This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spectral enclosures for non-self-adjoint extensions of symmetric operators

Jussi Behrndt Technische Universität Graz, Institut für Angewandte Mathematik,
Steyrergasse 30, 8010 Graz, Austria
behrndt@tugraz.at
Matthias Langer Department of Mathematics and Statistics, University of Strathclyde,
26 Richmond Street, Glasgow G1 1XH, United Kingdom
m.langer@strath.ac.uk
Vladimir Lotoreichik Department of Theoretical Physics, Nuclear Physics Institute CAS,
250 68 Řež near Prague, Czech Republic
lotoreichik@ujf.cas.cz
 and  Jonathan Rohleder Stockholms universitet, Matematiska institutionen, 10691 Stockholm, Sweden jonathan.rohleder@math.su.se
Abstract.

The spectral properties of non-self-adjoint extensions A[B]A_{[B]} of a symmetric operator in a Hilbert space are studied with the help of ordinary and quasi boundary triples and the corresponding Weyl functions. These extensions are given in terms of abstract boundary conditions involving an (in general non-symmetric) boundary operator BB. In the abstract part of this paper, sufficient conditions for sectoriality and m-sectoriality as well as sufficient conditions for A[B]A_{[B]} to have a non-empty resolvent set are provided in terms of the parameter BB and the Weyl function. Special attention is paid to Weyl functions that decay along the negative real line or inside some sector in the complex plane, and spectral enclosures for A[B]A_{[B]} are proved in this situation. The abstract results are applied to elliptic differential operators with local and non-local Robin boundary conditions on unbounded domains, to Schrödinger operators with δ\delta-potentials of complex strengths supported on unbounded hypersurfaces or infinitely many points on the real line, and to quantum graphs with non-self-adjoint vertex couplings.
Keywords: non-self-adjoint extension, spectral enclosure, differential operator, Weyl function.
Mathematics Subject Classification (MSC2010): 47A10; 35P05, 35J25, 81Q12, 35J10, 34L40, 81Q35.

Contents

1. Introduction 1
2. Quasi boundary triples and their Weyl functions 2
3. Sectorial extensions of symmetric operators 3
4. Sufficient conditions for closed extensions with non-empty resolvent set 4
5. Consequences of the decay of the Weyl function 5
6. Sufficient conditions for decay of the Weyl function 6
7. Elliptic operators with non-local Robin boundary conditions 7
8. Schrödinger operators with δ\delta-interaction on hypersurfaces 8
9. Infinitely many point interactions on the real line 9
10. Quantum graphs with δ\delta-type vertex couplings 10

1. Introduction

Spectral problems for differential operators in Hilbert spaces and related boundary value problems have attracted a lot of attention in the last decades and have strongly influenced the development of modern functional analysis and operator theory. For example, the classical treatment of Sturm–Liouville operators and the corresponding Titchmarsh–Weyl theory in Hilbert spaces have led to the abstract concept of boundary triples and their Weyl functions (see [43, 55, 82, 96]), which is an efficient and well-established tool to investigate closed extensions of symmetric operators and their spectral properties via abstract boundary maps and an analytic function; see, e.g. [1, 5, 40, 41, 42, 44, 53, 56, 115, 117, 125]. The more recent notion of quasi boundary triples and their Weyl functions are inspired by PDE analysis in a similar way. This abstract concept from [22, 24] is tailor-made for spectral problems involving elliptic partial differential operators and the corresponding boundary value problems; the Weyl function of a quasi boundary triple is the abstract counterpart of the Dirichlet-to-Neumann map. For different abstract treatments of elliptic PDEs and Dirichlet-to-Neumann maps we refer to the classical works [84, 128] and the more recent approaches [11, 12, 13, 30, 54, 77, 78, 79, 80, 83, 91, 118, 122, 124].

To recall the notions of ordinary and quasi boundary triples in more detail, let SS be a densely defined, closed, symmetric operator in a Hilbert space (,(,))({\mathcal{H}},(\cdot,\cdot)_{\mathcal{H}}) and let SS^{*} denote its adjoint; then {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is said to be an ordinary boundary triple for SS^{*} if Γ0,Γ1:domS𝒢\Gamma_{0},\Gamma_{1}:\operatorname{dom}S^{*}\rightarrow{\mathcal{G}} are linear mappings from the domain of SS^{*} into an auxiliary Hilbert space (𝒢,(,)𝒢)({\mathcal{G}},(\cdot,\cdot)_{\mathcal{G}}) that satisfy the abstract Lagrange or Green identity

(Sf,g)(f,Sg)=(Γ1f,Γ0g)𝒢(Γ0f,Γ1g)𝒢for allf,gdomS(S^{*}f,g)_{\mathcal{H}}-(f,S^{*}g)_{\mathcal{H}}=(\Gamma_{1}f,\Gamma_{0}g)_{\mathcal{G}}-(\Gamma_{0}f,\Gamma_{1}g)_{\mathcal{G}}\quad\text{for all}\;\;f,g\in\operatorname{dom}S^{*} (1.1)

and a certain maximality condition. The corresponding Weyl function MM is an operator-valued function in 𝒢{\mathcal{G}}, which is defined by

M(λ)Γ0f=Γ1f,fker(Sλ),λρ(A0),M(\lambda)\Gamma_{0}f=\Gamma_{1}f,\qquad f\in\ker(S^{*}-\lambda),\;\lambda\in\rho(A_{0}), (1.2)

where A0=SkerΓ0A_{0}=S^{*}\upharpoonright\ker\Gamma_{0} is a self-adjoint operator in {\mathcal{H}}. For a singular Sturm–Liouville expression d2dx2+V-\frac{{\mathrm{d}}^{2}}{{\mathrm{d}}x^{2}}+V in L2(0,)L^{2}(0,\infty) with a real-valued potential VL(0,)V\in L^{\infty}(0,\infty) the operators SS and SS^{*} can be chosen as the minimal and maximal operators, respectively, together with 𝒢={\mathcal{G}}={\mathbb{C}} and Γ0f=f(0)\Gamma_{0}f=f(0), Γ1f=f(0)\Gamma_{1}f=f^{\prime}(0) for fdomSf\in\operatorname{dom}S^{*}; in this case the corresponding abstract Weyl function coincides with the classical Titchmarsh–Weyl mm-function.

The notion of quasi boundary triples is a natural generalization of the concept above, inspired by, and developed for, the treatment of elliptic differential operators. The main difference is, that the boundary maps Γ0\Gamma_{0} and Γ1\Gamma_{1} are only defined on a subspace domT\operatorname{dom}T of domS\operatorname{dom}S^{*}, where TT is an operator in {\mathcal{H}} which satisfies T¯=S\overline{T}=S^{*}. The identities (1.1) and (1.2) are only required to hold for elements in domT\operatorname{dom}T; see Section 2 for precise definitions. For the Schrödinger operator Δ+V-\Delta+V in L2(Ω)L^{2}(\Omega) with a real-valued potential VL(Ω)V\in L^{\infty}(\Omega) on a domain Ωn\Omega\subset{\mathbb{R}}^{n} with a sufficiently regular boundary Ω\partial\Omega, the operators SS and SS^{*} can again be taken as the minimal and maximal operator, respectively, and a convenient choice for the domain of T=Δ+VT=-\Delta+V is H2(Ω)H^{2}(\Omega). Then 𝒢=L2(Ω){\mathcal{G}}=L^{2}(\partial\Omega) and Γ0f=νf|Ω\Gamma_{0}f=\partial_{\nu}f|_{\partial\Omega}, Γ1f=f|Ω\Gamma_{1}f=f|_{\partial\Omega} (where the latter denote the normal derivative and trace) form a quasi boundary triple, and the corresponding Weyl function is the energy-dependent Neumann-to-Dirichlet map.

The main focus of this paper is on non-self-adjoint extensions of SS that are restrictions of SS^{*} parameterized by an ordinary or quasi boundary triple and an (in general non-self-adjoint) boundary parameter, and to describe their spectral properties. For a quasi boundary triple {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} and a linear operator BB in 𝒢{\mathcal{G}} we consider the operator

A[B]f=Tf,domA[B]={fdomT:Γ0f=BΓ1f}A_{[B]}f=Tf,\qquad\operatorname{dom}A_{[B]}=\bigl{\{}f\in\operatorname{dom}T:\Gamma_{0}f=B\Gamma_{1}f\bigr{\}} (1.3)

in {\mathcal{H}}. The principal results of this paper include (a) a sufficient condition for A[B]A_{[B]} to be m-sectorial and (b) enclosures for the numerical range and the spectrum of the operator A[B]A_{[B]} in parabola-type regions. The latter make use of decay properties of the Weyl function MM along the negative half-axis or inside sectors in the complex plane; in order to make these results easily applicable, we provide (c) an abstract sufficient condition for the Weyl function to decay appropriately. We point out that, to the best of our knowledge, these results are also new in the special case of ordinary boundary triples. While the operator A[B]A_{[B]} can be regarded as a perturbation of the self-adjoint operator A0A_{0} in the resolvent sense, let us mention that the spectra of additive non-self-adjoint perturbations of self-adjoint operators were studied recently in, e.g. [48, 49, 50, 51, 71]. In the second half of the present paper, we provide applications of these results to several classes of operators, namely to elliptic differential operators with local and non-local Robin boundary conditions on domains with possibly non-compact boundaries, to Schrödinger operators with δ\delta-interactions of complex strength supported on hypersurfaces, to infinitely many point δ\delta-interactions on the real line, and to quantum graphs with non-self-adjoint vertex couplings.

Let us explain in more detail the structure, methodology, and results of this paper. After the preliminary Section 2, our first main result is Theorem 3.1, where it is shown that, under certain assumptions on the Weyl function and the boundary parameter BB, the operator A[B]A_{[B]} in (1.3) is sectorial, and a sector containing the numerical range of A[B]A_{[B]} is specified. However, in applications it is essential to ensure that a sectorial operator is m-sectorial; hence the next main objective is to prove that the resolvent set of the operator A[B]A_{[B]} in (1.3) is non-empty, which is a non-trivial question particularly for quasi boundary triples. This problem is treated in Section 4. The principal result here is Theorem 4.1, in which we provide sufficient conditions for λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}) in terms of the operator M(λ0)M(\lambda_{0}) and the parameter BB. In this context also a Krein-type resolvent formula is obtained, and the adjoint of A[B]A_{[B]} is related to a dual parameter BB^{\prime}; cf. [27, 29] for the special case of symmetric BB. We list various corollaries of Theorem 4.1 for more specialized situations. We point out that an alternative description of sectorial and m-sectorial extensions of a symmetric operator can be found in [14, 114]; see also the review article [15] and [16, 17, 18]. Section 4 is complemented by two propositions on Schatten–von Neumann properties for the resolvent difference of A[B]A_{[B]} and A0A_{0}; cf. [27, 55] for related abstract results and, e.g. [21, 26, 33, 85, 112, 115] for applications to differential operators. Such estimates can be used, for instance, to get bounds on the discrete spectrum of A[B]A_{[B]}; cf. [51]. In Section 5 we consider the situation when the Weyl function MM converges to 0 in norm along the negative half-axis or in some sector in the complex plane. The most important result in this section is Theorem 5.6 where, under the assumption that M(λ)\|M(\lambda)\| decays like a power of 1|λ|\frac{1}{|\lambda|}, the numerical range and the spectrum of A[B]A_{[B]} are contained in a parabola-type region. Spectral enclosures of this type with more restrictive assumptions on BB were obtained for elliptic partial differential operators in [19, 20, 73]; similar enclosures for Schrödinger operators with complex-valued regular potentials can be found in [2, 71, 108]. They also appear in the abstract settings of so-called pp-subordinate perturbations [131]. Finally, as the last topic within the abstract part of this paper, we prove in Theorem 6.1 that the Weyl function decays along the negative real line or in suitable complex sectors with a certain rate if the map Γ1|A0μ|α\Gamma_{1}|A_{0}-\mu|^{-\alpha} is bounded for some α(0,12]\alpha\in(0,\tfrac{1}{2}] and some μρ(A0)\mu\in\rho(A_{0}), where the rate of the decay depends on α\alpha. Example 6.4 shows the sharpness of this result.

Our abstract results are applied in Section 7 to elliptic partial differential operators with (in general non-local) Robin boundary conditions on domains with possibly non-compact boundaries; the class of admissible unbounded domains includes, for instance, domains of waveguide-type as considered in [34, 67]. In Section 8 we apply our abstract results to Schrödinger operators in n{\mathbb{R}}^{n} with δ\delta-potentials of complex strength supported on (not necessarily bounded) hypersurfaces. We indicate also how our abstract methods can be combined with very recent norm estimates from [75] in order to obtain further spectral enclosures and to establish absence of non-real spectrum for ‘weak’ complex δ\delta-interactions in space dimensions n3n\geq 3 for compact hypersurfaces. Finally, we apply our machinery to Schrödinger operators on the real line with non-Hermitian δ\delta-interactions supported on infinitely many points in Section 9, and to Laplacians on finite (not necessarily compact) graphs with non-self-adjoint vertex couplings in Section 10. Each of these sections has the same structure: after the problem under consideration is explained, first a quasi (or ordinary) boundary triple and its Weyl function are provided; next a lemma on the decay of the Weyl function is proved, and then a main result on spectral properties and enclosures is formulated, which can be derived easily from that decay together with the abstract results in the first part of this paper in each particular situation. To illustrate the different types of boundary conditions and interactions, more specialized cases and explicit examples are included in Sections 710.

Finally, let us fix some notation. By \sqrt{\cdot} we denote the branch of the complex square root such that Imλ>0\operatorname{Im}\sqrt{\lambda}>0 for all λ[0,)\lambda\in{\mathbb{C}}\setminus[0,\infty). Let us set +:=[0,){\mathbb{R}}_{+}\mathrel{\mathop{:}}=[0,\infty) and ±:={λ:±Imλ>0}{\mathbb{C}}^{\pm}\mathrel{\mathop{:}}=\{\lambda\in{\mathbb{C}}:\pm\operatorname{Im}\lambda>0\}. Moreover, for any bounded, complex-valued function α\alpha we use the abbreviation α:=sup|α|\|\alpha\|_{\infty}\mathrel{\mathop{:}}=\sup|\alpha|. The space of bounded, everywhere defined operators from a Hilbert space 1{\mathcal{H}}_{1} to another Hilbert space 2{\mathcal{H}}_{2} is denoted by (1,2){\mathcal{B}}({\mathcal{H}}_{1},{\mathcal{H}}_{2}), and we set (1):=(1,1){\mathcal{B}}({\mathcal{H}}_{1})\mathrel{\mathop{:}}={\mathcal{B}}({\mathcal{H}}_{1},{\mathcal{H}}_{1}). The Schatten–von Neumann ideal that consists of all compact operators from 1{\mathcal{H}}_{1} to 2{\mathcal{H}}_{2} whose singular values are pp-summable is denoted by 𝔖p(1,2){\mathfrak{S}}_{p}({\mathcal{H}}_{1},{\mathcal{H}}_{2}), and we set 𝔖p(1):=𝔖p(1,1){\mathfrak{S}}_{p}({\mathcal{H}}_{1})\mathrel{\mathop{:}}={\mathfrak{S}}_{p}({\mathcal{H}}_{1},{\mathcal{H}}_{1}); see, e.g. [81] for a detailed study of the 𝔖p{\mathfrak{S}}_{p}-classes. Furthermore, for each densely defined operator AA in a Hilbert space we write ReA:=12(A+A)\operatorname{Re}A\mathrel{\mathop{:}}=\frac{1}{2}(A+A^{*}) and ImA:=12i(AA)\operatorname{Im}A\mathrel{\mathop{:}}=\frac{1}{2i}(A-A^{*}) for its real and imaginary part, respectively, and, if AA is closed, we denote by ρ(A)\rho(A) and σ(A)\sigma(A) its resolvent set and spectrum, respectively.

2. Quasi boundary triples and their Weyl functions

In this preparatory section we first recall the notion and some properties of quasi boundary triples and their Weyl functions from [22, 24]. Moreover, we discuss some elementary estimates and decay properties of the Weyl function.

In the following let SS be a densely defined, closed, symmetric operator in a Hilbert space {\mathcal{H}}.

Definition 2.1.

Let TST\subset S^{*} be a linear operator in {\mathcal{H}} such that T¯=S\overline{T}=S^{*}. A triple {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is called a quasi boundary triple for TST\subset S^{*} if 𝒢{\mathcal{G}} is a Hilbert space and Γ0,Γ1:domT𝒢\Gamma_{0},\Gamma_{1}:\operatorname{dom}T\rightarrow{\mathcal{G}} are linear mappings such that

  • (i)

    the abstract Green identity

    (Tf,g)(f,Tg)=(Γ1f,Γ0g)(Γ0f,Γ1g)(Tf,g)-(f,Tg)=(\Gamma_{1}f,\Gamma_{0}g)-(\Gamma_{0}f,\Gamma_{1}g) (2.1)

    holds for all f,gdomTf,g\in\operatorname{dom}T, where (,)(\,\cdot,\,\cdot) denotes the inner product both in {\mathcal{H}} and 𝒢{\mathcal{G}};

  • (ii)

    the map Γ:=(Γ0,Γ1):domT𝒢×𝒢\Gamma\mathrel{\mathop{:}}=(\Gamma_{0},\Gamma_{1})^{\top}:\operatorname{dom}T\to\mathcal{G}\times\mathcal{G} has dense range;

  • (iii)

    A0:=TkerΓ0A_{0}\mathrel{\mathop{:}}=T\upharpoonright\ker\Gamma_{0} is a self-adjoint operator in {\mathcal{H}}.

If condition (ii) is replaced by the condition

  • (ii)’

    the map Γ0:domT𝒢\Gamma_{0}:\operatorname{dom}T\to\mathcal{G} is onto,

then {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is called a generalized boundary triple for TST\subset S^{*}.

The notion of quasi boundary triples was introduced in [22, Definition 2.1]. The concept of generalized boundary triples appeared first in [56, Definition 6.1]. It follows from [56, Lemma 6.1] that each generalized boundary triple is also a quasi boundary triple. We remark that the converse is in general not true. A quasi or generalized boundary triple reduces to an ordinary boundary triple if the map Γ\Gamma in condition (ii) is onto (see [22, Corollary 3.2]). In this case TT is closed and coincides with SS^{*}, and A0A_{0} in condition (iii) is automatically self-adjoint. For the convenience of the reader we recall the usual definition of ordinary boundary triples.

Definition 2.2.

A triple {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is called an ordinary boundary triple for SS^{*} if 𝒢{\mathcal{G}} is a Hilbert space and Γ0,Γ1:domS𝒢\Gamma_{0},\Gamma_{1}:\operatorname{dom}S^{*}\rightarrow{\mathcal{G}} are linear mappings such that

  • (i)

    the abstract Green identity

    (Sf,g)(f,Sg)=(Γ1f,Γ0g)(Γ0f,Γ1g)(S^{*}f,g)-(f,S^{*}g)=(\Gamma_{1}f,\Gamma_{0}g)-(\Gamma_{0}f,\Gamma_{1}g) (2.2)

    holds for all f,gdomSf,g\in\operatorname{dom}S^{*};

  • (ii)

    the map Γ:=(Γ0,Γ1):domS𝒢×𝒢\Gamma\mathrel{\mathop{:}}=(\Gamma_{0},\Gamma_{1})^{\top}:\operatorname{dom}S^{*}\rightarrow\mathcal{G}\times\mathcal{G} is onto.

We refer the reader to [22, 24] for a detailed study of quasi boundary triples, to [52, 56] for generalized boundary triples and to [43, 44, 55, 82, 96] for ordinary boundary triples. For later purposes we recall the following result, which is useful to determine the adjoint and a (quasi) boundary triple for a given symmetric operator; see [22, Theorem 2.3].

Theorem 2.3.

Let {\mathcal{H}} and 𝒢{\mathcal{G}} be Hilbert spaces and let TT be a linear operator in {\mathcal{H}}. Assume that Γ0,Γ1:domT𝒢\Gamma_{0},\Gamma_{1}:\operatorname{dom}T\rightarrow{\mathcal{G}} are linear mappings such that the following conditions hold:

  • (i)

    the abstract Green identity

    (Tf,g)(f,Tg)=(Γ1f,Γ0g)(Γ0f,Γ1g)(Tf,g)-(f,Tg)=(\Gamma_{1}f,\Gamma_{0}g)-(\Gamma_{0}f,\Gamma_{1}g)

    holds for all f,gdomTf,g\in\operatorname{dom}T;

  • (ii)

    the map (Γ0,Γ1):domT𝒢×𝒢(\Gamma_{0},\Gamma_{1})^{\top}:\operatorname{dom}T\rightarrow{\mathcal{G}}\times{\mathcal{G}} has dense range and kerΓ0kerΓ1\ker\Gamma_{0}\cap\ker\Gamma_{1} is dense in {\mathcal{H}};

  • (iii)

    TkerΓ0T\upharpoonright\ker\Gamma_{0} is an extension of a self-adjoint operator A0A_{0}.

Then the restriction

S:=T(kerΓ0kerΓ1)S\mathrel{\mathop{:}}=T\upharpoonright(\ker\Gamma_{0}\cap\ker\Gamma_{1})

is a densely defined closed symmetric operator in {\mathcal{H}}, T¯=S\overline{T}=S^{*}, and {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is a quasi boundary triple for TST\subset S^{*} with A0=TkerΓ0A_{0}=T\upharpoonright\ker\Gamma_{0}. If, in addition, the operator TT is closed or, equivalently, the map (Γ0,Γ1):domT𝒢×𝒢(\Gamma_{0},\Gamma_{1})^{\top}:\operatorname{dom}T\rightarrow{\mathcal{G}}\times{\mathcal{G}} is onto, then T=ST=S^{*} and {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is an ordinary boundary triple for SS^{*} with A0=TkerΓ0A_{0}=T\upharpoonright\ker\Gamma_{0}.

In the following let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*}. Since A0=TkerΓ0A_{0}=T\upharpoonright\ker\Gamma_{0} is self-adjoint, we have ρ(A0){\mathbb{C}}\setminus{\mathbb{R}}\subset\rho(A_{0}), and for each λρ(A0)\lambda\in\rho(A_{0}) the direct sum decomposition

domT=domA0+˙ker(Tλ)=kerΓ0+˙ker(Tλ)\operatorname{dom}T=\operatorname{dom}A_{0}\,\dot{+}\,\ker(T-\lambda)=\ker\Gamma_{0}\,\dot{+}\,\ker(T-\lambda)

holds. In particular, the restriction of the map Γ0\Gamma_{0} to ker(Tλ)\ker(T-\lambda) is injective. This allows the following definition.

Definition 2.4.

The γ\gamma-field γ\gamma and the Weyl function MM corresponding to the quasi boundary triple {𝒢,Γ0,Γ1}\{\mathcal{G},\Gamma_{0},\Gamma_{1}\} are defined by

λγ(λ):=(Γ0ker(Tλ))1,λρ(A0),\lambda\mapsto\gamma(\lambda)\mathrel{\mathop{:}}=\bigl{(}\Gamma_{0}\upharpoonright\ker(T-\lambda)\bigr{)}^{-1},\qquad\lambda\in\rho(A_{0}),

and

λM(λ):=Γ1γ(λ),λρ(A0),\lambda\mapsto M(\lambda)\mathrel{\mathop{:}}=\Gamma_{1}\gamma(\lambda),\qquad\lambda\in\rho(A_{0}),

respectively.

The values γ(λ)\gamma(\lambda) of the γ\gamma-field are operators defined on the dense subspace ranΓ0𝒢\operatorname{ran}\Gamma_{0}\subset{\mathcal{G}} which map onto ker(Tλ)\ker(T-\lambda)\subset{\mathcal{H}}. The values M(λ)M(\lambda) of the Weyl function are densely defined operators in 𝒢{\mathcal{G}} mapping ranΓ0\operatorname{ran}\Gamma_{0} into ranΓ1\operatorname{ran}\Gamma_{1}. In particular, if {𝒢,Γ0,Γ1}\{\mathcal{G},\Gamma_{0},\Gamma_{1}\} is a generalized or ordinary boundary triple, then γ(λ)\gamma(\lambda) and M(λ)M(\lambda) are defined on 𝒢=ranΓ0{\mathcal{G}}=\operatorname{ran}\Gamma_{0}, and it can be shown that γ(λ)(𝒢,)\gamma(\lambda)\in{\mathcal{B}}({\mathcal{G}},{\mathcal{H}}) and M(λ)(𝒢)M(\lambda)\in{\mathcal{B}}({\mathcal{G}}) in this case.

Next we list some important properties of the γ\gamma-field and the Weyl function corresponding to a quasi boundary triple {𝒢,Γ0,Γ1}\{\mathcal{G},\Gamma_{0},\Gamma_{1}\}, which can be found in [22, Proposition 2.6] or [24, Propositions 6.13 and 6.14]. These properties are well known for the γ\gamma-field and Weyl function corresponding to a generalized or ordinary boundary triple. Let λ,μρ(A0)\lambda,\mu\in\rho(A_{0}). Then the adjoint operator γ(λ)\gamma(\lambda)^{*} is bounded and satisfies

γ(λ)=Γ1(A0λ¯)1(,𝒢);\gamma(\lambda)^{*}=\Gamma_{1}(A_{0}-\overline{\lambda})^{-1}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}); (2.3)

hence also γ(λ)\gamma(\lambda) is bounded and γ(λ)¯=γ(λ)(𝒢,)\overline{\gamma(\lambda)}=\gamma(\lambda)^{**}\in{\mathcal{B}}({\mathcal{G}},{\mathcal{H}}). One has the useful identity

γ(λ)=(I+(λμ)(A0λ)1)γ(μ)=(A0μ)(A0λ)1γ(μ)\gamma(\lambda)=\bigl{(}I+(\lambda-\mu)(A_{0}-\lambda)^{-1}\bigr{)}\gamma(\mu)=(A_{0}-\mu)(A_{0}-\lambda)^{-1}\gamma(\mu) (2.4)

for λ,μρ(A0)\lambda,\mu\in\rho(A_{0}), which implies

γ(λ)¯=(I+(λμ)(A0λ)1)γ(μ)¯=(A0μ)(A0λ)1γ(μ)¯.\overline{\gamma(\lambda)}=\bigl{(}I+(\lambda-\mu)(A_{0}-\lambda)^{-1}\bigr{)}\overline{\gamma(\mu)}=(A_{0}-\mu)(A_{0}-\lambda)^{-1}\overline{\gamma(\mu)}. (2.5)

With the help of the functional calculus of the self-adjoint operator A0A_{0} one can conclude from (2.5) that

γ(λ¯)¯=γ(λ)¯for allλρ(A0).\big{\|}\overline{\gamma(\overline{\lambda})}\big{\|}=\big{\|}\overline{\gamma(\lambda)}\big{\|}\qquad\text{for all}\;\;\lambda\in\rho(A_{0}). (2.6)

The values M(λ)M(\lambda) of the Weyl function satisfy M(λ)M(λ¯)M(\lambda)\subset M(\overline{\lambda})^{*} and, in particular, the operators M(λ)M(\lambda) are closable. In general, the operators M(λ)M(\lambda) and their closures M(λ)¯\overline{M(\lambda)} are not bounded. However, if M(λ0)M(\lambda_{0}) is bounded for some λ0ρ(A0)\lambda_{0}\in\rho(A_{0}), then M(λ)M(\lambda) is bounded for all λρ(A0)\lambda\in\rho(A_{0}); see Lemma 2.5 below. The function λM(λ)\lambda\mapsto M(\lambda) is holomorphic in the sense that for any fixed μρ(A0)\mu\in\rho(A_{0}) it can be written as the sum of the possibly unbounded operator ReM(μ)\operatorname{Re}M(\mu) and a (𝒢){\mathcal{B}}({\mathcal{G}})-valued holomorphic function,

M(λ)=ReM(μ)+γ(μ)[(λReμ)+(λμ)(λμ¯)(A0λ)1]γ(μ)¯M(\lambda)=\operatorname{Re}M(\mu)+\gamma(\mu)^{*}\bigl{[}(\lambda-\operatorname{Re}\mu)+(\lambda-\mu)(\lambda-\overline{\mu})(A_{0}-\lambda)^{-1}\bigr{]}\overline{\gamma(\mu)}

for all λρ(A0)\lambda\in\rho(A_{0}). In particular, ImM(λ)\operatorname{Im}M(\lambda) is a bounded operator for each λρ(A0)\lambda\in\rho(A_{0}).

Further, for every xranΓ0x\in\operatorname{ran}\Gamma_{0} we have

dndλn(M(λ)x)=dndλn(γ(μ)[(λReμ)+(λμ)(λμ¯)(A0λ)1]γ(μ)¯x)\frac{{\mathrm{d}}^{n}}{{\mathrm{d}}\lambda^{n}}\bigl{(}M(\lambda)x\bigr{)}=\frac{{\mathrm{d}}^{n}}{{\mathrm{d}}\lambda^{n}}\bigl{(}\gamma(\mu)^{*}\bigl{[}(\lambda-\operatorname{Re}\mu)+(\lambda-\mu)(\lambda-\overline{\mu})(A_{0}-\lambda)^{-1}\bigr{]}\overline{\gamma(\mu)}x\bigr{)}

for all λρ(A0)\lambda\in\rho(A_{0}) and all nn\in\mathbb{N}, and hence the nnth strong derivative M(n)(λ)M^{(n)}(\lambda) (viewed as an operator defined on ranΓ0\operatorname{ran}\Gamma_{0}) admits a continuous extension M(n)(λ)¯(𝒢)\overline{M^{(n)}(\lambda)}\in{\mathcal{B}}({\mathcal{G}}). It satisfies

M(n)(λ)¯=n!γ(λ¯)(A0λ)(n1)γ(λ)¯,λρ(A0),n;\overline{M^{(n)}(\lambda)}=n!\,\gamma(\overline{\lambda})^{*}(A_{0}-\lambda)^{-(n-1)}\overline{\gamma(\lambda)},\qquad\lambda\in\rho(A_{0}),\;n\in\mathbb{N}; (2.7)

see [28, Lemma 2.4 (iii)].

The Weyl function also satisfies (see [22, Proposition 2.6 (v)])

M(λ)M(μ)=(λμ)γ(μ¯)γ(λ),M(\lambda)-M(\mu)=(\lambda-\mu)\gamma(\overline{\mu})^{*}\gamma(\lambda), (2.8)

and with μ=λ¯\mu=\overline{\lambda} and the relation M(λ¯)M(λ)M(\overline{\lambda})\subset M(\lambda)^{*} it follows that

ImM(λ)=(Imλ)γ(λ)γ(λ)andImM(λ)¯=(Imλ)γ(λ)γ(λ)¯.\operatorname{Im}M(\lambda)=(\operatorname{Im}\lambda)\gamma(\lambda)^{*}\gamma(\lambda)\qquad\text{and}\qquad\overline{\operatorname{Im}M(\lambda)}=(\operatorname{Im}\lambda)\gamma(\lambda)^{*}\overline{\gamma(\lambda)}. (2.9)

In the case when the values of MM are bounded operators we provide a simple bound for the norms M(λ)¯\|\overline{M(\lambda)}\| in the next lemma.

Lemma 2.5.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Assume that M(λ)M(\lambda) is bounded for one λρ(A0)\lambda\in\rho(A_{0}). Then M(λ)M(\lambda) is bounded for all λρ(A0)\lambda\in\rho(A_{0}), and the estimate

M(λ)¯(1+|λμ||Imμ|+|λμ||λμ¯||Imλ||Imμ|)M(μ)¯\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\biggl{(}1+\frac{|\lambda-\mu|}{|\operatorname{Im}\mu|}+\frac{|\lambda-\mu||\lambda-\overline{\mu}|}{|\operatorname{Im}\lambda|\cdot|\operatorname{Im}\mu|}\biggr{)}\bigl{\|}\overline{M(\mu)}\bigr{\|} (2.10)

holds for all λ,μ\lambda,\mu\in\mathbb{C}\setminus\mathbb{R}.

Proof.

It follows from (2.8), the relation γ(λ)¯(𝒢,)\overline{\gamma(\lambda)}\in{\mathcal{B}}({\mathcal{G}},{\mathcal{H}}) and (2.3) that M(λ)M(\lambda) is bounded for all λρ(A0)\lambda\in\rho(A_{0}) if it is bounded for one λρ(A0)\lambda\in\rho(A_{0}). Moreover, from the second identity in (2.9) we conclude that

γ(μ¯)¯\displaystyle\bigl{\|}\overline{\gamma(\overline{\mu})}\bigr{\|} =γ(μ¯)γ(μ¯)¯1/2\displaystyle=\bigl{\|}\gamma(\overline{\mu})^{*}\overline{\gamma(\overline{\mu})}\bigr{\|}^{1/2} (2.11)
=ImM(μ¯)¯1/2|Imμ¯|1/2=ImM(μ)¯1/2|Imμ|1/2,μ,\displaystyle=\frac{\bigl{\|}\overline{\operatorname{Im}M(\overline{\mu})}\bigr{\|}^{1/2}}{|\operatorname{Im}\overline{\mu}|^{1/2}}=\frac{\bigl{\|}\overline{\operatorname{Im}M(\mu)}\bigr{\|}^{1/2}}{|\operatorname{Im}\mu|^{1/2}}\,,\hskip 43.05542pt\mu\in\mathbb{C}\setminus\mathbb{R},

where we have used that M(μ¯)¯=M(μ)\overline{M(\overline{\mu})}=M(\mu)^{*}. If we replace γ(λ)\gamma(\lambda) on the right-hand side of (2.8) with the right-hand side of (2.4), we obtain the representation

M(λ)=M(μ)+(λμ)γ(μ¯)γ(μ¯)+(λμ)(λμ¯)γ(μ¯)(A0λ)1γ(μ¯).M(\lambda)=M(\mu)+(\lambda-\mu)\gamma(\overline{\mu})^{*}\gamma(\overline{\mu})+(\lambda-\mu)(\lambda-\overline{\mu})\gamma(\overline{\mu})^{*}(A_{0}-\lambda)^{-1}\gamma(\overline{\mu}). (2.12)

By combining (2.11) and (2.12), for λ,μ\lambda,\mu\in\mathbb{C}\setminus\mathbb{R} we obtain the estimate

M(λ)¯\displaystyle\bigl{\|}\overline{M(\lambda)}\bigr{\|} M(μ)¯+(|λμ|+|λμ||λμ¯|(A0λ)1)γ(μ¯)¯2\displaystyle\leq\bigl{\|}\overline{M(\mu)}\bigr{\|}+\Bigl{(}|\lambda-\mu|+|\lambda-\mu||\lambda-\overline{\mu}|\bigl{\|}(A_{0}-\lambda)^{-1}\bigr{\|}\Bigr{)}\bigl{\|}\overline{\gamma(\overline{\mu})}\bigr{\|}^{2}
M(μ)¯+(|λμ|+|λμ||λμ¯||Imλ|)ImM(μ)¯|Imμ|\displaystyle\leq\bigl{\|}\overline{M(\mu)}\bigr{\|}+\biggl{(}|\lambda-\mu|+\frac{|\lambda-\mu||\lambda-\overline{\mu}|}{|\operatorname{Im}\lambda|}\biggr{)}\frac{\bigl{\|}\overline{\operatorname{Im}M(\mu)}\bigr{\|}}{|\operatorname{Im}\mu|}
(1+|λμ||Imμ|+|λμ||λμ¯||Imλ||Imμ|)M(μ)¯.\displaystyle\leq\biggl{(}1+\frac{|\lambda-\mu|}{|\operatorname{Im}\mu|}+\frac{|\lambda-\mu||\lambda-\overline{\mu}|}{|\operatorname{Im}\lambda|\cdot|\operatorname{Im}\mu|}\biggr{)}\bigl{\|}\overline{M(\mu)}\bigr{\|}.\qed

Decay properties of the Weyl function play an important role in this paper. The next lemma shows that a decay of the Weyl function along a non-real ray implies a uniform decay in certain sectors.

Lemma 2.6.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Assume that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and fix φ(π,0)(0,π)\varphi\in(-\pi,0)\cup(0,\pi). Then for every interval [ψ1,ψ2](π,0)[\psi_{1},\psi_{2}]\subset(-\pi,0) or [ψ1,ψ2](0,π)[\psi_{1},\psi_{2}]\subset(0,\pi) one has

M(reiψ)¯=O(M(reiφ)¯)asruniformly inψ[ψ1,ψ2].\bigl{\|}\overline{M(re^{i\psi})}\bigr{\|}={\rm O}\Bigl{(}\bigl{\|}\overline{M(re^{i\varphi})}\bigr{\|}\Bigr{)}\qquad\text{as}\;\;r\to\infty\;\;\text{uniformly in}\;\;\psi\in[\psi_{1},\psi_{2}]. (2.13)

In particular, if M(reiφ)¯0\|\overline{M(re^{i\varphi})}\|\to 0 as rr\to\infty, then M(reiψ)¯0\|\overline{M(re^{i\psi})}\|\to 0 as rr\to\infty uniformly in ψ[ψ1,ψ2]\psi\in[\psi_{1},\psi_{2}].

Proof.

