This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some asymptotics for the Bessel functions with an explicit error term

Ilia Krasikov Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH United Kingdom mastiik@brunel.ac.uk
(Date: 4.07.11)
Abstract.

We show how one can obtain an asymptotic expression for some special functions satisfying a second order differential equation with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function Jν(x)J_{\nu}(x) and the Airy function Ai(x)Ai(x) and find a sharp approximation for their zeros. We also answer the question raised by Olenko by showing that

c1ν2<supx0x3/2|Jν(x)2πxcos(xπν2π4)|<c2ν2,c_{1}\nu^{2}<\sup_{x\geq 0}x^{3/2}\left|J_{\nu}(x)-\sqrt{\frac{2}{\pi x}}\,\cos\left(x-\frac{\pi\nu}{2}-\frac{\pi}{4}\,\right)\right|<c_{2}\nu^{2},

for some explicit numerical constants c1c_{1} and c2.c_{2}.

Keywords: Bessel function, Airy function, asymptotic, error term, zeros

1991 Mathematics Subject Classification:
41A60, 33C10

1. Introduction

All basic formulas and asymptotic expressions for special functions we use without references can be found in [12]. To write down error terms in a compact form we will use θ,θ1,θ2,,\theta,\theta_{1},\theta_{2},..., to denote quantities with the absolute value not exceeding one.

In most of the cases error terms of asymptotics of special functions are either not known or, at best, valid for a rather restricted rang of parameters. The following is a typical example of that kind (see e.g. [12, Ch. 10]).

The Bessel function Jν(x)J_{\nu}(x) is defined by the series

(1) Jν(x)=(x2)νj=0(1)j(x2/4)jj!Γ(j+ν+1)J_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu}\sum_{j=0}^{\infty}(-1)^{j}\frac{(x^{2}/4)^{j}}{j!\,\Gamma(j+\nu+1)}

and is a solution of the following ODE:

(2) x2Jν′′(x)+xJν(x)+(x2ν2)Jν(x)=0.x^{2}J^{\prime\prime}_{\nu}(x)+xJ^{\prime}_{\nu}(x)+(x^{2}-\nu^{2})J_{\nu}(x)=0.
Theorem 1.

Suppose that ν0,\nu\geq 0, x>0,x>0, ων=πν2+π4,\omega_{\nu}=\frac{\pi\nu}{2}+\frac{\pi}{4}\,, and let

1max(ν214,1),2max(ν234,1),\ell_{1}\geq\max(\frac{\nu}{2}-\frac{1}{4}\,,1),\;\;\;\ell_{2}\geq\max(\frac{\nu}{2}-\frac{3}{4}\,,1),

then

(3) πx2Jν(x)=cos(xων)(i=011a2i(ν)x2i+θ12a21(ν)x21)\sqrt{\frac{\pi x}{2}}\;J_{\nu}(x)=\cos{(x-\omega_{\nu})}\left(\sum_{i=0}^{\ell_{1}-1}\frac{a_{2i}(\nu)}{x^{2i}}+\theta_{1}^{2}\,\frac{a_{2\ell_{1}}(\nu)}{x^{2\ell_{1}}}\right)-
sin(xων)(i=021a2i+1(ν)x2i+1+θ22a22+1(ν)x22+1),\sin{(x-\omega_{\nu})}\left(\sum_{i=0}^{\ell_{2}-1}\frac{a_{2i+1}(\nu)}{x^{2i+1}}+\theta_{2}^{2}\,\frac{a_{2\ell_{2}+1}(\nu)}{x^{2\ell_{2}+1}}\right),

where

ai(ν)=(12ν)i(12+ν)i2ii!.a_{i}(\nu)=\frac{(\frac{1}{2}-\nu)_{i}(\frac{1}{2}+\nu)_{i}}{2^{i}i!}.

The assumption ν0\nu\geq 0 is not really restrictive and can be surmount by, say, applying the three term recurrence for Jν.J_{\nu}. However if ν\nu is large or depends on xx estimating the error term in (3) seems at least as difficult as the original task.

In this paper we show that there is a simple way to circumvent this problem and to find an explicit expression for error terms which is also uniform in the parameters, provided one has an a priory upper bound on the absolute value of the considered function. In turn, in many cases such a bound may be obtained by using so-called Sonin’s function. For Bessel and Airy functions, as well as for Hermite polynomials (see [2]), this can be done in a quite rutin way. For Jacobi and Laguerre polynomials it is a much more involved problem and the result is known only for oscillatory and transition regions [6],[7],[8]. It is worth noticing that despite the fact that it is rather a technical problem and we do have appropriate tools to tackle it (see e.g. Lemmas 2 and 4 below), one still needs a good deal of calculations to extend the bounds to monotonicity region. Thus, although the underlying idea of the method we use here is quit simple and can be applied to many special functions satisfying a second order differential equation, it is not utterly straightforward to work out the details. In this paper we will consider the Bessel function Jν(x)J_{\nu}(x) as an important example to illustrate this approach. We provide asymptotic expressions with an explicit error term for oscillatory and transition regions and also give some new estimates in the monotonicity region. As a corollary we derive a surprisingly accurate approximation for the Airy function Ai(x),x>0,Ai(-x),\;x>0, and obtain an approximation with an explicit error term for its positive zeros, which, due to known inequalities, yields an approximation of the zeros of the Bessel function.

It is worth noticing that the obtained estimates are, in a sense, best possible. In particular we will answer a question raised by Olenko [11] by showing that for ν>12,\nu>-\frac{1}{2}\,,

(4) c1ν2<supx0x3/2|Jν(x)2πxcos(xπν2π4)|<c2ν2,c_{1}\nu^{2}<\sup_{x\geq 0}x^{3/2}\left|J_{\nu}(x)-\sqrt{\frac{2}{\pi x}}\,\cos\left(x-\frac{\pi\nu}{2}-\frac{\pi}{4}\,\right)\right|<c_{2}\nu^{2},

for some explicit numerical constants c1c_{1} and c2.c_{2}.

The paper is organized as follows. In the next section we describe an idea of the method. In section 3 we establish some upper bounds on Bessel and Airy functions we need in the sequel. Our main tool here will be Sonin’s function. In section 4 we consider the error term of the standard asymptotic

Jν(x)2πxcos(xπν2π4),J_{\nu}(x)\sim\sqrt{\frac{2}{\pi x}}\,\cos\left(x-\frac{\pi\nu}{2}-\frac{\pi}{4}\right),

and prove (4), thus answering Olenko’s question. The error term for asymptotic in the transition region will be derived in section 5. Finally, in section 6, using the approach of section 2, we establish a different sharper approximation for Bessel and Airy functions and their zeros.

2. Preliminaries

The following approach was shortly described in [8]. We want to find an approximation of a solution of the differential equation

(5) f′′+b2(x)f(x)=0,f^{\prime\prime}+b^{2}(x)f(x)=0,

in terms of some standard function F(x),F(x), which also satisfies a second order ODE

𝒟1(F)=p2(x)F′′+p1(x)F+p0(x)F=0.\mathcal{D}_{1}(F)=p_{2}(x)F^{\prime\prime}+p_{1}(x)F^{\prime}+p_{0}(x)F=0.

In fact, in what follows we choose FF to be just cosϕ(x)\cos\phi(x) with an appropriate function ϕ.\phi.

A possible approach to this problem is to seek for a multiplier function z(x)z(x) such that the differential operator

𝒟2(g)=q2(x)g′′+q1(x)g+q0(x)g\mathcal{D}_{2}(g)=q_{2}(x)g^{\prime\prime}+q_{1}(x)g^{\prime}+q_{0}(x)g

for g=g(x)=z(x)f(x)g=g(x)=z(x)f(x) is in some sense close to 𝒟1.\mathcal{D}_{1}. For example, in the WKB-type approximation one chooses g(x)=b(x)f(x),g(x)=\sqrt{b(x)}\,f(x), yielding

(6) g′′bbg+b2g(1+ϵ(x))=0,ϵ(x)=3b22bb′′4b4.g^{\prime\prime}-\frac{b^{\prime}}{b}\,g^{\prime}+b^{2}g\left(1+\epsilon(x)\right)=0,\;\;\;\epsilon(x)=\frac{3b^{\prime 2}-2bb^{\prime\prime}}{4b^{4}}\,.

If ϵ\epsilon is small we can expect that g(x)g(x) is close to the solution of the equation

g0′′bbg0+b2g0=0,g_{0}^{\prime\prime}-\frac{b^{\prime}}{b}\,g_{0}^{\prime}+b^{2}g_{0}=0,

which is just g0=Mcos(x),g_{0}=M\cos\mathcal{B}(x), where (x)=b(x)𝑑x.\mathcal{B}(x)=\int b(x)dx.

Assume now that we have an a priori bound |g(x)|C.|g(x)|\leq C. Then we can readily estimate the error term |gg0||g-g_{0}| by solving (6) as an inhomogeneous equation,

(7) g(x)=g0xϵ(t)b(t)sin((x)(t))g(t)𝑑t,g(x)=g_{0}-\int^{x}\epsilon(t)b(t)\sin\left(\mathcal{B}(x)-\mathcal{B}(t)\right)g(t)dt,

thus obtaining

g=g0+θCxϵ(t)b(t)𝑑t.g=g_{0}+\theta C\int^{x}\epsilon(t)b(t)dt.

To derive an upper bound on |g(x)||g(x)| we consider Sonin’s function

S(x)=S(g;x)=g2+g2b2(1+ϵ)=g2+4b24b42bb′′+3b2g2,S(x)=S(g;x)=g^{2}+\frac{g^{\prime 2}}{b^{2}(1+\epsilon)}=g^{2}+\frac{4b^{2}}{4b^{4}-2bb^{\prime\prime}+3b^{\prime 2}}\,g^{\prime 2},

then

S(x)=8b(6b36bbb′′+b2b′′′)(4b4+3b22bb′′)2g2.S^{\prime}(x)=\frac{8b(6b^{\prime 3}-6bb^{\prime}b^{\prime\prime}+b^{2}b^{\prime\prime\prime})}{(4b^{4}+3b^{\prime 2}-2bb^{\prime\prime})^{2}}g^{\prime 2}.

Thus, if 4b42bb′′+3b2>04b^{4}-2bb^{\prime\prime}+3b^{\prime 2}>0 and 6b36bbb′′+b2b′′′>06b^{\prime 3}-6bb^{\prime}b^{\prime\prime}+b^{2}b^{\prime\prime\prime}>0 then S>0,S^{\prime}>0, and we obtain g2(x)<S().g^{2}(x)<S(\infty).

Moreover, one can also get an upper bound on SS in the following way:

Sb(4b4+3b22bb′′)2(6b36bbb′′+b2b′′′)S=g20,S-\frac{b(4b^{4}+3b^{\prime 2}-2bb^{\prime\prime})}{2(6b^{\prime 3}-6bb^{\prime}b^{\prime\prime}+b^{\prime 2}b^{\prime\prime\prime})}\,S^{\prime}=g^{2}\geq 0,

that is

S/S2(6b36bbb′′+b2b′′′)b(4b4+3b22bb′′)=ddxlnb44b4+3b22bb′′,S^{\prime}/S\leq\frac{2(6b^{\prime 3}-6bb^{\prime}b^{\prime\prime}+b^{\prime 2}b^{\prime\prime\prime})}{b(4b^{4}+3b^{\prime 2}-2bb^{\prime\prime})}=\frac{d}{dx}\,ln\frac{b^{4}}{4b^{4}+3b^{\prime 2}-2bb^{\prime\prime}}\,,

provided the last expression is nonnegative. Integrating, we find

S(y)S(x)1+3b2(x)4b4(x)b′′(x)2b3(x)1+3b2(y)4b4(y)b′′(y)2b3(y)=1+ϵ(x)1+ϵ(y).\frac{S(y)}{S(x)}\leq\frac{1+\frac{3b^{\prime 2}(x)}{4b^{4}(x)}-\frac{b^{\prime\prime}(x)}{2b^{3}(x)}}{1+\frac{3b^{\prime 2}(y)}{4b^{4}(y)}-\frac{b^{\prime\prime}(y)}{2b^{3}(y)}}=\frac{1+\epsilon(x)}{1+\epsilon(y)}\,.

This shows that the envelop of g2(x)g^{2}(x) given by S(x)S(x) is almost a constant as far as ϵ(x)=o(1).\epsilon(x)=o(1).

In practically important examples the situation is somewhat more subtle as the coefficient b(x)b(x) may vanish. For instance for the Bessel function b(x)=x1x2ν2+1/4,b(x)=x^{-1}\sqrt{x^{2}-\nu^{2}+1/4}\,, and Sonin’s function does not provide any information for the monotonicity region 0<x<ν21/4.0<x<\sqrt{\nu^{2}-1/4}\,. Thus, one needs some supplementary estimates to extend the bounds on |g(x)||g(x)| to this interval. Let us notice that although the behaviour of the solutions of (5) looks less complicate in the monotonicity region, it, probably, allows only a piecewise approximation in reasonably simple elementary functions.

Another rather technical problem is how to find the constants of integration in g0.g_{0}. Here one either has to know, at least approximately, the value of g(x)g(x) at some points, e.g. at infinity, or to be able to match asymptotics in the oscillatory and transition regions.

