
1068 1.5M 0.1 927 1039 880 998
0.001 753 808 860 948
1.0M 0.1 883 1040 858 997
0.001 728 809 807 949
0.5M 0.1 720 1034 731 997
0.001 652 809 733 948
2136 1.5M 0.1 1160 2066 1174 2024
0.001 1174 1752 1217 1960
1.0M 0.1 968 2073 1006 2022
0.001 984 1747 989 1947
0.5M 0.1 707 2050 776 1726
0.001 748 1735 731 1930
Refer to caption
(a) IID weights
Refer to caption
(b) Uniform weights
Figure 1: Optimization process of SW-GSEMO for ca-CondaMat
Refer to caption
(a) Chebshev’s Inequality
Refer to caption
(b) Chernoff bound
Figure 2: Different surrogate weights obtained during optimization by the SW-GSEMO based on different surrogates in ca-CSphd with IID weights

Table 3 shows the average number of trade-off solutions obtained by the GSEMO and SW-GSEMO using different surrogate functions on the problem based on the graph ca-CondaMat with IID weights. Notably, the SW-GSEMO produces a greater number of trade-off solutions in the final population than the GSEMO, particularly as the bound increases. Furthermore, the table reveals that the number of solutions in the population is consistently lower than kk (as defined in Section 4.1, where k=min{n+1,(B/a+1)}k=min\{n+1,\lfloor(B/a+1)\rfloor\}). When comparing with the deterministic setting, it is observed that the number of trade-off solutions generated by the algorithms in the IID weight setting decreases by almost 50% when α=0.001\alpha=0.001, particularly when using the surrogate function based on one-sided Chebyshev’s inequality.

5.2.2 Visualization of SW-GSEMO

To focus on the SW-GSEMO’s performance in optimizing chance-constrained problems, Figures 1(a) and 1(b) offer an illustrative example of the optimization process. The figures illustrate the relationship between the surrogate weight and the function value of the solutions selected for the population, with different colors labeling solutions based on whether their parents were within the defined weight window. Initially, an increase in function value corresponding to an increase in surrogate weight is observed. It’s noteworthy that the same surrogate weight might correspond to multiple distinct function values. According to the algorithm’s domination scheme, among solutions with the same surrogate weight, all except the one with the highest function value are eliminated from the population. Besides, the figures highlight that there are some periods where the SW-GSEMO is unable to include any individuals within the window (particularly when the expected weights are uniform). Despite these periods, the sliding window mechanism remains effective throughout the optimization process, aiding the algorithm in achieving satisfactory results. Additionally, those blue search points are also close to the Pareto front area and do not impact the final results.

Additionally, Figures 2(a) and 2(b) describe the changes in surrogate weights of solutions across iterations. A noticeable trend is that the sliding windows align the surrogate weights in a linear pattern, where the surrogate weight generally increases with more iterations. Figure 2(a) indicates that the surrogate weight derived from the one-sided Chebyshev’s inequality is lower than that from the Chernoff bound when α=0.1\alpha=0.1. Conversely, Figure 2(b) shows the opposite trend when α=0.001\alpha=0.001. Furthermore, due to the influence of the chance constraint, the sliding-selection method, when using the surrogate weight, allows only one individual within the window under the IID wights setting for the instances that are applied to the IID weights setting according to Figure 2(b), aligning with our analysis in Section 4.1.

6 Conclusion

In this paper, we investigated the use of SW-GSEMO on chance-constrained monotone submodular optimization problems with IID weights and uniform weights with the same dispersion. Surrogate functions based on Chebshev’s inequality and Chernoff bound have been applied to evaluate the chance constraint. We showed theoretically that the SW-GSEMO with the surrogate can reach the same approximation result in a more efficient way than the GSEMO that was studied in previous work. Furthermore, the algorithm is applied to the maximum coverage problem in the experiments and its results are compared with other multi-objective algorithms under variable instances constructed by different graphs. The experiments demonstrated that the window defined in SW-GSEMO is sliding in the weight interval during the optimization. Additionally, the obtained results show that the SW-GSEMO with the surrogate based on one-sided Chebyshev’s inequality performs better than the GSEMO and NSGA-II (with population sizes 20 and 100) among most of the instances when α\alpha is larger, and the SW-GSEMO using the Chernoff bound works best when α\alpha is smaller. For future work, it would be interesting to consider other generalized settings with different distributions and covariances as part of the chance-constrained formulation.

