This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some new characterizations of BLO and Campanato spaces in the Schrödinger setting

Cong Chen School of Mathematics and Systems Science,
Xinjiang University,
Urumqi 830046, P. R. China
3221043817@qq.com.
   Hua Wang School of Mathematics and Systems Science,
Xinjiang University,
Urumqi 830046, P. R. China
wanghua@pku.edu.cn. Dedicated to the memory of Li Xue.
Abstract.

Let us consider the Schrödinger operator =Δ+V\mathcal{L}=-\Delta+V on d\mathbb{R}^{d} with d3d\geq 3, where Δ\Delta is the Laplacian operator on d\mathbb{R}^{d} and the nonnegative potential VV belongs to certain reverse Hölder class RHsRH_{s} with sd/2s\geq d/2. In this paper, the authors first introduce two kinds of function spaces related to the Schrödinger operator \mathcal{L}. A real-valued function fLloc1(d)f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{d}) belongs to the (BLO) space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) with 0θ<0\leq\theta<\infty if

fBLOρ,θ:=sup𝒬(1+rρ(x0))θ(1|Q(x0,r)|Q(x0,r)[f(x)essinfy𝒬f(y)]dx),\|f\|_{\mathrm{BLO}_{\rho,\theta}}:=\sup_{\mathcal{Q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|Q(x_{0},r)|}\int_{Q(x_{0},r)}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\bigg{)},

where the supremum is taken over all cubes 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) in d\mathbb{R}^{d}, ρ()\rho(\cdot) is the critical radius function in the Schrödinger context. For 0<β<10<\beta<1, a real-valued function fLloc1(d)f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{d}) belongs to the (Campanato) space 𝒞ρ,θβ,(d)\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}) with 0θ<0\leq\theta<\infty if

f𝒞ρ,θβ,:=sup(1+rρ(x0))θ(1|B(x0,r)|1+β/dB(x0,r)[f(x)essinfyf(y)]𝑑x),\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta}}:=\sup_{\mathcal{B}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|B(x_{0},r)|^{1+\beta/d}}\int_{B(x_{0},r)}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\bigg{)},

where the supremum is taken over all balls =B(x0,r)\mathcal{B}=B(x_{0},r) in d\mathbb{R}^{d}. Then we establish the corresponding John–Nirenberg inequality suitable for the space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) with 0θ<0\leq\theta<\infty and d3d\geq 3. Moreover, we give some new characterizations of the BLO and Campanato spaces related to \mathcal{L} on weighted Lebesgue spaces, which is the extension of some earlier results.

Key words and phrases:
BLO spaces; Campanato spaces; Schrödinger operator; critical radius function; John–Nirenberg inequality; weights
1991 Mathematics Subject Classification:
Primary 42B25, 42B35; Secondary 35J10
This work was supported by the Natural Science Foundation of China
(No. XJEDU2020Y002 and 2022D01C407)

1. Introduction

The theory of function spaces has been a central topic in modern analysis, and new function spaces are now of increasing use in the fields such as harmonic analysis and partial differential equations. The main purpose of this paper is to give several characterizations for the new BLO and Campanato spaces in the Schrödinger setting. Another purpose of this paper is to establish a version of John–Nirenberg inequality for the new BLO space. Let d3d\geq 3 be a positive integer and d\mathbb{R}^{d} be the dd-dimensional Euclidean space, and let V:dV:\mathbb{R}^{d}\rightarrow\mathbb{R}, d3d\geq 3, be a nonnegative locally integrable function which belongs to the reverse Hölder class RHs(d)RH_{s}(\mathbb{R}^{d}) with s(1,]s\in(1,\infty]. We recall that VRHs(d)V\in RH_{s}(\mathbb{R}^{d}) means that there exists a positive constant C=C(s,V)>0C=C(s,V)>0 such that the following reverse Hölder inequality

(1|B|BV(y)s𝑑y)1/sC(1|B|BV(y)𝑑y)\bigg{(}\frac{1}{|B|}\int_{B}V(y)^{s}\,dy\bigg{)}^{1/s}\leq C\cdot\bigg{(}\frac{1}{|B|}\int_{B}V(y)\,dy\bigg{)}

holds for every ball BB in d\mathbb{R}^{d}, with the usual modification made when s=s=\infty. In particular, if VV is a nonnegative polynomial, then VRH(d)V\in RH_{\infty}(\mathbb{R}^{d}). Let us consider the Schrödinger differential operator with the nonnegative potential VV.

:=Δ+Vond,\mathcal{L}:=-\Delta+V\quad\mbox{on}~{}~{}~{}\mathbb{R}^{d},

where Δ=j=1d2xj2\Delta=\sum_{j=1}^{d}\frac{\partial^{2}}{\partial x_{j}^{2}} is the standard Laplace operator on d\mathbb{R}^{d}. As in [36], for any given VRHs(d)V\in RH_{s}(\mathbb{R}^{d}) with sd/2s\geq d/2 and d3d\geq 3, we introduce the critical radius function ρ(x)=ρ(x;V)\rho(x)=\rho(x;V) (determined by VV), which is defined by

ρ(x):=sup{r>0:1rd2B(x,r)V(y)𝑑y1},xd,\rho(x):=\sup\bigg{\{}r>0:\frac{1}{r^{d-2}}\int_{B(x,r)}V(y)\,dy\leq 1\bigg{\}},\quad x\in\mathbb{R}^{d}, (1.1)

where B(x,r)B(x,r) denotes the open ball with the center at xx and radius rr. It is well known that this auxiliary function satisfies 0<ρ(x)<0<\rho(x)<\infty for any xdx\in\mathbb{R}^{d} under the above assumption on VV (see [36]).

Throughout this paper, we will always assume that V0V\not\equiv 0 and VRHs(d)V\in RH_{s}(\mathbb{R}^{d}) with sd/2s\geq d/2.

Example.

The Schrödinger operator =Δ+V\mathcal{L}=-\Delta+V can be viewed as a perturbation of the Laplace operator.

  1. (1)

    When V1V\equiv 1, we obtain ρ(x)=1\rho(x)=1 for any xdx\in\mathbb{R}^{d}.

  2. (2)

    When V(x)=|x|2V(x)=|x|^{2} and \mathcal{L} becomes the Hermite operator, we obtain ρ(x)(1+|x|)1\rho(x)\approx(1+|x|)^{-1}.

The notation 𝐗𝐘\mathbf{X}\approx\mathbf{Y} means that there exists a positive constant C>0C>0 such that 1/C𝐗/𝐘C1/C\leq\mathbf{X}/\mathbf{Y}\leq C.

We need the following known result concerning the critical radius function (1.1), which was proved by Shen in [36].

Lemma 1.1 ([36]).

If VRHs(d)V\in RH_{s}(\mathbb{R}^{d}) with sd/2s\geq d/2 and d3d\geq 3, then there exist two positive constants C01C_{0}\geq 1 and N0>0N_{0}>0 such that

 1C0(1+|xy|ρ(x))N0ρ(y)ρ(x)C0(1+|xy|ρ(x))N0N0+1\frac{\,1\,}{C_{0}}\bigg{(}1+\frac{|x-y|}{\rho(x)}\bigg{)}^{-N_{0}}\leq\frac{\rho(y)}{\rho(x)}\leq C_{0}\bigg{(}1+\frac{|x-y|}{\rho(x)}\bigg{)}^{\frac{N_{0}}{N_{0}+1}} (1.2)

for all x,yd.x,y\in\mathbb{R}^{d}.

To state our main results, we first recall the definition of the classical BMO space and BLO space.

A locally integrable function ff on d\mathbb{R}^{d} is said to belong to BMO(d)\mathrm{BMO}(\mathbb{R}^{d}), the space of bounded mean oscillation, if

fBMO:=sup𝒬1|𝒬|𝒬|f(x)f𝒬|𝑑x<,\|f\|_{\mathrm{BMO}}:=\sup_{\mathcal{Q}}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\big{|}f(x)-f_{\mathcal{Q}}\big{|}\,dx<\infty,

where the supremum is taken over all cubes 𝒬\mathcal{Q} in d\mathbb{R}^{d} and f𝒬f_{\mathcal{Q}} stands for the mean value of ff over 𝒬\mathcal{Q}; that is,

f𝒬:=1|𝒬|𝒬f(y)𝑑y.f_{\mathcal{Q}}:=\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}f(y)\,dy.

The space of BMO functions was first introduced by John and Nirenberg in [25].

A locally integrable function ff on d\mathbb{R}^{d} is said to belong to BLO(d)\mathrm{BLO}(\mathbb{R}^{d}), the space of bounded lower oscillation, if there exists a constant c1>0c_{1}>0 such that for any cube 𝒬d\mathcal{Q}\subset\mathbb{R}^{d},

1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑xc1.\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq c_{1}.

The minimal constant c1c_{1} as above is defined to be the BLO-constant of ff and denoted by fBLO\|f\|_{\mathrm{BLO}}. The space of BLO functions was first introduced by Coifman and Rochberg in [15]. It is easy to see that

L(d)BLO(d)BMO(d).L^{\infty}(\mathbb{R}^{d})\subset\mathrm{BLO}(\mathbb{R}^{d})\subset\mathrm{BMO}(\mathbb{R}^{d}).

Moreover, the above inclusion relations are both strict, see [22, 23, 34] for some examples. It is easy to verify that

fBMO2fBLO.\|f\|_{\mathrm{BMO}}\leq 2\|f\|_{\mathrm{BLO}}. (1.3)

In fact, for any cube 𝒬d\mathcal{Q}\subset\mathbb{R}^{d},

1|𝒬|𝒬|f(x)f𝒬|𝑑x=1|𝒬|𝒬|f(x)essinfy𝒬f(y)+essinfy𝒬f(y)f𝒬|𝑑x1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x+|essinfy𝒬f(y)f𝒬|2|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x2fBLO,\begin{split}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\big{|}f(x)-f_{\mathcal{Q}}\big{|}\,dx&=\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{|}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)+\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)-f_{\mathcal{Q}}\Big{|}\,dx\\ &\leq\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx+\Big{|}\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)-f_{\mathcal{Q}}\Big{|}\\ &\leq\frac{2}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq 2\|f\|_{\mathrm{BLO}},\end{split}

as desired.

Remark 1.2.

It should be pointed out that BLO\|\cdot\|_{\mathrm{BLO}} is not a norm and BLO(d)\mathrm{BLO}(\mathbb{R}^{d}) is not a linear space (it is a proper subspace of BMO(d)\mathrm{BMO}(\mathbb{R}^{d})).

On the other hand, the classical Campanato space was studied extensively in the literature, and played an important role in the study of harmonic analysis and partial differential equations. Let 0<β10<\beta\leq 1. A locally integrable function ff is said to belong to the Campanato space 𝒞β(d)\mathcal{C}^{\beta}(\mathbb{R}^{d}) if

f𝒞β:=sup1||1+β/d|f(x)f|𝑑x<,\|f\|_{\mathcal{C}^{\beta}}:=\sup_{\mathcal{B}}\frac{1}{|\mathcal{B}|^{1+\beta/d}}\int_{\mathcal{B}}\big{|}f(x)-f_{\mathcal{B}}\big{|}\,dx<\infty,

where the supremum is taken over all balls \mathcal{B} in d\mathbb{R}^{d} and ff_{\mathcal{B}} stands for the mean value of ff over \mathcal{B}. The Campanato space 𝒞β(d)\mathcal{C}^{\beta}(\mathbb{R}^{d}) was first introduced by Campanato in [12]. In 2007, motivated by the definition of the space BLO(d)\mathrm{BLO}(\mathbb{R}^{d}), Hu–Meng–Yang introduced the following space 𝒞β,(d)\mathcal{C}^{\beta,\ast}(\mathbb{R}^{d}), which is a subspace of 𝒞β(d)\mathcal{C}^{\beta}(\mathbb{R}^{d}). Let 0<β10<\beta\leq 1. A locally integrable function ff is said to belong to 𝒞β,(d)\mathcal{C}^{\beta,\ast}(\mathbb{R}^{d}) if there exists a positive constant c2>0c_{2}>0 such that for any ball d\mathcal{B}\subset\mathbb{R}^{d},

1||1+β/d[f(x)essinfyf(y)]𝑑xc2.\frac{1}{|\mathcal{B}|^{1+\beta/d}}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq c_{2}.

The minimal constant c2c_{2} as above is defined to be the 𝒞β,\mathcal{C}^{\beta,\ast}-constant of ff and denoted by f𝒞β,\|f\|_{\mathcal{C}^{\beta,\ast}}.

Remark 1.3.
  1. (1)

    As in (1.3), we also have that

    𝒞β,(d)𝒞β(d)&f𝒞β2f𝒞β,.\mathcal{C}^{\beta,\ast}(\mathbb{R}^{d})\subset\mathcal{C}^{\beta}(\mathbb{R}^{d})\quad\&\quad\|f\|_{\mathcal{C}^{\beta}}\leq 2\|f\|_{\mathcal{C}^{\beta,\ast}}.
  2. (2)

    We point out that 𝒞β,\|\cdot\|_{\mathcal{C}^{\beta,\ast}} is not a norm and 𝒞β,(d)\mathcal{C}^{\beta,\ast}(\mathbb{R}^{d}) is not a linear space (it is a proper subspace of 𝒞β(d)\mathcal{C}^{\beta}(\mathbb{R}^{d})).

In 2011, Bongioanni–Harboure–Salinas [3] introduced a new class of function spaces (see also [2]). According to [3], the new BMO space BMOρ,(d)\mathrm{BMO}_{\rho,\infty}(\mathbb{R}^{d}) is defined by

BMOρ,(d):=θ>0BMOρ,θ(d),\mathrm{BMO}_{\rho,\infty}(\mathbb{R}^{d}):=\bigcup_{\theta>0}\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}),

where for any fixed 0<θ<0<\theta<\infty the space BMOρ,θ(d)\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}) is defined to be the set of all locally integrable functions ff satisfying

1|Q(x0,r)|Q(x0,r)|f(x)fQ|𝑑xC1(1+rρ(x0))θ,\frac{1}{|Q(x_{0},r)|}\int_{Q(x_{0},r)}\big{|}f(x)-f_{Q}\big{|}\,dx\leq C_{1}\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}, (1.4)

for all x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty), fQf_{Q} denotes the mean value of ff on Q(x0,r)Q(x_{0},r). A norm for fBMOρ,θ(d)f\in\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}), denoted by fBMOρ,θ\|f\|_{\mathrm{BMO}_{\rho,\theta}}, is given by the infimum of the constants satisfying (1.4), after identifying functions that differ by a constant, or equivalently,

fBMOρ,θ:=sup𝒬(1+rρ(x0))θ(1|Q(x0,r)|Q(x0,r)|f(x)fQ|𝑑x),\|f\|_{\mathrm{BMO}_{\rho,\theta}}:=\sup_{\mathcal{Q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|Q(x_{0},r)|}\int_{Q(x_{0},r)}\big{|}f(x)-f_{Q}\big{|}\,dx\bigg{)},

where the supremum is taken over all cubes 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty). Note that if we let θ=0\theta=0 in (1.4), we obtain the classical (John–Nirenberg) BMO space. Define

BMOρ,θ(d):={fLloc1(d):fBMOρ,θ<}.\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}):=\Big{\{}f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{d}):\|f\|_{\mathrm{BMO}_{\rho,\theta}}<\infty\Big{\}}.

With the above definition in mind, one has

BMO(d)BMOρ,θ1(d)BMOρ,θ2(d)\mathrm{BMO}(\mathbb{R}^{d})\subset\mathrm{BMO}_{\rho,\theta_{1}}(\mathbb{R}^{d})\subset\mathrm{BMO}_{\rho,\theta_{2}}(\mathbb{R}^{d})

whenever 0<θ1<θ2<0<\theta_{1}<\theta_{2}<\infty, and hence

BMO(d)BMOρ,(d).\mathrm{BMO}(\mathbb{R}^{d})\subset\mathrm{BMO}_{\rho,\infty}(\mathbb{R}^{d}).

Moreover, it can be shown that the classical BMO space is properly contained in BMOρ,(d)\mathrm{BMO}_{\rho,\infty}(\mathbb{R}^{d}) (see [2, 3, 43] for more examples).

A classical result due to John and Nirenberg in the 1960’s(also known as the John–Nirenberg inequality) states that there exist two positive constants C1C_{1} and C2C_{2} such that for every cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) in d\mathbb{R}^{d} and every λ>0\lambda>0, we have (see [25])

|{x𝒬:|f(x)f𝒬|>λ}|C1|𝒬|exp{C2λfBMO},\Big{|}\Big{\{}x\in\mathcal{Q}:|f(x)-f_{\mathcal{Q}}|>\lambda\Big{\}}\Big{|}\leq C_{1}|\mathcal{Q}|\exp\bigg{\{}-\frac{C_{2}\lambda}{\|f\|_{\mathrm{BMO}}}\bigg{\}},

when fBMO(d)f\in\mathrm{BMO}(\mathbb{R}^{d}).

In 2015, Tang proved a version of John–Nirenberg inequality suitable for the new BMO space BMOρ,θ(d)\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}) with θ>0\theta>0. His proof can be found in [43, Proposition 4.2].

Lemma 1.4 ([43]).