It is worth noticing that an asymptotic with an explicit error term in the transition region, that is around a zero of b(x),b(x), can be obtained quite directly, provided we know a bound on |g(x)|.|g(x)|. Indeed, let b(α)=0,b(\alpha)=0, and let d=ddxb2(x)|x=α,d=\left.\frac{d}{dx}\,b^{2}(x)\right|_{x=\alpha}, then in a vicinity of α\alpha we can write

b2(α+d1/3t)=d2/3t+δ(t),b^{2}(\alpha+d^{-1/3}t)=d^{2/3}t+\delta(t),

where δ(t)\delta(t) is small. The function y(t)=f(α+d1/3t)y(t)=f(\alpha+d^{-1/3}t) satisfies an Airy type ODE

y′′(t)+ty(t)=δ(t)d2/3y(t).y^{\prime\prime}(t)+ty(t)=-\delta(t)d^{-2/3}y(t).

Solving it as an inhomogeneous equation one gets an explicit error term as above, yet facing again the problem of fixing integration constants.

3. Upper bounds

For the Bessel function it will be convenient to introduce the parameter μ=|ν214|.\mu=|\nu^{2}-\frac{1}{4}\,|. We also use the above notation ων=πν2+π4.\omega_{\nu}=\frac{\pi\nu}{2}+\frac{\pi}{4}\,.

In this section we establish some upper bounds we need in the sequel. A simplest inequality of this type [19] states that for xx real

(8) Jν(x)|x|ν2νΓ(ν+1).J_{\nu}(x)\leq\frac{|x|^{\nu}}{2^{\nu}\Gamma(\nu+1)}\,.

For our purposes we need much more accurate estimates. To bound the Bessel function in the monotonicity region we will apply the following inequality given in [5] . We sketch a proof for self-completeness.

Lemma 2.

Let 𝒥ν(x)=xνJν(x),ν12,\mathcal{J}_{\nu}(x)=x^{-\nu}J_{\nu}(x),\;\;\nu\geq-\frac{1}{2}\,, then for 0<xν+12,0<x\leq\nu+\frac{1}{2}\,,

(9) 𝒥ν(x)𝒥ν(x)(2ν+1)24x22ν12x2x2ν+1.\frac{\mathcal{J}_{\nu}^{\prime}(x)}{\mathcal{J}_{\nu}(x)}\geq\frac{\sqrt{(2\nu+1)^{2}-4x^{2}}-2\nu-1}{2x}\geq-\frac{2x}{2\nu+1}\,.
Proof.

The function 𝒥ν(x)\mathcal{J}_{\nu}(x) is an entire function with only real zeros satisfying the Laguerre inequality 𝒥ν2𝒥ν𝒥ν′′>0.\mathcal{J}_{\nu}^{\prime 2}-\mathcal{J}_{\nu}\mathcal{J}_{\nu}^{\prime\prime}>0. Substituting here 𝒥ν′′\mathcal{J}_{\nu}^{\prime\prime} from the differential equation

x𝒥ν′′+(2ν+1)𝒥ν+x𝒥ν=0,x\mathcal{J}_{\nu}^{\prime\prime}+(2\nu+1)\mathcal{J}_{\nu}^{\prime}+x\mathcal{J}_{\nu}=0,

and dividing by 𝒥ν2/x\mathcal{J}_{\nu}^{2}/x we obtain

xt2(x)+(2ν+1)t(x)+x0,xt^{2}(x)+(2\nu+1)t(x)+x\geq 0,

where t(x)=𝒥ν/𝒥ν.t(x)=\mathcal{J}_{\nu}^{\prime}/\mathcal{J}_{\nu}. Hence,

t(x)((2ν+1)24x2+2ν+12x,2x(2ν+1)24x2+2ν+1).t(x)\notin\left(-\frac{\sqrt{(2\nu+1)^{2}-4x^{2}}+2\nu+1}{2x}\,,\frac{2x}{\sqrt{(2\nu+1)^{2}-4x^{2}}+2\nu+1}\right).

Since t(x)0t(x)\rightarrow 0 when x0+,x\rightarrow 0^{+}, whereas (2ν+1)24x2+2ν+12x,-\frac{\sqrt{(2\nu+1)^{2}-4x^{2}}+2\nu+1}{2x}\rightarrow-\infty, we conclude that

t(x)2x(2ν+1)24x2+2ν+12x2ν+1.t(x)\geq-\frac{2x}{\sqrt{(2\nu+1)^{2}-4x^{2}}+2\nu+1}\geq-\frac{2x}{2\nu+1}\,.

We need the following very accurate estimate giving the value of Jν(ν):J_{\nu}(\nu):

(10) Jν(ν)=21/332/3Γ(23)(ν+θ2α)1/3,ν>0,J_{\nu}(\nu)=\frac{2^{1/3}}{3^{2/3}\Gamma(\frac{2}{3}\,)(\nu+\theta^{2}\alpha)^{1/3}}\,,\;\;\;\nu>0,

where α=0.09434980\alpha=0.09434980..., [1].

The following theorem improves the inequality

Jν(tν)<Jν(ν)tνe(1t)ν,ν>0,  0<t<1.J_{\nu}(t\nu)<J_{\nu}(\nu)t^{\nu}e^{(1-t)\nu}\,,\;\;\;\nu>0,\;\;0<t<1.

given in [13]. For large ν\nu it is also stronger than the classical inequality

Jν(x)<xν2νΓ(ν+1)ex2/4(ν+1),J_{\nu}(x)<\frac{x^{\nu}}{2^{\nu}\Gamma(\nu+1)}\,e^{-x^{2}/4(\nu+1)},

[19, p. 16], provided t>ln1620.88.t>\sqrt{\ln 16-2}\approx 0.88.

Theorem 3.

For x=tν,  0<t1x=t\nu,\;\;0<t\leq 1 and ν>0,\nu>0,

(11) Jν(tν)Jν(ν)tνexp(ν2(1t2)2ν+1)<21/3xν32/3Γ(23)νν+1/3exp(ν2x22ν+1).J_{\nu}(t\nu)\leq J_{\nu}(\nu)t^{\nu}\exp{\left(\frac{\nu^{2}(1-t^{2})}{2\nu+1}\right)}<\frac{2^{1/3}x^{\nu}}{3^{2/3}\Gamma(\frac{2}{3})\nu^{\nu+1/3}}\,\exp{\left(\frac{\nu^{2}-x^{2}}{2\nu+1}\right)}.
Proof.

By the previous lemma we have

ln𝒥ν(ν)𝒥ν(x)xν2z2ν+1𝑑z=ν2x22ν+1,\ln\frac{\mathcal{J}_{\nu}(\nu)}{\mathcal{J}_{\nu}(x)}\geq-\int_{x}^{\nu}\frac{2z}{2\nu+1}\,dz=-\frac{\nu^{2}-\;x^{2}}{2\nu+1},

hence

𝒥ν(tν)𝒥ν(ν)exp(ν2(1t2)2ν+1),\mathcal{J}_{\nu}(t\nu)\leq\mathcal{J}_{\nu}(\nu)\exp{\left(\frac{\nu^{2}(1-t^{2})}{2\nu+1}\right)},

which together with (10) yields the required result. ∎

Remark 1.

The function 𝒥ν(x)=xνJν(x)\mathcal{J}_{\nu}(x)=x^{-\nu}J_{\nu}(x) of Lemma 2 belongs to so-called Pólya-Laguerre class and satisfies the infinite series of inequalities:

(12) Lm(𝒥ν)=j=02m(1)m+j(2mj)(2m)!𝒥ν(j)𝒥ν(2mj)0,L_{m}(\mathcal{J}_{\nu})=\sum_{j=0}^{2m}(-1)^{m+j}\frac{{2m\choose j}}{(2m)!}\mathcal{J}_{\nu}^{(j)}\mathcal{J}_{\nu}^{(2m-j)}\geq 0,

where L1L_{1} is the usual Laguerre inequality 𝒥ν2𝒥ν𝒥ν′′0,\mathcal{J}_{\nu}^{\prime 2}-\mathcal{J}_{\nu}\mathcal{J}_{\nu}^{\prime\prime}\geq 0, (see e.g. [14], [15]). Using Lm(𝒥ν)>0L_{m}(\mathcal{J}_{\nu})>0 for m>1m>1 leads to much more precise yet more complicated bounds on 𝒥ν/𝒥ν\mathcal{J}_{\nu}^{\prime}/\mathcal{J}_{\nu} and consequently on Jν.J_{\nu}. Alternatively, one can use the inequality L1(𝒥ν+λ𝒥ν)0,L_{1}(\mathcal{J}_{\nu}+\lambda\mathcal{J}^{\prime}_{\nu})\geq 0, λ,\lambda\in\mathbb{R}, then optimizing in λ.\lambda. It is worth noticing that both methods give an inequality similar to (9) but in the opposite direction. Thus, one can use the known value of 𝒥ν(0)\mathcal{J}_{\nu}(0) instead of 𝒥ν(ν).\mathcal{J}_{\nu}(\nu).

Our main tool for bounding solutions of the second order differential equations will be Sonin’s function. In particular, it was used by Szegö to prove that for |ν|12,|\nu|\leq\frac{1}{2}\,,

(13) |Jν(x)|2πx,|J_{\nu}(x)|\leq\sqrt{\frac{2}{\pi x}}\,,

Although he did not state this explicitly, his proof of Theorem 7.31.2. immediately implies

(14) |Yν(x)|2πx.|Y_{\nu}(x)|\leq\sqrt{\frac{2}{\pi x}}\,.

His arguments go as follows: let yy be a solution of the Bessel differential equation

x2y′′+xy+(x2ν2)y=0,x^{2}y^{\prime\prime}+xy^{\prime}+(x^{2}-\nu^{2})y=0,

then for |ν|12|\nu|\leq\frac{1}{2} Sonin’s function

(15) S(x)=xy2+x2x2μ(ddxxy)2S(x)=xy^{2}+\frac{x^{2}}{x^{2}-\mu}\,\left(\frac{d}{dx}\,\sqrt{x}\,y\right)^{2}

is increasing and inequalities (13) and (14) follow by calculating S()S(\infty) from known asymptotics of JνJ_{\nu} and Yν,Y_{\nu}, whereas for ν>12\nu>\frac{1}{2} it is decreasing for x>μ,x>\sqrt{\mu}, and does not lead, at least directly, to any explicit inequality.

It turns out that for ν>1/2\nu>1/2 it is more natural to deal with the function

(16) ν(x)=|x2μ|1/4Jν(x),\mathcal{H}_{\nu}(x)=|x^{2}-\mu|^{1/4}J_{\nu}(x),

rather than xJν(x).\sqrt{x}\,J_{\nu}(x). Here we will refine an inequality for the Bessel function obtained in [2]. First we need a bound on location of the leftmost maximum of ν(x).\mathcal{H}_{\nu}(x).

Lemma 4.

The first positive maximum of ν(x),ν53,\mathcal{H}_{\nu}(x),\;\;\nu\geq\frac{5}{3}\,, is attained at a point ξ\xi satisfying

ξ>ν1(2ν)2/3\xi>\nu\sqrt{1-(2\nu)^{-2/3}}\,
Proof.

Since obviously 0<ξ<μ,0<\xi<\mu, we can restrict ourselves to the interval (0,μ)(0,\mu) and write down

ν(x)=xν(μx2)1/4𝒥ν(x),\mathcal{H}_{\nu}(x)=x^{\nu}(\mu-x^{2})^{1/4}\mathcal{J}_{\nu}(x),

where as above 𝒥ν(x)=xνJν(x).\mathcal{J}_{\nu}(x)=x^{-\nu}J_{\nu}(x). Then

0=ν(ξ)=ξν12(μξ2)3/4(2(μξ2)(ξt(ξ)+ν)ξ2)𝒥ν(ξ),0=\mathcal{H}^{\prime}_{\nu}(\xi)=\frac{\xi^{\nu-1}}{2(\mu-\xi^{2})^{3/4}}\left(2(\mu-\xi^{2})(\xi t(\xi)+\nu)-\xi^{2}\right)\mathcal{J}_{\nu}(\xi),

where t(x)=𝒥ν(x)/𝒥ν(x).t(x)=\mathcal{J}_{\nu}^{\prime}(x)/\mathcal{J}_{\nu}(x). Hence

t(ξ)=(2ν+1)(2ν2ν2ξ2)(4ν214ξ2)ξ,t(\xi)=-\frac{(2\nu+1)(2\nu^{2}-\nu-2\xi^{2})}{(4\nu^{2}-1-4\xi^{2})\xi}\,,

and comparing this with (11) we obtain the inequality

(2ν+1)(2ν2ν2ξ2)4ν214ξ22ν+1(2ν+1)24ξ22.\frac{(2\nu+1)(2\nu^{2}-\nu-2\xi^{2})}{4\nu^{2}-1-4\xi^{2}}\leq\frac{2\nu+1-\sqrt{(2\nu+1)^{2}-4\xi^{2}}}{2}\,.

Simplifying we get

16ξ64(2ν+1)(6ν1)ξ4+(2ν1)(2ν+1)2(6ν+1)ξ2+ν(ν+1)(4ν21)2:=p(ξ)0.16\xi^{6}-4(2\nu+1)(6\nu-1)\xi^{4}+(2\nu-1)(2\nu+1)^{2}(6\nu+1)\xi^{2}+\nu(\nu+1)(4\nu^{2}-1)^{2}:=p(\xi)\geq 0.