{credits}

6.0.1 Acknowledgements

This work has been supported by the Australian Research Council (ARC) through grant FT200100536.

References

  • [1] Charnes, A., Cooper, W.W.: Chance-constrained programming. Management science 6(1), 73–79 (1959)
  • [2] Corder, G.W., Foreman, D.I.: Nonparametric statistics for non-statisticians (2011)
  • [3] Corus, D., Lehre, P.K., Neumann, F.: The generalized minimum spanning tree problem: a parameterized complexity analysis of bi-level optimisation. In: Proceedings of the 15th annual conference on Genetic and evolutionary computation. pp. 519–526 (2013)
  • [4] Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A.: Optimization of chance-constrained submodular functions. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 1460–1467 (2020)
  • [5] Don, T.P., Neumann, A., Neumann, F.: The chance constrained travelling thief problem: Problem formulations and algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024), to appear
  • [6] Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM (JACM) 45(4), 634–652 (1998)
  • [7] Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Analyses of simple hybrid algorithms for the vertex cover problem. Evolutionary Computation 17(1), 3–19 (2009)
  • [8] Friedrich, T., Hebbinghaus, N., Neumann, F., He, J., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. pp. 797–804 (2007)
  • [9] Iwamura, K., Liu, B.: A genetic algorithm for chance constrained programming. Journal of Information and Optimization sciences 17(2), 409–422 (1996)
  • [10] Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Information processing letters 70(1), 39–45 (1999)
  • [11] Kratsch, S., Lehre, P.K., Neumann, F., Oliveto, P.S.: Fixed parameter evolutionary algorithms and maximum leaf spanning trees: A matter of mutation. In: Parallel Problem Solving from Nature, PPSN XI: 11th International Conference, Kraków, Poland, September 11-15, 2010, Proceedings, Part I 11. pp. 204–213. Springer (2010)
  • [12] Lehre, P.K., Qin, X.: More precise runtime analyses of non-elitist eas in uncertain environments. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp. 1160–1168 (2021)
  • [13] Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 420–429 (2007)
  • [14] Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in dynamic optimization. Algorithmica 78, 641–659 (2017)
  • [15] Miller, B.L., Wagner, H.M.: Chance constrained programming with joint constraints. Operations Research 13(6), 930–945 (1965)
  • [16] Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions—i. Mathematical programming 14(1), 265–294 (1978)
  • [17] Neumann, A., Neumann, F.: Optimising monotone chance-constrained submodular functions using evolutionary multi-objective algorithms. In: Parallel Problem Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12269, pp. 404–417. Springer (2020)
  • [18] Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms in dynamic and stochastic environments. Theory of evolutionary computation: recent developments in discrete optimization pp. 323–357 (2020)
  • [19] Neumann, F., Sutton, A.M.: Runtime analysis of evolutionary algorithms for the knapsack problem with favorably correlated weights. In: International Conference on Parallel Problem Solving from Nature. pp. 141–152. Springer (2018)
  • [20] Neumann, F., Witt, C.: On the runtime of randomized local search and simple evolutionary algorithms for dynamic makespan scheduling. In: 24th International Joint Conference on Artificial Intelligence. pp. 3742–3748. AAAI Press (2015)
  • [21] Neumann, F., Witt, C.: Fast pareto optimization using sliding window selection. In: ECAI 2023, pp. 1771–1778. IOS Press (2023)
  • [22] Pathiranage, I.H., Neumann, F., Antipov, D., Neumann, A.: Effective 2- and 3-objective moea/d approaches for the chance constrained knapsack problem. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024), to appear
  • [23] Pathiranage, I.H., Neumann, F., Antipov, D., Neumann, A.: Using 3-objective evolutionary algorithms for the dynamic chance constrained knapsack problem. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024), to appear
  • [24] Perera, K., Neumann, A.: Multi-objective evolutionary algorithms with sliding window selection for the dynamic chance-constrained knapsack problem. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024), to appear
  • [25] Poojari, C.A., Varghese, B.: Genetic algorithm based technique for solving chance constrained problems. European journal of operational research 185(3), 1128–1154 (2008)
  • [26] Roostapour, V., Neumann, A., Neumann, F.: On the performance of baseline evolutionary algorithms on the dynamic knapsack problem. In: International Conference on Parallel Problem Solving from Nature. pp. 158–169. Springer (2018)