If fBMOρ,θ(d)f\in\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty, then there exist two positive constants C1C_{1} and C2C_{2} such that for every cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) in d\mathbb{R}^{d} and every λ>0\lambda>0, we have

|{x𝒬:|f(x)f𝒬|>λ}|C1|𝒬|exp{(1+rρ(x0))(N0+1)θC2λfBMOρ,θ},\Big{|}\Big{\{}x\in\mathcal{Q}:|f(x)-f_{\mathcal{Q}}|>\lambda\Big{\}}\Big{|}\leq C_{1}|\mathcal{Q}|\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta}\frac{C_{2}\lambda}{\|f\|_{\mathrm{BMO}_{\rho,\theta}}}\bigg{\}},

where N0N_{0} is the constant appearing in Lemma 1.1.

In 2014, Liu–Sheng introduced a new class of function spaces which is larger than the classical Campanato space. According to [28], for 0<θ<0<\theta<\infty and 0β10\leq\beta\leq 1, the space 𝒞ρ,θβ(d)\mathcal{\mathcal{C}}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}) is defined to be the set of all locally integrable functions ff satisfying

1|B(x0,r)|1+β/dB(x0,r)|f(x)fB|𝑑xC2(1+rρ(x0))θ,\frac{1}{|B(x_{0},r)|^{1+\beta/d}}\int_{B(x_{0},r)}\big{|}f(x)-f_{B}\big{|}\,dx\leq C_{2}\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}, (1.5)

for all x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty), fBf_{B} denotes the mean value of ff on B(x0,r)B(x_{0},r). The infimum of the constants satisfying (1.5) is defined to be the norm of f𝒞ρ,θβ(d)f\in\mathcal{\mathcal{C}}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}) and denoted by f𝒞ρ,θβ\|f\|_{\mathcal{C}^{\beta}_{\rho,\theta}}, or equivalently,

f𝒞ρ,θβ:=sup(1+rρ(x0))θ(1|B(x0,r)|1+β/dB(x0,r)|f(x)fB|𝑑x),\|f\|_{\mathcal{\mathcal{C}}^{\beta}_{\rho,\theta}}:=\sup_{\mathcal{B}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|B(x_{0},r)|^{1+\beta/d}}\int_{B(x_{0},r)}\big{|}f(x)-f_{B}\big{|}\,dx\bigg{)},

where the supremum is taken over all balls =B(x0,r)\mathcal{B}=B(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty).

Remark 1.5.
  1. Some special cases:

  2. (1)

    Note that if θ=0\theta=0 in (1.5), then 𝒞ρ,θβ(d)\mathcal{C}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}) is exactly the classical Campanato space 𝒞β(d)\mathcal{C}^{\beta}(\mathbb{R}^{d})(see, for instance, [12, 24]);

  3. (2)

    Note that if β=0\beta=0 and 0<θ<0<\theta<\infty in (1.5), then 𝒞ρ,θβ(d)\mathcal{C}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}) is exactly the above space BMOρ,θ(d)\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}) introduced by Bongioanni–Harboure–Salinas in [3].

Define

𝒞ρ,θβ(d):={fLloc1(d):f𝒞ρ,θβ<}.\mathcal{C}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}):=\Big{\{}f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{d}):\|f\|_{\mathcal{C}^{\beta}_{\rho,\theta}}<\infty\Big{\}}.

Since [1+r/ρ(x0)]θ1[1+r/{\rho(x_{0})}]^{\theta}\geq 1, it is obvious that

𝒞β(d)𝒞ρ,θ1β(d)𝒞ρ,θ2β(d)\mathcal{C}^{\beta}(\mathbb{R}^{d})\subset\mathcal{C}^{\beta}_{\rho,\theta_{1}}(\mathbb{R}^{d})\subset\mathcal{C}^{\beta}_{\rho,\theta_{2}}(\mathbb{R}^{d})

whenever 0<θ1<θ2<0<\theta_{1}<\theta_{2}<\infty. Then we write

𝒞ρ,β(d):=θ>0𝒞ρ,θβ(d).&𝒞β(d)𝒞ρ,β(d).\mathcal{C}^{\beta}_{\rho,\infty}(\mathbb{R}^{d}):=\bigcup_{\theta>0}\mathcal{C}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}).\quad\&\quad\mathcal{C}^{\beta}(\mathbb{R}^{d})\subset\mathcal{C}^{\beta}_{\rho,\infty}(\mathbb{R}^{d}).

Motivated by the definition of BLO(d)\mathrm{BLO}(\mathbb{R}^{d}) and 𝒞β,(d)\mathcal{C}^{\beta,\ast}(\mathbb{R}^{d}), we now introduce the following spaces BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) and 𝒞ρ,θβ,(d)\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}) related to Schrödinger operators.

Definition 1.6.

Let θ[0,)\theta\in[0,\infty). A locally integrable function ff is said to belong to the space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}), if there exists a positive constant C¯1>0\overline{C}_{1}>0 such that for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

1|Q(x0,r)|Q(x0,r)[f(x)essinfy𝒬f(y)]𝑑xC¯1(1+rρ(x0))θ.\frac{1}{|Q(x_{0},r)|}\int_{Q(x_{0},r)}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq\overline{C}_{1}\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}. (1.6)

The infimum of the constants C¯1\overline{C}_{1} satisfying (1.6) is defined to be the BLOρ,θ\mathrm{BLO}_{\rho,\theta}-constant of ff and denoted by fBLOρ,θ\|f\|_{\mathrm{BLO}_{\rho,\theta}}, that is,

fBLOρ,θ:=sup𝒬(1+rρ(x0))θ(1|Q(x0,r)|Q(x0,r)[f(x)essinfy𝒬f(y)]𝑑x),\|f\|_{\mathrm{BLO}_{\rho,\theta}}:=\sup_{\mathcal{Q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|Q(x_{0},r)|}\int_{Q(x_{0},r)}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\bigg{)},

where the supremum is taken over all cubes 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty).

Definition 1.7.

Let β(0,1]\beta\in(0,1] and θ[0,)\theta\in[0,\infty). A locally integrable function ff is said to belong to the space 𝒞ρ,θβ,(d)\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}), if there exists some constant C¯2>0\overline{C}_{2}>0 such that for any ball =B(x0,r)d\mathcal{B}=B(x_{0},r)\subset\mathbb{R}^{d},

1|B(x0,r)|1+β/dB(x0,r)[f(x)essinfyf(y)]𝑑xC¯2(1+rρ(x0))θ.\frac{1}{|B(x_{0},r)|^{1+\beta/d}}\int_{B(x_{0},r)}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq\overline{C}_{2}\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}. (1.7)

The infimum of the constants C¯2\overline{C}_{2} satisfying (1.7) is defined to be the 𝒞ρ,θβ,\mathcal{C}^{\beta,\ast}_{\rho,\theta}-constant of ff and denoted by f𝒞ρ,θβ,\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta}}, that is,

f𝒞ρ,θβ,:=sup(1+rρ(x0))θ(1|B(x0,r)|1+β/dB(x0,r)[f(x)essinfyf(y)]𝑑x),\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta}}:=\sup_{\mathcal{B}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|B(x_{0},r)|^{1+\beta/d}}\int_{B(x_{0},r)}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\bigg{)},

where the supremum is taken over all balls =B(x0,r)\mathcal{B}=B(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty).

Adapting the arguments in [18, p.123] and [20, p.124], we can also prove the following variant of John–Nirenberg inequality: if fBLO(d)f\in\mathrm{BLO}(\mathbb{R}^{d}), then there exist two positive constants C3C_{3} and C4C_{4} such that for every cube 𝒬\mathcal{Q} and every λ>0\lambda>0, we have (see [44])

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|C3|𝒬|exp{C4λfBLO}.\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\leq C_{3}|\mathcal{Q}|\exp\bigg{\{}-\frac{C_{4}\lambda}{\|f\|_{\mathrm{BLO}}}\bigg{\}}.

Inspired by these results, we will establish a version of John–Nirenberg inequality with precise constants for the space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) related to Schrödinger operators. That is, if fBLOρ,θ(d)f\in\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty, then there exist two positive constants C¯3\overline{C}_{3} and C¯4\overline{C}_{4} such that for every cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) and every λ>0\lambda>0, we have

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|C¯3|𝒬|exp{(1+rρ(x0))(N0+1)θC¯4λfBLOρ,θ},\begin{split}&\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\\ &\leq\overline{C}_{3}|\mathcal{Q}|\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta}\frac{\overline{C}_{4}\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}\bigg{\}},\end{split}

where N0N_{0} is the constant appearing in Lemma 1.1. Based on this result, the goal of this paper is to give some new characterizations for the space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty. Moreover, we also establish similar results for the space 𝒞ρ,θβ,(d)\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}) with 0<β10<\beta\leq 1 and 0<θ<0<\theta<\infty.

2. Notations and preliminaries

A weight will always mean a non-negative function ω\omega on d\mathbb{R}^{d} which is locally integrable. For a Lebesgue measurable set EdE\subset\mathbb{R}^{d} and a weight ω\omega, we use the notation |E||E| to denote the Lebesgue measure of EE and ω(E)\omega(E) to denote the weighted measure of EE,

ω(E):=Eω(x)𝑑x.\omega(E):=\int_{E}\omega(x)\,dx.

In the sequel, for any positive number γ>0\gamma>0, we denote ωγ(x):=ω(x)γ\omega^{\gamma}(x):=\omega(x)^{\gamma} by convention. For a measurable set EdE\subset\mathbb{R}^{d}, we let

ωγ(E)=(ωγ)(E):=Eωγ(x)𝑑x.\omega^{\gamma}(E)=(\omega^{\gamma})(E):=\int_{E}\omega^{\gamma}(x)\,dx.

For any given ball B=B(x0,r)B=B(x_{0},r) and λ(0,)\lambda\in(0,\infty), we will write λB\lambda B for the λ\lambda-dilate ball, which is the ball with the same center x0x_{0} and radius λr\lambda r; that is λB=B(x0,λr)\lambda B=B(x_{0},\lambda r). Similarly, Q(x0,r)Q(x_{0},r) denotes the cube centered at x0x_{0} and with the sidelength rr. Here and in what follows, only cubes with sides parallel to the coordinate axes are considered, and λQ=Q(x0,λr)\lambda Q=Q(x_{0},\lambda r). Let us recall two classes of weights that are given in terms of the critical radius function (1.1). As in [1] (see also [2]), we say that a weight ω\omega belongs to the class Apρ,θ(d)A^{\rho,\theta}_{p}(\mathbb{R}^{d}) for 1<p<1<p<\infty and 0<θ<0<\theta<\infty, if there is a positive constant C>0C>0 such that for all balls B=B(x0,r)dB=B(x_{0},r)\subset\mathbb{R}^{d} with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty),

(1|B|Bω(x)𝑑x)1/p(1|B|Bω(x)p/p𝑑x)1/pC(1+rρ(x0))θ,\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)\,dx\bigg{)}^{1/p}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{-{p^{\prime}}/p}\,dx\bigg{)}^{1/{p^{\prime}}}\leq C\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta},

where p=p/(p1)p^{\prime}=p/{(p-1)} denotes the conjugate exponent of pp, namely, 1/p+1/p=11/p+1/{p^{\prime}}=1. For p=1p=1 and 0<θ<0<\theta<\infty, we also say that a weight ω\omega belongs to the class A1ρ,θ(d)A^{\rho,\theta}_{1}(\mathbb{R}^{d}), if there is a positive constant C>0C>0 such that for all balls B=B(x0,r)dB=B(x_{0},r)\subset\mathbb{R}^{d} with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty),

1|B|Bω(x)𝑑xC(1+rρ(x0))θess infxBω(x).\frac{1}{|B|}\int_{B}\omega(x)\,dx\leq C\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}\underset{x\in B}{\mbox{ess\,inf}}\;\omega(x).

Since

1(1+rρ(x0))θ1(1+rρ(x0))θ21\leq\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}}\leq\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{2}} (2.1)

whenever 0<θ1<θ2<0<\theta_{1}<\theta_{2}<\infty, then for given pp with 1p<1\leq p<\infty, by definition, we have

Ap(d)Apρ,θ1(d)Apρ,θ2(d),A_{p}(\mathbb{R}^{d})\subset A^{\rho,\theta_{1}}_{p}(\mathbb{R}^{d})\subset A^{\rho,\theta_{2}}_{p}(\mathbb{R}^{d}),

where Ap(d)A_{p}(\mathbb{R}^{d}) denotes the classical Muckenhoupt class (see [30] and [13]). For any given 1p<1\leq p<\infty, as the classes Apρ,θ(d)A^{\rho,\theta}_{p}(\mathbb{R}^{d}) increase with respect to θ\theta, it is natural to define

Apρ,(d):=θ>0Apρ,θ(d).A^{\rho,\infty}_{p}(\mathbb{R}^{d}):=\bigcup_{\theta>0}A^{\rho,\theta}_{p}(\mathbb{R}^{d}).

Consequently, one has the inclusion relation

Ap(d)Apρ,(d),1p<.A_{p}(\mathbb{R}^{d})\subset A^{\rho,\infty}_{p}(\mathbb{R}^{d}),\quad 1\leq p<\infty.

However, the converse is not true, it is easy to check that the above inclusion is strict. In fact, if ωAp(d)\omega\in A_{p}(\mathbb{R}^{d}) for some p1p\geq 1, then ω(x)dx\omega(x)\,dx is a doubling measure (see [18] and [19]), i.e., there exists a universal constant C>0C>0 such that for any ball BB in d\mathbb{R}^{d},

ω(2B)Cω(B).\omega(2B)\leq C\omega(B).

If ωApρ,θ(d)\omega\in A^{\rho,\theta}_{p}(\mathbb{R}^{d}) for some p1p\geq 1 and θ>0\theta>0, then ω(x)dx\omega(x)\,dx may not be a doubling measure. For example, the weight

ωγ(x)=(1+|x|)γApρ,θ(d)for anyγ>d(p1),\omega_{\gamma}(x)=(1+|x|)^{\gamma}\in A^{\rho,\theta}_{p}(\mathbb{R}^{d})\quad\mbox{for any}~{}~{}\gamma>d(p-1),

provided that V1V\equiv 1 and ρ()1\rho(\cdot)\equiv 1. It is easy to see that such choice of ωγ\omega_{\gamma} yields ωγ(x)dx\omega_{\gamma}(x)\,dx is not a doubling measure, hence it does not belong to Aq(d)A_{q}(\mathbb{R}^{d}) for any 1q<1\leq q<\infty. The situation is more complicated. We can define (generalized) doubling classes of weights adapted to the Schrödinger context, see [9] and [10], for example. In addition, for some fixed θ>0\theta>0, we have the following inclusion relations (see [43])

A1ρ,θ(d)Ap1ρ,θ(d)Ap2ρ,θ(d),A^{\rho,\theta}_{1}(\mathbb{R}^{d})\subset A^{\rho,\theta}_{p_{1}}(\mathbb{R}^{d})\subset A^{\rho,\theta}_{p_{2}}(\mathbb{R}^{d}),

whenever 1p1<p2<1\leq p_{1}<p_{2}<\infty. As in the classical Muckenhoupt theory, we define the Apρ,θA^{\rho,\theta}_{p} characteristic constants of ω\omega as follows:

[ω]Apρ,θ:=supBd(1+rρ(x0))θ(1|B|Bω(x)𝑑x)1/p(1|B|Bω(x)p/p𝑑x)1/p,[\omega]_{A^{\rho,\theta}_{p}}:=\sup_{B\subset\mathbb{R}^{d}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)\,dx\bigg{)}^{1/p}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{-{p^{\prime}}/p}\,dx\bigg{)}^{1/{p^{\prime}}},

for 1<p<,1<p<\infty, and

[ω]A1ρ,θ:=supBd(1+rρ(x0))θ(1|B|Bω(x)𝑑x)(ess infxBω(x))1,[\omega]_{A^{\rho,\theta}_{1}}:=\sup_{B\subset\mathbb{R}^{d}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)\,dx\bigg{)}\bigg{(}\underset{x\in B}{\mbox{ess\,inf}}\,\omega(x)\bigg{)}^{-1},

for p=1p=1, where the supremum is taken over all balls B=B(x0,r)B=B(x_{0},r) in d\mathbb{R}^{d}. In view of (2.1), we can see that if ωApρ,θ1(d)\omega\in A^{\rho,\theta_{1}}_{p}(\mathbb{R}^{d}) with 1p<1\leq p<\infty and 0θ1<0\leq\theta_{1}<\infty, then for any θ1<θ2<\theta_{1}<\theta_{2}<\infty, we have

ωApρ,θ2(d)&[ω]Apρ,θ2[ω]Apρ,θ1.\omega\in A^{\rho,\theta_{2}}_{p}(\mathbb{R}^{d})~{}~{}~{}~{}\qquad\&~{}~{}~{}~{}\qquad[\omega]_{A^{\rho,\theta_{2}}_{p}}\leq[\omega]_{A^{\rho,\theta_{1}}_{p}}.

Hence, for any given ωApρ,(d)\omega\in A^{\rho,\infty}_{p}(\mathbb{R}^{d}) with 1p<1\leq p<\infty, we let

θ:=inf{θ>0:ωApρ,θ(d)}.\theta^{\ast}:=\inf\Big{\{}\theta>0:\omega\in A^{\rho,\theta}_{p}(\mathbb{R}^{d})\Big{\}}.

Now define the Apρ,A^{\rho,\infty}_{p} characteristic constant of ω\omega by

[ω]Apρ,:=[ω]Apρ,θ.[\omega]_{A^{\rho,\infty}_{p}}:=[\omega]_{A^{\rho,\theta^{\ast}}_{p}}.
Remark 2.1.
  1. (1)

    It is well known that Muckenhoupt ApA_{p} weights can be characterized by the weighted LpL^{p} boundedness of the Hardy–Littlewood maximal operator and the Hilbert transform. For any given θ>0\theta>0, let us introduce the (Hardy–Littlewood type) maximal operator which is given in terms of the critical radius function (1.1).