Let μ=reiφ\mu=re^{i\varphi} and λ=reiψ\lambda=re^{i\psi} with ψ[ψ1,ψ2]\psi\in[\psi_{1},\psi_{2}] and r>0r>0. Then

|λμ|=r|eiψ+φ2(eiψφ2eiψφ2)|=2r|sin(ψφ2)||\lambda-\mu|=r\Bigl{|}e^{i\frac{\psi+\varphi}{2}}\Bigl{(}e^{i\frac{\psi-\varphi}{2}}-e^{-i\frac{\psi-\varphi}{2}}\Bigr{)}\Bigr{|}=2r\Bigl{|}\sin\Big{(}\frac{\psi-\varphi}{2}\Big{)}\Bigr{|}

and

|λμ¯|=2r|sin(ψ+φ2)|.|\lambda-\overline{\mu}|=2r\Bigl{|}\sin\Big{(}\frac{\psi+\varphi}{2}\Big{)}\Bigr{|}.

Now (2.10) yields

M(reiψ)¯(1+2|sinψφ2||sinφ|+4|sinψφ2||sinψ+φ2||sinψ||sinφ|)M(reiφ)¯,\bigl{\|}\overline{M(re^{i\psi})}\bigr{\|}\leq\biggl{(}1+\frac{2|\sin\frac{\psi-\varphi}{2}|}{|\sin\varphi|}+\frac{4|\sin\frac{\psi-\varphi}{2}||\sin\frac{\psi+\varphi}{2}|}{|\sin\psi|\cdot|\sin\varphi|}\biggr{)}\bigl{\|}\overline{M(re^{i\varphi})}\bigr{\|}, (2.14)

which shows (2.13) since the expression in the brackets on the right-hand side of (2.14) is uniformly bounded in ψ[ψ1,ψ2]\psi\in[\psi_{1},\psi_{2}]. ∎

In the context of the previous lemma we remark that λM(λ)¯\lambda\mapsto\|\overline{M(\lambda)}\| decays at most as |λ|1|\lambda|^{-1} since λ(M(λ)x,x)1\lambda\mapsto-(M(\lambda)x,x)^{-1} grows at most linearly as it is a Nevanlinna function for every xranΓ0x\in\operatorname{ran}\Gamma_{0}. We also recall from [29, Lemma 2.3] that for xranΓ0{0}x\in\operatorname{ran}\Gamma_{0}\setminus\{0\} the function

λ(M(λ)x,x)\lambda\mapsto\bigl{(}M(\lambda)x,x\bigr{)}

is strictly increasing on each interval in ρ(A0)\rho(A_{0})\cap\mathbb{R}; moreover, if A0A_{0} is bounded from below and

(M(λ)x,x)0asλ\bigl{(}M(\lambda)x,x\bigr{)}\to 0\qquad\text{as}\;\;\lambda\to-\infty

for all xranΓ0x\in\operatorname{ran}\Gamma_{0}, then

(M(λ)x,x)>0,xranΓ0{0},λ<minσ(A0).\bigl{(}M(\lambda)x,x\bigr{)}>0,\qquad x\in\operatorname{ran}\Gamma_{0}\setminus\{0\},\;\lambda<\min\sigma(A_{0}). (2.15)

In the next proposition the case when the self-adjoint operator A0=TkerΓ0A_{0}=T\upharpoonright\ker\Gamma_{0} is bounded from below and M(λ)¯0\|\overline{M(\lambda)}\|\to 0 as λ\lambda\to-\infty is considered. Here the extension

A1:=TkerΓ1A_{1}\mathrel{\mathop{:}}=T\upharpoonright\ker\Gamma_{1} (2.16)

is investigated. Observe that the abstract Green identity (2.2) yields that A1A_{1} is symmetric in {\mathcal{H}}, but in the setting of quasi boundary triples or generalized boundary triples A1A_{1} is not necessarily self-adjoint (in contrast to the case of ordinary boundary triples).

Proposition 2.7.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM and suppose that A1=TkerΓ1A_{1}=T\upharpoonright\ker\Gamma_{1} is self-adjoint and that A0A_{0} and A1A_{1} are bounded from below. Further, assume that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and that M(λ)¯0\|\overline{M(\lambda)}\|\to 0 as λ\lambda\to-\infty. Then

minσ(A0)minσ(A1).\min\sigma(A_{0})\leq\min\sigma(A_{1}). (2.17)
Proof.

The assumption M(λ)¯0\|\overline{M(\lambda)}\|\to 0 as λ\lambda\to-\infty implies that (2.15) holds for all xranΓ0{0}x\in\operatorname{ran}\Gamma_{0}\setminus\{0\}. Fix λ\lambda\in\mathbb{R} such that λ<minσ(A0)\lambda<\min\sigma(A_{0}) and λ<minσ(A1)\lambda<\min\sigma(A_{1}). It follows from [27, Theorem 3.8] and (2.15) that

((A1λ)1f,f)\displaystyle\bigl{(}(A_{1}-\lambda)^{-1}f,f\bigr{)} =((A0λ)1f,f)(M(λ)1γ(λ)f,γ(λ)f)\displaystyle=\bigl{(}(A_{0}-\lambda)^{-1}f,f\bigr{)}-\bigl{(}M(\lambda)^{-1}\gamma(\lambda)^{*}f,\gamma(\lambda)^{*}f\bigr{)}
=((A0λ)1f,f)(M(λ)M(λ)1γ(λ)f,M(λ)1γ(λ)f)\displaystyle=\bigl{(}(A_{0}-\lambda)^{-1}f,f\bigr{)}-\bigl{(}M(\lambda)M(\lambda)^{-1}\gamma(\lambda)^{*}f,M(\lambda)^{-1}\gamma(\lambda)^{*}f\bigr{)}
((A0λ)1f,f)\displaystyle\leq\bigl{(}(A_{0}-\lambda)^{-1}f,f\bigr{)}

for ff\in{\mathcal{H}}. Since (A1λ)1(A_{1}-\lambda)^{-1} and (A0λ)1(A_{0}-\lambda)^{-1} are bounded non-negative operators, we conclude that

maxσ((A1λ)1)maxσ((A0λ)1)\max\sigma\bigl{(}(A_{1}-\lambda)^{-1}\bigr{)}\leq\max\sigma\bigl{(}(A_{0}-\lambda)^{-1}\bigr{)}

and hence

minσ(A0λ)minσ(A1λ),\displaystyle\min\sigma(A_{0}-\lambda)\leq\min\sigma(A_{1}-\lambda),

which is equivalent to (2.17). ∎

3. Sectorial extensions of symmetric operators

Let SS be a densely defined, closed, symmetric operator in a Hilbert space {\mathcal{H}} and let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*}. For a linear operator BB in 𝒢{\mathcal{G}} we define the operator A[B]A_{[B]} in {\mathcal{H}} by

A[B]f=Tf,domA[B]={fdomT:Γ0f=BΓ1f},A_{[B]}f=Tf,\qquad\operatorname{dom}A_{[B]}=\bigl{\{}f\in\operatorname{dom}T:\Gamma_{0}f=B\Gamma_{1}f\bigr{\}}, (3.1)

where the boundary condition Γ0f=BΓ1f\Gamma_{0}f=B\Gamma_{1}f is understood in the sense that Γ1fdomB\Gamma_{1}f\in\operatorname{dom}B and Γ0f=BΓ1f\Gamma_{0}f=B\Gamma_{1}f holds. Clearly, A[B]A_{[B]} is a restriction of TT and hence of SS^{*}. Moreover, A[B]A_{[B]} is an extension of SS since S=T(kerΓ0kerΓ1)S=T\upharpoonright(\ker\Gamma_{0}\cap\ker\Gamma_{1}) by [22, Proposition 2.2]. Recall that in the special case of an ordinary boundary triple there is a one-to-one correspondence between closed linear relations BB in 𝒢{\mathcal{G}} and closed extensions A[B]A_{[B]} of SS that are restrictions of SS^{*} via (3.1); for proper relations BB the definition of A[B]A_{[B]} has to be interpreted accordingly. For generalized and quasi boundary triples one has to impose additional assumptions on BB to guarantee that A[B]A_{[B]} is closed. In this and the following sections we study the operators A[B]A_{[B]} thoroughly; in particular, we are interested in their spectral properties.

In the next theorem it is shown that under additional assumptions on BB and the Weyl function MM that corresponds to {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} the operator A[B]A_{[B]} is sectorial. Recall first that the numerical range, W(A)W(A), of a linear operator AA is defined as

W(A):={(Af,f):fdomA,f=1},W(A)\mathrel{\mathop{:}}=\bigl{\{}(Af,f):f\in\operatorname{dom}A,\;\|f\|=1\bigr{\}},

and that AA is called sectorial if W(A)W(A) is contained in a sector of the form

{z:Rezη,|Imz|κ(Rezη)}\big{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\eta,|\operatorname{Im}z|\leq\kappa(\operatorname{Re}z-\eta)\big{\}} (3.2)

for some η\eta\in\mathbb{R} and κ>0\kappa>0. An operator AA is called m-sectorial if W(A)W(A) is contained in a sector (3.2) and the complement of (3.2) has a non-trivial intersection with ρ(A)\rho(A). In this case the spectrum of AA is contained in the closure of W(A)W(A); see, e.g. [125, Propositions 2.8 and 3.19]. Note that if AA is m-sectorial, then A-A generates an analytic semigroup; see, e.g. [95, Theorem IX.1.24].

Theorem 3.1.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM such that A1=TkerΓ1A_{1}=T\upharpoonright\ker\Gamma_{1} is self-adjoint and bounded from below and ρ(A0)(,minσ(A1))\rho(A_{0})\cap(-\infty,\min\sigma(A_{1}))\not=\emptyset. Moreover, suppose that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and that

M(η)0for someη<minσ(A1),ηρ(A0).M(\eta)\geq 0\quad\text{for some}\,\,\eta<\min\sigma(A_{1}),\,\,\eta\in\rho(A_{0}). (3.3)

Let BB be a closable operator in 𝒢{\mathcal{G}} and assume that there exists bb\in{\mathbb{R}} such that

  • (i)

    Re(Bx,x)bx2\operatorname{Re}(Bx,x)\leq b\|x\|^{2}   for all xdomBx\in\operatorname{dom}B;

  • (ii)

    bM(η)¯<1b\bigl{\|}\overline{M(\eta)}\bigr{\|}<1;

  • (iii)

    ranM(η)¯1/2domB\operatorname{ran}\overline{M(\eta)}^{1/2}\subset\operatorname{dom}B.

Then the operator A[B]A_{[B]} is sectorial and the numerical range W(A[B])W(A_{[B]}) is contained in the sector

𝒮η(B):={z:Rezη,|Imz|κB(η)(Rezη)},{\mathcal{S}}_{\eta}(B)\mathrel{\mathop{:}}=\Bigl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\eta,\,|\operatorname{Im}z|\leq\kappa_{B}(\eta)\bigl{(}\operatorname{Re}z-\eta\bigr{)}\Bigr{\}}, (3.4)

where

κB(η):=Im(M(η)¯1/2BM(η)¯1/2)1bM(η)¯.\kappa_{B}(\eta)\mathrel{\mathop{:}}=\frac{\bigl{\|}\operatorname{Im}\bigl{(}\overline{M(\eta)}^{1/2}B\overline{M(\eta)}^{1/2}\bigr{)}\bigr{\|}}{1-b\bigl{\|}\overline{M(\eta)}\bigr{\|}}\,. (3.5)

In particular, if ρ(A[B])(𝒮η(B))\rho(A_{[B]})\cap({\mathbb{C}}\setminus{\mathcal{S}}_{\eta}(B))\not=\emptyset, then the operator A[B]A_{[B]} is m-sectorial and σ(A[B])\sigma(A_{[B]}) is contained in the sector 𝒮η(B){\mathcal{S}}_{\eta}(B).

Proof.

Let η<minσ(A1)\eta<\min\sigma(A_{1}) be such that ηρ(A0)\eta\in\rho(A_{0}) and M(η)0M(\eta)\geq 0, which exists by (3.3). Moreover, let fdomA[B]f\in\operatorname{dom}A_{[B]} with f=1\|f\|=1. Based on the decomposition

domT=domA1ker(Tη)=kerΓ1ker(Tη)\operatorname{dom}T=\operatorname{dom}A_{1}\dotplus\ker(T-\eta)=\ker\Gamma_{1}\dotplus\ker(T-\eta)

we can write ff in the form f=f1+fηf=f_{1}+f_{\eta} with f1kerΓ1=domA1f_{1}\in\ker\Gamma_{1}=\operatorname{dom}A_{1} and fηker(Tη)f_{\eta}\in\ker(T-\eta). This yields

(A[B]f,f)=(T(f1+fη),f1+fη)=(A1f1,f1)+(Tf1,fη)+(Tfη,fη)+(Tfη,f1)=(A1f1,f1)+(Tf1,fη)+η[fη2+(fη,f1)].\begin{split}(A_{[B]}f,f)&=\bigl{(}T(f_{1}+f_{\eta}),f_{1}+f_{\eta}\bigr{)}\\[2.15277pt] &=(A_{1}f_{1},f_{1})+(Tf_{1},f_{\eta})+(Tf_{\eta},f_{\eta})+(Tf_{\eta},f_{1})\\[2.15277pt] &=(A_{1}f_{1},f_{1})+(Tf_{1},f_{\eta})+\eta\big{[}\|f_{\eta}\|^{2}+(f_{\eta},f_{1})\big{]}.\end{split} (3.6)

Making use of the abstract Green identity (2.1) we obtain

(Tf1,fη)=(f1,Tfη)+(Γ1f1,Γ0fη)(Γ0f1,Γ1fη)=η(f1,fη)(Γ0f1,Γ1fη).\begin{split}(Tf_{1},f_{\eta})&=(f_{1},Tf_{\eta})+(\Gamma_{1}f_{1},\Gamma_{0}f_{\eta})-(\Gamma_{0}f_{1},\Gamma_{1}f_{\eta})\\[2.15277pt] &=\eta(f_{1},f_{\eta})-(\Gamma_{0}f_{1},\Gamma_{1}f_{\eta}).\end{split} (3.7)

Moreover, since fdomA[B]f\in\operatorname{dom}A_{[B]} and f1kerΓ1f_{1}\in\ker\Gamma_{1}, we have Γ1fηdomB\Gamma_{1}f_{\eta}\in\operatorname{dom}B and

Γ0f1=BΓ1fΓ0fη=BΓ1fηΓ0fη.\Gamma_{0}f_{1}=B\Gamma_{1}f-\Gamma_{0}f_{\eta}=B\Gamma_{1}f_{\eta}-\Gamma_{0}f_{\eta}. (3.8)

Combining (3.7) and (3.8) we can rewrite the right-hand side of (3.6) in the form

(A[B]f,f)\displaystyle(A_{[B]}f,f) =(A1f1,f1)+η(f1,fη)(BΓ1fηΓ0fη,Γ1fη)+η[fη2+(fη,f1)]\displaystyle=(A_{1}f_{1},f_{1})+\eta(f_{1},f_{\eta})-\bigl{(}B\Gamma_{1}f_{\eta}-\Gamma_{0}f_{\eta},\Gamma_{1}f_{\eta}\bigr{)}+\eta\bigl{[}\|f_{\eta}\|^{2}+(f_{\eta},f_{1})\bigr{]}
=(A1f1,f1)+η[fη2+2Re(fη,f1)](BΓ1fηΓ0fη,Γ1fη).\displaystyle=(A_{1}f_{1},f_{1})+\eta\bigl{[}\|f_{\eta}\|^{2}+2\operatorname{Re}(f_{\eta},f_{1})\bigr{]}-\bigl{(}B\Gamma_{1}f_{\eta}-\Gamma_{0}f_{\eta},\Gamma_{1}f_{\eta}\bigr{)}.

Next we use

fη2+2Re(fη,f1)=f2f12=1f12\|f_{\eta}\|^{2}+2\operatorname{Re}(f_{\eta},f_{1})=\|f\|^{2}-\|f_{1}\|^{2}=1-\|f_{1}\|^{2}

and the definition of M(η)M(\eta) to obtain

(A[B]f,f)=(A1f1,f1)+ηηf12(BM(η)Γ0fη,M(η)Γ0fη)+(Γ0fη,M(η)Γ0fη)=((A1η)f1,f1)+η(BM(η)¯Γ0fη,M(η)¯Γ0fη)+M(η)¯1/2Γ0fη2;\begin{split}(A_{[B]}f,f)&=(A_{1}f_{1},f_{1})+\eta-\eta\|f_{1}\|^{2}\\[2.15277pt] &\quad-\bigl{(}BM(\eta)\Gamma_{0}f_{\eta},M(\eta)\Gamma_{0}f_{\eta}\bigr{)}+\bigl{(}\Gamma_{0}f_{\eta},M(\eta)\Gamma_{0}f_{\eta}\bigr{)}\\[2.15277pt] &=\bigl{(}(A_{1}-\eta)f_{1},f_{1}\bigr{)}+\eta\\[2.15277pt] &\quad-\bigl{(}B\overline{M(\eta)}\Gamma_{0}f_{\eta},\overline{M(\eta)}\Gamma_{0}f_{\eta}\bigr{)}+\bigl{\|}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\bigr{\|}^{2};\end{split} (3.9)

recall that M(η)¯\overline{M(\eta)} is a bounded, self-adjoint, non-negative operator. Using assumption (i) we obtain

Re(BM(η)¯Γ0fη,M(η)¯Γ0fη)bM(η)¯Γ0fη2bM(η)¯1/22M(η)¯1/2Γ0fη2=bM(η)¯M(η)¯1/2Γ0fη2.\begin{split}\operatorname{Re}\bigl{(}B\overline{M(\eta)}\Gamma_{0}f_{\eta},\overline{M(\eta)}\Gamma_{0}f_{\eta}\bigr{)}&\leq b\bigl{\|}\overline{M(\eta)}\Gamma_{0}f_{\eta}\bigr{\|}^{2}\\[2.15277pt] &\leq b\bigl{\|}\overline{M(\eta)}^{1/2}\bigr{\|}^{2}\bigl{\|}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\bigr{\|}^{2}\\[2.15277pt] &=b\bigl{\|}\overline{M(\eta)}\bigr{\|}\,\bigl{\|}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\bigr{\|}^{2}.\end{split} (3.10)

From this, (3.9) and the fact that η<minσ(A1)\eta<\min\sigma(A_{1}) we conclude that

Re(A[B]f,f)ηRe(BM(η)¯Γ0fη,M(η)¯Γ0fη)+M(η)¯1/2Γ0fη2η+(1bM(η)¯)M(η)¯1/2Γ0fη2.\begin{split}\operatorname{Re}(A_{[B]}f,f)&\geq\eta-\operatorname{Re}\bigl{(}B\overline{M(\eta)}\Gamma_{0}f_{\eta},\overline{M(\eta)}\Gamma_{0}f_{\eta}\bigr{)}+\bigl{\|}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\bigr{\|}^{2}\\[2.15277pt] &\geq\eta+\bigl{(}1-b\bigl{\|}\overline{M(\eta)}\bigr{\|}\bigr{)}\bigl{\|}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\bigr{\|}^{2}.\end{split} (3.11)

This, together with assumption (ii), implies that

Re(A[B]f,f)η.\operatorname{Re}(A_{[B]}f,f)\geq\eta. (3.12)

Moreover, it follows with assumption (iii) that the operator BM(η)¯1/2B\overline{M(\eta)}^{1/2} is everywhere defined and closable since BB is closable. Hence

BM(η)¯1/2(𝒢)andM(η)¯1/2BM(η)¯1/2(𝒢).B\overline{M(\eta)}^{1/2}\in{\mathcal{B}}({\mathcal{G}})\qquad\text{and}\qquad\overline{M(\eta)}^{1/2}B\overline{M(\eta)}^{1/2}\in{\mathcal{B}}({\mathcal{G}}). (3.13)

With (3.9) we obtain that

|Im(A[B]f,f)|\displaystyle\big{|}\operatorname{Im}(A_{[B]}f,f)\big{|} =|Im(BM(η)¯Γ0fη,M(η)¯Γ0fη)|\displaystyle=\big{|}\operatorname{Im}\bigl{(}B\overline{M(\eta)}\Gamma_{0}f_{\eta},\overline{M(\eta)}\Gamma_{0}f_{\eta}\bigr{)}\big{|}
=|Im(M(η)¯1/2BM(η)¯1/2M(η)¯1/2Γ0fη,M(η)¯1/2Γ0fη)|\displaystyle=\Big{|}\operatorname{Im}\Bigl{(}\overline{M(\eta)}^{1/2}B\overline{M(\eta)}^{1/2}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta},\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\Bigr{)}\Big{|}
=|(Im(M(η)¯1/2BM(η)¯1/2)M(η)¯1/2Γ0fη,M(η)¯1/2Γ0fη)|\displaystyle=\Big{|}\Bigl{(}\operatorname{Im}\Bigl{(}\overline{M(\eta)}^{1/2}B\overline{M(\eta)}^{1/2}\Bigr{)}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta},\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\Bigr{)}\Big{|}
Im(M(η)¯1/2BM(η)¯1/2)M(η)¯1/2Γ0fη2.\displaystyle\leq\big{\|}\operatorname{Im}\bigl{(}\overline{M(\eta)}^{1/2}B\overline{M(\eta)}^{1/2}\bigr{)}\big{\|}\,\big{\|}\overline{M(\eta)}^{1/2}\Gamma_{0}f_{\eta}\big{\|}^{2}.

This, together with (3.11), implies that

|Im(A[B]f,f)|Im(M(η)¯1/2BM(η)¯1/2)1bM(η)¯(Re(A[B]f,f)η).\big{|}\operatorname{Im}(A_{[B]}f,f)\big{|}\leq\frac{\big{\|}\operatorname{Im}\bigl{(}\overline{M(\eta)}^{1/2}B\overline{M(\eta)}^{1/2}\bigr{)}\big{\|}}{1-b\big{\|}\overline{M(\eta)}\big{\|}}\Bigl{(}\operatorname{Re}(A_{[B]}f,f)-\eta\Bigr{)}. (3.14)

The inequalities (3.12) and (3.14) show that the numerical range of A[B]A_{[B]} is contained in the sector 𝒮η(B){\mathcal{S}}_{\eta}(B), and hence the operator A[B]A_{[B]} is sectorial. The last statement of the theorem is well known; see, e.g. [125, Proposition 3.19]. ∎

Remark 3.2.

In Theorem 3.1 it is not assumed explicitly that the self-adjoint extension A0=TkerΓ0A_{0}=T\upharpoonright\ker\Gamma_{0} is bounded from below. However, the operator B=0B=0 satisfies assumptions (i)–(iii) in Theorem 3.1 with b=0b=0, which yields κB(η)=0\kappa_{B}(\eta)=0. Thus the spectrum of the operator A0=A[0]A_{0}=A_{[0]} is contained in [η,)[\eta,\infty) and therefore A0A_{0} is bounded from below by η\eta.

Theorem 3.1 provides explicit sufficient conditions for the extension A[B]A_{[B]} in (3.1) to be sectorial. However, in applications it is essential to ensure that A[B]A_{[B]} is m-sectorial, i.e. to guarantee that ρ(A[B])(𝒮η(B))\rho(A_{[B]})\cap({\mathbb{C}}\setminus{\mathcal{S}}_{\eta}(B))\neq\emptyset. We consider one particular situation in the next proposition, but deal in more detail with this question in the next section.

In the next proposition we specialize Theorem 3.1 to the situation of an ordinary boundary triple, where we can actually prove that the operator A[B]A_{[B]} is m-sectorial; to the best of our knowledge the assertion is new. We remark that in the following proposition it is possible to choose b=maxσ(ReB)b=\max\sigma(\operatorname{Re}B).

Proposition 3.3.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be an ordinary boundary triple for SS^{*} with corresponding Weyl function MM and assume that A1A_{1} is bounded from below and that ρ(A0)(,minσ(A1))\rho(A_{0})\cap(-\infty,\min\sigma(A_{1}))\neq\emptyset. Moreover, assume that

M(η)0for someη<minσ(A1),ηρ(A0).M(\eta)\geq 0\qquad\text{for some}\;\;\eta<\min\sigma(A_{1}),\;\eta\in\rho(A_{0}).

Let B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}), let bb\in\mathbb{R} be such that Re(Bx,x)bx2\operatorname{Re}(Bx,x)\leq b\|x\|^{2} for all x𝒢x\in{\mathcal{G}}, and assume that bM(η)<1b\|M(\eta)\|<1. Then the operator A[B]A_{[B]} is m-sectorial and we have

σ(A[B])W(A[B])¯{z:Rezη,|Imz|κB(η)(Rezη)},\sigma(A_{[B]})\subset\overline{W(A_{[B]})}\subset\Bigl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\eta,\,|\operatorname{Im}z|\leq\kappa_{B}(\eta)\bigl{(}\operatorname{Re}z-\eta\bigr{)}\Bigr{\}}, (3.15)

where

κB(η):=Im(M(η)1/2BM(η)1/2)1bM(η).\kappa_{B}(\eta)\mathrel{\mathop{:}}=\frac{\bigl{\|}\operatorname{Im}\bigl{(}M(\eta)^{1/2}BM(\eta)^{1/2}\bigr{)}\bigr{\|}}{1-b\bigl{\|}M(\eta)\bigr{\|}}\,.
Proof.

The fact that A[B]A_{[B]} is sectorial and the second inclusion in (3.15) follow directly from Theorem 3.1. To prove that A[B]A_{[B]} is m-sectorial we show that ηρ(A[B])\eta\in\rho(A_{[B]}). Without loss of generality we can assume that b0b\geq 0. Observe that M(η)1/2M(\eta)^{1/2} is well defined since M(η)0M(\eta)\geq 0 by assumption. For x𝒢x\in{\mathcal{G}} with x=1\|x\|=1 we have

Re(M(η)1/2BM(η)1/2x,x)\displaystyle\operatorname{Re}\bigl{(}M(\eta)^{1/2}BM(\eta)^{1/2}x,x\bigr{)} =Re(BM(η)1/2x,M(η)1/2x)\displaystyle=\operatorname{Re}\bigl{(}BM(\eta)^{1/2}x,M(\eta)^{1/2}x\bigr{)}
bM(η)1/2x2=b(M(η)x,x)bM(η),\displaystyle\leq b\bigl{\|}M(\eta)^{1/2}x\bigr{\|}^{2}=b\bigl{(}M(\eta)x,x\bigr{)}\leq b\bigl{\|}M(\eta)\bigr{\|},

which implies that

σ(M(η)1/2BM(η)1/2)\displaystyle\sigma\bigl{(}M(\eta)^{1/2}BM(\eta)^{1/2}\bigr{)} W(M(η)1/2BM(η)1/2)¯\displaystyle\subset\overline{W\bigl{(}M(\eta)^{1/2}BM(\eta)^{1/2}\bigr{)}}
{z:RezbM(η)}.\displaystyle\subset\bigl{\{}z\in\mathbb{C}:\operatorname{Re}z\leq b\|M(\eta)\|\bigr{\}}.

Since bM(η)<1b\|M(\eta)\|<1, this yields

1ρ(M(η)1/2BM(η)1/2)1\in\rho\bigl{(}M(\eta)^{1/2}BM(\eta)^{1/2}\bigr{)}

and hence 1ρ(BM(η))1\in\rho(BM(\eta)). Now [56, Proposition 1.6] implies that ηρ(A[B])\eta\in\rho(A_{[B]}), and therefore A[B]A_{[B]} is m-sectorial, which also proves the first inclusion in (3.15). ∎

4. Sufficient conditions for closed extensions with non-empty resolvent set

Let SS be a densely defined, closed, symmetric operator in a Hilbert space {\mathcal{H}} and let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*}. In this section we provide some abstract sufficient conditions on the (boundary) operator BB in 𝒢{\mathcal{G}} such that the operator A[B]A_{[B]} defined in (3.1) is closed and has a non-empty resolvent set.

Theorem 4.1.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding γ\gamma-field γ\gamma and Weyl function MM. Let BB be a closable operator in 𝒢{\mathcal{G}} and assume that there exists λ0ρ(A0)\lambda_{0}\in\rho(A_{0}) such that the following conditions are satisfied:

  • (i)

    1ρ(BM(λ0)¯)1\in\rho\bigl{(}B\overline{M(\lambda_{0})}\bigr{)};

  • (ii)

    B(ranM(λ0)¯domB)ranΓ0B\bigl{(}\operatorname{ran}\overline{M(\lambda_{0})}\cap\operatorname{dom}B\bigr{)}\subset\operatorname{ran}\Gamma_{0};

  • (iii)

    ranΓ1domB\operatorname{ran}\Gamma_{1}\subset\operatorname{dom}B;

  • (iv)

    B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0}   or   λ0ρ(A1)\lambda_{0}\in\rho(A_{1}).

Then the operator

A[B]f=Tf,domA[B]={fdomT:Γ0f=BΓ1f},A_{[B]}f=Tf,\qquad\operatorname{dom}A_{[B]}=\bigl{\{}f\in\operatorname{dom}T:\Gamma_{0}f=B\Gamma_{1}f\bigr{\}}, (4.1)

is a closed extension of SS in {\mathcal{H}} such that λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}), and

(A[B]λ)1=(A0λ)1+γ(λ)(IBM(λ))1Bγ(λ¯)(A_{[B]}-\lambda)^{-1}=(A_{0}-\lambda)^{-1}+\gamma(\lambda)\bigl{(}I-BM(\lambda)\bigr{)}^{-1}B\gamma(\overline{\lambda})^{*} (4.2)

holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}).

Further, let BB^{\prime} be a linear operator in 𝒢{\mathcal{G}} that satisfies (i)–(iv) with BB replaced by BB^{\prime} and λ0\lambda_{0} replaced by λ0¯\overline{\lambda_{0}}, and assume that

(Bx,y)=(x,By)for allxdomB,ydomB.(Bx,y)=(x,B^{\prime}y)\qquad\text{for all}\;\;x\in\operatorname{dom}B,\;y\in\operatorname{dom}B^{\prime}. (4.3)

Then A[B]A_{[B^{\prime}]} is closed and

A[B]=A[B].A_{[B^{\prime}]}=A_{[B]}^{*}. (4.4)

In particular, λ0¯ρ(A[B])\overline{\lambda_{0}}\in\rho(A_{[B^{\prime}]}).

Remark 4.2.

In the special case when the operator BB in Theorem 4.1 is symmetric and the assumptions (i) and (ii) hold for some λ0ρ(A0)\lambda_{0}\in\rho(A_{0})\cap{\mathbb{R}} the result reduces to [29, Theorem 2.6], where self-adjointness of A[B]A_{[B]} was shown; cf. also [29, Theorem 2.4]. In this sense Theorem 4.1 can be seen as a generalization of the considerations in [29, Section 2] to non-self-adjoint extensions.

Before we prove Theorem 4.1, we formulate some corollaries. If {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is a generalized boundary triple, then ranΓ0=𝒢\operatorname{ran}\Gamma_{0}={\mathcal{G}} and M(λ0)(𝒢)M(\lambda_{0})\in{\mathcal{B}}({\mathcal{G}}). Hence in this case the above theorem reads as follows.

Corollary 4.3.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a generalized boundary triple for TST\subset S^{*} with corresponding γ\gamma-field γ\gamma and Weyl function MM. Let BB be a closable operator in 𝒢{\mathcal{G}} and assume that there exists λ0ρ(A0)\lambda_{0}\in\rho(A_{0}) such that the following conditions are satisfied:

  • (i)

    1ρ(BM(λ0))1\in\rho(BM(\lambda_{0}));

  • (ii)

    ranΓ1domB\operatorname{ran}\Gamma_{1}\subset\operatorname{dom}B.

Then the operator A[B]A_{[B]} in (4.1) is a closed extension of SS such that λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}), and the resolvent formula (4.2) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}).

Further, let BB^{\prime} be a linear operator in 𝒢{\mathcal{G}} that satisfies (i) and (ii) with BB replaced by BB^{\prime} and λ0\lambda_{0} replaced by λ0¯\overline{\lambda_{0}}, and assume that (4.3) holds. Then A[B]A_{[B^{\prime}]} is closed and A[B]=A[B]A_{[B^{\prime}]}=A_{[B]}^{*}. In particular, λ0¯ρ(A[B])\overline{\lambda_{0}}\in\rho(A_{[B^{\prime}]}).

In the special case when {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} in Theorem 4.1 or Corollary 4.3 is an ordinary boundary triple the condition ranΓ1domB\operatorname{ran}\Gamma_{1}\subset\operatorname{dom}B implies domB=𝒢\operatorname{dom}B={\mathcal{G}}. Since BB is assumed to be closable, it follows that BB is closed and hence B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}). In this case the statements in Theorem 4.1 and Corollary 4.3 are well known.

In the next corollary we return to the general situation of a quasi boundary triple, but we assume that BB is bounded and everywhere defined on 𝒢{\mathcal{G}}.

Corollary 4.4.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Let B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}) and assume that there exists λ0ρ(A0)\lambda_{0}\in\rho(A_{0}) such that the following conditions are satisfied:

  • (i)

    1ρ(BM(λ0)¯)1\in\rho\bigl{(}B\overline{M(\lambda_{0})}\bigr{)};

  • (ii)

    B(ranM(λ0)¯)ranΓ0B\bigl{(}\operatorname{ran}\overline{M(\lambda_{0})}\bigr{)}\subset\operatorname{ran}\Gamma_{0};

  • (iii)

    B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0}   or   λ0ρ(A1)\lambda_{0}\in\rho(A_{1}).

Then the operator A[B]A_{[B]} in (4.1) is a closed extension of SS such that λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}), and the resolvent formula (4.2) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}).

Further, if conditions (i)–(iii) are satisfied also for BB^{*} instead of BB and λ0\lambda_{0} replaced by λ0¯\overline{\lambda_{0}}, then A[B]=A[B]A_{[B^{*}]}=A_{[B]}^{*}. In particular, λ0¯ρ(A[B])\overline{\lambda_{0}}\in\rho(A_{[B^{*}]}).

Note that if in Corollary 4.4 the triple {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is a generalized boundary triple, then assumptions (ii) and (iii) are automatically satisfied.

In the next two corollaries a set of conditions is provided which guarantee that condition (i) in Theorem 4.1 is satisfied; here Corollary 4.6 is a special case of Corollary 4.5 for bounded BB. In contrast to the previous results it is also assumed that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and that the set ρ(A0)\rho(A_{0})\cap{\mathbb{R}} is non-empty.

Corollary 4.5.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM, and assume that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}). Let BB be a closable operator in 𝒢{\mathcal{G}} and assume that there exist bb\in{\mathbb{R}} and λ0ρ(A0)\lambda_{0}\in\rho(A_{0})\cap{\mathbb{R}} such that the following conditions are satisfied:

  • (i)

    Re(Bx,x)bx2\operatorname{Re}(Bx,x)\leq b\|x\|^{2}   for all xdomBx\in\operatorname{dom}B;

  • (ii)

    M(λ0)0M(\lambda_{0})\geq 0 and bM(λ0)¯<1b\bigl{\|}\overline{M(\lambda_{0})}\bigr{\|}<1;

  • (iii)

    ranM(λ0)¯1/2domB\operatorname{ran}\overline{M(\lambda_{0})}^{1/2}\subset\operatorname{dom}B;

  • (iv)

    B(ranM(λ0)¯)ranΓ0B\bigl{(}\operatorname{ran}\overline{M(\lambda_{0})}\bigr{)}\subset\operatorname{ran}\Gamma_{0};

  • (v)

    ranΓ1domB\operatorname{ran}\Gamma_{1}\subset\operatorname{dom}B;

  • (vi)

    B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0}   or   λ0ρ(A1)\lambda_{0}\in\rho(A_{1}).

Then the operator A[B]A_{[B]} in (4.1) is a closed extension of SS such that λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}), and the resolvent formula (4.2) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}).

Further, let BB^{\prime} be a linear operator in 𝒢{\mathcal{G}} that satisfies (i)–(vi) with BB replaced by BB^{\prime} and assume that (4.3) holds. Then A[B]A_{[B^{\prime}]} is closed and A[B]=A[B]A_{[B^{\prime}]}=A_{[B]}^{*}. In particular, λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B^{\prime}]}).

For B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}), Corollary 4.5 reads as follows.

Corollary 4.6.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM, and assume that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}). Let B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}) and bb\in{\mathbb{R}} such that

Re(Bx,x)bx2for allx𝒢\operatorname{Re}(Bx,x)\leq b\|x\|^{2}\qquad\text{for all}\;\;x\in{\mathcal{G}}

and assume that for some λ0ρ(A0)\lambda_{0}\in\rho(A_{0})\cap{\mathbb{R}} the following conditions are satisfied:

  • (i)

    M(λ0)0M(\lambda_{0})\geq 0 and bM(λ0)¯<1b\bigl{\|}\overline{M(\lambda_{0})}\bigr{\|}<1;

  • (ii)

    B(ranM(λ0)¯)ranΓ0B\bigl{(}\operatorname{ran}\overline{M(\lambda_{0})}\bigr{)}\subset\operatorname{ran}\Gamma_{0};

  • (iii)

    B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0}   or   λ0ρ(A1)\lambda_{0}\in\rho(A_{1}).

Then the operator A[B]A_{[B]} in (4.1) is a closed extension of SS such that λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}), and the resolvent formula (4.2) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}).

Further, if conditions (i)–(iii) are satisfied also for BB^{*} instead of BB, then A[B]=A[B]A_{[B^{*}]}=A_{[B]}^{*}. In particular, λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B^{*}]}).

Proof of Corollary 4.5.

It suffices to show that assumptions (i)–(iii) in Corollary 4.5 imply assumption (i) in Theorem 4.1. The assumption (ii) in Theorem 4.1 is satisfied since the inclusion

ranM(λ0)¯ranM(λ0)¯1/2domB\operatorname{ran}\overline{M(\lambda_{0})}\subset\operatorname{ran}\overline{M(\lambda_{0})}^{1/2}\subset\operatorname{dom}B

holds by (iii) in Corollary 4.5, and hence (iv) in Corollary 4.5 coincides with (ii) in Theorem 4.1; the assumptions (iii) and (iv) in Theorem 4.1 coincide with (v) and (vi) in Corollary 4.5.