  • [27] Roostapour, V., Neumann, A., Neumann, F., Friedrich, T.: Pareto optimization for subset selection with dynamic cost constraints. Artificial Intelligence 302, 103597 (2022)
  • [28] Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the AAAI conference on artificial intelligence. vol. 29 (2015)
  • [29] Shi, F., Neumann, F., Wang, J.: Runtime analysis of randomized search heuristics for the dynamic weighted vertex cover problem. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp. 1515–1522 (2018)
  • [30] Shi, F., Yan, X., Neumann, F.: Runtime analysis of simple evolutionary algorithms for the chance-constrained makespan scheduling problem. In: International Conference on Parallel Problem Solving from Nature. pp. 526–541. Springer (2022)
  • [31] Wu, J., Polyakovskiy, S., Neumann, F.: On the impact of the renting rate for the unconstrained nonlinear knapsack problem. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016. pp. 413–419 (2016)
  • [32] Yan, X., Do, A.V., Shi, F., Qin, X., Neumann, F.: Optimizing chance-constrained submodular problems with variable uncertainties. In: ECAI 2023, pp. 2826–2833. IOS Press (2023)
  • [33] Yan, X., Neumann, A., Neumann, F.: Sampling-based pareto optimization for chance-constrained monotone submodular problems. In: Genetic and Evolutionary Computation Conference, GECCO 2024. ACM (2024), to appear
  • [34] Yaroslavtsev, G., Zhou, S., Avdiukhin, D.: “bring your own greedy”+ max: Near-optimal 1/2-approximations for submodular knapsack. In: International Conference on Artificial Intelligence and Statistics. pp. 3263–3274. PMLR (2020)

Appendix 0.A Tables

Table 4: Results for Maximum coverage problem with IID weights where the evaluation is based on Chebyshev’s equality
GSEMO (1) SW-GSEMO (2) NSGAII20NSGA-II_{20} (3) NSGAII100NSGA-II_{100} (4)
Graph BB tmaxt_{max} α\alpha Mean std stat Mean std stat Mean std stat Mean std stat
ca-CSphd 43 1500000 0.1 546 0 2(=),3(+),4(+) 546 0 1(=),3(+),4(+) 533.566 5.064 1(-),2(-),4(-) 545.233 0.76 1(-),2(-),3(+)
0.001 238 0 2(=),3(+),4(=) 238 0 1(=),3(+),4(=) 237.6 0.611 1(-),2(-),4(-) 238 0 1(=),2(=),3(-)
1000000 0.1 545.966 0.179 2(-),3(+),4(+) 546 0 1(=),3(+),4(+) 528.933 6.196 1(-),2(-),4(-) 544.733 1.123 1(-),2(-),3(+)
0.001 238 0 2(=),3(+),4(=) 238 0 1(=),3(+),4(=) 236.933 0.727 1(-),2(-),4(-) 238 0 1(=),2(=),3(+)
500000 0.1 543 2.065 2(-),3(+),4(-) 546 0 1(+),3(+),4(+) 517.266 8.35 1(-),2(-),4(-) 543.533 1.477 1(+),2(-),3(+)
0.001 238 0 2(=),3(+),4(+) 238 0 1(=),3(+),4(+) 235.966 1.538 1(-),2(-),4(-) 237.9 0.3 1(-),2(-),3(+)
94 1500000 0.1 880.993 0.727 2(-),3(+),4(+) 883 0 1(-),3(+),4(+) 857.766 6.173 1(-),2(-),4(-) 870.133 2.753 1(-),2(-),3(+)
0.001 546 0 2(=),3(+),4(+) 546 0 1(=),3(+),4(+) 531.433 5.613 1(-),2(-),4(-) 545.5 0.921 1(-),2(-),3(+)
1000000 0.1 875.966 2.469 2(-),3(+),4(+) 883 0 1(+),3(+),4(+) 845.6 8.89 1(-),2(-),4(-) 865.9 3.515 1(-),2(-),3(+)
0.001 545.966 0.179 2(-),3(+),4(+) 546 0 1(+),3(+),4(+) 523.233 6.338 1(-),2(-),4(-) 544.833 0.897 1(-),2(-),3(+)
500000 0.1 848.533 4.1 2(-),3(+),4(-) 882.766 0.422 1(+),3(+),4(+) 821.733 10.168 1(-),2(-),4(-) 858.4 3.878 1(+),2(-),3(+)
0.001 543.1 1.738 2(-),3(+),4(-) 546 0 1(+),3(+),4(+) 511.333 8.117 1(-),2(-),4(-) 543.366 1.471 1(+),2(-),3(+)
188 1500000 0.1 1234.066 2.128 2(-),3(+),4(+) 1243.233 0.76 1(+),3(+),4(+) 1225 3.941 1(-),2(-),4(-) 1220.433 3.602 1(-),2(-),3(+)
0.001 941.366 0.572 2(-),3(+),4(+) 942.933 0.359 1(+),3(+),4(+) 919.133 5.01 1(-),2(-),4(-) 925.133 3.116 1(-),2(-),3(+)
1000000 0.1 1213.96 3.281 2(-),3(+),4(-) 1243.23 0.715 1(+),3(+),4(+) 1210.866 6.781 1(-),2(-),4(-) 1214.133 3.685 1(-),2(-),3(+)
0.001 934.9 1.795 2(-),3(+),4(+) 943 0 1(+),3(+),4(+) 906 7.478 1(-),2(-),4(-) 922.633 4.094 1(-),2(-),3(+)
500000 0.1 1154.633 6.332 2(-),3(+),4(-) 1243.466 0.618 1(+),3(+),4(+) 1179.3 8.509 1(-),2(-),4(-) 1200.766 5.308 1(+),2(-),3(+)
0.001 903.7 5.386 2(-),3(+),4(-) 942.933 0.249 1(+),3(+),4(+) 876 12.492 1(-),2(-),4(-) 915.5 4.883 1(+),2(-),3(+)
ca-GrQc 64 1500000 0.1 1403.933 7.54 2(-),3(+),4(+) 1432.333 1.534 1(+),3(+),4(+) 1305.666 20.426 1(-),2(-),4(-) 1395.9 11.527 1(-),2(-),3(+)
0.001 754.266 3.14 2(+),3(+),4(-) 756.933 0.249 1(-),3(+),4(-) 724.7 9.212 1(-),2(-),4(-) 754.7 2.368 1(+),2(+),3(+)
1000000 0.1 1387.5 7.428 2(-),3(+),4(+) 1431.733 2.644 1(+),3(+),4(+) 1289.6 19.338 1(-),2(-),4(-) 1386.26 12.465 1(-),2(-),3(+)
0.001 746.033 7.323 2(-),3(+),4(-) 756.966 0.179 1(+),3(+),4(-) 717.066 13.132 1(-),2(-),4(-) 753.033 2.96 1(+),2(+),3(+)
500000 0.1 1332.466 12.831 2(-),3(+),4(-) 1427.633 4.693 1(+),3(+),4(+) 1233.9 19.618 1(-),2(-),4(-) 1369.066 14.104 1(+),2(-),4(+)
0.001 733.2 7.93 2(-),3(+),4(-) 754.966 4.118 1(+),3(+),4(+) 698.9 15.788 1(-),2(-),4(-) 748.133 7.214 1(+),2(-),3(+)
207 1500000 0.1 2516.2 13.929 2(-),3(+),4(-) 2694.6 4.506 1(+),3(+),4(+) 2428.466 21.846 1(-),2(-),4(-) 2551.866 14.176 1(+),2(-),3(+)