    ρ,θf(x):=supr>0(1+rρ(x))θ1|B(x,r)|B(x,r)|f(y)|𝑑y,xd.\mathcal{M}_{\rho,\theta}f(x):=\sup_{r>0}\bigg{(}1+\frac{r}{\rho(x)}\bigg{)}^{-\theta}\frac{1}{|B(x,r)|}\int_{B(x,r)}|f(y)|\,dy,\quad x\in\mathbb{R}^{d}.

    The new classes Apρ,(d)A^{\rho,\infty}_{p}(\mathbb{R}^{d}) are closely related to the family of maximal operators ρ,θ\mathcal{M}_{\rho,\theta}.

  2. (2)

    Observe that a weight ω\omega belongs to the class A1ρ,(d)A^{\rho,\infty}_{1}(\mathbb{R}^{d}) adapted to the Schrödinger operator \mathcal{L} if and only if there exists a positive number θ>0\theta>0 such that

    ρ,θ(ω)(x)Cω(x),fora.e.xd,\mathcal{M}_{\rho,\theta}(\omega)(x)\leq C\cdot\omega(x),\quad\mbox{for}~{}a.e.~{}x\in\mathbb{R}^{d},

    where the constant C>0C>0 is independent of ω\omega. Moreover, as in the classical setting, the classes of weights adapted to the Schrödinger operator \mathcal{L} are characterized by the weighted LpL^{p} boundedness of the corresponding maximal operators. Let 1<p<1<p<\infty. It can be shown that ωApρ,(d)\omega\in A^{\rho,\infty}_{p}(\mathbb{R}^{d}) if and only if there exists a positive number θ>0\theta>0 such that ρ,θ\mathcal{M}_{\rho,\theta} is bounded on Lp(ω)L^{p}(\omega) (see [6] and [7], for example).

  3. (3)

    For the quantitative weighted estimates of the maximal operator ρ,θ\mathcal{M}_{\rho,\theta} with θ>0\theta>0(the sharp Apρ,θA^{\rho,\theta}_{p} bounds, which means the exponent of the characteristic constant [ω]Apρ,θ[\omega]_{A^{\rho,\theta}_{p}} is the best possible), see [27] and [49].

As in [43] (see also [11] and [46]), we say that a weight ω\omega is in the class Ap,qρ,θ(d)A^{\rho,\theta}_{p,q}(\mathbb{R}^{d}) for 1<p,q<1<p,q<\infty and 0<θ<0<\theta<\infty, if there exists a positive constant C>0C>0 such that

(1|B|Bω(x)q𝑑x)1/q(1|B|Bω(x)p𝑑x)1/pC(1+rρ(x0))θ\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{-{p^{\prime}}}\,dx\bigg{)}^{1/{p^{\prime}}}\leq C\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}

holds for all balls B=B(x0,r)dB=B(x_{0},r)\subset\mathbb{R}^{d}. For the case p=1p=1, we also say that a weight ω\omega is in the class A1,qρ,θ(d)A^{\rho,\theta}_{1,q}(\mathbb{R}^{d}) for 1<q<1<q<\infty and 0<θ<0<\theta<\infty, if there exists a positive constant C>0C>0 such that

(1|B|Bω(x)q𝑑x)1/qC(1+rρ(x0))θess infxBω(x)\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}\underset{x\in B}{\mbox{ess\,inf}}\,\omega(x)

holds for all balls B=B(x0,r)dB=B(x_{0},r)\subset\mathbb{R}^{d}. As before, we define the Ap,qρ,θA^{\rho,\theta}_{p,q} characteristic constants of ω\omega as follows:

[ω]Ap,qρ,θ:=supBd(1+rρ(x0))θ(1|B|Bω(x)q𝑑x)1/q(1|B|Bω(x)p𝑑x)1/p,[\omega]_{A^{\rho,\theta}_{p,q}}:=\sup_{B\subset\mathbb{R}^{d}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{-{p^{\prime}}}\,dx\bigg{)}^{1/{p^{\prime}}},

for 1<p,q<1<p,q<\infty, and

[ω]A1,qρ,θ:=supBd(1+rρ(x0))θ(1|B|Bω(x)q𝑑x)1/q(ess infxBω(x))1,[\omega]_{A^{\rho,\theta}_{1,q}}:=\sup_{B\subset\mathbb{R}^{d}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|B|}\int_{B}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\underset{x\in B}{\mbox{ess\,inf}}\,\omega(x)\bigg{)}^{-1},

for p=1p=1 and 1<q<1<q<\infty. In view of (2.1), for any 1p,q<1\leq p,q<\infty, we find that

Ap,q(d)Ap,qρ,θ1(d)Ap,qρ,θ2(d),A_{p,q}(\mathbb{R}^{d})\subset A^{\rho,\theta_{1}}_{p,q}(\mathbb{R}^{d})\subset A^{\rho,\theta_{2}}_{p,q}(\mathbb{R}^{d}),

whenever 0θ1<θ2<0\leq\theta_{1}<\theta_{2}<\infty, and

[ω]Ap,qρ,θ2[ω]Ap,qρ,θ1.[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\leq[\omega]_{A^{\rho,\theta_{1}}_{p,q}}.

Here Ap,q(d)A_{p,q}(\mathbb{R}^{d}) denotes the classical Muckenhoupt–Wheeden class (see [32]). Correspondingly, for 1p,q<1\leq p,q<\infty, we define

Ap,qρ,(d):=θ>0Ap,qρ,θ(d).A^{\rho,\infty}_{p,q}(\mathbb{R}^{d}):=\bigcup_{\theta>0}A^{\rho,\theta}_{p,q}(\mathbb{R}^{d}).

Obviously, for any fixed θ>0\theta>0,

Ap,q(d)Ap,qρ,θ(d)Ap,qρ,(d),1p,q<.A_{p,q}(\mathbb{R}^{d})\subset A^{\rho,\theta}_{p,q}(\mathbb{R}^{d})\subset A^{\rho,\infty}_{p,q}(\mathbb{R}^{d}),\quad 1\leq p,q<\infty.

As before, for any given ωAp,qρ,(d)\omega\in A^{\rho,\infty}_{p,q}(\mathbb{R}^{d}) with 1p,q<1\leq p,q<\infty, we let

θ:=inf{θ>0:ωAp,qρ,θ(d)}.\theta^{\ast\ast}:=\inf\Big{\{}\theta>0:\omega\in A^{\rho,\theta}_{p,q}(\mathbb{R}^{d})\Big{\}}.

Now define the Ap,qρ,A^{\rho,\infty}_{p,q} characteristic constant of ω\omega by

[ω]Ap,qρ,:=[ω]Ap,qρ,θ.[\omega]_{A^{\rho,\infty}_{p,q}}:=[\omega]_{A^{\rho,\theta^{\ast\ast}}_{p,q}}.
Remark 2.2.

A few additional remarks are in order.

  1. (1)

    Let us mention that in the definitions of both classes of weights Apρ,(d)A^{\rho,\infty}_{p}(\mathbb{R}^{d}) and Ap,qρ,(d)A^{\rho,\infty}_{p,q}(\mathbb{R}^{d}), we can replace a ball B(x,r)B(x,r) by a cube Q(x,t)Q(x,t) centered at xx with side length tt, due to (1.2).

  2. (2)

    For more results about weighted norm inequalities of various integral operators in harmonic analysis (such as first or second order Riesz–Schrödinger transforms, Schrödinger type singular integrals, fractional integrals associated to the Schrödinger operator \mathcal{L}, etc.), one can see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 43, 42, 46, 45]. Moreover, the quantitative weighted estimates for some operators such as the fractional maximal and integral operators, and Littlewood–Paley functions were recently obtained in [27] and [49].

Throughout this paper, the letter CC stands for a positive constant which may vary from line to line. Constants with subscripts, such as C0C_{0}, do not change in different occurrences.

3. Technical lemmas

In this section, let us first set up two auxiliary lemmas. The auxiliary function ρ(x)\rho(x) has many useful properties, the fundamental one is listed in Lemma 1.1. This result implies, in particular, that when xB(x0,r)x\in B(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty),

1+rρ(x)C0(1+rρ(x0))N0+1,1+\frac{r}{\rho(x)}\leq C_{0}\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{N_{0}+1}, (3.1)

where C01C_{0}\geq 1 is the constant appearing in (1.2). In fact, this estimate has been obtained in the literature (see [8, Lemma 1] and [10, Lemma 2]), for the convenience of the reader, we give its proof here. By the left-hand side of (1.2), we can see that for any xB(x0,r)x\in B(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty),

1ρ(x)C01ρ(x0)(1+|xx0|ρ(x0))N0<C01ρ(x0)(1+rρ(x0))N0.\frac{1}{\rho(x)}\leq C_{0}\cdot\frac{1}{\rho(x_{0})}\bigg{(}1+\frac{|x-x_{0}|}{\rho(x_{0})}\bigg{)}^{N_{0}}<C_{0}\cdot\frac{1}{\rho(x_{0})}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{N_{0}}.

From this, it follows that (since C01C_{0}\geq 1)

1+rρ(x)1+C0rρ(x0)(1+rρ(x0))N0C0(1+rρ(x0))N0+1,1+\frac{r}{\rho(x)}\leq 1+C_{0}\cdot\frac{r}{\rho(x_{0})}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{N_{0}}\leq C_{0}\cdot\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{N_{0}+1},

as desired.

Similar to the classical Muckenhoupt weights, there are some basic properties for Apρ,θ(d)A^{\rho,\theta}_{p}(\mathbb{R}^{d}) classes of weights. The following important property for Apρ,θA^{\rho,\theta}_{p} weights with 1p<1\leq p<\infty and 0<θ<0<\theta<\infty was first given by Bongioanni–Harboure–Salinas in [1, Lemma 5].

Lemma 3.1 ([1]).

If ωApρ,θ(d)\omega\in A^{\rho,\theta}_{p}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty and 1p<1\leq p<\infty, then there exist positive constants ϵ>0,η>1\epsilon>0,\eta>1 and C>0C>0 such that

(1|𝒬|𝒬ω(x)1+ϵ𝑑x)11+ϵC(1|𝒬|𝒬ω(x)𝑑x)(1+rρ(x0))η\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)^{1+\epsilon}dx\bigg{)}^{\frac{1}{1+\epsilon}}\leq C\cdot\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)\,dx\bigg{)}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta} (3.2)

holds for every cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) in d\mathbb{R}^{d}.

Remark 3.2.

The constant C>0C>0 in Lemma 3.1 depends on p,dp,d and the Apρ,θA^{\rho,\theta}_{p} characteristic constant of ω\omega, the positive number ϵ\epsilon in Lemma 3.1 comes from the classical proof for ApA_{p} weights in [18, Theorem 7.4], and η\eta is a positive constant greater than 1, which can be chosen as follows.

η:=θp+(θ+d)pN0N0+1+(N0+1)dϵ1+ϵ>1.\eta:=\theta p+(\theta+d)\frac{pN_{0}}{N_{0}+1}+(N_{0}+1)\frac{d\epsilon}{1+\epsilon}>1.

As a direct consequence of Lemma 3.1, we can prove the following result, which provides us the comparison between the Lebesgue measure of the subset EE of d\mathbb{R}^{d} and its weighted measure ω(E)\omega(E).

Lemma 3.3.

If ωApρ,θ(d)\omega\in A^{\rho,\theta}_{p}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty and 1p<1\leq p<\infty, then there exist two positive numbers 0<δ<10<\delta<1 and η>1\eta>1 such that for any cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) in d\mathbb{R}^{d},

ω(E)ω(𝒬)C(|E||𝒬|)δ(1+rρ(x0))η\frac{\omega(E)}{\omega(\mathcal{Q})}\leq C\cdot\bigg{(}\frac{|E|}{|\mathcal{Q}|}\bigg{)}^{\delta}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta} (3.3)

holds for any measurable subset EE contained in 𝒬\mathcal{Q}, where C>0C>0 is a constant which does not depend on EE nor on 𝒬\mathcal{Q}, and η\eta is given as in Lemma 3.1.

Proof.

For any given cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty), suppose that E𝒬E\subset\mathcal{Q}, then by Hölder’s inequality with exponent 1+ϵ1+\epsilon and (3.2), we can deduce that

ω(E)=𝒬χE(x)ω(x)𝑑x(𝒬ω(x)1+ϵ𝑑x)11+ϵ(𝒬χE(x)1+ϵϵ𝑑x)ϵ1+ϵC|𝒬|11+ϵ(1|𝒬|𝒬ω(x)𝑑x)(1+rρ(x0))η|E|ϵ1+ϵ=C(|E||𝒬|)ϵ1+ϵ(1+rρ(x0))ηω(𝒬).\begin{split}\omega(E)&=\int_{\mathcal{Q}}\chi_{E}(x)\cdot\omega(x)\,dx\\ &\leq\bigg{(}\int_{\mathcal{Q}}\omega(x)^{1+\epsilon}dx\bigg{)}^{\frac{1}{1+\epsilon}}\bigg{(}\int_{\mathcal{Q}}\chi_{E}(x)^{\frac{1+\epsilon}{\epsilon}}\,dx\bigg{)}^{\frac{\epsilon}{1+\epsilon}}\\ &\leq C\cdot|\mathcal{Q}|^{\frac{1}{1+\epsilon}}\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)\,dx\bigg{)}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta}|E|^{\frac{\epsilon}{1+\epsilon}}\\ &=C\cdot\bigg{(}\frac{|E|}{|\mathcal{Q}|}\bigg{)}^{\frac{\epsilon}{1+\epsilon}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta}\omega(\mathcal{Q}).\end{split}

This gives (3.3) with δ=ϵ/(1+ϵ)\delta=\epsilon/{(1+\epsilon)}. Here the characteristic function of the set EE is denoted by χE\chi_{E}. ∎

The following result gives the relationship between these two classes of weights, Apρ,(d)A^{\rho,\infty}_{p}(\mathbb{R}^{d}) and Ap,qρ,(d)A^{\rho,\infty}_{p,q}(\mathbb{R}^{d}), which can be found in [46] and [47].

Lemma 3.4 ([46, 47]).

Suppose that 1p<q<1\leq p<q<\infty. Then the following statements are true.

  1. (1)

    If p>1p>1 and 0<θ<0<\theta<\infty, then ωAp,qρ,θ(d)\omega\in A^{\rho,\theta}_{p,q}(\mathbb{R}^{d}) implies that ωqAtρ,θ~(d)\omega^{q}\in A^{\rho,\widetilde{\theta}}_{t}(\mathbb{R}^{d}) with

    t:=1+q/pandθ~:=θ11/q+1/p.t:=1+q/{p^{\prime}}\quad and\quad\widetilde{\theta}:=\theta\cdot\frac{1}{1/q+1/{p^{\prime}}}.
  2. (2)

    If p=1p=1 and 0<θ<0<\theta<\infty, then ωA1,qρ,θ(d)\omega\in A^{\rho,\theta}_{1,q}(\mathbb{R}^{d}) implies that ωqA1ρ,θ(d)\omega^{q}\in A^{\rho,\theta^{\ast}}_{1}(\mathbb{R}^{d}) with

    θ:=θq.\theta^{\ast}:=\theta\cdot q.

4. Known results

In this section, we will present some relevant results concerning characterizations of several function spaces in the literature. As we mentioned in the introduction, the celebrated John–Nirenberg inequality states that if fBMO(d)f\in\mathrm{BMO}(\mathbb{R}^{d}), then for any cube QQ in d\mathbb{R}^{d} and for any λ>0\lambda>0,

|{xQ:|f(x)fQ|>λ}|C1|Q|exp{C2λfBMO},\Big{|}\Big{\{}x\in Q:|f(x)-f_{Q}|>\lambda\Big{\}}\Big{|}\leq C_{1}|Q|\exp\bigg{\{}-\frac{C_{2}\lambda}{\|f\|_{\mathrm{BMO}}}\bigg{\}},

where C1>0C_{1}>0 and C2>0C_{2}>0 are two universal constants (see [25] and [18]). The John–Nirenberg inequality shows that any BMO function is exponentially integrable. As a consequence of this estimate and Hölder’s inequality, we can obtain an equivalent norm on BMO(d)\mathrm{BMO}(\mathbb{R}^{d}), see [18, Corollary 6.12], for example.

Proposition 4.1 ([18]).

For 1s<1\leq s<\infty, define

fBMOs:=supQd(1|Q|Q|f(x)fQ|s𝑑x)1/s.\|f\|_{\mathrm{BMO}^{s}}:=\sup_{Q\subset\mathbb{R}^{d}}\bigg{(}\frac{1}{|Q|}\int_{Q}|f(x)-f_{Q}|^{s}\,dx\bigg{)}^{1/s}.

Then we have (when s=1s=1, we write BMOs=BMO\|\cdot\|_{\mathrm{BMO}^{s}}=\|\cdot\|_{\mathrm{BMO}})

fBMOsfBMO,\|f\|_{\mathrm{BMO}^{s}}\approx\|f\|_{\mathrm{BMO}},

for each 1<s<1<s<\infty.

Now we define

BMOs(d):={fLloc1(d):fBMOs<},1s<.\mathrm{BMO}^{s}(\mathbb{R}^{d}):=\Big{\{}f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{d}):\|f\|_{\mathrm{BMO}^{s}}<\infty\Big{\}},\quad 1\leq s<\infty.

