This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some spectral properties and convergence of the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number

Pembe Ipek Al ipekpembe@gmail.com Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080 Turkey Zameddin I. Ismailov zameddin.ismailov@gmail.com Fuad Kittaneh fkitt@ju.edu.jo Department of Mathematics, The University of Jordan, Amman, Jordan Satyajit Sahoo satyajitsahoo2010@gmail.com, ssahoomath@gmail.com School of Mathematical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
Abstract

In this study, some estimates are given for the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number via the AA-numerical radius and AA-Crawford number for the AA-bounded linear operators in any complex semi-Hilbert space, respectively. Then, some evolutions are studied for the tensor product of two operators. Lastly, some convergence properties of the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number, via the AA-uniform convergence of operator sequences, are investigated. We also considered several examples to illustrate our results. Finally, a few applications of some operator functions classes are also given.

keywords:
Operaor semi-norm, (A,q)(A,q)-numerical radius, (A,q)(A,q)-Crawford number.
AMS 2010 Subject Classification: 47A05, 47A12, 47A30, 47A63.

1. Introduction

Throughout this article, HH denotes a complex Hilbert space endowed with the inner product ,\langle\cdot,\cdot\rangle and associated norm .\|\cdot\|. Let L(H)L(H) stand for the CC^{*}-algebra of all bounded linear operators acting on H.H. The identity operator on HH will be simply denoted by I.I. From now on, by an operator we mean a bounded linear operator acting on H.H. Recall that an operator TT is called positive, written T0,T\geq 0, if Tx,x0\langle Tx,x\rangle\geq 0 for all xH.x\in H. The square root of a positive operator TT is denoted by T1/2.T^{1/2}. We denote by |T|=(TT)1/2|T|=(T^{*}T)^{1/2} the absolute value of an operator T.T. Here, TT^{*} denote the adjoint of T.T. The Crawford number of an operator TT is given by

c(T)=inf{|Tx,x|:xH,x=1}.c(T)=\inf\{|\langle Tx,x\rangle|:x\in H,\ \|x\|=1\}.

The usual operator norm and the numerical radius of an operator TT are, respectively, defined by

T=sup{Tx:xH,x=1}\|T\|=\sup\{\|Tx\|:\ x\in H,\ \|x\|=1\}

and

ω(T)=sup{|Tx,x|:xH,x=1}.\omega(T)=\sup\{|\langle Tx,x\rangle|:\ x\in H,\ \|x\|=1\}.

An operator TT is called normal if TT=TT.T^{*}T=TT^{*}. It is well known that the equality T=ω(T)\|T\|=\omega(T) holds for every normal operator T.T. However, in general, the above equality fails to be true for non-normal operators. Notice that the following inequalities hold for every TL(H):T\in L(H):

12Tω(T)T.\displaystyle\frac{1}{2}\|T\|\leq\omega(T)\leq\|T\|. (1)

The inequalities (1) play an important role in the approximation of ω()\omega(\cdot), which have been the interest of numerous authors. The reader may consult, for example, [6, 7, 8, 13, 14, 22] and the references therein or the books [3, 11, 12].
For the rest of this paper, A0A\neq 0 will denote a bounded linear positive operator on H.H. We are going to consider an additional semi-inner product ,A\langle\cdot,\cdot\rangle_{A} on HH defined by x,yA=Ax,y\langle x,y\rangle_{A}=\langle Ax,y\rangle for all x,yH,x,y\in H, which induces a semi-norm xA\|x\|_{A} on H.H. This makes HH into a semi-Hilbert space. After that, we replace the operator norm with the following operator semi-norm

TA=sup{TxA:xH,xA=1}\|T\|_{A}=\sup\{\|Tx\|_{A}:\ x\in H,\ \|x\|_{A}=1\}

for an AA-bounded operator T,T, i. e. an operator TT which satisfies TxAcxA\|Tx\|_{A}\leq c\|x\|_{A} for all xHx\in H and some constant c>0.c>0. Let LA(H)L^{A}(H) stand for all AA-bounded linear operators acting on H.H.
Recently, several generalizations for the concept of the numerical radius have been introduced (see [28] and references therein). One of these generalizations is the so-called AA-numerical radius of an operator TLA(H),T\in L^{A}(H), which was firstly introduced by Saddi in [26] as

ωA(T)=sup{|Tx,xA|:xH,xA=1}.\omega_{A}(T)=\sup\{|\langle Tx,x\rangle_{A}|:x\in H,\|x\|_{A}=1\}.

The related AA-Crawford number is defined as

cA(T)=inf{|Tx,xA|:xH,xA=1}.c_{A}(T)=\inf\{|\langle Tx,x\rangle_{A}|:x\in H,\|x\|_{A}=1\}.

Note that, it may happen that ωA(T)=+\omega_{A}(T)=+\infty for some TLA(H)T\in L^{A}(H) (see [2]). Several results on the AA-numerical radius have been established by many mathematicians. See, e.g. [4, 5, 9, 10, 15, 19, 21, 24, 25, 27, 30] and references therein.
For q,|q|1,q\in\mathbb{C},\ |q|\leq 1, the qq-numerical range is defined as

Wq(T)={Tx,y:x=y=1,x,y=q}W_{q}(T)=\{\langle Tx,y\rangle:\|x\|=\|y\|=1,\ \langle x,y\rangle=q\}

(see [16, 18, 23, 29]).
Recall that for TL(H),q,|q|1,T\in L(H),\ q\in\mathbb{C},\ |q|\leq 1, the qq-numerical radius and qq-Crawford number are defined as

ωq(T)=sup{|λ|:λWq(T)},cq(T)=inf{|λ|:λWq(T)},\displaystyle\omega_{q}(T)=\sup\{|\lambda|:\lambda\in W_{q}(T)\},\ c_{q}(T)=\inf\{|\lambda|:\lambda\in W_{q}(T)\},

respectively.
Motivated by this, we introduce a new definition.

Definition 1.

For the operator TLA(H),q, 0<|q|1,T\in L^{A}(H),\ q\in\mathbb{C},\ 0<|q|\leq 1, the following set

WA,q(T):={Tx,yA:xA=yA=1,x,yA=q}W_{A,q}(T):=\left\{\langle Tx,y\rangle_{A}:\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q\right\}

is called the (A,q)(A,q)-numerical range of the operator TT. Also, the numbers

ωA,q(T)=sup{|λ|:λWA,q(T)}\omega_{A,q}(T)=\sup\{|\lambda|:\lambda\in W_{A,q}(T)\}

and

cA,q(T)=inf{|λ|:λWA,q(T)},c_{A,q}(T)=\inf\{|\lambda|:\lambda\in W_{A,q}(T)\},

are called the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number of the operator TT, respectively.

In this case it is clear that

WA,1(T)=WA(T),WI,1(T)=W(T),\displaystyle W_{A,1}(T)=W_{A}(T),\ W_{I,1}(T)=W(T),
ωA,1(T)=ωA(T),cA,1(T)=cA(T),\displaystyle\omega_{A,1}(T)=\omega_{A}(T),\ c_{A,1}(T)=c_{A}(T),
ωI,1(T)=ω(T),cI,1(T)=c(T),\displaystyle\omega_{I,1}(T)=\omega(T),\ c_{I,1}(T)=c(T),
WI,q(T)=Wq(T),ωI,q(T)=ωq(T),cI,q(T)=cq(T).\displaystyle W_{I,q}(T)=W_{q}(T),\ \omega_{I,q}(T)=\omega_{q}(T),\ c_{I,q}(T)=c_{q}(T).

Throughout this paper, the (A,q)(A,q)-numerical gap is the difference between the AA-operator semi-norm and (A,q)(A,q)-numerical radius, which is defined as

gωA,q(T):=TAωA,q(T)0(see, Theorem 1 (1))g_{\omega_{A,q}}(T):=\|T\|_{A}-\omega_{A,q}(T)\geq 0\ \text{(see, Theorem \ref{thm1} (1))}

for TLA(H),q, 0<|q|1.T\in L^{A}(H),\ q\in\mathbb{C},\ 0<|q|\leq 1.
Also, the (A,q)(A,q)-Crawford gap is the difference between the AA-operator semi-norm and (A,q)(A,q)-Crawford number, which is defined as

gcA,q(T):=TAcA,q(T)g_{c_{A,q}}(T):=\|T\|_{A}-c_{A,q}(T)

for TLA(H),q, 0<|q|1.T\in L^{A}(H),\ q\in\mathbb{C},\ 0<|q|\leq 1.
In this study, the contents are as follows. In Section 2, some estimates are given for the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number via the AA-numerical radius and AA-Crawford number, respectively, for the AA-bounded linear operators in any complex semi-Hilbert space. Then, some evolutions are studied for the tensor product of two operators. We also consider several examples on Hilbert space and establish ωq()\omega_{q}(\cdot) only for a real number q[0,1]q\in[0,1] to illustrate our results. In Section 3, some convergence properties of the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number via AA-uniformly convergence of operator sequences are investigated. In Section 4, a few applications of some operator functions classes are also given.

2. Some properties of the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number

Theorem 1.

