This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some Neumann-Bessel series
and the Laplacian on polygons

Luca Guido Molinari L. G. Molinari: Physics Department Aldo Pontremoli, Università degli Studi di Milano and I.N.F.N. sez. Milano, Via Celoria 16, 20133 Milano, Italy Luca.Molinari@unimi.it
(Date: 9 nov 2020)
Abstract.

Several sums of Neumann series with Bessel and trigonometric functions are evaluated, as finite sums of trigonometric functions. They arise from a generalization of the Neumann expansion of the eigenstates of the Laplacian in regular polygons.

Key words and phrases:
Bessel function, Neumann series, Laplace equation in polygon
2010 Mathematics Subject Classification:
Primary 33C10, Secondary 35J05

Introduction

The ground state of the Laplace equation in a regular polygon with Dirichlet boundary conditions at the nn sides, has a natural expression as a Neumann series of Bessel and trigonometric functions,

ψn(r,θ)=J0(λnr)+2k=1hk,nJkn(λnr)cos(knθ),\psi_{n}(r,\theta)=J_{0}(\lambda_{n}r)+2{\sum}_{k=1}^{\infty}h_{k,n}J_{kn}(\lambda_{n}r)\cos(kn\theta),

with coefficients hk,nh_{k,n} to be found and eigenvalue λn2-\lambda_{n}^{2} that scales with the area. For the equilateral triangle and the square, the solutions are known as sums of few trigonometric functions of the coordinates x=rcosθx=r\cos\theta and y=rsinθy=r\sin\theta. Such solutions have a corresponding Neumann expression [7]. For the square of area π\pi:

(1) J0(2πr)+2k=1J4k(2πr)cos(4kθ)=12cos(x2π)+12cos(y2π)\displaystyle J_{0}(\sqrt{2\pi}r)+2{\sum}_{k=1}^{\infty}J_{4k}(\sqrt{2\pi}r)\cos(4k\theta)=\tfrac{1}{2}\cos(x\sqrt{2\pi})+\tfrac{1}{2}\cos(y\sqrt{2\pi})

The triangle requires some work to establish the equivalence:

(2) J0(λ3r)+2k=1cos(kπ/2π/6)cos(π/6)J3k(λ3r)cos(3kθ)=233sin(4π3R3x+2π3)\displaystyle J_{0}(\lambda_{3}r)+2{\sum}_{k=1}^{\infty}\frac{\cos(k\pi/2-\pi/6)}{\cos(\pi/6)}J_{3k}(\lambda_{3}r)\cos(3k\theta)=\tfrac{2}{3\sqrt{3}}\sin(\tfrac{4\pi}{3R_{3}}x+\tfrac{2\pi}{3})
233[sin[2π3R3(x+y3)2π3]233sin[2π3R3(xy3)2π3]\displaystyle-\tfrac{2}{3\sqrt{3}}[\sin[\tfrac{2\pi}{3R_{3}}(x+y\sqrt{3})-\tfrac{2\pi}{3}]-\tfrac{2}{3\sqrt{3}}\sin[\tfrac{2\pi}{3R_{3}}(x-y\sqrt{3})-\tfrac{2\pi}{3}]

where, for area π\pi, λ32=4π3\lambda^{2}_{3}=\frac{4\pi}{\sqrt{3}} and R3=23π3R_{3}=\tfrac{2}{3}\sqrt{\pi\sqrt{3}}. In [7] I also obtained a sum that generalizes the integrable cases n=3,4n=3,4:

(3) fn(x,y)=\displaystyle f_{n}(x,y)= J0(r)+2k=1cos[nk3π2π2n]cos(π2n)Jnk(r)cos(nkθ)\displaystyle J_{0}(r)+2{\sum}_{k=1}^{\infty}\frac{\cos[nk\tfrac{3\pi}{2}-\tfrac{\pi}{2n}]}{\cos(\tfrac{\pi}{2n})}J_{nk}(r)\cos(nk\theta)
=\displaystyle= 1n=0n1cos[rcos(θ+2πn)+π2n]cos(π2n)\displaystyle\frac{1}{n}{\sum}_{\ell=0}^{n-1}\frac{\cos[r\cos(\theta+\tfrac{2\pi}{n}\ell)+\tfrac{\pi}{2n}]}{\cos(\tfrac{\pi}{2n})}
=\displaystyle= 1n=0n1cos[xcos(2πn)ysin(2πn)+π2n]cos(π2n)\displaystyle\frac{1}{n}{\sum}_{\ell=0}^{n-1}\frac{\cos[x\cos(\tfrac{2\pi}{n}\ell)-y\sin(\tfrac{2\pi}{n}\ell)+\tfrac{\pi}{2n}]}{\cos(\tfrac{\pi}{2n})}

For nn\to\infty the Riemann sum in the second line is 02πdt2πcos(rcost)=J0(r)\int_{0}^{2\pi}\frac{dt}{2\pi}\cos(r\cos t)=J_{0}(r); for n=2n=2 it is f2(x,y)=cosxf_{2}(x,y)=\cos x. For n=6n=6:

(4) f6(x,y)=J0(r)+2k=1(1)kJ6k(r)cos(6kθ)=13cosx+23cos(12x)cos(32y)\displaystyle f_{6}(x,y)=J_{0}(r)+2\sum_{k=1}^{\infty}(-1)^{k}J_{6k}(r)\cos(6k\theta)=\tfrac{1}{3}\cos x+\tfrac{2}{3}\cos(\tfrac{1}{2}x)\cos(\tfrac{\sqrt{3}}{2}y)

The functions fnf_{n} are eigenfunctions of the Laplace operator with eigenvalue 1-1 but, for n>4n>4, they no longer vanish on the boundary of a nn-polygon.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 1. Left: contour plots of f6f_{6} and f7f_{7} in eq.(3). Right: the separatrix line f6(x,y)=1/3f_{6}(x,y)=-1/3 (Kagomé lattice, the eq. can be written as 0=cos(x/2)[cos(x/2)+cos(3y/2)]0=\cos(x/2)[\cos(x/2)+\cos(\sqrt{3}y/2)]. Sites are the doule zeros.), and f7(x,y)=1.9633f_{7}(x,y)=-1.9633... (Mathematica)

I only remark that the level curves fn(x,y)=Cnf_{n}(x,y)=C_{n} are closed around the origin (where fn=1f_{n}=1) up to a separatrix with nn self-intersections, with values C5=0.334909C_{5}=-0.334909, C6=1/3C_{6}=-1/3, C7=0.19633C_{7}=0.19633, etc. The lines are shown in Fig.1.

The Laplacian in polygons has a long history. The ground state beyond the square cannot be finite sums of trigonometric functions, and has been investigated analytically and numerically in 1/n1/n expansion (see for example [7, 4, 3]).

In this paper I generalize the identity (3), and obtain a number of new formulas for Neumann series whose sums contain a finite number of terms. For certain values of the parameters, they are identities that are found in the tables by Gradshteyn and Ryzhik [2], Prudnikov, Brychkov and Marichev [8], a recent paper by Al-Jarrah, Dempsey and Glasser [1], and two old papers by Takizawa and Kobayasi [9, 5]. In the last ones, the Neumann series appear as correlation functions for the heat flow in coupled harmonic oscillators.

The summation formula

The source equation of various sums in this paper is:

(5) k=+Jkn+p(z)eikny=1n=0n1eizsin(y+2πn)ip(y+2πn)\displaystyle\boxed{\sum_{k=-\infty}^{+\infty}J_{kn+p}(z)e^{ikny}=\frac{1}{n}\sum_{\ell=0}^{n-1}e^{iz\sin(y+\tfrac{2\pi}{n}\ell)-ip(y+\tfrac{2\pi}{n}\ell)}}

For y=0y=0 and even nn it is eq.1 in [9]. Sums of this sort are tabulated only for n=1,2n=1,2 in [8].