This result tells us that for all 1s<1\leq s<\infty, the spaces BMOs(d)\mathrm{BMO}^{s}(\mathbb{R}^{d}) coincide, and the norms BMOs\|\cdot\|_{\mathrm{BMO}^{s}} are mutually equivalent with respect to different values of ss.

We can extend this result to the weighted case. For each ωA(d):=1p<Ap(d)\omega\in A_{\infty}(\mathbb{R}^{d}):=\cup_{1\leq p<\infty}A_{p}(\mathbb{R}^{d}), we denote by BMO(ω)\mathrm{BMO}({\omega}) the set of all locally integrable functions ff on d\mathbb{R}^{d} such that

fBMO(ω):=supQd1ω(Q)Q|f(x)fω,Q|ω(x)𝑑x<,\|f\|_{\mathrm{BMO}(\omega)}:=\sup_{Q\subset\mathbb{R}^{d}}\frac{1}{\omega(Q)}\int_{Q}|f(x)-f_{\omega,Q}|\omega(x)\,dx<\infty,

where

fω,Q:=1ω(Q)Qf(x)ω(x)𝑑x.f_{\omega,Q}:=\frac{1}{\omega(Q)}\int_{Q}f(x)\omega(x)\,dx.

In 1976, Muckenhoupt and Wheeden proved that a function ff is in the space BMO(d)\mathrm{BMO}(\mathbb{R}^{d}) if and only if ff is in the space BMO(ω)\mathrm{BMO}({\omega}) (bounded mean oscillation with respect to ω\omega), provided that ωA(d)\omega\in A_{\infty}(\mathbb{R}^{d}), one can see [31, Theorem 5].

Proposition 4.2 ([31]).

For each ωA(d)\omega\in A_{\infty}(\mathbb{R}^{d}), then we have BMO(d)=BMO(ω)\mathrm{BMO}(\mathbb{R}^{d})=\mathrm{BMO}({\omega}) and (the norms are mutually equivalent)

fBMO(ω)fBMO.\|f\|_{\mathrm{BMO}(\omega)}\approx\|f\|_{\mathrm{BMO}}.

In 2011, Ho further proved the following result by using Hölder’s inequality, the John–Nirenberg inequality and relevant properties of AA_{\infty} weights, see [21, Theorem 3.1].

Proposition 4.3 ([21]).

For all 1s<1\leq s<\infty and ωAs(d)\omega\in A_{s}(\mathbb{R}^{d}), then fBMO(d)f\in\mathrm{BMO}(\mathbb{R}^{d}) if and only if

supQd(1ω(Q)Q|f(x)fQ|sω(x)𝑑x)1/s<.\sup_{Q\subset\mathbb{R}^{d}}\bigg{(}\frac{1}{\omega(Q)}\int_{Q}|f(x)-f_{Q}|^{s}\omega(x)\,dx\bigg{)}^{1/s}<\infty.

By using similar arguments, we can prove a version of John–Nirenberg inequality suitable for the BLO spaces (see, for instance, [44, Lemma 2.1]).

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|C3|𝒬|exp{C4λfBLO}.\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\leq C_{3}|\mathcal{Q}|\exp\bigg{\{}-\frac{C_{4}\lambda}{\|f\|_{\mathrm{BLO}}}\bigg{\}}. (4.1)

Here C3C_{3} and C4C_{4} are two absolute constants. There is an analogue of Proposition 4.3 for the space BLO(d)\mathrm{BLO}(\mathbb{R}^{d}). Based on the estimate (4.1), we further obtain the following result.

Proposition 4.4.

For all 1s<1\leq s<\infty and ωAs(d)\omega\in A_{s}(\mathbb{R}^{d}), then fBLO(d)f\in\mathrm{BLO}(\mathbb{R}^{d}) if and only if

supQd(1ω(Q)Q[f(x)essinfy𝒬f(y)]sω(x)𝑑x)1/s<.\sup_{Q\subset\mathbb{R}^{d}}\bigg{(}\frac{1}{\omega(Q)}\int_{Q}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{s}\omega(x)\,dx\bigg{)}^{1/s}<\infty.

This result was first given by Wang–Zhou–Teng in 2018 (to the best of our knowledge), see [44, Theorem 3.1].

Moreover, there are many works about the characterizations of classical BMO and BLO spaces, one can see [14, 15, 26, 29, 39] and the references therein. For the boundedness properties of some operators in BMO and BLO spaces, see [22, 23, 34]. On the other hand, we have the following characterization of classical Campanato spaces, which can be found in [35, Lemma 1.5] and [24, Theorem 2].

Proposition 4.5 ([24, 35]).

For 1s<1\leq s<\infty and 0<β<10<\beta<1, define

f𝒞β,s:=supBd1|B|β/d(1|B|B|f(x)fB|s𝑑x)1/s,\|f\|_{{\mathcal{C}}^{\beta,s}}:=\sup_{B\subset\mathbb{R}^{d}}\frac{1}{|B|^{\beta/d}}\bigg{(}\frac{1}{|B|}\int_{B}|f(x)-f_{B}|^{s}\,dx\bigg{)}^{1/s},

and

fLipβ:=supx,yd,xy|f(x)f(y)||xy|β.\|f\|_{\mathrm{Lip}_{\beta}}:=\sup_{x,y\in\mathbb{R}^{d},x\neq y}\frac{|f(x)-f(y)|}{|x-y|^{\beta}}.

Then we have (when s=1s=1, we denote 𝒞β,s=𝒞β\|\cdot\|_{\mathcal{C}^{\beta,s}}=\|\cdot\|_{\mathcal{C}^{\beta}})

f𝒞β,sf𝒞βfLipβ,\|f\|_{\mathcal{C}^{\beta,s}}\approx\|f\|_{\mathcal{C}^{\beta}}\approx\|f\|_{\mathrm{Lip}_{\beta}},

for each 1<s<1<s<\infty.

As before, we also define

𝒞β,s(d):={fLloc1(d):f𝒞β,s<}.\mathcal{C}^{\beta,s}(\mathbb{R}^{d}):=\Big{\{}f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{d}):\|f\|_{{\mathcal{C}}^{\beta,s}}<\infty\Big{\}}.

Proposition 4.5 now tells us that for all 1s<1\leq s<\infty, the spaces 𝒞β,s(d)\mathcal{C}^{\beta,s}(\mathbb{R}^{d}) coincide, and the norms 𝒞β,s\|\cdot\|_{{\mathcal{C}}^{\beta,s}} are equivalent with respect to different values of ss.

Remark 4.6.
  1. (1)

    We mention that this result leads to a generalization of the classical Sobolev embedding theorem. It is also well known that Lip1/p1(d)\mathrm{Lip}_{1/p-1}(\mathbb{R}^{d}) is the dual space of Hardy space Hp(d)H^{p}(\mathbb{R}^{d}) when 0<p<10<p<1, and Lip0(d)=BMO(d)\mathrm{Lip}_{0}(\mathbb{R}^{d})=\mathrm{BMO}(\mathbb{R}^{d}) is the dual space of Hardy space H1(d)H^{1}(\mathbb{R}^{d}), see [18, 19, 20].

  2. (2)

    There are some other characterizations of Campanato and Lipschitz spaces, which have been obtained by several authors. For instance, we can give some new characterizations of Campanato and Lipschitz spaces via the boundedness of commutators (such as Calderón–Zygmund singular integral operators and fractional integrals). We can also obtain Littlewood–Paley characterizations of Lipschitz spaces using the Littlewood–Paley theory. For further details, we refer the reader to [16, 17, 19, 35, 37, 38] and the references therein.

  3. (3)

    For the weighted version of Campanato spaces, see [41] and [48] for example. For more general results in the context of spaces of homogeneous type, see [33] and [40] for example.

It is natural to consider the same problems (characterizations of function spaces) in the Schrödinger context. Concerning the BMO and Campanato spaces related to Schrödinger operators with nonnegative potentials, we can obtain the following conclusions.

Proposition 4.7.

Let 0<θ<0<\theta<\infty and 1s<1\leq s<\infty. If fBMOρ,θ(d)f\in\mathrm{BMO}_{\rho,\theta}(\mathbb{R}^{d}), then there exists a positive constant C>0C>0 such that

(1|𝒬|𝒬|f(x)f𝒬|s𝑑x)1/sC(1+rρ(x0))(N0+1)θfBMOρ,θ\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}|f(x)-f_{\mathcal{Q}}|^{s}\,dx\bigg{)}^{1/s}\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta}\|f\|_{\mathrm{BMO}_{\rho,\theta}}

holds for every cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r>0r>0, where N0N_{0} is the constant appearing in Lemma 1.1.

This result was first proved by Bongioanni–Harboure–Salinas in 2011, see [3, Proposition 3].

Lemma 4.8 ([28]).

If f𝒞ρ,θβ(d)f\in\mathcal{C}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}) with 0<β<10<\beta<1 and 0<θ<0<\theta<\infty, then there exists a positive constant C>0C>0 such that

|f(x)f(y)||xy|βCf𝒞ρ,θβ(1+|xy|ρ(x)+|xy|ρ(y))θ\frac{|f(x)-f(y)|}{|x-y|^{\beta}}\leq C\|f\|_{\mathcal{C}^{\beta}_{\rho,\theta}}\bigg{(}1+\frac{|x-y|}{\rho(x)}+\frac{|x-y|}{\rho(y)}\bigg{)}^{\theta}

holds true for all x,ydx,y\in\mathbb{R}^{d} with xyx\neq y. Conversely, if there is a positive constant C>0C>0 such that for any x,ydx,y\in\mathbb{R}^{d} with xyx\neq y,

|f(x)f(y)||xy|βC(1+|xy|ρ(x)+|xy|ρ(y))θ\frac{|f(x)-f(y)|}{|x-y|^{\beta}}\leq C\bigg{(}1+\frac{|x-y|}{\rho(x)}+\frac{|x-y|}{\rho(y)}\bigg{)}^{\theta}

holds for some θ>0\theta>0 and 0<β<10<\beta<1, then f𝒞ρ,(N0+1)θβ(d)f\in\mathcal{C}^{\beta}_{\rho,(N_{0}+1)\theta}(\mathbb{R}^{d}).

Proposition 4.9.

Let 0<θ<0<\theta<\infty and 1s<1\leq s<\infty. If f𝒞ρ,θβ(d)f\in\mathcal{C}^{\beta}_{\rho,\theta}(\mathbb{R}^{d}) with 0<β<10<\beta<1, then there exists a positive constant C>0C>0 such that

1||β/d(1|||f(x)f|s𝑑x)1/sC(1+rρ(x0))(N0+1)θfLipβρ,θ\frac{1}{|{\mathcal{B}}|^{\beta/d}}\bigg{(}\frac{1}{|\mathcal{B}|}\int_{\mathcal{B}}|f(x)-f_{\mathcal{B}}|^{s}\,dx\bigg{)}^{1/s}\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta}\|f\|_{\mathrm{Lip}_{\beta}^{\rho,\theta}}

holds for every ball =B(x0,r)\mathcal{B}=B(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r>0r>0, where N0N_{0} is the constant appearing in Lemma 1.1.

This result was first given by Liu–Sheng in 2014, see [28, Proposition 3].

From the above overview, we can see that there are many problems to be studied in the new spaces BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) and 𝒞ρ,θβ,(d)\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}). One is naturally led to ask whether it is possible to obtain a variant of the John–Nirenberg inequality for the space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}). In this paper we give a positive answer to this problem. Moreover, we give several results about characterizations for BLO space and Campanato space related to the Schrödinger operator =Δ+V\mathcal{L}=-\Delta+V. This is a continuation of the previous work by the authors in [47].

As already mentioned in the introduction, the harmonic analysis arising from the Schrödinger operator =Δ+V\mathcal{L}=-\Delta+V is based on the use of a related critical radius function, which was introduced by Shen in [36]. In this framework, to show our main results, we rely on a version of the John–Nirenberg inequality for the space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d})(see Lemma 5.1 below), a pointwise estimate for the function f𝒞ρ,θβ(d)f\in\mathcal{C}^{\beta}_{\rho,\theta}(\mathbb{R}^{d})(see Lemma 4.8 above), and some related properties of classes of weights adapted to the Schrödinger operator \mathcal{L}.

5. John–Nirenberg type inequalities for the new spaces

In this section, we are concerned with the John–Nirenberg type inequality with precise constants suitable for the BLOρ,θ\mathrm{BLO}_{\rho,\theta} spaces and relevant properties.

Lemma 5.1.

If fBLOρ,θ(d)f\in\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty, then there exist two positive constants C1C_{1} and C2C_{2} such that for every cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) and every λ>0\lambda>0,

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|C¯1|𝒬|exp{(1+rρ(x0))(N0+1)θC¯2λfBLOρ,θ},\begin{split}&\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\\ &\leq\overline{C}_{1}|\mathcal{Q}|\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta}\frac{\overline{C}_{2}\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}\bigg{\}},\end{split} (5.1)

where N0N_{0} is the constant appearing in Lemma 1.1. More specifically, we may choose

C¯1=eandC¯2=1C0θ2de.\overline{C}_{1}=e\quad and\quad\overline{C}_{2}=\frac{1}{C_{0}^{\theta}2^{d}e}.
Proof.

Some ideas of the proof of this lemma come from [18] and [20]. The proof has five main steps.

Step 1. Without loss of generality, we may assume that fBLOρ,θ=1\|f\|_{\mathrm{BLO}_{\rho,\theta}}=1 with 0<θ<0<\theta<\infty. Note that

(1+rρ(x0))θ1,for anyθ>0.\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}\geq 1,\;~{}~{}\mbox{for any}~{}\theta>0.

If λ1\lambda\leq 1, then the inequality (5.1) holds true by choosing C¯1=e\overline{C}_{1}=e and C¯2=1\overline{C}_{2}=1. Now we suppose that λ>1\lambda>1. Then for each fixed cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r), we can apply the Calderón–Zygmund decomposition to the function f(x)essinfy𝒬f(y)f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}f(y) inside the cube 𝒬\mathcal{Q}. Let σ>1\sigma>1 be a positive constant to be fixed below. Since

(1+rρ(x0))θ(1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x)fBLOρ,θ=1<σ,\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\bigg{)}\leq\|f\|_{\mathrm{BLO}_{\rho,\theta}}=1<\sigma,

we then follow the same argument(the so-called stopping time argument) as in the proof of [20, Theorem 7.1.6] to obtain a collection of (pairwise disjoint) cubes {Qj(1)}j\{Q^{(1)}_{j}\}_{j} satisfying the following properties:

(A)-1.The interior of every cubeQj(1)is contained in𝒬;(B)-1.σ(1+rρ(x0))θ<1|Qj(1)|Qj(1)[f(x)essinfy𝒬f(y)]𝑑x2dσ(1+rρ(x0))θ;(C)-1.0essinfyQj(1)f(y)essinfy𝒬f(y)2dσ(1+rρ(x0))θ;(D)-1.j|Qj(1)||𝒬|σ;(E)-1.f(x)essinfy𝒬f(y)σ(1+rρ(x0))θ,a.e.x𝒬jQj(1).\begin{split}&(A)\mbox{-1}.~{}~{}\mbox{The interior of every cube}~{}Q^{(1)}_{j}~{}\mbox{is contained in}~{}\mathcal{Q};\\ &(B)\mbox{-1}.~{}~{}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}<\frac{1}{|Q^{(1)}_{j}|}\int_{Q^{(1)}_{j}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq 2^{d}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta};\\ &(C)\mbox{-1}.~{}~{}0\leq\underset{y\in{Q^{(1)}_{j}}}{\mathrm{ess\,inf}}\,f(y)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\leq 2^{d}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta};\\ &(D)\mbox{-1}.~{}~{}\sum_{j}\big{|}Q^{(1)}_{j}\big{|}\leq\frac{|\mathcal{Q}|}{\sigma};\\ &(E)\mbox{-1}.~{}~{}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\leq\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta},~{}~{}a.e.~{}x\in\mathcal{Q}\setminus\bigcup_{j}Q^{(1)}_{j}.\end{split}

We prove these properties (A)(A)-1 through (E)(E)-1. Obviously, properties (A)(A)-1 and (B)(B)-1 hold by the selection criterion of the cubes Qj(1)Q^{(1)}_{j}(viewed as the first generation of 𝒬\mathcal{Q}). Since Qj(1)𝒬Q^{(1)}_{j}\subset\mathcal{Q} and

essinfyQj(1)f(y)=1|Qj(1)|Qj(1)essinfyQj(1)f(y)𝑑x1|Qj(1)|Qj(1)f(x)𝑑x=fQj(1),\begin{split}\underset{y\in{Q^{(1)}_{j}}}{\mathrm{ess\,inf}}\,f(y)&=\frac{1}{|Q^{(1)}_{j}|}\int_{Q^{(1)}_{j}}\underset{y\in{Q^{(1)}_{j}}}{\mathrm{ess\,inf}}\,f(y)\,dx\\ &\leq\frac{1}{|Q^{(1)}_{j}|}\int_{Q^{(1)}_{j}}f(x)\,dx=f_{Q^{(1)}_{j}},\end{split}

we get

0essinfyQj(1)f(y)essinfy𝒬f(y)1|Qj(1)|Qj(1)f(x)𝑑xessinfy𝒬f(y)=1|Qj(1)|Qj(1)[f(x)essinfy𝒬f(y)]𝑑x2dσ(1+rρ(x0))θ,\begin{split}0&\leq\underset{y\in{Q^{(1)}_{j}}}{\mathrm{ess\,inf}}\,f(y)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\\ &\leq\frac{1}{|Q^{(1)}_{j}|}\int_{Q^{(1)}_{j}}f(x)\,dx-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\\ &=\frac{1}{|Q^{(1)}_{j}|}\int_{Q^{(1)}_{j}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq 2^{d}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta},\end{split}

where in the last inequality we have used (B)(B)-1. Because the cubes Qj(1)Q^{(1)}_{j} are pairwise disjoint, then it follows from (B)(B)-1 that

(1+rρ(x0))θj|Qj(1)|<1σjQj(1)[f(x)essinfy𝒬f(y)]𝑑x=1σjQj(1)[f(x)essinfy𝒬f(y)]𝑑x1σ𝒬[f(x)essinfy𝒬f(y)]𝑑x|𝒬|σ(1+rρ(x0))θ.\begin{split}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}\sum_{j}\big{|}Q^{(1)}_{j}\big{|}&<\frac{1}{\sigma}\sum_{j}\int_{Q^{(1)}_{j}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &=\frac{1}{\sigma}\int_{\bigcup_{j}Q^{(1)}_{j}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq\frac{1}{\sigma}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq\frac{|\mathcal{Q}|}{\sigma}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}.\end{split}

This is equivalent to (D)(D)-1. (E)(E)-1 is a consequence of the Lebesgue differentiation theorem.