For the operator TLA(H)T\in L^{A}(H) and q,λ,μ, 0<|q|1,q,\lambda,\mu\in\mathbb{C},\ 0<|q|\leq 1, the following are true
(1) ωA,q(T)TA.\omega_{A,q}(T)\leq\|T\|_{A}.
(2) If α,|α|=1,\alpha\in\mathbb{C},\ |\alpha|=1, then ωA,q(αT)=ωA,αq(T).\omega_{A,q}(\alpha T)=\omega_{A,\alpha q}(T).
(3) If α,|α|=1,\alpha\in\mathbb{C},\ |\alpha|=1, then cA,q(αT)=cA,αq(T).c_{A,q}(\alpha T)=c_{A,\alpha q}(T).
(4) If γ=|λ|2+|μ|2+2Re(λμ¯q)0,\gamma=\sqrt{|\lambda|^{2}+|\mu|^{2}+2Re(\lambda\overline{\mu}q)}\neq 0, then γωA,λ+μq¯γ(T)|λ|ωA(T)+|μ|ωA,q(T).\gamma\omega_{A,\frac{\lambda+\mu\overline{q}}{\gamma}}(T)\leq|\lambda|\omega_{A}(T)+|\mu|\omega_{A,q}(T^{*}).
(5) If γ=|λ|2+|μ|2+2Re(λμ¯q)0,\gamma=\sqrt{|\lambda|^{2}+|\mu|^{2}+2Re(\lambda\overline{\mu}q)}\neq 0, then γcA,λ+μq¯γ(T)|λ|ωA(T)+|μ|cA,q(T).\gamma c_{A,\frac{\lambda+\mu\overline{q}}{\gamma}}(T)\leq|\lambda|\omega_{A}(T)+|\mu|c_{A,q}(T^{*}).
(6) For x,yH,xA=yA=1,x,yA=q, 0<|q|1x,y\in H,\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ 0<|q|\leq 1, it is true

x±yA=21±Req.\|x\pm y\|_{A}=\sqrt{2}\sqrt{1\pm Req}.

(7) ωA(T)ωA,q(T)+2(1Req)ωA,1q2(1Req)(T),q1.\omega_{A}(T)\leq\omega_{A,q}(T)+\sqrt{2(1-Req)}\omega_{A,\frac{1-q}{\sqrt{2(1-Req)}}}(T),\ q\neq 1.
(8) cA(T)cA,q(T)+2(1Req)ωA,1q2(1Req)(T),q1.c_{A}(T)\leq c_{A,q}(T)+\sqrt{2(1-Req)}\omega_{A,\frac{1-q}{\sqrt{2(1-Req)}}}(T),\ q\neq 1.

Proof.

(1) For x,yH,x,y\in H, xA=yA=1,x,yA=q,\|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q, we have

|Tx,yA|\displaystyle|\langle Tx,y\rangle_{A}| =\displaystyle= |ATx,y|\displaystyle|\langle ATx,y\rangle|
\displaystyle\leq |ATx,Tx1/2||Ay,y1/2|\displaystyle|\langle ATx,Tx\rangle^{1/2}||\langle Ay,y\rangle^{1/2}|
=\displaystyle= |Tx,TxA1/2||y,yA1/2|\displaystyle|\langle Tx,Tx\rangle_{A}^{1/2}||\langle y,y\rangle_{A}^{1/2}|
=\displaystyle= TxAyA\displaystyle\|Tx\|_{A}\|y\|_{A}
=\displaystyle= TxA.\displaystyle\|Tx\|_{A}.

Hence, it is obtained that

ωA,q(T)TA.\omega_{A,q}(T)\leq\|T\|_{A}.

(2)-(3) These equalities are results of the following relations

αxA=|α|xA=1,\|\alpha x\|_{A}=|\alpha|\|x\|_{A}=1,
αx,yA=αx,yA=αq, 0<|αq|=|q|1.\langle\alpha x,y\rangle_{A}=\alpha\langle x,y\rangle_{A}=\alpha q,\ 0<|\alpha q|=|q|\leq 1.

(4)-(5) For the operator TLA(H)T\in L^{A}(H) and λ,μ,\lambda,\mu\in\mathbb{C}, the following relation

|T(λx+μy),xA|\displaystyle|\langle T(\lambda x+\mu y),x\rangle_{A}| \displaystyle\leq |λ||Tx,xA|+|μ||Ty,xA|\displaystyle|\lambda||\langle Tx,x\rangle_{A}|+|\mu||\langle Ty,x\rangle_{A}|
=\displaystyle= |λ||Tx,xA|+|μ||Tx,yA|\displaystyle|\lambda||\langle Tx,x\rangle_{A}|+|\mu||\langle T^{*}x,y\rangle_{A}|

is true. Since for xA=yA=1,x,yA=q, 0<|q|1,\|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ 0<|q|\leq 1,

λx+μyA2\displaystyle\|\lambda x+\mu y\|_{A}^{2} =\displaystyle= A(λx+μy),λx+μy\displaystyle\langle A(\lambda x+\mu y),\lambda x+\mu y\rangle
=\displaystyle= A(λx),λx+A(λx),μy+A(μy),λx+A(μy),μy\displaystyle\langle A(\lambda x),\lambda x\rangle+\langle A(\lambda x),\mu y\rangle+\langle A(\mu y),\lambda x\rangle+\langle A(\mu y),\mu y\rangle
=\displaystyle= |λ|2Ax,x+λμ¯Ax,y+λ¯μAy,x+|μ|2Ay,y\displaystyle|\lambda|^{2}\langle Ax,x\rangle+\lambda\overline{\mu}\langle Ax,y\rangle+\overline{\lambda}\mu\langle Ay,x\rangle+|\mu|^{2}\langle Ay,y\rangle
=\displaystyle= |λ|2x,xA+λμ¯x,yA+λ¯μy,xA+|μ|2y,yA\displaystyle|\lambda|^{2}\langle x,x\rangle_{A}+\lambda\overline{\mu}\langle x,y\rangle_{A}+\overline{\lambda}\mu\langle y,x\rangle_{A}+|\mu|^{2}\langle y,y\rangle_{A}
=\displaystyle= |λ|2+|μ|2+λμ¯q+λ¯μq¯\displaystyle|\lambda|^{2}+|\mu|^{2}+\lambda\overline{\mu}q+\overline{\lambda}\mu\overline{q}
=\displaystyle= |λ|2+|μ|2+2Re(λμ¯q),\displaystyle|\lambda|^{2}+|\mu|^{2}+2Re\left(\lambda\overline{\mu}q\right),

then for γ=|λ|2+|μ|2+2Re(λμ¯q)\gamma=\sqrt{|\lambda|^{2}+|\mu|^{2}+2Re(\lambda\overline{\mu}q)} we have λx+μyγA=1\|\dfrac{\lambda x+\mu y}{\gamma}\|_{A}=1 and λx+μyγ,xA=λ+μ¯qγ.\langle\frac{\lambda x+\mu y}{\gamma},x\rangle_{A}=\frac{\lambda+\overline{\mu}q}{\gamma}. Hence, from the above inequality and the definitions of AA-numerical and (A,q)(A,q)-numerical radii we have

γωA,λ+μq¯γ(T)|λ|ωA(T)+|μ|ωA,q(T).\gamma\omega_{A,\frac{\lambda+\mu\overline{q}}{\gamma}}(T)\leq|\lambda|\omega_{A}(T)+|\mu|\omega_{A,q}(T^{*}).

Similarly, from the above inequality and the definitions of AA-numerical radius and (A,q)(A,q)-Crawford number it is implies

γcA,λ+μq¯γ(T)|λ|ωA(T)+|μ|cA,q(T).\gamma c_{A,\frac{\lambda+\mu\overline{q}}{\gamma}}(T)\leq|\lambda|\omega_{A}(T)+|\mu|c_{A,q}(T^{*}).

(6) For x,yH,xA=yA=1,x,yA=q, 0<|q|1x,y\in H,\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ 0<|q|\leq 1, it is true

x±yA2\displaystyle\|x\pm y\|^{2}_{A} =\displaystyle= A(x±y),x±y\displaystyle\langle A(x\pm y),x\pm y\rangle (2)
=\displaystyle= Ax,x±Ax,y±Ay,x+Ay,y\displaystyle\langle Ax,x\rangle\pm\langle Ax,y\rangle\pm\langle Ay,x\rangle+\langle Ay,y\rangle
=\displaystyle= xA2±2Rex,yA+yA2\displaystyle\|x\|_{A}^{2}\pm 2Re\langle x,y\rangle_{A}+\|y\|_{A}^{2}
=\displaystyle= 2±2Req.\displaystyle 2\pm 2Req.

Hence, we have

x±yA=21±Req.\|x\pm y\|_{A}=\sqrt{2}\sqrt{1\pm Req}.