Observe that for ν5/3\nu\geq 5/3 this polynomial has the only positive zero ξ0,\xi_{0}, Indeed, the discriminant of p(ξ)p(\xi) in ξ,\xi, up to an irrelevant numerical factor, is

ν(ν+1)(2ν1)6(2ν+1)10(108ν2172ν5)2.\nu(\nu+1)(2\nu-1)^{6}(2\nu+1)^{10}(108\nu^{2}-172\nu-5)^{2}.

Thus the number of positive zeros does not change for 108ν2172ν5>0,108\nu^{2}-172\nu-5>0, in particular for ν>5/3.\nu>5/3\,. For ν=5/2\nu=5/2 we obtain the following test equation ξ621ξ4+144ξ2315=0,\xi^{6}-21\xi^{4}+144\xi^{2}-315=0, with the only positive zero ξ2.14.\xi\approx 2.14. Finally,

p(ν)=ν(4ν32ν1)>0,p(\nu)=\nu(4{\nu}^{3}-2\nu-1)>0,

and using the substitution n=r3/2,n=r^{3}/2, we find

p(ν1(2ν)2/3)=p(r6r4/2)=r3(r21)2(2r4+4r2r+2)<0,p(\nu\sqrt{1-(2\nu)^{-2/3}}\;)=p(\sqrt{r^{6}-r^{4}}/2)=-r^{3}(r^{2}-1)^{2}(2r^{4}+4r^{2}-r+2)<0,

hence

ξ>ν1(2ν)2/3.\xi>\nu\sqrt{1-(2\nu)^{-2/3}}\,.

Theorem 5.

Let ν>12,\nu>\frac{1}{2}\,, then for x0,x\geq 0,

(17) |x2μ|1/4|Jν(x)|<2π,|x^{2}-\mu|^{1/4}|J_{\nu}(x)|<\sqrt{\frac{2}{\pi}}\,,

and the constant 2π\sqrt{\frac{2}{\pi}}\, is best possible.

Proof.

For x=μx=\sqrt{\mu} the result is trivial. Otherwise we shall consider three cases.
Case 1: xμ.x\geq\sqrt{\mu}. The function

ν(x)=(x2μ)1/4Jν(x),\mathcal{H}_{\nu}(x)=(x^{2}-\mu)^{1/4}J_{\nu}(x),

as easy to check, satisfies the differential equation

ν′′(x)μx(x2μ)ν(x)+4(x2μ)3+(6x2μ)μ4x2(x2μ)2ν(x)=0.\mathcal{H}^{\prime\prime}_{\nu}(x)-\frac{\mu}{x(x^{2}-\mu)}\,\mathcal{H}^{\prime}_{\nu}(x)+\frac{4(x^{2}-\mu)^{3}+(6x^{2}-\mu)\mu}{4x^{2}(x^{2}-\mu)^{2}}\,\mathcal{H}_{\nu}(x)=0.

Consider Sonin’s function

S(x)=ν2(x)+4x2(x2μ)24(x2μ)3+(6x2μ)μν2(x),S(x)={\mathcal{H}}_{\nu}^{2}(x)+\frac{4x^{2}(x^{2}-\mu)^{2}}{4(x^{2}-\mu)^{3}+(6x^{2}-\mu)\mu}\,{\mathcal{H}^{\prime}}_{\nu}^{2}(x),

then ν2(x)S(x){\mathcal{H}}_{\nu}^{2}(x)\leq S(x) for x>μ>0.x>\sqrt{\mu}>0.

One finds

S(x)=24μx3(x2μ)(4x2+μ)(4(x2μ)3+(6x2μ)μ)2ν2(x)0,S^{\prime}(x)=\frac{24\mu x^{3}(x^{2}-\mu)(4x^{2}+\mu)}{\left(4(x^{2}-\mu)^{3}+(6x^{2}-\mu)\mu\right)^{2}}\,{\mathcal{H}^{\prime}}_{\nu}^{2}(x)\geq 0,

hence

|ν2(x)|<limxS(x).|\mathcal{H}_{\nu}^{2}(x)|<\sqrt{\lim_{x\rightarrow\infty}S(x)}\,.

Using

Jν(x)=Jν1(x)Jν+1(x)2J^{\prime}_{\nu}(x)=\frac{J_{\nu-1}(x)-J_{\nu+1}(x)}{2}

and the asymptotic formula

Jν(x)2πxcos(x(2ν+1)π4),J_{\nu}(x)\sim\sqrt{\frac{2}{\pi x}}\,\cos{(x-\frac{(2\nu+1)\pi}{4})}\,,

after some calculations one finds

|ν(x)|<2π.|\mathcal{H}_{\nu}(x)|<\sqrt{\frac{2}{\pi}}\,.

Since ν2(x)=S(x)\mathcal{H}_{\nu}^{2}(x)=S(x) at all local maxima the constant 2π\sqrt{\frac{2}{\pi}} is sharp.

Case 2: 0<x<μ,12ν3.0<x<\sqrt{\mu},\;\;\frac{1}{2}\leq\nu\leq 3. By (8) and ν>12\nu>\frac{1}{2} we have

ν(x)=(μx2)1/4Jν(x)(μx2)1/4xν2νΓ(ν+1).\mathcal{H}_{\nu}(x)=(\mu-x^{2})^{1/4}J_{\nu}(x)\leq\frac{(\mu-x^{2})^{1/4}x^{\nu}}{2^{\nu}\Gamma(\nu+1)}\,.

The maximum of the last expression is attained for x=ν2ν/2,x=\sqrt{\nu^{2}-\nu/2}\,, yielding

ν(x)νν/2(2ν1)ν/2+1/42(3ν+1)/2Γ(ν+1):=f(ν)Γ(ν+1).\mathcal{H}_{\nu}(x)\leq\frac{\nu^{\nu/2}(2\nu-1)^{\nu/2+1/4}}{2^{(3\nu+1)/2}\,\Gamma(\nu+1)}:=\frac{f(\nu)}{\Gamma(\nu+1)}\,.

For ν>12\nu>\frac{1}{2} the function Γ(ν+1)\Gamma(\nu+1) is increasing and it is easy to check that f(ν)f(\nu) is also increasing. Hence for 12aνb,ab,\frac{1}{2}\leq a\leq\nu\leq b,\;\;a\neq b, we have the following estimate

ν(x)<f(b)Γ(a+1).\mathcal{H}_{\nu}(x)<\frac{f(b)}{\Gamma(a+1)}\,.

This yields

ν(x)<35/442Γ(32)=35/422π<2π,12ν2;\mathcal{H}_{\nu}(x)<\frac{3^{5/4}}{4\sqrt{2}\,\Gamma(\frac{3}{2})}=\frac{3^{5/4}}{2\sqrt{2\pi}}<\sqrt{\frac{2}{\pi}}\,,\;\;\;\frac{1}{2}\leq\nu\leq 2;
ν(x)<1.52Γ(3)<2π,   2ν2.6;\mathcal{H}_{\nu}(x)<\frac{1.52}{\Gamma(3)}<\sqrt{\frac{2}{\pi}}\,,\;\;\;2\leq\nu\leq 2.6;
ν(x)<2.72Γ(3.6)<2π,   2.6ν3.\mathcal{H}_{\nu}(x)<\frac{2.72}{\Gamma(3.6)}<\sqrt{\frac{2}{\pi}}\,,\;\;\;2.6\leq\nu\leq 3.

Case 3: 0<x<μ,ν3.0<x<\sqrt{\mu}\,,\;\;\nu\geq 3. Inequality (11) yields

ν(x)<21/3xν(μx2)1/432/3Γ(23)νν+1/3exp(ν2x22ν+1).\mathcal{H}_{\nu}(x)<\frac{2^{1/3}x^{\nu}(\mu-x^{2})^{1/4}}{3^{2/3}\Gamma(\frac{2}{3})\nu^{\nu+1/3}}\,\exp\left(\frac{\nu^{2}-x^{2}}{2\nu+1}\right).

Let r=(ν/2)1/3,r=(\nu/2)^{1/3}, by Lemma 4 we can set

x=ν1(2ν)2/3z=r22r2z,r4<z<1.x=\nu\sqrt{1-(2\nu)^{-2/3}z}=\frac{r^{2}}{2}\,\sqrt{r^{2}-z}\,,\;\;\;r^{-4}<z<1.

This gives

ν(x)<A(1zr2)r3/4(zr41)1/4r1exp(zr44r3+4):=Af(z),\mathcal{H}_{\nu}(x)<A\left(1-\frac{z}{r^{2}}\right)^{r^{3}/4}\,(z\,r^{4}-1)^{1/4}r^{-1}\,\exp\left(\frac{z\,r^{4}}{4r^{3}+4}\right):=Af(z),

where A=21/632/3Γ(23).A=\frac{2^{1/6}}{3^{2/3}\Gamma(\frac{2}{3})}\,. We find

f(z)f(z)=(1+r3+r62zr4z2r5)r34(1+r2)(r2z)(zr41),\frac{f^{\prime}(z)}{f(z)}=\frac{(1+r^{3}+r^{6}-2z\,r^{4}-z^{2}r^{5})r^{3}}{4(1+r^{2})(r^{2}-z)(z\,r^{4}-1)},

where

1+r3+r62zr4z2r5>(r21)(1+r)(r32r2+r1)>0,1+r^{3}+r^{6}-2z\,r^{4}-z^{2}r^{5}>(r^{2}-1)(1+r)(r^{3}-2r^{2}+r-1)>0,

for ν19/7.\nu\geq 19/7. Hence f(x)f(x) is increasing and

ν(x)<Af(1)=A(11r2)r3/4(r41)1/4r1exp(r44r3+4)<\mathcal{H}_{\nu}(x)<Af(1)=A\left(1-\frac{1}{r^{2}}\right)^{r^{3}/4}\,(r^{4}-1)^{1/4}r^{-1}\,\exp\left(\frac{r^{4}}{4r^{3}+4}\right)<
Aer/4(1r4)1/4exp(r44r3+4)<A<2π.Ae^{-r/4}(1-r^{-4})^{1/4}\exp\left(\frac{r^{4}}{4r^{3}+4}\right)<A<\sqrt{\frac{2}{\pi}}\,.

This completes the proof. ∎

A similar but more complicated result can be given for Jν(x).J^{\prime}_{\nu}(x).

Theorem 6.

Let ν12\nu\geq\frac{1}{2} and xν+7122/3ν1/3,x\geq\nu+\frac{\sqrt{7}-1}{2^{2/3}}\,\nu^{1/3}, then

(18) x(4(x2ν2)33x410x2ν2+ν4)1/4x2ν2|Jν(x)|<2π.\frac{x\left(4(x^{2}-\nu^{2})^{3}-3x^{4}-10x^{2}\nu^{2}+\nu^{4}\right)^{1/4}}{x^{2}-\nu^{2}}\,|J^{\prime}_{\nu}(x)|<\frac{2}{\sqrt{\pi}}\,.
Proof.

Let

z(x)=xψ1/4(x)x2ν2Jν(x),z(x)=\frac{x\psi^{1/4}(x)}{x^{2}-\nu^{2}}\,J^{\prime}_{\nu}(x),

where

ψ(x)=4(x2ν2)33x410x2ν2+ν4.\psi(x)=4(x^{2}-\nu^{2})^{3}-3x^{4}-10x^{2}\nu^{2}+\nu^{4}.

First notice that ψ(x)>0\psi(x)>0 for ν12\nu\geq\frac{1}{2} and xν+7122/3ν1/3.x\geq\nu+\frac{\sqrt{7}-1}{2^{2/3}}\,\nu^{1/3}. Indeed, the substitutions

(19) x=y+ν+7122/3ν1/3,ν=(21/3+n)3,x=y+\nu+\frac{\sqrt{7}-1}{2^{2/3}}\,\nu^{1/3},\;\;\;\nu=(2^{-1/3}+n)^{3},

transforms ψ\psi into a polynomial in nn and yy with nonegative coefficients. Consider Sonyn’s function

S(x)=z2(x)+x2(x2ν2)2ψ2(x)Q(x)z2(x),S(x)=z^{2}(x)+\frac{x^{2}(x^{2}-\nu^{2})^{2}\psi^{2}(x)}{Q(x)}\,z^{\prime 2}(x),

and its derivative

S(x)=6x3(x2ν2)4ψ(x)P(x)Q2(x)z2(x),S^{\prime}(x)=\frac{6x^{3}(x^{2}-\nu^{2})^{4}\psi(x)P(x)}{Q^{2}(x)}\,z^{\prime 2}(x),

where

Q(x)=16(x2ν2)94(x2ν2)6(2ν424ν2x29x4)+Q(x)=16(x^{2}-\nu^{2})^{9}-4(x^{2}-\nu^{2})^{6}(2\nu^{4}-24\nu^{2}x^{2}-9x^{4})+
(x2ν2)3(ν8+474ν4x4+440ν2x6+45x8)+(x^{2}-\nu^{2})^{3}(\nu^{8}+474\nu^{4}x^{4}+440\nu^{2}x^{6}+45x^{8})+
3x2(2ν10+29ν8x2112ν6x466ν4x642ν2x83x10),3x^{2}(2\nu^{10}+29\nu^{8}x^{2}-112\nu^{6}x^{4}-66\nu^{4}x^{6}-42\nu^{2}x^{8}-3x^{10}),

and

P(x)=P(x)=
16ν2(x2ν2)6(4x2+ν2)+8(x2ν2)3(5ν8+119ν6x2+313ν4x4+145ν2x6+6ν8)+16\nu^{2}(x^{2}-\nu^{2})^{6}(4x^{2}+\nu^{2})+8(x^{2}-\nu^{2})^{3}(5\nu^{8}+119\nu^{6}x^{2}+313\nu^{4}x^{4}+145\nu^{2}x^{6}+6\nu^{8})+
17ν12+618ν10x2+695ν8x4+492ν6x6+2831ν4x854ν2x10+9x1217\nu^{12}+618\nu^{10}x^{2}+695\nu^{8}x^{4}+492\nu^{6}x^{6}+2831\nu^{4}x^{8}-54\nu^{2}x^{10}+9x^{12}-
2ν2(ν8+51ν6x2+93ν4x4+177ν2x618x8).2\nu^{2}(\nu^{8}+51\nu^{6}x^{2}+93\nu^{4}x^{4}+177\nu^{2}x^{6}-18x^{8}).