Step 2. We now fix a selected cube Qj(1)Q^{(1)}_{j^{\prime}}(first generation) and apply the same Calderón–Zygmund decomposition to the function f(x)essinfyQj(1)f(y)f(x)-\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}f(y) inside the cube Qj(1)Q^{(1)}_{j^{\prime}}. Also repeat this process for any other cube of the first generation. Let Qj(1)=Q(x1,r1)Q^{(1)}_{j^{\prime}}=Q(x_{1},r_{1}) be the cube centered at x1x_{1} and with side length r1r_{1}. Observe that

(1+r1ρ(x1))θ(1|Qj(1)|Qj(1)[f(x)essinfyQj(1)f(y)]𝑑x)fBLOρ,θ=1<σ.\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{-\theta}\bigg{(}\frac{1}{|Q^{(1)}_{j^{\prime}}|}\int_{Q^{(1)}_{j^{\prime}}}\Big{[}f(x)-\underset{y\in Q^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\bigg{)}\leq\|f\|_{\mathrm{BLO}_{\rho,\theta}}=1<\sigma.

Arguing as in Step 1, we obtain a collection of (pairwise disjoint) cubes {Qj(2)}j\{Q^{(2)}_{j}\}_{j} satisfying the following properties:

(A)-2.The interior of every cubeQj(2)is contained in a unique cubeQj(1);(B)-2.σ(1+r1ρ(x1))θ<1|Qj(2)|Qj(2)[f(x)essinfyQj(1)f(y)]𝑑x2dσ(1+r1ρ(x1))θ;(C)-2.0essinfyQj(2)f(y)essinfyQj(1)f(y)2dσ(1+r1ρ(x1))θ;(D)-2.j|Qj(2)|1σj|Qj(1)|;(E)-2.f(x)essinfyQj(1)f(y)σ(1+r1ρ(x1))θ,a.e.xQj(1)jQj(2).\begin{split}&(A)\mbox{-2}.~{}~{}\mbox{The interior of every cube}~{}Q^{(2)}_{j}~{}\mbox{is contained in a unique cube}~{}{Q}^{(1)}_{j^{\prime}};\\ &(B)\mbox{-2}.~{}~{}\sigma\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta}<\frac{1}{|Q^{(2)}_{j}|}\int_{Q^{(2)}_{j}}\Big{[}f(x)-\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq 2^{d}\sigma\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta};\\ &(C)\mbox{-2}.~{}~{}0\leq\underset{y\in{Q}^{(2)}_{j}}{\mathrm{ess\,inf}}\,f(y)-\underset{y\in{Q^{(1)}_{j^{\prime}}}}{\mathrm{ess\,inf}}\,f(y)\leq 2^{d}\sigma\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta};\\ &(D)\mbox{-2}.~{}~{}\sum_{j}\big{|}Q^{(2)}_{j}\big{|}\leq\frac{1}{\sigma}\sum_{j^{\prime}}\big{|}Q^{(1)}_{j^{\prime}}\big{|};\\ &(E)\mbox{-2}.~{}~{}f(x)-\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\leq\sigma\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta},~{}~{}a.e.~{}x\in{Q}^{(1)}_{j^{\prime}}\setminus\bigcup_{j}Q^{(2)}_{j}.\end{split}

In fact, it is clear that properties (A)(A)-2 and (B)(B)-2 hold by the selection criterion of the cubes Qj(2)Q^{(2)}_{j}(viewed as the second generation of 𝒬\mathcal{Q}). Since Qj(2)Qj(1)Q^{(2)}_{j}\subset Q^{(1)}_{j^{\prime}} and

essinfyQj(2)f(y)=1|Qj(2)|Qj(2)essinfyQj(2)f(y)𝑑x1|Qj(2)|Qj(2)f(x)𝑑x,\begin{split}\underset{y\in{Q^{(2)}_{j}}}{\mathrm{ess\,inf}}\,f(y)&=\frac{1}{|Q^{(2)}_{j}|}\int_{Q^{(2)}_{j}}\underset{y\in{Q^{(2)}_{j}}}{\mathrm{ess\,inf}}\,f(y)\,dx\leq\frac{1}{|Q^{(2)}_{j}|}\int_{Q^{(2)}_{j}}f(x)\,dx,\end{split}

so we have

0essinfyQj(2)f(y)essinfyQj(1)f(y)1|Qj(2)|Qj(2)[f(x)essinfyQj(1)f(y)]𝑑x2dσ(1+r1ρ(x1))θ,\begin{split}0\leq\underset{y\in{Q}^{(2)}_{j}}{\mathrm{ess\,inf}}\,f(y)-\underset{y\in{Q^{(1)}_{j^{\prime}}}}{\mathrm{ess\,inf}}\,f(y)&\leq\frac{1}{|Q^{(2)}_{j}|}\int_{Q^{(2)}_{j}}\Big{[}f(x)-\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq 2^{d}\sigma\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta},\end{split}

due to property (B)(B)-2. By the Lebesgue differentiation theorem, (E)(E)-2 holds. It remains only to study the last property (D)(D)-2. Notice that the cubes Qj(2)Q^{(2)}_{j} are also pairwise disjoint and each selected cube Qj(2)Q^{(2)}_{j} is contained in a unique cube Qj(1)Q^{(1)}_{j^{\prime}}, we can deduce that

(1+r1ρ(x1))θj|Qj(2)|<1σjQj(2)[f(x)essinfyQj(1)f(y)]𝑑x1σjQj(1)[f(x)essinfyQj(1)f(y)]𝑑x1σj|Qj(1)|(1+r1ρ(x1))θfBLOρ,θ=1σj|Qj(1)|(1+r1ρ(x1))θ.\begin{split}\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta}\sum_{j}\big{|}Q^{(2)}_{j}\big{|}&<\frac{1}{\sigma}\sum_{j}\int_{Q^{(2)}_{j}}\Big{[}f(x)-\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq\frac{1}{\sigma}\sum_{j^{\prime}}\int_{Q^{(1)}_{j^{\prime}}}\Big{[}f(x)-\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq\frac{1}{\sigma}\sum_{j^{\prime}}\big{|}Q^{(1)}_{j^{\prime}}\big{|}\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta}\|f\|_{\mathrm{BLO}_{\rho,\theta}}\\ &=\frac{1}{\sigma}\sum_{j^{\prime}}\big{|}Q^{(1)}_{j^{\prime}}\big{|}\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta}.\end{split}

This is just the desired estimate. Summarizing the estimates derived above((E)(E)-2 and (C)(C)-1), we can deduce that

f(x)essinfy𝒬f(y)=f(x)essinfyQj(1)f(y)+essinfyQj(1)f(y)essinfy𝒬f(y)σ(1+r1ρ(x1))θ+2dσ(1+rρ(x0))θσ(1+rρ(x1))θ+2dσ(1+rρ(x0))θ,a.e.xQj(1)jQj(2).\begin{split}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)&=f(x)-\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)+\underset{y\in{Q}^{(1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\\ &\leq\sigma\bigg{(}1+\frac{r_{1}}{\rho(x_{1})}\bigg{)}^{\theta}+2^{d}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}\\ &\leq\sigma\bigg{(}1+\frac{r}{\rho(x_{1})}\bigg{)}^{\theta}+2^{d}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta},~{}~{}a.e.~{}x\in{Q}^{(1)}_{j^{\prime}}\setminus\bigcup_{j}Q^{(2)}_{j}.\end{split}

This estimate, together with (3.1), implies that for almost every xQj(1)jQj(2)x\in{Q}^{(1)}_{j^{\prime}}\setminus\bigcup_{j}Q^{(2)}_{j},

f(x)essinfy𝒬f(y)C0θσ(1+rρ(x0))(N0+1)θ+2dσ(1+rρ(x0))θ(C0θ+2d)σ(1+rρ(x0))(N0+1)θ,\begin{split}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)&\leq C_{0}^{\theta}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta}+2^{d}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}\\ &\leq\big{(}C_{0}^{\theta}+2^{d}\big{)}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta},\end{split}

which, combined with (E)(E)-1, yields that for almost every x𝒬jQj(2)x\in{\mathcal{Q}}\setminus\bigcup_{j}Q^{(2)}_{j},

f(x)essinfy𝒬f(y)(C0θ+2d)σ(1+rρ(x0))(N0+1)θC0θ2σ2d(1+rρ(x0))(N0+1)θ.\begin{split}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)&\leq\big{(}C_{0}^{\theta}+2^{d}\big{)}\sigma\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta}\\ &\leq C_{0}^{\theta}2\sigma\cdot 2^{d}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta}.\end{split}

Moreover, from (D)(D)-1 and (D)(D)-2, we conclude that

j|Qj(2)|1σj|Qj(1)||𝒬|σ2.\sum_{j}\big{|}Q^{(2)}_{j}\big{|}\leq\frac{1}{\sigma}\sum_{j^{\prime}}\big{|}Q^{(1)}_{j^{\prime}}\big{|}\leq\frac{|\mathcal{Q}|}{\sigma^{2}}.

Step 3. We repeat this process indefinitely to obtain a collection of cubes {Qj(k)}j\{Q^{(k)}_{j}\}_{j} satisfying the following properties:

(A)-k.The interior of every cubeQj(k)is contained in a unique cubeQj(k1);(B)-k.σ(1+rk1ρ(xk1))θ<1|Qj(k)|Qj(k)[f(x)essinfyQj(k1)f(y)]𝑑x2dσ(1+rk1ρ(xk1))θ;(C)-k.0essinfyQj(k)f(y)essinfyQj(k1)f(y)2dσ(1+rk1ρ(xk1))θ;(D)-k.j|Qj(k)|1σj|Qj(k1)|;(E)-k.f(x)essinfyQj(k1)f(y)σ(1+rk1ρ(xk1))θ,a.e.xQj(k1)jQj(k).\begin{split}&(A)\mbox{-k}.~{}~{}\mbox{The interior of every cube}~{}Q^{(k)}_{j}~{}\mbox{is contained in a unique cube}~{}{Q}^{(k-1)}_{j^{\prime}};\\ &(B)\mbox{-k}.~{}~{}\sigma\bigg{(}1+\frac{r_{k-1}}{\rho(x_{k-1})}\bigg{)}^{\theta}<\frac{1}{|Q^{(k)}_{j}|}\int_{Q^{(k)}_{j}}\Big{[}f(x)-\underset{y\in{Q}^{(k-1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\leq 2^{d}\sigma\bigg{(}1+\frac{r_{k-1}}{\rho(x_{k-1})}\bigg{)}^{\theta};\\ &(C)\mbox{-k}.~{}~{}0\leq\underset{y\in{Q}^{(k)}_{j}}{\mathrm{ess\,inf}}\,f(y)-\underset{y\in{Q^{(k-1)}_{j^{\prime}}}}{\mathrm{ess\,inf}}\,f(y)\leq 2^{d}\sigma\bigg{(}1+\frac{r_{k-1}}{\rho(x_{k-1})}\bigg{)}^{\theta};\\ &(D)\mbox{-k}.~{}~{}\sum_{j}\big{|}Q^{(k)}_{j}\big{|}\leq\frac{1}{\sigma}\sum_{j^{\prime}}\big{|}Q^{(k-1)}_{j^{\prime}}\big{|};\\ &(E)\mbox{-k}.~{}~{}f(x)-\underset{y\in{Q}^{(k-1)}_{j^{\prime}}}{\mathrm{ess\,inf}}\,f(y)\leq\sigma\bigg{(}1+\frac{r_{k-1}}{\rho(x_{k-1})}\bigg{)}^{\theta},~{}~{}a.e.~{}x\in{Q}^{(k-1)}_{j^{\prime}}\setminus\bigcup_{j}Q^{(k)}_{j}.\end{split}

Here Qj(k1){Q}^{(k-1)}_{j^{\prime}} denotes the cube centered at xk1x_{k-1} with side length rk1r_{k-1}. By induction, from the previous proof, it actually follows that

f(x)essinfy𝒬f(y)C0θkσ2d(1+rρ(x0))(N0+1)θ,a.e.x𝒬Q(k),f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\leq C_{0}^{\theta}k\sigma\cdot 2^{d}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta},~{}~{}a.e.~{}x\in\mathcal{Q}\setminus\bigcup_{\ell}Q^{(k)}_{\ell},

and

|Q(k)||𝒬|σk,k=1,2,3,.\sum_{\ell}\big{|}Q^{(k)}_{\ell}\big{|}\leq\frac{|\mathcal{Q}|}{\sigma^{k}},\quad k=1,2,3,\dots. (5.2)

Therefore

{x𝒬:[f(x)essinfy𝒬f(y)]>C0θkσ2d(1+rρ(x0))(N0+1)θ}Q(k),k=1,2,3,.\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>C_{0}^{\theta}k\sigma 2^{d}\Big{(}1+\frac{r}{\rho(x_{0})}\Big{)}^{(N_{0}+1)\theta}\Big{\}}\subseteq\bigcup_{\ell}Q^{(k)}_{\ell},k=1,2,3,\dots. (5.3)

Step 4. Since

(0,)=k=0(C0θkσ2d(1+rρ(x0))(N0+1)θ,C0θ(k+1)σ2d(1+rρ(x0))(N0+1)θ],(0,\infty)=\bigcup_{k=0}^{\infty}\bigg{(}C_{0}^{\theta}k\sigma 2^{d}\Big{(}1+\frac{r}{\rho(x_{0})}\Big{)}^{(N_{0}+1)\theta},C_{0}^{\theta}(k+1)\sigma 2^{d}\Big{(}1+\frac{r}{\rho(x_{0})}\Big{)}^{(N_{0}+1)\theta}\bigg{]},

then for each fixed λ(0,)\lambda\in(0,\infty), we can write

C0θkσ2d(1+rρ(x0))(N0+1)θ<λC0θ(k+1)σ2d(1+rρ(x0))(N0+1)θC_{0}^{\theta}k\sigma 2^{d}\Big{(}1+\frac{r}{\rho(x_{0})}\Big{)}^{(N_{0}+1)\theta}<\lambda\leq C_{0}^{\theta}(k+1)\sigma 2^{d}\Big{(}1+\frac{r}{\rho(x_{0})}\Big{)}^{(N_{0}+1)\theta}

for some k0k\geq 0, and hence

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}||{x𝒬:[f(x)essinfy𝒬f(y)]>C0θkσ2d(1+rρ(x0))(N0+1)θ}||Q(k)||𝒬|σk=σ|𝒬|exp{klogσ}σ,\begin{split}&\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\\ &\leq\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>C_{0}^{\theta}k\sigma 2^{d}\Big{(}1+\frac{r}{\rho(x_{0})}\Big{)}^{(N_{0}+1)\theta}\Big{\}}\Big{|}\\ &\leq\sum_{\ell}\big{|}Q_{\ell}^{(k)}\big{|}\leq\frac{|\mathcal{Q}|}{\sigma^{k}}\\ &=\sigma|\mathcal{Q}|\cdot\frac{\exp\{-k\log\sigma\}}{\sigma},\end{split}

where in the last two inequalities we have used (5.2) and (5.3), respectively. Now choose σ=e>1\sigma=e>1, we then have

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|e|𝒬|exp{(k+1)}e|𝒬|exp{(1+rρ(x0))(N0+1)θλC0θ2de}.\begin{split}&\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\\ &\leq e|\mathcal{Q}|\exp\big{\{}-(k+1)\big{\}}\\ &\leq e|\mathcal{Q}|\exp\Big{\{}-\Big{(}1+\frac{r}{\rho(x_{0})}\Big{)}^{-(N_{0}+1)\theta}\frac{\lambda}{C_{0}^{\theta}2^{d}e}\Big{\}}.\end{split}

This concludes the proof of Lemma 5.1 for the special case that fBLOρ,θf\in\mathrm{BLO}_{\rho,\theta} with fBLOρ,θ=1\|f\|_{\mathrm{BLO}_{\rho,\theta}}=1.

Step 5. We now proceed to the general case. In order to do so, we set

f~(x):=f(x)fBLOρ,θ.\widetilde{f}(x):=\frac{f(x)}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}.

By the definition of BLOρ,θ\|\cdot\|_{\mathrm{BLO}_{\rho,\theta}}, we have

f~BLOρ,θ=1&essinfy𝒬f(y)=fBLOρ,θessinfy𝒬f~(y).\|\widetilde{f}\|_{\mathrm{BLO}_{\rho,\theta}}=1\quad\&\quad\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)=\|f\|_{\mathrm{BLO}_{\rho,\theta}}\cdot\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,\widetilde{f}(y).