0.001 1974.466 10.206 2(-),3(+),4(+) 2053.9 3.279 1(+),3(+),4(+) 1837.066 23.589 1(-),2(-),4(-) 1968.566 16.111 1(-),2(-),3(+)
1000000 0.1 2434.9 13.55 2(-),3(+),4(+) 2691.466 4.462 1(+),3(+),4(+) 2363.966 25.356 1(-),2(-),4(-) 2535.766 16.823 1(+),2(-),3(+)
0.001 1930.133 10.901 2(-),3(+),4(-) 2054.833 3.652 1(+),3(+),4(+) 1793.833 27.668 1(-),2(-),4(-) 1958.7 18.018 1(-),2(-),3(+)
500000 0.1 2288.033 14.549 2(-),3(+),4(-) 2688 6.957 1(+),3(+),4(+) 2230.6 26.925 1(-),2(-),4(-) 2487.6 23.171 1(-),2(-),3(+)
0.001 1821.933 13.985 2(-),3(+),4(-) 2049.1 5.081 1(+),3(+),4(+) 1704.366 30.625 1(-),2(-),4(-) 1925.133 16.202 1(-),2(-),3(+)
415 1500000 0.1 3205.966 12.605 2(-),3(-),4(-) 3556.866 3.518 1(+),3(+),4(+) 3270.966 23.345 1(+),2(-),4(-) 3296.6 14.63 1(-),2(-),3(+)
0.001 2822.733 13.053 2(-),3(+),4(-) 3078.9 4.407 1(+),3(+),4(+) 2777.2 17.158 1(-),2(-),4(-) 2865.933 16.29 1(-),2(-),3(+)
1000000 0.1 3105 11.195 2(-),3(-),4(-) 3555.3 4.267 1(+),3(+),4(+) 3179.033 22.15 1(+),2(-),4(-) 3264.433 14.718 1(-),2(-),3(+)
0.001 2734.76 13.934 2(-),3(+),4(-) 3076.2 4.867 1(+),3(+),4(+) 2688.73 28.249 1(-),2(-),4(-) 2832.9 16.933 1(-),2(-),3(+)
500000 0.1 2921.366 18.076 2(-),3(-),4(-) 3548.8 4.969 1(+),3(+),4(+) 3000.266 25.241 1(+),2(-),4(-) 3198.266 17.804 1(-),2(-),3(+)
0.001 2569.566 17.657 2(-),3(+),4(-) 3070.5 6.206 1(+),3(+),4(+) 2525.533 30.721 1(-),2(-),4(-) 2774.433 17.44 1(-),2(-),3(+)
ca-CondaMat 146 1500000 0.1 5588 47.265 2(-),3(+),4(-) 6790.966 12.335 1(+),3(+),4(+) 5187.966 95.708 1(-),2(-),4(-) 6330.3 36.893 1(+),2(-),3(+)
0.001 4153.733 43.338 2(-),3(+),4(-) 4748.166 7.585 1(+),3(+),4(+) 3802.733 75.95 1(-),2(-),4(-) 4531.83 33.061 1(+),2(-),3(+)
1000000 0.1 5500.73 47.67 2(-),3(+),4(-) 6771.366 16.3 1(+),3(+),4(+) 4945.9 113.293 1(-),2(-),4(-) 6281 46.322 1(+),2(-),3(+)
0.001 3957.5 40.782 2(-),3(+),4(-) 4736.133 10.375 1(+),3(+),4(+) 3709.06 96.656 1(-),2(-),4(-) 4496.7 28.765 1(+),2(-),3(+)
500000 0.1 4818.53 47.71 2(-),3(+),4(-) 6708.366 27.316 1(+),3(+),4(+) 4685.333 114.8373 1(-),2(-),4(-) 6115.233 54.393 1(+),2(-),3(+)
0.001 3648.3 65.33 2(-),3(+),4(-) 4581.633 36.88 1(+),3(+),4(+) 3469.766 73.953 1(-),2(-),4(-) 4395.566 43.076 1(+),2(-),3(+)
1068 1500000 0.1 11787.533 57.133 2(-),3(+),4(-) 16650.933 14.163 1(+),3(+),4(+) 12284.866 142.248 1(-),2(-),4(-) 13394.133 75.448 1(+),2(-),3(+)
0.001 10893.9 61.683 2(-),3(+),4(-) 15217.3 14.45 1(+),3(+),4(+) 10950.3 122.3 1(-),2(-),4(-) 12241.966 72.716 1(+),2(-),3(+)
1000000 0.1 11194.23 72.488 2(-),3(-),4(-) 16573.6 19.608 1(+),3(+),4(+) 11623.93 119.467 1(+),2(-),4(-) 13164.2 60.07 1(+),2(-),3(+)
0.001 10364.53 58.95 2(-),3(+),4(-) 15145.666 14.485 1(+),3(+),4(+) 9987.13 123.936 1(-),2(-),4(-) 12040.166 99.78 1(+),2(-),3(+)
500000 0.1 9474.733 111.851 2(-),3(-),4(-) 16368.6 27.005 1(+),3(+),4(+) 10729.133 180.573 1(+),2(-),4(-) 12708.533 82.447 1(+),2(-),3(+)
0.001 9344.733 84.931 2(-),3(-),4(-) 14947.6 22.553 1(+),3(+),4(+) 9502.2 142.003 1(+),2(-),4(-) 11581.066 84.55 1(+),2(-),3(+)
2136 1500000 0.1 12749.533 93.378 2(-),3(-),4(-) 20078.833 11.066 1(+),3(+),4(+) 16361.766 67.76 1(+),2(-),4(-) 16243.166 68.601 1(+),2(-),3(+)
0.001 12730.3 91.025 2(-),3(-),4(-) 19327.433 11.221 1(+),3(+),4(+) 15224.733 66.313 1(+),2(-),4(-) 15402.133 96.35 1(+),2(-),3(+)
1000000 0.1 11520.966 129.843 2(-),3(-),4(-) 20016.2 16.172 1(+),3(+),4(+) 15696.5 116.216 1(+),2(-),4(-) 16020.633 88.739 1(+),2(-),3(+)
0.001 11500.633 114.875 2(-),3(-),4(-) 19245.233 15.532 1(+),3(+),4(+) 14544.63 98.014 1(+),2(-),4(-) 15155.4 74.248 1(+),2(-),3(+)
500000 0.1 9488.333 90.631 2(-),3(-),4(-) 19822.566 20.619 1(+),3(+),4(+) 14592.466 104.587 1(+),2(-),4(-) 14734.2 230.948 1(+),2(-),3(+)
0.001 9483.6 88.03 2(-),3(-),4(-) 19030.533 21.451 1(+),3(+),4(+) 13456.133 89.165 1(+),2(-),4(-) 14399.233 152.192 1(+),2(-),3(+)
Table 5: Results for Maximum coverage problem with IID weights where the evaluation is based on Chernoff Bound
GSEMO (5) SW-GSEMO (6) NSGAII20NSGA-II_{20} (7) NSGAII100NSGA-II_{100} (8)
Graph BB tmaxt_{max} α\alpha Mean std stat Mean std stat Mean std stat Mean std stat
ca-CSphd 43 1500000 0.1 478 0 6(=),7(+),8(+) 478 0 5(=),7(+),8(+) 468.333 4.853 5(-),6(-),8(-) 477.766 0.495 5(-),6(-),7(+)
0.001 413 0 6(=),7(+),8(+) 413 0 5(=),7(+),8(+) 405.4 3.903 5(-),6(-),8(-) 412.9 0.3 5(-),6(-),7(+)
1000000 0.1 478 0 6(=),7(+),8(+) 478 0 5(=),7(+),8(+) 463 5.403 5(-),6(-),8(-) 477.7 0.781 5(-),6(-),7(+)
0.001 413 0 6(=),7(+),8(+) 413 0 5(=),7(+),8(+) 402.6 4.24 5(-),6(-),8(-) 412.633 0.481 5(-),6(-),7(+)
500000 0.1 477.966 0.179 6(-),7(+),8(+) 477.966 0.179 5(+),7(+),8(+) 453.566 7.269 5(-),6(-),8(-) 477.166 0.968 5(-),6(-),7(+)
0.001 412.9 0.3 6(-),7(+),8(+) 413 0 5(+),7(+),8(+) 396 5.196 5(-),6(-),8(-) 412.066 0.771 5(-),6(-),7(+)
94 1500000 0.1 817.7 0.525 6(-),7(+),8(+) 818 0 5(+),7(+),8(+) 796.7 5.484 5(-),6(-),8(-) 808.933 3.14 5(-),6(-),7(+)