Applying (19) to PP and QQ we obtain polynomials with nonnegative coefficients. Hence, z2(x)S(x)z^{2}(x)\leq S(x) for ν12\nu\geq\frac{1}{2} and xν+7122/3ν1/3.x\geq\nu+\frac{\sqrt{7}-1}{2^{2/3}}\,\nu^{1/3}. Finally, using the asymptotics

Jν(x)2πxcos(xων),Jν(x)2πxsin(xων),J_{\nu}(x)\sim\sqrt{\frac{2}{\pi x}}\,\cos(x-\omega_{\nu}),\;\;\;J^{\prime}_{\nu}(x)\sim-\sqrt{\frac{2}{\pi x}}\,\sin(x-\omega_{\nu}),

we obtain

z2(x)<limxS(x)=4π,z^{2}(x)<\lim_{x\rightarrow\infty}S(x)=\frac{4}{\pi}\,,

and the result follows. ∎

We’ll need one more statement of this type for the Airy function

Ai(x)=x3(J1/3(ζ)+J1/3(ζ)),Ai(-x)=\frac{\sqrt{x}}{3}\,\,\left(J_{-1/3}(\zeta)+J_{1/3}(\zeta)\right),

where ζ=2x3/23.\zeta=\frac{2x^{3/2}}{3}\,.

Lemma 7.
(20) (x+c)1/4Ai(x)<914,xc,(x+c)^{1/4}Ai(-x)<\frac{9}{14}\,,\;\;\;x\geq-c,

where c=151/324/3.c=15^{1/3}\cdot 2^{-4/3}. Moreover , the values of all local maxima of the function (x+c)1/4Ai(x)(x+c)^{1/4}Ai(-x) are restricted to the interval (1π,914).(\frac{1}{\sqrt{\pi}}\,,\frac{9}{14}).

Proof.

Consider the function

f(x)=(x+c)1/4Ai(x),x>c,f(x)=(x+c)^{1/4}Ai(-x),\;\;x>-c,

which satisfies the following differential equation:

f′′(x)12(x+c)f(x)+(x+516(c+x)2)f(x)=0.f^{\prime\prime}(x)-\frac{1}{2(x+c)}\,f^{\prime}(x)+\left(x+\frac{5}{16(c+x)^{2}}\right)f(x)=0.

The corresponding Sonin’s function is

S(x)=f2+f2x+516(c+x)2S(x)=f^{2}+\frac{f^{\prime 2}}{x+\frac{5}{16(c+x)^{2}}}\,

and

S(x)=256cx(x+c)(x+2c)(16x(x+c)2+5)2.S^{\prime}(x)=-\frac{256\,c\,x(x+c)(x+2c)}{\left(16x(x+c)^{2}+5\right)^{2}}\,.

Hence, x=0x=0 is the only maximum of S(x)S(x) for x>cx>-c and

f(x)f(ξ)<914,f(x)\leq f(\xi)<\frac{9}{14}\,,

where ξ=1.12879717,\xi=1.12879717..., corresponds to the first maximum of f(x).f(x). Using the asymptotic M(x)π1/2x1/4,M(-x)\sim\pi^{-1/2}x^{-1/4}, where M(x)M(x) is defined by Ai(x)=M(x)sinϕ(x),Ai(x)=M(x)\sin\phi(x), one finds

limx>f(x)=π1/2,\lim_{x->\infty}f(x)=\pi^{-1/2},

and the result follows. ∎

In the transition region the following inequality, which may be of independent interest, will be useful:

Theorem 8.

For x1,x20x_{1},x_{2}\geq 0 and 0ν12,0\leq\nu\leq\frac{1}{2},

(21) x1x2|Jν(x1)Jν(x2)Jν(x2)Jν(x1)|2πsinπν.\sqrt{x_{1}x_{2}}\,\left|J_{-\nu}(x_{1})J_{\nu}(x_{2})-J_{-\nu}(x_{2})J_{\nu}(x_{1})\right|\leq\frac{2}{\pi}\,\sin\pi\nu\,.
Proof.

The function

F=F(x1,x2)=x1x2(Jν(x1)Jν(x2)Jν(x2)Jν(x1))F=F(x_{1},x_{2})=\sqrt{x_{1}x_{2}}\,\left(J_{-\nu}(x_{1})J_{\nu}(x_{2})-J_{-\nu}(x_{2})J_{\nu}(x_{1})\right)

satisfies the Bessel differential equations

(22) 2xi2F+b(xi)F=0,i=1,2;\frac{\partial^{2}}{\partial x_{i}^{2}}F+b(x_{i})F=0,\;\;i=1,2;

where

b(x)=1+14ν2x2>0.b(x)=1+\frac{\frac{1}{4}-\nu^{2}}{x^{2}}>0.

For x>0x>0 we consider the following majorant of FF given by Sonin’s function

F2(x1,x2)S(x1,x2)=F2+(x2F)2b(x2).F^{2}(x_{1},x_{2})\leq S(x_{1},x_{2})=F^{2}+\frac{\left(\frac{\partial}{\partial x_{2}}F\right)^{2}}{b(x_{2})}\,.

By (22) we have

x2S=x2b(x2)b2(x2)(x2F)2.\frac{\partial}{\partial x_{2}}S=-\frac{\frac{\partial}{\partial x_{2}}\,b(x_{2})}{b^{2}(x_{2})}\left(\frac{\partial}{\partial x_{2}}F\right)^{2}.

Since

x2b(x2)=4ν212x23<0\frac{\partial}{\partial x_{2}}\,b(x_{2})=\frac{4\nu^{2}-1}{2x_{2}^{3}}<0

for ν<12,\nu<\frac{1}{2}\,, the Sonin’s function is increases in x2.x_{2}. Using the asymtotics

Jν(x)=2πxcos(x(2ν+1)π4)+o(x1/2),J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\,\cos(x-\frac{(2\nu+1)\pi}{4}\,)+o(x^{-1/2}),
Jν(x)=2πxsin(x(2ν+1)π4)+o(x1/2),J^{\prime}_{\nu}(x)=-\sqrt{\frac{2}{\pi x}}\,\sin(x-\frac{(2\nu+1)\pi}{4}\,)+o(x^{-1/2}),

and inequalities (13),(14), on taking the limit we obtain

F2(x1,x2)S(x1,x2)limx2S(x1,x2)=F^{2}(x_{1},x_{2})\leq S(x_{1},x_{2})\leq\lim_{x_{2}\rightarrow\infty}S(x_{1},x_{2})=
2x1π(Jν2(x1)2cosπνJν(x1)Jν(x1)+Jν2(x1))=\frac{2x_{1}}{\pi}\left(J_{\nu}^{2}(x_{1})-2\cos\pi\nu J_{\nu}(x_{1})J_{-\nu}(x_{1})+J_{-\nu}^{2}(x_{1})\right)=
2x1sin2πνπ(Jν2(x1)+Yν2(x1))4sin2πνπ2.\frac{2x_{1}\sin^{2}\pi\nu}{\pi}\,\left(J_{\nu}^{2}(x_{1})+Y_{\nu}^{2}(x_{1})\right)\leq\frac{4\sin^{2}\pi\nu}{\pi^{2}}\,.

This completes the proof. ∎

To get better numerical constants the following inequalities will be useful.

Lemma 9.

For x0,x\geq 0,

(23) 0sin2t(t+x)2𝑑t<12x,\int_{0}^{\infty}\frac{\sin^{2}t}{(t+x)^{2}}\,dt<\frac{1}{2x}\,,
(24) 0|sint|(t+x)2𝑑t<2πx.\int_{0}^{\infty}\frac{|\sin t|}{(t+x)^{2}}\,dt<\frac{2}{\pi x}\,.
Proof.

We have

0sin2t(t+x)2𝑑t=12x120cos2t(t+x)2𝑑t<12x\int_{0}^{\infty}\frac{\sin^{2}t}{(t+x)^{2}}\,dt=\frac{1}{2x}-\frac{1}{2}\int_{0}^{\infty}\frac{\cos 2t}{(t+x)^{2}}\,dt<\frac{1}{2x}

because

0cos2t(t+x)2𝑑t=k=0πk2π(k+1)2cos2t(t+x)2𝑑t>0\int_{0}^{\infty}\frac{\cos 2t}{(t+x)^{2}}\,dt=\sum_{k=0}^{\infty}\int_{\frac{\pi k}{2}}^{\frac{\pi(k+1)}{2}}\frac{\cos 2t}{(t+x)^{2}}\,dt>0

is an alternating sum with decreasing terms. This proves (23).

Now we prove (24). Let

f(x)=x0|sint|(t+x)2𝑑t.f(x)=x\int_{0}^{\infty}\frac{|\sin t|}{(t+x)^{2}}\,dt.

We have

f(x)<01xt(t+x)2𝑑t+1xdt(t+x)2𝑑t=xlnx+1x<2π,x[0,34].f(x)<\int_{0}^{1}\frac{x\,t}{(t+x)^{2}}\,dt+\int_{1}^{\infty}\frac{x\,dt}{(t+x)^{2}}\,dt=x\ln\frac{x+1}{x}<\frac{2}{\pi}\,,\;\;\;x\in[0,\frac{3}{4}\,].

Next, we show that

limxf(x)=2π.\lim_{x\rightarrow\infty}f(x)=\frac{2}{\pi}\,.

Using |sin(x+πk)|=sinx,  0xπ2,|\sin(x+\pi k)|=\sin x,\;\;0\leq x\leq\frac{\pi}{2}\,, we obtain

f(x)=xk=0πkπ(k+1)|sint|(t+x)2𝑑t=xk=00πsint(t+x+πk)2𝑑t=f(x)=x\sum_{k=0}^{\infty}\int_{\pi k}^{\pi(k+1)}\frac{|\sin t|}{(t+x)^{2}}\,dt=x\sum_{k=0}^{\infty}\int_{0}^{\pi}\frac{\sin t}{(t+x+\pi k)^{2}}\,dt=
x0πsintk=01(t+x+πk)2dt=xπ20πψ(t+xπ)sintdt,x\int_{0}^{\pi}\sin t\sum_{k=0}^{\infty}\frac{1}{(t+x+\pi k)^{2}}\,dt=\frac{x}{\pi^{2}}\int_{0}^{\pi}\psi^{\prime}(\frac{t+x}{\pi})\,\sin t\,dt,

where ψ(x)=Γ(x)/Γ(x)\psi(x)=\Gamma^{\prime}(x)/\Gamma(x) is the digamma function. Since ψ(x)=x1+O(x2)\psi^{\prime}(x)=x^{-1}+O(x^{-2}) for xx\rightarrow\infty this yields

f(x)=xπ0πsintt+x𝑑t+O(x1)=xπ0πsintx𝑑t+O(x1)=2π+O(x1).f(x)=\frac{x}{\pi}\int_{0}^{\pi}\frac{\sin t}{t+x}\,dt+O(x^{-1})=\frac{x}{\pi}\int_{0}^{\pi}\frac{\sin t}{x}\,dt+O(x^{-1})=\frac{2}{\pi}+O(x^{-1}).