Hence,

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|=|{x𝒬:[f~(x)essinfy𝒬f~(y)]>λfBLOρ,θ}|C¯1|𝒬|exp{(1+rρ(x0))(N0+1)θC¯2λfBLOρ,θ},\begin{split}&\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\\ &=\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}\widetilde{f}(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,\widetilde{f}(y)\Big{]}>\frac{\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}\Big{\}}\Big{|}\\ &\leq\overline{C}_{1}|\mathcal{Q}|\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta}\frac{\overline{C}_{2}\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}\bigg{\}},\end{split}

with precise constants

C¯1=e&C¯2=1C0θ2de.\overline{C}_{1}=e\quad\&\quad\overline{C}_{2}=\frac{1}{C_{0}^{\theta}2^{d}e}.

We are done. ∎

By using Lemma 5.1, we have the following result, which describes certain exponential integrability for BLOρ,θ\mathrm{BLO}_{\rho,\theta} functions.

Lemma 5.2.

If fBLOρ,θ(d)f\in\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty, then there exist positive constants C>0C>0 and γ>0\gamma>0 such that for every cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) in d\mathbb{R}^{d}, we have

(𝒬exp[(1+rρ(x0))θγfBLOρ,θ[f(x)essinfy𝒬f(y)]]𝑑x)C|𝒬|,\begin{split}&\bigg{(}\int_{\mathcal{Q}}\exp\bigg{[}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta^{\ast}}\frac{\gamma}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\bigg{]}dx\bigg{)}\leq C\cdot|\mathcal{Q}|,\end{split} (5.4)

where θ=(N0+1)θ\theta^{\ast}=(N_{0}+1)\theta and N0N_{0} is the constant appearing in Lemma 1.1.

Proof.

Recall that the following identity

(𝒬exp[|f(x)|]𝑑x)=0eλ|{x𝒬:|f(x)|>λ}|𝑑λ\bigg{(}\int_{\mathcal{Q}}\exp\big{[}|f(x)|\big{]}\,dx\bigg{)}=\int_{0}^{\infty}e^{\lambda}\big{|}\big{\{}x\in\mathcal{Q}:|f(x)|>\lambda\big{\}}\big{|}\,d\lambda

holds for any cube 𝒬\mathcal{Q} in d\mathbb{R}^{d}(see, for instance, [19, Proposition 1.1.4]). Using this identity and Lemma 5.1, we obtain

(𝒬exp[(1+rρ(x0))θγfBLOρ,θ[f(x)essinfy𝒬f(y)]]𝑑x)=0exp(λ)|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|𝑑λC¯1|𝒬|0exp(λ)exp[(1+rρ(x0))θC¯2λfBLOρ,θ]𝑑λ=C¯1|𝒬|0exp(λ)exp[C¯2λγ]𝑑λ,\begin{split}&\bigg{(}\int_{\mathcal{Q}}\exp\bigg{[}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta^{\ast}}\frac{\gamma}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\bigg{]}dx\bigg{)}\\ &=\int_{0}^{\infty}\exp(\lambda)\cdot\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda^{\ast}\Big{\}}\Big{|}\,d\lambda\\ &\leq\overline{C}_{1}|\mathcal{Q}|\int_{0}^{\infty}\exp(\lambda)\cdot\exp\bigg{[}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-\theta^{\ast}}\frac{\overline{C}_{2}\lambda^{\ast}}{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}\bigg{]}d\lambda\\ &=\overline{C}_{1}\cdot|\mathcal{Q}|\int_{0}^{\infty}\exp(\lambda)\cdot\exp\Big{[}-\frac{\overline{C}_{2}\lambda}{\gamma}\Big{]}d\lambda,\end{split}

where the number λ\lambda^{\ast} is given by

λ:=λfBLOρ,θγ(1+rρ(x0))θ.\lambda^{\ast}:=\frac{\lambda\|f\|_{\mathrm{BLO}_{\rho,\theta}}}{\gamma}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta^{\ast}}.

If we take γ\gamma small enough so that 0<γ<C¯20<\gamma<\overline{C}_{2}, then the conclusion follows immediately. ∎

Moreover, we establish some relevant properties for the spaces 𝒞ρ,θβ,(d)\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}) and BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}), which extend some known results in the classical BMO and Campanato spaces.

Proposition 5.3.

Suppose that f𝒞ρ,θβ,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty and 0<β<10<\beta<1. Then for any γ>β+θ\gamma>\beta+\theta, there is a constant C>0C>0 depending only on d,βd,\beta and γ\gamma such that for any ball =B(x0,r)\mathcal{B}=B(x_{0},r) in d\mathbb{R}^{d}, we have

d[f(x)essinfyf(y)]rd+γ+|xx0|d+γ𝑑xCf𝒞ρ,θβ,rγβ(1+rρ(x0))θ.\int_{\mathbb{R}^{d}}\frac{\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}}{r^{d+\gamma}+|x-x_{0}|^{d+\gamma}}\,dx\leq C\cdot\frac{\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta}}}{r^{\gamma-\beta}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}.
Proof.

Suppose that f𝒞ρ,θβ,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty and 0<β<10<\beta<1. We then decompose d\mathbb{R}^{d} into a geometrically increasing sequence of concentric balls, and obtain

d[f(x)essinfyf(y)]rd+γ+|xx0|d+γ𝑑x=B(x0,r)[f(x)essinfyf(y)]rd+γ+|xx0|d+γ𝑑x+j=1B(x0,2jr)B(x0,2j1r)[f(x)essinfyf(y)]rd+γ+|xx0|d+γ𝑑x:=I+II.\begin{split}\int_{\mathbb{R}^{d}}\frac{\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}}{r^{d+\gamma}+|x-x_{0}|^{d+\gamma}}\,dx&=\int_{B(x_{0},r)}\frac{\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}}{r^{d+\gamma}+|x-x_{0}|^{d+\gamma}}\,dx\\ &+\sum_{j=1}^{\infty}\int_{B(x_{0},2^{j}r)\setminus B(x_{0},2^{j-1}r)}\frac{\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}}{r^{d+\gamma}+|x-x_{0}|^{d+\gamma}}\,dx\\ &:=\mathrm{I}+\mathrm{II}.\end{split}

For the first term, we have

I|B(0,1)|rγ1|B(x0,r)|B(x0,r)[f(x)essinfyf(y)]𝑑x|B(0,1)|1+β/drγβf𝒞ρ,θβ,(1+rρ(x0))θ.\begin{split}\mathrm{I}&\leq\frac{|B(0,1)|}{r^{\gamma}}\frac{1}{|B(x_{0},r)|}\int_{B(x_{0},r)}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq\frac{|B(0,1)|^{1+\beta/d}}{r^{\gamma-\beta}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}.\end{split}

For the second term, we know that |xx0|2j1r|x-x_{0}|\geq 2^{j-1}r when xB(x0,2jr)B(x0,2j1r)x\in B(x_{0},2^{j}r)\setminus B(x_{0},2^{j-1}r). Consequently,

IIj=11(2j1r)d+γB(x0,2jr)[f(x)essinfyf(y)]𝑑x.\begin{split}\mathrm{II}&\leq\sum_{j=1}^{\infty}\frac{1}{(2^{j-1}r)^{d+\gamma}}\int_{B(x_{0},2^{j}r)}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx.\end{split}

Observe that for an arbitrary fixed ball \mathcal{B},

f(x)essinfyf(y)=f(x)essinfy2jf(y)+essinfy2jf(y)essinfyf(y)f(x)essinfy2jf(y),j=1,2,3,.\begin{split}&f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\\ &=f(x)-\underset{y\in 2^{j}\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)+\underset{y\in 2^{j}\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\\ &\leq f(x)-\underset{y\in 2^{j}\mathcal{B}}{\mathrm{ess\,inf}}\,f(y),\quad j=1,2,3,\dots.\end{split}

Hence

IIj=11(2j1r)d+γB(x0,2jr)[f(x)essinfy2jf(y)]𝑑xj=1|B(x0,2jr)|1+β/d(2j1r)d+γf𝒞ρ,θβ,(1+2jrρ(x0))θj=1(2j)βγ(2j)θ2d+γ|B(0,1)|1+β/drγβf𝒞ρ,θβ,(1+rρ(x0))θ.\begin{split}\mathrm{II}&\leq\sum_{j=1}^{\infty}\frac{1}{(2^{j-1}r)^{d+\gamma}}\int_{B(x_{0},2^{j}r)}\Big{[}f(x)-\underset{y\in 2^{j}\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx\\ &\leq\sum_{j=1}^{\infty}\frac{|B(x_{0},2^{j}r)|^{1+\beta/d}}{(2^{j-1}r)^{d+\gamma}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta}}\bigg{(}1+\frac{2^{j}r}{\rho(x_{0})}\bigg{)}^{\theta}\\ &\leq\sum_{j=1}^{\infty}(2^{j})^{\beta-\gamma}\cdot(2^{j})^{\theta}\frac{2^{d+\gamma}|B(0,1)|^{1+\beta/d}}{r^{\gamma-\beta}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}.\end{split}

Note that βγ+θ<0\beta-\gamma+\theta<0, so the desired result follows immediately. ∎

We can also obtain analogous estimates for the space BLOρ,θ(d)\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}).

Proposition 5.4.

Suppose that fBLOρ,θ(d)f\in\mathrm{BLO}_{\rho,\theta}(\mathbb{R}^{d}) with 0<θ<0<\theta<\infty. Then for any γ>θ\gamma>\theta, there is a constant C>0C>0 depending only on dd and γ\gamma such that for any cube 𝒬=Q(x0,r)\mathcal{Q}=Q(x_{0},r) in d\mathbb{R}^{d}, we have

d[f(x)essinfyf(y)]rd+γ+|xx0|d+γ𝑑xCfBLOρ,θrγ(1+rρ(x0))θ.\int_{\mathbb{R}^{d}}\frac{\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\;f(y)\Big{]}}{r^{d+\gamma}+|x-x_{0}|^{d+\gamma}}\,dx\leq C\cdot\frac{\|f\|_{\mathrm{BLO}_{\rho,\theta}}}{r^{\gamma}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta}.

We omit the proof here.

6. Main theorems

Let N0N_{0} be the same constant as in Lemma 1.1 and let η\eta be the same number as in Lemma 3.3. We are now in a position to give the main results of this paper.

Theorem 6.1.

Let 1p<1\leq p<\infty and ωApρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty. Then the following statements are true.

  1. (1)

    If fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<θ1<0<\theta_{1}<\infty, then for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    (1ω(𝒬)𝒬[f(x)essinfy𝒬f(y)]pω(x)𝑑x)1/pC[ω]Apρ,θ2(1+rρ(x0))(N0+1)θ1+η/pfBLOρ,θ1.\begin{split}&\bigg{(}\frac{1}{\omega(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\\ &\leq C[\omega]_{A^{\rho,\theta_{2}}_{p}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}+\eta/p}\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}.\end{split}
  2. (2)

    Conversely, if there exists a constant C>0C>0 such that for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    (1ω(𝒬)𝒬[f(x)essinfy𝒬f(y)]pω(x)𝑑x)1/pC[ω]Apρ,θ2(1+rρ(x0))θ1θ2\bigg{(}\frac{1}{\omega(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}} (6.1)

    holds for some θ1>0\theta_{1}>0, then fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}), and

    fBLOρ,θ1C[ω]Apρ,θ2.\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p}}.
Theorem 6.2.

Let 1p<q<1\leq p<q<\infty and ωAp,qρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p,q}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty. Then the following statements are true.

  1. (1)

    If fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<θ1<0<\theta_{1}<\infty, then for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    (1ωq(𝒬)𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))(N0+1)θ1+η/qfBLOρ,θ1.\begin{split}&\bigg{(}\frac{1}{\omega^{q}(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\\ &\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}+\eta/q}\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}.\end{split}
  2. (2)

    Conversely, if there exists a constant C>0C>0 such that for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    (1ωq(𝒬)𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))θ1θ2\bigg{(}\frac{1}{\omega^{q}(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}} (6.2)

    holds for some θ1>0\theta_{1}>0, then fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}), and

    fBLOρ,θ1C[ω]Ap,qρ,θ2.\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}.
Proof of Theorem 6.1.

(1) Let fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<θ1<0<\theta_{1}<\infty. According to Lemma 5.1, there are two constants C¯1,C¯2>0\overline{C}_{1},\overline{C}_{2}>0 such that for any λ>0\lambda>0 and for any cube 𝒬d\mathcal{Q}\subset\mathbb{R}^{d},

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|C¯1|𝒬|exp{(1+rρ(x0))(N0+1)θ1C¯2λfBLOρ,θ1}.\begin{split}&\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\\ &\leq\overline{C}_{1}|\mathcal{Q}|\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}}\bigg{\}}.\end{split}

Since ωApρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty and 1p<1\leq p<\infty, by using Lemma 3.3, we get

ω({x𝒬:[f(x)essinfy𝒬f(y)]>λ})CC¯1δω(𝒬)exp{(1+rρ(x0))(N0+1)θ1C¯2δλfBLOρ,θ1}×(1+rρ(x0))η.\begin{split}&\omega\Big{(}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{)}\\ &\leq C\cdot\overline{C}_{1}^{\delta}\omega(\mathcal{Q})\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\delta\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}}\bigg{\}}\times\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta}.\end{split}

Hence, for any cube 𝒬d\mathcal{Q}\subset\mathbb{R}^{d},

(1ω(𝒬)𝒬[f(x)essinfy𝒬f(y)]pω(x)𝑑x)1/p\displaystyle\bigg{(}\frac{1}{\omega(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}
=(1ω(𝒬)0pλp1ω({x𝒬:[f(x)essinfy𝒬f(y)]>λ})𝑑λ)1/p\displaystyle=\bigg{(}\frac{1}{\omega(\mathcal{Q})}\int_{0}^{\infty}p\lambda^{p-1}\omega\Big{(}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{)}\,d\lambda\bigg{)}^{1/p}
(CC¯1δ0pλp1exp{(1+rρ(x0))(N0+1)θ1C¯2δλfBLOρ,θ1}𝑑λ)1/p\displaystyle\leq\bigg{(}C\cdot\overline{C}_{1}^{\delta}\int_{0}^{\infty}p\lambda^{p-1}\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\delta\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}}\bigg{\}}d\lambda\bigg{)}^{1/p}
×(1+rρ(x0))η/p.\displaystyle\times\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta/p}.

By making the substitution

μ=(1+rρ(x0))(N0+1)θ1C¯2δλfBLOρ,θ1,\mu=\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\delta\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}},

we can deduce that

(1ω(𝒬)𝒬[f(x)essinfy𝒬f(y)]pω(x)𝑑x)1/p\displaystyle\bigg{(}\frac{1}{\omega(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}
(CC¯1δp)1/p(1+rρ(x0))(N0+1)θ1fBLOρ,θ1C¯2δ×(1+rρ(x0))η/p\displaystyle\leq\Big{(}C\cdot\overline{C}_{1}^{\delta}p\Big{)}^{1/p}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}}\frac{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}}{\overline{C}_{2}\delta}\times\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta/p}
×(0μp1eμ𝑑μ)1/p\displaystyle\times\bigg{(}\int_{0}^{\infty}\mu^{p-1}e^{-\mu}\,d\mu\bigg{)}^{1/p}
(CpΓ(p))1/pC¯1δ/pC¯2δ(1+rρ(x0))(N0+1)θ1+η/pfBLOρ,θ1.\displaystyle\leq\big{(}C\cdot p\Gamma(p)\big{)}^{1/p}\cdot\frac{\overline{C}_{1}^{\delta/p}}{\overline{C}_{2}\delta}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}+\eta/p}\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}. (6.3)

This gives the desired inequality. Let us now turn to the proof of (2)(2). The proof of (2)(2) will be divided into two cases.

Case 1. When 1<p<1<p<\infty, by using Hölder’s inequality, the condition ωApρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p}(\mathbb{R}^{d}) and (6.1), we obtain

1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x\displaystyle\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx
=1|𝒬|𝒬[f(x)essinfy𝒬f(y)]ω(x)1/pω(x)1/p𝑑x\displaystyle=\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\omega(x)^{1/p}\cdot\omega(x)^{-1/p}\,dx
1|𝒬|(𝒬[f(x)essinfy𝒬f(y)]pω(x)𝑑x)1/p(𝒬ω(x)p/p𝑑x)1/p\displaystyle\leq\frac{1}{|\mathcal{Q}|}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{-{p^{\prime}}/p}\,dx\bigg{)}^{1/{p^{\prime}}}
C(1+rρ(x0))θ1θ2\displaystyle\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}
×(1|𝒬|𝒬ω(x)𝑑x)1/p(1|𝒬|𝒬ω(x)p/p𝑑x)1/p\displaystyle\times\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)\,dx\bigg{)}^{1/p}\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)^{-{p^{\prime}}/p}\,dx\bigg{)}^{1/{p^{\prime}}}
C[ω]Apρ,θ2(1+rρ(x0))θ1.\displaystyle\leq C[\omega]_{A^{\rho,\theta_{2}}_{p}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}}. (6.4)

Case 2. When p=1p=1, then it follows directly from the condition ωA1ρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{1}(\mathbb{R}^{d}) and (6.1) that

1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x\displaystyle\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx
=1|𝒬|𝒬[f(x)essinfy𝒬f(y)]ω(x)ω(x)1𝑑x\displaystyle=\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\omega(x)\cdot\omega(x)^{-1}\,dx
1|𝒬|(𝒬[f(x)essinfy𝒬f(y)]ω(x)𝑑x)(ess supx𝒬ω(x)1)\displaystyle\leq\frac{1}{|\mathcal{Q}|}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\omega(x)\,dx\bigg{)}\bigg{(}\underset{x\in\mathcal{Q}}{\mbox{ess\,sup}}\,\omega(x)^{-1}\bigg{)}
C(1+rρ(x0))θ1θ2×(1|𝒬|𝒬ω(x)𝑑x)(ess infx𝒬ω(x))1\displaystyle\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}\times\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)\,dx\bigg{)}\bigg{(}\underset{x\in\mathcal{Q}}{\mbox{ess\,inf}}\,\omega(x)\bigg{)}^{-1}
C[ω]A1ρ,θ2(1+rρ(x0))θ1.\displaystyle\leq C[\omega]_{A^{\rho,\theta_{2}}_{1}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}}. (6.5)

Collecting the above estimates (6) and (6), we conclude the proof of Theorem 6.1. ∎

Proof of Theorem 6.2.