In order to show (i) in Theorem 4.1 we use a similar idea as in the proof of Proposition 3.3, but we have to be more careful with operator domains. Note first that a negative bb in (i) and (ii) in Corollary 4.5 can always be replaced by 0; hence without loss of generality we can assume that b0b\geq 0. For λ0ρ(A0)\lambda_{0}\in\rho(A_{0})\cap{\mathbb{R}} such that M(λ0)0M(\lambda_{0})\geq 0 we have M(λ0)¯0\overline{M(\lambda_{0})}\geq 0. As in (3.13) in the proof of Theorem 3.1 the operator

BM(λ0)¯1/2B\overline{M(\lambda_{0})}^{1/2} (4.5)

is defined on all of 𝒢{\mathcal{G}} by (iii) and is closable since BB is closable. Hence

BM(λ0)¯1/2(𝒢)andM(λ0)¯1/2BM(λ0)¯1/2(𝒢).B\overline{M(\lambda_{0})}^{1/2}\in{\mathcal{B}}({\mathcal{G}})\qquad\text{and}\qquad\overline{M(\lambda_{0})}^{1/2}B\overline{M(\lambda_{0})}^{1/2}\in{\mathcal{B}}({\mathcal{G}}). (4.6)

Then for x𝒢x\in{\mathcal{G}} with x=1\|x\|=1 we conclude from assumption (i) that

Re(M(λ0)¯1/2BM(λ0)¯1/2x,x)\displaystyle\operatorname{Re}\bigl{(}\overline{M(\lambda_{0})}^{1/2}B\overline{M(\lambda_{0})}^{1/2}x,x\bigr{)} =Re(BM(λ0)¯1/2x,M(λ0)¯1/2x)\displaystyle=\operatorname{Re}\bigl{(}B\overline{M(\lambda_{0})}^{1/2}x,\overline{M(\lambda_{0})}^{1/2}x\bigr{)}
bM(λ0)¯1/2x2=b(M(λ0)¯x,x)bM(λ0)¯.\displaystyle\leq b\bigl{\|}\overline{M(\lambda_{0})}^{1/2}x\bigr{\|}^{2}=b\bigl{(}\overline{M(\lambda_{0})}x,x\bigr{)}\leq b\bigl{\|}\overline{M(\lambda_{0})}\bigr{\|}.

Thus

σ(M(λ0)¯1/2BM(λ0)¯1/2)\displaystyle\sigma\bigl{(}\overline{M(\lambda_{0})}^{1/2}B\overline{M(\lambda_{0})}^{1/2}\bigr{)} W(M(λ0)¯1/2BM(λ0)¯1/2)¯\displaystyle\subset\overline{W\bigl{(}\overline{M(\lambda_{0})}^{1/2}B\overline{M(\lambda_{0})}^{1/2}\bigr{)}}
{z:RezbM(λ0)¯},\displaystyle\subset\bigl{\{}z\in\mathbb{C}:\operatorname{Re}z\leq b\bigl{\|}\overline{M(\lambda_{0})}\bigr{\|}\bigr{\}},

and hence assumption (ii) implies that

1ρ(M(λ0)¯1/2BM(λ0)¯1/2).1\in\rho\bigl{(}\overline{M(\lambda_{0})}^{1/2}B\overline{M(\lambda_{0})}^{1/2}\bigr{)}.

This shows that also 1ρ(BM(λ0)¯)1\in\rho(B\overline{M(\lambda_{0})}) and therefore (i) in Theorem 4.1 holds. ∎

Now we finally turn to the proof of Theorem 4.1. We note that the arguments in Steps 2, 4 and 5 are similar to those in the proof of [29, Theorem 2.4], where the case when BB is symmetric was treated. For the convenience of the reader we provide a self-contained and complete proof.

Proof of Theorem 4.1.

The proof of Theorem 4.1 consists of six separate steps. During the first four steps of the proof we assume that the first condition in (iv) is satisfied. In Step 5 of the proof we show that the second condition in (iv) and assumptions (ii) and (iii) imply the first condition in (iv). Finally, in Step 6 we prove the statements about A[B]A_{[B^{\prime}]}.

Step 1. We claim that ker(A[B]λ0)={0}\ker(A_{[B]}-\lambda_{0})=\{0\}. To this end, let fker(A[B]λ0)f\in\ker(A_{[B]}-\lambda_{0}). Then ff satisfies the equation Tf=λ0fTf=\lambda_{0}f and the abstract boundary condition Γ0f=BΓ1f\Gamma_{0}f=B\Gamma_{1}f. It follows that

Γ0f=BΓ1f=BM(λ0)Γ0f=BM(λ0)¯Γ0f,\Gamma_{0}f=B\Gamma_{1}f=BM(\lambda_{0})\Gamma_{0}f=B\overline{M(\lambda_{0})}\Gamma_{0}f,

that is, Γ0fker(IBM(λ0)¯)\Gamma_{0}f\in\ker(I-B\overline{M(\lambda_{0})}). From this and assumption (i) of the theorem it follows that Γ0f=0\Gamma_{0}f=0 and, thus, fker(A0λ0)f\in\ker(A_{0}-\lambda_{0}). Since λ0ρ(A0)\lambda_{0}\in\rho(A_{0}), we obtain that f=0f=0. Therefore we have ker(A[B]λ0)={0}\ker(A_{[B]}-\lambda_{0})=\{0\}.

Step 2. Next we show that

ran(A[B]λ0)=\operatorname{ran}(A_{[B]}-\lambda_{0})={\mathcal{H}} (4.7)

holds. In order to do so, we first verify the inclusion

ran(Bγ(λ0¯))ran(IBM(λ0)).\operatorname{ran}\bigl{(}B\gamma(\overline{\lambda_{0}})^{*}\bigr{)}\subset\operatorname{ran}\bigl{(}I-BM(\lambda_{0})\bigr{)}. (4.8)

Note that the product Bγ(λ0¯)B\gamma(\overline{\lambda_{0}})^{*} on the left-hand side of (4.8) is defined on all of {\mathcal{H}} since γ(λ0¯)=Γ1(A0λ0)1\gamma(\overline{\lambda_{0}})^{*}=\Gamma_{1}(A_{0}-\lambda_{0})^{-1} by (2.3) and ranΓ1domB\operatorname{ran}\Gamma_{1}\subset\operatorname{dom}B by condition (iii). For the inclusion in (4.8) consider ψ=Bγ(λ0¯)f\psi=B\gamma(\overline{\lambda_{0}})^{*}f for some ff\in{\mathcal{H}}. From (2.3) and the first condition in (iv) we obtain that ψranΓ0\psi\in\operatorname{ran}\Gamma_{0}. Making use of assumption (i) we see that

φ:=(IBM(λ0)¯)1ψdom(BM(λ0)¯)\varphi\mathrel{\mathop{:}}=\bigl{(}I-B\overline{M(\lambda_{0})}\bigr{)}^{-1}\psi\in\operatorname{dom}\bigl{(}B\overline{M(\lambda_{0})}\bigr{)} (4.9)

is well defined. Hence

φ=BM(λ0)¯φ+ψ,\varphi=B\overline{M(\lambda_{0})}\varphi+\psi,

and since M(λ0)¯φranM(λ0)¯domB\overline{M(\lambda_{0})}\varphi\in\operatorname{ran}\overline{M(\lambda_{0})}\cap\operatorname{dom}B, it follows from (ii) and ψranΓ0\psi\in\operatorname{ran}\Gamma_{0} that φranΓ0=domM(λ0)\varphi\in\operatorname{ran}\Gamma_{0}=\operatorname{dom}M(\lambda_{0}). Thus we conclude from (4.9) that

(IBM(λ0))φ=ψ,\bigl{(}I-BM(\lambda_{0})\bigr{)}\varphi=\psi,

which shows the inclusion (4.8).

To verify (4.7), let ff\in{\mathcal{H}} and consider

h:=(A0λ0)1f+γ(λ0)(IBM(λ0))1Bγ(λ0¯)f.h\mathrel{\mathop{:}}=(A_{0}-\lambda_{0})^{-1}f+\gamma(\lambda_{0})\bigl{(}I-BM(\lambda_{0})\bigr{)}^{-1}B\gamma(\overline{\lambda_{0}})^{*}f. (4.10)

Observe that hh is well defined since domγ(λ0)=domM(λ0)ran(IBM(λ0))1\operatorname{dom}\gamma(\lambda_{0})=\operatorname{dom}M(\lambda_{0})\supset\operatorname{ran}(I-BM(\lambda_{0}))^{-1} and the product of (IBM(λ0))1(I-BM(\lambda_{0}))^{-1} and Bγ(λ0¯)B\gamma(\overline{\lambda_{0}})^{*} makes sense by (4.8). It is clear that hdomTh\in\operatorname{dom}T. Moreover, from domA0=kerΓ0\operatorname{dom}A_{0}=\ker\Gamma_{0}, the definitions of the γ\gamma-field and Weyl function, and (2.3) we conclude that

Γ0h=(IBM(λ0))1Bγ(λ0¯)f\Gamma_{0}h=\bigl{(}I-BM(\lambda_{0})\bigr{)}^{-1}B\gamma(\overline{\lambda_{0}})^{*}f

and

Γ1h=γ(λ0¯)f+M(λ0)(IBM(λ0))1Bγ(λ0¯)f.\Gamma_{1}h=\gamma(\overline{\lambda_{0}})^{*}f+M(\lambda_{0})\bigl{(}I-BM(\lambda_{0})\bigr{)}^{-1}B\gamma(\overline{\lambda_{0}})^{*}f.

Now it follows that

BΓ1h=(IBM(λ0))1Bγ(λ0¯)f=Γ0h,B\Gamma_{1}h=\bigl{(}I-BM(\lambda_{0})\bigr{)}^{-1}B\gamma(\overline{\lambda_{0}})^{*}f=\Gamma_{0}h,

and therefore hdomA[B]h\in\operatorname{dom}A_{[B]}. From the definition of hh in (4.10) and ranγ(λ0)=ker(Tλ0)\operatorname{ran}\gamma(\lambda_{0})=\ker(T-\lambda_{0}) we obtain that

(A[B]λ0)h=(Tλ0)h=f.(A_{[B]}-\lambda_{0})h=(T-\lambda_{0})h=f.

Hence we have proved (4.7). Moreover, since h=(A[B]λ0)1fh=(A_{[B]}-\lambda_{0})^{-1}f, we also conclude from (4.10) that

(A[B]λ0)1f=(A0λ0)1f+γ(λ0)(IBM(λ0))1Bγ(λ0¯)f.(A_{[B]}-\lambda_{0})^{-1}f=(A_{0}-\lambda_{0})^{-1}f+\gamma(\lambda_{0})\bigl{(}I-BM(\lambda_{0})\bigr{)}^{-1}B\gamma(\overline{\lambda_{0}})^{*}f. (4.11)

Step 3. We verify that A[B]A_{[B]} is closed and that λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}). Since BB is closable by assumption and γ(λ0¯)(,𝒢)\gamma(\overline{\lambda_{0}})^{*}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}), it follows that Bγ(λ0¯)B\gamma(\overline{\lambda_{0}})^{*} is closable and hence closed, so that

Bγ(λ0¯)(,𝒢).B\gamma(\overline{\lambda_{0}})^{*}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}). (4.12)

The operators γ(λ0)\gamma(\lambda_{0}) and (IBM(λ0))1(I-BM(\lambda_{0}))^{-1} in (4.11) are bounded by (2.3) and assumption (i), respectively. Therefore (4.11) shows that the operator (A[B]λ0)1(A_{[B]}-\lambda_{0})^{-1} is bounded. Since (A[B]λ0)1(A_{[B]}-\lambda_{0})^{-1} is defined on {\mathcal{H}} by (4.7), it follows that A[B]A_{[B]} is closed and λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}).

Step 4. Now we prove the resolvent formula (4.2) for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}). We first observe that IBM(λ)I-BM(\lambda) is injective for λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}). In fact, let φker(IBM(λ))\varphi\in\ker(I-BM(\lambda)). Then φdomM(λ)=ranΓ0\varphi\in\operatorname{dom}M(\lambda)=\operatorname{ran}\Gamma_{0} and f:=γ(λ)φf\mathrel{\mathop{:}}=\gamma(\lambda)\varphi belongs to ker(Tλ)\ker(T-\lambda). Furthermore, Γ0f=φ\Gamma_{0}f=\varphi, and from

BΓ1f=BM(λ)Γ0f=BM(λ)φ=φ=Γ0fB\Gamma_{1}f=BM(\lambda)\Gamma_{0}f=BM(\lambda)\varphi=\varphi=\Gamma_{0}f

we conclude that fdomA[B]f\in\operatorname{dom}A_{[B]}. Since fker(Tλ)f\in\ker(T-\lambda), this implies that fker(A[B]λ)f\in\ker(A_{[B]}-\lambda), and hence f=0f=0 as λρ(A[B])\lambda\in\rho(A_{[B]}) by assumption. It follows that φ=Γ0f=0\varphi=\Gamma_{0}f=0, and therefore IBM(λ)I-BM(\lambda) is injective.

Now let ff\in{\mathcal{H}}, λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}), and set

k:=(A[B]λ)1f(A0λ)1f.k\mathrel{\mathop{:}}=(A_{[B]}-\lambda)^{-1}f-(A_{0}-\lambda)^{-1}f. (4.13)

With g:=(A[B]λ)1fdomA[B]g\mathrel{\mathop{:}}=(A_{[B]}-\lambda)^{-1}f\in\operatorname{dom}A_{[B]} we have BΓ1g=Γ0g=Γ0kB\Gamma_{1}g=\Gamma_{0}g=\Gamma_{0}k. Since kker(Tλ)k\in\ker(T-\lambda), it is also clear that M(λ)Γ0k=Γ1kM(\lambda)\Gamma_{0}k=\Gamma_{1}k. Moreover, Γ1(gk)=γ(λ¯)f\Gamma_{1}(g-k)=\gamma(\overline{\lambda})^{*}f by (2.3), and therefore

(IBM(λ))Γ0k=Γ0gBM(λ)Γ0k=BΓ1gBΓ1k=Bγ(λ¯)f\bigl{(}I-BM(\lambda)\bigr{)}\Gamma_{0}k=\Gamma_{0}g-BM(\lambda)\Gamma_{0}k=B\Gamma_{1}g-B\Gamma_{1}k=B\gamma(\overline{\lambda})^{*}f

yields Γ0k=(IBM(λ))1Bγ(λ¯)f\Gamma_{0}k=(I-BM(\lambda))^{-1}B\gamma(\overline{\lambda})^{*}f. Since kker(Tλ)k\in\ker(T-\lambda), we have

k=γ(λ)Γ0k=γ(λ)(IBM(λ))1Bγ(λ¯)f,k=\gamma(\lambda)\Gamma_{0}k=\gamma(\lambda)\bigl{(}I-BM(\lambda)\bigr{)}^{-1}B\gamma(\overline{\lambda})^{*}f,

which, together with (4.13), yields (4.2) for λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}).

Step 5. Now assume that λ0ρ(A1)\lambda_{0}\in\rho(A_{1}), i.e. the second condition in (iv) holds. We claim that in this situation B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0} follows. In fact, suppose that granΓ1g\in\operatorname{ran}\Gamma_{1}. Then gdomBg\in\operatorname{dom}B by condition (iii). Since ranΓ1=ranM(λ0)ran(M(λ0)¯)\operatorname{ran}\Gamma_{1}=\operatorname{ran}M(\lambda_{0})\subset\operatorname{ran}(\overline{M(\lambda_{0})}) in the present situation by [22, Proposition 2.6 (iii)], we conclude from (ii) that BgranΓ0Bg\in\operatorname{ran}\Gamma_{0}.

Step 6. Now let BB^{\prime} be as in the last part of the statement of the theorem. By assumption (iii) for BB and BB^{\prime}, both operators are densely defined. Hence relation (4.3) implies that BB^{\prime} is also closable. It follows from Steps 1–5 that A[B]A_{[B^{\prime}]} is closed and that λ¯0ρ(A[B])\overline{\lambda}_{0}\in\rho(A_{[B^{\prime}]}). Let fdomA[B]f\in\operatorname{dom}A_{[B]} and gdomA[B]g\in\operatorname{dom}A_{[B^{\prime}]}. Then Γ1fdomB\Gamma_{1}f\in\operatorname{dom}B, Γ1gdomB\Gamma_{1}g\in\operatorname{dom}B^{\prime} and

Γ0f=BΓ1fandΓ0g=BΓ1g.\Gamma_{0}f=B\Gamma_{1}f\qquad\text{and}\qquad\Gamma_{0}g=B^{\prime}\Gamma_{1}g.

Hence Green’s identity (2.1) and the relation (4.3) yield

(A[B]f,g)(f,A[B]g)\displaystyle(A_{[B]}f,g)-(f,A_{[B^{\prime}]}g) =(Tf,g)(f,Tg)=(Γ1f,Γ0g)(Γ0f,Γ1g)\displaystyle=(Tf,g)-(f,Tg)=(\Gamma_{1}f,\Gamma_{0}g)-(\Gamma_{0}f,\Gamma_{1}g)
=(Γ1f,BΓ1g)(BΓ1f,Γ1g)=0,\displaystyle=(\Gamma_{1}f,B^{\prime}\Gamma_{1}g)-(B\Gamma_{1}f,\Gamma_{1}g)=0,

which implies that

A[B]A[B].A_{[B^{\prime}]}\subset A_{[B]}^{*}. (4.14)

Since λ0ρ(A[B])\lambda_{0}\in\rho(A_{[B]}), we have λ¯0ρ(A[B])\overline{\lambda}_{0}\in\rho(A_{[B]}^{*}). This, together with λ¯0ρ(A[B])\overline{\lambda}_{0}\in\rho(A_{[B^{\prime}]}) and (4.14), proves the relation in (4.4). ∎

In the next proposition we consider Schatten–von Neumann properties of certain resolvent differences (see the end of the introduction for the definition of the classes 𝔖p{\mathfrak{S}}_{p}). For the self-adjoint case parts of the results of the following proposition can be found in [27, Theorem 3.17].

Proposition 4.7.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding γ\gamma-field γ\gamma and Weyl function MM. Let BB be a closable operator in 𝒢{\mathcal{G}} and assume that there exists λ0ρ(A0)\lambda_{0}\in\rho(A_{0}) such that conditions (i)–(iv) in Theorem 4.1 are satisfied. Moreover, assume that

γ(λ1)𝔖p(,𝒢)\gamma(\lambda_{1})^{*}\in{\mathfrak{S}}_{p}({\mathcal{H}},{\mathcal{G}}) (4.15)

for some λ1ρ(A0)\lambda_{1}\in\rho(A_{0}) and some p>0p>0. Then

(A[B]λ)1(A0λ)1𝔖p()(A_{[B]}-\lambda)^{-1}-(A_{0}-\lambda)^{-1}\in{\mathfrak{S}}_{p}({\mathcal{H}}) (4.16)

for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}). If, in addition, A1A_{1} is self-adjoint, then

(A[B]λ)1(A1λ)1𝔖p()(A_{[B]}-\lambda)^{-1}-(A_{1}-\lambda)^{-1}\in{\mathfrak{S}}_{p}({\mathcal{H}}) (4.17)

for all λρ(A[B])ρ(A1)\lambda\in\rho(A_{[B]})\cap\rho(A_{1}).

Proof.

By Theorem 4.1, the resolvent formula (4.2) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}), and it can also be written in the form

(A[B]λ)1(A0λ)1=γ(λ)¯(IBM(λ)¯)1Bγ(λ¯).(A_{[B]}-\lambda)^{-1}-(A_{0}-\lambda)^{-1}=\overline{\gamma(\lambda)}\bigl{(}I-B\overline{M(\lambda)}\bigr{)}^{-1}B\gamma(\overline{\lambda})^{*}. (4.18)

Moreover, it follows from (4.15) and [27, Proposition 3.5 (ii)] that γ(λ)𝔖p(,𝒢)\gamma(\lambda)^{*}\in{\mathfrak{S}}_{p}({\mathcal{H}},{\mathcal{G}}) for all λρ(A0)\lambda\in\rho(A_{0}) and, hence, also γ(λ)¯=γ(λ)𝔖p(𝒢,)\overline{\gamma(\lambda)}=\gamma(\lambda)^{**}\in{\mathfrak{S}}_{p}({\mathcal{G}},{\mathcal{H}}) for all λρ(A0)\lambda\in\rho(A_{0}).

To prove (4.16), let first λ=λ0\lambda=\lambda_{0} be given as in the assumptions of the proposition. Since Bγ(λ¯)(,𝒢)B\gamma(\overline{\lambda})^{*}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}) can be shown as in (4.12) and (IBM(λ)¯)1(𝒢)(I-B\overline{M(\lambda)})^{-1}\in{\mathcal{B}}({\mathcal{G}}) holds by assumption (i) of Theorem 4.1, it is clear that the right-hand side of (4.18) belongs to the Schatten–von Neumann ideal 𝔖p(){\mathfrak{S}}_{p}({\mathcal{H}}), which proves (4.16) for λ=λ0\lambda=\lambda_{0}. With the help of [27, Lemma 2.2] this property extends to all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}).

Assume now, in addition, that A1A_{1} is self-adjoint and fix some λρ(A[B])ρ(A0)ρ(A1)\lambda\in\rho(A_{[B]})\cap\rho(A_{0})\cap\rho(A_{1}). Note that by [27, Theorem 3.8] the identity

(A1λ)1(A0λ)1=γ(λ)¯M(λ)1γ(λ¯)(A_{1}-\lambda)^{-1}-(A_{0}-\lambda)^{-1}=-\overline{\gamma(\lambda)}M(\lambda)^{-1}\gamma(\overline{\lambda})^{*} (4.19)

is true. It follows from [24, Proposition 6.14 (iii)] that the operator M(λ)1M(\lambda)^{-1} is closable, and [22, Proposition 2.6 (iii)] implies that

ran(γ(λ¯))ranΓ1=ranM(λ).\operatorname{ran}\bigl{(}\gamma(\overline{\lambda})^{*}\bigr{)}\subset\operatorname{ran}\Gamma_{1}=\operatorname{ran}M(\lambda).

Thus, the operator M(λ)1γ(λ¯)M(\lambda)^{-1}\gamma(\overline{\lambda})^{*} is everywhere defined and closable and hence closed, so that M(λ)1γ(λ¯)(,𝒢)M(\lambda)^{-1}\gamma(\overline{\lambda})^{*}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}). Since γ(λ)¯𝔖p(𝒢,)\overline{\gamma(\lambda)}\in{\mathfrak{S}}_{p}({\mathcal{G}},{\mathcal{H}}) by the first part of the proof, the identity (4.19) implies that

(A1λ)1(A0λ)1𝔖p().(A_{1}-\lambda)^{-1}-(A_{0}-\lambda)^{-1}\in{\mathfrak{S}}_{p}({\mathcal{H}}). (4.20)

From (4.16) and (4.20) we conclude that (4.17) holds for all λρ(A[B])ρ(A0)ρ(A1)\lambda\in\rho(A_{[B]})\cap\rho(A_{0})\cap\rho(A_{1}), and again with the help of [27, Lemma 2.2] this property extends to all λρ(A[B])ρ(A1)\lambda\in\rho(A_{[B]})\cap\rho(A_{1}). ∎

In the case when BB is bounded and everywhere defined the assertion of the previous proposition improves as follows.

Proposition 4.8.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding γ\gamma-field γ\gamma and Weyl function MM. Let B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}) and assume that there exists λ0ρ(A0)\lambda_{0}\in\rho(A_{0}) such that conditions (i)–(iii) in Corollary 4.4 are satisfied. Further, assume that

γ(λ1)𝔖p(,𝒢)\gamma(\lambda_{1})^{*}\in{\mathfrak{S}}_{p}({\mathcal{H}},{\mathcal{G}}) (4.21)

for some λ1ρ(A0)\lambda_{1}\in\rho(A_{0}) and some p>0p>0. Then

(A[B]λ)1(A0λ)1𝔖p2()(A_{[B]}-\lambda)^{-1}-(A_{0}-\lambda)^{-1}\in{\mathfrak{S}}_{\frac{p}{2}}({\mathcal{H}}) (4.22)

for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}). If, in addition, A1A_{1} is self-adjoint and

M(λ2)1γ(λ2¯)𝔖q(,𝒢)M(\lambda_{2})^{-1}\gamma(\overline{\lambda_{2}})^{*}\in{\mathfrak{S}}_{q}({\mathcal{H}},{\mathcal{G}})

for some λ2ρ(A0)ρ(A1)\lambda_{2}\in\rho(A_{0})\cap\rho(A_{1}) and some q>0q>0, then

(A[B]λ)1(A1λ)1𝔖r()withr=max{p2,(1p+1q)1}(A_{[B]}-\lambda)^{-1}-(A_{1}-\lambda)^{-1}\in{\mathfrak{S}}_{r}({\mathcal{H}})\qquad\text{with}\quad r=\max\biggl{\{}\frac{p}{2},\Bigl{(}\frac{1}{p}+\frac{1}{q}\Bigr{)}^{-1}\biggr{\}} (4.23)

for all λρ(A[B])ρ(A1)\lambda\in\rho(A_{[B]})\cap\rho(A_{1}).

Proof.

By Corollary 4.4 the resolvent formula (4.18) holds for all λ\lambda in the non-empty set ρ(A[B])ρ(A0)\rho(A_{[B]})\cap\rho(A_{0}). As in the proof of Proposition 4.7 we conclude that γ(λ)𝔖p(,𝒢)\gamma(\lambda)^{*}\in{\mathfrak{S}}_{p}({\mathcal{H}},{\mathcal{G}}) and γ(λ)¯𝔖p(𝒢,)\overline{\gamma(\lambda)}\in{\mathfrak{S}}_{p}({\mathcal{G}},{\mathcal{H}}) for all λρ(A0)\lambda\in\rho(A_{0}). Since B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}), the operator (IBM(λ)¯)1B(I-B\overline{M(\lambda)})^{-1}B is also in (𝒢){\mathcal{B}}({\mathcal{G}}), and hence standard properties of Schatten–von Neumann ideals imply that the right-hand side of (4.18) belongs to the Schatten–von Neumann ideal 𝔖p2(){\mathfrak{S}}_{\frac{p}{2}}({\mathcal{H}}).

Assume now that A1A_{1} is self-adjoint and that M(λ2)1γ(λ2¯)𝔖q(,𝒢)M(\lambda_{2})^{-1}\gamma(\overline{\lambda_{2}})^{*}\in{\mathfrak{S}}_{q}({\mathcal{H}},{\mathcal{G}}) for some λ2ρ(A0)ρ(A1)\lambda_{2}\in\rho(A_{0})\cap\rho(A_{1}). From the first part of the proof we have that γ(λ2)¯𝔖p(𝒢,)\overline{\gamma(\lambda_{2})}\in{\mathfrak{S}}_{p}({\mathcal{G}},{\mathcal{H}}). Using the identity (4.19), standard properties of Schatten–von Neumann classes and [27, Lemma 2.2] we obtain that

(A1λ)1(A0λ)1𝔖(1/p+1/q)1()(A_{1}-\lambda)^{-1}-(A_{0}-\lambda)^{-1}\in{\mathfrak{S}}_{(1/p+1/q)^{-1}}({\mathcal{H}}) (4.24)

for all λρ(A0)ρ(A1)\lambda\in\rho(A_{0})\cap\rho(A_{1}). From (4.22) and (4.24) we conclude that (4.23) holds for λρ(A[B])ρ(A0)ρ(A1)\lambda\in\rho(A_{[B]})\cap\rho(A_{0})\cap\rho(A_{1}), and again [27, Lemma 2.2] shows that this property extends to all λρ(A[B])ρ(A1)\lambda\in\rho(A_{[B]})\cap\rho(A_{1}). ∎

Remark 4.9.

Propositions 4.7 and 4.8 can also be formulated for abstract operator ideals (see [27] and [121] for more details). In particular, they remain true for the so-called weak Schatten–von Neumann ideals 𝔖p,{\mathfrak{S}}_{p,\infty} and 𝔖p,(0){\mathfrak{S}}^{(0)}_{p,\infty} instead of 𝔖p{\mathfrak{S}}_{p}, where the ideals 𝔖p,{\mathfrak{S}}_{p,\infty} and 𝔖p,(0){\mathfrak{S}}^{(0)}_{p,\infty} consist of those compact operators whose singular values sks_{k} satisfy sk=O(k1/p)s_{k}={\rm O}(k^{-1/p}) and sk=o(k1/p)s_{k}={\rm o}(k^{-1/p}), respectively, as kk\to\infty; cf. [81].

5. Consequences of the decay of the Weyl function

In this section we continue the theme from Section 4. In addition to the assumptions of the previous section we now assume that the Weyl function MM decays as dist(λ,σ(A0))\operatorname{dist}(\lambda,\sigma(A_{0}))\to\infty. In the first theorem we deal with a situation where A0A_{0} is bounded from below. Recall from (2.15) that in this case a decay assumption of the form M(λ)¯0\|\overline{M(\lambda)}\|\to 0 as λ\lambda\to-\infty implies that M(λ)¯\overline{M(\lambda)} is a non-negative operator in 𝒢{\mathcal{G}} for all λ<minσ(A0)\lambda<\min\sigma(A_{0}). The following theorem is now a consequence of Corollary 4.5; cf. [29, Theorem 2.8] for the special case when BB is symmetric. Recall that a linear operator AA in a Hilbert space is called dissipative (resp., accumulative) if W(A)+¯W(A)\subset\overline{{\mathbb{C}}^{+}} (resp., W(A)¯W(A)\subset\overline{{\mathbb{C}}^{-}}), and maximal dissipative (resp., maximal accumulative) if W(A)+¯W(A)\subset\overline{{\mathbb{C}}^{+}} and ρ(A)\rho(A)\cap{\mathbb{C}}^{-}\neq\emptyset (resp., W(A)¯W(A)\subset\overline{{\mathbb{C}}^{-}} and ρ(A)+\rho(A)\cap{\mathbb{C}}^{+}\neq\emptyset).

Theorem 5.1.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Assume that A0A_{0} is bounded from below, that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and that

M(λ)¯0asλ.\bigl{\|}\overline{M(\lambda)}\bigr{\|}\to 0\quad\text{as}\quad\lambda\to-\infty. (5.1)

Let BB be a closable operator in 𝒢{\mathcal{G}} and assume that there exists bb\in{\mathbb{R}} such that

  • (i)

    Re(Bx,x)bx2\operatorname{Re}(Bx,x)\leq b\|x\|^{2}   for all xdomBx\in\operatorname{dom}B;

  • (ii)

    ranM(λ)¯1/2domB\operatorname{ran}\overline{M(\lambda)}^{1/2}\subset\operatorname{dom}B   for all λ<minσ(A0)\lambda<\min\sigma(A_{0});

  • (iii)

    B(ranM(λ)¯)ranΓ0B\bigl{(}\operatorname{ran}\overline{M(\lambda)}\bigr{)}\subset\operatorname{ran}\Gamma_{0}   for all λ<minσ(A0)\lambda<\min\sigma(A_{0});

  • (iv)

    ranΓ1domB\operatorname{ran}\Gamma_{1}\subset\operatorname{dom}B;

  • (v)

    B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0}   or   ρ(A1)(,minσ(A0))\rho(A_{1})\cap(-\infty,\min\sigma(A_{0}))\neq\emptyset.

Then the operator

A[B]f=Tf,domA[B]={fdomT:Γ0f=BΓ1f},A_{[B]}f=Tf,\qquad\operatorname{dom}A_{[B]}=\bigl{\{}f\in\operatorname{dom}T:\Gamma_{0}f=B\Gamma_{1}f\bigr{\}}, (5.2)

is a closed extension of SS in {\mathcal{H}} and

{λ<minσ(A0):bM(λ)¯<1}ρ(A[B]).\big{\{}\lambda<\min\sigma(A_{0}):b\|\overline{M(\lambda)}\|<1\big{\}}\subset\rho(A_{[B]}). (5.3)

In particular, there exists μminσ(A0)\mu\leq\min\sigma(A_{0}) such that (,μ)ρ(A[B])(-\infty,\mu)\subset\rho(A_{[B]}). Moreover, the resolvent formula

(A[B]λ)1=(A0λ)1+γ(λ)(IBM(λ))1Bγ(λ¯)(A_{[B]}-\lambda)^{-1}=(A_{0}-\lambda)^{-1}+\gamma(\lambda)\bigl{(}I-BM(\lambda)\bigr{)}^{-1}B\gamma(\overline{\lambda})^{*} (5.4)

holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}). If, in addition, BB is symmetric (dissipative, accumulative, respectively), then A[B]A_{[B]} is self-adjoint and bounded from below (maximal accumulative, maximal dissipative, respectively).

Further, let BB^{\prime} be a linear operator in 𝒢{\mathcal{G}} that satisfies (i)–(v) with BB replaced by BB^{\prime} and assume that

(Bx,y)=(x,By)for allxdomB,ydomB.(Bx,y)=(x,B^{\prime}y)\qquad\text{for all}\;\;x\in\operatorname{dom}B,\;y\in\operatorname{dom}B^{\prime}. (5.5)

Then A[B]=A[B]A_{[B^{\prime}]}=A_{[B]}^{*} and the left-hand side of (5.3) is contained in ρ(A[B])\rho(A_{[B^{\prime}]}).

Proof.

First note that it can be shown in the same way as in Step 5 in the proof of Theorem 4.1 that the second condition in (v) and (ii)–(iv) imply the first condition in (v). Further, the assumption (5.1) implies M(λ)0M(\lambda)\geq 0 for every λ<minσ(A0)\lambda<\min\sigma(A_{0}); see (2.15). It follows from Corollary 4.5 that A[B]A_{[B]} is a closed extension of SS in {\mathcal{H}} and that every point λ<minσ(A0)\lambda<\min\sigma(A_{0}) with the property bM(λ)¯<1b\|\overline{M(\lambda)}\|<1 belongs to ρ(A[B])\rho(A_{[B]}). Note that such λ\lambda exist due to the decay condition (5.1). Condition (5.1) and relation (5.3) also imply that there exists μminσ(A0)\mu\leq\min\sigma(A_{0}) with

(,μ)ρ(A[B]).(-\infty,\mu)\subset\rho(A_{[B]}). (5.6)

The resolvent formula (5.4) and the assertions on A[B]A_{[B^{\prime}]} are immediate from Corollary 4.5.

It remains to show that A[B]A_{[B]} is self-adjoint (maximal accumulative, maximal dissipative, respectively) if BB is symmetric (dissipative, accumulative, respectively). For this let fdomA[B]f\in\operatorname{dom}A_{[B]} and observe that the abstract Green identity (2.1) yields

Im(A[B]f,f)=12i((Tf,f)(f,Tf))=12i((Γ1f,Γ0f)(Γ0f,Γ1f))=12i((Γ1f,BΓ1f)(BΓ1f,Γ1f))=Im(BΓ1f,Γ1f).\begin{split}\operatorname{Im}(A_{[B]}f,f)&=\frac{1}{2i}\bigl{(}(Tf,f)-(f,Tf)\bigr{)}=\frac{1}{2i}\bigl{(}(\Gamma_{1}f,\Gamma_{0}f)-(\Gamma_{0}f,\Gamma_{1}f)\bigr{)}\\ &=\frac{1}{2i}\Bigl{(}(\Gamma_{1}f,B\Gamma_{1}f)-(B\Gamma_{1}f,\Gamma_{1}f)\Bigr{)}=-\operatorname{Im}(B\Gamma_{1}f,\Gamma_{1}f).\end{split} (5.7)

If BB is symmetric (dissipative, accumulative), then Im(Bx,x)\operatorname{Im}(Bx,x) is zero (non-negative, non-positive, respectively) for all xdomBx\in\operatorname{dom}B, and it follows from (5.7) that A[B]A_{[B]} is symmetric (accumulative, dissipative, respectively). Now (5.6) implies that A[B]A_{[B]} is self-adjoint and bounded from below (maximal accumulative, maximal dissipative, respectively). ∎

In the case when {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is a generalized boundary triple, Theorem 5.1 simplifies in the following way.

Corollary 5.2.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a generalized boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Assume that A0A_{0} is bounded from below and that

M(λ)0asλ.\displaystyle\|M(\lambda)\|\to 0\quad\text{as}\quad\lambda\to-\infty.

Let BB be a closable operator in 𝒢{\mathcal{G}} and assume that there exists bb\in{\mathbb{R}} such that

  • (i)

    Re(Bx,x)bx2\operatorname{Re}(Bx,x)\leq b\|x\|^{2} for all xdomBx\in\operatorname{dom}B;

  • (ii)

    ranM(λ)1/2domB\operatorname{ran}M(\lambda)^{1/2}\subset\operatorname{dom}B for all λ<minσ(A0)\lambda<\min\sigma(A_{0});

  • (iii)

    ranΓ1domB\operatorname{ran}\Gamma_{1}\subset\operatorname{dom}B.