(7) For any x,yH,xA=yA=1,x,yA=q,q1,x,y\in H,\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ q\neq 1, we have

|Tx,xA|\displaystyle|\langle Tx,x\rangle_{A}| \displaystyle\leq |Tx,yA|+|Tx,xyA|\displaystyle|\langle Tx,y\rangle_{A}|+|\langle Tx,x-y\rangle_{A}|
=\displaystyle= |Tx,yA|+2(1Req)|Tx,xy2(1Req)A|.\displaystyle|\langle Tx,y\rangle_{A}|+\sqrt{2(1-Req)}|\langle Tx,\frac{x-y}{\sqrt{2(1-Req)}}\rangle_{A}|.

Then, from (6), we have xy2(1Req)A=1\|\frac{x-y}{\sqrt{2(1-Req)}}\|_{A}=1 and x,xy2(1Req)=1q2(1Req).\langle x,\frac{x-y}{\sqrt{2(1-Req)}}\rangle=\frac{1-q}{\sqrt{2(1-Req)}}. Hence, from the previous relation and the definitions of AA-numerical and (A,q)(A,q)-numerical radii we have

ωA(T)ωA,q(T)+2(1Req)ωA,1q2(1Req)(T).\omega_{A}(T)\leq\omega_{A,q}(T)+\sqrt{2(1-Req)}\omega_{A,\frac{1-q}{\sqrt{2(1-Req)}}}(T).

(8) This claim can be proved similarly.

Note: From the claims (7) and (8) of Theorem 1, if q=1,q=1, then

ωA,q(T)=ωA(T),cA,q(T)=cA(T)\omega_{A,q}(T)=\omega_{A}(T),\ c_{A,q}(T)=c_{A}(T)

for any operator TLA(H).T\in L^{A}(H).

Note: From Theorem 1, the following is true

(12(1Req))ωA(T)ωA,q(T)(1-\sqrt{2(1-Req)})\omega_{A}(T)\leq\omega_{A,q}(T)

for any TLA(H)T\in L^{A}(H) and q, 0<|q|1.q\in\mathbb{C},\ 0<|q|\leq 1.

Theorem 2.

For the operator TLA(H)T\in L^{A}(H) and q, 0<|q|1,q\in\mathbb{C},\ 0<|q|\leq 1, the following is true

2|Req|ωA(T)ωA,q(T)+ωA,q¯(T)2ωA(T)+221ReqTA.2|Req|\omega_{A}(T)\leq\omega_{A,q}(T)+\omega_{A,\overline{q}}(T)\leq 2\omega_{A}(T)+2\sqrt{2}\sqrt{1-Req}\|T\|_{A}.
Proof.

For x,yH,xA=yA=1,x,yA=q, 0<|q|1,x,y\in H,\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ 0<|q|\leq 1, it is clear that

T(x±y),x±yA\displaystyle\langle T(x\pm y),x\pm y\rangle_{A} =\displaystyle= AT(x±y),x±y\displaystyle\langle AT(x\pm y),x\pm y\rangle
=\displaystyle= ATx,x±ATx,y±ATy,x+ATy,y\displaystyle\langle ATx,x\rangle\pm\langle ATx,y\rangle\pm\langle ATy,x\rangle+\langle ATy,y\rangle
=\displaystyle= Tx,xA±Tx,yA±Ty,xA+Ty,yA.\displaystyle\langle Tx,x\rangle_{A}\pm\langle Tx,y\rangle_{A}\pm\langle Ty,x\rangle_{A}+\langle Ty,y\rangle_{A}.

Since,

|T(x±y),x±yA||Tx,xA|+|Tx,yA|+|Ty,xA|+|Ty,yA|,\displaystyle|\langle T(x\pm y),x\pm y\rangle_{A}|\leq|\langle Tx,x\rangle_{A}|+|\langle Tx,y\rangle_{A}|+|\langle Ty,x\rangle_{A}|+|\langle Ty,y\rangle_{A}|,

then for 1Req<0-1\leq Req<0, we have

2(1Req)|T(xy2(1Req)),xy2(1Req)A|2ωA(T)+ωA,q(T)+ωA,q¯(T).2(1-Req)|\langle T\left(\frac{x-y}{\sqrt{2(1-Req)}}\right),\frac{x-y}{\sqrt{2(1-Req)}}\rangle_{A}|\leq 2\omega_{A}(T)+\omega_{A,q}(T)+\omega_{A,\overline{q}}(T).

Consequently,

2(1Req)ωA(T)2ωA(T)+ωA,q(T)+ωA,q¯(T).2(1-Req)\omega_{A}(T)\leq 2\omega_{A}(T)+\omega_{A,q}(T)+\omega_{A,\overline{q}}(T).

That is, for q, 0<|q|1,1Req<0,q\in\mathbb{C},\ 0<|q|\leq 1,\ -1\leq Req<0,

2ReqωA(T)ωA,q(T)+ωA,q¯(T).-2Req\omega_{A}(T)\leq\omega_{A,q}(T)+\omega_{A,\overline{q}}(T).

Similarly, for the 0Req10\leq Req\leq 1, we have

2(1+Req)|T(x+y2(1+Req)),x+y2(1+Req)|2ωA(T)+ωA,q(T)+ωA,q¯(T).2(1+Req)|\langle T\left(\frac{x+y}{\sqrt{2(1+Req)}}\right),\frac{x+y}{\sqrt{2(1+Req)}}\rangle|\leq 2\omega_{A}(T)+\omega_{A,q}(T)+\omega_{A,\overline{q}}(T).

Then

2(1+Req)ωA(T)2ωA(T)+ωA,q(T)+ωA,q¯(T).2(1+Req)\omega_{A}(T)\leq 2\omega_{A}(T)+\omega_{A,q}(T)+\omega_{A,\overline{q}}(T).

Hence, we have

2ReqωA(T)ωA,q(T)+ωA,q¯(T).2Req\omega_{A}(T)\leq\omega_{A,q}(T)+\omega_{A,\overline{q}}(T).

Consequently, from these facts, it is established that

2|Req|ωA(T)ωA,q(T)+ωA,q¯(T)2|Req|\omega_{A}(T)\leq\omega_{A,q}(T)+\omega_{A,\overline{q}}(T)

for q, 0<|q|1.q\in\mathbb{C},\ 0<|q|\leq 1.
On the other hand, for x,yH,xA=yA=1,x,yA=q, 0<|q|1,x,y\in H,\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ 0<|q|\leq 1, it is clear that

|Tx,yA||Tx,xA|+|Tx,yxA|.|\langle Tx,y\rangle_{A}|\leq|\langle Tx,x\rangle_{A}|+|\langle Tx,y-x\rangle_{A}|.

Then, we have

ωA,q(T)\displaystyle\omega_{A,q}(T) \displaystyle\leq ωA(T)+TAxyA\displaystyle\omega_{A}(T)+\|T\|_{A}\|x-y\|_{A}
\displaystyle\leq ωA(T)+2(1Req)TA.\displaystyle\omega_{A}(T)+\sqrt{2(1-Req)}\|T\|_{A}.

Similarly, we get

ωA,q¯(T)ωA(T)+2(1Req¯)TA.\omega_{A,\overline{q}}(T)\leq\omega_{A}(T)+\sqrt{2(1-Re\overline{q})}\|T\|_{A}.

Then, from the first part of this theorem we have

ωA,q(T)+ωA,q¯(T)2ωA(T)+221ReqTA.\omega_{A,q}(T)+\omega_{A,\overline{q}}(T)\leq 2\omega_{A}(T)+2\sqrt{2}\sqrt{1-Req}\|T\|_{A}.

Lemma 1.

[20] Suppose 0q10\leq q\leq 1 and TM2()T\in M_{2}(\mathbb{C}). Then TT is unitarily similar to eit(γabγ)e^{it}\begin{pmatrix}\gamma&a\\ b&\gamma\end{pmatrix} for some 0t2π0\leq t\leq 2\pi and 0ba0\leq b\leq a. Also,

Wq(T)=eit{γq+r((c+pd)cos(s)+i(d+pc)sin(s)):0r1,0s2π},\displaystyle W_{q}(T)=e^{it}\left\{\gamma q+r\left((c+pd)\cos(s)+i(d+pc)\sin(s)\right):0\leq r\leq 1,0\leq s\leq 2\pi\right\},

with c=a+b2,d=ab2andp=1q2.c=\frac{a+b}{2},d=\frac{a-b}{2}~\mbox{and}~p=\sqrt{1-q^{2}}.

Remark 1.

Setting A=IA=I in Theorem 2, and consider q[0,1]q\in[0,1], we have

2qω(T)2ωq(T)2ω(T)+221qT.\displaystyle 2q\omega(T)\leq 2\omega_{q}(T)\leq 2\omega(T)+2\sqrt{2}\sqrt{1-q}\|T\|. (3)
Example 1.

Let T=(017000)T=\begin{pmatrix}0&\frac{1}{70}\\ 0&0\end{pmatrix} and q[0,1]q\in[0,1]. Using Lemma 1, we get

Wq(T)={reis140(1+1q2):0r1,0s2π}.W_{q}(T)=\left\{\frac{re^{is}}{140}(1+\sqrt{1-q^{2}}):0\leq r\leq 1,0\leq s\leq 2\pi\right\}.

So,

ωq(T)=1140(1+1q2).\omega_{q}(T)=\frac{1}{140}(1+\sqrt{1-q^{2}}).