(1) Let fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<θ1<0<\theta_{1}<\infty. According to Lemma 5.1, there are two constants C¯1,C¯2>0\overline{C}_{1},\overline{C}_{2}>0 such that for any λ>0\lambda>0 and for any cube 𝒬d\mathcal{Q}\subset\mathbb{R}^{d},

|{x𝒬:[f(x)essinfy𝒬f(y)]>λ}|C¯1|𝒬|exp{(1+rρ(x0))(N0+1)θ1C¯2λfBLOρ,θ1}.\begin{split}&\Big{|}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{|}\\ &\leq\overline{C}_{1}|\mathcal{Q}|\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}}\bigg{\}}.\end{split}

Since ωAp,qρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p,q}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty and 1p<q<1\leq p<q<\infty, by using Lemma 3.4 and Lemma 3.3, we have

ωq({x𝒬:[f(x)essinfy𝒬f(y)]>λ})CC¯1δωq(𝒬)exp{(1+rρ(x0))(N0+1)θ1C¯2δλfBLOρ,θ1}×(1+rρ(x0))η.\begin{split}&\omega^{q}\Big{(}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{)}\\ &\leq C\cdot\overline{C}_{1}^{\delta}\omega^{q}(\mathcal{Q})\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\delta\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}}\bigg{\}}\times\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta}.\end{split}

Here the symbol ωγ(E)\omega^{\gamma}(E) for γ>0\gamma>0 is given in Section 1. Hence, for any cube 𝒬d\mathcal{Q}\subset\mathbb{R}^{d},

(1ωq(𝒬)𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/q\displaystyle\bigg{(}\frac{1}{\omega^{q}(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}
=(1ωq(𝒬)0qλq1ωq({x𝒬:[f(x)essinfy𝒬f(y)]>λ})𝑑λ)1/q\displaystyle=\bigg{(}\frac{1}{\omega^{q}(\mathcal{Q})}\int_{0}^{\infty}q\lambda^{q-1}\omega^{q}\Big{(}\Big{\{}x\in\mathcal{Q}:\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}>\lambda\Big{\}}\Big{)}\,d\lambda\bigg{)}^{1/q}
(CC¯1δ0qλq1exp{(1+rρ(x0))(N0+1)θ1C¯2δλfBLOρ,θ1}𝑑λ)1/q\displaystyle\leq\bigg{(}C\cdot\overline{C}_{1}^{\delta}\int_{0}^{\infty}q\lambda^{q-1}\exp\bigg{\{}-\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\delta\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}}\bigg{\}}d\lambda\bigg{)}^{1/q}
×(1+rρ(x0))η/q.\displaystyle\times\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\eta/q}.

By making the substitution

ν=(1+rρ(x0))(N0+1)θ1C¯2δλfBLOρ,θ1,\nu=\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{-(N_{0}+1)\theta_{1}}\frac{\overline{C}_{2}\delta\lambda}{\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}},

we can see that

(1ωq(𝒬)𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/q\displaystyle\bigg{(}\frac{1}{\omega^{q}(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}
(Cq)1/qC¯1δ/qC¯2δ(1+rρ(x0))(N0+1)θ1+η/qfBLOρ,θ1×(0νq1eν𝑑ν)1/q\displaystyle\leq\big{(}C\cdot q\big{)}^{1/q}\cdot\frac{\overline{C}_{1}^{\delta/q}}{\overline{C}_{2}\delta}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}+\eta/q}\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}\times\bigg{(}\int_{0}^{\infty}\nu^{q-1}e^{-\nu}\,d\nu\bigg{)}^{1/q}
(CqΓ(q))1/qC¯1δ/qC¯2δ(1+rρ(x0))(N0+1)θ1+η/qfBLOρ,θ1.\displaystyle\leq\big{(}C\cdot q\Gamma(q)\big{)}^{1/q}\cdot\frac{\overline{C}_{1}^{\delta/q}}{\overline{C}_{2}\delta}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}+\eta/q}\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}. (6.6)

This yields the desired estimate. Let us now turn to the proof of (2)(2). As before, the proof of (2)(2) will be divided into two cases.

Case 1. When 1<p<1<p<\infty, it then follows directly from the Hölder inequality that

1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x\displaystyle\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx (6.7)
=1|𝒬|𝒬[f(x)essinfy𝒬f(y)]ω(x)ω(x)1𝑑x\displaystyle=\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\omega(x)\cdot\omega(x)^{-1}\,dx
1|𝒬|(𝒬[f(x)essinfy𝒬f(y)]pω(x)p𝑑x)1/p(𝒬ω(x)p𝑑x)1/p.\displaystyle\leq\frac{1}{|\mathcal{Q}|}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)^{p}\,dx\bigg{)}^{1/p}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{-{p^{\prime}}}\,dx\bigg{)}^{1/{p^{\prime}}}.

Moreover, by using the Hölder inequality again, we can see that when 1p<q1\leq p<q,

(1|𝒬|𝒬[f(x)essinfy𝒬f(y)]pω(x)p𝑑x)1/p(1|𝒬|𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/q.\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)^{p}\,dx\bigg{)}^{1/p}\leq\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}. (6.8)

Substituting the above inequality into (6.7), we thus obtain

1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x\displaystyle\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx (6.9)
|𝒬|1/p1/q|𝒬|(𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/q(𝒬ω(x)p𝑑x)1/p\displaystyle\leq\frac{|\mathcal{Q}|^{1/p-1/q}}{|\mathcal{Q}|}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{-{p^{\prime}}}\,dx\bigg{)}^{1/{p^{\prime}}}
C(1+rρ(x0))θ1θ2\displaystyle\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}
×(1|𝒬|𝒬ω(x)q𝑑x)1/q(1|𝒬|𝒬ω(x)p𝑑x)1/p\displaystyle\times\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)^{-{p^{\prime}}}\,dx\bigg{)}^{1/{p^{\prime}}}
C[ω]Ap,qρ,θ2(1+rρ(x0))θ1,\displaystyle\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}}, (6.10)

where in the last two inequalities we have used (6.2) and the definition of Ap,qρ,θ2A^{\rho,\theta_{2}}_{p,q}, respectively.

Case 2. When p=1p=1 and 1<q<1<q<\infty, then we have

1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x\displaystyle\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx
=1|𝒬|𝒬[f(x)essinfy𝒬f(y)]ω(x)ω(x)1𝑑x\displaystyle=\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\omega(x)\cdot\omega(x)^{-1}\,dx
1|𝒬|(𝒬[f(x)essinfy𝒬f(y)]ω(x)𝑑x)(ess supx𝒬ω(x)1).\displaystyle\leq\frac{1}{|\mathcal{Q}|}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\omega(x)\,dx\bigg{)}\bigg{(}\underset{x\in\mathcal{Q}}{\mbox{ess\,sup}}\,\omega(x)^{-1}\bigg{)}.

From the previous estimate (6.8)(with p=1p=1), it actually follows that

1|𝒬|𝒬[f(x)essinfy𝒬f(y)]𝑑x\displaystyle\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx
|𝒬|11/q|𝒬|(𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/q(ess supx𝒬ω(x)1)\displaystyle\leq\frac{|\mathcal{Q}|^{1-1/q}}{|\mathcal{Q}|}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\underset{x\in\mathcal{Q}}{\mbox{ess\,sup}}\,\omega(x)^{-1}\bigg{)}
C(1+rρ(x0))θ1θ2×(1|𝒬|𝒬ω(x)q𝑑x)1/q(ess infx𝒬ω(x))1\displaystyle\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}\times\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\underset{x\in\mathcal{Q}}{\mbox{ess\,inf}}\,\omega(x)\bigg{)}^{-1}
C[ω]A1,qρ,θ2(1+rρ(x0))θ1,\displaystyle\leq C[\omega]_{A^{\rho,\theta_{2}}_{1,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}}, (6.11)

where in the last two inequalities we have used (6.2) and the definition of A1,qρ,θ2A^{\rho,\theta_{2}}_{1,q}, respectively. Collecting the above estimates (6.9) and (6), we finish the proof of Theorem 6.2. ∎

For any cube 𝒬\mathcal{Q} (or ball \mathcal{B}) in d\mathbb{R}^{d} and for 1<p<1<p<\infty, by using Hölder’s inequality, we have

|𝒬|=𝒬ω(x)ω(x)1𝑑x(𝒬ω(x)p𝑑x)1/p(𝒬ω(x)p𝑑x)1/p.|\mathcal{Q}|=\int_{\mathcal{Q}}\omega(x)\cdot\omega(x)^{-1}\,dx\leq\bigg{(}\int_{\mathcal{Q}}\omega(x)^{p}\,dx\bigg{)}^{1/p}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{-p^{\prime}}\,dx\bigg{)}^{1/{p^{\prime}}}.

By the definition of Ap,qρ,θ2A^{\rho,\theta_{2}}_{p,q} weights, we get

(𝒬ω(x)q𝑑x)1/q(𝒬ω(x)p𝑑x)1/p[ω]Ap,qρ,θ2|𝒬|1/q+1/p(1+rρ(x0))θ2.\begin{split}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{q}\,dx\bigg{)}^{1/q}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{-{p^{\prime}}}\,dx\bigg{)}^{1/{p^{\prime}}}&\leq[\omega]_{A^{\rho,\theta_{2}}_{p,q}}|\mathcal{Q}|^{1/q+1/{p^{\prime}}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{2}}.\end{split}

Consequently,

(𝒬ω(x)q𝑑x)1/q[ω]Ap,qρ,θ2|𝒬|1/q+1/p|𝒬|(1+rρ(x0))θ2(𝒬ω(x)p𝑑x)1/p=[ω]Ap,qρ,θ2(1+rρ(x0))θ2|𝒬|1/q1/p(𝒬ω(x)p𝑑x)1/p.\begin{split}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{q}\,dx\bigg{)}^{1/q}&\leq[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\frac{|\mathcal{Q}|^{1/q+1/{p^{\prime}}}}{|\mathcal{Q}|}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{2}}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{p}\,dx\bigg{)}^{1/p}\\ &=[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{2}}|\mathcal{Q}|^{1/q-1/p}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{p}\,dx\bigg{)}^{1/p}.\end{split} (6.12)

We remark that the above estimate also holds for the case p=1p=1 and ωA1,qρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{1,q}(\mathbb{R}^{d}). Indeed, it is immediate that by definition

(𝒬ω(x)q𝑑x)1/q[ω]A1,qρ,θ2(1+rρ(x0))θ2|𝒬|1/qess infx𝒬ω(x)[ω]A1,qρ,θ2(1+rρ(x0))θ2|𝒬|1/q1(𝒬ω(x)𝑑x).\begin{split}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{q}\,dx\bigg{)}^{1/q}&\leq[\omega]_{A^{\rho,\theta_{2}}_{1,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{2}}|\mathcal{Q}|^{1/q}\underset{x\in\mathcal{Q}}{\mbox{ess\,inf}}\,\omega(x)\\ &\leq[\omega]_{A^{\rho,\theta_{2}}_{1,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{2}}|\mathcal{Q}|^{1/q-1}\bigg{(}\int_{\mathcal{Q}}\omega(x)\,dx\bigg{)}.\end{split}

On the other hand, for 1p<q1\leq p<q, it follows directly from Hölder’s inequality that

(1|𝒬|𝒬ω(x)p𝑑x)1/p(1|𝒬|𝒬ω(x)q𝑑x)1/q,\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)^{p}\,dx\bigg{)}^{1/p}\leq\bigg{(}\frac{1}{|\mathcal{Q}|}\int_{\mathcal{Q}}\omega(x)^{q}\,dx\bigg{)}^{1/q},

which implies that

(𝒬ω(x)q𝑑x)1/q|𝒬|1/q1/p(𝒬ω(x)p𝑑x)1/p.\bigg{(}\int_{\mathcal{Q}}\omega(x)^{q}\,dx\bigg{)}^{1/q}\geq|\mathcal{Q}|^{1/q-1/p}\bigg{(}\int_{\mathcal{Q}}\omega(x)^{p}\,dx\bigg{)}^{1/p}. (6.13)

As a consequence of (6.12) and (6.13), we then obtain the following conclusions.

Corollary 6.3.

Let 1p<q<1\leq p<q<\infty and ωAp,qρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p,q}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty. Then the following statements are true.

  1. (1)

    If fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<θ1<0<\theta_{1}<\infty, then for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    |𝒬|1/p1/q[ωp(𝒬)]1/p(𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))(N0+1)θ1+θ2+η/qfBLOρ,θ1.\begin{split}&\frac{|\mathcal{Q}|^{1/p-1/q}}{[\omega^{p}(\mathcal{Q})]^{1/p}}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\\ &\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}+\theta_{2}+\eta/q}\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}.\end{split}
  2. (2)

    Conversely, if there exists a constant C>0C>0 such that for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    |𝒬|1/p1/q[ωp(𝒬)]1/p(𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))θ1θ2\frac{|\mathcal{Q}|^{1/p-1/q}}{[\omega^{p}(\mathcal{Q})]^{1/p}}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}

    holds for some θ1>0\theta_{1}>0, then fBLOρ,θ1(d)f\in\mathrm{BLO}_{\rho,\theta_{1}}(\mathbb{R}^{d}), and

    fBLOρ,θ1C[ω]Ap,qρ,θ2.\|f\|_{\mathrm{BLO}_{\rho,\theta_{1}}}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}.
Theorem 6.4.

Let 1p<1\leq p<\infty and ωApρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty. Then the following statements are true.

  1. (1)

    If f𝒞ρ,θ1β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<β<10<\beta<1 and 0<θ1<0<\theta_{1}<\infty, then for any ball =B(x0,r)\mathcal{B}=B(x_{0},r) in d\mathbb{R}^{d},

    1||β/d(1ω()[f(x)essinfyf(y)]pω(x)𝑑x)1/pC[ω]Apρ,θ2(1+rρ(x0))(N0+1)θ1f𝒞ρ,θ1β,.\begin{split}&\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\\ &\leq C[\omega]_{A^{\rho,\theta_{2}}_{p}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}.\end{split}
  2. (2)

    Conversely, if there exists a constant C>0C>0 such that for any ball =B(x0,r)d\mathcal{B}=B(x_{0},r)\subset\mathbb{R}^{d} and 0<β<10<\beta<1,

    1||β/d(1ω()[f(x)essinfyf(y)]pω(x)𝑑x)1/pC[ω]Apρ,θ2(1+rρ(x0))θ1θ2\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}

    holds for some θ1>0\theta_{1}>0, then f𝒞ρ,θ1β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}(\mathbb{R}^{d}), and

    f𝒞ρ,θ1β,C[ω]Apρ,θ2.\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p}}.
Theorem 6.5.

Let 1p<q<1\leq p<q<\infty and ωAp,qρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p,q}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty. Then the following statements are true.

  1. (1)

    If f𝒞ρ,θ1β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<β<10<\beta<1 and 0<θ1<0<\theta_{1}<\infty, then for any ball =B(x0,r)\mathcal{B}=B(x_{0},r) in d\mathbb{R}^{d},

    1||β/d(1ωq()[f(x)essinfyf(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))(N0+1)θ1f𝒞ρ,θ1β,.\begin{split}&\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega^{q}(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\\ &\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}.\end{split}
  2. (2)

    Conversely, if there exists a constant C>0C>0 such that for any ball =B(x0,r)d\mathcal{B}=B(x_{0},r)\subset\mathbb{R}^{d} and 0<β<10<\beta<1,

    1||β/d(1ωq()[f(x)essinfyf(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))θ1θ2\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega^{q}(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}

    holds for some θ1>0\theta_{1}>0, then f𝒞ρ,θ1β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}(\mathbb{R}^{d}), and

    f𝒞ρ,θ1β,C[ω]Ap,qρ,θ2.\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}.
Proof of Theorem 6.4.