Proof.

The result follows from the Fourier integral of a Bessel function of integer order. For fixed zz\in\mathbb{C}, k=eikθJkn+p(z)\sum_{k=-\infty}^{\infty}e^{ik\theta}J_{kn+p}(z) is uniformly convergent in θ\theta by the bound |J±m(z)|C|z/2|m/m!|J_{\pm m}(z)|\leq C|z/2|^{m}/m! (Nielsen, see §3.13 in [10]).

k=eiknyJkn+p(z)=k=eikny02πdθ2πeizsinθi(kn+p)θ\displaystyle\sum_{k=-\infty}^{\infty}e^{ikny}J_{kn+p}(z)=\sum_{k=-\infty}^{\infty}e^{ikny}\int_{0}^{2\pi}\frac{d\theta}{2\pi}e^{iz\sin\theta-i(kn+p)\theta}
=k=eiknyj=0n12πnj2πn(j+1)dθ2πeizsinθipθeiknθ\displaystyle=\sum_{k=-\infty}^{\infty}e^{ikny}\sum_{j=0}^{n-1}\int_{\frac{2\pi}{n}j}^{\frac{2\pi}{n}(j+1)}\frac{d\theta}{2\pi}e^{iz\sin\theta-ip\theta}e^{-ikn\theta}

The sums are exchanged: =j=0n1k=eikny02πndθ2πeizsin(θ+2πnj)ip(θ+2πnj)eiknθ=\sum_{j=0}^{n-1}\sum_{k=-\infty}^{\infty}e^{ikny}\int_{0}^{\frac{2\pi}{n}}\frac{d\theta}{2\pi}e^{iz\sin(\theta+\frac{2\pi}{n}j)-ip(\theta+\frac{2\pi}{n}j)}e^{-ikn\theta}. The functions n/2πeikny\sqrt{n/2\pi}\,e^{ikny} are a complete orthonormal basis in L(0,2π/n)2{}^{2}(0,2\pi/n). The infinite sum is the Fourier representation of exp[izsin(y+2πnj)ip(y+2πnj)]\exp[iz\sin(y+\frac{2\pi}{n}j)-ip(y+\frac{2\pi}{n}j)]. ∎

1

The case p=0p=0 and y=π2+αy=\frac{\pi}{2}+\alpha is an extension with angle α\alpha of the equations 19 and 20 in [1], where α=0\alpha=0. With Jm(z)=()mJm(z)J_{-m}(z)=(-)^{m}J_{m}(z):

(6) J0(z)+2k=1+eiknπ2Jkn(z)cos(knα)=1n=0n1eizcos(α+2πn)\displaystyle J_{0}(z)+2\sum_{k=1}^{+\infty}e^{ikn\frac{\pi}{2}}J_{kn}(z)\cos(kn\alpha)=\frac{1}{n}\sum_{\ell=0}^{n-1}e^{iz\cos(\alpha+\tfrac{2\pi}{n}\ell)}

For n=1n=1, separation of even and odd parity parts in zz gives the Jacobi expansions (eqs. 5.7.10.4 and 5 in [8]):

(7) J0(z)+2k=1()kJ2k(z)cos(2kα)=cos(zcosα)\displaystyle J_{0}(z)+2\sum_{k=1}^{\infty}(-)^{k}J_{2k}(z)\cos(2k\alpha)=\cos(z\cos\alpha)
(8) k=0()kJ2k+1(z)cos[(2k+1)α]=12sin(zcosα)\displaystyle\sum_{k=0}^{\infty}(-)^{k}J_{2k+1}(z)\cos[(2k+1)\alpha]=\tfrac{1}{2}\sin(z\cos\alpha)

If α\alpha is replaced by α+π/2\alpha+\pi/2 they are eqs. 8.514.5 and 6 in [2] and 10.4, 10.5 in [6]:

(9) J0(z)+2k=1J2k(z)cos(2kα)=cos(zsinα)\displaystyle J_{0}(z)+2\sum_{k=1}^{\infty}J_{2k}(z)\cos(2k\alpha)=\cos(z\sin\alpha)
(10) k=0J2k+1(z)sin[(2k+1)α]=12sin(zsinα)\displaystyle\sum_{k=0}^{\infty}J_{2k+1}(z)\sin[(2k+1)\alpha]=\tfrac{1}{2}\sin(z\sin\alpha)

1.1

For nn replaced by 2n2n, eq.(6) is:

(11) J0(z)+2k=1()knJ2kn(z)cos(2knα)=12n=02n1cos[zcos(α+πn)]\displaystyle J_{0}(z)+2\sum_{k=1}^{\infty}(-)^{kn}J_{2kn}(z)\cos(2kn\alpha)=\frac{1}{2n}\sum_{\ell=0}^{2n-1}\cos[z\cos(\alpha+\tfrac{\pi}{n}\ell)]

Since terms \ell and n+n+\ell are the same, the sum is replaced by 2=0n12\sum_{\ell=0}^{n-1}. The value y=π2y=\frac{\pi}{2} yields eq.(23) in [1].
For n=1n=1 the derivative of (11) in α=π4\alpha=\frac{\pi}{4} is:

(12) 2J2(z)6J6(z)+10J10(z)14J14(z)+=z24sin(z22)\displaystyle 2J_{2}(z)-6J_{6}(z)+10J_{10}(z)-14J_{14}(z)+...=z\tfrac{\sqrt{2}}{4}\sin(z\tfrac{\sqrt{2}}{2})

For n=2n=2 eq.(11) gives

(13) J0(z)+2k=1J4k(z)cos(4kα)=12[cos(zsinα)+cos(zcosα)]\displaystyle J_{0}(z)+2\sum_{k=1}^{\infty}J_{4k}(z)\cos(4k\alpha)=\frac{1}{2}[\cos(z\sin\alpha)+\cos(z\cos\alpha)]

The values α=0,π4\alpha=0,\frac{\pi}{4} give eqs. 5.7.1.19. Case n=3n=3, α=0\alpha=0 gives eq. 5.7.1.21 in [8].
The derivative of (13) with n=4n=4 is:

(14) k=1kJ4k(z)sin(4kα)=z16[sin(zsinα)cosαsin(zcosα)sinα]\displaystyle\sum_{k=1}^{\infty}kJ_{4k}(z)\sin(4k\alpha)=\frac{z}{16}[\sin(z\sin\alpha)\cos\alpha-\sin(z\cos\alpha)\sin\alpha]

The expansion in small α\alpha gives:

(15) k=1k2J4k(z)=z64(zsinz)\displaystyle\sum_{k=1}^{\infty}k^{2}J_{4k}(z)=\frac{z}{64}(z-\sin z)

1.2

For nn replaced by 2n+12n+1, eq.(6) is:

J0(z)+2k=1ei(2n+1)kπ2J(2n+1)k(z)cos[(2n+1)kα]=12n+1=02neizcos(α+2π2n+1)\displaystyle J_{0}(z)+2\sum_{k=1}^{\infty}e^{i(2n+1)k\frac{\pi}{2}}J_{(2n+1)k}(z)\cos[(2n+1)k\alpha]=\frac{1}{2n+1}\sum_{\ell=0}^{2n}e^{iz\cos(\alpha+\tfrac{2\pi}{2n+1}\ell)}

The even-parity and odd-parity parts in the exchange zzz\to-z are:

J0(z)+2k=1()kJ(4n+2)k(z)cos[(4n+2)kα]=12n+1=02ncos[zcos(α+2π2n+1)]\displaystyle J_{0}(z)+2\sum_{k=1}^{\infty}(-)^{k}J_{(4n+2)k}(z)\cos[(4n+2)k\alpha]=\frac{1}{2n+1}\sum_{\ell=0}^{2n}\cos[z\cos(\alpha+\tfrac{2\pi}{2n+1}\ell)]
2k=0()n+kJ(2n+1)(2k+1)(z)cos[(2n+1)(2k+1)α]=12n+1=02nsin[zcos(α+2π2n+1)]\displaystyle 2\sum_{k=0}^{\infty}(-)^{n+k}J_{(2n+1)(2k+1)}(z)\cos[(2n+1)(2k+1)\alpha]=\frac{1}{2n+1}\sum_{\ell=0}^{2n}\sin[z\cos(\alpha+\tfrac{2\pi}{2n+1}\ell)]

Examples of the second equation are

(16) k=0()kJ6k+3(z)cos[(6k+3)α]=16=02sin[zcos(α+2π3)]\displaystyle\sum_{k=0}^{\infty}(-)^{k}J_{6k+3}(z)\cos[(6k+3)\alpha]=-\frac{1}{6}\sum_{\ell=0}^{2}\sin[z\cos(\alpha+\tfrac{2\pi}{3}\ell)]
(17) k=0()kJ10k+5(z)cos[(10k+5)α]=110=04sin[zcos(α+2π5)]\displaystyle\sum_{k=0}^{\infty}(-)^{k}J_{10k+5}(z)\cos[(10k+5)\alpha]=\frac{1}{10}\sum_{\ell=0}^{4}\sin[z\cos(\alpha+\tfrac{2\pi}{5}\ell)]

The first equation with α=π\alpha=\pi is eq.22 in [1].
Both sums are eigenfunctions of the Laplacian with eigenvalue λ=1\lambda=-1 (see Fig. 2). The sum (17), with z=rz=r, x=rcosαx=r\cos\alpha and y=rsinαy=r\sin\alpha, is

(18) f(x,y)=sinx2sin(xcosπ5)cos(ysinπ5)+2sin(xcos2π5)cos(ysin2π5)\displaystyle f(x,y)=\sin x-2\sin(x\cos\tfrac{\pi}{5})\cos(y\sin\tfrac{\pi}{5})+2\sin(x\cos\tfrac{2\pi}{5})\cos(y\sin\tfrac{2\pi}{5})
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2. Contour plots of the sums (16) and (18). The first is the ground state of the equilateral triangle (no nodal lines) and an excited state of the hexagon. The second function is zero on a line close to the first zero of J5(r)J_{5}(r).

1.3

In (5) with p=0p=0, multiply by exp(iβ)\exp(i\beta) (β\beta real) and take the real part. The left hand side becomes:

J0(x)cosβ+k=1Jkn(x)Re[eiβ(eikny+eikn(y+π))]\displaystyle J_{0}(x)\cos\beta+{\sum}_{k=1}^{\infty}J_{kn}(x)\;{\rm Re}[e^{i\beta}(e^{ikny}+e^{-ikn(y+\pi)})]
=J0(x)cosβ+2k=1cos(βknπ2)Jkn(x)cos[kn(y+π2)]\displaystyle=J_{0}(x)\cos\beta+2{\sum}_{k=1}^{\infty}\cos(\beta-kn\tfrac{\pi}{2})J_{kn}(x)\cos[kn(y+\tfrac{\pi}{2})]

The identity (3) is obtained, when β=π2n\beta=\tfrac{\pi}{2n} and y+π2=θ+πy+\tfrac{\pi}{2}=\theta+\pi.