Since T2=0T^{2}=0, we have ω(T)=T2=1140\omega(T)=\frac{\|T\|}{2}=\frac{1}{140}. From the Remark 1, we get 2qω(T)=q702q\omega(T)=\frac{q}{70}, 2ωq(T)=170(1+1q2)2\omega_{q}(T)=\frac{1}{70}(1+\sqrt{1-q^{2}}), and using the fact T=170\|T\|=\frac{1}{70}, the value of 2ω(T)+221qT=170(1+221q2).2\omega(T)+2\sqrt{2}\sqrt{1-q}\|T\|=\frac{1}{70}(1+2\sqrt{2}\sqrt{1-q^{2}}). Figure 1 compares the upper and lower bounds of 2ωq(T)2\omega_{q}(T).

Refer to caption
Figure 1: Comparision of ωq(T)\omega_{q}(T) with the upper and lower bounds (3) for Example 1.
Theorem 3.

If A1L(H1),A2L(H2),A10,A20A_{1}\in L(H_{1}),\ A_{2}\in L(H_{2}),\ A_{1}\geq 0,\ A_{2}\geq 0 and T1LA1(H1),T2LA2(H2).T_{1}\in L^{A_{1}}(H_{1}),\ T_{2}\in L^{A_{2}}(H_{2}). Then, for A=A1A2,T=T1T2,A=A_{1}\otimes A_{2},\ T=T_{1}\otimes T_{2}, we have

cA,q(T)cA1,q1(T1)cA2,q2(T2)ωA1,q1(T1)ωA2,q2(T2)ωA,q(T),c_{A,q}(T)\leq c_{A_{1},q_{1}}(T_{1})c_{A_{2},q_{2}}(T_{2})\leq\omega_{A_{1},q_{1}}(T_{1})\omega_{A_{2},q_{2}}(T_{2})\leq\omega_{A,q}(T),

where, q1,q2, 0<|q1|1, 0<|q2|1,q=q1q2.q_{1},q_{2}\in\mathbb{C},\ 0<|q_{1}|\leq 1,\ 0<|q_{2}|\leq 1,\ q=q_{1}q_{2}.

Proof.

For any x=x1x2,y=y1y2H1H2,x=x_{1}\otimes x_{2},\ y=y_{1}\otimes y_{2}\in H_{1}\otimes H_{2}, we have x,yA=x1,y1A1x2,y2A2=q1q2,\langle x,y\rangle_{A}=\langle x_{1},y_{1}\rangle_{A_{1}}\langle x_{2},y_{2}\rangle_{A_{2}}=q_{1}q_{2}, xA=x1A1x2A2,yA=y1A1y2A2\|x\|_{A}=\|x_{1}\|_{A_{1}}\|x_{2}\|_{A_{2}},\ \|y\|_{A}=\|y_{1}\|_{A_{1}}\|y_{2}\|_{A_{2}} and

Tx,yA\displaystyle\langle Tx,y\rangle_{A} =\displaystyle= (A1A2)(T1x1T2x2),y1y2\displaystyle\langle(A_{1}\otimes A_{2})(T_{1}x_{1}\otimes T_{2}x_{2}),y_{1}\otimes y_{2}\rangle
=\displaystyle= A1T1x1A2T2x2,y1y2\displaystyle\langle A_{1}T_{1}x_{1}\otimes A_{2}T_{2}x_{2},y_{1}\otimes y_{2}\rangle
=\displaystyle= T1x1,y1A1T2x2,y2A2.\displaystyle\langle T_{1}x_{1},y_{1}\rangle_{A_{1}}\langle T_{2}x_{2},y_{2}\rangle_{A_{2}}.

If x1A1=x2A2=y1A1=y2A2=1,\|x_{1}\|_{A_{1}}=\|x_{2}\|_{A_{2}}=\|y_{1}\|_{A_{1}}=\|y_{2}\|_{A_{2}}=1, then for xA=yA=1\|x\|_{A}=\|y\|_{A}=1 and x,yA=q,q=q1q2\langle x,y\rangle_{A}=q,\ q=q_{1}q_{2}, we have

WA1,q1(T1)WA2,q2(T2)WA,q(T).W_{A_{1},q_{1}}(T_{1})W_{A_{2},q_{2}}(T_{2})\subset W_{A,q}(T).

On the other hand, since

sup{|T1x1,y1A1||T2x2,y2A2|:x1A1=y1A1=1,x1,y1A1=q1,\displaystyle\sup\left\{|\langle T_{1}x_{1},y_{1}\rangle_{A_{1}}||\langle T_{2}x_{2},y_{2}\rangle_{A_{2}}|:\ \|x_{1}\|_{A_{1}}=\|y_{1}\|_{A_{1}}=1,\ \langle x_{1},y_{1}\rangle_{A_{1}}=q_{1},\right.
x2A2=y2A2=1,x2,y2A2=q2}\displaystyle\ \ \ \ \ \ \left.\|x_{2}\|_{A_{2}}=\|y_{2}\|_{A_{2}}=1,\ \langle x_{2},y_{2}\rangle_{A_{2}}=q_{2}\right\}
=\displaystyle= sup{|Tx,yA|:x1A1=y1A1=1,x1,y1A1=q1,\displaystyle\sup\left\{|\langle Tx,y\rangle_{A}|:\ \|x_{1}\|_{A_{1}}=\|y_{1}\|_{A_{1}}=1,\ \langle x_{1},y_{1}\rangle_{A_{1}}=q_{1},\right.
x2A2=y2A2=1,x2,y2A2=q2}\displaystyle\ \ \ \ \ \ \left.\|x_{2}\|_{A_{2}}=\|y_{2}\|_{A_{2}}=1,\ \langle x_{2},y_{2}\rangle_{A_{2}}=q_{2}\right\}
\displaystyle\leq sup{|Tx,yA|:xA=yA=1,x,yA=q,q=q1q2}\displaystyle\sup\left\{|\langle Tx,y\rangle_{A}|:\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ q=q_{1}q_{2}\right\}

and

inf{|T1x1,y1A1||T2x2,y2A2|:x1A1=y1A1=1,x1,y1A1=q1,\displaystyle\inf\left\{|\langle T_{1}x_{1},y_{1}\rangle_{A_{1}}||\langle T_{2}x_{2},y_{2}\rangle_{A_{2}}|:\ \|x_{1}\|_{A_{1}}=\|y_{1}\|_{A_{1}}=1,\ \langle x_{1},y_{1}\rangle_{A_{1}}=q_{1},\right.
x2A2=y2A2=1,x2,y2A2=q2}\displaystyle\ \ \ \ \ \ \left.\|x_{2}\|_{A_{2}}=\|y_{2}\|_{A_{2}}=1,\ \langle x_{2},y_{2}\rangle_{A_{2}}=q_{2}\right\}
=\displaystyle= inf{|Tx,yA|:x1A1=y1A1=1,x1,y1A1=q1,\displaystyle\inf\left\{|\langle Tx,y\rangle_{A}|:\ \|x_{1}\|_{A_{1}}=\|y_{1}\|_{A_{1}}=1,\ \langle x_{1},y_{1}\rangle_{A_{1}}=q_{1},\right.
x2A2=y2A2=1,x2,y2A2=q2}\displaystyle\ \ \ \ \ \ \left.\|x_{2}\|_{A_{2}}=\|y_{2}\|_{A_{2}}=1,\ \langle x_{2},y_{2}\rangle_{A_{2}}=q_{2}\right\}
\displaystyle\geq inf{|Tx,yA|:xA=yA=1,x,yA=q,q=q1q2},\displaystyle\inf\left\{|\langle Tx,y\rangle_{A}|:\ \|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ q=q_{1}q_{2}\right\},

then we get

ωA1,q1(T1)ωA2,q2(T2)ωA,q(T),\omega_{A_{1},q_{1}}(T_{1})\omega_{A_{2},q_{2}}(T_{2})\leq\omega_{A,q}(T),
cA1,q1(T1)cA2,q2(T2)cA,q(T).c_{A_{1},q_{1}}(T_{1})c_{A_{2},q_{2}}(T_{2})\geq c_{A,q}(T).

Using an argument similar to that used in the proof of the previous theorem, it is easy to prove the following result.

Corollary 1.