0.001 749.633 0 6(-),7(+),8(+) 750 0 5(+),7(+),8(+) 729.066 5.938 5(-),6(-),8(-) 743 2.081 5(-),6(-),7(+)
1000000 0.1 817.5 0.67 6(-),7(+),8(+) 817.966 0.179 5(+),7(+),8(+) 785.766 7.218 5(-),6(-),8(-) 806.9 3.703 5(-),6(-),7(+)
0.001 749.633 0.546 6(-),7(+),8(+) 750 0 5(+),7(+),8(+) 718.466 7.658 5(-),6(-),8(-) 740.5 2.86 5(-),6(-),7(+)
500000 0.1 809.8 1.956 6(-),7(+),8(+) 818 0 5(+),7(+),8(+) 764.733 9.337 5(-),6(-),8(-) 800.766 3.48 5(-),6(-),7(+)
0.001 744.633 2.057 6(-),7(+),8(+) 749.96 0.179 5(+),7(+),8(+) 695 9.855 5(-),6(-),8(-) 735.666 4.307 5(-),6(-),7(+)
188 1500000 0.1 1181.733 2.542 6(-),7(+),8(+) 1192.466 0.618 5(+),7(+),8(+) 1166.966 5.003 5(-),6(-),8(-) 1166.966 3.772 5(-),6(-),7(+)
0.001 1120.6 1.89 6(-),7(+),8(+) 1128 0 5(+),7(+),8(+) 1103.5 4.595 5(-),6(-),8(-) 1105.8 3.572 5(-),6(-),7(+)
1000000 0.1 1181.233 2.216 6(-),7(+),8(+) 1192.3 0.69 5(+),7(+),8(+) 1153.766 5.696 5(-),6(-),8(-) 1160.033 3.745 5(-),6(-),7(+)
0.001 1120.633 1.957 6(-),7(+),8(+) 1127.966 0.179 5(+),7(+),8(+) 1090.766 6.907 5(-),6(-),8(-) 1099.6 2.961 5(-),6(-),7(+)
500000 0.1 1143.833 5.865 6(-),7(+),8(-) 1192.366 0.546 5(+),7(+),8(+) 1122.1 8.904 5(-),6(-),8(-) 1147.166 4.993 5(+),6(-),7(+)
0.001 1089.333 4.101 6(-),7(+),8(+) 1127.9 0.3 5(+),7(+),8(+) 1057.266 10.327 5(-),6(-),8(-) 1089.166 4.719 5(-),6(-),7(+)
ca-GrQc 64 1500000 0.1 1275.6 6.311 6(-),7(+),8(+) 1294.433 2.076 5(+),7(+),8(+) 1189.966 17.809 5(-),6(-),8(-) 1265.633 6.695 5(-),6(-),7(+)
0.001 1125.76 5.69 6(-),7(+),8(+) 1145.433 0.955 5(+),7(+),8(+) 1054.733 18.446 5(-),6(-),8(-) 1125.2 7.409 5(-),6(-),7(+)
1000000 0.1 1275.233 7.548 6(-),7(+),8(+) 1294.1 2.399 5(+),7(+),8(+) 1168.6 16.318 5(-),6(-),8(-) 1259.266 10.478 5(-),6(-),7(+)
0.001 1127.3 7.528 6(-),7(+),8(+) 1144.866 1.431 5(+),7(+),8(+) 1031.1 19.291 5(-),6(-),8(-) 1121.933 8.156 5(-),6(-),7(+)
500000 0.1 1249.5 11.242 6(-),7(+),8(+) 1291.6 4.095 5(+),7(+),8(+) 1126.333 21.235 5(-),6(-),8(-) 1246 13.147 5(-),6(-),7(+)
0.001 1105.533 8.815 6(-),7(+),8(+) 1143.266 2.112 5(+),7(+),8(+) 992.333 19.777 5(-),6(-),8(-) 1112.933 9.44 5(-),6(-),7(+)
207 1500000 0.1 2426.533 10.704 6(-),7(+),8(-) 2585.5 4.514 5(+),7(+),8(+) 2321.133 29.9 5(-),6(-),8(-) 2454.966 16.664 5(+),6(-),7(+)
0.001 2316.666 9.133 6(-),7(+),8(-) 2452.633 4.956 5(+),7(+),8(+) 2205.166 19.834 5(-),6(-),8(-) 2328.2 19.436 5(+),6(-),7(+)
1000000 0.1 2425.333 13.196 6(-),7(+),8(-) 2582 5.899 5(+),7(+),8(+) 2258.666 25.941 5(-),6(-),8(-) 2437.7 13.256 5(+),6(-),7(+)
0.001 2315.7666 10.4 6(-),7(+),8(+) 2450.066 5.585 5(+),7(+),8(+) 2151.4 34.358 5(-),6(-),8(-) 2313.766 17.392 5(-),6(-),7(+)
500000 0.1 2294.366 13.212 6(-),7(+),8(-) 2577.566 6.751 5(+),7(+),8(+) 2133.1 32.639 5(-),6(-),8(-) 2396.5 12.241 5(+),6(-),7(+)
0.001 2194.233 13.142 6(-),7(+),8(+) 2446.233 5.69 5(+),7(+),8(+) 2028.766 34.202 5(-),6(-),8(-) 2276.9 16.44 5(-),6(-),7(+)
415 1500000 0.1 3142.9 10.746 6(-),7(-),8(-) 3479.133 3.77 5(+),7(+),8(+) 3182.9 20.115 5(+),6(-),8(-) 3227.633 16.15 5(+),6(-),7(+)
0.001 3069.366 15.047 6(-),7(-),8(-) 3394.733 4.17 5(+),7(+),8(+) 3080.033 17.564 5(+),6(-),8(-) 3140.2 17.457 5(+),6(-),7(+)
1000000 0.1 3133.366 12.768 6(-),7(+),8(-) 3477.833 4.568 5(+),7(+),8(+) 3098.233 27.465 5(-),6(-),8(-) 3194.066 18.145 5(+),6(-),7(+)
0.001 3055.366 13.496 6(-),7(+),8(-) 3391.766 4.63 5(+),7(+),8(+) 2999.766 35.903 5(-),6(-),8(-) 3105.633 17.516 5(+),6(-),7(+)
500000 0.1 2949.733 14.955 6(-),7(+),8(-) 3470.666 4.763 5(+),7(+),8(+) 2920.233 35.273 5(-),6(-),8(-) 3127.566 16.562 5(+),6(-),7(+)
0.001 2874.9 14.767 6(-),7(+),8(-) 3382.833 4.442 5(+),7(+),8(+) 2836 32.535 5(-),6(-),8(-) 3039.433 17.562 5(+),6(-),7(+)
ca-CondaMat 146 1500000 0.1 5321.1333 40.291 6(-),7(+),8(-) 6424.2 10.403 5(+),7(+),8(+) 4931.833 82.145 5(-),6(-),8(-) 6018.066 41.946 5(+),6(-),7(+)
0.001 5027.166 49.31 6(-),7(+),8(-) 5994.833 10.96 5(+),7(+),8(+) 4622.866 96.07 5(-),6(-),8(-) 5652.833 41.121 5(+),6(-),7(+)
1000000 0.1 5059.6 39.678 6(-),7(+),8(-) 6397.966 14.943 5(+),7(+),8(+) 4755.133 73.411 5(-),6(-),8(-) 5954.966 50.251 5(+),6(-),7(+)
0.001 4784.766 54.93 6(-),7(+),8(-) 5979.9 16.912 5(+),7(+),8(+) 4441.5 126.327 5(-),6(-),8(-) 5582.666 38.694 5(+),6(-),7(+)
500000 0.1 4625.4 60.563 6(-),7(+),8(-) 6328.2 31.971 5(+),7(+),8(+) 4443.2 84.517 5(-),6(-),8(-) 5787.266 63.911 5(+),6(-),7(+)
0.001 4344.33 59.972 6(-),7(+),8(-) 5898.133 22.47 5(+),7(+),8(+) 4170 103.826 5(-),6(-),8(-) 5437.7 43.076 5(+),6(-),7(+)
1068 1500000 0.1 11632.833 52.573 6(-),7(-),8(-) 16650.933 14.163 5(+),7(+),8(+) 12054.233 126.656 5(+),6(-),8(-) 13206.26 65.605 5(+),6(-),7(+)
0.001 11464.966 61.738 6(-),7(-),8(-) 15217.3 14.45 5(+),7(+),8(+) 11783.9 95.969 5(+),6(-),8(-) 12974.86 85.587 5(+),6(-),7(+)
1000000 0.1 11059.2 73.482 6(-),7(-),8(-) 16343.833 16.806 5(+),7(+),8(+) 11441.2 145.704 5(+),6(-),8(-) 12961.266 85.324 5(+),6(-),7(+)