Then the operator A[B]A_{[B]} in (5.2) is a closed extension of SS in {\mathcal{H}} and

{λ<minσ(A0):bM(λ)<1}ρ(A[B]).\big{\{}\lambda<\min\sigma(A_{0}):b\|M(\lambda)\|<1\big{\}}\subset\rho(A_{[B]}). (5.8)

In particular, there exists μminσ(A0)\mu\leq\min\sigma(A_{0}) such that (,μ)ρ(A[B])(-\infty,\mu)\subset\rho(A_{[B]}). Moreover, the resolvent formula (5.4) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}). If, in addition, BB is symmetric (dissipative, accumulative, respectively), then A[B]A_{[B]} is self-adjoint and bounded from below (maximal accumulative, maximal dissipative, respectively).

Further, let BB^{\prime} be a linear operator in 𝒢{\mathcal{G}} that satisfies (i)–(iii) with BB replaced by BB^{\prime} and assume that (5.5) holds. Then A[B]=A[B]A_{[B^{\prime}]}=A_{[B]}^{*} and the left-hand side of (5.8) is contained in ρ(A[B])\rho(A_{[B^{\prime}]}).

Remark 5.3.

Note that for an ordinary boundary triple {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} condition (iv) in Theorem 5.1 (condition (iii) in Corollary 5.2) implies that B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}). In this situation the conditions (ii), (iii), and the first condition in (v) in Theorem 5.1 (condition (ii) in Corollary 5.2) are automatically satisfied. We shall formulate a corollary on spectral enclosures in the case of an ordinary boundary triple in Corollary 5.7 below.

Let us formulate another corollary of Theorem 5.1 (in particular, of the inclusion in (5.3)).

Corollary 5.4.

Let all assumptions of Theorem 5.1 be satisfied and assume that b0b\leq 0 in (i) of Theorem 5.1. Then the closed operator A[B]A_{[B]} in (5.2) satisfies

(,minσ(A0))ρ(A[B]).\bigl{(}-\infty,\min\sigma(A_{0})\bigr{)}\subset\rho(A_{[B]}).

We now turn to situations where the rate of decay of the Weyl function for λ\lambda\to-\infty is known in more detail. In such cases we derive spectral estimates for the operator A[B]A_{[B]}, which refine the inclusion (5.3) in Theorem 5.1. The following proposition provides a first, easy step towards this. Here we assume that bb in Theorem 5.1 (i) is positive; the case b0b\leq 0 is treated in Corollary 5.4 above. The proposition is a generalization of [29, Theorem 2.8 (b)] to the non-self-adjoint setting.

Proposition 5.5.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Assume that A0A_{0} is bounded from below, that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and that there exist β(0,1]\beta\in(0,1], C>0C>0 and μminσ(A0)\mu\leq\min\sigma(A_{0}) such that

M(λ)¯C(μλ)βfor all λ<μ.\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\frac{C}{(\mu-\lambda)^{\beta}}\qquad\text{for all }\;\lambda<\mu. (5.9)

Moreover, let BB be a closable operator in 𝒢{\mathcal{G}}, let b>0b>0, and assume that conditions (i)–(v) in Theorem 5.1 are satisfied. Then the operator A[B]A_{[B]} in (5.2) is closed and satisfies

(,μ(Cb)1/β)ρ(A[B]).\bigl{(}-\infty,\mu-(Cb)^{1/\beta}\bigr{)}\subset\rho(A_{[B]}). (5.10)
Proof.

That A[B]A_{[B]} is closed follows from Theorem 5.1. Consider λ<μ(Cb)1/β\lambda<\mu-(Cb)^{1/\beta}. Then (μλ)β>Cb(\mu-\lambda)^{\beta}>Cb and hence

bM(λ)¯bC(μλ)β<1.b\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq b\frac{C}{(\mu-\lambda)^{\beta}}<1.

Now Theorem 5.1 yields that λρ(A[B])\lambda\in\rho(A_{[B]}). ∎

In the next theorem we study the m-sectorial case discussed in Theorem 3.1 in more detail and obtain refined estimates for the numerical range of A[B]A_{[B]}. Roughly speaking, if the Weyl function decays for λ\lambda\to-\infty, then there exists an η\eta_{*}\in\mathbb{R} such that the assumptions in Theorem 3.1 are satisfied for every η<η\eta<\eta_{*} and hence

σ(A[B])W(A[B])¯η(,η)𝒮η(B).\sigma(A_{[B]})\subset\overline{W(A_{[B]})}\subset\bigcap_{\eta\in(-\infty,\eta_{*})}{\mathcal{S}}_{\eta}(B).

In the particular case when ImB\operatorname{Im}B is bounded and the Weyl function satisfies a decay condition as in Proposition 5.5, we use this fact to obtain an extension of Proposition 5.5 including estimates for the non-real spectrum.

Theorem 5.6.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM and suppose that A1A_{1} is self-adjoint and that A0A_{0} and A1A_{1} are bounded from below. Further, assume that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and that there exist β(0,1]\beta\in(0,1], C>0C>0 and μminσ(A0)\mu\leq\min\sigma(A_{0}) such that

M(λ)¯C(μλ)βfor everyλ<μ.\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\frac{C}{(\mu-\lambda)^{\beta}}\qquad\text{for every}\;\;\lambda<\mu. (5.11)

Moreover, let BB be a closable linear operator in 𝒢{\mathcal{G}} and let bb\in\mathbb{R} such that conditions (i)–(iv) in Theorem 5.1 are satisfied. Then the operator A[B]A_{[B]} in (5.2) is m-sectorial and, in particular, the inclusion σ(A[B])W(A[B])¯\sigma(A_{[B]})\subset\overline{W(A_{[B]})} holds.

Assume, in addition, that domBdomB\operatorname{dom}B^{*}\supset\operatorname{dom}B and that ImB\operatorname{Im}B is bounded. Then the following assertions are true.

  • (a)

    If  b>0b>0, then for every ξ<μ(Cb)1/β\xi<\mu-(Cb)^{1/\beta},

    W(A[B]){z:Rezμ(Cb)1/β,|Imz|Kξ(Rezξ)1β},W(A_{[B]})\subset\Bigl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\mu-(Cb)^{1/\beta},\;|\operatorname{Im}z|\leq K_{\xi}(\operatorname{Re}z-\xi)^{1-\beta}\Bigr{\}},\hskip-12.91663pt (5.12)

    where

    Kξ=2CImB¯1Cb(μξ)β.K_{\xi}=\frac{2C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{1-\frac{Cb}{(\mu-\xi)^{\beta}}}\,.
  • (b)

    If  b=0b=0, then

    W(A[B]){z:Rezμ,|Imz|Kβ(Rezμ)1β},W(A_{[B]})\subset\Bigl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\mu,\;|\operatorname{Im}z|\leq K^{\prime}_{\beta}(\operatorname{Re}z-\mu)^{1-\beta}\Bigr{\}}, (5.13)

    where

    Kβ={CImB¯ββ(1β)1βif  0<β<1,CImB¯ifβ=1,K^{\prime}_{\beta}=\begin{cases}\dfrac{C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{\beta^{\beta}(1-\beta)^{1-\beta}}&\text{if}\;\;0<\beta<1,\\[12.91663pt] C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}&\text{if}\;\;\beta=1,\end{cases} (5.14)

    and the convention 00=10^{0}=1 is used in (5.13) when β=1\beta=1 and Rez=μ\operatorname{Re}z=\mu. Moreover, KβK^{\prime}_{\beta} satisfies CImB¯Kβ2CImB¯C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\leq K^{\prime}_{\beta}\leq 2C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}.

  • (c)

    If  b<0b<0, then

    W(A[B]){z:Rezμ,|Imz|2CImB¯(Rezμ)(Rezμ)βCb}.W(A_{[B]})\subset\biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\mu,\;|\operatorname{Im}z|\leq\frac{2C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}(\operatorname{Re}z-\mu)}{(\operatorname{Re}z-\mu)^{\beta}-Cb}\biggr{\}}. (5.15)

See Figure 1 for plots of the regions given by the right-hand sides of (5.12), (5.13), (5.15). Notice that in Theorem 5.6 (a) we get, in fact, a family of enclosures in parabola-type regions that depend on the choice of the parameter ξ\xi. By intersecting all these regions with respect to ξ(,μ(Cb)1/β)\xi\in(-\infty,\mu-(Cb)^{1/\beta}) one gets a finer enclosure for the numerical range of A[B]A_{[B]}.

Refer to caption (a) b=1b=1, β=12\beta=\frac{1}{2}, ξ=5\xi=-5Refer to caption (b) b=0b=0, β=12\beta=\frac{1}{2} Refer to caption (c) b=1b=-1, β=12\beta=\frac{1}{2}Refer to caption (d) b=0b=0, β=1\beta=1Refer to caption (e) b=1b=-1, β=1\beta=1
Figure 1. The plots show the regions given by the right-hand sides of (5.12), (5.13), (5.15) with μ=0\mu=0, C=1C=1 and ImB¯=1\|\overline{\operatorname{Im}B}\|=1 for the following cases: β=12\beta=\frac{1}{2} in (a)–(c) (b>0b>0, b=0b=0, b<0b<0, respectively) and β=1\beta=1 in (d), (e) (b=0b=0, b<0b<0, respectively).
Proof.

Note first, that the conditions of Theorem 3.1 are satisfied; we point out, particularly, that by (5.11) and (2.15) we have M(λ)0M(\lambda)\geq 0 for each λ<minσ(A0)minσ(A1)\lambda<\min\sigma(A_{0})\leq\min\sigma(A_{1}) (see Proposition 2.7), and there exists η<μ\eta<\mu such that bM(η)¯<1b\|\overline{M(\eta)}\|<1. Hence, A[B]A_{[B]} is sectorial. Since A1A_{1} is self-adjoint and bounded from below and the assumptions (i)–(iv) in Theorem 5.1 hold, the latter yields ηρ(A[B])\eta\in\rho(A_{[B]}). Thus A[B]A_{[B]} is m-sectorial and hence σ(A[B])W(A[B])¯\sigma(A_{[B]})\subset\overline{W(A_{[B]})}.

For the rest of the proof assume that domBdomB\operatorname{dom}B^{*}\supset\operatorname{dom}B and that ImB\operatorname{Im}B is bounded. For every λ<minσ(A0)\lambda<\min\sigma(A_{0}) we have ranM(λ)¯1/2domBdomB\operatorname{ran}\overline{M(\lambda)}^{1/2}\subset\operatorname{dom}B\subset\operatorname{dom}B^{*} by condition (ii) of Theorem 5.1; in particular, BM(λ)¯1/2(𝒢)B\overline{M(\lambda)}^{1/2}\in{\mathcal{B}}({\mathcal{G}}) and BM(λ)¯1/2(𝒢)B^{*}\overline{M(\lambda)}^{1/2}\in{\mathcal{B}}({\mathcal{G}}). Hence

(M(λ)¯1/2BM(λ)¯1/2)\displaystyle\bigl{(}\overline{M(\lambda)}^{1/2}B\overline{M(\lambda)}^{1/2}\bigr{)}^{*} =(BM(λ)¯1/2)M(λ)¯1/2=((M(λ)¯1/2B))M(λ)¯1/2\displaystyle=\bigl{(}B\overline{M(\lambda)}^{1/2}\bigr{)}^{*}\overline{M(\lambda)}^{1/2}=\Big{(}\big{(}\overline{M(\lambda)}^{1/2}B^{*}\big{)}^{*}\Big{)}^{*}\overline{M(\lambda)}^{1/2}
=M(λ)¯1/2B¯M(λ)¯1/2=M(λ)¯1/2BM(λ)¯1/2.\displaystyle=\overline{\overline{M(\lambda)}^{1/2}B^{*}}\overline{M(\lambda)}^{1/2}=\overline{M(\lambda)}^{1/2}B^{*}\overline{M(\lambda)}^{1/2}.

This implies that

Im(M(λ)¯1/2BM(λ)¯1/2)=12M(λ)¯1/2BM(λ)¯1/2(M(λ)¯1/2BM(λ)¯1/2)=12M(λ)¯1/2(BB)M(λ)¯1/2ImB¯M(λ)¯,\begin{split}\bigl{\|}\operatorname{Im}\bigl{(}\overline{M(\lambda)}^{1/2}B\overline{M(\lambda)}^{1/2}\bigr{)}\bigr{\|}&=\frac{1}{2}\Bigl{\|}\overline{M(\lambda)}^{1/2}B\overline{M(\lambda)}^{1/2}-\bigl{(}\overline{M(\lambda)}^{1/2}B\overline{M(\lambda)}^{1/2}\bigr{)}^{*}\Bigr{\|}\\[2.15277pt] &=\frac{1}{2}\Bigl{\|}\overline{M(\lambda)}^{1/2}(B-B^{*})\overline{M(\lambda)}^{1/2}\Bigr{\|}\\[2.15277pt] &\leq\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\,\bigl{\|}\overline{M(\lambda)}\bigr{\|},\end{split} (5.16)

where we have used that ImB\operatorname{Im}B is a bounded operator defined on the dense subspace domB\operatorname{dom}B of 𝒢{\mathcal{G}}. Let zW(A[B])z\in W(A_{[B]}). It follows from Theorem 3.1 and (5.16) that, for every η<minσ(A0)\eta<\min\sigma(A_{0}) for which bM(η)¯<1b\|\overline{M(\eta)}\|<1, the inequalities

Rezη,|Imz|ImB¯M(η)¯1bM(η)¯(Rezη)\operatorname{Re}z\geq\eta,\qquad|\operatorname{Im}z|\leq\frac{\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\,\bigl{\|}\overline{M(\eta)}\bigr{\|}}{1-b\bigl{\|}\overline{M(\eta)}\bigr{\|}}(\operatorname{Re}z-\eta) (5.17)

hold.

(a) Assume that b>0b>0. For every η<μ(Cb)1/β\eta<\mu-(Cb)^{1/\beta} we have η<minσ(A0)\eta<\min\sigma(A_{0}) and, by (5.11),

bM(η)¯Cb(μη)β<1.b\bigl{\|}\overline{M(\eta)}\bigr{\|}\leq\frac{Cb}{(\mu-\eta)^{\beta}}<1. (5.18)

Hence (5.17) is true for each such η\eta. For the real part of zz this yields

Rezμ(Cb)1/β.\operatorname{Re}z\geq\mu-(Cb)^{1/\beta}. (5.19)

To estimate |Imz||\operatorname{Im}z| further, note that the function

(,1b)tImB¯t1bt\Bigl{(}-\infty,\frac{1}{b}\Bigr{)}\ni t\mapsto\frac{\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}t}{1-bt}

is strictly increasing and that M(η)¯C(μη)β<1b\|\overline{M(\eta)}\|\leq\frac{C}{(\mu-\eta)^{\beta}}<\frac{1}{b} for all η<μ(Cb)1/β\eta<\mu-(Cb)^{1/\beta} by (5.18). Hence (5.17) yields

|Imz|ImB¯C(μη)β1Cb(μη)β(Rezη)for allη<μ(Cb)1/β.|\operatorname{Im}z|\leq\frac{\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\frac{C}{(\mu-\eta)^{\beta}}}{1-\frac{Cb}{(\mu-\eta)^{\beta}}}(\operatorname{Re}z-\eta)\qquad\text{for all}\;\;\eta<\mu-(Cb)^{1/\beta}. (5.20)

Now let ξ<μ(Cb)1/β\xi<\mu-(Cb)^{1/\beta} be arbitrary. Then (5.19) implies that Rez>ξ\operatorname{Re}z>\xi. Choose η:=2ξRez\eta\mathrel{\mathop{:}}=2\xi-\operatorname{Re}z, which satisfies η<2ξξ=ξ\eta<2\xi-\xi=\xi. From (5.20) and ξ<μ\xi<\mu we obtain the inequality

|Imz|CImB¯1Cb(μξ)βRezη(ξη)β=CImB¯1Cb(μξ)β2(Rezξ)(Rezξ)β,|\operatorname{Im}z|\leq\frac{C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{1-\frac{Cb}{(\mu-\xi)^{\beta}}}\cdot\frac{\operatorname{Re}z-\eta}{(\xi-\eta)^{\beta}}=\frac{C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{1-\frac{Cb}{(\mu-\xi)^{\beta}}}\cdot\frac{2(\operatorname{Re}z-\xi)}{(\operatorname{Re}z-\xi)^{\beta}}\,,

which, together with (5.19), shows (5.12).

(b), (c) Assume now that b0b\leq 0. For every η<μ\eta<\mu we have η<minσ(A0)\eta<\min\sigma(A_{0}) and bM(η)¯0b\|\overline{M(\eta)}\|\leq 0. Hence (5.17) is true for η<μ\eta<\mu, which, in particular, shows that

Rezμ.\operatorname{Re}z\geq\mu. (5.21)

Note that tImB¯t1btt\mapsto\frac{\|\overline{\operatorname{Im}B}\|t}{1-bt} is strictly increasing on (0,)(0,\infty). Hence (5.17) and (5.11) imply that

|Imz|ImB¯M(η)¯1bM(η)¯(Rezη)ImB¯C(μη)β1Cb(μη)β(Rezη).|\operatorname{Im}z|\leq\frac{\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\,\bigl{\|}\overline{M(\eta)}\bigr{\|}}{1-b\bigl{\|}\overline{M(\eta)}\bigr{\|}}(\operatorname{Re}z-\eta)\leq\frac{\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\,\frac{C}{(\mu-\eta)^{\beta}}}{1-\frac{Cb}{(\mu-\eta)^{\beta}}}(\operatorname{Re}z-\eta). (5.22)

Assume first that Rez>μ\operatorname{Re}z>\mu. Now we distinguish the two cases b=0b=0 and b<0b<0. First let b=0b=0 and β(0,1)\beta\in(0,1). We choose

η:=11β(μβRez),\eta\mathrel{\mathop{:}}=\frac{1}{1-\beta}(\mu-\beta\operatorname{Re}z),

which yields

Rezη=11β(Rezμ)andμη=β1β(Rezμ);\operatorname{Re}z-\eta=\frac{1}{1-\beta}(\operatorname{Re}z-\mu)\qquad\text{and}\qquad\mu-\eta=\frac{\beta}{1-\beta}(\operatorname{Re}z-\mu);

in particular, we have η<μ\eta<\mu. Hence (5.22) implies that

|Imz|\displaystyle|\operatorname{Im}z| CImB¯Rezη(μη)β=CImB¯11β(Rezμ)[β1β(Rezμ)]β\displaystyle\leq C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\frac{\operatorname{Re}z-\eta}{(\mu-\eta)^{\beta}}=C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\frac{\frac{1}{1-\beta}(\operatorname{Re}z-\mu)}{\bigl{[}\frac{\beta}{1-\beta}(\operatorname{Re}z-\mu)\bigr{]}^{\beta}}
=CImB¯ββ(1β)1β(Rezμ)1β,\displaystyle=\frac{C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{\beta^{\beta}(1-\beta)^{1-\beta}}(\operatorname{Re}z-\mu)^{1-\beta},

which shows that zz is contained in the right-hand side of (5.13). Taking the limit β1\beta\nearrow 1 we obtain this inclusion also for the case when β=1\beta=1. The estimates for KβK^{\prime}_{\beta} follow from the fact that the function f(β)=ββ(1β)1βf(\beta)=\beta^{\beta}(1-\beta)^{1-\beta}, β(0,1)\beta\in(0,1) has a unique minimum at β=12\beta=\frac{1}{2} and that f(β)1f(\beta)\to 1 as β0\beta\searrow 0 or β1\beta\nearrow 1.

Now let b<0b<0 (and still Rez>μ\operatorname{Re}z>\mu). We choose η:=2μRez\eta\mathrel{\mathop{:}}=2\mu-\operatorname{Re}z, which yields

Rezη=2(Rezμ)andμη=Rezμ.\operatorname{Re}z-\eta=2(\operatorname{Re}z-\mu)\qquad\text{and}\qquad\mu-\eta=\operatorname{Re}z-\mu.

Therefore (5.22) implies that

|Imz|2CImB¯(Rezμ)βCb(Rezμ),|\operatorname{Im}z|\leq\frac{2C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{(\operatorname{Re}z-\mu)^{\beta}-Cb}(\operatorname{Re}z-\mu),

and hence zz is contained in the right-hand side of (5.15). Since the numerical range W(A[B])W(A_{[B]}) is a convex set, the inclusions (5.13) and (5.15) hold also for zz with Rez=μ\operatorname{Re}z=\mu. ∎

Next we formulate a variant of Theorem 5.6 for the special case when {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} is an ordinary boundary triple. In this case the assumptions in Theorem 5.1 imply that BB is a bounded operator in 𝒢{\mathcal{G}}; cf. Remark 5.3.

Corollary 5.7.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be an ordinary boundary triple for SS^{*} with corresponding Weyl function MM and suppose that the self-adjoint operators A0A_{0} and A1A_{1} are bounded from below. Further, assume that there exist β(0,1]\beta\in(0,1], C>0C>0 and μminσ(A0)\mu\leq\min\sigma(A_{0}) such that

M(λ)C(μλ)βfor everyλ<μ.\bigl{\|}M(\lambda)\bigr{\|}\leq\frac{C}{(\mu-\lambda)^{\beta}}\qquad\text{for every}\;\;\lambda<\mu.

Let B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}) be a bounded, everywhere defined operator in 𝒢{\mathcal{G}} and let bb\in\mathbb{R} be such that Re(Bx,x)bx2\operatorname{Re}(Bx,x)\leq b\|x\|^{2} for all x𝒢x\in{\mathcal{G}}. Then the operator A[B]A_{[B]} in (5.2) is m-sectorial and, in particular, the inclusion σ(A[B])W(A[B])¯\sigma(A_{[B]})\subset\overline{W(A_{[B]})} holds. Moreover, the assertions in Theorem 5.6 (a), (b) and (c) are true.

In the following theorem we drop the assumption that A0A_{0} is bounded from below, but we assume that B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}). We remark that the condition (5.1) does no longer make sense if A0A_{0} is not bounded from below. Therefore we replace it by the more appropriate condition (5.23) below.

Theorem 5.8.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Assume that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}) and that

M(reiφ)¯0asr\bigl{\|}\overline{M(re^{i\varphi})}\bigr{\|}\to 0\qquad\text{as}\;\;r\to\infty (5.23)

for some fixed φ(π,0)(0,π)\varphi\in(-\pi,0)\cup(0,\pi). Let B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}) be such that

  • (i)

    B(ranM(λ)¯)ranΓ0B\bigl{(}\operatorname{ran}\overline{M(\lambda)}\bigr{)}\subset\operatorname{ran}\Gamma_{0}   for all λρ(A0)\lambda\in\rho(A_{0});

  • (ii)

    B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0}   or   A1A_{1} is self-adjoint.

Then the operator A[B]A_{[B]} in (5.2) is closed, the resolvent formula (5.4) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}), and

{λρ(A0):BM(λ)¯<1}ρ(A[B]).\big{\{}\lambda\in\rho(A_{0}):\bigl{\|}B\overline{M(\lambda)}\bigr{\|}<1\big{\}}\subset\rho(A_{[B]}). (5.24)

In particular, for every interval [ψ1,ψ2](π,0)[\psi_{1},\psi_{2}]\subset(-\pi,0) or [ψ1,ψ2](0,π)[\psi_{1},\psi_{2}]\subset(0,\pi) there exists R[ψ1,ψ2]>0R_{[\psi_{1},\psi_{2}]}>0 such that

{reiψ:rR[ψ1,ψ2],ψ[ψ1,ψ2]}ρ(A[B]).\bigl{\{}re^{i\psi}:r\geq R_{[\psi_{1},\psi_{2}]},\,\psi\in[\psi_{1},\psi_{2}]\bigr{\}}\subset\rho(A_{[B]}). (5.25)

Moreover, if BB is self-adjoint (accumulative, dissipative, respectively), then A[B]A_{[B]} is self-adjoint (maximal dissipative, maximal accumulative, respectively).

Further, if conditions (i) and (ii) are satisfied also for the adjoint operator BB^{*} instead of BB, then A[B]=A[B]A_{[B^{*}]}=A_{[B]}^{*}.

Proof.

Let λρ(A0)\lambda\in\rho(A_{0}) with BM(λ)¯<1\|B\overline{M(\lambda)}\|<1; such λ\lambda exist by (5.23). Then

1ρ(BM(λ)¯).1\in\rho\bigl{(}B\overline{M(\lambda)}\bigr{)}.

It follows from this and the assumptions of the current theorem that Corollary 4.4 can be applied. Thus A[B]A_{[B]} is closed, the resolvent formula (5.4) holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}), (5.24) is valid, and the statement on A[B]A_{[B^{*}]} follows. The relation (5.25) follows from (5.23), Lemma 2.6 and (5.24). If BB is symmetric (accumulative, dissipative, respectively), then it follows as in the proof of Theorem 5.1 that A[B]A_{[B]} is symmetric (dissipative, accumulative, respectively). This, together with (5.25), implies the remaining assertions. ∎

The next proposition complements Proposition 5.5. Here we require a decay condition on the Weyl function on a set Gρ(A0)G\subset\rho(A_{0}) that is sufficiently large. In later sections this is applied to, e.g. all of ρ(A0)\rho(A_{0}) or to certain sectors in the complex plane.

Proposition 5.9.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM and assume that M(λ)M(\lambda) is bounded for one (and hence for all) λρ(A0)\lambda\in\rho(A_{0}). Further, let B(𝒢)B\in{\mathcal{B}}({\mathcal{G}}) such that

  • (i)

    B(ranM(λ)¯)ranΓ0B\bigl{(}\operatorname{ran}\overline{M(\lambda)}\bigr{)}\subset\operatorname{ran}\Gamma_{0} for all λρ(A0)\lambda\in\rho(A_{0});

  • (ii)

    B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0}   or   A1A_{1} is self-adjoint.

Let Gρ(A0)G\subset\rho(A_{0}) be a set such that there exist λnG\lambda_{n}\in G, nn\in\mathbb{N}, with

dist(λn,σ(A0))asn.\operatorname{dist}(\lambda_{n},\sigma(A_{0}))\to\infty\quad\text{as}\;\;n\to\infty.

Then the following assertions hold.

  • (a)

    If there exist β(0,1]\beta\in(0,1] and C>0C>0 such that

    M(λ)¯C(dist(λ,σ(A0)))βfor all λG,\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\frac{C}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{\beta}}\qquad\text{for all }\;\lambda\in G,

    then A[B]A_{[B]} is a closed extension of SS and

    σ(A[B])G{zG:dist(z,σ(A0))(CB)1/β}.\sigma(A_{[B]})\cap G\subset\Bigl{\{}z\in G:\operatorname{dist}(z,\sigma(A_{0}))\leq\bigl{(}C\|B\|\bigr{)}^{1/\beta}\Bigr{\}}. (5.26)
  • (b)

    If there exist β(0,1]\beta\in(0,1], C>0C>0 and μminσ(A0)\mu\leq\min\sigma(A_{0}) such that

    M(λ)¯C|λμ|βfor all λG,\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\frac{C}{|\lambda-\mu|^{\beta}}\qquad\text{for all }\;\lambda\in G, (5.27)

    then A[B]A_{[B]} is a closed extension of SS and

    σ(A[B])G{zG:|zμ|(CB)1/β}.\sigma(A_{[B]})\cap G\subset\Bigl{\{}z\in G:|z-\mu|\leq\bigl{(}C\|B\|\bigr{)}^{1/\beta}\Bigr{\}}. (5.28)
Proof.

We prove only assertion (a); the proof of the second assertion is analogous. Assume first that condition (i) and the first condition in (ii) are satisfied. By the assumption on GG, there exists λG\lambda\in G such that dist(λ,σ(A0))>(CB)1/β\operatorname{dist}(\lambda,\sigma(A_{0}))>(C\|B\|)^{1/\beta}. Then

BM(λ)¯BM(λ)¯<(dist(λ,σ(A0)))βCC(dist(λ,σ(A0)))β=1\bigl{\|}B\overline{M(\lambda)}\bigr{\|}\leq\|B\|\bigl{\|}\overline{M(\lambda)}\bigr{\|}<\frac{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{\beta}}{C}\cdot\frac{C}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{\beta}}=1

implies that 1ρ(BM(λ)¯)1\in\rho(B\overline{M(\lambda)}). It follows from Theorem 4.1 that A[B]A_{[B]} is closed with λρ(A[B])\lambda\in\rho(A_{[B]}). If the condition (i) together with the second condition in (ii) is satisfied then ρ(A0)ρ(A1)\rho(A_{0})\cap\rho(A_{1})\neq\emptyset and for each λρ(A0)ρ(A1)\lambda\in\rho(A_{0})\cap\rho(A_{1}) we have ranΓ1=ranM(λ)ranM(λ)¯\operatorname{ran}\Gamma_{1}=\operatorname{ran}M(\lambda)\subset\operatorname{ran}\overline{M(\lambda)}; see [22, Proposition 2.6 (iii)]. Hence, for each such λ\lambda we have B(ranΓ1)ranΓ0B(\operatorname{ran}\Gamma_{1})\subset\operatorname{ran}\Gamma_{0} by (i), that is, the first condition of (ii) is satisfied as well. ∎

In the special case G=ρ(A0)G=\rho(A_{0}) and A00A_{0}\geq 0 with μ=0\mu=0 in (5.27), Proposition 5.9 (b) reads as follows.

Corollary 5.10.

Let the assumptions be as in Proposition 5.9 and assume, in addition, that A0A_{0} is non-negative and that there exist β(0,1]\beta\in(0,1] and C>0C>0 such that

M(λ)¯C|λ|βfor allλρ(A0).\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\frac{C}{|\lambda|^{\beta}}\qquad\text{for all}\;\;\lambda\in\rho(A_{0}).

Then

σ(A[B])ρ(A0){zρ(A0):|z|(CB)1/β}.\sigma(A_{[B]})\cap\rho(A_{0})\subset\Bigl{\{}z\in\rho(A_{0}):|z|\leq\bigl{(}C\|B\|\bigr{)}^{1/\beta}\Bigr{\}}.

6. Sufficient conditions for decay of the Weyl function

In this section we consider conditions on the quasi boundary triple that ensure an asymptotic behaviour of the Weyl function MM as required in the results of the previous section. We emphasize that these results are also new in the settings of ordinary and generalized boundary triples. For the next theorem some notation for sectors in the complex plane is needed. For z0+¯z_{0}\in\overline{\mathbb{C}^{+}} and θ(0,π2)\theta\in\bigl{(}0,\frac{\pi}{2}\bigr{)} we define the closed sector 𝕊z0,θ\mathbb{S}_{z_{0},\theta} in +{\mathbb{C}}^{+} by

𝕊z0,θ:={z:zz0,arg(zz0)[π2θ,π2+θ]}{z0}\mathbb{S}_{z_{0},\theta}\mathrel{\mathop{:}}=\Bigl{\{}z\in\mathbb{C}:z\neq z_{0},\,\arg(z-z_{0})\in\Bigl{[}\frac{\pi}{2}-\theta,\frac{\pi}{2}+\theta\Bigr{]}\Bigr{\}}\cup\{z_{0}\} (6.1)

and we denote the corresponding complex conjugate sector in {\mathbb{C}}^{-} by 𝕊z0,θ\mathbb{S}_{z_{0},\theta}^{*}, that is,

𝕊z0,θ:={z:z¯𝕊z0,θ}.\mathbb{S}_{z_{0},\theta}^{*}\mathrel{\mathop{:}}=\bigl{\{}z\in{\mathbb{C}}:\overline{z}\in\mathbb{S}_{z_{0},\theta}\bigr{\}}.

Furthermore, for w0w_{0}\in{\mathbb{R}} and ν(0,π)\nu\in(0,\pi) we set

𝕌w0,ν:={z:zw0,arg(zw0)[ν,2πν]}{w0};\mathbb{U}_{w_{0},\nu}\mathrel{\mathop{:}}=\bigl{\{}z\in\mathbb{C}:z\neq w_{0},\,\arg(z-w_{0})\in[\nu,2\pi-\nu]\bigr{\}}\cup\{w_{0}\}; (6.2)

see Figure 2.

z0z_{0}θ\thetaθ\theta𝕊z0,θ\mathbb{S}_{z_{0},\theta}
w0w_{0}ν\nuν\nu𝕌w0,ν\mathbb{U}_{w_{0},\nu}
Figure 2. The sectors 𝕊z0,θ\mathbb{S}_{z_{0},\theta} and 𝕌w0,ν\mathbb{U}_{w_{0},\nu}, defined in (6.1) and (6.2), respectively.

In the proof of the next theorem we need the following fact from the functional calculus for self-adjoint operators, which is found, e.g. in [125, Theorem 5.9]: for a self-adjoint operator AA and measurable functions Φ,Ψ:σ(A)\Phi,\Psi:\sigma(A)\to\mathbb{C} one has

Φ(A)Ψ(A)¯=(ΦΨ)(A).\overline{\Phi(A)\Psi(A)}=(\Phi\Psi)(A). (6.3)

If Ψ\Psi is bounded on σ(A)\sigma(A), then the closure on the left-hand side is not needed.

Theorem 6.1.

Let SS be a densely defined, closed, symmetric operator in a Hilbert space {\mathcal{H}} and let Π={𝒢,Γ0,Γ1}\Pi=\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM. Moreover, assume that

Γ1|A0μ|α:dom(Γ1|A0μ|α)𝒢\Gamma_{1}|A_{0}-\mu|^{-\alpha}:{\mathcal{H}}\supset\operatorname{dom}(\Gamma_{1}|A_{0}-\mu|^{-\alpha})\to{\mathcal{G}} (6.4)

is bounded for some μρ(A0)\mu\in\rho(A_{0}) and some α(0,12]\alpha\in\bigl{(}0,\frac{1}{2}\bigr{]}. Then the following assertions hold.

  • (a)

    M(λ)M(\lambda) is bounded for all λρ(A0)\lambda\in\rho(A_{0}).

  • (b)

    For all z0+¯ρ(A0)z_{0}\in\overline{\mathbb{C}^{+}}\cap\rho(A_{0}) and all θ(0,π2)\theta\in(0,\frac{\pi}{2}) there exists C=C(Π,α,μ,z0,θ)>0C=C(\Pi,\alpha,\mu,z_{0},\theta)>0 such that

    M(λ)¯C(dist(λ,σ(A0)))12α\big{\|}\overline{M(\lambda)}\big{\|}\leq\frac{C}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1-2\alpha}} (6.5)

    for all λ𝕊z0,θ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta}\cup\mathbb{S}_{z_{0},\theta}^{*}.

  • (c)

    If A0A_{0} is bounded from below, then for all w0<minσ(A0)w_{0}<\min\sigma(A_{0}) and all ν(0,π)\nu\in(0,\pi) there exists D=D(Π,α,μ,w0,ν)>0D=D(\Pi,\alpha,\mu,w_{0},\nu)>0 such that

    M(λ)¯D(dist(λ,σ(A0)))12α\big{\|}\overline{M(\lambda)}\big{\|}\leq\frac{D}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1-2\alpha}} (6.6)

    for all λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu}.

Proof.

Let us first observe that Γ1|A0μ|α\Gamma_{1}|A_{0}-\mu|^{-\alpha} is densely defined. Indeed, with the functions Φ(t):=(tμ)1\Phi(t)\mathrel{\mathop{:}}=(t-\mu)^{-1} and Ψ(t):=(tμ)|tμ|α\Psi(t)\mathrel{\mathop{:}}=(t-\mu)|t-\mu|^{-\alpha} we can use (6.3) and (2.3) to write

Γ1|A0μ|α=Γ1(ΦΨ)(A0)Γ1Φ(A0)Ψ(A0)=γ(μ¯)Ψ(A0).\Gamma_{1}|A_{0}-\mu|^{-\alpha}=\Gamma_{1}(\Phi\Psi)(A_{0})\supset\Gamma_{1}\Phi(A_{0})\Psi(A_{0})=\gamma(\overline{\mu})^{*}\Psi(A_{0}).

Since γ(μ¯)(,𝒢)\gamma(\overline{\mu})^{*}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}) and domΨ(A0)=dom|A0μ|1α\operatorname{dom}\Psi(A_{0})=\operatorname{dom}|A_{0}-\mu|^{1-\alpha} is dense in {\mathcal{H}}, it follows that Γ1|A0μ|α\Gamma_{1}|A_{0}-\mu|^{-\alpha} is densely defined. By assumption (6.4) we therefore have

Γ1|A0μ|α¯(,𝒢).\overline{\Gamma_{1}|A_{0}-\mu|^{-\alpha}}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}). (6.7)

Note that also γ(μ)|A0μ|1α\gamma(\mu)^{*}|A_{0}-\mu|^{1-\alpha} is densely defined since γ(μ)(,𝒢)\gamma(\mu)^{*}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}) and |A0μ|1α|A_{0}-\mu|^{1-\alpha} is self-adjoint. Moreover, set

Φ1(t):=(tμ¯)1,Ψ1(t):=|tμ|1α,Φ2(t):=|tμ|α,Ψ2(t):=|tμ|(tμ¯)1,tσ(A0),\begin{aligned} \Phi_{1}(t)&\mathrel{\mathop{:}}=(t-\overline{\mu})^{-1},\qquad&\Psi_{1}(t)&\mathrel{\mathop{:}}=|t-\mu|^{1-\alpha},\\ \Phi_{2}(t)&\mathrel{\mathop{:}}=|t-\mu|^{-\alpha},\qquad&\Psi_{2}(t)&\mathrel{\mathop{:}}=|t-\mu|(t-\overline{\mu})^{-1},\end{aligned}\qquad t\in\sigma(A_{0}),

and note that Φ1Ψ1=Φ2Ψ2\Phi_{1}\Psi_{1}=\Phi_{2}\Psi_{2} and that Ψ2\Psi_{2} is bounded. We obtain from (2.3), (6.3) and (6.7) that

γ(μ)|A0μ|1α\displaystyle\gamma(\mu)^{*}|A_{0}-\mu|^{1-\alpha} =Γ1(A0μ¯)1|A0μ|1α\displaystyle=\Gamma_{1}(A_{0}-\overline{\mu})^{-1}|A_{0}-\mu|^{1-\alpha}
=Γ1Φ1(A0)Ψ1(A0)Γ1(Φ1Ψ1)(A0)=Γ1(Φ2Ψ2)(A0)\displaystyle=\Gamma_{1}\Phi_{1}(A_{0})\Psi_{1}(A_{0})\subset\Gamma_{1}(\Phi_{1}\Psi_{1})(A_{0})=\Gamma_{1}(\Phi_{2}\Psi_{2})(A_{0})
=Γ1Φ2(A0)Ψ2(A0)Γ1|A0μ|α¯Ψ2(A0)(,𝒢).\displaystyle=\Gamma_{1}\Phi_{2}(A_{0})\Psi_{2}(A_{0})\subset\overline{\Gamma_{1}|A_{0}-\mu|^{-\alpha}}\Psi_{2}(A_{0})\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}).