(1) If cA1,q1(T1)>0,c_{A_{1},q_{1}}(T_{1})>0, then WA2,q2(T2)WA,q(T)WA1,q11(T1).W_{A_{2},q_{2}}(T_{2})\subset W_{A,q}(T)W_{A_{1},q_{1}}^{-1}(T_{1}).
(2) If cA2,q2(T2)>0c_{A_{2},q_{2}}(T_{2})>0, then WA1,q1(T1)WA,q(T)WA2,q21(T2)W_{A_{1},q_{1}}(T_{1})\subset W_{A,q}(T)W_{A_{2},q_{2}}^{-1}(T_{2}).
Consequently,
if cA1,q1(T1)>0,c_{A_{1},q_{1}}(T_{1})>0, then ωA2,q2(T2)ωA,q(T)cA1,q1(T1),\omega_{A_{2},q_{2}}(T_{2})\leq\frac{\omega_{A,q}(T)}{c_{A_{1},q_{1}}(T_{1})},
if cA2,q2(T2)>0,c_{A_{2},q_{2}}(T_{2})>0, then ωA1,q1(T1)ωA,q(T)cA2,q2(T2),\omega_{A_{1},q_{1}}(T_{1})\leq\frac{\omega_{A,q}(T)}{c_{A_{2},q_{2}}(T_{2})},
if ωA1,q1(T1)>0,\omega_{A_{1},q_{1}}(T_{1})>0, then cA2,q2(T2)cA,q(T)ωA1,q1(T1),c_{A_{2},q_{2}}(T_{2})\leq\frac{c_{A,q}(T)}{\omega_{A_{1},q_{1}}(T_{1})},
if ωA2,q2(T2)>0,\omega_{A_{2},q_{2}}(T_{2})>0, then cA1,q1(T1)cA,q(T)ωA2,q2(T2).c_{A_{1},q_{1}}(T_{1})\leq\frac{c_{A,q}(T)}{\omega_{A_{2},q_{2}}(T_{2})}.
Here, for S={z:z0},S1={1z:zS}.S=\{z\in\mathbb{C}:z\neq 0\},\ S^{-1}=\left\{\dfrac{1}{z}:z\in S\right\}.

3. Some convergence properties of the (A,q)(A,q)-numerical radius and (A,q)(A,q)-Crawford number via operator sequences

Definition 2.

A sequence (Tn)LA(H)(T_{n})\subset L^{A}(H) is said to converge uniformly to TLA(H),T\in L^{A}(H), if for any ϵ>0,\epsilon>0, there exists a positive integer NN such that

TnTA<ϵ for alln>N.\|T_{n}-T\|_{A}<\epsilon\ \text{ for all}\ n>N.
Theorem 4.

For any TLA(H)T\in L^{A}(H) and q, 0<|q|1q\in\mathbb{C},\ 0<|q|\leq 1, the following are true:
(1) |ωA,q(T)ωA(T)|2(1Req)TA.|\omega_{A,q}(T)-\omega_{A}(T)|\leq\sqrt{2(1-Req)}\|T\|_{A}.
(2) If qn, 0<|qn|1q_{n}\in\mathbb{C},\ 0<|q_{n}|\leq 1 and Reqn1,n,Req_{n}\rightarrow 1,\ n\rightarrow\infty, then

limnωA,qn(T)=ωA(T).\lim\limits_{n\rightarrow\infty}\omega_{A,q_{n}}(T)=\omega_{A}(T).

(3) If the operator sequences (Tn)(T_{n}) converges uniformly to an operator TT in LA(H),L^{A}(H), then

limnωA,q(Tn)=ωA,q(T).\lim\limits_{n\rightarrow\infty}\omega_{A,q}(T_{n})=\omega_{A,q}(T).
Proof.

(1) For any x,yHx,y\in H with the properties xA=yA=1,x,yA=q, 0<|q|1,\|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ 0<|q|\leq 1, it is valid that

|Tx,yA|\displaystyle|\langle Tx,y\rangle_{A}| =\displaystyle= |ATx,y|\displaystyle|\langle ATx,y\rangle|
\displaystyle\leq |ATx,x|+|ATx,yx|\displaystyle|\langle ATx,x\rangle|+|\langle ATx,y-x\rangle|
\displaystyle\leq |Tx,xA|+ATx,Tx1/2A(yx),yx1/2\displaystyle|\langle Tx,x\rangle_{A}|+\langle ATx,Tx\rangle^{1/2}\langle A(y-x),y-x\rangle^{1/2}
=\displaystyle= |Tx,xA|+TxAyxA.\displaystyle|\langle Tx,x\rangle_{A}|+\|Tx\|_{A}\|y-x\|_{A}.

Now, using inequality (2) and the previous estimate, we get

|Tx,yA||Tx,xA|+21ReqTA.|\langle Tx,y\rangle_{A}|\leq|\langle Tx,x\rangle_{A}|+\sqrt{2}\sqrt{1-Req}\|T\|_{A}.

This means that

ωA,q(T)ωA(T)+21ReqTA.\omega_{A,q}(T)\leq\omega_{A}(T)+\sqrt{2}\sqrt{1-Req}\|T\|_{A}.

On the other hand, similarly from the following inequality,

|Tx,xA||Tx,yA|+|Tx,xyA|,|\langle Tx,x\rangle_{A}|\leq|\langle Tx,y\rangle_{A}|+|\langle Tx,x-y\rangle_{A}|,

it can be easily to shown that

ωA(T)ωA,q(T)+21ReqTA.\omega_{A}(T)\leq\omega_{A,q}(T)+\sqrt{2}\sqrt{1-Req}\|T\|_{A}.

Consequently, it is established that

|ωA,q(T)ωA(T)|2(1Req)TA.|\omega_{A,q}(T)-\omega_{A}(T)|\leq\sqrt{2(1-Req)}\|T\|_{A}.

(2) This is a result of the property of the first proposition of this theorem.
(3) From the definition of the (A,q)(A,q)-numerical radius, we have

ωA,q(T+S)ωA,q(T)+ωA,q(S)\omega_{A,q}(T+S)\leq\omega_{A,q}(T)+\omega_{A,q}(S)

for T,SLA(H)T,S\in L^{A}(H) and q, 0<|q|1.q\in\mathbb{C},\ 0<|q|\leq 1. So, the following claim is true

|ωA,q(T)ωA,q(S)|ωA,q(T±S).|\omega_{A,q}(T)-\omega_{A,q}(S)|\leq\omega_{A,q}(T\pm S).

Hence, for any n1n\geq 1, from the claim (1) of Theorem 1, it is obtained that

|ωA,q(Tn)ωA,q(T)|ωA,q(TnT)TnTA.|\omega_{A,q}(T_{n})-\omega_{A,q}(T)|\leq\omega_{A,q}(T_{n}-T)\leq\|T_{n}-T\|_{A}.

From the last relation and the uniform convergence of the sequence (Tn)(T_{n}) to TT in LA(H),L^{A}(H), it follows that

limnωA,q(Tn)=ωA,q(T).\lim\limits_{n\rightarrow\infty}\omega_{A,q}(T_{n})=\omega_{A,q}(T).

Remark 2.

Setting A=IA=I in Theorem 4 (1), and considering q[0,1]q\in[0,1], we have

|ωq(T)ω(T)|2(1q)T,for anyTL(H).\displaystyle|\omega_{q}(T)-\omega(T)|\leq\sqrt{2(1-q)}\|T\|,~\mbox{for any}~T\in L(H). (4)

Here we consider some examples only for a real number q[0,1]q\in[0,1].

Example 2.

Let T=(012400)T=\begin{pmatrix}0&\frac{1}{24}\\ 0&0\end{pmatrix} and q[0,1]q\in[0,1]. Using Lemma 1, we get

Wq(T)={reis48(1+1q2):0r1,0s2π}.W_{q}(T)=\left\{\frac{re^{is}}{48}(1+\sqrt{1-q^{2}}):0\leq r\leq 1,0\leq s\leq 2\pi\right\}.

So,

ωq(T)=148(1+1q2).\omega_{q}(T)=\frac{1}{48}(1+\sqrt{1-q^{2}}).

By Remark 2 and the fact that T=124\|T\|=\frac{1}{24}, we see that the right side of Remark 2 is 2(1q)T=2(1q)24\sqrt{2(1-q)}\|T\|=\frac{\sqrt{2(1-q)}}{24}. Since T2=0T^{2}=0, we have ω(T)=T2=148\omega(T)=\frac{\|T\|}{2}=\frac{1}{48}. Therefore, the left side of Remark 2 is |ωq(T)ω(T)|=1q248.|\omega_{q}(T)-\omega(T)|=\frac{\sqrt{1-q^{2}}}{48}. Figure 2 compares |ωq(T)ω(T)|=1q248|\omega_{q}(T)-\omega(T)|=\frac{\sqrt{1-q^{2}}}{48} and the upper bound 2(1q)24\frac{\sqrt{2(1-q)}}{24}.

Refer to caption
Figure 2: Comparision of ωq(T)\omega_{q}(T) with the upper bound (4) for Example 2.
Example 3.

Let us consider T=120IT=\frac{1}{20}I and q[0,1]q\in[0,1]. In this case, ωq(T)=120q.\omega_{q}(T)=\frac{1}{20}q. Using ω(T)=T=120,\omega(T)=\|T\|=\frac{1}{20}, the left side of Remark 2 is |ωq(T)ω(T)|=120(q1)|\omega_{q}(T)-\omega(T)|=\frac{1}{20}(q-1), while the right side of Remark 2 is 2(1q)T=2(1q)20\sqrt{2(1-q)}\|T\|=\frac{\sqrt{2(1-q)}}{20}. Figure 3 compares |ωq(T)ω(T)|=120(q1)|\omega_{q}(T)-\omega(T)|=\frac{1}{20}(q-1) and the upper bound 2(1q)20\frac{\sqrt{2(1-q)}}{20}.