2

Parseval’s identity is applied to (5):

kJkn+p2(x)\displaystyle\sum_{k\in\mathbb{Z}}J^{2}_{kn+p}(x) =1n2keip2πn(k)02πdy2πeixsin(yπn(k))ixsin(y+πn(k))\displaystyle=\frac{1}{n^{2}}\sum_{k\ell}e^{ip\tfrac{2\pi}{n}(k-\ell)}\int_{0}^{2\pi}\frac{dy}{2\pi}e^{ix\sin(y-\tfrac{\pi}{n}(k-\ell))-ix\sin(y+\tfrac{\pi}{n}(k-\ell))}
=1n2keip2πn(k)02πdy2πei2xcosysin(πn(k))\displaystyle=\frac{1}{n^{2}}\sum_{k\ell}e^{ip\tfrac{2\pi}{n}(k-\ell)}\int_{0}^{2\pi}\frac{dy}{2\pi}e^{-i2x\cos y\sin(\tfrac{\pi}{n}(k-\ell))}
=1n2keip2πn(k)J0[2xsin(πn(k))]\displaystyle=\frac{1}{n^{2}}\sum_{k\ell}e^{ip\tfrac{2\pi}{n}(k-\ell)}J_{0}[2x\sin(\tfrac{\pi}{n}(k-\ell))]
=1n+2n2k=1n1kcos(2πnkp)J0(2xsinπkn)\displaystyle=\frac{1}{n}+\frac{2}{n^{2}}\sum_{k=1}^{n-1}k\cos(\tfrac{2\pi}{n}kp)J_{0}(2x\sin\tfrac{\pi k}{n})

The last sum is unchanged if kk is replaced by nkn-k:

(19) kJkn+p2(x)=1n+1nk=1n1cos(2πnkp)J0(2xsinπkn)\displaystyle\sum_{k\in\mathbb{Z}}J^{2}_{kn+p}(x)=\frac{1}{n}+\frac{1}{n}\sum_{k=1}^{n-1}\cos(\tfrac{2\pi}{n}kp)J_{0}(2x\sin\tfrac{\pi k}{n})

The left-hand side is Jp(x)2+k=1Jkn+p2(x)+Jknp2(z)J_{p}(x)^{2}+\sum_{k=1}^{\infty}J^{2}_{kn+p}(x)+J^{2}_{kn-p}(z).
For the special case p=0p=0 and n2nn\to 2n in (19), the sum is amenable to eq.29 in [1]:

(20) J02(x)+2k=1J2kn2(x)=12n+12nJ0(2x)+1nk=1n1J0(2xcosπ2nk)\displaystyle J_{0}^{2}(x)+2\sum_{k=1}^{\infty}J_{2kn}^{2}(x)=\frac{1}{2n}+\frac{1}{2n}J_{0}(2x)+\frac{1}{n}\sum_{k=1}^{n-1}J_{0}(2x\cos\tfrac{\pi}{2n}k)

2.1

If n2nn\to 2n and p=np=n in (19), with simple steps one obtains:

(21) k=0J(2k+1)n2(x)=14n+()n4nJ0(2x)+12n=1n1(1)J0(2xsinπ2n)\displaystyle\sum_{k=0}^{\infty}J^{2}_{(2k+1)n}(x)=\frac{1}{4n}+\frac{(-)^{n}}{4n}J_{0}(2x)+\frac{1}{2n}\sum_{\ell=1}^{n-1}(-1)^{\ell}J_{0}(2x\sin\tfrac{\pi\ell}{2n})

3

In eq.(5) the variable yy is shifted to y+2ty+2t. The equation is multiplied by eizsinyiqye^{iz^{\prime}\sin y-iqy} and integrated in yy:

k=+Jp+kn(z)\displaystyle\sum_{k=-\infty}^{+\infty}J_{p+kn}(z) Jqkn(z)ei(kn+p)2t\displaystyle J_{q-kn}(z^{\prime})e^{i(kn+p)2t}
(22) =\displaystyle= 1n=0n1eip2πn02πdy2πeizsin(y+2t+2πn)+izsinyi(p+q)y\displaystyle\frac{1}{n}\sum_{\ell=0}^{n-1}e^{-ip\tfrac{2\pi}{n}\ell}\int_{0}^{2\pi}\frac{dy}{2\pi}e^{iz\sin(y+2t+\tfrac{2\pi}{n}\ell)+iz^{\prime}\sin y-i(p+q)y}