Thus γ(μ)|A0μ|1α\gamma(\mu)^{*}|A_{0}-\mu|^{1-\alpha} is bounded and densely defined. In particular,

|A0μ|1αγ(μ)¯=[γ(μ)|A0μ|1α](𝒢,),|A_{0}-\mu|^{1-\alpha}\overline{\gamma(\mu)}=\big{[}\gamma(\mu)^{*}|A_{0}-\mu|^{1-\alpha}\big{]}^{*}\in{\mathcal{B}}({\mathcal{G}},{\mathcal{H}}), (6.8)

where we have used again that γ(μ)(,𝒢)\gamma(\mu)^{*}\in{\mathcal{B}}({\mathcal{H}},{\mathcal{G}}). Let λρ(A0)\lambda\in\rho(A_{0}) and define the functions

Φ3(t):=tμtλ|tμ|α1,Ψ3(t):=|tμ|1α,Φ4(t):=|tμ|α,Ψ4(t):=tμtλ|tμ|2α1,tσ(A0),\begin{aligned} \Phi_{3}(t)&\mathrel{\mathop{:}}=\frac{t-\mu}{t-\lambda}|t-\mu|^{\alpha-1},\qquad&\Psi_{3}(t)&\mathrel{\mathop{:}}=|t-\mu|^{1-\alpha},\\ \Phi_{4}(t)&\mathrel{\mathop{:}}=|t-\mu|^{-\alpha},\qquad&\Psi_{4}(t)&\mathrel{\mathop{:}}=\frac{t-\mu}{t-\lambda}|t-\mu|^{2\alpha-1},\end{aligned}\qquad t\in\sigma(A_{0}),

which satisfy Φ3=Φ4Ψ4\Phi_{3}=\Phi_{4}\Psi_{4}. The functions Φ3\Phi_{3}, Φ4\Phi_{4} and Ψ4\Psi_{4} are bounded on σ(A0)\sigma(A_{0}) and ranγ(μ)¯domΨ3(A0)\operatorname{ran}\overline{\gamma(\mu)}\subset\operatorname{dom}\Psi_{3}(A_{0}) by (6.8). Hence for each gdomM(λ)=ranΓ0g\in\operatorname{dom}M(\lambda)=\operatorname{ran}\Gamma_{0} we have (where we use (2.5) in the second equality)

M(λ)g=Γ1γ(λ)¯g=Γ1(A0μ)(A0λ)1γ(μ)¯g=Γ1(Φ3Ψ3)(A0)γ(μ)¯g=Γ1Φ3(A0)Ψ3(A0)¯γ(μ)¯g=Γ1Φ3(A0)Ψ3(A0)γ(μ)¯g=Γ1Φ4(A0)Ψ4(A0)Ψ3(A0)γ(μ)¯g=[Γ1|A0μ|α¯]Ψ4(A0)[|A0μ|1αγ(μ)¯]g.\begin{split}M(\lambda)g&=\Gamma_{1}\overline{\gamma(\lambda)}g=\Gamma_{1}(A_{0}-\mu)(A_{0}-\lambda)^{-1}\overline{\gamma(\mu)}g\\[2.15277pt] &=\Gamma_{1}(\Phi_{3}\Psi_{3})(A_{0})\overline{\gamma(\mu)}g=\Gamma_{1}\overline{\Phi_{3}(A_{0})\Psi_{3}(A_{0})}\;\overline{\gamma(\mu)}g\\[2.15277pt] &=\Gamma_{1}\Phi_{3}(A_{0})\Psi_{3}(A_{0})\overline{\gamma(\mu)}g\\[2.15277pt] &=\Gamma_{1}\Phi_{4}(A_{0})\Psi_{4}(A_{0})\Psi_{3}(A_{0})\overline{\gamma(\mu)}g\\[2.15277pt] &=\bigl{[}\,\overline{\Gamma_{1}|A_{0}-\mu|^{-\alpha}}\,\bigr{]}\Psi_{4}(A_{0})\bigl{[}|A_{0}-\mu|^{1-\alpha}\overline{\gamma(\mu)}\,\bigr{]}g.\end{split} (6.9)

According to (6.7) and (6.8) the terms in the square brackets are bounded and everywhere defined operators, which are independent of λ\lambda. Since Ψ4\Psi_{4} is bounded on σ(A0)\sigma(A_{0}), it follows that M(λ)M(\lambda) is a bounded, densely defined operator, and assertion (a) is proved.

Relations (6.9) and (6.8) imply that

M(λ)¯Γ1|A0μ|α¯2Ψ4(A0).\big{\|}\overline{M(\lambda)}\big{\|}\leq\big{\|}\overline{\Gamma_{1}|A_{0}-\mu|^{-\alpha}}\big{\|}^{2}\|\Psi_{4}(A_{0})\|.

Assertions (b) and (c) follow from suitable estimates of Ψ4(A0)\|\Psi_{4}(A_{0})\|. Let EE be the spectral measure for the operator A0A_{0}. For all λρ(A0)\lambda\in\rho(A_{0}) and all ff\in{\mathcal{H}} we have

Ψ4(A0)f2=σ(A0)|tμ|4α|tλ|2d(E(t)f,f)=σ(A0)|tμ|4α|tλ|4α1|tλ|24αd(E(t)f,f)1(dist(λ,σ(A0)))24ασ(A0)|tμ|4α|tλ|4αd(E(t)f,f).\begin{split}\|\Psi_{4}(A_{0})f\|^{2}&=\int_{\sigma(A_{0})}\frac{|t-\mu|^{4\alpha}}{|t-\lambda|^{2}}\,{\mathrm{d}}\bigl{(}E(t)f,f\bigr{)}\\[2.15277pt] &=\int_{\sigma(A_{0})}\frac{|t-\mu|^{4\alpha}}{|t-\lambda|^{4\alpha}}\cdot\frac{1}{|t-\lambda|^{2-4\alpha}}\,{\mathrm{d}}\bigl{(}E(t)f,f\bigr{)}\\[2.15277pt] &\leq\frac{1}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{2-4\alpha}}\int_{\sigma(A_{0})}\frac{|t-\mu|^{4\alpha}}{|t-\lambda|^{4\alpha}}\,{\mathrm{d}}\bigl{(}E(t)f,f\bigr{)}.\end{split} (6.10)

In order to prove (b), fix z0+¯ρ(A0)z_{0}\in\overline{\mathbb{C}^{+}}\cap\rho(A_{0}) and θ(0,π/2)\theta\in(0,\pi/2). It remains to estimate the integrand of the last integral in (6.10) uniformly in λ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta} and tσ(A0)t\in\sigma(A_{0}). To this end set dz0,θ:=dist(𝕊z0,θ,σ(A0))>0d_{z_{0},\theta}\mathrel{\mathop{:}}=\operatorname{dist}(\mathbb{S}_{z_{0},\theta},\sigma(A_{0}))>0. Let λ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta}, i.e.

ImλImz0and|Re(λz0)|tanθIm(λz0).\operatorname{Im}\lambda\geq\operatorname{Im}z_{0}\qquad\text{and}\qquad|\operatorname{Re}(\lambda-z_{0})|\leq\tan\theta\cdot\operatorname{Im}(\lambda-z_{0}).

If λz0\lambda\neq z_{0}, then

|tμ|2|tλ|2\displaystyle\frac{|t-\mu|^{2}}{|t-\lambda|^{2}} =(tReμ)2+(Imμ)2|tλ|2\displaystyle=\frac{(t-\operatorname{Re}\mu)^{2}+(\operatorname{Im}\mu)^{2}}{|t-\lambda|^{2}}
3[(tReλ)2+(ReλRez0)2+(Rez0Reμ)2]+(Imμ)2|tλ|2\displaystyle\leq\frac{3\bigl{[}(t-\operatorname{Re}\lambda)^{2}+(\operatorname{Re}\lambda-\operatorname{Re}z_{0})^{2}+(\operatorname{Re}z_{0}-\operatorname{Re}\mu)^{2}\bigr{]}+(\operatorname{Im}\mu)^{2}}{|t-\lambda|^{2}}
3+3(Re(λz0))2(Im(λz0))2+3(Re(z0μ))2+(Imμ)2dz0,θ2\displaystyle\leq 3+3\frac{\bigl{(}\operatorname{Re}(\lambda-z_{0})\bigr{)}^{2}}{\bigl{(}\operatorname{Im}(\lambda-z_{0})\bigr{)}^{2}}+\frac{3\bigl{(}\operatorname{Re}(z_{0}-\mu)\bigr{)}^{2}+(\operatorname{Im}\mu)^{2}}{d_{z_{0},\theta}^{2}}
3+3tan2θ+3(Re(z0μ))2+(Imμ)2dz0,θ2,\displaystyle\leq 3+3\tan^{2}\theta+\frac{3\bigl{(}\operatorname{Re}(z_{0}-\mu)\bigr{)}^{2}+(\operatorname{Im}\mu)^{2}}{d_{z_{0},\theta}^{2}}\,,

where the right-hand side is independent of λ\lambda and tt; by continuity this estimate extends to λ=z0\lambda=z_{0}. The case λ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta}^{*} can be treated analogously. From this, together with (6.9) and (6.10), the claim of (b) follows.

To prove (c), let w0<minσ(A0)w_{0}<\min\sigma(A_{0}) and ν(0,π)\nu\in(0,\pi); note that dist(𝕌w0,ν,σ(A0))>0\operatorname{dist}(\mathbb{U}_{w_{0},\nu},\sigma(A_{0}))>0. Let first λ\lambda\in\mathbb{C} with Reλ<w0\operatorname{Re}\lambda<w_{0}. Then with m:=minσ(A0)m\mathrel{\mathop{:}}=\min\sigma(A_{0}) the integrand of the last integral in (6.10) can be estimated using

|tμ|2|tλ|2\displaystyle\frac{|t-\mu|^{2}}{|t-\lambda|^{2}} 3[(tReλ)2+(Reλm)2+(mReμ)2]+(Imμ)2(tReλ)2+(Imλ)2\displaystyle\leq\frac{3\big{[}(t-\operatorname{Re}\lambda)^{2}+(\operatorname{Re}\lambda-m)^{2}+(m-\operatorname{Re}\mu)^{2}\big{]}+(\operatorname{Im}\mu)^{2}}{(t-\operatorname{Re}\lambda)^{2}+(\operatorname{Im}\lambda)^{2}}
3+3+3(mReμ)2+(Imμ)2(mw0)2,\displaystyle\leq 3+3+\frac{3(m-\operatorname{Re}\mu)^{2}+(\operatorname{Im}\mu)^{2}}{(m-w_{0})^{2}}\,,

where we have used tReλmReλmw0>0t-\operatorname{Re}\lambda\geq m-\operatorname{Re}\lambda\geq m-w_{0}>0. If νπ/2\nu\geq\pi/2, this and (6.10) lead to a uniform estimate of Ψ4(A0)\Psi_{4}(A_{0}) in 𝕌w0,ν{\mathbb{U}}_{w_{0},\nu}. If ν(0,π/2)\nu\in(0,\pi/2), then

𝕌w0,ν={z:Rez<w0}𝕊w0,θ,𝕊w0,θ,\displaystyle\mathbb{U}_{w_{0},\nu}=\{z\in\mathbb{C}:\operatorname{Re}z<w_{0}\}\cup\mathbb{S}_{w_{0},\theta,}\cup\mathbb{S}_{w_{0},\theta,}^{*}

with θ=π/2ν\theta=\pi/2-\nu, and a uniform estimate of the last integral in (6.10) for λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu} follows from the previous consideration and item (b). The proof is complete. ∎

Remark 6.2.

Suppose that the assumptions of Theorem 6.1 are satisfied for α=12\alpha=\frac{1}{2}. It follows from Theorem 6.1 that M(λ)M(\lambda) is bounded for every λρ(A0)\lambda\in\rho(A_{0}) and that M(λ)¯\|\overline{M(\lambda)}\| is uniformly bounded on each sector 𝕊z0,θ\mathbb{S}_{z_{0},\theta} as in the theorem. In addition, we can show (see below) that for each 𝕊z0,θ\mathbb{S}_{z_{0},\theta} as in the theorem,

M(λ)¯g0asλin𝕊z0,θ,g𝒢.\overline{M(\lambda)}g\to 0\qquad\text{as}\;\;\lambda\to\infty\;\;\text{in}\;\;\mathbb{S}_{z_{0},\theta},\;\;g\in{\mathcal{G}}. (6.11)

Similarly, if A0A_{0} is bounded from below, then M(λ)M(\lambda) is bounded for every λρ(A0)\lambda\in\rho(A_{0}) and M(λ)¯\|\overline{M(\lambda)}\| is uniformly bounded on each sector 𝕌w0,ν\mathbb{U}_{w_{0},\nu} as in the theorem, and for each such 𝕌w0,ν\mathbb{U}_{w_{0},\nu},

M(λ)¯g0asλin𝕌w0,ν,g𝒢.\overline{M(\lambda)}g\to 0\qquad\text{as}\;\;\lambda\to\infty\;\;\text{in}\;\;\mathbb{U}_{w_{0},\nu},\;\;g\in{\mathcal{G}}. (6.12)

To prove (6.11) set

f:=|A0μ|1/2γ(μ)¯gf\mathrel{\mathop{:}}=|A_{0}-\mu|^{1/2}\overline{\gamma(\mu)}g

and observe that by (6.9) it is sufficient to show that

Ψ4(A0)f2=σ(A0)|tμ|2|tλ|2d(E(t)f,f)0asλin𝕊z0,θ.\|\Psi_{4}(A_{0})f\|^{2}=\int_{\sigma(A_{0})}\frac{|t-\mu|^{2}}{|t-\lambda|^{2}}\,{\mathrm{d}}\bigl{(}E(t)f,f\bigr{)}\to 0\qquad\text{as}\;\;\lambda\to\infty\;\;\text{in}\;\;\mathbb{S}_{z_{0},\theta}.

It was shown in the proof of Theorem 6.1 that the integrand is uniformly bounded for λ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta} and tσ(A0)t\in\sigma(A_{0}). Moreover, the measure (E()f,f)(E(\cdot)f,f) is finite and the integrand converges to 0 as λ\lambda\to\infty for each fixed tσ(A0)t\in\sigma(A_{0}). Hence the dominated convergence theorem implies that Ψ4(A0)f0\|\Psi_{4}(A_{0})f\|\to 0 as λ\lambda\to\infty in 𝕊z0,θ\mathbb{S}_{z_{0},\theta}, which proves (6.11). The same argument also shows (6.12).

Corollary 6.3.

Let Π={𝒢,Γ0,Γ1}\Pi=\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding γ\gamma-field γ\gamma and Weyl function MM and assume that the operator in (6.4) is bounded for some μρ(A0)\mu\in\rho(A_{0}) and some α(0,12]\alpha\in\bigl{(}0,\frac{1}{2}\bigr{]}. Then the following assertions hold.

  • (a)

    For all z0+¯ρ(A0)z_{0}\in\overline{\mathbb{C}^{+}}\cap\rho(A_{0}) and all θ(0,π2)\theta\in(0,\frac{\pi}{2}) there exist C1=C1(Π,α,μ,z0,θ)C_{1}=C_{1}(\Pi,\alpha,\mu,z_{0},\theta) and C2=C2(Π,α,μ,z0,θ)C_{2}=C_{2}(\Pi,\alpha,\mu,z_{0},\theta) such that

    γ(λ)¯\displaystyle\big{\|}\overline{\gamma(\lambda)}\big{\|} C1(dist(λ,σ(A0)))1α,\displaystyle\leq\frac{C_{1}}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1-\alpha}}\,, (6.13)
    M(n)¯(λ)\displaystyle\bigl{\|}\overline{M^{(n)}}(\lambda)\bigr{\|} C2n!(dist(λ,σ(A0)))n+12α\displaystyle\leq\frac{C_{2}\,n!}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{n+1-2\alpha}} (6.14)

    for all λ𝕊z0,θ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta}\cup\mathbb{S}_{z_{0},\theta}^{*}.

  • (b)

    If A0A_{0} is bounded from below, then for all w0<minσ(A0)w_{0}<\min\sigma(A_{0}) and all ν(0,π)\nu\in(0,\pi) there exist D1=D1(Π,α,μ,w0,ν)D_{1}=D_{1}(\Pi,\alpha,\mu,w_{0},\nu) and D2=D2(Π,α,μ,w0,ν)D_{2}=D_{2}(\Pi,\alpha,\mu,w_{0},\nu) such that

    γ(λ)¯\displaystyle\big{\|}\overline{\gamma(\lambda)}\big{\|} D1(dist(λ,σ(A0)))1α,\displaystyle\leq\frac{D_{1}}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1-\alpha}}\,, (6.15)
    M(n)¯(λ)\displaystyle\bigl{\|}\overline{M^{(n)}}(\lambda)\bigr{\|} D2n!(dist(λ,σ(A0)))n+12α\displaystyle\leq\frac{D_{2}\,n!}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{n+1-2\alpha}} (6.16)

    for all λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu}.

Proof.

(a) First we prove (6.13). Let z0+¯ρ(A0)z_{0}\in\overline{\mathbb{C}^{+}}\cap\rho(A_{0}) and θ(0,π2)\theta\in\bigl{(}0,\frac{\pi}{2}\bigr{)}. For λ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta} with Imλ1\operatorname{Im}\lambda\geq 1 we have

dist(λ,σ(A0))\displaystyle\operatorname{dist}(\lambda,\sigma(A_{0})) |λz0|+dist(z0,σ(A0))\displaystyle\leq|\lambda-z_{0}|+\operatorname{dist}\bigl{(}z_{0},\sigma(A_{0})\bigr{)}
Imλcosθ+dist(z0,σ(A0))\displaystyle\leq\frac{\operatorname{Im}\lambda}{\cos\theta}+\operatorname{dist}(z_{0},\sigma(A_{0}))
(1cosθ+dist(z0,σ(A0)))Imλ.\displaystyle\leq\biggl{(}\frac{1}{\cos\theta}+\operatorname{dist}(z_{0},\sigma(A_{0}))\biggr{)}\operatorname{Im}\lambda.

This, (2.6), (2.11) and (6.5) imply that

γ(λ)¯\displaystyle\bigl{\|}\overline{\gamma(\lambda)}\bigr{\|} =ImM(λ)¯1/2(Imλ)1/2M(λ)¯1/2(Imλ)1/2\displaystyle=\frac{\bigl{\|}\overline{\operatorname{Im}M(\lambda)}\bigr{\|}^{1/2}}{(\operatorname{Im}\lambda)^{1/2}}\leq\frac{\bigl{\|}\overline{M(\lambda)}\bigr{\|}^{1/2}}{(\operatorname{Im}\lambda)^{1/2}}
C1/2(dist(λ,σ(A0)))1/2(Imλ)1/2(dist(λ,σ(A0)))1αC1/2[1cosθ+dist(z0,σ(A0))]1/2(dist(λ,σ(A0)))1α\displaystyle\leq\frac{C^{1/2}\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1/2}}{(\operatorname{Im}\lambda)^{1/2}\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1-\alpha}}\leq\frac{C^{1/2}\bigl{[}\frac{1}{\cos\theta}+\operatorname{dist}(z_{0},\sigma(A_{0}))\bigr{]}^{1/2}}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1-\alpha}}

for λ𝕊z0,θ\lambda\in\mathbb{S}_{z_{0},\theta} with Imλ1\operatorname{Im}\lambda\geq 1. Since γ(λ¯)¯=γ(λ)¯\|\overline{\gamma(\overline{\lambda})}\|=\|\overline{\gamma(\lambda)}\|, see (2.6), and γ\gamma is bounded on the set {z𝕊z0,θ𝕊z0,θ:|Imz|1}\{z\in\mathbb{S}_{z_{0},\theta}\cup\mathbb{S}_{z_{0},\theta}^{*}:|\operatorname{Im}z|\leq 1\}, the inequality (6.13) is proved.

The inequality in (6.14) is obtained from (6.13) and (2.7) as follows:

M(n)¯(λ)\displaystyle\bigl{\|}\overline{M^{(n)}}(\lambda)\bigr{\|} n!γ(λ¯)(A0λ)(n1)γ(λ)¯\displaystyle\leq n!\bigl{\|}\gamma(\overline{\lambda})^{*}\bigr{\|}\,\bigl{\|}(A_{0}-\lambda)^{-(n-1)}\bigr{\|}\,\bigl{\|}\overline{\gamma(\lambda)}\bigr{\|}
n!C12(dist(λ,σ(A0)))1α+n1+1α.\displaystyle\leq\frac{n!\,C_{1}^{2}}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{0}))\bigr{)}^{1-\alpha+n-1+1-\alpha}}\,.

(b) Now assume that A0A_{0} is bounded from below and set m:=minσ(A0)m\mathrel{\mathop{:}}=\min\sigma(A_{0}). Let w0<mw_{0}<m and, without loss of generality, ν(0,π2)\nu\in\bigl{(}0,\frac{\pi}{2}\bigr{)}. Let x𝒢x\in{\mathcal{G}} and uu\in{\mathcal{H}} and define the function

f(z):=(mz)1α(γ(z)¯x,u),zwithRezw0,f(z)\mathrel{\mathop{:}}=(m-z)^{1-\alpha}\bigl{(}\overline{\gamma(z)}x,u\bigr{)},\qquad z\in\mathbb{C}\;\;\text{with}\;\;\operatorname{Re}z\leq w_{0},

where the function ζζ1α\zeta\mapsto\zeta^{1-\alpha} is defined with a cut on the negative half-line. The already proved item (a) implies that (6.13) is valid for z𝕊w0,θz\in\mathbb{S}_{w_{0},\theta} with θ:=π2ν\theta\mathrel{\mathop{:}}=\frac{\pi}{2}-\nu and some D1>0D_{1}>0. In particular, it is true for zz\in\mathbb{C} with Rez=w0\operatorname{Re}z=w_{0}, which yields that

|f(z)||mz|1αγ(z)¯xu|mz|1αD1xu(dist(z,σ(A0)))1α=D1xu|f(z)|\leq|m-z|^{1-\alpha}\bigl{\|}\overline{\gamma(z)}\bigr{\|}\,\|x\|\,\|u\|\leq|m-z|^{1-\alpha}\frac{D_{1}\|x\|\,\|u\|}{\bigl{(}\operatorname{dist}(z,\sigma(A_{0}))\bigr{)}^{1-\alpha}}=D_{1}\|x\|\,\|u\|

for all zz\in\mathbb{C} with Rez=w0\operatorname{Re}z=w_{0}. Since by (2.4) the function ff grows at most like a power of zz on the half-plane {z:Rezw0}\{z\in\mathbb{C}:\operatorname{Re}z\leq w_{0}\}, the Phragmén–Lindelöf principle (see, e.g. [47, Corollary VI.4.2]) implies that

|f(z)|D1xufor allzwithRezw0.|f(z)|\leq D_{1}\|x\|\,\|u\|\qquad\text{for all}\;\;z\in\mathbb{C}\;\;\text{with}\;\;\operatorname{Re}z\leq w_{0}.

It follows from this that

γ(z)¯D1|mz|1αfor allzwithRezw0.\bigl{\|}\overline{\gamma(z)}\bigr{\|}\leq\frac{D_{1}}{|m-z|^{1-\alpha}}\qquad\text{for all}\;\;z\in\mathbb{C}\;\;\text{with}\;\;\operatorname{Re}z\leq w_{0}.

If we combine this with (6.13) with z0=w0z_{0}=w_{0} and θ=π2ν\theta=\frac{\pi}{2}-\nu, we obtain (6.15). The estimate (6.16) follows from (6.15) in the same way as in (a). ∎

The following example shows that Theorem 6.1 is sharp in a certain sense.

Example 6.4.

Let α(0,12]\alpha\in\bigl{(}0,\frac{1}{2}\bigr{]} and let μ\mu be the Borel measure on \mathbb{R} that has support [e,)[e,\infty), is absolutely continuous and has density

dμ(t)dt=1t12α(lnt)2,t[e,).\frac{{\mathrm{d}}\mu(t)}{{\mathrm{d}}t}=\frac{1}{t^{1-2\alpha}(\ln t)^{2}}\,,\qquad t\in[e,\infty).

Moreover, define

M(λ):=e1tλdμ(t),λ[e,).M(\lambda)\mathrel{\mathop{:}}=\int_{e}^{\infty}\frac{1}{t-\lambda}\,{\mathrm{d}}\mu(t),\qquad\lambda\in\mathbb{C}\setminus[e,\infty).

This function is the Weyl function of the following ordinary boundary triple

=L2(μ),𝒢=,\displaystyle{\mathcal{H}}=L^{2}(\mu),\quad{\mathcal{G}}=\mathbb{C},
domT={f:cfsuch thattf(t)cf},\displaystyle\operatorname{dom}T=\bigl{\{}f\in{\mathcal{H}}:\exists\,c_{f}\in\mathbb{C}\;\;\text{such that}\;\;tf(t)-c_{f}\in{\mathcal{H}}\bigr{\}},
(Tf)(t)=tf(t)cf,\displaystyle(Tf)(t)=tf(t)-c_{f},
Γ0f=cf,Γ1f=ef(t)dμ(t);\displaystyle\Gamma_{0}f=c_{f},\qquad\Gamma_{1}f=\int_{e}^{\infty}f(t)\,{\mathrm{d}}\mu(t);

note that cfc_{f} is uniquely determined by ff since the measure μ\mu is infinite. The operator A0A_{0} is the multiplication operator by the independent variable. The mapping in (6.4) with μ=0\mu=0 is bounded since for ff\in{\mathcal{H}} with compact support we have

Γ1A0αf=ef(t)tαdμ(t)f[e1t2αt12α(lnt)2dt]1/2\Gamma_{1}A_{0}^{-\alpha}f=\int_{e}^{\infty}f(t)\,t^{-\alpha}{\mathrm{d}}\mu(t)\leq\|f\|_{{\mathcal{H}}}\biggl{[}\int_{e}^{\infty}\frac{1}{t^{2\alpha}t^{1-2\alpha}(\ln t)^{2}}\,{\mathrm{d}}t\biggr{]}^{1/2}

and the last integral converges. Hence Theorem 6.1 yields that

M(λ)=O(1|λ|12α),λ.M(\lambda)={\rm O}\biggl{(}\frac{1}{|\lambda|^{1-2\alpha}}\biggr{)},\qquad\lambda\to-\infty.

One can show that the actual asymptotic behaviour of MM is

M(λ)C|λ|12α(ln|λ|)2,λ,M(\lambda)\sim\frac{C}{|\lambda|^{1-2\alpha}(\ln|\lambda|)^{2}},\qquad\lambda\to-\infty,

with a positive constant CC.

Hence, apart from the logarithmic factor, Theorem 6.1 yields the correct asymptotic behaviour. Using Krein’s inverse spectral theorem (see, e.g. [92]) one can rewrite this example as a Krein–Feller operator: DmDx-D_{m}D_{x} with some mass distribution mm so that the measure μ\mu becomes the principal spectral measure of the string.

The next corollary is an immediate consequence of Theorem 6.1.

Corollary 6.5.

Let {𝒢,Γ0,Γ1}\{{\mathcal{G}},\Gamma_{0},\Gamma_{1}\} be a quasi boundary triple for TST\subset S^{*} with corresponding Weyl function MM and assume that the operator in (6.4) is bounded for some α(0,12]\alpha\in\bigl{(}0,\frac{1}{2}\bigr{]} and some μρ(A0)\mu\in\rho(A_{0}). Then MM satisfies

1ImM(iy)¯yγdy<\int_{1}^{\infty}\frac{\bigl{\|}\operatorname{Im}\overline{M(iy)}\bigr{\|}}{y^{\gamma}}{\mathrm{d}}y<\infty (6.17)

for every γ>2α\gamma>2\alpha.

Condition (6.17) says that the function MM belongs to the Kac class 𝐍γ\mathbf{N}_{\gamma} (see, e.g. [93] for the scalar case). Assume that MM satisfies (6.17) for some γ(0,2)\gamma\in(0,2) and consider the integral representation

M(λ)=A+λB+(1tλt1+t2)dΣ(t),M(\lambda)=A+\lambda B+\int_{\mathbb{R}}\biggl{(}\frac{1}{t-\lambda}-\frac{t}{1+t^{2}}\biggr{)}{\mathrm{d}}\Sigma(t),

where AA and B0B\geq 0 are bounded symmetric operators and Σ\Sigma is an operator-valued measure (see, e.g. [116] or [23, §3.4]). Often the measure Σ\Sigma plays the role of a spectral measure. For each φranΓ0\varphi\in\operatorname{ran}\Gamma_{0} we have

(M(λ)φ,φ)=(Aφ,φ)+λ(Bφ,φ)+(1tλt1+t2)d(Σ(t)φ,φ).(M(\lambda)\varphi,\varphi)=(A\varphi,\varphi)+\lambda(B\varphi,\varphi)+\int_{\mathbb{R}}\biggl{(}\frac{1}{t-\lambda}-\frac{t}{1+t^{2}}\biggr{)}{\mathrm{d}}\bigl{(}\Sigma(t)\varphi,\varphi\bigr{)}.

It follows from [130, Lemma 3.1] and its proof that (Bφ,φ)=0(B\varphi,\varphi)=0 and that

11+|t|γd(Σ(t)φ,φ)Cφ2,\int_{\mathbb{R}}\frac{1}{1+|t|^{\gamma}}\,{\mathrm{d}}\bigl{(}\Sigma(t)\varphi,\varphi\bigr{)}\leq C\|\varphi\|^{2},

with some C>0C>0, which does not depend on φ\varphi. Hence B=0B=0 and

11+|t|γdΣ(t)\int_{\mathbb{R}}\frac{1}{1+|t|^{\gamma}}\,{\mathrm{d}}\Sigma(t)

is a bounded operator.

7. Elliptic operators with non-local Robin boundary conditions

In this section we apply the results of the previous sections to elliptic differential operators on domains whose boundaries are not necessarily compact. Our main focus is on operators subject to non-self-adjoint boundary conditions. For some recent investigations of non-self-adjoint elliptic operators we refer the reader to [40, 41, 76, 86, 115].

Let Ωn\Omega\subset\mathbb{R}^{n} be a domain that is uniformly regular111This means that Ω\partial\Omega is CC^{\infty}-smooth and that there exists a covering of Ω\partial\Omega by open sets Ωj\Omega_{j}, jj\in{\mathbb{N}}, and n0n_{0}\in{\mathbb{N}} such that at most n0n_{0} of the Ωj\Omega_{j} have a non-empty intersection, and a family of CC^{\infty}-homeomorphisms φj:ΩjΩ1{xn>0},wherer={xn:x<r},\varphi_{j}:\Omega_{j}\cap\Omega\rightarrow{\mathcal{B}}_{1}\cap\{x_{n}>0\},\qquad\text{where}\quad{\mathcal{B}}_{r}=\{x\in\mathbb{R}^{n}:\|x\|<r\}, such that φj:ΩjΩ1{xn=0}\varphi_{j}:\Omega_{j}\cap\partial\Omega\rightarrow{\mathcal{B}}_{1}\cap\{x_{n}=0\}, the derivatives of φj\varphi_{j}, jj\in{\mathbb{N}}, and their inverses are uniformly bounded, and jφj1(1/2)\bigcup_{j}\varphi^{-1}_{j}({\mathcal{B}}_{1/2}) covers a uniform neighbourhood of Ω\partial\Omega. in the sense of [38, p. 366] and [74, page 72]; see also [20, 39]. This includes, e.g. domains with compact CC^{\infty}-smooth boundaries or compact, smooth perturbations of half-spaces. Moreover, the class of uniformly regular unbounded domains includes certain quasi-conical and quasi-cylindrical domains in the sense of [57, Definition X.6.1]. Non-self-adjoint elliptic operators with Robin boundary conditions on such domains have been investigated recently in connection with non-Hermitian quantum waveguides and layers; see, e.g. [34, 35, 36, 113]. Further, let

=j,k=1nxjajkxk+a{\mathcal{L}}=-\sum_{j,k=1}^{n}\frac{\partial}{\partial x_{j}}a_{jk}\frac{\partial}{\partial x_{k}}+a (7.1)

be a differential expression on Ω\Omega, where we assume that ajkC(Ω¯)a_{jk}\in C^{\infty}(\overline{\Omega}) are bounded, have bounded, uniformly continuous derivatives on Ω¯\overline{\Omega} and satisfy ajk(x)=akj(x)¯a_{jk}(x)=\overline{a_{kj}(x)} for all xΩ¯x\in\overline{\Omega}, 1j,kn1\leq j,k\leq n, and that aL(Ω)a\in L^{\infty}(\Omega) is real-valued; cf. [20, (S1)–(S5) in Chapter 4]. Moreover, we assume that {\mathcal{L}} is uniformly elliptic, i.e. there exists E>0E>0 such that

j,k=1najk(x)ξjξkEk=1nξk2,ξ=(ξ1,ξn)n,xΩ¯.\sum_{j,k=1}^{n}a_{jk}(x)\xi_{j}\xi_{k}\geq E\sum_{k=1}^{n}\xi_{k}^{2},\qquad\xi=(\xi_{1},\dots\xi_{n})^{\top}\in{\mathbb{R}}^{n},x\in\overline{\Omega}.

In the following we denote by Hs(Ω)H^{s}(\Omega) and Hs(Ω)H^{s}(\partial\Omega) the Sobolev spaces of order s0s\geq 0 on Ω\Omega and Ω\partial\Omega, respectively. For fC0(Ω¯)f\in C_{0}^{\infty}(\overline{\Omega}), where C0(Ω¯)C_{0}^{\infty}(\overline{\Omega}) denotes the set of C(Ω¯)C^{\infty}(\overline{\Omega})-functions with compact support, let

fν|Ω:=j,k=1najkνjfxk|Ω\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}\mathrel{\mathop{:}}=\sum_{j,k=1}^{n}a_{jk}\nu_{j}\frac{\partial f}{\partial x_{k}}\Big{|}_{\partial\Omega}

denote the conormal derivative of ff at Ω\partial\Omega with respect to {\mathcal{L}}, where ν=(ν1,,νn)\nu=(\nu_{1},\dots,\nu_{n})^{\top} is the unit normal vector field at Ω\partial\Omega pointing outwards. Then Green’s identity

(f,g)(f,g)=(f|Ω,gν|Ω)(fν|Ω,g|Ω)({\mathcal{L}}f,g)-(f,{\mathcal{L}}g)=\biggl{(}f|_{\partial\Omega},\frac{\partial g}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}\biggr{)}-\biggl{(}\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega},g|_{\partial\Omega}\biggr{)} (7.2)

holds for all f,gC0(Ω¯)f,g\in C_{0}^{\infty}(\overline{\Omega}), where the inner products are in L2(Ω)L^{2}(\Omega) and L2(Ω)L^{2}(\partial\Omega), respectively. Recall that the pair of mappings

C0(Ω¯)f{f|Ω;fν|Ω}H3/2(Ω)×H1/2(Ω)C_{0}^{\infty}(\overline{\Omega})\ni f\mapsto\biggl{\{}f|_{\partial\Omega};\;\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}\biggr{\}}\in H^{3/2}(\partial\Omega)\times H^{1/2}(\partial\Omega)

extends by continuity to a bounded map from H2(Ω)H^{2}(\Omega) onto H3/2(Ω)×H1/2(Ω)H^{3/2}(\partial\Omega)\times H^{1/2}(\partial\Omega); see, e.g. [74, Theorem 3.9]. The extended trace and conormal derivative are again denoted by f|Ωf|_{\partial\Omega} and fν|Ω\frac{\partial f}{\partial\nu_{\mathcal{L}}}\big{|}_{\partial\Omega}, respectively. Moreover, Green’s identity (7.2) extends to all f,gH2(Ω)f,g\in H^{2}(\Omega); see [74, Theorem 4.4].

In order to construct a quasi boundary triple, let us define the operators SS and TT in L2(Ω)L^{2}(\Omega) via

Sf=f,domS={fH2(Ω):f|Ω=fν|Ω=0},Sf={\mathcal{L}}f,\qquad\operatorname{dom}S=\biggl{\{}f\in H^{2}(\Omega):f|_{\partial\Omega}=\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}=0\biggr{\}}, (7.3)

and

Tf=f,domT=H2(Ω).Tf={\mathcal{L}}f,\qquad\operatorname{dom}T=H^{2}(\Omega). (7.4)

Moreover, we define boundary mappings Γ0,Γ1:domTL2(Ω)\Gamma_{0},\Gamma_{1}:\operatorname{dom}T\to L^{2}(\partial\Omega) by

Γ0f=fν|Ω,Γ1f=f|ΩforfdomT.\Gamma_{0}f=\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega},\qquad\Gamma_{1}f=f|_{\partial\Omega}\qquad\text{for}\;f\in\operatorname{dom}T.