Refer to caption
Figure 3: Comparision of ωq(T)\omega_{q}(T) with the upper bound (4) for Example 3.
Example 4.

Let T=(010001000)T=\begin{pmatrix}0&1&0\\ 0&0&1\\ 0&0&0\end{pmatrix} and q[12,1]q\in[\frac{1}{2},1]. Using [17, Proposition 4.3], we get

ωq(T)=1827+18q13q2+(9+7q)(1q)(9+7q).\omega_{q}(T)=\frac{1}{8}\sqrt{27+18q-13q^{2}+(9+7q)\sqrt{(1-q)(9+7q)}}.

By Remark 2 and the fact that T=1\|T\|=1, we see that the right side of inequality (4) is 2(1q)T=2(1q)\sqrt{2(1-q)}\|T\|=\sqrt{2(1-q)}. Also, we know that ω(T)=12\omega(T)=\frac{1}{\sqrt{2}}. Therefore, the left side of inequality (4) is |ωq(T)ω(T)|=1827+18q13q2+(9+7q)(1q)(9+7q)12.|\omega_{q}(T)-\omega(T)|=\frac{1}{8}\sqrt{27+18q-13q^{2}+(9+7q)\sqrt{(1-q)(9+7q)}}-\frac{1}{\sqrt{2}}. Figure 4 compares |ωq(T)ω(T)||\omega_{q}(T)-\omega(T)| and the upper bound 2(1q)\sqrt{2(1-q)}.

Refer to caption
Figure 4: Comparision of ωq(T)\omega_{q}(T) with the upper bound (4) for Example 4.
Theorem 5.

For any TLA(H)T\in L^{A}(H) and q, 0<|q|1,q\in\mathbb{C},\ 0<|q|\leq 1, the following are true:
(1) |cA,q(T)cA(T)|2(1Req)TA.|c_{A,q}(T)-c_{A}(T)|\leq\sqrt{2(1-Req)}\|T\|_{A}.
(2) If qn, 0<|qn|1q_{n}\in\mathbb{C},\ 0<|q_{n}|\leq 1 and Reqn1,n,Req_{n}\rightarrow 1,\ n\rightarrow\infty, then

limncA,qn(T)=cA(T).\lim\limits_{n\rightarrow\infty}c_{A,q_{n}}(T)=c_{A}(T).

(3) For any T,SLA(H)T,S\in L^{A}(H) and q, 0<|q|1,q\in\mathbb{C},\ 0<|q|\leq 1, we have

|cA,q(T)cA,q(S)|ωq(T±S).|c_{A,q}(T)-c_{A,q}(S)|\leq\omega_{q}(T\pm S).

(4) If the operator sequence (Tn)(T_{n}) converges uniformly to an operator TT in LA(H),L^{A}(H), then

limncA,q(Tn)=cA,q(T).\lim\limits_{n\rightarrow\infty}c_{A,q}(T_{n})=c_{A,q}(T).
Proof.

(1) For x,yH,x,y\in H, xA=yA=1,x,yA=q,\|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q, we have

|Tx,yA|\displaystyle|\langle Tx,y\rangle_{A}| \displaystyle\geq |Tx,xA+Tx,yxA|\displaystyle|\langle Tx,x\rangle_{A}+\langle Tx,y-x\rangle_{A}|
=\displaystyle= |Tx,xA||Tx,yxA|\displaystyle|\langle Tx,x\rangle_{A}|-|\langle Tx,y-x\rangle_{A}|
=\displaystyle= |Tx,xA||ATx,yx|\displaystyle|\langle Tx,x\rangle_{A}|-|\langle ATx,y-x\rangle|
\displaystyle\geq |Tx,xA||ATx,Tx|1/2A(yx),yx1/2\displaystyle|\langle Tx,x\rangle_{A}|-|\langle ATx,Tx\rangle|^{1/2}\langle A(y-x),y-x\rangle^{1/2}
=\displaystyle= |Tx,xA|TxAyx,yxA1/2\displaystyle|\langle Tx,x\rangle_{A}|-\|Tx\|_{A}\langle y-x,y-x\rangle^{1/2}_{A}
\displaystyle\geq |Tx,xA|TA21Req.\displaystyle|\langle Tx,x\rangle_{A}|-\|T\|_{A}\sqrt{2}\sqrt{1-Req}.

From this and from the definition of the Crawford number, we have

cA,q(T)cA(T)TA21Req,c_{A,q}(T)\geq c_{A}(T)-\|T\|_{A}\sqrt{2}\sqrt{1-Req},

that is,

cA,q(T)cA(T)TA21Req.c_{A,q}(T)-c_{A}(T)\geq-\|T\|_{A}\sqrt{2}\sqrt{1-Req}.

Similarly, by the previous method, it can be shown that

cA,q(T)cA(T)TA21Req.c_{A,q}(T)-c_{A}(T)\leq\|T\|_{A}\sqrt{2}\sqrt{1-Req}.

Consequently, it is true

|cA,q(T)cA(T)|2(1Req)TA.|c_{A,q}(T)-c_{A}(T)|\leq\sqrt{2(1-Req)}\|T\|_{A}.

(2) The validity of this result is clear from the first claim.
(3) For any x,yH,x,y\in H, xA=yA=1,x,yA=q,q, 0<|q|1\|x\|_{A}=\|y\|_{A}=1,\ \langle x,y\rangle_{A}=q,\ q\in\mathbb{C},\ 0<|q|\leq 1, we have

|Tx,yA|\displaystyle|\langle Tx,y\rangle_{A}| =\displaystyle= |(T+S)x,yASx,yA|\displaystyle|\langle(T+S)x,y\rangle_{A}-\langle Sx,y\rangle_{A}|
\displaystyle\geq |(T+S)x,yA||Sx,yA|.\displaystyle|\langle(T+S)x,y\rangle_{A}|-|\langle Sx,y\rangle_{A}|.

From the last relation, we have

cA,q(T)cA,q(T+S)ωA,q(S),c_{A,q}(T)\geq c_{A,q}(T+S)-\omega_{A,q}(S),

that is,

cA,q(T+S)cA,q(T)ωA,q(S).c_{A,q}(T+S)-c_{A,q}(T)\leq\omega_{A,q}(S).

In a similar way, it can be established that

ωA,q(S)cA,q(T+S)cA,q(T).-\omega_{A,q}(S)\leq c_{A,q}(T+S)-c_{A,q}(T).

Consequently, from the previous results, we have

|cA,q(T+S)cA,q(T)|ωA,q(S).|c_{A,q}(T+S)-c_{A,q}(T)|\leq\omega_{A,q}(S).

Hence, it is clear that

|cA,q(T)cA,q(S)|ωA,q(TS).|c_{A,q}(T)-c_{A,q}(S)|\leq\omega_{A,q}(T-S).

(4) The validity of this result follows from the last claim and the inequality

ωA,q(TnT)TnTA,n1.\omega_{A,q}(T_{n}-T)\leq\|T_{n}-T\|_{A},\ n\geq 1.

(See the first claim of Theorem 1.) ∎

Corollary 2.

For the operator sequence (Tn)(T_{n}) in LA(H),L^{A}(H), which converges uniformly to an operator TLA(H),T\in L^{A}(H), the following are true:

limngωA,q(Tn)=gωA,q(T)\lim\limits_{n\rightarrow\infty}g_{\omega_{A,q}}(T_{n})=g_{\omega_{A,q}}(T)

and

limngcA,q(Tn)=gcA,q(T).\lim\limits_{n\rightarrow\infty}g_{c_{A,q}}(T_{n})=g_{c_{A,q}}(T).
Proof.

Indeed, for the gaps, we have

|gωA,q(Tn)gωA,q(T)|\displaystyle|g_{\omega_{A,q}}(T_{n})-g_{\omega_{A,q}}(T)| =\displaystyle= |(TnAωA,q(Tn))(TAωA,q(T))|\displaystyle|\left(\|T_{n}\|_{A}-\omega_{A,q}(T_{n})\right)-\left(\|T\|_{A}-\omega_{A,q}(T)\right)|
\displaystyle\leq TnTA+|ωA,q(Tn)ωA,q(T)|\displaystyle\|T_{n}-T\|_{A}+|\omega_{A,q}(T_{n})-\omega_{A,q}(T)|
\displaystyle\leq 2TnTA,n1\displaystyle 2\|T_{n}-T\|_{A},\ n\geq 1

and

|gcA,q(Tn)gcA,q(T)|\displaystyle|g_{c_{{A,q}}}(T_{n})-g_{c_{{A,q}}}(T)| \displaystyle\leq TnTA+|cA,q(Tn)cA,q(T)|\displaystyle\|T_{n}-T\|_{A}+|c_{A,q}(T_{n})-c_{A,q}(T)|
\displaystyle\leq 2TnTA,n1.\displaystyle 2\|T_{n}-T\|_{A},\ n\geq 1.

Since TnTA0,n,\|T_{n}-T\|_{A}\rightarrow 0,\ n\rightarrow\infty, then the validity of the corollary is clear. ∎

4. Some applications

In this section, some applications of our results will be given.