0.001 10914.833 76.11 6(-),7(-),8(-) 16052.866 19.687 5(+),7(+),8(+) 11208.1 91.525 5(+),6(-),8(-) 12779.033 59.812 5(+),6(-),7(+)
500000 0.1 9482.966 92.698 6(-),7(-),8(-) 16129.133 27.284 5(+),7(+),8(+) 10487.566 128.411 5(+),6(-),8(-) 12489.3 88.034 5(+),6(-),7(+)
0.001 9466.433 113.403 6(-),7(-),8(-) 15840.433 26.94 5(+),7(+),8(+) 10254.133 130.19 5(+),6(-),8(-) 12309.4 81.884 5(+),6(-),7(+)
2136 1500000 0.1 12719.533 106.011 6(-),7(-),8(-) 19955.3 10.312 5(+),7(+),8(+) 16187.466 93.583 5(+),6(-),8(-) 16130.1 80.711 5(+),6(-),7(+)
0.001 12701.7 90.339 6(-),7(-),8(-) 19813.8 14.041 5(+),7(+),8(+) 16006.8 109.226 5(+),6(-),8(-) 15964.933 75.003 5(+),6(-),7(+)
1000000 0.1 11481.066 98.619 6(-),7(-),8(-) 19891.466 13.197 5(+),7(+),8(+) 15519.3 102.403 5(+),6(-),8(-) 15812.433 93.623 5(+),6(-),7(+)
0.001 11458.1 116.396 6(-),7(-),8(-) 19750.366 12.084 5(+),7(+),8(+) 15323.266 103.988 5(+),6(-),8(-) 15684.533 83.137 5(+),6(-),7(+)
500000 0.1 9451.033 105.529 6(-),7(-),8(-) 19697.033 17.995 5(+),7(+),8(+) 14435.233 101.01 5(+),6(-),8(-) 14650.033 289.611 5(+),6(-),7(+)
0.001 9460.666 116.783 6(-),7(-),8(-) 19540.266 18.77 5(+),7(+),8(+) 14218.8 129.106 5(+),6(-),8(-) 14586.566 214.181 5(+),6(-),7(+)
Table 6: Results for Maximum coverage problem with uniform weights with same dispersion where the evaluation is based on Chebyshev’s equality
GSEMO (9) SW-GSEMO (10) NSGAII20NSGA-II_{20} (11) NSGAII100NSGA-II_{100} (12)
Graph BB tmaxt_{max} α\alpha Mean std stat Mean std stat Mean std stat Mean std stat
ca-CSphd 43 1500000 0.1 38 0 10(=),11(=),12(=) 38 0 9(=),11(=),12(=) 38 0 9(=),10(=),12(=) 38 0 9(=),10(=),11(=)
0.001 22 0 10(=),11(=),12(=) 22 0 9(=),11(=),12(=) 22 0 9(=),10(=),12(=) 22 0 9(=),10(=),11(=)
1000000 0.1 38 0 10(=),11(=),12(=) 38 0 9(=),11(=),12(=) 38 0 9(=),10(=),12(=) 38 0 9(=),10(=),11(=)
0.001 22 0 10(=),11(=),12(=) 22 0 9(=),11(=),12(=) 22 0 9(=),10(=),12(=) 22 0 9(=),10(=),11(=)
500000 0.1 38 0 10(=),11(=),12(=) 38 0 9(=),11(=),12(=) 38 0 9(=),10(=),12(=) 38 0 9(=),10(=),11(=)
0.001 22 0 10(=),11(=),12(=) 22 0 9(=),11(=),12(=) 22 0 9(=),10(=),12(=) 22 0 9(=),10(=),11(=)
94 1500000 0.1 88 0 10(=),11(=),12(=) 88 0 9(=),11(=),12(=) 87.733 0.442 9(=),10(=),12(=) 88 0 9(=),10(=),11(=)
0.001 65 0 10(=),11(=),12(=) 65 0 9(=),11(=),12(=) 65 0 9(=),10(=),12(=) 65 0 9(=),10(=),11(=)
1000000 0.1 88 0 10(=),11(=),12(=) 88 0 9(=),11(=),12(=) 87.7 0.458 9(=),10(=),12(=) 88 0 9(=),10(=),11(=)
0.001 65 0 10(=),11(=),12(=) 65 0 9(=),11(=),12(=) 65 0 9(=),10(=),12(=) 65 0 9(=),10(=),11(=)
500000 0.1 88 0 10(-),11(=),12(=) 88 0 9(+),11(+),12(+) 87.633 5.467 9(=),10(-),12(=) 87.966 0.179 9(=),10(-),11(=)
0.001 65 0 10(=),11(=),12(=) 65 0 9(=),11(=),12(=) 65 0 9(=),10(=),12(=) 65 0 9(=),10(=),11(=)
188 1500000 0.1 175 0 10(=),11(+),12(=) 175 0 9(=),11(+),12(=) 172.733 0.928 9(-),10(-),12(-) 175 0 9(=),10(=),11(+)
0.001 137 0 10(=),11(=),12(=) 137 0 9(=),11(=),12(=) 137 0 9(=),10(=),12(=) 137 0 9(=),10(=),11(=)
1000000 0.1 175 0 10(=),11(+),12(=) 175 0 9(=),11(=),12(=) 172.4 0.84 9(-),10(-),12(-) 175 0 9(=),10(=),11(+)
0.001 137 0 10(=),11(=),12(=) 137 0 9(=),11(=),12(=) 137 0 9(=),10(=),12(=) 137 0 9(=),10(=),11(=)
500000 0.1 174.966 0.179 10(=),11(+),12(=) 175 0 9(=),11(=),12(=) 171.466 0.884 9(-),10(-),12(-) 175 0 9(=),10(=),11(+)
0.001 137 0 10(=),11(=),12(=) 137 0 9(=),11(=),12(=) 137 0 9(=),10(=),12(=) 137 0 9(=),10(=),11(=)
ca-GrQc 64 1500000 0.1 60.966 0.179 10(=),11(=),12(=) 61 0 9(=),11(=),12(=) 60.933 0.249 9(=),10(=),12(=) 61 0 9(=),10(=),11(=)
0.001 44 0 10(=),11(=),12(=) 44 0 9(=),11(=),12(=) 44 0 9(=),10(=),12(=) 44 0 9(=),10(=),11(=)
1000000 0.1 60.9 0.3 10(=),11(=),12(=) 61 0 9(=),11(=),12(=) 60.766 0.422 9(=),10(=),12(=) 61 0 9(=),10(=),11(=)
0.001 44 0 10(=),11(=),12(=) 44 0 9(=),11(=),12(=) 44 0 9(=),10(=),12(=) 44 0 9(=),10(=),11(=)
500000 0.1 60.566 0.667 10(=),11(=),12(=) 60.933 0.249 9(=),11(=),12(=) 60.433 0.76 9(=),10(=),12(=) 61 0 9(=),10(=),11(=)
0.001 43.9 0.3 10(=),11(=),12(=) 44 0 9(=),11(=),12(=) 44 0 9(=),10(=),12(=) 44 0 9(=),10(=),11(=)
207 1500000 0.1 199 0 10(=),11(=),12(=) 199 0 9(=),11(=),12(=) 198 0.7745 9(=),10(=),12(=) 199 0 9(=),10(=),11(=)
0.001 171.833 0.372 10(=),11(=),12(=) 172 0 9(=),11(=),12(=) 171.766 0.495 9(=),10(=),12(=) 172 0 9(=),10(=),11(=)
1000000 0.1 199 0 10(=),11(-),12(=) 199 0 9(=),11(+),12(=) 197.766 0.882 9(-),10(-),12(-) 199 0 9(=),10(=),11(+)
0.001 171.5 0.806 10(=),11(=),12(=) 172 0 9(=),11(=),12(=) 171.466 1.175 9(=),10(=),12(=) 172 0 9(=),10(=),11(=)
500000 0.1 198.766 0.422 10(=),11(=),12(=) 199 0 9(=),11(=),12(=) 197.266 1.236 9(=),10(=),12(=) 198.96 0.179 9(=),10(=),11(=)
0.001 169.466 1.707 10(=),11(-),12(-) 171.966 0.179 9(=),11(-),12(-) 171.066 1.364 9(=),10(=),12(=) 172 0 9(+),10(+),11(=)
415 1500000 0.1 398.266 0.442 10(=),11(+),12(=) 399 0 9(=),11(+),12(=) 390.966 1.622 9(-),10(-),12(-) 398.466 0.498 9(=),10(=),11(+)