The assertions of the following proposition can be found in [29, Propositions 3.1 and 3.2].

Proposition 7.1.

The operator SS in (7.3) is closed, symmetric and densely defined with T¯=S\overline{T}=S^{*} for TT in (7.4), and the triple {L2(Ω),Γ0,Γ1}\{L^{2}(\partial\Omega),\Gamma_{0},\Gamma_{1}\} is a quasi boundary triple for TST\subset S^{*} with the following properties.

  • (i)

    ran(Γ0,Γ1)=H1/2(Ω)×H3/2(Ω)\operatorname{ran}(\Gamma_{0},\Gamma_{1})^{\top}=H^{1/2}(\partial\Omega)\times H^{3/2}(\partial\Omega).

  • (ii)

    A0A_{0} is the Neumann operator

    ANf=f,domAN={fH2(Ω):fν|Ω=0},\displaystyle A_{\rm N}f={\mathcal{L}}f,\qquad\operatorname{dom}A_{\rm N}=\left\{f\in H^{2}(\Omega):\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}=0\right\},

    and A1A_{1} is the Dirichlet operator

    ADf=f,domAD={fH2(Ω):f|Ω=0}.\displaystyle A_{\rm D}f={\mathcal{L}}f,\qquad\operatorname{dom}A_{\rm D}=\left\{f\in H^{2}(\Omega):f|_{\partial\Omega}=0\right\}.

    Both operators, ANA_{\rm N} and ADA_{\rm D}, are self-adjoint and bounded from below.

  • (iii)

    For λρ(AN)\lambda\in\rho(A_{\rm N}), the associated γ\gamma-field satisfies

    γ(λ)fν|Ω=ffor allfker(Tλ),\gamma(\lambda)\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}=f\qquad\text{for all}\;\;f\in\ker(T-\lambda), (7.5)

    and the associated Weyl function is given by the Neumann-to-Dirichlet map,

    M(λ)fν|Ω=f|Ωfor allfker(Tλ).M(\lambda)\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}=f|_{\partial\Omega}\qquad\text{for all}\;\;f\in\ker(T-\lambda). (7.6)

    Moreover, M(λ)M(\lambda) is a bounded, non-closed operator in L2(Ω)L^{2}(\partial\Omega) with domain H1/2(Ω)H^{1/2}(\partial\Omega) such that ranM(λ)¯H1(Ω)\operatorname{ran}\overline{M(\lambda)}\subset H^{1}(\partial\Omega).

In order to apply the results of Section 5 to the quasi boundary triple in Proposition 7.1 we prove estimates for the Weyl function in certain sectors using Theorem 6.1.

Lemma 7.2.

Let 𝕌w0,ν\mathbb{U}_{w_{0},\nu} be defined as in (6.2). Then for each w0<minσ(AN)w_{0}<\min\sigma(A_{\rm N}), ν(0,π)\nu\in(0,\pi) and β(0,12)\beta\in(0,\frac{1}{2}) there exists C=C(,Ω,w0,ν,β)>0C=C({\mathcal{L}},\Omega,w_{0},\nu,\beta)>0 such that

M(λ)¯C(dist(λ,σ(AN)))βfor allλ𝕌w0,ν.\big{\|}\overline{M(\lambda)}\big{\|}\leq\frac{C}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{\rm N}))\bigr{)}^{\beta}}\qquad\text{for all}\;\;\lambda\in\mathbb{U}_{w_{0},\nu}. (7.7)
Proof.

Let μ=minσ(AN)1\mu=\min\sigma(A_{\rm N})-1. Then ANμA_{\rm N}-\mu is a positive, self-adjoint operator in L2(Ω)L^{2}(\Omega) and Λ:=(ANμ)1/2\Lambda\mathrel{\mathop{:}}=(A_{\rm N}-\mu)^{1/2} in L2(Ω)L^{2}(\Omega) is well defined, self-adjoint and positive. It can be seen with the help of the quadratic form associated with ANA_{\rm N} that domΛ=H1(Ω)\operatorname{dom}\Lambda=H^{1}(\Omega) and that the H1(Ω)H^{1}(\Omega)-norm is equivalent to the graph norm ΛL2(Ω)\|\Lambda\cdot\|_{L^{2}(\Omega)}. Thus the identity operator provides an isomorphism between H1(Ω)H^{1}(\Omega) and (domΛ,ΛL2(Ω))(\operatorname{dom}\Lambda,\|\Lambda\cdot\|_{L^{2}(\Omega)}) as well as, trivially, between L2(Ω)L^{2}(\Omega) and (domΛ0,Λ0L2(Ω))(\operatorname{dom}\Lambda^{0},\|\Lambda^{0}\cdot\|_{L^{2}(\Omega)}). By interpolation (see, e.g. [110, Theorems 5.1 and 7.7]), the identity operator is also an isomorphism between Hs(Ω)H^{s}(\Omega) and (domΛs,ΛsL2(Ω))(\operatorname{dom}\Lambda^{s},\|\Lambda^{s}\cdot\|_{L^{2}(\Omega)}) for each s(0,1)s\in(0,1). In particular, dom(ANμ)s/2=domΛs=Hs(Ω)\operatorname{dom}(A_{\rm N}-\mu)^{s/2}=\operatorname{dom}\Lambda^{s}=H^{s}(\Omega) for each s(0,1)s\in(0,1). It follows from the closed graph theorem that (ANμ)s/2(A_{\rm N}-\mu)^{-s/2} is bounded as an operator from L2(Ω)L^{2}(\Omega) to Hs(Ω)H^{s}(\Omega) for each such ss. Since the trace map is bounded from Hs(Ω)H^{s}(\Omega) to L2(Ω)L^{2}(\partial\Omega) for each s(12,1)s\in(\frac{1}{2},1) by [74, Theorem 3.7], it follows that f((ANμ)s/2f)|Ωf\mapsto((A_{\rm N}-\mu)^{-s/2}f)|_{\partial\Omega} is bounded from L2(Ω)L^{2}(\Omega) to L2(Ω)L^{2}(\partial\Omega) for each s(12,1)s\in(\frac{1}{2},1). In particular, the operator

Γ1(ANμ)α:L2(Ω)dom(Γ1(ANμ)α)L2(Ω)\Gamma_{1}(A_{\rm N}-\mu)^{-\alpha}:L^{2}(\Omega)\supset\operatorname{dom}\bigl{(}\Gamma_{1}(A_{\rm N}-\mu)^{-\alpha}\bigr{)}\to L^{2}(\partial\Omega) (7.8)

is bounded for each α(14,12)\alpha\in(\frac{1}{4},\frac{1}{2}). By Theorem 6.1 for each w0<minσ(AN)w_{0}<\min\sigma(A_{\rm N}), each ν(0,π)\nu\in(0,\pi) and each α(14,12)\alpha\in(\frac{1}{4},\frac{1}{2}) there exists C=C(,Ω,w0,ν,α)>0C=C({\mathcal{L}},\Omega,w_{0},\nu,\alpha)>0 such that

M(λ)¯C(dist(λ,σ(AN)))12α\big{\|}\overline{M(\lambda)}\big{\|}\leq\frac{C}{\bigl{(}\operatorname{dist}(\lambda,\sigma(A_{\rm N}))\bigr{)}^{1-2\alpha}}

holds for all λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu}. From this the claim of the lemma follows. ∎

Remark 7.3.

Along the negative real axis the result of Lemma 7.2 can be slightly improved. It was proved in [29, Proposition 3.2 (iv)] (using techniques from [4]) that for each μ<minσ(AN)\mu<\min\sigma(A_{\rm N}) there exists C=C(,Ω,μ)C=C({\mathcal{L}},\Omega,\mu) such that

M(λ)¯C(μλ)1/2for allλ<μ.\big{\|}\overline{M(\lambda)}\big{\|}\leq\frac{C}{(\mu-\lambda)^{1/2}}\qquad\text{for all}\;\;\lambda<\mu. (7.9)

In the next theorem we apply Lemma 7.2, Remark 7.3 and the results from Section 5 to obtain m-sectorial (self-adjoint, maximal dissipative, maximal accumulative) realizations of {\mathcal{L}} subject to generalized Robin boundary conditions and also spectral enclosures for these realizations.

Theorem 7.4.

Let BB be a closable operator in L2(Ω)L^{2}(\partial\Omega) such that

H1/2(Ω)domBandB(H1(Ω))H1/2(Ω).H^{1/2}(\partial\Omega)\subset\operatorname{dom}B\qquad\text{and}\qquad B\bigl{(}H^{1}(\partial\Omega)\bigr{)}\subset H^{1/2}(\partial\Omega). (7.10)

Assume further that there exists bb\in\mathbb{R} such that

Re(Bφ,φ)L2(Ω)bφL2(Ω)2for allφdomB.\operatorname{Re}(B\varphi,\varphi)_{L^{2}(\partial\Omega)}\leq b\|\varphi\|_{L^{2}(\partial\Omega)}^{2}\qquad\text{for all}\;\;\varphi\in\operatorname{dom}B. (7.11)

Then the operator

A[B]f=f,domA[B]={fH2(Ω):fν|Ω=Bf|Ω},A_{[B]}f={\mathcal{L}}f,\qquad\operatorname{dom}A_{[B]}=\biggl{\{}f\in H^{2}(\Omega):\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}=Bf|_{\partial\Omega}\biggr{\}}, (7.12)

in L2(Ω)L^{2}(\Omega) is m-sectorial, one has σ(A[B])W(A[B])¯\sigma(A_{[B]})\subset\overline{W(A_{[B]})}, the resolvent formula

(A[B]λ)1=(ANλ)1+γ(λ)(IBM(λ))1Bγ(λ¯)(A_{[B]}-\lambda)^{-1}=(A_{\rm N}-\lambda)^{-1}+\gamma(\lambda)\big{(}I-BM(\lambda)\big{)}^{-1}B\gamma(\overline{\lambda})^{*} (7.13)

holds for all λρ(A[B])ρ(AN)\lambda\in\rho(A_{[B]})\cap\rho(A_{\rm N}), and the following assertions are true.

  • (i)

    If BB is symmetric, then A[B]A_{[B]} is self-adjoint and bounded from below. If BB is dissipative (accumulative, respectively), then A[B]A_{[B]} is maximal accumulative (maximal dissipative, respectively).

  • (ii)

    If  BB^{\prime} is a closable operator in L2(Ω)L^{2}(\partial\Omega) that satisfies (7.10) and (7.11) with BB replaced by BB^{\prime} and

    (Bφ,ψ)=(φ,Bψ)for allφdomB,ψdomB(B\varphi,\psi)=(\varphi,B^{\prime}\psi)\qquad\text{for all}\;\;\varphi\in\operatorname{dom}B,\;\psi\in\operatorname{dom}B^{\prime} (7.14)

    holds, then A[B]=A[B]A_{[B^{\prime}]}=A_{[B]}^{*}.

Moreover, the following spectral enclosures hold.

  • (iii)

    If  b0b\leq 0, then (,minσ(AN))ρ(A[B])(-\infty,\min\sigma(A_{\rm N}))\subset\rho(A_{[B]}).

  • (iv)

    If  domBdomB\operatorname{dom}B^{*}\supset\operatorname{dom}B, ImB\operatorname{Im}B is bounded and b>0b>0, then for each μ<minσ(AN)\mu<\min\sigma(A_{\rm N}) there exists C>0C>0 such that for each ξ<μ(Cb)2\xi<\mu-(Cb)^{2} one has (see Fig. 3 (a))

    W(A[B]){z:Rezμ(Cb)2,|Imz|2CImB¯1Cb(μξ)1/2(Rezξ)1/2}.W(A_{[B]})\subset\Biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\mu-(Cb)^{2},\;|\operatorname{Im}z|\leq\frac{2C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{1-\frac{Cb}{(\mu-\xi)^{1/2}}}(\operatorname{Re}z-\xi)^{1/2}\Biggr{\}}.
  • (v)

    If  domBdomB\operatorname{dom}B^{*}\supset\operatorname{dom}B, ImB\operatorname{Im}B is bounded and b0b\leq 0, then for each μ<minσ(AN)\mu<\min\sigma(A_{\rm N}) there exists C>0C>0 such that (see Fig. 3 (b))

    W(A[B]){z:Rezminσ(AN),|Imz|2CImB¯(Rezμ)(Rezμ)1/2Cb}.W(A_{[B]})\subset\biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\min\sigma(A_{\rm N}),\;|\operatorname{Im}z|\leq\frac{2C\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}(\operatorname{Re}z-\mu)}{(\operatorname{Re}z-\mu)^{1/2}-Cb}\biggr{\}}.
  • (vi)

    If BB is bounded, then for each w0<minσ(AN)w_{0}<\min\sigma(A_{\rm N}), ν(0,π)\nu\in(0,\pi) and β(0,12)\beta\in\bigl{(}0,\frac{1}{2}\bigr{)} there exists C>0C>0 such that

    σ(A[B])𝕌w0,ν{z𝕌w0,ν:dist(z,σ(AN))(CB)1/β},\displaystyle\sigma(A_{[B]})\cap\mathbb{U}_{w_{0},\nu}\subset\Bigl{\{}z\in\mathbb{U}_{w_{0},\nu}:\operatorname{dist}(z,\sigma(A_{\rm N}))\leq(C\|B\|)^{1/\beta}\Bigr{\}},

    where 𝕌w0,ν\mathbb{U}_{w_{0},\nu} is defined in (6.2).

Refer to caption Refer to caption
(a) b=1b=1 (b) b=1b=-1
Figure 3. The plots show the regions given in Theorem 7.4 (iv), (v), respectively, that contain W(A[B])W(A_{[B]}) for (a) b>0b>0 and (b) b<0b<0; it is assumed that minσ(AN)=0\min\sigma(A_{\rm N})=0, CImB¯=1C\|\overline{\operatorname{Im}B}\|=1, μ=1\mu=-1 for both

cases and ξ=4\xi=-4 in (a).

Proof.

Let BB be a closable operator in L2(Ω)L^{2}(\partial\Omega) that satisfies (7.10) and (7.11) for some bb\in\mathbb{R}. Let {L2(Ω),Γ0,Γ1}\{L^{2}(\partial\Omega),\Gamma_{0},\Gamma_{1}\} be the quasi boundary triple in Proposition 7.1. It follows from Lemma 7.2 that (5.1) is valid for the corresponding Weyl function. The assumptions (i) and (iv) and the second assumption in (v) of Theorem 5.1 are satisfied due to the assumptions of the present theorem and the fact that AD=A1A_{\rm D}=A_{1} is self-adjoint and bounded from below by Proposition 7.1. Assumption (iii) of Theorem 5.1 follows from the last assertion of Proposition 7.1 (iii) and (7.10). For assumption (ii) of Theorem 5.1 note that

ranM(λ)¯1/2=H1/2(Ω),λ<minσ(AN),\displaystyle\operatorname{ran}\overline{M(\lambda)}^{1/2}=H^{1/2}(\partial\Omega),\qquad\lambda<\min\sigma(A_{\rm N}),

which can be verified as in the proof of [29, Proposition 3.2 (iii)], and use (7.10). It follows from Proposition 7.1 that A0A_{0} and A1A_{1} are bounded from below. Thus Theorem 5.1 and Corollary 5.4 imply assertions (i)–(iii). Moreover, Theorem 5.6 and (7.9) yield that A[B]A_{[B]} is m-sectorial and the assertions in items (iv) and (v); note that the estimate for Rez\operatorname{Re}z in (v) follows from taking the estimates Rez>μ\operatorname{Re}z>\mu in Theorem 5.6 (b), (c) for all μ<minσ(AN)\mu<\min\sigma(A_{\rm N}). Finally, to prove item (vi) one combines Lemma 7.2 and Proposition 5.9 (a) with G=𝕌w0,νG=\mathbb{U}_{w_{0},\nu}. ∎

Remark 7.5.
  • (i)

    The constants CC in items (iv)–(vi) of the above theorem depend only on the differential expression {\mathcal{L}} and the domain Ω\Omega and on μ\mu in (iv), (v) and on w0,ν,βw_{0},\nu,\beta in (vi); the constants are independent of the operator BB.

  • (ii)

    In many cases (e.g. when Ω\Omega is bounded), one can define TT in (7.4) on the larger domain

    H3/2(Ω):={fH3/2(Ω):fL2(Ω)};H^{3/2}_{{\mathcal{L}}}(\Omega)\mathrel{\mathop{:}}=\bigl{\{}f\in H^{3/2}(\Omega):{\mathcal{L}}f\in L^{2}(\Omega)\bigr{\}};

    see [22, §4.2]. In this case the extensions of the boundary mappings Γ0\Gamma_{0} and Γ1\Gamma_{1} to H3/2(Ω)H^{3/2}_{{\mathcal{L}}}(\Omega) give rise to a generalized boundary triple, and the second condition in (7.10) on BB is not needed to guarantee that the assertions of Theorem 7.4 are true for the operator

    A[B]f=f,domA[B]={fH3/2(Ω):fν|Ω=Bf|Ω},A_{[B]}f={\mathcal{L}}f,\qquad\operatorname{dom}A_{[B]}=\biggl{\{}f\in H^{3/2}_{{\mathcal{L}}}(\Omega):\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}=Bf|_{\partial\Omega}\biggr{\}},

    instead of (7.12). In particular, for every bounded operator BB the statements (i)–(vi) in Theorem 7.4 are true. The second condition in (7.10) is needed to obtain the extra regularity domA[B]H2(Ω)\operatorname{dom}A_{[B]}\subset H^{2}(\Omega); see also [1, Theorem 7.2] for a related result.

  • (iii)

    The assertions in (iv) and (v) of Theorem 7.4 imply that the spectrum of A[B]A_{[B]} is contained in a parabola if domBdomB\operatorname{dom}B^{*}\supset\operatorname{dom}B and ImB\operatorname{Im}B is bounded. This is in accordance with [19, Theorem 5.14], where the Laplacian on a bounded domain with bounded BB was studied. In that paper a setting with H3/2(Ω)H^{3/2}_{{\mathcal{L}}}(\Omega) as mentioned in the previous item of this remark was used.

  • (iv)

    Under the basic assumptions of Theorem 7.4 the operator A[B]A_{[B]} is m-sectorial and hence A[B]-A_{[B]} generates an analytic semigroup. For the Laplacian on a bounded domain Ω\Omega this was proved in [3] in the H3/2(Ω)H^{3/2}_{{\mathcal{L}}}(\Omega) setting as in (ii).

The next remark shows that the condition (7.10) can be relaxed when an adjoint pair of boundary operators that map H1(Ω)H^{1}(\partial\Omega) into H1/2(Ω)H^{1/2}(\partial\Omega) is given. In this case the assumption H1/2(Ω)domBH^{1/2}(\partial\Omega)\subset\operatorname{dom}B is not needed.

Remark 7.6.

Assume that B0B_{0} and B0B_{0}^{\prime} are linear operators in L2(Ω)L^{2}(\partial\Omega) which satisfy

(B0φ,ψ)=(φ,B0ψ)for allφdomB0,ψdomB0,(B_{0}\varphi,\psi)=(\varphi,B_{0}^{\prime}\psi)\qquad\text{for all}\;\;\varphi\in\operatorname{dom}B_{0},\;\psi\in\operatorname{dom}B_{0}^{\prime}, (7.15)

and

H1(Ω)\displaystyle H^{1}(\partial\Omega) domB0,\displaystyle\subset\operatorname{dom}B_{0},\qquad B0(H1(Ω))\displaystyle B_{0}\bigl{(}H^{1}(\partial\Omega)\bigr{)} H1/2(Ω),\displaystyle\subset H^{1/2}(\partial\Omega), (7.16)
H1(Ω)\displaystyle H^{1}(\partial\Omega) domB0,\displaystyle\subset\operatorname{dom}B_{0}^{\prime},\qquad B0(H1(Ω))\displaystyle B_{0}^{\prime}\bigl{(}H^{1}(\partial\Omega)\bigr{)} H1/2(Ω).\displaystyle\subset H^{1/2}(\partial\Omega). (7.17)

Then B0B_{0} and B0B_{0}^{\prime} have closable extensions BB and BB^{\prime}, respectively, that satisfy (7.10) and (7.14). Indeed, it follows from (7.16) and (7.17) that B0B_{0} and B0B_{0}^{\prime} are densely defined. Hence (7.15) shows that B0B_{0} and B0B_{0}^{\prime} are closable. This and the second condition in (7.17) imply that B0H1(Ω)B_{0}^{\prime}\upharpoonright H^{1}(\partial\Omega) is bounded from H1(Ω)H^{1}(\partial\Omega) to H1/2(Ω)H^{1/2}(\partial\Omega). A duality argument as, e.g. in [27, Lemma 4.4] shows that the Banach space adjoint of B0H1(Ω)B_{0}^{\prime}\upharpoonright H^{1}(\partial\Omega), which we denote by B~\widetilde{B}, is an extension of B0B_{0} and a bounded mapping from H1/2(Ω)H^{-1/2}(\partial\Omega) to H1(Ω)H^{-1}(\partial\Omega). Interpolation (see, e.g. [110, Theorems 5.1 and 7.7]) implies that B:=B~H1/2(Ω)B\mathrel{\mathop{:}}=\widetilde{B}\upharpoonright H^{1/2}(\partial\Omega) is bounded from H1/2(Ω)H^{1/2}(\partial\Omega) to L2(Ω)L^{2}(\partial\Omega). Hence H1/2(Ω)domBH^{1/2}(\partial\Omega)\subset\operatorname{dom}B and (7.10) is satisfied. In a similar way one constructs an extension BB^{\prime} of B0B_{0}^{\prime} that satisfies H1/2(Ω)domBH^{1/2}(\partial\Omega)\subset\operatorname{dom}B^{\prime}. The relation (7.14) is obtained by continuity. We emphasize that in this situation replacing BB by B0B_{0} in the definition of A[B]A_{[B]} does not change the domain of the operator.

If, for BB, we choose a multiplication operator by some function α\alpha, we obtain classical Robin boundary conditions. We formulate this situation in the following corollary, which follows from Theorem 7.4 and Remark 7.6 with B0B_{0}^{\prime} being the multiplication operator by α¯\overline{\alpha}.

Corollary 7.7.

Let α\alpha be a measurable complex-valued function on Ω\partial\Omega such that

αφH1/2(Ω)for allφH1(Ω)\alpha\varphi\in H^{1/2}(\partial\Omega)\qquad\text{for all}\;\;\varphi\in H^{1}(\partial\Omega) (7.18)

and that

b:=sup(Reα)<.b\mathrel{\mathop{:}}=\sup(\operatorname{Re}\alpha)<\infty. (7.19)

Then the operator

A[α]f=f,domA[α]={fH2(Ω):fν|Ω=αf|Ω},A_{[\alpha]}f={\mathcal{L}}f,\qquad\operatorname{dom}A_{[\alpha]}=\biggl{\{}f\in H^{2}(\Omega):\frac{\partial f}{\partial\nu_{\mathcal{L}}}\Big{|}_{\partial\Omega}=\alpha f|_{\partial\Omega}\biggr{\}},

in L2(Ω)L^{2}(\Omega) is m-sectorial, one has σ(A[α])W(A[α])¯\sigma(A_{[\alpha]})\subset\overline{W(A_{[\alpha]})}, and the resolvent formula

(A[α]λ)1=(ANλ)1+γ(λ)(IαM(λ))1αγ(λ¯)(A_{[\alpha]}-\lambda)^{-1}=(A_{\rm N}-\lambda)^{-1}+\gamma(\lambda)\big{(}I-\alpha M(\lambda)\big{)}^{-1}\alpha\gamma(\overline{\lambda})^{*}

holds for all λρ(A[α])ρ(AN)\lambda\in\rho(A_{[\alpha]})\cap\rho(A_{\rm N}). Moreover, the following assertions are true.

  • (i)

    A[α¯]=A[α]A_{[\overline{\alpha}]}=A_{[\alpha]}^{*}.

  • (ii)

    If  α\alpha is real-valued, then A[α]A_{[\alpha]} is self-adjoint and bounded from below. If  Im(α(x))0\operatorname{Im}(\alpha(x))\geq 0 (0\leq 0, respectively) for almost all xΩx\in\partial\Omega, then A[α]A_{[\alpha]} is maximal accumulative (maximal dissipative, respectively).

  • (iii)

    If  b0b\leq 0 in (7.19), then (,minσ(AN))ρ(A[α])(-\infty,\min\sigma(A_{\rm N}))\subset\rho(A_{[\alpha]}).

Further, if  Imα\operatorname{Im}\alpha is bounded, then the enclosures for W(A[α])W(A_{[\alpha]}) in Theorem 7.4(iv) and (v) hold with ImB¯\|\overline{\operatorname{Im}B}\| replaced by sup|Imα|\sup|\operatorname{Im}\alpha|. If α\alpha is bounded, then also the enclosure in Theorem 7.4(vi) holds with B\|B\| replaced by sup|α|\sup|\alpha|.

Remark 7.8.

Condition (7.18) says that α\alpha is a multiplier from H1(Ω)H^{1}(\partial\Omega) to H1/2(Ω)H^{1/2}(\partial\Omega), in the notation of [119] written as

αM(H1(Ω)H1/2(Ω)).\alpha\in M\bigl{(}H^{1}(\partial\Omega)\to H^{1/2}(\partial\Omega)\bigr{)}.

In certain situations there exist characterizations or sufficient conditions for this property. For example let

Ω=+n={x=(x,xn):xn1,xn>0}.\Omega=\mathbb{R}_{+}^{n}=\bigl{\{}x=(x^{\prime},x_{n})^{\top}:x^{\prime}\in\mathbb{R}^{n-1},\,x_{n}>0\bigr{\}}.

Then Ω=n1\partial\Omega=\mathbb{R}^{n-1}. The set of multipliers can be characterized using capacities; see [119, Theorem 3.2.2]. For the case n=2n=2 there is a simpler characterization and for n>2n>2 there are simpler sufficient conditions. To this end, let us recall some notation. Let Hs,p(n1)H^{s,p}(\mathbb{R}^{n-1}) denote the (fractional) Sobolev space (or Bessel potential space) defined as

Hs,p(n1)={u𝒮(n1):Ms1uLp(n1)}H^{s,p}(\mathbb{R}^{n-1})=\bigl{\{}u\in{\mathcal{S}}^{\prime}(\mathbb{R}^{n-1}):{\mathcal{F}}M^{s}{\mathcal{F}}^{-1}u\in L^{p}(\mathbb{R}^{n-1})\bigr{\}}

where 𝒮(n1){\mathcal{S}}^{\prime}(\mathbb{R}^{n-1}) is the space of tempered distributions, {\mathcal{F}} is the (n1)(n-1)-dimensional Fourier transform, and MM is the operator of multiplication by 1+|ξ|2\sqrt{1+|\xi|^{2}}; see, e.g. [58, §2.2.2 (iii)] or [119, §3.1.1]. Further, let ηC0(n1)\eta\in C_{0}^{\infty}(\mathbb{R}^{n-1}) be such that η(x)=1\eta(x)=1 on the unit ball, and set ηz(x):=η(xz)\eta_{z}(x)\mathrel{\mathop{:}}=\eta(x-z) for zn1z\in\mathbb{R}^{n-1}. Let

Hloc,unifs,p(n1)={u𝒮(n1):supzn1ηzuHs,p(n1)<},H_{\rm loc,unif}^{s,p}(\mathbb{R}^{n-1})=\Bigl{\{}u\in{\mathcal{S}}^{\prime}(\mathbb{R}^{n-1}):\sup_{z\in\mathbb{R}^{n-1}}\|\eta_{z}u\|_{H^{s,p}(\mathbb{R}^{n-1})}<\infty\Bigr{\}},

a space of functions being in Hs,pH^{s,p} only locally but in a uniform way; see [119, p. 34]. We also set Hloc,unifs(n1):=Hloc,unifs,2(n1)H_{\rm loc,unif}^{s}(\mathbb{R}^{n-1})\mathrel{\mathop{:}}=H_{\rm loc,unif}^{s,2}(\mathbb{R}^{n-1}). When n=2n=2, one obtains from [119, Theorem 3.2.5] that α\alpha satisfies (7.18) if and only if

αHloc,unif12().\alpha\in H_{\rm loc,unif}^{\frac{1}{2}}(\mathbb{R}). (7.20)

In the case n>2n>2 we can use [119, Theorem 3.3.1 (ii)] to provide sufficient conditions: α\alpha satisfies (7.18) if

αHloc,unif12,p(n1)for some p(2,4)\displaystyle\alpha\in H_{\rm loc,unif}^{\frac{1}{2},p}(\mathbb{R}^{n-1})\;\;\text{for some $p\in(2,4)$}\qquad whenn=3,\displaystyle\text{when}\;\;n=3, (7.21)
αHloc,unif12,n1(n1)\displaystyle\alpha\in H_{\rm loc,unif}^{\frac{1}{2},n-1}(\mathbb{R}^{n-1})\qquad whenn>3.\displaystyle\text{when}\;\;n>3.

The implication in the case n=3n=3 can be shown as follows: if αHloc,unif12,p(n1)\alpha\in H_{\rm loc,unif}^{\frac{1}{2},p}(\mathbb{R}^{n-1}) and p(2,4)p\in(2,4), then αM(H2p(2)H12(2))\alpha\in M\bigl{(}H^{\frac{2}{p}}(\mathbb{R}^{2})\to H^{\frac{1}{2}}(\mathbb{R}^{2})\bigr{)} by [119, Theorem 3.3.1 (ii)], and since H1(2)H^{1}(\mathbb{R}^{2}) is continuously embedded in H2p(2)H^{\frac{2}{p}}(\mathbb{R}^{2}), we therefore have αM(H1(2)H12(2))\alpha\in M\bigl{(}H^{1}(\mathbb{R}^{2})\to H^{\frac{1}{2}}(\mathbb{R}^{2})\bigr{)}.

If Ω\Omega is a domain with smooth compact boundary, then one can characterize multipliers using charts to reduce the situation to the half-space case, i.e. α\alpha satisfies (7.18) if and only if αH12(Ω)\alpha\in H^{\frac{1}{2}}(\partial\Omega) when n=2n=2; when n>2n>2, α\alpha satisfies (7.18) if (7.21) holds with Hloc,unif12,p(n1)H_{\rm loc,unif}^{\frac{1}{2},p}(\mathbb{R}^{n-1}) replaced by H12,p(Ω)H^{\frac{1}{2},p}(\partial\Omega).

Example 7.9.

An example of an unbounded function α\alpha that satisfies (7.20) is

α(x1)=log(log(1+1|x1|)),x1(1,1),\alpha(x_{1})=-\log\Bigl{(}\log\Bigl{(}1+\frac{1}{|x_{1}|}\Bigr{)}\Bigr{)},\qquad x_{1}\in(-1,1),

smoothly connected, e.g. to the zero function outside (2,2)\mathbb{R}\setminus(-2,2) or to periodically shifted copies of this function. That α\alpha belongs to Hloc,unif12()H_{\rm loc,unif}^{\frac{1}{2}}(\mathbb{R}) can be seen from the fact that it is the trace of a function fH1(×(0,))f\in H^{1}(\mathbb{R}\times(0,\infty)) that satisfies

f(x1,x2)=log(log(1+1x12+x22)),x1(1,1),x2(0,1).f(x_{1},x_{2})=-\log\biggl{(}\log\biggl{(}1+\frac{1}{\sqrt{x_{1}^{2}+x_{2}^{2}}\,}\biggr{)}\biggr{)},\qquad x_{1}\in(-1,1),\,x_{2}\in(0,1).

Note that such a function α\alpha also satisfies (7.19) and hence Corollary 7.7 can be applied.

Let us consider an example in which the spectral estimates of the previous theorem can be made more explicit.

Example 7.10.

Let Ω=+n={(x,xn):xn1,xn>0}\Omega=\mathbb{R}^{n}_{+}=\{(x^{\prime},x_{n})^{\top}:x^{\prime}\in\mathbb{R}^{n-1},x_{n}>0\}, so that Ω=n1\partial\Omega=\mathbb{R}^{n-1}, and consider the negative Laplacian =Δ{\mathcal{L}}=-\Delta. Then σ(AN)=[0,)\sigma(A_{\rm N})=[0,\infty) and the Weyl function of the quasi boundary triple in Proposition 7.1 can be calculated explicitly,

M(λ)¯=(Δn1λ)1/2,λ[0,);\overline{M(\lambda)}=(-\Delta_{\mathbb{R}^{n-1}}-\lambda)^{-1/2},\qquad\lambda\in\mathbb{C}\setminus[0,\infty); (7.22)

see, e.g. [87, (9.65)]. Here Δn1-\Delta_{\mathbb{R}^{n-1}} denotes the self-adjoint Laplacian in L2(n1)L^{2}(\mathbb{R}^{n-1}). From (7.22) we obtain

M(λ)¯=1dist(λ,+),λ[0,).\big{\|}\overline{M(\lambda)}\big{\|}=\frac{1}{\sqrt{\operatorname{dist}(\lambda,\mathbb{R}_{+})}\,}\,,\qquad\lambda\in\mathbb{C}\setminus[0,\infty). (7.23)

In particular, the estimate (7.9) is satisfied with μ=0\mu=0 and C=1C=1. Hence we can use Theorem 5.6 to obtain a better inclusion for the numerical range. Let BB be a closable operator that satisfies (7.10) and (7.11) such that domBdomB\operatorname{dom}B^{*}\supset\operatorname{dom}B and ImB\operatorname{Im}B is bounded. If b>0b>0, then for every ξ<b2\xi<-b^{2} one has

W(A[B]){z:Rezb2,|Imz|2ImB¯1b|ξ|(Rezξ)1/2}.W(A_{[B]})\subset\Biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq-b^{2},\;|\operatorname{Im}z|\leq\frac{2\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}}{1-\frac{b}{\sqrt{|\xi|}}}(\operatorname{Re}z-\xi)^{1/2}\Biggr{\}}.

If b0b\leq 0, then

W(A[B]){z:Rez>0,|Imz|2ImB¯Rez(Rez)1/2b}{0}.W(A_{[B]})\subset\biggl{\{}z\in\mathbb{C}:\operatorname{Re}z>0,\;|\operatorname{Im}z|\leq\frac{2\bigl{\|}\overline{\operatorname{Im}B}\bigr{\|}\operatorname{Re}z}{(\operatorname{Re}z)^{1/2}-b}\biggr{\}}\cup\{0\}. (7.24)

Note that σ(A[B])W(A[B])¯\sigma(A_{[B]})\subset\overline{W(A_{[B]})}. If BB is bounded, then we can use Proposition 5.9 (a) with G=[0,)G=\mathbb{C}\setminus[0,\infty) to obtain the spectral enclosure

σ(A[B]){z:dist(z,+)B2}.\sigma(A_{[B]})\subset\bigl{\{}z\in\mathbb{C}:\operatorname{dist}(z,\mathbb{R}_{+})\leq\|B\|^{2}\bigr{\}}. (7.25)

In the case of the Robin boundary condition, i.e. when BB is a multiplication operator with a complex-valued function α\alpha, an enclosure alternative to (7.25) can be found in [72, Theorem 2], where the operator norm is replaced by an LpL^{p}-norm of α\alpha with a suitably chosen p>0p>0. Finally, we remark that for b0b\leq 0 and zz close to the origin, the enclosure (7.24) is sharper than (7.25).

If the boundary Ω\partial\Omega of Ω\Omega is compact, then the differences of the resolvents of A[B]A_{[B]} and ANA_{\rm N} or ADA_{\rm D}, respectively, belong to certain Schatten–von Neumann ideals as the following theorem shows. For the case of a bounded self-adjoint operator BB in L2(Ω)L^{2}(\partial\Omega) the inclusions in (7.28) and (7.29) were proved in [27, Theorem 4.10 and Corollary 4.14]; cf. also [25, 88].

Theorem 7.11.

Let Ω\partial\Omega be compact and let all assumptions of Theorem 7.4 be satisfied. Then

(A[B]λ)1(ANλ)1𝔖p(L2(Ω))for allp>2(n1)3(A_{[B]}-\lambda)^{-1}-(A_{\rm N}-\lambda)^{-1}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\Omega)\bigr{)}\qquad\text{for all}\;\;p>\frac{2(n-1)}{3} (7.26)

and λρ(A[B])ρ(AN)\lambda\in\rho(A_{[B]})\cap\rho(A_{\rm N}), and

(A[B]λ)1(ADλ)1𝔖p(L2(Ω))for allp>2(n1)3(A_{[B]}-\lambda)^{-1}-(A_{\rm D}-\lambda)^{-1}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\Omega)\bigr{)}\qquad\text{for all}\;\;p>\frac{2(n-1)}{3} (7.27)

and λρ(A[B])ρ(AD)\lambda\in\rho(A_{[B]})\cap\rho(A_{\rm D}). If, in addition, B(L2(Ω))B\in{\mathcal{B}}(L^{2}(\partial\Omega)) then

(A[B]λ)1(ANλ)1𝔖p(L2(Ω))for allp>n13(A_{[B]}-\lambda)^{-1}-(A_{\rm N}-\lambda)^{-1}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\Omega)\bigr{)}\qquad\text{for all}\;\;p>\frac{n-1}{3} (7.28)

and λρ(A[B])ρ(AN)\lambda\in\rho(A_{[B]})\cap\rho(A_{\rm N}), and

(A[B]λ)1(ADλ)1𝔖p(L2(Ω))for allp>n12(A_{[B]}-\lambda)^{-1}-(A_{\rm D}-\lambda)^{-1}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\Omega)\bigr{)}\qquad\text{for all}\;\;p>\frac{n-1}{2} (7.29)

and λρ(A[B])ρ(AD)\lambda\in\rho(A_{[B]})\cap\rho(A_{\rm D}).