Application 1 Let H1H_{1} and H2H_{2} be two complex Hilbert spaces, A1L(H1),A2L(H2),A10,A20A_{1}\in L(H_{1}),\ A_{2}\in L(H_{2}),\ A_{1}\geq 0,\ A_{2}\geq 0 and A=A1A2.A=A_{1}\oplus A_{2}. Consider the following operator sequences

Tn=SnMn,TnLA(H1H2),n1.T_{n}=S_{n}\oplus M_{n},\ T_{n}\in L^{A}\left(H_{1}\oplus H_{2}\right),\ n\geq 1.

Assume that SnSS_{n}\rightarrow S and MnM\ M_{n}\rightarrow M uniformly for some SS and MM in LA1(H1)L^{A_{1}}(H_{1}) and LA2(H2),L^{A_{2}}(H_{2}), respectively. Also, let

T=SM.T=S\oplus M.

It is clear that TA=max{SA1,MA2}.\|T\|_{A}=\max\left\{\|S\|_{A_{1}},\|M\|_{A_{2}}\right\}.
For any q,|q|1,q\in\mathbb{C},\ |q|\leq 1, it is clear that

WA1,q(S)WA,q(T),WA2,q(M)WA,q(T).\displaystyle W_{A_{1},q}(S)\subset W_{A,q}(T),\ W_{A_{2},q}(M)\subset W_{A,q}(T). (5)

Therefore, max{ωA1,q(S),ωA2,q(M)}ωA,q(T).\max\left\{\omega_{A_{1},q}(S),\omega_{A_{2},q}(M)\right\}\leq\omega_{A,q}(T). Hence, it is easy to see that

gωA,q(T)=TAωA,q(T)\displaystyle g_{\omega_{A,q}}(T)=\|T\|_{A}-\omega_{A,q}(T)
max{SA1,MA2}max{ωA1,q(S),ωA2,q(M)}\displaystyle\leq\max\left\{\|S\|_{A_{1}},\|M\|_{A_{2}}\right\}-\max\left\{\omega_{A_{1},q}(S),\omega_{A_{2},q}(M)\right\}
=(SA1+MA22+|SA1MA22|)(ωA1,q(S)+ωA2,q(M)2+|ωA1,q(S)ωA2,q(M)2|)\displaystyle=\left(\frac{\|S\|_{A_{1}}+\|M\|_{A_{2}}}{2}+|\frac{\|S\|_{A_{1}}-\|M\|_{A_{2}}}{2}|\right)-\left(\frac{\omega_{A_{1},q}(S)+\omega_{A_{2},q}(M)}{2}+|\frac{\omega_{A_{1},q}(S)-\omega_{A_{2},q}(M)}{2}|\right)
SA1ωA1,q(S)2+MA2ωA2,q(M)2+|SA1MA22ωA1,q(S)ωA2,q(M)2|\displaystyle\leq\frac{\|S\|_{A_{1}}-\omega_{A_{1},q}(S)}{2}+\frac{\|M\|_{A_{2}}-\omega_{A_{2},q}(M)}{2}+|\frac{\|S\|_{A_{1}}-\|M\|_{A_{2}}}{2}-\frac{\omega_{A_{1},q}(S)-\omega_{A_{2},q}(M)}{2}|
=gωA1,q(S)+gωA2,q(M)2+|gωA1,q(S)gωA2,q(M)2|\displaystyle=\frac{g_{\omega_{A_{1},q}}(S)+g_{\omega_{A_{2},q}}(M)}{2}+|\frac{g_{\omega_{A_{1},q}}(S)-g_{\omega_{A_{2},q}}(M)}{2}|
=max{gωA1,q(S),gωA2,q(M)}\displaystyle=\max\left\{g_{\omega_{A_{1},q}}(S),g_{\omega_{A_{2},q}}(M)\right\}

for any q,|q|1.q\in\mathbb{C},\ |q|\leq 1. That is, for any q,|q|1q\in\mathbb{C},\ |q|\leq 1, it is established that

gωA,q(T)max{gωA1,q(S),gωA2,q(M)}.g_{\omega_{A,q}}(T)\leq\max\left\{g_{\omega_{A_{1},q}}(S),g_{\omega_{A_{2},q}}(M)\right\}.

Then, from the Corollary 2, we have

limngωA,q(Tn)max{gωA1,q(S),gωA2,q(M)}.\lim\limits_{n\rightarrow\infty}g_{\omega_{A,q}}(T_{n})\leq\max\left\{g_{\omega_{A_{1},q}}(S),g_{\omega_{A_{2},q}}(M)\right\}.

On the other hand, from (5), it is true that

cA,q(T)inf{cA1,q(S),cA2,q(M)}c_{{A,q}}(T)\leq inf\left\{c_{{A_{1},q}}(S),c_{{A_{2},q}}(M)\right\}

for any q,|q|1.q\in\mathbb{C},\ |q|\leq 1. Then,

gcA,q(T)=TAcA,q(T)\displaystyle g_{c_{A,q}}(T)=\|T\|_{A}-c_{A,q}(T)
max{SA1,MA2}inf{cA1,q(S),cA2,q(M)}\displaystyle\geq\max\left\{\|S\|_{A_{1}},\|M\|_{A_{2}}\right\}-\inf\left\{c_{A_{1},q}(S),c_{A_{2},q}(M)\right\}
=(SA1+MA22+|SA1MA22|)(cA1,q(S)+cA2,q(M)2|cA1,q(S)cA2,q(M)2|)\displaystyle=\left(\frac{\|S\|_{A_{1}}+\|M\|_{A_{2}}}{2}+|\frac{\|S\|_{A_{1}}-\|M\|_{A_{2}}}{2}|\right)-\left(\frac{c_{A_{1},q}(S)+c_{A_{2},q}(M)}{2}-|\frac{c_{A_{1},q}(S)-c_{A_{2},q}(M)}{2}|\right)
SA1cA1,q(S)2+MA2cA2,q(M)2+|SA1MA22cA1,q(S)cA2,q(M)2|\displaystyle\geq\frac{\|S\|_{A_{1}}-c_{A_{1},q}(S)}{2}+\frac{\|M\|_{A_{2}}-c_{A_{2},q}(M)}{2}+|\frac{\|S\|_{A_{1}}-\|M\|_{A_{2}}}{2}-\frac{c_{A_{1},q}(S)-c_{A_{2},q}(M)}{2}|
=gcA1,q(S)+gcA2,q(M)2+|gcA1,q(S)gcA2,q(M)2|\displaystyle=\frac{g_{c_{A_{1},q}}(S)+g_{c_{A_{2},q}}(M)}{2}+|\frac{g_{c_{A_{1},q}}(S)-g_{c_{A_{2},q}}(M)}{2}|
=max{gcA1,q(S),gcA2,q(M)}.\displaystyle=\max\left\{g_{c_{A_{1},q}}(S),g_{c_{A_{2},q}}(M)\right\}.

Then, by Corollary 2, we have

limngcA,q(Tn)max{gcA1,q(S),gcA2,q(M)}\lim\limits_{n\rightarrow\infty}g_{c_{A,q}}(T_{n})\geq\max\left\{g_{c_{A_{1},q}}(S),g_{c_{A_{2},q}}(M)\right\}

for any q,|q|1.q\in\mathbb{C},\ |q|\leq 1.
Application 2 Let ψC[0,1],ψ0,φnC[0,1],n1,φn1\psi\in C[0,1],\ \psi\geq 0,\ \varphi_{n}\in C[0,1],\ n\geq 1,\ \varphi_{n}\rightarrow 1 uniformly on [0,1][0,1] and

Af(x)=ψ(x)f(x),fL2(0,1),Af(x)=\psi(x)f(x),\ f\in L_{2}(0,1),
A:L2(0,1)L2(0,1),A:L_{2}(0,1)\rightarrow L_{2}(0,1),
Tnf(x)=φn(x)f(x),fL2ψ(0,1),T_{n}f(x)=\varphi_{n}(x)f(x),\ f\in L_{2}^{\psi}(0,1),

where,

L2ψ(0,1)={f:(0,1):fLebesque measurable function and01ψ(x)|f(x)|2𝑑x<}.L_{2}^{\psi}(0,1)=\left\{f:(0,1)\rightarrow\mathbb{C}:f\ \text{Lebesque measurable function and}\ \int\limits_{0}^{1}\psi(x)|f(x)|^{2}dx<\infty\right\}.

Then, the operator sequences Tn,n1,T_{n},\ n\geq 1, converges uniformly to the identity operator II in L2ψ(0,1).L_{2}^{\psi}(0,1). Hence, for any q,|q|1,q\in\mathbb{C},\ |q|\leq 1, by Corollary 2, we have

limngωA,q(Tn)=gωA,q(T)=1|q|,\lim\limits_{n\rightarrow\infty}g_{\omega_{A,q}}(T_{n})=g_{\omega_{A,q}}(T)=1-|q|,
limngcA,q(Tn)=gcA,q(T)=1|q|.\lim\limits_{n\rightarrow\infty}g_{c_{A,q}}(T_{n})=g_{c_{A,q}}(T)=1-|q|.