0.001 353.066 1.436 10(=),11(+),12(=) 355 0 9(=),11(+),12(=) 346.366 2.676 9(-),10(-),12(-) 354.533 0.498 9(=),10(=),11(+)
1000000 0.1 397.933 0.442 10(=),11(+),12(=) 399 0 9(=),11(+),12(=) 390.066 1.931 9(-),10(-),12(-) 398.366 0.546 9(=),10(=),11(+)
0.001 351.7 1.159 10(-),11(+),12(-) 354.9 0.3 9(+),11(+),12(=) 345.733 2.379 9(-),10(-),12(-) 354.5 0.562 9(+),10(=),11(+)
500000 0.1 396.933 0.512 10(-),11(+),12(=) 398.766 0.422 9(+),11(+),12(=) 388.333 2.102 9(-),10(-),12(-) 397.866 0.6699 9(+),10(=),11(+)
0.001 350 1.181 10(-),11(+),12(-) 354.533 0.669 9(+),11(+),12(-) 344.066 2.644 9(-),10(-),12(-) 354.333 0.596 9(+),10(+),11(+)
ca-CondaMat 146 1500000 0.1 141.266 0.679 10(=),11(=),12(=) 141.8 0.979 9(=),11(=),12(=) 141.266 0.813 9(=),10(=),12(=) 141.8 0.979 9(=),10(=),11(=)
0.001 122.9 3.014 10(=),11(-),12(-) 125.933 0.249 9(=),11(-),12(-) 125.7 0.458 9(+),10(+),12(=) 126 0 9(+),10(+),11(=)
1000000 0.1 141.2 0.6 10(=),11(=),12(=) 141.733 0.963 9(=),11(=),12(=) 141 0.632 9(=),10(=),12(=) 141.533 0.884 9(=),10(=),11(=)
0.001 122.23 3.051 10(=),11(-),12(-) 125.9 0.3 9(=),11(-),12(-) 125.366 1.048 9(+),10(+),12(=) 126 0 9(+),10(+),11(=)
500000 0.1 141.133 0.498 10(=),11(=),12(=) 141.8 0.979 9(=),11(=),12(=) 140.833 0.734 9(=),10(=),12(=) 141.333 0.745 9(=),10(=),11(=)
0.001 120.733 3.172 10(=),11(-),12(-) 125.6 0.663 9(=),11(-),12(-) 124.066 2.657 9(+),10(+),12(=) 125.7 0.458 9(+),10(+),11(=)
1068 1500000 0.1 1037.266 1.093 10(-),11(+),12(=) 1044.833 0.933 9(+),11(+),12(+) 1015.333 4.706 9(-),10(-),12(-) 1037.833 2.646 9(=),10(-),12(+)
0.001 978.4 2.751 10(-),11(+),12(-) 991.766 2.347 9(+),11(+),12(-) 959.566 10.892 9(-),10(-),12(-) 992.2 3.664 9(+),10(+),11(+)
1000000 0.1 1034.933 1.152 10(-),11(+),12(=) 1044.133 1.231 9(+),11(+),12(+) 1012.333 5.204 9(-),10(-),12(-) 1036.833 2.956 9(=),10(-),12(+)
0.001 975.1 2.3288 10(-),11(+),12(-) 989.5 2.202 9(+),11(+),12(-) 954.866 10.616 9(-),10(-),12(-) 991.3 3.377 9(+),10(+),11(+)
500000 0.1 1030.833 1.293 10(-),11(+),12(+) 1041.633 1.251 9(+),11(+),12(+) 1008.633 6.441 9(-),10(-),12(-) 1035.233 2.641 9(+),10(-),12(+)
0.001 967.666 3.418 10(-),11(+),12(-) 985.9 2.748 9(+),11(+),12(-) 947.233 10.932 9(-),10(-),12(-) 988.866 4.145 9(+),10(+),11(+)
2136 1500000 0.1 2035.066 2.92 10(-),11(+),12(+) 2071.066 1.412 9(+),11(+),12(+) 1963.4 9.844 9(-),10(-),12(-) 2025.6 5.689 9(+),10(-),11(+)
0.001 1925.3 3.671 10(-),11(+),12(-) 1972.433 3.402 9(+),11(+),12(+) 1850.633 13.345 9(-),10(-),12(-) 1942.566 6.189 9(+),10(-),11(+)
1000000 0.1 2026.966 3.341 10(-),11(+),12(+) 2068.033 1.905 9(+),11(+),12(+) 1956.3 9.987 9(-),10(-),12(-) 2022.6 6.58 9(+),10(-),11(+)
0.001 1914.7 3.831 10(-),11(+),12(-) 1969.433 3.666 9(+),11(+),12(+) 1839.766 13.313 9(-),10(-),12(-) 1939.833 7.55 9(+),10(-),11(+)
500000 0.1 2009.366 4.214 10(-),11(+),12(-) 2063.166 2.852 9(+),11(+),12(+) 1941.3 11.346 9(-),10(-),12(-) 2016.5 5.942 9(+),10(-),11(+)
0.001 1893.5 4.055 10(-),11(+),12(-) 1960 3.705 9(+),11(+),12(+) 1821 14.61 9(-),10(-),12(-) 1931.866 6.443 9(+),10(-),11(+)
Table 7: Results for Maximum coverage problem with uniform weights with same dispersion where the evaluation is based on Chernoff bound
GSEMO (13) SW-GSEMO (14) NSGAII20NSGA-II_{20} (15) NSGAII100NSGA-II_{100} (16)
Graph BB tmaxt_{max} α\alpha Mean std stat Mean std stat Mean std stat Mean std stat
ca-CSphd 43 1500000 0.1 36 0 14(=),15(=),16(=) 36 0 13(=),15(=),16(=) 36 0 13(=),14(=),16(=) 36 0 13(=),14(=),15(=)
0.001 33 0 14(=),15(=),16(=) 33 0 13(=),15(=),16(=) 33 0 13(=),14(=),16(=) 33 0 13(=),14(=),15(=)
1000000 0.1 36 0 14(=),15(=),16(=) 36 0 13(=),15(=),16(=) 36 0 13(=),14(=),16(=) 36 0 13(=),14(=),15(=)
0.001 33 0 14(=),15(=),16(=) 33 0 13(=),15(=),16(=) 33 0 13(=),14(=),16(=) 33 0 13(=),14(=),15(=)
500000 0.1 36 0 14(=),15(=),16(=) 36 0 13(=),15(=),16(=) 36 0 13(=),14(=),16(=) 36 0 13(=),14(=),15(=)
0.001 33 0 14(=),15(=),16(=) 33 0 13(=),15(=),16(=) 33 0 13(=),14(=),16(=) 33 0 13(=),14(=),15(=)
94 1500000 0.1 85 0 14(=),15(=),16(=) 85 0 13(=),15(=),16(=) 85 0 13(=),14(=),16(=) 85 0 13(=),14(=),15(=)
0.001 81 0 14(=),15(=),16(=) 81 0 13(=),15(=),16(=) 81 0 13(=),14(=),16(=) 81 0 13(=),14(=),15(=)
1000000 0.1 85 0 14(=),15(=),16(=) 85 0 13(=),15(=),16(=) 85 0 13(=),14(=),16(=) 85 0 13(=),14(=),15(=)
0.001 81 0 14(=),15(=),16(=) 81 0 13(=),15(=),16(=) 81 0 13(=),14(=),16(=) 81 0 13(=),14(=),15(=)
500000 0.1 85 0 14(=),15(=),16(=) 85 0 13(=),15(=),16(=) 85 0 13(=),14(=),16(=) 85 0 13(=),14(=),15(=)
0.001 81 0 14(=),15(=),16(=) 81 0 13(=),15(=),16(=) 81 0 13(=),14(=),16(=) 81 0 13(=),14(=),15(=)
188 1500000 0.1 171 0 14(=),15(+),16(=) 171 0 13(=),15(+),16(=) 169.866 1.11 13(-),14(-),16(-) 171 0 13(=),14(=),15(+)
0.001 166 0 14(=),15(+),16(=) 166 0 13(=),15(+),16(=) 164.3 0.69 13(-),14(-),16(-) 166 0 13(=),14(=),15(+)
1000000 0.1 171 0 14(=),15(=),16(=) 171 0 13(=),15(+),16(=) 169.6 1.019 13(-),14(-),16(-) 171 0 13(=),14(=),15(+)