Now it is enough to show that f(x)f(x) is increasing for x>34.x>\frac{3}{4}\,. Using the inequalities [17],

11+x+1x2<ψ(x)<11+x+1x2+1(x+1)2,\frac{1}{1+x}+\frac{1}{x^{2}}<\psi^{\prime}(x)<\frac{1}{1+x}+\frac{1}{x^{2}}+\frac{1}{(x+1)^{2}}\,,

we have

π2f(x)=ddx(x0πψ(t+xπ)sintdt,)=\pi^{2}f^{\prime}(x)=\frac{d}{dx}\,\left(x\int_{0}^{\pi}\psi^{\prime}(\frac{t+x}{\pi})\,\sin t\,dt,\right)=
0πψ(t+xπ)sintdt+xπ0πψ′′(t+xπ)sintdt=\int_{0}^{\pi}\psi^{\prime}(\frac{t+x}{\pi})\,\sin t\,dt+\frac{x}{\pi}\int_{0}^{\pi}\psi^{\prime\prime}(\frac{t+x}{\pi})\,\sin t\,dt=
0πψ(t+xπ)sintdtxπ0πψ(t+xπ)costdt>\int_{0}^{\pi}\psi^{\prime}(\frac{t+x}{\pi})\,\sin t\,dt-\frac{x}{\pi}\int_{0}^{\pi}\psi^{\prime}(\frac{t+x}{\pi})\,\cos t\,dt>
0π(πt+x+π+π2(t+x)2)sintdt\int_{0}^{\pi}\left(\frac{\pi}{t+x+\pi}+\frac{\pi^{2}}{(t+x)^{2}}\right)\sin t\,dt\;-
0π/2(xt+x+π+πx(t+x)2+πx(t+x+π)2)costdt\int_{0}^{\pi/2}\left(\frac{x}{t+x+\pi}+\frac{\pi x}{(t+x)^{2}}+\frac{\pi x}{(t+x+\pi)^{2}}\right)\cos t\,dt\;-
π/2π(xt+x+π+πx(t+x)2)costdt>\int_{\pi/2}^{\pi}\left(\frac{x}{t+x+\pi}+\frac{\pi x}{(t+x)^{2}}\right)\cos t\,dt>
j=03(πx+(j+5)π4+π2(x+(j+1)π4)2)jπ/4(j+1)π/4sintdt\sum_{j=0}^{3}\left(\frac{\pi}{x+\frac{(j+5)\pi}{4}}+\frac{\pi^{2}}{\left(x+\frac{(j+1)\pi}{4}\,\right)^{2}}\right)\int_{j\pi/4}^{(j+1)\pi/4}\sin t\,dt\;-
x(1x+π+πx2+π(x+π)2)0π/2costdtx(1x+2π+π(x+π)2)π/2πcostdt=x\left(\frac{1}{x+\pi}+\frac{\pi}{x^{2}}+\frac{\pi}{(x+\pi)^{2}}\right)\int_{0}^{\pi/2}\cos t\,dt\;-x\left(\frac{1}{x+2\pi}+\frac{\pi}{(x+\pi)^{2}}\right)\int_{\pi/2}^{\pi}\cos t\,dt\;=
P(x)2Q(x),\frac{P(x)}{2Q(x)},

where

π11P(x)=\pi^{-11}P(x)=
114688y11+4096(25922)y10+1024(4216772)y9+1536(66412442)y8+114688y^{11}+4096(259-2\sqrt{2}\,)y^{10}+1024(4216-77\sqrt{2}\,)y^{9}+1536(6641-244\sqrt{2}\,)y^{8}+
64(242859169542)y7+400(4001150022)y6+4(28201585917572)y5+64(242859-16954\sqrt{2}\,)y^{7}+400(40011-5002\sqrt{2}\,)y^{6}+4(2820158-591757\sqrt{2}\,)y^{5}+
4(13327374434472)y4+(15649828081872)y3+5(44796405712)y24(1332737-443447\sqrt{2}\,)y^{4}+(1564982-808187\sqrt{2}\,)y^{3}+5(44796-40571\sqrt{2}\,)y^{2}-
3(1140+71092)y3780,3(1140+7109\sqrt{2}\,)y-3780,

and

Q(x)=y(y+1)2(2y+1)2(4y+1)2(4y+3)2(y+2)(2y+3)(4y+5)(4y+7),y=x/π.Q(x)=y(y+1)^{2}(2y+1)^{2}(4y+1)^{2}(4y+3)^{2}(y+2)(2y+3)(4y+5)(4y+7),\;\;y=x/\pi.

It is easy to check that the polynomial P(x+23)P(x+\frac{2}{3}\,) has only positive coefficients. Hence f(x)>0f^{\prime}(x)>0 for x>2/3,x>2/3, and f(x)<limxf(x)=2π.f(x)<\lim_{x\rightarrow\infty}f(x)=\frac{2}{\pi}\,. This competes the proof. ∎

4. Oscillatory Region

Having at hand an upper bound on |Jν(x)||J_{\nu}(x)| one can estimate the difference

(25) r(x)=πx2Jν(x)cos(xων),r(x)=\sqrt{\frac{\pi x}{2}}\,J_{\nu}(x)-\cos(x-\omega_{\nu}),

in a rather elementary way. Notice that r(x)r(x) satisfies the following differential equation

r′′+r=π2x3(ν214)Jν(x),r^{\prime\prime}+r=\sqrt{\frac{\pi}{2x^{3}}}\,\left(\nu^{2}-\frac{1}{4}\right)J_{\nu}(x),

with the general solution of the form

(26) r(x)=c1cosx+c2sinx+π2(14ν2)xsin(tx)t3/2Jν(t)𝑑t.r(x)=c_{1}\cos x+c_{2}\sin x+\sqrt{\frac{\pi}{2}}\,\left(\frac{1}{4}-\nu^{2}\right)\int_{x}^{\infty}\frac{\sin(t-x)}{t^{3/2}}\,J_{\nu}(t)dt.

Now one has only to estimate the integral and to notice that as far as it is o(1),o(1), we have c1=c2=0c_{1}=c_{2}=0 by an obvious limiting argument.

In [11] Olenko proved the inequalities

c1ν7/6limνsupx0x3/2|Jν(x)2πxcos(xων)|c2ν13/6,c_{1}\nu^{7/6}\leq\lim_{\nu\rightarrow\infty}\sup_{x\geq 0}x^{3/2}\left|J_{\nu}(x)-\sqrt{\frac{2}{\pi x}}\,\cos(x-\omega_{\nu})\right|\leq c_{2}\nu^{13/6},

and raised the question what is the best possible exponent α\alpha of ν\nu in this inequality. It turns out that that the answer α=2\alpha=2 can be readily extracted from (26), since starting with a reasonably sharp approximation to the Bessel function one can iterate it getting more and more accurate yet more complicate approximations.

Theorem 10.
(27) Jν(x)=2πxcos(xων)+θcμx3/2,J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\,\cos(x-\omega_{\nu})+\theta c\mu x^{-3/2},

where

c={(2π)3/2,x0,|ν|12,22,xμ,ν>12,54,0<x<μ,ν>12.c=\left\{\begin{array}[]{ccc}\left(\frac{2}{\pi}\right)^{3/2}\,,&x\geq 0,&|\nu|\leq\frac{1}{2},\\ &&\\ \frac{\sqrt{2}}{2}\,,&x\geq\sqrt{\mu},&\nu>\frac{1}{2}\,,\\ &&\\ \frac{5}{4}\,,&0<x<\sqrt{\mu},&\nu>\frac{1}{2}\,.\end{array}\right.

Moreover, up to the numerical factor cc the error term in (27) is sharp. In particular, cc cannot be taken less than 1/2π.1/\sqrt{2\pi}\,.

Proof.

To estimate the integral in (26) for |ν|12|\nu|\leq\frac{1}{2} we apply (24) yielding

ν(x):=π2|xsin(tx)t3/2Jν(t)𝑑t|x|sin(tx)|t2𝑑t<2πx.\mathcal{I}_{\nu}(x):=\sqrt{\frac{\pi}{2}}\,\left|\int_{x}^{\infty}\frac{\sin(t-x)}{t^{3/2}}\,J_{\nu}(t)dt\right|\leq\int_{x}^{\infty}\frac{|\sin(t-x)|}{t^{2}}\;dt<\frac{2}{\pi x}.

Thus

r(x)=c1cosx+c2sinx+θ2μπx.r(x)=c_{1}\cos x+c_{2}\sin x+\theta\,\frac{2\mu}{\pi x}\,.

For ν>12\nu>\frac{1}{2} and x>μx>\sqrt{\mu}\, we use (17) and the inequality arcsinxπx2.\arcsin x\leq\frac{\pi x}{2}\,. This gives

ν(x)x|sin(tx)|t3/2(t2μ)1/4𝑑txsin2(tx)dtt2xdttt2μ\mathcal{I}_{\nu}(x)\leq\int_{x}^{\infty}\frac{|\sin(t-x)|}{t^{3/2}(t^{2}-\mu)^{1/4}}\,dt\leq\sqrt{\int_{x}^{\infty}\frac{\sin^{2}(t-x)\,dt}{t^{2}}\,\cdot\int_{x}^{\infty}\frac{dt}{t\sqrt{t^{2}-\mu}}}
=arcsinμx2xμπ2x.=\sqrt{\frac{\arcsin\frac{\sqrt{\mu}}{x}}{2x\sqrt{\mu}}}\leq\frac{\sqrt{\pi}}{2x}\,.

Hence in this case

r(x)=c1cosx+c2sinx+θπμ2x.r(x)=c_{1}\cos x+c_{2}\sin x+\theta\,\frac{\sqrt{\pi}\,\mu}{2x}\,.

Similarly, for ν>12\nu>\frac{1}{2} and 0<xμ,0<x\leq\sqrt{\mu}\,,

ν(x)μ|sin(tx)|t3/2(t2μ)1/4𝑑t+xμ|sin(tx)|t3/2(μt2)1/4𝑑t\mathcal{I}_{\nu}(x)\leq\int_{\sqrt{\mu}}^{\infty}\frac{|\sin(t-x)|}{t^{3/2}(t^{2}-\mu)^{1/4}}\,dt+\int_{x}^{\sqrt{\mu}}\frac{|\sin(t-x)|}{t^{3/2}(\mu-t^{2})^{1/4}}\,dt\leq
12πμ+xμ|sin(tx)|t3/2(μt2)1/4𝑑t12πμ+xμdtt2xμdttμt2=\frac{1}{2}\,\sqrt{\frac{\pi}{\mu}}+\int_{x}^{\sqrt{\mu}}\frac{|\sin(t-x)|}{t^{3/2}(\mu-t^{2})^{1/4}}\,dt\leq\frac{1}{2}\,\sqrt{\frac{\pi}{\mu}}+\sqrt{\int_{x}^{\sqrt{\mu}}\frac{dt}{t^{2}}\,\cdot\int_{x}^{\sqrt{\mu}}\frac{dt}{t\sqrt{\mu-t^{2}}}}=
12πμ+μxμxlnμ+μx2x<π2x+x(μx)ln2μxxμ.\frac{1}{2}\,\sqrt{\frac{\pi}{\mu}}+\sqrt{\frac{\sqrt{\mu}-x}{\mu x}\,\ln\frac{\sqrt{\mu}+\sqrt{\mu-x^{2}}}{x}}<\frac{\sqrt{\pi}}{2x}+\frac{\sqrt{x(\sqrt{\mu}-x)\ln\frac{2\sqrt{\mu}}{x}}}{x\sqrt{\mu}}\,.

An elementary investigation shows that the maximum of the function

x(μx)ln2μxx(\sqrt{\mu}-x)\ln\frac{2\sqrt{\mu}}{x}

is attained for x=dμ,d=0.314711,x=d\sqrt{\mu}\,,\;\;d=0.314711..., and does not exceed 2μ/5.2\mu/5. Hence,

ν(x)<π+2252x<6π7x,\mathcal{I}_{\nu}(x)<\frac{\sqrt{\pi}+2\sqrt{\frac{2}{5}}}{2x}<\frac{6\sqrt{\pi}}{7x}\,,

and

r(x)=c1cosx+c2sinx+θ6πμ7x.r(x)=c_{1}\cos x+c_{2}\sin x+\theta\,\frac{6\sqrt{\pi}\,\mu}{7x}\,.

Finally, since for x,x\rightarrow\infty,

Jν(x)=2πxcos(xων)+O(x3/2),J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}\,\cos(x-\omega_{\nu})+O(x^{-3/2}),

that is limxr(x)=0,\lim_{x\rightarrow\infty}r(x)=0, we conclude that c1=c2=0c_{1}=c_{2}=0 and (27) follows.

Let us show now that up to the numerical factor cc the error term in (27) is sharp.

By (26) and (27) we have

ν(x)=x3/2|Jν(x)2πxcos(xων)|=μx|xsin(tx)t3/2Jν(t)𝑑t|=\mathcal{R}_{\nu}(x)=x^{3/2}\left|J_{\nu}(x)-\sqrt{\frac{2}{\pi x}}\,\cos(x-\omega_{\nu})\right|=\mu x\left|\int_{x}^{\infty}\frac{\sin(t-x)}{t^{3/2}}\,J_{\nu}(t)dt\right|=
2πμx|xsin(tx)cos(tων)t2𝑑t|+θcμx|xsin(tx)t3𝑑t|:=2πμx|I1|+I2.\sqrt{\frac{2}{\pi}}\,\mu x\left|\int_{x}^{\infty}\frac{\sin(t-x)\cos(t-\omega_{\nu})}{t^{2}}\,dt\right|+\theta c\mu x\left|\int_{x}^{\infty}\frac{\sin(t-x)}{t^{3}}\,dt\right|:=\sqrt{\frac{2}{\pi}}\,\mu x|I_{1}|+I_{2}.

Here

I2=θcμxxdtt3=θcμ2x.I_{2}=\theta c\mu x\int_{x}^{\infty}\frac{dt}{t^{3}}=\frac{\theta c\mu}{2x}\,.