Following along the same lines as that of Theorem 6.1, we can also prove the second part (2). We only need to show the first part (1). For an arbitrary fixed ball =B(x0,r)\mathcal{B}=B(x_{0},r) with x0dx_{0}\in\mathbb{R}^{d} and r(0,)r\in(0,\infty), first observe that

[f(x)essinfyf(y)]esssupy|f(x)f(y)|\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\leq\underset{y\in\mathcal{B}}{\mathrm{ess\,sup}}\,\big{|}f(x)-f(y)\big{|}

holds for any xx\in\mathcal{B}. We also mention that 𝒞ρ,θ1β,(d)\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}(\mathbb{R}^{d}) is a subspace of 𝒞ρ,θ1β(d)\mathcal{C}^{\beta}_{\rho,\theta_{1}}(\mathbb{R}^{d}), and

f𝒞ρ,θ1β2f𝒞ρ,θ1β,.\|f\|_{\mathcal{C}^{\beta}_{\rho,\theta_{1}}}\leq 2\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}. (6.14)

Since

1||1+β/d|f(x)f|𝑑x=1||1+β/d|f(x)essinfyf(y)+essinfyf(y)f|𝑑x1||1+β/d[f(x)essinfyf(y)]𝑑x+1||β/d|essinfyf(y)f|2||1+β/d[f(x)essinfyf(y)]𝑑x,\begin{split}&\frac{1}{|\mathcal{B}|^{1+\beta/d}}\int_{\mathcal{B}}\big{|}f(x)-f_{\mathcal{B}}\big{|}\,dx\\ &=\frac{1}{|\mathcal{B}|^{1+\beta/d}}\int_{\mathcal{B}}\Big{|}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)+\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)-f_{\mathcal{B}}\Big{|}\,dx\\ &\leq\frac{1}{|\mathcal{B}|^{1+\beta/d}}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx+\frac{1}{|\mathcal{B}|^{\beta/d}}\Big{|}\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)-f_{\mathcal{B}}\Big{|}\\ &\leq\frac{2}{|\mathcal{B}|^{1+\beta/d}}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\,dx,\end{split}

multiplying both sides of the above inequality by (1+r/ρ(x0))θ(1+r/{\rho(x_{0})})^{-\theta} and then taking the supremum over all balls BdB\subseteq\mathbb{R}^{d}, we get (6.14). In view of Lemma 4.8 and (6.14), one can see that for any x,yx,y\in\mathcal{B},

|f(x)f(y)|Cf𝒞ρ,θ1β|xy|β(1+|xy|ρ(x)+|xy|ρ(y))θ1C||β/df𝒞ρ,θ1β,(1+2rρ(x)+2rρ(y))θ1C||β/df𝒞ρ,θ1β,(1+rρ(x)+rρ(y))θ1.\begin{split}|f(x)-f(y)|&\leq C\|f\|_{\mathcal{C}^{\beta}_{\rho,\theta_{1}}}|x-y|^{\beta}\bigg{(}1+\frac{|x-y|}{\rho(x)}+\frac{|x-y|}{\rho(y)}\bigg{)}^{\theta_{1}}\\ &\leq C|\mathcal{B}|^{\beta/d}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}\bigg{(}1+\frac{2r}{\rho(x)}+\frac{2r}{\rho(y)}\bigg{)}^{\theta_{1}}\\ &\leq C|\mathcal{B}|^{\beta/d}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}\bigg{(}1+\frac{r}{\rho(x)}+\frac{r}{\rho(y)}\bigg{)}^{\theta_{1}}.\end{split}

This, together with the estimate (3.1), gives us that

|f(x)f(y)|C||β/df𝒞ρ,θ1β,(1+rρ(x0))(N0+1)θ1.|f(x)-f(y)|\leq C|\mathcal{B}|^{\beta/d}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}}.

Hence, for any xx\in\mathcal{B},

[f(x)essinfyf(y)]C||β/df𝒞ρ,θ1β,(1+rρ(x0))(N0+1)θ1.\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}\leq C|\mathcal{B}|^{\beta/d}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}}.

Therefore,

1||β/d(1ω()[f(x)essinfyf(y)]pω(x)𝑑x)1/pC(1+rρ(x0))(N0+1)θ1f𝒞ρ,θ1β,.\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}.

This completes the proof of Theorem 6.4. ∎

Proof of Theorem 6.5.

Following along the same lines as that of Theorem 6.2, we can also prove the second part (2). So we only need to show the first part (1). For an arbitrary fixed ball =B(x0,r)\mathcal{B}=B(x_{0},r), arguing as in the proof of Theorem 6.4, we can also obtain analogous estimate below.

1||β/d(1ωq()[f(x)essinfyf(y)]qω(x)q𝑑x)1/qC(1+rρ(x0))(N0+1)θ1f𝒞ρ,θ1β,.\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega^{q}(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}.

This concludes the proof of Theorem 6.5. ∎

In view of the estimates (6.12) and (6.13), we immediately obtain the following results.

Corollary 6.6.

Let 1p<q<1\leq p<q<\infty and ωAp,qρ,θ2(d)\omega\in A^{\rho,\theta_{2}}_{p,q}(\mathbb{R}^{d}) with 0<θ2<0<\theta_{2}<\infty. Then the following statements are true.

  1. (1)

    If f𝒞ρ,θ1β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}(\mathbb{R}^{d}) with 0<β<10<\beta<1 and 0<θ1<0<\theta_{1}<\infty, then for any ball =B(x0,r)d\mathcal{B}=B(x_{0},r)\subset\mathbb{R}^{d},

    ||1/p1/qβ/d[ωp()]1/p([f(x)essinfyf(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))(N0+1)θ1+θ2f𝒞ρ,θ1β,.\begin{split}&\frac{|\mathcal{B}|^{1/p-1/q-\beta/d}}{[\omega^{p}(\mathcal{B})]^{1/p}}\bigg{(}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\\ &\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{(N_{0}+1)\theta_{1}+\theta_{2}}\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}.\end{split}
  2. (2)

    Conversely, if there exists a constant C>0C>0 such that for any ball =B(x0,r)d\mathcal{B}=B(x_{0},r)\subset\mathbb{R}^{d} and 0<β<10<\beta<1,

    ||1/p1/qβ/d[ωp()]1/p([f(x)essinfyf(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,θ2(1+rρ(x0))θ1θ2\frac{|\mathcal{B}|^{1/p-1/q-\beta/d}}{[\omega^{p}(\mathcal{B})]^{1/p}}\bigg{(}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\theta_{1}-\theta_{2}}

    holds for some θ1>0\theta_{1}>0, then f𝒞ρ,θ1β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}(\mathbb{R}^{d}), and

    f𝒞ρ,θ1β,C[ω]Ap,qρ,θ2.\|f\|_{\mathcal{C}^{\beta,\ast}_{\rho,\theta_{1}}}\leq C[\omega]_{A^{\rho,\theta_{2}}_{p,q}}.

Summarizing the estimates derived above, we finally obtain the following conclusions by the definitions of .

Corollary 6.7.

Let 1p<1\leq p<\infty and ωApρ,(d)\omega\in A^{\rho,\infty}_{p}(\mathbb{R}^{d}). Then the following statements are true.

  1. (1)

    fBLOρ,(d)f\in\mathrm{BLO}_{\rho,\infty}(\mathbb{R}^{d}) if and only if there exists a constant C>0C>0 such that, for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    (1ω(𝒬)𝒬[f(x)essinfy𝒬f(y)]pω(x)𝑑x)1/pC[ω]Apρ,(1+rρ(x0))𝒩\bigg{(}\frac{1}{\omega(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\leq C[\omega]_{A^{\rho,\infty}_{p}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\mathcal{N}}

    holds true for some 𝒩>0\mathcal{N}>0.

  2. (2)

    f𝒞ρ,β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\infty}(\mathbb{R}^{d}) with 0<β<10<\beta<1 if and only if there exists a constant C>0C>0 such that, for any ball =B(x0,r)d\mathcal{B}=B(x_{0},r)\subset\mathbb{R}^{d},

    1||β/d(1ω()[f(x)essinfyf(y)]pω(x)𝑑x)1/pC[ω]Apρ,(1+rρ(x0))𝒩\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{p}\omega(x)\,dx\bigg{)}^{1/p}\leq C[\omega]_{A^{\rho,\infty}_{p}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\mathcal{N^{\prime}}}

    holds true for some 𝒩>0\mathcal{N^{\prime}}>0.

Corollary 6.8.

Let 1p<q<1\leq p<q<\infty and ωAp,qρ,(d)\omega\in A^{\rho,\infty}_{p,q}(\mathbb{R}^{d}). Then the following statements are true.

  1. (1)

    fBLOρ,(d)f\in\mathrm{BLO}_{\rho,\infty}(\mathbb{R}^{d}) if and only if there exists a constant C>0C>0 such that, for any cube 𝒬=Q(x0,r)d\mathcal{Q}=Q(x_{0},r)\subset\mathbb{R}^{d},

    (1ωq(𝒬)𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,(1+rρ(x0))𝒩\bigg{(}\frac{1}{\omega^{q}(\mathcal{Q})}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\infty}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\mathcal{N}}

    or

    |𝒬|1/p1/q[ωp(𝒬)]1/p(𝒬[f(x)essinfy𝒬f(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,(1+rρ(x0))𝒩\frac{|\mathcal{Q}|^{1/p-1/q}}{[\omega^{p}(\mathcal{Q})]^{1/p}}\bigg{(}\int_{\mathcal{Q}}\Big{[}f(x)-\underset{y\in\mathcal{Q}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\infty}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\mathcal{N}}

    holds true for some 𝒩>0\mathcal{N}>0.

  2. (2)

    f𝒞ρ,β,(d)f\in\mathcal{C}^{\beta,\ast}_{\rho,\infty}(\mathbb{R}^{d}) with 0<β<10<\beta<1 if and only if there exists a constant C>0C>0 such that, for any ball =B(x0,r)d\mathcal{B}=B(x_{0},r)\subset\mathbb{R}^{d},

    1||β/d(1ωq()[f(x)essinfyf(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,(1+rρ(x0))𝒩\frac{1}{|\mathcal{B}|^{\beta/d}}\bigg{(}\frac{1}{\omega^{q}(\mathcal{B})}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\infty}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\mathcal{N^{\prime}}}

    or

    ||1/p1/qβ/d[ωp()]1/p([f(x)essinfyf(y)]qω(x)q𝑑x)1/qC[ω]Ap,qρ,(1+rρ(x0))𝒩\frac{|\mathcal{B}|^{1/p-1/q-\beta/d}}{[\omega^{p}(\mathcal{B})]^{1/p}}\bigg{(}\int_{\mathcal{B}}\Big{[}f(x)-\underset{y\in\mathcal{B}}{\mathrm{ess\,inf}}\,f(y)\Big{]}^{q}\omega(x)^{q}\,dx\bigg{)}^{1/q}\leq C[\omega]_{A^{\rho,\infty}_{p,q}}\bigg{(}1+\frac{r}{\rho(x_{0})}\bigg{)}^{\mathcal{N^{\prime}}}

    holds true for some 𝒩>0\mathcal{N^{\prime}}>0.

References

  • [1] B. Bongioanni, E. Harboure, O. Salinas, Classes of weights related to Schrödinger operators, J. Math. Anal. Appl., 373 (2011), 563–579.
  • [2] B. Bongioanni, E. Harboure, O. Salinas, Weighted inequalities for commutators of Schrödinger-Riesz transforms, J. Math. Anal. Appl., 392 (2012), 6–22.
  • [3] B. Bongioanni, E. Harboure, O. Salinas, Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl., 17 (2011), 115–134.
  • [4] B. Bongioanni, A. Cabral and E. Harboure, Extrapolation for classes of weights related to a family of operators and applications, Potential Anal., 38 (2013), 1207–1232.
  • [5] B. Bongioanni, A. Cabral and E. Harboure, Lerner’s inequality associated to a critical radius function and applications, J. Math. Anal. Appl., 407 (2013), 35–55.
  • [6] B. Bongioanni, A. Cabral and E. Harboure, Schrodinger type singular integrals: weighted estimates for p=1p=1, Math. Nachr., 289 (2016), 1341–1369.
  • [7] B. Bongioanni, E. Harboure and P. Quijano, Two weighted inequalities for operators associated to a critical radius function, Illinois J. Math., 64 (2020), 227–259.
  • [8] B. Bongioanni, E. Harboure and P. Quijano, Weighted inequalities of Fefferman–Stein type for Riesz–Schrödinger transforms, Math. Inequal. Appl., 23 (2020), 775–803.
  • [9] B. Bongioanni, E. Harboure and P. Quijano, Weighted inequalities for Schrödinger type singular integrals, J. Fourier Anal. Appl., 25 (2019), 595–632.
  • [10] B. Bongioanni, E. Harboure and P. Quijano, Behaviour of Schrödinger Riesz transforms over smoothness spaces, J. Math. Anal. Appl., 517 (2023), Paper No. 126613, 31 pp.
  • [11] T. A. Bui, Weighted estimates for commutators of some singular integrals related to Schrödinger operators, Bull. Sci. Math., 138 (2014), 270–292.
  • [12] S.Campanato,Proprietàdi Hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa., 17 (1963), 173–188.
  • [13] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 51 (1974), 241–250.
  • [14] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611–635.
  • [15] R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79 (1980), 249–254.
  • [16] D. G. Deng, X. T. Duong and L. X. Yan, A characterization of the Morrey–Campanato spaces, Math. Z., 250 (2005), 641–655.
  • [17] X. T. Duong, J. Xiao and L. X. Yan, Old and new Morrey spaces with heat kernel bounds, J. Fourier Anal. Appl., 13 (2007), 87–111.
  • [18] J. Duoandikoetxea, Fourier Analysis, American Mathematical Society, Providence, Rhode Island, 2000.
  • [19] L. Grafakos, Classical Fourier Analysis, Third Edition, Springer-Verlag, 2014.
  • [20] L. Grafakos, Modern Fourier Analysis, Third Edition, Springer-Verlag, 2014.
  • [21] K. P. Ho, Characterizations of BMO by ApA_{p} weights and pp-convexity, Hiroshima Math. J., 41 (2011), 153–165.
  • [22] G. E. Hu, Y. Meng and D. C. Yang, Estimates for Marcinkiewicz integrals in BMO and Campanato spaces, Glasg. Math. J., 49 (2007), 167–187.
  • [23] Y. Meng and D. C. Yang, Estimates for Littlewood–Paley operators in BMO(n)\mathrm{BMO}(\mathbb{R}^{n}), J. Math. Anal. Appl., 346 (2008), 30–38.
  • [24] S. Janson, M. H. Taibleson and G. Weiss, Elementary characterizations of the Morrey–Campanato spaces, Lecture Notes in Math., 992 (1983), 101–114.
  • [25] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math, 14 (1961), 415–426.
  • [26] Y. Komori and T. Mizuhara, Notes on commutators and Morrey spaces, Hokkaido Math. J., 32 (2003), 345–353.
  • [27] J. Li, R. Rahm and B. D. Wick, ApA_{p} weights and quantitative estimates in the Schrödinger setting, Math. Z., 293 (2019), 259–283.
  • [28] Y. Liu and J. L. Sheng, Some estimates for commutators of Riesz transforms associated with Schrödinger operators, J. Math. Anal. Appl., 419 (2014), 298–328.
  • [29] S. Z. Lu, Y. Ding and D. Y. Yan, Singular Integrals and Related Topics, World Scientific, Singapore, 2007.
  • [30] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226.
  • [31] B. Muckenhoupt and R. L. Wheeden, Weighted bounded mean oscillation and the Hilbert transform, Studia Math., 54 (1976), 221–237.
  • [32] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261–274.
  • [33] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math., 176 (2006) 1–19.
  • [34] W. Ou, The natural maximal operator on BMO, Proc. Amer. Math. Soc., 129 (2001), 2919–2921.
  • [35] M. Paluszyński, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1–17.
  • [36] Z. W. Shen, LpL^{p} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513–546.
  • [37] S. G. Shi and S. Z. Lu, Some characterizations of Campanato spaces via commutators on Morrey spaces, Pacific J. Math., 264 (2013), 221–234.
  • [38] S. G. Shi and S. Z. Lu, A characterization of Campanato space via commutator of fractional integral, J. Math. Anal. Appl., 419 (2014), 123–137.
  • [39] S. Shirai, Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces, Hokkaido Math. J., 35 (2006), 683–696.
  • [40] L. Tang, New function spaces of Morrey–Campanato type on spaces of homogeneous type, Illinois J. Math., 51 (2007), 625–644.
  • [41] L. Tang, Some characterizations for weighted Morrey–Campanato spaces, Math. Nachr., 284 (2011), 1185–1198.
  • [42] L. Tang, Extrapolation from Aρ,A^{\rho,\infty}_{\infty}, vector-valued inequalities and applications in the Schrödinger settings, Ark. Mat., 52 (2014), 175–202.
  • [43] L. Tang, Weighted norm inequalities for Schrödinger type operators, Forum Math., 27 (2015), 2491–2532.
  • [44] D. H. Wang, J. Zhou and Z. D. Teng, Some characterizations of BLO space, Math. Nachr., 291 (2018), 1908–1918.
  • [45] H. Wang, Weighted Morrey spaces related to certain nonnegative potentials and Riesz transforms, J. Funct. Spaces, 2019, Art. ID 7057512, 18 pp.
  • [46] H. Wang, Weighted Morrey spaces related to Schrödinger operators with nonnegative potentials and fractional integrals, J. Funct. Spaces, 2020, Art. ID 6907170, 17 pp.
  • [47] C. Chen and H. Wang, Some characterizations of BMO and Lipschitz spaces in the Schrödinger setting, Applicationes Mathematicae., 2024, to appear.
  • [48] D.C.Yang and S.B.Yang,New characterizations of weighted Morrey–Campanato spaces, Taiwanese J. Math., 15 (2011), 141–163.
  • [49] J. Q. Zhang and D. C. Yang, Quantitative boundedness of Littlewood–Paley functions on weighted Lebesgue spaces in the Schrödinger setting, J. Math. Anal. Appl., 484 (2020), 123731, 26 pp.