0.001 166 0 14(=),15(+),16(=) 166 0 13(=),15(+),16(=) 163.933 1.062 13(-),14(-),16(-) 166 0 13(=),14(=),15(+)
500000 0.1 171 0 14(=),15(+),16(=) 171 0 13(=),15(+),16(=) 168.566 1.054 13(-),14(-),16(-) 171 0 13(=),14(=),15(+)
0.001 165.366 0.795 14(=),15(+),16(=) 166 0 13(=),15(+),16(=) 163.2 1.301 13(-),14(-),16(-) 166 0 13(=),14(=),15(+)
ca-GrQc 64 1500000 0.1 57.966 0.1795 14(=),15(=),16(=) 58 0 13(=),15(=),16(=) 58 0 13(=),14(=),16(=) 58 0 13(=),14(=),15(=)
0.001 57 0 14(=),15(=),16(=) 57 0 13(=),15(=),16(=) 57 0 13(=),14(=),16(=) 57 0 13(=),14(=),15(=)
1000000 0.1 57.966 0.179 14(=),15(=),16(=) 58 0 13(=),15(=),16(=) 57.966 0.179 13(=),14(=),16(=) 58 0 13(=),14(=),15(=)
0.001 57 0 14(=),15(=),16(=) 57 0 13(=),15(=),16(=) 57 0 13(=),14(=),16(=) 57 0 13(=),14(=),15(=)
500000 0.1 57.733 0.442 14(=),15(=),16(=) 58 0 13(=),15(=),16(=) 57.766 0.422 13(=),14(=),16(=) 58 0 13(=),14(=),15(=)
0.001 56.766 0.667 14(=),15(=),16(=) 57 0 13(=),15(=),16(=) 57 0 13(=),14(=),16(=) 57 0 13(=),14(=),15(=)
207 1500000 0.1 196 0 14(=),15(=),16(=) 196 0 13(=),15(=),16(=) 194.466 1.024 13(=),14(=),16(=) 196 0 13(=),14(=),15(=)
0.001 192 0 14(=),15(=),16(=) 192 0 13(=),15(=),16(=) 191.5 1.024 13(=),14(=),16(=) 192 0 13(=),14(=),15(=)
1000000 0.1 196 0 14(=),15(=),16(=) 196 0 13(=),15(=),16(=) 194.266 0.963 13(=),14(=),16(=) 196 0 13(=),14(=),15(=)
0.001 192 0 14(=),15(=),16(=) 192 0 13(=),15(=),16(=) 191.3 1.037 13(=),14(=),16(=) 192 0 13(=),14(=),15(=)
500000 0.1 195.833 0.372 14(=),15(+),16(=) 196 0 13(=),15(+),16(=) 193.966 0.835 13(-),14(-),16(-) 196 0 13(=),14(=),15(+)
0.001 191.966 0.179 14(=),15(+),16(=) 192 0 13(=),15(+),16(=) 190.266 1.412 13(-),14(-),16(-) 192 0 13(=),14(=),15(+)
415 1500000 0.1 394.066 0.771 14(=),15(+),16(=) 395.333 0.471 13(=),15(+),16(=) 386.833 1.694 13(-),14(-),16(-) 394.8 0.476 13(=),14(=),15(+)
0.001 386.866 0.339 14(=),15(+),16(=) 388.833 0.372 13(=),15(+),16(=) 379.966 2.575 13(-),14(-),16(-) 387.533 0.845 13(=),14(=),15(+)
1000000 0.1 393.333 0.442 14(=),15(+),16(=) 395.166 0.372 13(=),15(+),16(=) 386.133 2.124 13(-),14(-),16(-) 394.333 0.829 13(=),14(=),15(+)
0.001 386.233 0.76 14(=),15(+),16(=) 388.333 0.869 13(=),15(+),16(=) 378.8 2.508 13(-),14(-),16(-) 387.366 0.752 13(=),14(=),15(+)
500000 0.1 392.233 0.512 14(=),15(+),16(=) 394.866 0.426 13(=),15(+),16(=) 383.633 2.272 13(-),14(-),16(-) 393.8 0.945 13(=),14(=),15(+)
0.001 384.7 0.525 14(-),15(+),16(-) 387.566 0.803 13(=),15(+),16(=) 376.7 2.223 13(-),14(-),16(-) 386.766 0.989 13(-),14(=),15(+)
ca-CondaMat 146 1500000 0.1 139 0 14(=),15(=),16(=) 139 0 13(=),15(=),16(=) 139 0 13(=),14(=),16(=) 139 0 13(=),14(=),15(=)
0.001 137.1 1.445 14(=),15(=),16(=) 138.2 1.326 13(=),15(=),16(=) 136.9 1.374 13(=),14(=),16(=) 138.3 1.268 13(=),14(=),15(=)
1000000 0.1 139 0 14(=),15(=),16(=) 139 0 13(=),15(=),16(=) 139 0 13(=),14(=),16(=) 139 0 13(=),14(=),15(=)
0.001 136.7 1.1268 14(=),15(=),16(=) 137.8 1.469 13(=),15(=),16(=) 136.5 1.118 13(=),14(=),16(=) 138 1.414 13(=),14(=),15(=)
500000 0.1 139 0 14(=),15(=),16(=) 139 0 13(=),15(=),16(=) 138.966 0.179 13(=),14(=),16(=) 139 0 13(=),14(=),15(=)
0.001 136.4 1.019 14(=),15(=),16(=) 136.8 1.326 13(=),15(=),16(=) 136.266 0.928 13(=),14(=),16(=) 137.1 1.445 13(=),14(=),15(=)
1068 1500000 0.1 1031.266 1.59 14(-),15(+),16(=) 1039.366 1.139 13(+),15(+),16(+) 1008.4 5.505 13(-),14(-),16(-) 1033.966 2.994 13(=),14(-),15(+)
0.001 1022.533 1.726 14(-),15(+),16(-) 1031.533 0.956 13(+),15(+),16(+) 1001.133 5.754 13(-),14(-),16(-) 1026.966 2.575 13(+),14(-),15(+)
1000000 0.1 1029.066 1.31 14(-),15(+),16(-) 1038.166 1.097 13(+),15(+),16(+) 1005.833 6.044 13(-),14(-),16(-) 1033.266 3.203 13(+),14(-),15(+)
0.001 1019.466 1.783 14(-),15(+),16(-) 1030.366 1.425 13(+),15(+),16(=) 997.466 6.463 13(-),14(-),16(-) 1026.066 2.249 13(+),14(=),15(+)
500000 0.1 1024.633 1.87 14(-),15(+),16(-) 1036.133 0.956 13(+),15(+),16(+) 1000.7 7.299 13(-),14(-),16(-) 1031.766 3.921 13(+),14(-),15(+)
0.001 1014.1 2.211 14(-),15(+),16(-) 1027.833 1.507 13(+),15(+),16(=) 992.5 7.069 13(-),14(-),16(-) 1024.866 2.459 13(+),14(=),15(+)
2136 1500000 0.1 2023.533 2.704 14(-),15(+),16(+) 2062.166 1.881 13(+),15(+),16(+) 1949.366 9.064 13(-),14(-),16(-) 2019.5 6.687 13(+),14(-),15(+)
0.001 2006.533 2.376 14(-),15(+),16(+) 2041.2 2.072 13(+),15(+),16(+) 1932.4 10.694 13(-),14(-),16(-) 2003.3 5.502 13(+),14(-),15(+)
1000000 0.1 2015.366 3.219 14(-),15(+),16(=) 2059.433 1.994 13(+),15(+),16(+) 1942.266 9.051 13(-),14(-),16(-) 2014.9 5.497 13(+),14(-),15(+)
0.001 1997.5 3.232 14(-),15(+),16(-) 2046.233 1.977 13(+),15(+),16(+) 1924.566 11.632 13(-),14(-),16(-) 2000.533 6.173 13(+),14(-),15(+)
500000 0.1 1995.8 3.187 14(-),15(+),16(-) 2052.833 2.296 13(+),15(+),16(+) 1929.9 10.077 13(-),14(-),16(-) 2008.766 6.897 13(+),14(-),15(+)
0.001 1977.633 2.857 14(-),15(+),16(-) 2037.933 2.555 13(+),15(+),16(+) 1909.133 12.164 13(-),14(-),16(-) 1993.9 7.449 13(+),14(-),15(+)