To bound I1I_{1} we introduce two auxiliary functions ff and gg (see [12, Ch. 6]), defined by

Si(x)=π2f(x)cosxg(x)sinx,Si(x)=\frac{\pi}{2}-f(x)\cos x-g(x)\sin x,
Ci(x)=f(x)sinxg(x)cosx,Ci(x)=f(x)\sin x-g(x)\cos x,

with the asymptotics

f(x)=1x+O(x3),g(x)=1x2+O(x4),x.f(x)=\frac{1}{x}+O(x^{-3}),\;\;\;g(x)=\frac{1}{x^{2}}+O(x^{-4}),\;\;x\rightarrow\infty.

Calculations yield

I1=Si(2z)sin(x+ων)+Ci(2z)cos(x+ων)sintcos(zων)z|t=0=I_{1}=\left.Si(2z)\sin(x+\omega_{\nu})+Ci(2z)\cos(x+\omega_{\nu})-\frac{\sin t\cos(z-\omega_{\nu})}{z}\right|_{t=0}^{\infty}=
f(2z)sin(2t+xων)g(2z)cos(2t+xων)sintcos(zων)z|t=0=\left.f(2z)\sin(2t+x-\omega_{\nu})-g(2z)\cos(2t+x-\omega_{\nu})-\frac{\sin t\cos(z-\omega_{\nu})}{z}\right|_{t=0}^{\infty}=
sin(ωνx)2x+O(x2),z=x+t.\frac{\sin(\omega_{\nu}-x)}{2x}+O(x^{-2}),\;\;\;z=x+t.

Hence

ν(x)=μ2π|sin(ωνx)|+O(x1),\mathcal{R}_{\nu}(x)=\frac{\mu}{\sqrt{2\pi}}\,|\sin(\omega_{\nu}-x)|+O(x^{-1}),

and the result follows. ∎

Applying (27) to the Airy function yields the following approximation:

Corollary 1.

For x>0,x>0,

(28) Ai(x)=cos(ζπ4)πx1/4+θ563π3/2x7/4;Ai(-x)=\frac{\cos(\zeta-\frac{\pi}{4}\,)}{\sqrt{\pi}\,x^{1/4}}+\theta\,\frac{5}{6\sqrt{3}\,\pi^{3/2}x^{7/4}}\,;

5. Transition Region

Our estimates in the transition region are based on the following simple observation.

Lemma 11.

Let for a real constant q,q,

y′′(x)+q2xy(x)=u(x).y^{\prime\prime}(x)+q^{2}xy(x)=u(x).

Then for x0,x\geq 0,

(29) y(x)=x(c1J1/3(2qx3/23)+c2J1/3(2qx3/23))+y(x)=\sqrt{x}\left(c_{1}J_{-1/3}(\frac{2qx^{3/2}}{3})+c_{2}J_{1/3}(\frac{2qx^{3/2}}{3})\right)+
θq1x1/40x|u(t)|t1/4𝑑t,\theta\,q^{-1}x^{-1/4}\int_{0}^{x}|u(t)|t^{-1/4}dt,

provided the integral exists.

Proof.

Let y1y_{1} and y2y_{2} be two linearly independent solutions of the homogeneous equation

y′′(x)+q2xy(x)=0,y^{\prime\prime}(x)+q^{2}xy(x)=0,

and let

U(x,t)=y1(t)y2(x)y1(x)y2(t)y1(t)y2(t)y1(t)y2(t).U(x,t)=\frac{y_{1}(t)y_{2}(x)-y_{1}(x)y_{2}(t)}{y_{1}(t)y^{\prime}_{2}(t)-y^{\prime}_{1}(t)y_{2}(t)}\,.

Then

y(x)=c1y1(x)+c2y2(x)+xU(x,t)u(t)𝑑t,y(x)=c_{1}y_{1}(x)+c_{2}y_{2}(x)+\int^{x}U(x,t)u(t)dt,

and choosing

y1(x)=xJ1/3(2qx3/23),y2(x)=xJ1/3(2qx3/23),y_{1}(x)=\sqrt{x}\,J_{-1/3}(\frac{2qx^{3/2}}{3}),\;\;\;y_{2}(x)=\sqrt{x}\,J_{1/3}(\frac{2qx^{3/2}}{3}),

we find

y1(t)y2(t)y1(t)y2(t)=332π.y_{1}(t)y^{\prime}_{2}(t)-y^{\prime}_{1}(t)y_{2}(t)=\frac{3\sqrt{3}}{2\pi}.

Applying (21) we obtain

U(x,t)=2πtx27(J1/3(2qt3/23)J1/3(2qx3/23)J1/3(2qx3/23)J1/3(2qt3/23))U(x,t)=2\pi\sqrt{\frac{tx}{27}}\left(J_{-1/3}(\frac{2qt^{3/2}}{3})J_{1/3}(\frac{2qx^{3/2}}{3})-J_{-1/3}(\frac{2qx^{3/2}}{3})J_{1/3}(\frac{2qt^{3/2}}{3})\right)\leq
q1t1/4x1/4.q^{-1}t^{-1/4}x^{-1/4}.

Hence

|0xU(x,t)u(t)𝑑t|q1x1/40x|u(t)|t1/4𝑑t,\left|\int_{0}^{x}U(x,t)u(t)dt\right|\leq q^{-1}x^{-1/4}\int_{0}^{x}|u(t)|t^{-1/4}dt,

and the result follows. ∎

To find the constant of integration we use the value of Jν(x)J_{\nu}(x) at two points: x=νx=\nu and at the first zero x=jν1.x=j_{\nu 1}. The following bounds are known [16] (see [3] for a review of recent results),

(30) jνs=ν+21/3asν1/3+θ2322/3as210ν1/3,ν>0,j_{\nu s}=\nu+2^{-1/3}a_{s}\nu^{1/3}+\theta^{2}\,\frac{3\cdot 2^{-2/3}a_{s}^{2}}{10}\,\nu^{-1/3},\;\;\;\nu>0,

where asa_{s} is sths^{th} positive zero of the Airy function Ai(x).Ai(-x).

In the sequel we set γ=21/3a1=1.855757\gamma=2^{-1/3}a_{1}=1.855757... Thus, we can write

(31) jν1=ν+γν1/3+θ23γ210ν1/3.j_{\nu 1}=\nu+\gamma\nu^{1/3}+\theta^{2}\,\frac{3\gamma^{2}}{10}\,\nu^{-1/3}.
Lemma 12.
(32) Jν(ν+γν1/3)<76ν,ν12.J_{\nu}(\nu+\gamma\nu^{1/3})<\frac{7}{6\nu}\,,\;\;\nu\geq\frac{1}{2}\,.
Proof.

Let j=jν1,j=j_{\nu 1}, by (31) we have

Jν(ν+γν1/3)=θ23γ210ν1/3Jν(ν+γν1/3+θ123γ210ν1/3).J_{\nu}(\nu+\gamma\nu^{1/3})=-\theta^{2}\,\frac{3\gamma^{2}}{10}\,\nu^{-1/3}J^{\prime}_{\nu}(\nu+\gamma\nu^{1/3}+\theta_{1}^{2}\,\frac{3\gamma^{2}}{10}\,\nu^{-1/3}).

Setting

γν1/3+θ123γ210ν1/3:=δν1/3,ν=(δ/ϵ)3/2,\gamma\nu^{1/3}+\theta_{1}^{2}\,\frac{3\gamma^{2}}{10}\,\nu^{-1/3}:=\delta\nu^{1/3},\;\;\;\nu=(\delta/\epsilon)^{3/2},

by (18) and γ>7122/3\gamma>\frac{\sqrt{7}-1}{2^{2/3}} we obtain

|Jν(ν+δν1/3|<2ϵπϕ(ϵ,δ),|J^{\prime}_{\nu}(\nu+\delta\nu^{1/3}|<\frac{2\epsilon}{\sqrt{\pi}}\,\phi(\epsilon,\delta),

where

ϕ(ϵ,δ)=2+ϵ1+ϵ(4(8δ33)+16(3δ32)ϵ+4(6δ37)ϵ2+4(δ33)ϵ33ϵ4)1/4.\phi(\epsilon,\delta)=\frac{2+\epsilon}{1+\epsilon}\,\left(4(8\delta^{3}-3)+16(3\delta^{3}-2)\epsilon+4(6\delta^{3}-7)\epsilon^{2}+4(\delta^{3}-3)\epsilon^{3}-3\epsilon^{4}\right)^{-1/4}.

Notice that ϕ(ϵ,δ)<ϕ(ϵ,γ)\phi(\epsilon,\delta)<\phi(\epsilon,\gamma) since δ>γ\delta>\gamma and

δϕ(ϵ,δ)=3δ2(1+ϵ)42+ϵϕ5(ϵ,δ)<0.\frac{\partial}{\partial\delta}\,\phi(\epsilon,\delta)=-\frac{3\delta^{2}(1+\epsilon)^{4}}{2+\epsilon}\,\phi^{5}(\epsilon,\delta)<0.

Moreover,

ϵ=δν2/3=γν2/3+3γ210ν4/3<6,\epsilon=\delta\nu^{-2/3}=\gamma\nu^{-2/3}+\frac{3\gamma^{2}}{10}\,\nu^{-4/3}<6,

whereas

ϵϕ(ϵ,γ)<0,   0ϵ7.\frac{\partial}{\partial\epsilon}\,\phi(\epsilon,\gamma)<0,\;\;\;0\leq\epsilon\leq 7.

Thus, ϕ(ϵ,δ)<ϕ(0,γ),\phi(\epsilon,\delta)<\phi(0,\gamma), and we get

|Jν(ν+δν1/3|<2ϵπϕ(0,γ)=23/2γπ(8γ3)1/4ν2/3,|J^{\prime}_{\nu}(\nu+\delta\nu^{1/3}|<\frac{2\epsilon}{\sqrt{\pi}}\,\phi(0,\gamma)=\frac{2^{3/2}\gamma}{\sqrt{\pi}\,(8\gamma-3)^{1/4}}\,\nu^{-2/3},

and the result follows. ∎

Applying Lemma 11 to JνJ_{\nu} we obtain

Theorem 13.

Let ν12,\nu\geq\frac{1}{2}\,, and let x=ν+ν1/3z,x=\nu+\nu^{1/3}z, then

(33) Jν(x)=21/3ν2/3+zAi(21/3z)+θ23max{1,z9/4}2ν2/3ν2/3+z.J_{\nu}(x)=\frac{2^{1/3}}{\sqrt{\nu^{2/3}+z}}\,Ai(-2^{1/3}z)+\theta\frac{23\max\{1,z^{9/4}\}}{2\nu^{2/3}\sqrt{\nu^{2/3}+z}}\,.
Proof.

Consider the function

y(z)=ν+ν1/3zJν(ν+ν1/3z),y(z)=\sqrt{\nu+\nu^{1/3}z}\,J_{\nu}(\nu+\nu^{1/3}z),

which, as easy to check, satisfies the differential equation

y′′(z)+2zy(z)=8z3+12ν2/3z214(ν2/3+z)2y(z).y^{\prime\prime}(z)+2zy(z)=\frac{8z^{3}+12\nu^{2/3}z^{2}-1}{4(\nu^{2/3}+z)^{2}}\,y(z).

Lemmas 11 and 5 yield

(34) y(z)=z(c1J1/3(2ζ)+c2J1/3(2ζ))+θR(z),y(z)=\sqrt{z}\left(c_{1}J_{-1/3}(\sqrt{2}\,\zeta)+c_{2}J_{1/3}(\sqrt{2}\,\zeta)\right)+\theta R(z),

where ζ=2z3/23,\zeta=\frac{2z^{3/2}}{3}\,, and

z1/4R(z)=1420z|8t3+12ν2/3t21(ν2/3+t)2t1/4y(t)|𝑑tz^{1/4}R(z)=\frac{1}{4\sqrt{2}}\int_{0}^{z}\left|\frac{8t^{3}+12\nu^{2/3}t^{2}-1}{(\nu^{2/3}+t)^{2}t^{1/4}}\,y(t)\right|dt\leq
1420z|8t3+12ν2/3t21|(ν2/3+t)3/2t1/4(x2μ)1/42xπ𝑑t=\frac{1}{4\sqrt{2}}\int_{0}^{z}\frac{|8t^{3}+12\nu^{2/3}t^{2}-1|}{(\nu^{2/3}+t)^{3/2}t^{1/4}}\cdot(x^{2}-\mu)^{-1/4}\sqrt{\frac{2x}{\pi}}\,dt=
ν1/622π0z|8t3+12ν2/3t21|(ν2/3+t)3/2(4ν2/3t2+8ν4/3t+1)1/4t1/4𝑑t<\frac{\nu^{1/6}}{2\sqrt{2\pi}}\int_{0}^{z}\frac{|8t^{3}+12\nu^{2/3}t^{2}-1|}{(\nu^{2/3}+t)^{3/2}(4\nu^{2/3}t^{2}+8\nu^{4/3}t+1)^{1/4}t^{1/4}}\,dt<
1πmax{0z(3ν2/3+2t)t3/2dt(ν2/3+t)3/2(2ν2/3+t)1/4,0zdt4t(ν2/3+t)3/2(2ν2/3+t)1/4}<\frac{1}{\sqrt{\pi}}\,\max\left\{\int_{0}^{z}\frac{(3\nu^{2/3}+2t)t^{3/2}dt}{(\nu^{2/3}+t)^{3/2}(2\nu^{2/3}+t)^{1/4}}\,,\int_{0}^{z}\frac{dt}{4\sqrt{t}\,(\nu^{2/3}+t)^{3/2}(2\nu^{2/3}+t)^{1/4}}\right\}<
1πmax{0z(3ν2/3+2t)t3/2dt(ν2/3+t)3/2(2ν2/3+t)1/4,0zdt421/4ν7/6t}.\frac{1}{\sqrt{\pi}}\,\max\left\{\int_{0}^{z}\frac{(3\nu^{2/3}+2t)t^{3/2}dt}{(\nu^{2/3}+t)^{3/2}(2\nu^{2/3}+t)^{1/4}}\,,\int_{0}^{z}\frac{dt}{4\cdot 2^{1/4}\nu^{7/6}\sqrt{t}}\right\}.