Application 3 A prominent function class (Λθ)+(\Lambda_{\theta})_{+} will be given (see [1]). Let θ\theta be a modulus of continuity, i. e., θ\theta is a non-decreasing continuous function on [0,)[0,\infty) such that θ(0)=0,θ(x)>0\theta(0)=0,\ \theta(x)>0 for x>0,x>0, and

θ(x+y)θ(x)+θ(y),x,y[0,).\theta(x+y)\leq\theta(x)+\theta(y),\ x,y\in[0,\infty).

In this case, (Λθ)+(\Lambda_{\theta})_{+} is defined as

(Λθ)+:={fA(𝔻):|f|Λθ=supa,b𝔻ab|f(a)f(b)|θ(|ab|)<},(\Lambda_{\theta})_{+}:=\left\{f\in A(\mathbb{D}):|f|_{\Lambda_{\theta}}=\sup_{\begin{subarray}{c}a,b\in\mathbb{D}\\ a\neq b\end{subarray}}\frac{|f(a)-f(b)|}{\theta(|a-b|)}<\infty\right\},

where 𝔻:={z:|z|<1}\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\} is the unit disc and A(𝔻)A(\mathbb{D}) is the class of analytic functions on 𝔻.\mathbb{D}.
Also, when θ\theta is given, θ\theta_{*} will be defined as

θ(x):=xxθ(t)t2𝑑t,x>0.\theta_{*}(x):=x\int\limits_{x}^{\infty}\frac{\theta(t)}{t^{2}}dt,\ x>0.

Remark that limx0+θ(x)=0.\lim\limits_{x\rightarrow 0^{+}}\theta_{*}(x)=0.

Theorem 6.

[1] For every modulus of continuity θ,\theta, for arbitrary contractions SS and T,T, and f(Λθ)+,f\in(\Lambda_{\theta})_{+}, there exists a constant c>0c>0 such that

f(S)f(T)c|f|Λθθ(ST).\|f(S)-f(T)\|\leq c|f|_{\Lambda_{\theta}}\theta_{*}(\|S-T\|).

Now, we will examine how the results in this section vary for operator functions.

Theorem 7.

Let (Tn),n1(T_{n}),\ n\geq 1 in LA(H)L^{A}(H) be a sequence of contraction operators, which converges uniformly to an operator TLA(H)T\in L^{A}(H) and f(Λθ)+.f\in(\Lambda_{\theta})_{+}. In this case,

ωA,q(f(T))=limnωA,q(f(Tn)),q, 0<|q|1,\omega_{A,q}(f(T))=\lim\limits_{n\rightarrow\infty}\omega_{A,q}(f(T_{n})),\ q\in\mathbb{C},\ 0<|q|\leq 1,
cA,q(f(T))=limncA,q(f(Tn)),q, 0<|q|1c_{A,q}(f(T))=\lim\limits_{n\rightarrow\infty}c_{A,q}(f(T_{n})),\ q\in\mathbb{C},\ 0<|q|\leq 1

are true.

Proof.

Let (Tn),n1(T_{n}),\ n\geq 1 in LA(H)L^{A}(H) be a sequence of contraction operators, which converges uniformly to an operator TLA(H)T\in L^{A}(H) and f(Λθ)+.f\in(\Lambda_{\theta})_{+}. In this situation, TT is a contraction operator. Also, since f(Λθ)+,f\in(\Lambda_{\theta})_{+}, then there exists c>0c>0 such that f(T)f(Tn)c|f|Λθθ(TTn),n1,\|f(T)-f(T_{n})\|\leq c|f|_{\Lambda_{\theta}}\theta_{*}(\|T-T_{n}\|),\ n\geq 1, by Theorem 3. Thus, since limx0+θ(TTn)=0,\lim\limits_{x\rightarrow 0^{+}}\theta_{*}(\|T-T_{n}\|)=0, then the operator sequence (f(Tn))(f(T_{n})) converges uniformly to f(T).f(T). Therefore, the validity of the assertions of this theorem under the corresponding conditions is obvious from Theorems 4 and 5. ∎

Conflict of interest: The authors state that there is no conflict of interest.

Data availability: Data sharing not applicable to the present paper as no data sets were generated or analyzed during the current study.

Funding: Not applicable.

References

  • [1] Aleksandrov, A. B., Peller, V. V., Operator Hölder-Zygmund functions, Adv. Math. 224 (2010), 910-966.
  • [2] Baklouti, H., Feki, K., Sid Ahmed, O. A. M., Joint numerical ranges of operators in semi-Hilbertian spaces, Linear Algebra Appl. 555 (2018), 266-284.
  • [3] Bhunia, P., Dragomir, S. S., Moslehian, M. S., Paul, K., Lectures on numerical radius inequalities, Infosys Science Foundation Series. Cham: Springer. 2022.
  • [4] Bhunia, P., Feki, K., Paul, K., Numerical radius inequalities for products and sums of semi-Hilbertian space operators, Filomat 36 (4) (2022), 1415-1431.
  • [5] Bhunia, P., Nayak, R. K., Kallol, P., Refinement of seminorm and numerical radius inequalities of semi-Hilbertian space operators, Math. Slovaca 72(4) (2022), 969-976.
  • [6] Bhunia, P., Paul, K. Refinements of norm and numerical radius inequalities, Rocky Mountain J. Math. 51 (6) (2021), 1953-1965.
  • [7] Bhunia, P., Paul, K., Proper improvement of well-known numerical radius inequalities and their applications, Result Math. 76 (2021), 1-12.
  • [8] Bhunia, P., Paul, K., New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math. 167 (2021), 1-11.
  • [9] Conde, C., Feki, K., On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators, Ricerche di Matematica (2021), 1-19.
  • [10] Feki, K., Sahoo, S., Further inequalities for the A{A}-numerical radius of certain 2×22\times 2 operator matrices, Georgian Math. J. 30 (2023), no. 2, 213–226.
  • [11] Gau, Hwa-Long, and Pei Yuan Wu., Numerical ranges of Hilbert space operators, 179 Cambridge University Press, 2021.
  • [12] Gustafson, K. E. and Rao, D. K. M., Numerical Range. The field of values of linear operators and matrices, Springer-Verlag, New York, 1997.
  • [13] Heydarbeygi, Z., Amyari, M., Khanehgir, M. Some refinements of numerical radius inequalities, Ukr. Math. J. 72 (2021), 1664-1674.
  • [14] Kittaneh, F., Numerical radius inequalities for Hilbert space operators, Studia Math. 168(1) (2005), 73-80.
  • [15] Kittaneh, F., Sahoo, S. On 𝔸\mathbb{A}-numerical radius equalities and inequalities for certain operator matrices, Ann. Funct. Anal. 12 (52) (2021) https://doi.org/10.1007/s43034-021-00137-6
  • [16] Lı, C. K., Mehta, P. P., Rodman, L., A generalized numerical range: the range of a constrained sesquilinear form, Linear Multilinear Algebra 37 (1994), 25-49.
  • [17] Li, C. K, Nakazato, H., Some results on the qq-numerical, Linear Multilinear Algebra 43 (1998), 385–409.
  • [18] Marcus, M., Andresen, P., Costrained extrema of bilinear functionals, Mon. Hefte Math. 84 (1977), 219-235.
  • [19] Moghaddam, S. F., Mirmostafaee, A. K., Janfada, M., qq-numerical radius inequalities for Hilbert space, Linear Multilinear Algebra 72 (5) (2024), 751–763.
  • [20] Nakazato, H., The CC-numerical range of a 2×22\times 2 matrix, Sci Rep Hirosaki Univ. 41 (1994), 197–206.
  • [21] Patra, A., Roy, F., On the estimation of qq-numerical radius of Hilbert space operators, Oper. Matrices 18 (2024), 343–359.
  • [22] Qiao, H., Hai, G., Bai, E., Some refinements of numerical radius for 2×22\times 2 operators matrices, J. Math. Inequal. 16 (2) (2022), 425-444.
  • [23] Rajic, R., A generalized qq-numerical range, Pac. J. Math. 10 (2005), 31-45.
  • [24] Rout, N. C., Sahoo, S., Mishra, D., Some AA-numerical radius inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra 69 (2021), 980–996.
  • [25] Rout, N. C., Sahoo, S., Mishra, D., On 𝔸\mathbb{A}-numerical radius inequalities for 2×22\times 2 operator matrices, Linear Multilinear Algebra 70(14) (2022), 2672–2692.
  • [26] Saddi, A., AA-normal operators in Semi-Hilbertian space, Aust. J. Math. Anal. Appl. 9 (1) (2012), 1-12.
  • [27] Sahoo, S., On 𝔸\mathbb{A}-numerical radius inequalities for 2×22\times 2 operator matrices-II, Filomat 35 (15) (2021), 5237–5252.
  • [28] Sheybani, S., Sababheh, M., Moradi, H. R., Weighted inequalities for the numerical radius, Vietnam J. Math. 51 (2023), 363–377.
  • [29] Stampfli, J. G., The norm of derivation, Math. Commun. 33 (3) (1970), 737–747.
  • [30] Zamani, A., A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019), 159–183.