Proof.

Let {L2(Ω),Γ0,Γ1}\{L^{2}(\partial\Omega),\Gamma_{0},\Gamma_{1}\} be the quasi boundary triple in Proposition 7.1 and let γ\gamma be the corresponding γ\gamma-field. Clearly, γ(λ)(L2(Ω),L2(Ω))\gamma(\lambda)^{*}\in{\mathcal{B}}(L^{2}(\Omega),L^{2}(\partial\Omega)), and it follows from (2.3) that ranγ(λ)=ran(Γ1domAN)=H3/2(Ω)\operatorname{ran}\gamma(\lambda)^{*}=\operatorname{ran}(\Gamma_{1}\upharpoonright\operatorname{dom}A_{\rm N})=H^{3/2}(\partial\Omega) for all λρ(AN)\lambda\in\rho(A_{\rm N}). Therefore we can conclude as in [25, Lemma 3.4] that

γ(λ)𝔖p(L2(Ω),L2(Ω))for allp>2(n1)3\gamma(\lambda)^{*}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\Omega),L^{2}(\partial\Omega)\bigr{)}\quad\text{for~all}\quad p>\frac{2(n-1)}{3} (7.30)

and for each λρ(AN)\lambda\in\rho(A_{\rm N}). Moreover, for λρ(AN)ρ(AD)\lambda\in\rho(A_{\rm N})\cap\rho(A_{\rm D}) we have the relations M(λ)1γ(λ¯)(L2(Ω),L2(Ω))M(\lambda)^{-1}\gamma(\overline{\lambda})^{*}\in{\mathcal{B}}(L^{2}(\Omega),L^{2}(\partial\Omega)) and ranM(λ)1γ(λ¯)=H1/2(Ω)\operatorname{ran}M(\lambda)^{-1}\gamma(\overline{\lambda})^{*}=H^{1/2}(\partial\Omega) since M(λ)1M(\lambda)^{-1} maps H3/2(Ω)H^{3/2}(\partial\Omega) onto H1/2(Ω)H^{1/2}(\partial\Omega). It follows again as in [25, Lemma 3.4] that

M(λ)1γ(λ¯)𝔖q(L2(Ω),L2(Ω))for allq>2(n1)M(\lambda)^{-1}\gamma(\overline{\lambda})^{*}\in{\mathfrak{S}}_{q}\bigl{(}L^{2}(\Omega),L^{2}(\partial\Omega)\bigr{)}\qquad\text{for all}\quad q>2(n-1) (7.31)

and for each λρ(AN)ρ(AD)\lambda\in\rho(A_{\rm N})\cap\rho(A_{\rm D}). From (7.30) we obtain with the help of Proposition 4.7 the assertions (7.26) and (7.27). For B(L2(Ω))B\in{\mathcal{B}}(L^{2}(\partial\Omega)), Proposition 4.8, (7.30) and (7.31) yield (7.28) and (7.29). ∎

Remark 7.12.

Note that the statement of Theorem 7.11 can be refined if we replace the usual Schatten–von Neumann classes 𝔖p{\mathfrak{S}}_{p} by the weak Schatten–von Neumann classes 𝔖p,{\mathfrak{S}}_{p,\infty}, which are discussed in Remark 4.9. In this case one can allow pp to be equal to 2(n1)/32(n-1)/3, (n1)/3(n-1)/3 or (n1)/2(n-1)/2, respectively; cf. [27, Section 4.2] and [28, Section 3].

8. Schrödinger operators with δ\delta-interaction on hypersurfaces

In this section we provide some applications of the results in Sections 4, 5 and 6 to Schrödinger operators with δ\delta-interaction supported on a smooth, not necessarily bounded hypersurface Σ\Sigma in n\mathbb{R}^{n}. To be more specific, we consider operators associated with the formal differential expression

Δα,δΣδΣ,-\Delta-\alpha\langle\,\cdot,\delta_{\Sigma}\rangle\delta_{\Sigma},

where α\alpha is a complex constant or a complex-valued function on Σ\Sigma, the strength of the δ\delta-interaction. The spectral theory of such operators is a prominent subject in mathematical physics; see the review paper [62], the monograph [67], and the references therein. The largest part of the existing literature (see, e.g. [37, 64, 66, 68, 69, 111, 118]) is devoted to the case of a real interaction strength α\alpha. However, there has been recent interest in non-real α\alpha; see, e.g. [72, 98].

In what follows, let Ω+\Omega_{+} be a uniformly regular, bounded or unbounded domain in n\mathbb{R}^{n} (see Section 7) with boundary Σ:=Ω+\Sigma\mathrel{\mathop{:}}=\partial\Omega_{+}. Furthermore, let Ω=n(Ω+Σ)\Omega_{-}=\mathbb{R}^{n}\setminus(\Omega_{+}\cup\Sigma) be its complement in n\mathbb{R}^{n}. We write f=f+ff=f_{+}\oplus f_{-} for fL2(n)f\in L^{2}(\mathbb{R}^{n}), where f±=f|Ω±f_{\pm}=f|_{\Omega_{\pm}}. By the same reason as in Section 7, the trace and the normal derivative extend to continuous linear mappings

H2(Ω±)f±{f±|Σ;f±ν±|Σ}H3/2(Σ)×H1/2(Σ).H^{2}(\Omega_{\pm})\ni f_{\pm}\mapsto\biggl{\{}f_{\pm}|_{\Sigma};\;\frac{\partial f_{\pm}}{\partial\nu_{\pm}}\Big{|}_{\Sigma}\biggr{\}}\in H^{3/2}(\Sigma)\times H^{1/2}(\Sigma).

Both the above mappings are surjective onto H3/2(Σ)×H1/2(Σ)H^{3/2}(\Sigma)\times H^{1/2}(\Sigma). Furthermore, we introduce an operator TT in L2(n)L^{2}(\mathbb{R}^{n}) by

Tf=(Δf+)(Δf),domT=H2(nΣ)H1(n).Tf=(-\Delta f_{\rm+})\oplus(-\Delta f_{\rm-}),\qquad\operatorname{dom}T=H^{2}(\mathbb{R}^{n}\setminus\Sigma)\cap H^{1}(\mathbb{R}^{n}). (8.1)

On domT\operatorname{dom}T we define boundary mappings Γ0\Gamma_{0} and Γ1\Gamma_{1} by

Γ0f=f+ν+|Σ+fν|Σ,Γ1f=f|ΣforfdomT;\Gamma_{0}f=\frac{\partial f_{+}}{\partial\nu_{+}}\Big{|}_{\Sigma}+\frac{\partial f_{-}}{\partial\nu_{-}}\Big{|}_{\Sigma},\qquad\Gamma_{1}f=f|_{\Sigma}\qquad\text{for}\;f\in\operatorname{dom}T; (8.2)

here f±ν±|Σ\frac{\partial f_{\pm}}{\partial\nu_{\pm}}\big{|}_{\Sigma} stand for the normal derivatives of f=f+fdomTf=f_{+}\oplus f_{-}\in\operatorname{dom}T on two opposite faces of Σ\Sigma with the normals pointing outwards Ω±\Omega_{\pm}; note that the outer unit normal vector fields ν\nu_{-} and ν+\nu_{+} of Ω\Omega_{-} and Ω+\Omega_{+}, respectively, satisfy ν(x)=ν+(x)\nu_{-}(x)=-\nu_{+}(x) for all xΣx\in\Sigma. Moreover, consider the symmetric operator SS in L2(n)L^{2}(\mathbb{R}^{n}) defined as

Sf=Δf,domS=H2(n)H01(nΣ).Sf=-\Delta f,\qquad\operatorname{dom}S=H^{2}(\mathbb{R}^{n})\cap H^{1}_{0}(\mathbb{R}^{n}\setminus\Sigma). (8.3)

In the following proposition we state that {L2(Σ),Γ0,Γ1}\{L^{2}(\Sigma),\Gamma_{0},\Gamma_{1}\} is a quasi boundary triple for TST\subset S^{*} and we formulate properties of this triple and of the associated γ\gamma-field and Weyl function. This proposition is analogous to Proposition 7.1 and can be proved in a similar way; see the proofs of [29, Propositions 3.1 and 3.2]. Note that in the case of a compact Σ\Sigma, the statements and proofs of the next proposition and further details can be found in [26, §3] and [27, §3.1].

Proposition 8.1.

The operator SS in (8.3) is closed, symmetric and densely defined with S=T¯S^{*}=\overline{T} for TT in (8.1), and the triple {L2(Σ),Γ0,Γ1}\{L^{2}(\Sigma),\Gamma_{0},\Gamma_{1}\} is a quasi boundary triple for TST\subset S^{*} with the following properties.

  • (i)

    ran(Γ0,Γ1)=H1/2(Σ)×H3/2(Σ)\operatorname{ran}(\Gamma_{0},\Gamma_{1})^{\top}=H^{1/2}(\Sigma)\times H^{3/2}(\Sigma).

  • (ii)

    A0A_{0} is the free Laplace operator

    Δnf=Δf,dom(Δn)=H2(n),-\Delta_{\mathbb{R}^{n}}f=-\Delta f,\qquad\operatorname{dom}(-\Delta_{\mathbb{R}^{n}})=H^{2}(\mathbb{R}^{n}),

    and A1A_{1} is the orthogonal sum of the Dirichlet Laplacians on Ω+\Omega_{+} and Ω\Omega_{-}, respectively,

    ΔDf=Δf,dom(ΔD)=H2(nΣ)H01(nΣ).-\Delta_{\rm D}f=-\Delta f,\qquad\operatorname{dom}(-\Delta_{\rm D})=H^{2}(\mathbb{R}^{n}\setminus\Sigma)\cap H^{1}_{0}(\mathbb{R}^{n}\setminus\Sigma).

    Both operators, Δn-\Delta_{{\mathbb{R}}^{n}} and ΔD-\Delta_{\rm D}, are self-adjoint and non-negative in L2(n)L^{2}(\mathbb{R}^{n}).

  • (iii)

    For all λ+\lambda\in\mathbb{C}\setminus\mathbb{R}_{+} the associated γ\gamma-field satisfies

    γ(λ)(f+ν+|Σ+fν|Σ)=ffor allfker(Tλ),\gamma(\lambda)\left(\frac{\partial f_{+}}{\partial\nu_{+}}\Big{|}_{\Sigma}+\frac{\partial f_{-}}{\partial\nu_{-}}\Big{|}_{\Sigma}\right)=f\qquad\text{for all}\;\;f\in\ker(T-\lambda), (8.4)

    and the associated Weyl function is given by:

    M(λ)(f+ν+|Σ+fν|Σ)=f|Σfor allfker(Tλ).M(\lambda)\left(\frac{\partial f_{+}}{\partial\nu_{+}}\Big{|}_{\Sigma}+\frac{\partial f_{-}}{\partial\nu_{-}}\Big{|}_{\Sigma}\right)=f|_{\Sigma}\qquad\text{for all}\;\;f\in\ker(T-\lambda). (8.5)

    Moreover, M(λ)M(\lambda) is a bounded, non-closed operator in L2(Σ)L^{2}(\Sigma) with domain H1/2(Σ)H^{1/2}(\Sigma) such that ranM(λ)¯H1(Σ)\operatorname{ran}\overline{M(\lambda)}\subset H^{1}(\Sigma).

The following lemma ensures the decay of the Weyl function MM in (8.5). For the definition of the exterior sector 𝕌w0,ν\mathbb{U}_{w_{0},\nu} we refer to (6.2).

Lemma 8.2.

Let MM denote the Weyl function in (8.5). Then for all w0<0w_{0}<0, ν(0,π)\nu\in(0,\pi), and β(0,12)\beta\in(0,\frac{1}{2}) there exists a constant C=C(Σ,β,w0,ν)>0C=C(\Sigma,\beta,w_{0},\nu)>0 such that

M(λ)¯C(dist(λ,+))βfor allλ𝕌w0,ν.\big{\|}\overline{M(\lambda)}\big{\|}\leq\frac{C}{\bigl{(}\operatorname{dist}(\lambda,{\mathbb{R}}_{+})\bigr{)}^{\beta}}\qquad\text{for all}\;\;\lambda\in\mathbb{U}_{w_{0},\nu}. (8.6)
Proof.

Let {L2(Σ),Γ0,Γ1}\{L^{2}(\Sigma),\Gamma_{0},\Gamma_{1}\} be the quasi boundary triple in Proposition 8.1. Recall that A0=ΔnA_{0}=-\Delta_{\mathbb{R}^{n}}; in particular, σ(A0)=[0,)\sigma(A_{0})=[0,\infty) and dom(A0+1)s2=Hs(n)\operatorname{dom}(A_{0}+1)^{\frac{s}{2}}=H^{s}(\mathbb{R}^{n}) for all s>0s>0 by the definition of the Sobolev spaces. Hence by the closed graph theorem, (A0+1)s/2(A_{0}+1)^{-s/2} is bounded as an operator from L2(n)L^{2}(\mathbb{R}^{n}) to Hs(n)H^{s}(\mathbb{R}^{n}) for each s0s\geq 0. Since the trace map is bounded from Hs(n)H^{s}(\mathbb{R}^{n}) to L2(Σ)L^{2}(\Sigma) for each s(12,1)s\in(\frac{1}{2},1), it follows that f((A0+1)s/2f)|Σf\mapsto((A_{0}+1)^{-s/2}f)|_{\Sigma} is bounded from L2(n)L^{2}(\mathbb{R}^{n}) to L2(Σ)L^{2}(\Sigma) for each s(12,1)s\in(\frac{1}{2},1). Therefore the operator

Γ1(A0+1)α:L2(n)dom(Γ1(A0+1)α)L2(Σ)\Gamma_{1}(A_{0}+1)^{-\alpha}:L^{2}(\mathbb{R}^{n})\supset\operatorname{dom}\bigl{(}\Gamma_{1}(A_{0}+1)^{-\alpha}\bigr{)}\to L^{2}(\Sigma)

is bounded for each α(14,12)\alpha\in(\frac{1}{4},\frac{1}{2}). By Theorem 6.1 it follows that for each w0<0w_{0}<0, each ν(0,π)\nu\in(0,\pi) and each α(14,12)\alpha\in(\frac{1}{4},\frac{1}{2}) there exists C=C(Σ,β,w0,ν)>0C=C(\Sigma,\beta,w_{0},\nu)>0 such that

M(λ)¯C(dist(λ,+))12α\big{\|}\overline{M(\lambda)}\big{\|}\leq\frac{C}{\bigl{(}\operatorname{dist}(\lambda,\mathbb{R}_{+})\bigr{)}^{1-2\alpha}}

holds for all λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu}. From this the claim of the lemma follows. ∎

Remark 8.3.

It can be shown as in [26, Proposition 3.2 (iii)] that

M(λ)=(M+(λ)1+M(λ)1)1,λ[0,),M(\lambda)=\bigl{(}M_{+}(\lambda)^{-1}+M_{-}(\lambda)^{-1}\bigr{)}^{-1},\qquad\lambda\in\mathbb{C}\setminus[0,\infty), (8.7)

where M+M_{+} and MM_{-} are the Weyl functions from Section 7 for Δ-\Delta on Ω+\Omega_{+} and Ω\Omega_{-}, respectively. Remark 7.3 implies that for each μ<0\mu<0 there exist C±>0C_{\pm}>0 such that

M±(λ)¯C±(μλ)1/2,λ<μ.\big{\|}\overline{M_{\pm}(\lambda)}\big{\|}\leq\frac{C_{\pm}}{(\mu-\lambda)^{1/2}}\,,\qquad\lambda<\mu.

Since M±(λ)0M_{\pm}(\lambda)\geq 0 for λ(,0)\lambda\in(-\infty,0), it follows from [10, Corollaries I.2.4 and I.3.2] that

M(λ)¯14(M+(λ)¯+M(λ)¯).\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\frac{1}{4}\Bigl{(}\bigl{\|}\overline{M_{+}(\lambda)}\bigr{\|}+\bigl{\|}\overline{M_{-}(\lambda)}\bigr{\|}\Bigr{)}.

Hence for each μ<0\mu<0 there exists C=C(Σ,μ)>0C=C(\Sigma,\mu)>0 such that

M(λ)¯C(μλ)1/2for allλ<μ.\bigl{\|}\overline{M(\lambda)}\bigr{\|}\leq\frac{C}{(\mu-\lambda)^{1/2}}\qquad\text{for all}\;\;\lambda<\mu.

From Lemma 8.2, Remark 8.3 and the results of Section 5 we obtain the following consequences for Schrödinger operators with δ\delta-potentials supported on Σ\Sigma; cf. the proof of Theorem 7.4 and Corollary 7.7. Note that the assumptions of the next theorem allow certain classes of unbounded functions α\alpha; cf. Remark 7.8.

Theorem 8.4.

Let α\alpha be a measurable complex-valued function such that

αφH1/2(Σ)for allφH1(Σ),\alpha\varphi\in H^{1/2}(\Sigma)\qquad\text{for all}\;\;\varphi\in H^{1}(\Sigma), (8.8)

and that

b:=sup(Reα)<.b\mathrel{\mathop{:}}=\sup(\operatorname{Re}\alpha)<\infty.

Then the Schrödinger operator with δ\delta-interaction of strength α\alpha supported on Σ\Sigma,

A[α]f=(Δf+)(Δf),domA[α]={fH2(nΣ)H1(n):f+ν+|Σ+fν|Σ=αf|Σ},\begin{split}A_{[\alpha]}f&=(-\Delta f_{+})\oplus(-\Delta f_{-}),\\ \operatorname{dom}A_{[\alpha]}&=\left\{f\in H^{2}(\mathbb{R}^{n}\setminus\Sigma)\cap H^{1}(\mathbb{R}^{n}):\frac{\partial f_{+}}{\partial\nu_{+}}\Big{|}_{\Sigma}+\frac{\partial f_{-}}{\partial\nu_{-}}\Big{|}_{\Sigma}=\alpha f|_{\Sigma}\right\},\end{split} (8.9)

in L2(n)L^{2}(\mathbb{R}^{n}) is m-sectorial, one has σ(A[α])W(A[α])¯\sigma(A_{[\alpha]})\subset\overline{W(A_{[\alpha]})}, the resolvent formula

(A[α]λ)1=(Δnλ)1+γ(λ)(IαM(λ))1αγ(λ¯)(A_{[\alpha]}-\lambda)^{-1}=(-\Delta_{\mathbb{R}^{n}}-\lambda)^{-1}+\gamma(\lambda)\big{(}I-\alpha M(\lambda)\big{)}^{-1}\alpha\gamma(\overline{\lambda})^{*} (8.10)

holds for all λρ(A[α])+\lambda\in\rho(A_{[\alpha]})\setminus{\mathbb{R}}_{+}, and the following assertions are true.

  • (i)

    A[α¯]=A[α]A_{[\overline{\alpha}]}=A_{[\alpha]}^{*}.

  • (ii)

    If α\alpha is real-valued, then A[α]A_{[\alpha]} is self-adjoint and bounded from below. If  Im(α(s))0\operatorname{Im}(\alpha(s))\geq 0 (0\leq 0, respectively) for almost all sΣs\in\Sigma, then A[α]A_{[\alpha]} is maximal accumulative (maximal dissipative, respectively).

Moreover, the following spectral enclosures hold.

  • (iii)

    If  b0b\leq 0, then (,0)ρ(A[α])(-\infty,0)\subset\rho(A_{[\alpha]}).

  • (iv)

    If  Imα\operatorname{Im}\alpha is bounded and b>0b>0, then for each μ<0\mu<0 there exists C>0C>0 such that for each ξ<μ(Cb)2\xi<\mu-(Cb)^{2},

    W(A[α]){z:Rezμ(Cb)2,|Imz|2CImα1Cb(μξ)1/2(Rezξ)1/2}.W(A_{[\alpha]})\subset\Biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\mu-(Cb)^{2},\;|\operatorname{Im}z|\leq\frac{2C\|\operatorname{Im}\alpha\|_{\infty}}{1-\frac{Cb}{(\mu-\xi)^{1/2}}}(\operatorname{Re}z-\xi)^{1/2}\Biggr{\}}.
  • (v)

    If  Imα\operatorname{Im}\alpha is bounded and b0b\leq 0, then for each μ<0\mu<0 there exists C>0C>0 such that

    W(A[α]){z:Rez0,|Imz|2CImα(Rezμ)(Rezμ)1/2Cb}.W(A_{[\alpha]})\subset\biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq 0,\;|\operatorname{Im}z|\leq\frac{2C\|\operatorname{Im}\alpha\|_{\infty}(\operatorname{Re}z-\mu)}{(\operatorname{Re}z-\mu)^{1/2}-Cb}\biggr{\}}.
  • (vi)

    If  α\alpha is bounded, then for each w0<0w_{0}<0, ν(0,π)\nu\in(0,\pi) and β(0,12)\beta\in\bigl{(}0,\frac{1}{2}\bigr{)} there exists C>0C>0 such that

    σ(A[α])𝕌w0,ν{z𝕌w0,ν:dist(z,+)(Cα)1/β},\sigma(A_{[\alpha]})\cap\mathbb{U}_{w_{0},\nu}\subset\Bigl{\{}z\in\mathbb{U}_{w_{0},\nu}:\operatorname{dist}(z,\mathbb{R}_{+})\leq(C\|\alpha\|_{\infty})^{1/\beta}\Bigr{\}},

    where 𝕌w0,ν\mathbb{U}_{w_{0},\nu} is defined in (6.2).

Let us illustrate the obtained spectral estimates in an example.

Example 8.5.

Consider the case

Ω±=±n={x=(x,xn)n:xn1,±xn>0},\Omega_{\pm}=\mathbb{R}^{n}_{\pm}=\bigl{\{}x=(x^{\prime},x_{n})^{\top}\in\mathbb{R}^{n}:x^{\prime}\in\mathbb{R}^{n-1},\pm x_{n}>0\bigr{\}},

that is, Σ={(x,0):xn1}\Sigma=\{(x^{\prime},0)^{\top}:x^{\prime}\in\mathbb{R}^{n-1}\}, which we identify with n1\mathbb{R}^{n-1}. It follows from (8.7) and (7.22) that

M(λ)¯=12(Δn1λ)1/2,λ[0,),\overline{M(\lambda)}=\frac{1}{2}\bigl{(}-\Delta_{\mathbb{R}^{n-1}}-\lambda\bigr{)}^{-1/2},\qquad\lambda\in\mathbb{C}\setminus[0,\infty),

and hence

M(λ)¯=12dist(λ,+),λ[0,).\big{\|}\overline{M(\lambda)}\big{\|}=\frac{1}{2\sqrt{\operatorname{dist}(\lambda,\mathbb{R}_{+})}\,}\,,\qquad\lambda\in\mathbb{C}\setminus[0,\infty).

In particular, the estimate (5.11) is satisfied with μ=0\mu=0 and C=1/2C=1/2. In analogy to Example 7.10, this observation can be used to obtain several better enclosures for the spectrum and numerical range of the operator A[α]A_{[\alpha]}. Let α\alpha satisfy the conditions of Theorem 8.4 and let Imα\operatorname{Im}\alpha be bounded. If b>0b>0, then for every ξ<b2/4\xi<-b^{2}/4 one has

W(A[α]){z:Rezb24,|Imz|Imα1b2|ξ|(Rezξ)1/2}.W(A_{[\alpha]})\subset\Biggl{\{}z\in{\mathbb{C}}\colon\operatorname{Re}z\geq-\frac{b^{2}}{4}\,,\;|\operatorname{Im}z|\leq\frac{\|\operatorname{Im}\alpha\|_{\infty}}{1-\frac{b}{2\sqrt{|\xi|}}}(\operatorname{Re}z-\xi)^{1/2}\Biggr{\}}.

If b0b\leq 0, then

W(A[α]){z:Rez>0,|Imz|ImαRez(Rez)1/2b/2}{0}.W(A_{[\alpha]})\subset\bigg{\{}z\in{\mathbb{C}}\colon\operatorname{Re}z>0,|\operatorname{Im}z|\leq\frac{\|\operatorname{Im}\alpha\|_{\infty}\operatorname{Re}z}{(\operatorname{Re}z)^{1/2}-b/2}\bigg{\}}\cup\{0\}.

If, in addition, α\alpha is bounded, then by Proposition 5.9 (a) with G=+G={\mathbb{C}}\setminus{\mathbb{R}}_{+} the spectrum of A[α]A_{[\alpha]} satisfies the enclosure

σ(A[α]){z:dist(z,+)14α2}.\sigma(A_{[\alpha]})\subset\biggl{\{}z\in\mathbb{C}:\operatorname{dist}(z,{\mathbb{R}}_{+})\leq\frac{1}{4}\|\alpha\|_{\infty}^{2}\biggr{\}}.

We now have a closer look at the special case of a compact hypersurface Σ\Sigma and bounded α\alpha. For this case certain refined bounds for the function MM from the recent work [75] are available and can be combined with the results in the abstract part of this paper in order to obtain the spectral bounds for A[α]A_{[\alpha]} that are contained in the next theorem. We remark that [75] contains further bounds in space dimension two and in the special case when Ω+\Omega_{+} is a convex domain, which could be combined with our theorems; however, we do not include this in the next theorem.

Theorem 8.6.

Let Σ\Sigma be compact and let αL(Σ)\alpha\in L^{\infty}(\Sigma) be a complex-valued function which satisfies (8.8). Then there exist constants C1,C2>0C_{1},C_{2}>0, which are independent of α\alpha, such that the spectrum of A[α]A_{[\alpha]} satisfies

σ(A[α])+𝕍α,C1𝕎α,C2,\sigma(A_{[\alpha]})\setminus{\mathbb{R}}_{+}\subset{\mathbb{V}}_{\alpha,C_{1}}\cap{\mathbb{W}}_{\alpha,C_{2}}, (8.11)

where

𝕍α,C1\displaystyle{\mathbb{V}}_{\alpha,C_{1}} :={{z{0}:C1α(2+|z|)14ln(2+|z|1)1},n=2,{z:C1α(2+|z|)14ln(2+|z|)1},n3,\displaystyle\mathrel{\mathop{:}}=\begin{cases}\Bigl{\{}z\in\mathbb{C}\setminus\{0\}:C_{1}\|\alpha\|_{\infty}\bigl{(}2+|z|\bigr{)}^{-\frac{1}{4}}\ln\bigl{(}2+|z|^{-1}\bigr{)}\geq 1\Bigr{\}},&n=2,\\[8.61108pt] \Bigl{\{}z\in\mathbb{C}:C_{1}\|\alpha\|_{\infty}\bigl{(}2+|z|\bigr{)}^{-\frac{1}{4}}\ln\bigl{(}2+|z|\bigr{)}\geq 1\Bigr{\}},&n\geq 3,\end{cases}
𝕎α,C2\displaystyle{\mathbb{W}}_{\alpha,C_{2}} :={{z{0}:C2α(2+|Imz|2)12ln(2+|z|1)1},n=2,{z:C2α(2+|Imz|2)121},n3.\displaystyle\mathrel{\mathop{:}}=\begin{cases}\Bigl{\{}z\in\mathbb{C}\setminus\{0\}:C_{2}\|\alpha\|_{\infty}\bigl{(}2+|\operatorname{Im}\sqrt{z}|^{2}\bigr{)}^{-\frac{1}{2}}\ln\bigl{(}2+|z|^{-1}\bigr{)}\geq 1\Bigr{\}},&n=2,\\[8.61108pt] \Bigl{\{}z\in\mathbb{C}:C_{2}\|\alpha\|_{\infty}\bigl{(}2+|\operatorname{Im}\sqrt{z}|^{2}\bigr{)}^{-\frac{1}{2}}\geq 1\Bigr{\}},&n\geq 3.\end{cases}
Refer to caption Refer to caption
(a) n=2n=2 (b) n3n\geq 3
Figure 4. The sets 𝕍α,C1{\mathbb{V}}_{\alpha,C_{1}} (blue) and 𝕎α,C2{\mathbb{W}}_{\alpha,C_{2}} (yellow) in Theorem 8.6 for (a) n=2n=2 and (b) n3n\geq 3, respectively, where C1α=C2α=0.5C_{1}\|\alpha\|_{\infty}=C_{2}\|\alpha\|_{\infty}=0.5 in (a), and C1α=1.47C_{1}\|\alpha\|_{\infty}=1.47 and C2α=0.6C_{2}\|\alpha\|_{\infty}=0.6 in (b).
Proof.

By [75, Theorems 1.2 and 1.3] there exist constants C1,C2>0C_{1},C_{2}>0 (the constants here differ from the ones in [75] by a factor 12\frac{1}{2}) such that

αM(λ)¯{C1α(2+|λ|)14ln(2+|λ|1),n=2,C1α(2+|λ|)14ln(2+|λ|),n3,\displaystyle\big{\|}\alpha\overline{M(\lambda)}\big{\|}\leq\begin{cases}C_{1}\|\alpha\|_{\infty}\bigl{(}2+|\lambda|\bigr{)}^{-\frac{1}{4}}\ln\bigl{(}2+|\lambda|^{-1}\bigr{)},&\quad n=2,\\[4.30554pt] C_{1}\|\alpha\|_{\infty}\bigl{(}2+|\lambda|\bigr{)}^{-\frac{1}{4}}\ln\bigl{(}2+|\lambda|\bigr{)},&\quad n\geq 3,\end{cases}
αM(λ)¯{C2α(2+|Imλ|2)12ln(2+|λ|1),n=2,C2α(2+|Imλ|2)12,n3,\displaystyle\big{\|}\alpha\overline{M(\lambda)}\big{\|}\leq\begin{cases}C_{2}\|\alpha\|_{\infty}\bigl{(}2+|\operatorname{Im}\sqrt{\lambda}|^{2}\bigr{)}^{-\frac{1}{2}}\ln\bigl{(}2+|\lambda|^{-1}\bigr{)},&\quad n=2,\\[4.30554pt] C_{2}\|\alpha\|_{\infty}\bigl{(}2+|\operatorname{Im}\sqrt{\lambda}|^{2}\bigr{)}^{-\frac{1}{2}},&\quad n\geq 3,\end{cases}

hold for all λ+\lambda\in{\mathbb{C}}\setminus{\mathbb{R}}_{+}. Thanks to condition (8.8) we can view the multiplication with α\alpha as an operator in L2(Σ)L^{2}(\Sigma) with domain H1(Σ)H^{1}(\Sigma) and range contained in H1/2(Σ)H^{1/2}(\Sigma). Hence, by Theorem 4.1, any point λ+\lambda\in{\mathbb{C}}\setminus{\mathbb{R}}_{+} for which at least one of the above two upper bounds on αM(λ)¯\|\alpha\overline{M(\lambda)}\| is strictly less than one belongs to the resolvent set of A[α]A_{[\alpha]}. Thus, the enclosure in (8.11) follows. ∎

Furthermore, we obtain certain Schatten–von Neumann estimates for the difference of the resolvents of A[α]A_{[\alpha]} and the free Laplacian. They are analogues of the first and the third estimates in Theorem 7.11, and the proofs are analogous, where one uses the relations

γ(λ)𝔖p(L2(n),L2(Σ))for allp>2(n1)3\gamma(\lambda)^{*}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\mathbb{R}^{n}),L^{2}(\Sigma)\bigr{)}\qquad\text{for all}\;\;p>\frac{2(n-1)}{3}

and

M(λ)1γ(λ¯)𝔖q(L2(n),L2(Σ))for allq>2(n1).M(\lambda)^{-1}\gamma(\overline{\lambda})^{*}\in{\mathfrak{S}}_{q}\bigl{(}L^{2}(\mathbb{R}^{n}),L^{2}(\Sigma)\bigr{)}\qquad\text{for all}\;\;q>2(n-1).
Theorem 8.7.

Let all assumptions of Theorem 8.4 be satisfied. Moreover, assume that Σ\Sigma is compact. Then

(A[α]λ)1(Δnλ)1𝔖p(L2(n))for allp>2(n1)3(A_{[\alpha]}-\lambda)^{-1}-(-\Delta_{\mathbb{R}^{n}}-\lambda)^{-1}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\mathbb{R}^{n})\bigr{)}\qquad\text{for all}\;\;p>\frac{2(n-1)}{3} (8.12)

and all λρ(A[α])\lambda\in\rho(A_{[\alpha]}). If, in addition, α\alpha is bounded, then

(A[α]λ)1(Δnλ)1𝔖p(L2(n))for allp>n13(A_{[\alpha]}-\lambda)^{-1}-(-\Delta_{\mathbb{R}^{n}}-\lambda)^{-1}\in{\mathfrak{S}}_{p}\bigl{(}L^{2}(\mathbb{R}^{n})\bigr{)}\qquad\text{for all}\;\;p>\frac{n-1}{3} (8.13)

and all λρ(A[α])\lambda\in\rho(A_{[\alpha]}).

Remark 8.8.

In the same way as in Remark 7.12, we can reformulate Theorem 8.7 for weak Schatten–von Neumann classes. In this setting the endpoints for the intervals of admissible values of pp can be included in both (8.12) and (8.13); cf. [26, Section 4.2].

Remark 8.9.

In the case of a real, bounded coefficient α\alpha, in space dimensions 2 and 3 the previous theorem can be used in order to derive existence and completeness of wave operators for the scattering pair {A[α],Δn}\{A_{[\alpha]},-\Delta_{{\mathbb{R}}^{n}}\}. In space dimension 2, the same is true for certain unbounded α\alpha; cf. Example 7.9. Let us also mention [118] where Schatten–von Neumann properties were proved for certain δ\delta-interactions with unbounded real-valued coefficients.

Finally, in the last theorem of this section we show that in two space dimensions for α\|\alpha\|_{\infty} small enough the spectrum of A[α]A_{[\alpha]} outside [0,)[0,\infty) is contained in a disc with radius that converges to 0 exponentially as α0\|\alpha\|_{\infty}\to 0 and that in higher dimensions A[α]A_{[\alpha]} has no spectrum outside [0,)[0,\infty) if α\|\alpha\|_{\infty} is small enough. The result in two dimensions agrees well with the asymptotic expansion in [99] in the self-adjoint setting. Related conditions for absence of non-real eigenvalues in higher dimensions for Schrödinger operators with complex-valued regular potentials can be found in [70, 71]. In the self-adjoint setting absence of negative eigenvalues for α\|\alpha\|_{\infty} small enough is also a consequence of the Birman–Schwinger bounds in [37]; see also [63].

Theorem 8.10.

Let Σ\Sigma be compact and let αL(Σ)\alpha\in L^{\infty}(\Sigma) be a complex-valued function that satisfies (8.8). Then σess(A[α])=[0,)\sigma_{\rm ess}(A_{[\alpha]})=[0,\infty), and the following statements hold.

  • (i)

    Let n=2n=2 and let C1>0C_{1}>0 be as in Theorem 8.6. If  0<α12C1ln20<\|\alpha\|_{\infty}\leq\frac{1}{2C_{1}\ln 2}, then

    σ(A[α])+{z:|z|2exp(1C1α)}.\sigma(A_{[\alpha]})\setminus{\mathbb{R}}_{+}\subset\biggl{\{}z\in\mathbb{C}:|z|\leq 2\exp\biggl{(}-\frac{1}{C_{1}\|\alpha\|_{\infty}}\biggr{)}\biggr{\}}.
  • (ii)

    Let n3n\geq 3. There exists ε=ε(Σ)>0\varepsilon=\varepsilon(\Sigma)>0 such that σ(A[α])=σ(Δn)=[0,)\sigma(A_{[\alpha]})=\sigma(-\Delta_{{\mathbb{R}}^{n}})=[0,\infty) if  α<ε\|\alpha\|_{\infty}<\varepsilon.

Proof.

The statement about the essential spectrum follows directly from Theorem 8.7.

(i) Assume that 0<α12C1ln20<\|\alpha\|_{\infty}\leq\frac{1}{2C_{1}\ln 2} and let zσ(A[α])[0,)z\in\sigma(A_{[\alpha]})\setminus[0,\infty). It follows from Theorem 8.6 that z𝕍α,C1z\in{\mathbb{V}}_{\alpha,C_{1}} and hence

C1αln(2+|z|1)C1α(2+|z|)1/4ln(2+|z|1)1,C_{1}\|\alpha\|_{\infty}\ln\bigl{(}2+|z|^{-1}\bigr{)}\geq C_{1}\|\alpha\|_{\infty}\bigl{(}2+|z|\bigr{)}^{-1/4}\ln\bigl{(}2+|z|^{-1}\bigr{)}\geq 1,

which implies that

|z|1exp(1C1α)2=exp(1C1α)12exp(1C1α)2exp(1C1α).|z|\leq\frac{1}{\exp\bigl{(}\frac{1}{C_{1}\|\alpha\|_{\infty}}\bigr{)}-2}=\frac{\exp\bigl{(}-\frac{1}{C_{1}\|\alpha\|_{\infty}}\bigr{)}}{1-2\exp\bigl{(}-\frac{1}{C_{1}\|\alpha\|_{\infty}}\bigr{)}}\leq 2\exp\biggl{(}-\frac{1}{C_{1}\|\alpha\|_{\infty}}\biggr{)}.