In the integral, the shift yy to ytπny-t-\frac{\pi}{n}\ell changes the exponent to

i(z+z)sinycos(t+πn)+i(zz)cosysin(t+πn)i(p+q)(ytπn)i(z+z^{\prime})\sin y\cos(t+\tfrac{\pi}{n}\ell)+i(z-z^{\prime})\cos y\sin(t+\tfrac{\pi}{n}\ell)-i(p+q)(y-t-\tfrac{\pi}{n}\ell)

3.1

With z=zz=z^{\prime} we obtain eq.1 in [5]:

(23) k=+Jp+kn(z)Jqkn(z)e2iknt=1n=0n1ei(pq)(t+πn)Jp+q[2zcos(t+πn)]\displaystyle\sum_{k=-\infty}^{+\infty}J_{p+kn}(z)J_{q-kn}(z)e^{2iknt}=\frac{1}{n}\sum_{\ell=0}^{n-1}e^{-i(p-q)(t+\tfrac{\pi}{n}\ell)}J_{p+q}[2z\cos(t+\tfrac{\pi}{n}\ell)]

For n=1,2n=1,2 it is (with a shift of the index kk in the first identity and renaming of parameter):

(24) k=+Jk(z)Jpk(z)e2ikt=eiptJp(2zcost)\displaystyle\sum_{k=-\infty}^{+\infty}J_{k}(z)J_{p-k}(z)e^{2ikt}=e^{ipt}J_{p}(2z\cos t)
(25) k=+Jp+2k(z)Jq2k(z)e4ikt=12ei(pq)t[Jp+q(2zcost)+ipqJp+q(2zsint)]\displaystyle\sum_{k=-\infty}^{+\infty}J_{p+2k}(z)J_{q-2k}(z)e^{4ikt}=\tfrac{1}{2}e^{-i(p-q)t}[J_{p+q}(2z\cos t)+i^{p-q}J_{p+q}(2z\sin t)]

The first one is eq.8.530 [2]. The second one, for t=π4,π2t=\frac{\pi}{4},\frac{\pi}{2}, becomes:

(26) k=+()kJp+2k(z)Jq2k(z)=Jp+q(z2)cos[(pq)π4]\displaystyle\sum_{k=-\infty}^{+\infty}(-)^{k}J_{p+2k}(z)J_{q-2k}(z)=J_{p+q}(z\sqrt{2})\cos[(p-q)\tfrac{\pi}{4}]
(27) k=+Jp+2k(z)Jq2k(z)=12Jp+q(2z)\displaystyle\sum_{k=-\infty}^{+\infty}J_{p+2k}(z)J_{q-2k}(z)=\tfrac{1}{2}J_{p+q}(2z)

For p=qp=q the first one is eq. 5.7.11.25 [8].

3.2

Eq.(22) with p=q=0p=q=0 and t=0t=0 is:

J0(z)J0(z)+2k=1()knJkn(z)Jkn(z)=1n=0n102πdy2πeizsin(y+2πn)+izsiny\displaystyle J_{0}(z)J_{0}(z^{\prime})+2\sum_{k=1}^{\infty}(-)^{kn}J_{kn}(z)J_{kn}(z^{\prime})=\frac{1}{n}\sum_{\ell=0}^{n-1}\int_{0}^{2\pi}\frac{dy}{2\pi}e^{iz\sin(y+\tfrac{2\pi}{n}\ell)+iz^{\prime}\sin y}

For n=1,2n=1,2 they are eqs. 5.7.11.1 and 5.7.11.18 in [8] and, for z=zz=z^{\prime}: eqs. 31, 32 in [1]. A new example is:

(28) k=1J4k(x)J4k(y)=18[J0(x+y)+J0(xy)4J0(x)J0(y)+2J0(x2+y2)]\displaystyle\sum_{k=1}^{\infty}J_{4k}(x)J_{4k}(y)=\tfrac{1}{8}[J_{0}(x+y)+J_{0}(x-y)-4J_{0}(x)J_{0}(y)+2J_{0}(\sqrt{x^{2}+y^{2}})]

4

Multiplication of (5) by exp(ay)\exp(-ay) (a>0a>0) with p=0p=0 and n=1n=1, and integration on +\mathbb{R}^{+} give:

1aJ0(z)+k=1J2k(z)2aa2+4k2+k=0J2k+1(z)2i(2k+1)a2+(2k+1)2=0𝑑yeizsinyay\displaystyle\frac{1}{a}J_{0}(z)+\sum_{k=1}^{\infty}J_{2k}(z)\frac{2a}{a^{2}+4k^{2}}+\sum_{k=0}^{\infty}J_{2k+1}(z)\frac{2i(2k+1)}{a^{2}+(2k+1)^{2}}=\int_{0}^{\infty}dy\,e^{iz\sin y-ay}

The integral in the right-hand side is done by series expansion, with eqs.3.895.1 and 3.895.4 [2]. The even and odd terms are:

(29) 1aJ0(z)+k=1J2k(z)2aa2+4k2=k=0()kz2ka(a2+4)(a2+4k2)\displaystyle\frac{1}{a}J_{0}(z)+\sum_{k=1}^{\infty}J_{2k}(z)\frac{2a}{a^{2}+4k^{2}}=\sum_{k=0}^{\infty}(-)^{k}\frac{z^{2k}}{a(a^{2}+4)...(a^{2}+4k^{2})}
(30) k=0J2k+1(z)2(2k+1)a2+(2k+1)2=k=0()kz2k+1(a2+1)(a2+9)(a2+(2k+1)2)\displaystyle\sum_{k=0}^{\infty}J_{2k+1}(z)\frac{2(2k+1)}{a^{2}+(2k+1)^{2}}=\sum_{k=0}^{\infty}(-)^{k}\frac{z^{2k+1}}{(a^{2}+1)(a^{2}+9)...(a^{2}+(2k+1)^{2})}

More and more identities can be obtained by derivation, or integration with functions. Here I limited myself to simple and, hopefully, useful examples.

References

  • [1] A. Al-Jarrah, K. M. Dempsey, M. L. Glasser, Generalized series of Bessel functions, J. Comp. Appl. Math. 143 (2002) 1–8.
  • [2] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products, 7th edition, Academic Press
  • [3] R. S. Jones, The fundamental Laplacian eigenvalue of the regular polygon with Dirichlet boundary conditions, arXiv:1712.06082 [math.NA]
    Jones, R.S. Computing ultra-precise eigenvalues of the Laplacian within polygons Adv. Comput. Math. 43 1325–1354 (2017).
  • [4] P. Grinfeld and G. Strang, Laplace eigenvalues on regular polygons: a series in 1/N, J. Math. Anal. Appl. 385 (2012) 135–149.
  • [5] K. Kobayasi and Éi I. Takizawa, On an infinite sum of two Bessel functions of first kind, Chinese Journal of Physics 3 n.1 (1965) 69–71.
  • [6] B. G. Koronev, Bessel functions and their applications, Taylor and Francis (2002).
  • [7] L. Molinari, On the ground state of regular polygonal billiards, J. Phys. A: Math. Gen. 30 n.18 (1997) 6517–6424.
  • [8] A. P. Prudnikov, Yu. A. Brychkov. and O. I. Marichev, Integrals and Series, Vol. 2: Special functions, Gordon and Breach (1986).
  • [9] Éi I. Takizawa and K. Kobayasi, On an infinite series of Bessel functions, Chinese Journal of Physics 1 n.2 (1963) 83–84.
  • [10] G. N. Watson, A Treatise on the Theory of Bessel Functions (2nd edition), Cambridge Univ. Press, Cambridge, 1944.