For t>0t>0 the function

3ν2/3+2t(ν2/3+t)3/2(2ν2/3+t)1/4\frac{3\nu^{2/3}+2t}{(\nu^{2/3}+t)^{3/2}(2\nu^{2/3}+t)^{1/4}}

is decreasing in tt and therefore is less than 321/4ν1/2,3\cdot 2^{-1/4}\nu^{-1/2}, its value at t=0t=0. Thus, we obtain

(35) R(z)<1πz1/4max{0z3t3/221/4ν𝑑t,z25/4ν7/6}=R(z)<\frac{1}{\sqrt{\pi}\,z^{1/4}}\max\left\{\int_{0}^{z}\frac{3t^{3/2}}{2^{1/4}\sqrt{\nu}}\;dt,\frac{\sqrt{z}}{2^{5/4}\nu^{7/6}}\right\}=
z3/425/4πνmax{65z3/2,ν2/3}.\frac{z^{3/4}}{2^{5/4}\sqrt{\pi\nu}}\,\max\left\{\frac{6}{5}\,z^{3/2},\nu^{-2/3}\right\}.

It is left to find the constants c1,c2.c_{1},c_{2}. For x=ν,x=\nu, that is for z=0,z=0, we have R(z)=0,R(z)=0, and comparing (34) with (10) we get

y(0)=limz0z(c1J1/3(2ζ)+c2J1/3(2ζ))=c1limz0z31/321/6Γ(23)z=y(0)=\lim_{z\rightarrow 0}\sqrt{z}\left(c_{1}J_{-1/3}(\sqrt{2}\,\zeta)+c_{2}J_{1/3}(\sqrt{2}\,\zeta)\right)=c_{1}\lim_{z\rightarrow 0}\sqrt{z}\cdot\frac{3^{1/3}}{2^{1/6}\Gamma(\frac{2}{3}\,)\sqrt{z}}=
31/3c121/6Γ(23)=νJν(ν)=21/3ν32/3Γ(23)(ν+θ2α)1/3,\frac{3^{1/3}c_{1}}{2^{1/6}\Gamma(\frac{2}{3}\,)}=\sqrt{\nu}J_{\nu}(\nu)=\frac{2^{1/3}\sqrt{\nu}}{3^{2/3}\Gamma(\frac{2}{3}\,)(\nu+\theta^{2}\alpha)^{1/3}}\,,

hence

c1=2ν3(ν+θ2α)1/3=2ν1/63(1θ2α3ν).c_{1}=\frac{\sqrt{2\nu}}{3(\nu+\theta^{2}\alpha)^{1/3}}=\frac{\sqrt{2}\,\nu^{1/6}}{3}\left(1-\theta^{2}\frac{\alpha}{3\nu}\right).

Thus, using this and setting c3=c2c1,c_{3}=c_{2}-c_{1}, we can write

(36) y(z)=21/3ν1/6Ai(21/3z)y(z)=2^{1/3}\nu^{1/6}\,Ai(-2^{1/3}z)-
θ1225ν5/6Ai(21/3z)+c3zJ1/3(2ζ)+θ2R(z):=21/3ν1/6Ai(21/3z)+.\frac{\theta_{1}^{2}}{25\nu^{5/6}}\,Ai(-2^{1/3}z)+c_{3}\sqrt{z}\,J_{1/3}(\sqrt{2}\,\zeta)+\theta_{2}R(z):=2^{1/3}\nu^{1/6}\,Ai(-2^{1/3}z)+\mathcal{R}.

Now Ai(21/3γ)=0Ai(-2^{1/3}\gamma)=0 and by Lemma 12 we have

7ν+γν1/36ν>y(ν+γν1/3)=c3γJ1/3((2γ)3/23)+θ2R(γ)>720c373ν,\frac{7\sqrt{\nu+\gamma\nu^{1/3}}}{6\nu}>y(\nu+\gamma\nu^{1/3})=c_{3}\sqrt{\gamma}\,J_{1/3}(\frac{(2\gamma)^{3/2}}{3})+\theta_{2}R(\gamma)>\frac{7}{20}\,c_{3}-\frac{7}{3\sqrt{\nu}}\,,

yielding

c3<103ν(2+1+γν2/3)<403ν.c_{3}<\frac{10}{3\sqrt{\nu}}\,(2+\sqrt{1+\gamma\nu^{-2/3}})<\frac{40}{3\sqrt{\nu}}\,.

On the other hand,

0<y(ν+γν1/3)<c3γJ1/3((2γ)3/23)+R(γ),0<y(\nu+\gamma\nu^{1/3})<c_{3}\sqrt{\gamma}\,J_{1/3}(\frac{(2\gamma)^{3/2}}{3})+R(\gamma),

giving c3>7/ν.c_{3}>-7/\sqrt{\nu}\,.

Inequality (20 ) gives

|Ai(21/3z)|<9727/12(4z+301/3)1/4,|Ai(-2^{1/3}z)|<\frac{9}{7\cdot 2^{7/12}(4z+30^{1/3})^{1/4}}\,,

and using (8) and (13) we have

z|J1/3(2ζ)|<min{21/6z31/3Γ(43),321/4πz1/4}.\sqrt{z}\,|J_{1/3}(\sqrt{2}\,\zeta)|<\min\{\frac{2^{1/6}z}{3^{1/3}\Gamma(\frac{4}{3})}\,,\frac{\sqrt{3}}{2^{1/4}\sqrt{\pi}\,z^{1/4}}\}\,.

Combining these estimates with (35) after some straightforward calculations one finds

||<23max{1,z9/4}2ν,|\mathcal{R}|<\frac{23\max\{1,z^{9/4}\}}{2\sqrt{\nu}}\,,

and (33) follows. ∎

6. Sharper asymptotics

The classical asymptotic given by (27) does not makes much sense for x=O(μ)x=O(\mu) when the main term and the error are of the same order. Here using formula (7) we derive a different asymptotic expression with much smaller error term. It also leads to very sharp approximation of the Airy function Ai(x).Ai(-x).

We’ll need a few lemmas given in [8].

Lemma 14.

Let f(x)f(x) satisfy the differential equation

f′′(x)+b2(x)f(x)=0,f^{\prime\prime}(x)+b^{2}(x)f(x)=0,

where b(x)>0b(x)>0 and b′′(x)b^{\prime\prime}(x) exists on an interval .\mathcal{I}.
Let g(x)=b(x)f(x),g(x)=\sqrt{b(x)}\,f(x),
then for xI,x\in I, provided the integral exists,

(37) g(x)=c1cos(x)+c2sin(x)+θax|3b2(t)2b(t)b′′(t)4b3(t)g(x)|𝑑t,g(x)=c_{1}\cos{\mathcal{B}(x)}+c_{2}\sin{\mathcal{B}(x)}+\theta\int_{a}^{x}\left|\frac{3b^{\prime 2}(t)-2b(t)b^{\prime\prime}(t)}{4b^{3}(t)}\,g(x)\right|dt,

where (x)=xb(t)𝑑t,\mathcal{B}(x)=\int^{x}b(t)dt, aIa\in I is arbitrary and |θ|1.|\theta|\leq 1.

Proof.

Observe that g(x)g(x) satisfies the equation

(38) g′′bbg+g(b2ϵ)=0,ϵ=ϵ(x)=2bb′′3b24b2.g^{\prime\prime}-\frac{b^{\prime}}{b}\,g^{\prime}+g\left(b^{2}-\epsilon\right)=0,\;\;\;\epsilon=\epsilon(x)=\frac{2bb^{\prime\prime}-3b^{\prime 2}}{4b^{2}}\,.

The solution of the corresponding homogeneous equation

g0′′bbg0+b2g0=0g_{0}^{\prime\prime}-\frac{b^{\prime}}{b}\,g_{0}^{\prime}+b^{2}g_{0}=0

is

g0=c1sin(x)+c2cos(x).g_{0}=c_{1}\sin{\mathcal{B}(x)}+c_{2}\cos{\mathcal{B}(x)}.

Solving formally (38) as a nonhomogeneous equation with the right hand side ϵ(x)g(x)\epsilon(x)g(x) we get

g(x)=g0(x)+axsin((x)(t))b(t)ϵ(t)g(t)𝑑t=g(x)=g_{0}(x)+\int_{a}^{x}\frac{\sin{(\mathcal{B}(x)-\mathcal{B}(t))}}{b(t)}\,\epsilon(t)g(t)dt=
g0(x)+θax|sin((x)(t))b(t)ϵ(t)g(t)|𝑑t=g_{0}(x)+\theta\int_{a}^{x}\left|\frac{\sin{(\mathcal{B}(x)-\mathcal{B}(t))}}{b(t)}\,\epsilon(t)g(t)\right|dt=
g0(x)+θax|3b2(t)2b(t)b′′(t)4b3(t)g(x)|𝑑t.g_{0}(x)+\theta\int_{a}^{x}\left|\frac{3b^{\prime 2}(t)-2b(t)b^{\prime\prime}(t)}{4b^{3}(t)}\,g(x)\right|dt.

The normal form of differential equation (2) is

f′′+(1ν214x2)f=0,f=xJν(x).f^{\prime\prime}+(1-\frac{\nu^{2}-\frac{1}{4}}{x^{2}})f=0,\;\;f=\sqrt{x}\,J_{\nu}(x).

Thus, for x>max{0,ν214}x>\sqrt{\max\{0,\nu^{2}-\frac{1}{4}\,\}} we have

b(x)=x2ν2+14x,b(x)=\frac{\sqrt{x^{2}-\nu^{2}+\frac{1}{4}}}{x}\,,
(x)={x2+μ+μlnxμ+μ+x2,|x|12,x2μ+μarcsinμx,x12,\mathcal{B}(x)=\left\{\begin{array}[]{cc}\sqrt{x^{2}+\mu}+\sqrt{\mu}\,\ln{\frac{x}{\sqrt{\mu}+\sqrt{\mu+x^{2}}}\,},&|x|\leq\frac{1}{2}\,,\\ &\\ \sqrt{x^{2}-\mu}+\sqrt{\mu}\,\arcsin{\frac{\sqrt{\mu}}{x}}\,,&x\geq\frac{1}{2}\,,\end{array}\right.

and

g(x)=(x2ν2+14)1/4Jν(x).g(x)=(x^{2}-\nu^{2}+\frac{1}{4}\,)^{1/4}\,J_{\nu}(x).
Theorem 15.

For |ν|12|\nu|\leq\frac{1}{2} and x>0,x>0,

(39) Jν(x)=2π(x2+μ)1/4cos((x)ων)+θμ2πx(x2+μ)3/2.J_{\nu}(x)=\sqrt{\frac{2}{\pi}}\,(x^{2}+\mu)^{-1/4}\cos{\left(\mathcal{B}(x)-\omega_{\nu}\right)}+\theta\frac{\mu}{\sqrt{2\pi x}\,(x^{2}+\mu)^{3/2}}\,.

For |ν|>12|\nu|>\frac{1}{2} and x>μ,x>\mu,

(40) Jν(x)=2π(x2μ)1/4cos((x)ων)+θ13μ122π(x2μ)7/4.J_{\nu}(x)=\sqrt{\frac{2}{\pi}}\,(x^{2}-\mu)^{-1/4}\cos{\left(\mathcal{B}(x)-\omega_{\nu}\right)}+\theta\frac{13\mu}{12\sqrt{2\pi}\,(x^{2}-\mu)^{7/4}}\,.
Proof.

Since |Jν(x)|2πx|J_{\nu}(x)|\leq\sqrt{\frac{2}{\pi x}}\, for |ν|12,|\nu|\leq\frac{1}{2}\,, by (37) we have

g(x)=g0+θμ8πx6z2+μz3/2(z2+μ)9/4𝑑z=g0+θμ2πx(x2+μ)5/4.g(x)=g_{0}+\theta\,\frac{\mu}{\sqrt{8\pi}}\int_{x}^{\infty}\frac{6z^{2}+\mu}{z^{3/2}\,(z^{2}+\mu)^{9/4}}\,dz=g_{0}+\theta\,\frac{\mu}{\sqrt{2\pi x}\,(x^{2}+\mu)^{5/4}}\,.

Comparing this with the standard asymptotic

(41) f(x)=xJν(x)=2πcos(xων)+O(x3/2),f(x)=\sqrt{x}\,J_{\nu}(x)=\sqrt{\frac{2}{\pi}}\,\cos{(x-\omega_{\nu})}+O(x^{-3/2}),

for large xx one finds

c1=2πsinων,c2=2πcosων,c_{1}=\sqrt{\frac{2}{\pi}}\,\sin\omega_{\nu},\;\;\;c_{2}=\sqrt{\frac{2}{\pi}}\,\cos\omega_{\nu},

yielding (39).

Similarly, for ν12\nu\geq\frac{1}{2} and xμ,x\geq\mu, using (17) instead of (13), we obtain

g(x)=g0+θμ8πx6z2μz(z2μ)5/2𝑑z=g0+θ18π|3x2+2μ3(x2μ)3/2arcsinμxμ|.g(x)=g_{0}+\theta\,\frac{\mu}{\sqrt{8\pi}}\int_{x}^{\infty}\frac{6z^{2}-\mu}{z\,(z^{2}-\mu)^{5/2}}\,dz=g_{0}+\theta\,\frac{1}{\sqrt{8\pi}}\,\left|\frac{3x^{2}+2\mu}{3(x^{2}-\mu)^{3/2}}-\frac{\arcsin\frac{\sqrt{\mu}}{x}}{\sqrt{\mu}}\,\right|.

It is easy to check that the function

3x2+2μ3(x2μ)3/2arcsinμxμ\frac{3x^{2}+2\mu}{3(x^{2}-\mu)^{3/2}}-\frac{\arcsin\frac{\sqrt{\mu}}{x}}{\sqrt{\mu}}

is decreasing and positive. Therefore, by arcsinμxμx,x>0,\arcsin\frac{\sqrt{\mu}}{x}\geq\frac{\sqrt{\mu}}{x},\;x>0, we get

3x2+2μ3(x2μ)3/2arcsinμxμ3x2+2μ3(x2μ)3/21x=\frac{3x^{2}+2\mu}{3(x^{2}-\mu)^{3/2}}-\frac{\arcsin\frac{\sqrt{\mu}}{x}}{\sqrt{\mu}}\leq\frac{3x^{2}+2\mu}{3(x^{2}-\mu)^{3/2}}-\frac{1}{x}=
13μ6(x2μ)3/2(x+2x2μ)(x2μx)22x(x2μ)3/2<13μ6(x2μ)3/2,\frac{13\mu}{6(x^{2}-\mu)^{3/2}}\,-\frac{(x+2\sqrt{x^{2}-\mu}\,)(\sqrt{x^{2}-\mu}-x)^{2}}{2x(x^{2}-\mu)^{3/2}}<\frac{13\mu}{6(x^{2}-\mu)^{3/2}},

and

g(x)=g0+θ13μ122π(x2μ)3/2.g(x)=g_{0}+\theta\,\frac{13\mu}{12\sqrt{2\pi}\,(x^{2}-\mu)^{3/2}}\,.

Comparing this with the asymptotic for large xx one finds

c1=2πsinων,c1=2πcosων,c_{1}=\sqrt{\frac{2}{\pi}\,}\,\sin\omega_{\nu},\;\;\;c_{1}=\sqrt{\frac{2}{\pi}\,}\,\cos\omega_{\nu},

and (40) follows. ∎

Remark 2.

The approximation given by (40) is strong enough to be matched with the solution in the transition region, as for x=ν+ν1/3zx=\nu+\nu^{1/3}z the error term is of order O(ν1/3z7/4).O(\nu^{-1/3}z^{-7/4}). This allows one to find the constants of integrations c1,c2c_{1},c_{2} in Theorem 13 avoiding delicate claims like Lemma 12. We omit the details.

Similarly to Corollary 1 we obtain

Corollary 2.
(42) Ai(x)=Ai(-x)=
2xcos(16x3+5656ln16x3+5+54x3/2π4)π(16x3+5)1/4+θ103πx1/4(16x3+5)3/2,\frac{2\sqrt{x}\cos\left(\frac{\sqrt{16x^{3}+5}}{6}-\frac{\sqrt{5}}{6}\,\ln\frac{\sqrt{16x^{3}+5}+\sqrt{5}}{4x^{3/2}}-\frac{\pi}{4}\,\right)}{\sqrt{\pi}\,(16x^{3}+5)^{1/4}}+\theta\frac{10\sqrt{3}}{\sqrt{\pi}\,x^{1/4}(16x^{3}+5)^{3/2}}\,,

provided x>0.x>0.

The argument of the cosine in (39) and (42) (but not in (40)) can be simplified at the cost of a weaker numerical constant at the error term. Namely, it is easy to verify the following elementary inequalities:

x2+μ+μlnxμ+μ+x2=xμ2x+θ2μ224x3,x>0,\sqrt{x^{2}+\mu}+\sqrt{\mu}\,\ln{\frac{x}{\sqrt{\mu}+\sqrt{\mu+x^{2}}}\,}=x-\frac{\mu}{2x}+\theta^{2}\frac{\mu^{2}}{24x^{3}}\,,\;\;x>0,
16x3+5656ln16x3+5+54x3/2=23x3/2548x3/2+θ2259216x9/2.\frac{\sqrt{16x^{3}+5}}{6}-\frac{\sqrt{5}}{6}\,\ln\frac{\sqrt{16x^{3}+5}+\sqrt{5}}{4x^{3/2}}=\frac{2}{3}\,x^{3/2}-\frac{5}{48}\,x^{-3/2}+\theta^{2}\frac{25}{9216}\,x^{-9/2}\,.

Since |cos(x+ϵ)cosx|ϵ,|\cos(x+\epsilon)-\cos x|\leq\epsilon, we obtain

(43) Jν(x)=2πcos(xμ2xων)(x2+μ)1/4+θ25μ242πx3(x2+μ)1/4,x>0,|ν|12,J_{\nu}(x)=\sqrt{\frac{2}{\pi}}\,\frac{\cos{\left(x-\frac{\mu}{2x}-\omega_{\nu}\right)}}{(x^{2}+\mu)^{1/4}}+\theta\frac{25\mu}{24\sqrt{2\pi}\,x^{3}(x^{2}+\mu)^{1/4}}\,,\;\;x>0,\;\;|\nu|\leq\frac{1}{2}\,,
(44) Ai(x)=2xcos(23x3/2548x3/2π4)π(16x3+5)1/4+θ59πx4(16x3+5)1/4.Ai(-x)=\frac{2\sqrt{x}\cos\left(\frac{2}{3}\,x^{3/2}-\frac{5}{48}\,x^{-3/2}-\frac{\pi}{4}\,\right)}{\sqrt{\pi}\,(16x^{3}+5)^{1/4}}+\theta\frac{5}{9\sqrt{\pi}\,x^{4}(16x^{3}+5)^{1/4}}\,.

In particular, the last formula yields rather sharp approximations for the zeros of Airy (e.g. already for the first zero the error is less than 0.00122), and, in view of the inequality (30), the Bessel function.

Theorem 16.
(45) as=162/3(m+m2+40)2/3+θ1280π9m3(m2+40)1/6,a_{s}=16^{-2/3}\left(m+\sqrt{m^{2}+40}\,\right)^{2/3}+\theta\frac{1280\pi}{9m^{3}(m^{2}+40)^{1/6}}\,,

where asa_{s} is sths^{th} positive zero of Ai(x)Ai(-x) and m=(12s3)π.m=(12s-3)\pi.

Proof.

Elementary arguments show that |sinx|<ϵ|\sin x|<\epsilon implies sin(x+πθϵ2)=0\sin(x+\frac{\pi\theta\epsilon}{2})=0 for some θ,|θ|1.\theta,\;\;|\theta|\leq 1. Therefore, Ai(x)=0Ai(-x)=0 means

23x3/2548x3/23π4+θ5π36x9/2=πs,s=0,1,2,\frac{2}{3}\,x^{3/2}-\frac{5}{48}\,x^{-3/2}-\frac{3\pi}{4}+\theta\,\frac{5\pi}{36}\,x^{-9/2}=\pi s,\;\;\;s=0,1,2,...

Since a1=2.33,a_{1}=2.33..., we may assume x>2.x>2. Then

548x3/2>5π36x9/2,\frac{5}{48}\,x^{-3/2}>\frac{5\pi}{36}\,x^{-9/2},

hence

23x3/2>3π4+πs,\frac{2}{3}\,x^{3/2}>\frac{3\pi}{4}+\pi s,

and we obtain the following estimate

5π36x9/2<640243π2(4s+3)3.\frac{5\pi}{36}\,x^{-9/2}<\frac{640}{243\pi^{2}(4s+3)^{3}}\,.

Thus, for (s+1)th(s+1)^{th} zero this gives the equation

23x3/2548x3/2=3π4+πs+θ640π9m3:=3π4+πs+ϵ,\frac{2}{3}\,x^{3/2}-\frac{5}{48}\,x^{-3/2}=\frac{3\pi}{4}+\pi s+\theta\,\frac{640\pi}{9m^{3}}:=\frac{3\pi}{4}+\pi s+\epsilon,

with the relevant solution

x=162/3(m+12ϵ+(m+12ϵ)2+40)2/3.x=16^{-2/3}\left(m+12\epsilon+\sqrt{(m+12\epsilon)^{2}+40}\,\right)^{2/3}.

After some calculations one gets

x=162/3(m+m2+40)2/3(1+θ8ϵm2+40)=x=16^{-2/3}\left(m+\sqrt{m^{2}+40}\,\right)^{2/3}\left(1+\theta\frac{8\epsilon}{\sqrt{m^{2}+40}}\,\right)=
162/3(m+m2+40)2/3+θ1280π9m3(m2+40)1/6.16^{-2/3}\left(m+\sqrt{m^{2}+40}\,\right)^{2/3}+\theta\frac{1280\pi}{9m^{3}(m^{2}+40)^{1/6}}\,.

This completes the proof. ∎

Formula (45) can be simplified at the cost of slightly weaker numerical constant. Namely, as one can checks

0<14(m2+20)1/3162/3(m+m2+40)2/3<253m3(m2+40)1/6,0<\frac{1}{4}(m^{2}+20)^{1/3}-16^{-2/3}\left(m+\sqrt{m^{2}+40}\,\right)^{2/3}<\frac{25}{3m^{3}(m^{2}+40)^{1/6}}\,,

yielding

as=14(m2+20)1/3+θ456m3(m2+40)1/6.a_{s}=\frac{1}{4}(m^{2}+20)^{1/3}+\theta\,\frac{456}{m^{3}(m^{2}+40)^{1/6}}\,.

Finally, comparing the numerical values of the zeros of Ai(x)Ai(-x) with (45) leads to the following conjecture:

as<162/3(m+m2+40)2/3.a_{s}<16^{-2/3}\left(m+\sqrt{m^{2}+40}\,\right)^{2/3}.

References

  • [1] Á. Elbert, A. Laforgia, A lower bound for Jν(ν)J_{\nu}(\nu) , Applicable Anal. 19 (1985), 137-145.
  • [2] I.M. Fabbri, A. Lucianetti, I. Krasikov, On a Sturm Liouville periodic boundary values problem, Integral Transforms and Special Functions, Vol. 20, (2009), 353-364.
  • [3] S. Finch, Bessel function zeroes, supplimentary material for Mathematical Constants, Cambridge University Press, 2003.
  • [4] M. E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press (2005).
  • [5] I. Kraikov, Uniform bound for Bessel function, J. Appl. Analysis 12, No. 1, (2006), 83-92.
  • [6] I. Krasikov, An upper bound on Jacobi Polynomials, J. Approx. Theory, 149, (2007), 116-130
  • [7] I. Krasikov, On Erdélyi-Magnus-Nevai conjecture for Jacobi polynomials, Constr. Approx. 28, (2008), 113-125.
  • [8] I. Krasikov, A. Zarkh, Equioscillatory properties of the Laguerre polynomials, J. Approx. Theory 162, (2010), 2021-2047.
  • [9] T. Lang, R. Wong, “Best possible” upper bounds for the first two positive zeros of the Bessel function Jν(x):J_{\nu}(x): the infinit case, J. Comput. Appl. Math. 71 (1996) 311-329.
  • [10] L. Lorch, R. Uberti, “Best possible” upper bounds for the first positive zeros of Bessel functions - the finite part, J. Comput. Appl. Math. 75 (1996) 249-258.
  • [11] A.Ya. Olenko, Upper bound on xJν(x)\sqrt{x}\,J_{\nu}(x) and its applications, Integral Transforms and Spec. Funct. 17 (2006), pp. 455.467
  • [12] NIST Handbook of Mathematical Functions, eds. F. W. J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, Cambridge University Press, 2010.
  • [13] R.B. Paris, An inequality for the Bessel function Jν(νx),J_{\nu}(\nu x),, SIAM J. Math. Anal. 15 (1984),203-205.
  • [14] M.L. Patrick, Some inequalities concerning Jacobi Polynomials, SIAM J. Math. Anal., 2 (1971) 213-220.
  • [15] M.L. Patrick, Extensions of inequalities of the Laguerre and Tur n type, Pacific J. Math. 44, 1973, 675-682.
  • [16] C.K. Qu, R. Wong, “Best possible” upper and lower bounds for the zeros of the Bessel function Jν(x),J_{\nu}(x), Trans. Amer. Math. Soc. 351 (1999) 2833-2859.
  • [17] G. Ronning, On the curvature of the trigamma function, J. Comp. Appl. Math. 15 (1986),397-399.
  • [18] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., v.23, Providence, RI, 1975.
  • [19] G.N. Watson, A Treatise on the theory of Bessel function, Cambridge University Press, London, 1944.