(ii) Since the maximum of the function g(t)=t1/4lntg(t)=t^{-1/4}\ln t, t[2,)t\in[2,\infty) is 4e\frac{4}{e} (attained at t=e4t=e^{4}), it follows that

(2+|z|)1/4ln(2+|z|)4efor allz.\bigl{(}2+|z|\bigr{)}^{-1/4}\ln\bigl{(}2+|z|\bigr{)}\leq\frac{4}{e}\qquad\text{for all}\;\;z\in\mathbb{C}.

If

α<ε:=e4C1,\|\alpha\|_{\infty}<\varepsilon\mathrel{\mathop{:}}=\frac{e}{4C_{1}}\,,

then

C1α(2+|z|)1/4ln(2+|z|)<1C_{1}\|\alpha\|_{\infty}\bigl{(}2+|z|\bigr{)}^{-1/4}\ln\bigl{(}2+|z|\bigr{)}<1

for every zz\in\mathbb{C}, and Theorem 8.6 implies that σ(A[α])[0,)=\sigma(A_{[\alpha]})\setminus[0,\infty)=\emptyset. Together with the relation σess(A[α])=[0,)\sigma_{\rm ess}(A_{[\alpha]})=[0,\infty) this shows that σ(A[α])=[0,)\sigma(A_{[\alpha]})=[0,\infty). ∎

9. Infinitely many point interactions on the real line

In this section we provide applications of the results in Section 5 to Hamiltonians with non-local, non-Hermitian interactions supported on a discrete set of points X={xn:n}X=\{x_{n}:n\in\mathbb{Z}\}, where (xn)(x_{n}) is a strictly increasing sequence of real numbers. The investigation of such Hamiltonians has been initiated almost a century ago in [105] for periodically distributed, local, Hermitian point δ\delta-interactions. Classical results are summarized in the monograph [7]; see also the references therein and [97, 102]. More recently, non-Hermitian interactions attracted attention (see [6, 9]) and also non-local interactions were studied; see [9, 107].

Throughout this section we make the assumption

d:=infn(xn+1xn)>0;d\mathrel{\mathop{:}}=\inf_{n\in{\mathbb{Z}}}(x_{n+1}-x_{n})>0; (9.1)

in particular, the sequence (xn)(x_{n}) does not have a finite accumulation point. We remark that this assumption can be avoided by using the methods of [8, 101], but we do not focus on this here.

For each interval In:=(xn,xn+1)I_{n}\mathrel{\mathop{:}}=(x_{n},x_{n+1}) we denote by H2(In)H^{2}(I_{n}) the usual Sobolev space on InI_{n} of second order. Moreover, we set fn:=f|Inf_{n}\mathrel{\mathop{:}}=f|_{I_{n}} for fL2()f\in L^{2}({\mathbb{R}}) and introduce

H2(X):={fL2():fnH2(In)for alln,nfnH2(In)2<},H^{2}(\mathbb{R}\setminus X)\mathrel{\mathop{:}}=\bigg{\{}f\in L^{2}(\mathbb{R}):f_{n}\in H^{2}(I_{n})\;\;\text{for all}\;\;n\in\mathbb{Z},\;\sum_{n\in\mathbb{Z}}\|f_{n}\|_{H^{2}(I_{n})}^{2}<\infty\bigg{\}},

equipped with the norm

fH2(X)2:=nfnH2(In)2,fH2(X).\|f\|_{H^{2}({\mathbb{R}}\setminus X)}^{2}\mathrel{\mathop{:}}=\sum_{n\in{\mathbb{Z}}}\|f_{n}\|_{H^{2}(I_{n})}^{2},\qquad f\in H^{2}(\mathbb{R}\setminus X). (9.2)

In order to construct a boundary triple which is suitable for the parameterization of Hamiltonians with interactions supported on XX, we define operators SS and TT in L2()L^{2}(\mathbb{R}) by

Sf=f′′onX,domS={fH2():f(xn)=0for alln},Sf=-f^{\prime\prime}\quad\text{on}\;\;\mathbb{R}\setminus X,\quad\operatorname{dom}S=\big{\{}f\in H^{2}({\mathbb{R}}):f(x_{n})=0\;\;\text{for all}\;\;n\in{\mathbb{Z}}\big{\}}, (9.3)

and

Tf=f′′onX,domT=H2(X)H1(),Tf=-f^{\prime\prime}\quad\text{on}\;\;\mathbb{R}\setminus X,\qquad\operatorname{dom}T=H^{2}(\mathbb{R}\setminus X)\cap H^{1}(\mathbb{R}), (9.4)

that is, domT\operatorname{dom}T consists of all fH2(X)f\in H^{2}(\mathbb{R}\setminus X) such that fn1(xn)=fn(xn)f_{n-1}(x_{n})=f_{n}(x_{n}) for all nn\in{\mathbb{Z}}. Moreover, for fdomTf\in\operatorname{dom}T we define

Γ0f=(fn(xn)fn1(xn))nandΓ1f=(f(xn))n.\Gamma_{0}f=\bigl{(}f_{n}^{\prime}(x_{n})-f_{n-1}^{\prime}(x_{n})\bigr{)}_{n\in{\mathbb{Z}}}\qquad\text{and}\qquad\Gamma_{1}f=\bigl{(}-f(x_{n})\bigr{)}_{n\in{\mathbb{Z}}}. (9.5)

In fact, Γ0\Gamma_{0} and Γ1\Gamma_{1} are boundary mappings for an ordinary boundary triple, as the following proposition shows; see also [100, Proposition 7 (i)] where a very similar boundary triple was constructed.

Proposition 9.1.

The operator SS in (9.3) is closed, symmetric and densely defined with S=TS^{*}=T for TT in (9.4), and the triple {2(),Γ0,Γ1}\{\ell^{2}(\mathbb{Z}),\Gamma_{0},\Gamma_{1}\} is an ordinary boundary triple for SS^{*} with the following properties.

  • (i)

    A0=SkerΓ0A_{0}=S^{*}\upharpoonright\ker\Gamma_{0} is given by

    A0f=f′′,domA0=H2(),A_{0}f=-f^{\prime\prime},\quad\operatorname{dom}A_{0}=H^{2}({\mathbb{R}}), (9.6)

    and A1=SkerΓ1A_{1}=S^{*}\upharpoonright\ker\Gamma_{1} is given by

    A1f=f′′onX,domA1={fH2(X)H1():f(xn)=0for alln}.\begin{split}A_{1}f&=-f^{\prime\prime}\quad\text{on}\;\;{\mathbb{R}}\setminus X,\\[2.15277pt] \operatorname{dom}A_{1}&=\bigl{\{}f\in H^{2}({\mathbb{R}}\setminus X)\cap H^{1}({\mathbb{R}}):f(x_{n})=0\;\;\text{for all}\;\;n\in\mathbb{Z}\bigr{\}}.\end{split} (9.7)
  • (ii)

    For λ+\lambda\in\mathbb{C}\setminus\mathbb{R}_{+} the associated γ\gamma-field acts as

    (γ(λ)ξ)(x)=i2λneiλ|xnx|ξn,x,ξ=(ξn)2(),\bigl{(}\gamma(\lambda)\xi\bigr{)}(x)=\frac{-i}{2\sqrt{\lambda}\,}\sum_{n\in\mathbb{Z}}e^{i\sqrt{\lambda}|x_{n}-x|}\xi_{n},\qquad x\in\mathbb{R},\quad\xi=(\xi_{n})\in\ell^{2}(\mathbb{Z}), (9.8)

    and the associated Weyl function satisfies

    M(λ)ξ=(i2λneiλ|xnxm|ξn)m,ξ=(ξn)2().M(\lambda)\xi=\left(\frac{i}{2\sqrt{\lambda}\,}\sum_{n\in\mathbb{Z}}e^{i\sqrt{\lambda}|x_{n}-x_{m}|}\xi_{n}\right)_{m\in\mathbb{Z}},\qquad\xi=(\xi_{n})\in\ell^{2}(\mathbb{Z}). (9.9)
Proof.

Let us first check that Γ0\Gamma_{0} and Γ1\Gamma_{1} are well-defined mappings from domT\operatorname{dom}T to 2()\ell^{2}(\mathbb{Z}). For this we make use of the following estimate, which can be found in, e.g. [106, Lemma 8]: if [a,b][a,b] is a compact interval then for each l(0,ba]l\in(0,b-a] one has

|f(a)|22lfL2(a,b)2+lfL2(a,b)2for allfH1(a,b).|f(a)|^{2}\leq\frac{2}{l}\|f\|_{L^{2}(a,b)}^{2}+l\|f^{\prime}\|_{L^{2}(a,b)}^{2}\quad\text{for all}\;\;f\in H^{1}(a,b). (9.10)

The same estimate holds for |f(a)|2|f(a)|^{2} replaced by |f(b)|2|f(b)|^{2}. From (9.1) we obtain that d(0,xn+1xn]d\in(0,x_{n+1}-x_{n}] for each nn\in\mathbb{Z}, and (9.10) yields

n|f(xn)|22dnfnL2(In)2+dnfnL2(In)2<\sum_{n\in\mathbb{Z}}|f(x_{n})|^{2}\leq\frac{2}{d}\sum_{n\in\mathbb{Z}}\|f_{n}\|_{L^{2}(I_{n})}^{2}+d\sum_{n\in\mathbb{Z}}\|f_{n}^{\prime}\|_{L^{2}(I_{n})}^{2}<\infty

for all fdomTH1()f\in\operatorname{dom}T\subset H^{1}(\mathbb{R}). Hence Γ1f2()\Gamma_{1}f\in\ell^{2}(\mathbb{Z}) for all fdomTf\in\operatorname{dom}T. Similarly, using (9.10) for ff replaced by ff^{\prime} we get Γ0f2()\Gamma_{0}f\in\ell^{2}(\mathbb{Z}) for all fdomTf\in\operatorname{dom}T.

To show that {2(),Γ0,Γ1}\{\ell^{2}(\mathbb{Z}),\Gamma_{0},\Gamma_{1}\} is a boundary triple for SS^{*}, let us verify the conditions of Theorem 2.3. In fact, it is clear that TkerΓ0T\upharpoonright\ker\Gamma_{0} is given by the operator A0A_{0} in (9.6), which is self-adjoint. Moreover, for all f,gdomTf,g\in\operatorname{dom}T we have

(Tf,g)L2()(f,Tg)L2()=n((fn′′,gn)L2(In)(fn,gn′′)L2(In))\displaystyle(Tf,g)_{L^{2}({\mathbb{R}})}-(f,Tg)_{L^{2}({\mathbb{R}})}=\sum_{n\in{\mathbb{Z}}}\Bigl{(}(-f_{n}^{\prime\prime},g_{n})_{L^{2}(I_{n})}-(f_{n},-g_{n}^{\prime\prime})_{L^{2}(I_{n})}\Bigr{)}
=n(fn(xn)g(xn)¯fn(xn+1)g(xn+1)¯)\displaystyle=\sum_{n\in{\mathbb{Z}}}\Big{(}f_{n}^{\prime}(x_{n})\overline{g(x_{n})}-f_{n}^{\prime}(x_{n+1})\overline{g(x_{n+1})}\Big{)}
n(f(xn)gn(xn)¯f(xn+1)gn(xn+1)¯)\displaystyle\quad-\sum_{n\in{\mathbb{Z}}}\Bigl{(}f(x_{n})\overline{g_{n}^{\prime}(x_{n})}-f(x_{n+1})\overline{g_{n}^{\prime}(x_{n+1})}\Bigr{)}
=n(fn(xn)fn1(xn))g(xn)¯nf(xn)(gn(xn)gn1(xn))¯\displaystyle=\sum_{n\in{\mathbb{Z}}}\bigl{(}f_{n}^{\prime}(x_{n})-f_{n-1}^{\prime}(x_{n})\bigr{)}\overline{g(x_{n})}-\sum_{n\in{\mathbb{Z}}}f(x_{n})\overline{\bigl{(}g_{n}^{\prime}(x_{n})-g_{n-1}^{\prime}(x_{n})\bigr{)}}
=(Γ1f,Γ0g)2()(Γ0f,Γ1g)2().\displaystyle=(\Gamma_{1}f,\Gamma_{0}g)_{\ell^{2}({\mathbb{Z}})}-(\Gamma_{0}f,\Gamma_{1}g)_{\ell^{2}({\mathbb{Z}})}.

Furthermore, the pair of mappings (Γ0,Γ1):domT2()×2()(\Gamma_{0},\Gamma_{1})^{\top}:\operatorname{dom}T\to\ell^{2}(\mathbb{Z})\times\ell^{2}(\mathbb{Z}) has a dense range since it can be checked easily that all pairs of unit sequences {ej,ek}\{e_{j},e_{k}\}, j,kj,k\in\mathbb{Z}, belong to the range. It follows from Theorem 2.3 that SS is closed with S=T¯S^{*}=\overline{T} and that {2(),Γ0,Γ1}\{\ell^{2}(\mathbb{Z}),\Gamma_{0},\Gamma_{1}\} is a quasi boundary triple for SS^{*}.

In order to conclude that {2(),Γ0,Γ1}\{\ell^{2}(\mathbb{Z}),\Gamma_{0},\Gamma_{1}\} is even an ordinary boundary triple, let us verify that the operator TT is closed. To this end define a mapping

K:H2(X)2(),f(fn(xn)fn1(xn))n.K:H^{2}(\mathbb{R}\setminus X)\to\ell^{2}(\mathbb{Z}),\qquad f\mapsto\big{(}f_{n}(x_{n})-f_{n-1}(x_{n})\big{)}_{n\in\mathbb{Z}}.

For all fH2(X)f\in H^{2}(\mathbb{R}\setminus X) we have

Kf2()22n(|fn(xn)|2+|fn1(xn)|2)\displaystyle\|Kf\|_{\ell^{2}(\mathbb{Z})}^{2}\leq 2\sum_{n\in\mathbb{Z}}\big{(}|f_{n}(x_{n})|^{2}+|f_{n-1}(x_{n})|^{2}\big{)}
2n(2dfnL2(In)2+dfnL2(In)2+2dfn1L2(In1)2+dfn1L2(In1)2)\displaystyle\leq 2\sum_{n\in\mathbb{Z}}\biggl{(}\frac{2}{d}\|f_{n}\|_{L^{2}(I_{n})}^{2}+d\|f_{n}^{\prime}\|_{L^{2}(I_{n})}^{2}+\frac{2}{d}\|f_{n-1}\|_{L^{2}(I_{n-1})}^{2}+d\|f_{n-1}^{\prime}\|_{L^{2}(I_{n-1})}^{2}\biggr{)}
2max{4d,2d}nfnH2(In)2,\displaystyle\leq 2\max\biggl{\{}\frac{4}{d},2d\biggr{\}}\sum_{n\in\mathbb{Z}}\|f_{n}\|_{H^{2}(I_{n})}^{2},

where we have used (9.10) with l=dl=d. Therefore KK is a bounded operator and, hence, its kernel, which equals domT\operatorname{dom}T, is closed in H2(X)H^{2}(\mathbb{R}\setminus X). Equivalently, domT\operatorname{dom}T equipped with the norm of H2(X)H^{2}(\mathbb{R}\setminus X) is complete. It follows from [129, Satz 6.24], its proof and (9.1) that for each ε>0\varepsilon>0 there exists C(ε)>0C(\varepsilon)>0 such that for all nn\in\mathbb{Z} one has

fnL2(In)2εfn′′L2(In)2+C(ε)fnL2(In)2,fnH2(In).\|f_{n}^{\prime}\|_{L^{2}(I_{n})}^{2}\leq\varepsilon\|f_{n}^{\prime\prime}\|_{L^{2}(I_{n})}^{2}+C(\varepsilon)\|f_{n}\|_{L^{2}(I_{n})}^{2},\qquad f_{n}\in H^{2}(I_{n}).

This implies that domT\operatorname{dom}T is also complete when equipped with the graph norm of TT, that is, TT is a closed operator. Hence {2(),Γ0,Γ1}\{\ell^{2}(\mathbb{Z}),\Gamma_{0},\Gamma_{1}\} is an ordinary boundary triple for SS^{*}.

The remaining assertion (9.7) in (i) is obvious. For the assertions in (ii) let λ[0,)\lambda\in\mathbb{C}\setminus[0,\infty). According to [129, Satz 11.26] or [127, page 190] we have

((A0λ)1f)(y)=i2λeiλ|yx|f(x)dx,y,fL2().\bigl{(}(A_{0}-\lambda)^{-1}f\bigr{)}(y)=\frac{i}{2\sqrt{\lambda}\,}\int_{{\mathbb{R}}}e^{i\sqrt{\lambda}|y-x|}f(x)\,{\mathrm{d}}x,\qquad y\in\mathbb{R},\;f\in L^{2}(\mathbb{R}).

Hence for each compactly supported fL2()f\in L^{2}({\mathbb{R}}) and each ξ={ξn}n2()\xi=\{\xi_{n}\}_{n}\in\ell^{2}({\mathbb{Z}}) we obtain from (2.3) and the definition of Γ1\Gamma_{1} that

(f,γ(λ)ξ)L2()\displaystyle\bigl{(}f,\gamma(\lambda)\xi\bigr{)}_{L^{2}({\mathbb{R}})} =(γ(λ)f,ξ)2()=(Γ1(A0λ¯)1f,ξ)2()\displaystyle=\bigl{(}\gamma(\lambda)^{*}f,\xi\bigr{)}_{\ell^{2}({\mathbb{Z}})}=\bigl{(}\Gamma_{1}(A_{0}-\overline{\lambda})^{-1}f,\xi\bigr{)}_{\ell^{2}({\mathbb{Z}})}
=n(i2λ¯eiλ¯|xnx|f(x)dx)ξn¯\displaystyle=\sum_{n\in{\mathbb{Z}}}\bigg{(}-\frac{i}{2\sqrt{\overline{\lambda}\,}\,}\int_{{\mathbb{R}}}e^{i\sqrt{\overline{\lambda}\,}|x_{n}-x|}f(x)\,{\mathrm{d}}x\bigg{)}\overline{\xi_{n}}
=f(x)(i2λneiλ|xnx|ξn)¯dx,\displaystyle=\int_{{\mathbb{R}}}f(x)\overline{\bigg{(}\frac{-i}{2\sqrt{\lambda}\,}\sum_{n\in{\mathbb{Z}}}e^{i\sqrt{\lambda}|x_{n}-x|}\xi_{n}\bigg{)}}\,{\mathrm{d}}x,

where we have used that iλ¯=iλ¯\overline{i\sqrt{\lambda}}=i\sqrt{\overline{\lambda}\,}. This proves (9.8). With the definition of Γ1\Gamma_{1} also relation (9.9) follows. ∎

Next we use the representation of the Weyl function in (9.9) to estimate its norm.

Lemma 9.2.

The Weyl function associated with the boundary triple in Proposition 9.1 satisfies

M(λ)coth(d2Imλ)2|λ|\|M(\lambda)\|\leq\frac{\coth\bigl{(}\frac{d}{2}\operatorname{Im}\sqrt{\lambda}\,\bigr{)}}{2\sqrt{|\lambda|}} (9.11)

for all λ[0,)\lambda\in\mathbb{C}\setminus[0,\infty). In particular, the following estimates hold.

  • (i)

    For each μ<0\mu<0,

    M(λ)coth(d2μ)2(μλ)1/2for allλ<μ.\|M(\lambda)\|\leq\frac{\coth\bigl{(}\frac{d}{2}\sqrt{-\mu}\,\bigr{)}}{2(\mu-\lambda)^{1/2}}\qquad\text{for all}\;\;\lambda<\mu.
  • (ii)

    For each w0<0w_{0}<0 and each ν(0,π)\nu\in(0,\pi) we have

    M(λ)coth(J0)2|λ|for allλ𝕌w0,ν,\|M(\lambda)\|\leq\frac{\coth(J_{0})}{2\sqrt{|\lambda|}}\qquad\text{for~all}~\lambda\in\mathbb{U}_{w_{0},\nu}, (9.12)

    where J0=J0(w0,ν):=d2|w0|sinνsin(ν2)>0J_{0}=J_{0}(w_{0},\nu)\mathrel{\mathop{:}}=\frac{d}{2}\sqrt{|w_{0}|\sin\nu}\,\sin\bigl{(}\frac{\nu}{2}\bigr{)}>0 and 𝕌w0,ν\mathbb{U}_{w_{0},\nu} is defined in (6.2).

Proof.

Recall that for λ[0,)\lambda\in\mathbb{C}\setminus[0,\infty) the operator M(λ)M(\lambda) has the explicit representation (9.9). In order to estimate its norm, we make use of the Schur test; see, e.g. [129, Korollar 6.7]. For this note that |xnxm||nm|d|x_{n}-x_{m}|\geq|n-m|d holds for all n,mn,m\in\mathbb{Z} and, thus,

supmn|eiλ|xnxm||\displaystyle\sup_{m\in\mathbb{Z}}\sum_{n\in\mathbb{Z}}\left|e^{i\sqrt{\lambda}|x_{n}-x_{m}|}\right| =supmneImλ|xnxm|supmneImλ|nm|d\displaystyle=\sup_{m\in\mathbb{Z}}\sum_{n\in\mathbb{Z}}e^{-\operatorname{Im}\sqrt{\lambda}|x_{n}-x_{m}|}\leq\sup_{m\in\mathbb{Z}}\sum_{n\in\mathbb{Z}}e^{-\operatorname{Im}\sqrt{\lambda}|n-m|d}
=neImλ|n|d=1+eImλd1eImλd=coth(d2Imλ).\displaystyle=\sum_{n\in\mathbb{Z}}e^{-\operatorname{Im}\sqrt{\lambda}|n|d}=\frac{1+e^{-\operatorname{Im}\sqrt{\lambda}d}}{1-e^{-\operatorname{Im}\sqrt{\lambda}d}}=\coth\biggl{(}\frac{d}{2}\operatorname{Im}\sqrt{\lambda}\,\biggr{)}.

Since the last term is finite and the same estimate holds by symmetry when the roles of mm and nn are interchanged, the Schur test can be applied and yields (9.11).

The statement (i) is a direct consequence of the estimate in (9.11) and the monotonicity properties of the function coth\coth. For the remaining statement (ii) we calculate

J0=J0(w0,ν):=d2min{Imλ:λ𝕌w0,ν}.J_{0}=J_{0}(w_{0},\nu)\mathrel{\mathop{:}}=\frac{d}{2}\min\bigl{\{}\operatorname{Im}\sqrt{\lambda}:\lambda\in\mathbb{U}_{w_{0},\nu}\bigr{\}}. (9.13)

By symmetry it is clear that it suffices to consider λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu} with Imλ0\operatorname{Im}\lambda\geq 0. Since the function {0}λImλ{\mathbb{C}}\setminus\{0\}\ni\lambda\mapsto\operatorname{Im}\sqrt{\lambda} has no local extremum, the minimum in (9.13) will be attained on the boundary of 𝕌w0,ν\mathbb{U}_{w_{0},\nu}. Let us first consider the case when ν(0,π/2)\nu\in(0,\pi/2). Writing λ=x+iy\lambda=x+iy with x,yx,y\in\mathbb{R}, for λ𝕌w0,ν\lambda\in\partial\mathbb{U}_{w_{0},\nu} with Imλ0\operatorname{Im}\lambda\geq 0 we have

Imλ=Imx+iyx2+y24sin(ν2)=x2+tan2ν(xw0)24sin(ν2),\begin{split}\operatorname{Im}\sqrt{\lambda}&=\operatorname{Im}\sqrt{x+iy}\geq\sqrt[4]{x^{2}+y^{2}}\,\sin\Bigl{(}\frac{\nu}{2}\Bigr{)}\\[4.30554pt] &=\sqrt[4]{x^{2}+\tan^{2}\nu\cdot(x-w_{0})^{2}}\,\sin\Bigl{(}\frac{\nu}{2}\Bigr{)},\end{split} (9.14)

and the right-hand side will be minimal if and only if x2+tan2ν(xw0)2x^{2}+\tan^{2}\nu\cdot(x-w_{0})^{2} is minimal. The latter happens for x=(w0tan2ν)/(1+tan2ν)x=(w_{0}\tan^{2}\nu)/(1+\tan^{2}\nu). Plugging this into (9.14) and using elementary trigonometric identities we obtain the claimed expression for J0J_{0}. The case ν(π/2,π)\nu\in(\pi/2,\pi) can be treated analogously with tanν\tan\nu replaced by tan(πν)\tan(\pi-\nu), and for ν=π/2\nu=\pi/2 we have

Imλw02+y24sin(π4)|w0|sin(π4).\operatorname{Im}\sqrt{\lambda}\geq\sqrt[4]{w_{0}^{2}+y^{2}}\sin\Bigl{(}\frac{\pi}{4}\Bigr{)}\geq\sqrt{|w_{0}|}\sin\Bigl{(}\frac{\pi}{4}\Bigr{)}.\qed

We are now able to formulate consequences of the results in Section 5. The assertions of the next theorem follow directly from Lemma 9.2 in combination with Corollary 5.7, Proposition 5.9 (a), [56, Proposition 1.4 (i)] and the fact that {2(),Γ0,Γ1}\{\ell^{2}(\mathbb{Z}),\Gamma_{0},\Gamma_{1}\} is an ordinary boundary triple.

Theorem 9.3.

Let BB be a closed operator in 2()\ell^{2}(\mathbb{Z}). Then the operator A[B]A_{[B]}

A[B]f=f′′onX,domA[B]={fH2(X)H1():Γ0f=BΓ1f},\begin{split}A_{[B]}f&=-f^{\prime\prime}\quad\text{on}~\mathbb{R}\setminus X,\\[2.15277pt] \operatorname{dom}A_{[B]}&=\Big{\{}f\in H^{2}(\mathbb{R}\setminus X)\cap H^{1}(\mathbb{R}):\Gamma_{0}f=B\Gamma_{1}f\Big{\}},\end{split} (9.15)

in L2()L^{2}(\mathbb{R}) is closed, the resolvent formula

(A[B]λ)1=(A0λ)1+γ(λ)(IBM(λ))1Bγ(λ¯)(A_{[B]}-\lambda)^{-1}=(A_{0}-\lambda)^{-1}+\gamma(\lambda)\big{(}I-BM(\lambda)\big{)}^{-1}B\gamma(\overline{\lambda})^{*}

holds for all λρ(A[B])ρ(A0)\lambda\in\rho(A_{[B]})\cap\rho(A_{0}) and the following assertions are true.

  • (i)

    If  BB is self-adjoint, then A[B]A_{[B]} is self-adjoint. If  BB is maximal dissipative (maximal accumulative, respectively), then A[B]A_{[B]} is maximal accumulative (maximal dissipative, respectively).

  • (ii)

    A[B]=A[B]A_{[B^{*}]}=A_{[B]}^{*}.

Assume, additionally, that B(2())B\in{\mathcal{B}}(\ell^{2}({\mathbb{Z}})) and let bb\in{\mathbb{R}} be such that

Re(Bζ,ζ)2()bζ2()2for allζ2().\operatorname{Re}(B\zeta,\zeta)_{\ell^{2}({\mathbb{Z}})}\leq b\|\zeta\|_{\ell^{2}({\mathbb{Z}})}^{2}\qquad\text{for all}\;\;\zeta\in\ell^{2}({\mathbb{Z}}).

Then the operator A[B]A_{[B]} is m-sectorial; in particular the inclusion σ(A[B])W(A[B])¯\sigma(A_{[B]})\subset\overline{W(A_{[B]})} holds, and for any μ<0\mu<0 and C:=12coth(d2μ)C\mathrel{\mathop{:}}=\frac{1}{2}\coth(\frac{d}{2}\sqrt{-\mu}) the following assertions are true.

  • (a)

    If  b>0b>0, then for every ξ<μ(Cb)2\xi<\mu-(Cb)^{2},

    W(A[B]){z:Rezμ(Cb)2,|Imz|Kξ(Rezξ)1/2},W(A_{[B]})\subset\Bigl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\mu-(Cb)^{2},\;|\operatorname{Im}z|\leq K_{\xi}(\operatorname{Re}z-\xi)^{1/2}\Bigr{\}},\hskip-12.91663pt

    where

    Kξ=2CImB1Cb(μξ)1/2.K_{\xi}=\frac{2C\bigl{\|}\operatorname{Im}B\bigr{\|}}{1-\frac{Cb}{(\mu-\xi)^{1/2}}}\,.
  • (b)

    If  b0b\leq 0, then

    W(A[B]){z:Rez0,|Imz|2CImB(Rezμ)(Rezμ)1/2Cb}.W(A_{[B]})\subset\biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq 0,\;|\operatorname{Im}z|\leq\frac{2C\bigl{\|}\operatorname{Im}B\bigr{\|}(\operatorname{Re}z-\mu)}{(\operatorname{Re}z-\mu)^{1/2}-Cb}\biggr{\}}.
  • (c)

    For any w0<0w_{0}<0 and each ν(0,π)\nu\in(0,\pi)

    σ(A[B])𝕌w0,ν{z𝕌w0,ν:dist(z,+)14coth2(J0)B2},\sigma(A_{[B]})\cap\mathbb{U}_{w_{0},\nu}\subset\Bigl{\{}z\in\mathbb{U}_{w_{0},\nu}:\operatorname{dist}(z,{\mathbb{R}}_{+})\leq\frac{1}{4}\coth^{2}(J_{0})\|B\|^{2}\Bigr{\}},

    where 𝕌w0,ν\mathbb{U}_{w_{0},\nu} is defined in (6.2) and J0=d2|w0|sinνsin(ν2)J_{0}=\frac{d}{2}\sqrt{|w_{0}|\sin\nu}\,\sin(\frac{\nu}{2}).

Finally, we remark that the class of Hamiltonians under consideration in this section includes Schrödinger operators in L2()L^{2}(\mathbb{R}) with local point δ\delta-interactions supported on the set XX, with possibly non-real coupling constants. Such operators are obtained by choosing B=diag(αn)B=\operatorname{diag}(\alpha_{n}) with αn\alpha_{n}\in{\mathbb{C}} for nn\in{\mathbb{Z}}. The constant αn\alpha_{n} can be viewed as intensity (or strength) of the point δ\delta-interaction supported on xnx_{n}; cf. [7, Chapter III.2].

10. Quantum graphs with δ\delta-type vertex couplings

In this section we apply the results of the abstract part of this paper to Laplacians on metric graphs. For a survey on this actively developing field and references we refer the reader to the monograph [32] and the survey articles [31, 104, 106]. In the present section we consider the Laplacian on a finite, not necessarily compact metric graph, equipped with δ\delta or more general non-self-adjoint vertex couplings; for further recent work on non-self-adjoint quantum graphs see [89, 90, 126]. Furthermore, for the treatment of quantum graphs via boundary triples and similar techniques we refer to, e.g. [46, 59, 61, 109, 120, 123].

Let GG be a finite graph consisting of a finite set VV of vertices and a finite set EE of edges, where we allow infinite edges, i.e. edges ‘connecting a vertex to a point \infty’. Without loss of generality we assume that there are no vertices of degree 0, i.e. each vertex belongs to at least one edge, and that GG does not contain loops, i.e. no edge connects a vertex to itself; this can always be achieved by introducing additional vertices to the graph. We equip each finite edge eEe\in E with a length L(e)>0L(e)>0 and identify it with the interval [0,L(e)][0,L(e)]. Moreover, we identify each infinite edge with the interval [0,)[0,\infty). This identification gives rise to a natural metric on GG and to a natural L2L^{2} space L2(G)L^{2}(G) on GG. For a vertex vVv\in V and an edge eEe\in E we write v=o(e)v=o(e) or v=t(e)v=t(e) if ee originates or terminates, respectively, at vv, and we occasionally simply write vev\sim e if one of these two properties holds. For each vertex vv we denote by deg(v)\deg(v) the vertex degree, that is, the number of edges which originate from or terminate at vv.

In =L2(G){\mathcal{H}}=L^{2}(G) we consider the Laplace differential expression

(Δf)e=fe′′,eE,(-\Delta f)_{e}=-f_{e}^{\prime\prime},\qquad e\in E,

where fef_{e} denotes the restriction of ff to the edge eEe\in E. In the following we write H~k(G):=eEHk(0,L(e))\widetilde{H}^{k}(G)\mathrel{\mathop{:}}=\bigoplus_{e\in E}H^{k}(0,L(e)), k=1,2,k=1,2,\dots, for the orthogonal sum of the usual Sobolev spaces on the edges of GG. We say that a function fH~k(G)f\in\widetilde{H}^{k}(G) is continuous at a vertex vv whenever vev\sim e and ve^v\sim\hat{e} imply that the values of fef_{e} and fe^f_{\hat{e}} at vv coincide. We define

H1(G):={fH~1(G):fis continuous at eachvV}.H^{1}(G)\mathrel{\mathop{:}}=\bigl{\{}f\in\widetilde{H}^{1}(G):f\;\;\text{is continuous at each}~v\in V\bigr{\}}.

Note that for fH1(G)f\in H^{1}(G) we can just write f(v)f(v) for the evaluation of ff at a vertex vv. For fH~2(G)f\in\widetilde{H}^{2}(G) and a vertex vv we write

νf(v):=t(e)=vfe(L(e))o(e)=vfe(0).\partial_{\nu}f(v)\mathrel{\mathop{:}}=\sum_{t(e)=v}f_{e}^{\prime}\bigl{(}L(e)\bigr{)}-\sum_{o(e)=v}f_{e}^{\prime}(0).

In order to construct an ordinary boundary triple let us consider the operators

Sf=Δf,domS={fH1(G)H~2(G):f(v)=νf(v)=0for allvV},\begin{split}Sf&=-\Delta f,\\ \operatorname{dom}S&=\big{\{}f\in H^{1}(G)\cap\widetilde{H}^{2}(G):f(v)=\partial_{\nu}f(v)=0~\text{for~all}~v\in V\big{\}},\end{split} (10.1)

and

Tf=Δf,domT=H1(G)H~2(G),Tf=-\Delta f,\qquad\operatorname{dom}T=H^{1}(G)\cap\widetilde{H}^{2}(G), (10.2)

in L2(G)L^{2}(G). Moreover, we choose an enumeration V={v1,,v|V|}V=\{v_{1},\dots,v_{|V|}\} of the vertex set VV and define mappings Γ0,Γ1:H1(G)H~2(G)|V|\Gamma_{0},\Gamma_{1}:H^{1}(G)\cap\widetilde{H}^{2}(G)\to\mathbb{C}^{|V|} by

(Γ0f)j=νf(vj),(Γ1f)j=f(vj),j=1,,|V|,fdomT.\begin{aligned} (\Gamma_{0}f)_{j}&=\partial_{\nu}f(v_{j}),\\[4.30554pt] (\Gamma_{1}f)_{j}&=f(v_{j}),\end{aligned}\qquad j=1,\ldots,|V|,\;f\in\operatorname{dom}T.

The mappings Γ0\Gamma_{0} and Γ1\Gamma_{1} give rise to an ordinary boundary triple with finite-dimensional boundary space. The following proposition is a consequence of Theorem 2.3 and some elementary calculations. It can also be derived from [60, Lemma 2.14 and Theorem 2.16]. For the convenience of the reader we provide its proof below.

Proposition 10.1.

The operator SS in (10.1) is closed, symmetric and densely defined with S=TS^{*}=T for TT in (10.2), and the triple {|V|,Γ0,Γ1}\{\mathbb{C}^{|V|},\Gamma_{0},\Gamma_{1}\} is an ordinary boundary triple for SS^{*} with the following properties.

  • (i)

    A0:=SkerΓ0A_{0}\mathrel{\mathop{:}}=S^{*}\upharpoonright\ker\Gamma_{0} coincides with the standard (or Kirchhoff) Laplacian

    ΔGf=Δf,dom(ΔG)={fH1(G)H~2(G):νf(v)=0for allvV},\begin{split}-\Delta_{G}f&=-\Delta f,\\ \operatorname{dom}(-\Delta_{G})&=\Bigl{\{}f\in H^{1}(G)\cap\widetilde{H}^{2}(G):\partial_{\nu}f(v)=0~\text{for all}~v\in V\Bigr{\}},\end{split} (10.3)

    and A1:=SkerΓ1A_{1}\mathrel{\mathop{:}}=S^{*}\upharpoonright\ker\Gamma_{1} coincides with the Dirichlet Laplacian

    ΔDf\displaystyle-\Delta_{\rm D}f =Δf,\displaystyle=-\Delta f,
    dom(ΔD)\displaystyle\operatorname{dom}(-\Delta_{\rm D}) ={fH1(G)H~2(G):f(v)=0for allvV}.\displaystyle=\Bigl{\{}f\in H^{1}(G)\cap\widetilde{H}^{2}(G):f(v)=0~\text{for all}~v\in V\Bigr{\}}.

    In particular, A0A_{0} and A1A_{1} are both self-adjoint and non-negative operators in L2(G)L^{2}(G).

  • (ii)

    For λσ(ΔG)\lambda\in\mathbb{C}\setminus\sigma(-\Delta_{G}), the corresponding γ\gamma-field is given by

    γ(λ)(νf(v1)νf(v|V|))=f,\gamma(\lambda)\begin{pmatrix}\partial_{\nu}f(v_{1})\\ \vdots\\ \partial_{\nu}f(v_{|V|})\end{pmatrix}=f, (10.4)

    where fH1(G)H~2(G)f\in H^{1}(G)\cap\widetilde{H}^{2}(G) is any function that satisfies Δf=λf-\Delta f=\lambda f, and the corresponding Weyl function is given by

    M(λ)(νf(v1)νf(v|V|))=(f(v1)f(v|V|)).M(\lambda)\begin{pmatrix}\partial_{\nu}f(v_{1})\\ \vdots\\ \partial_{\nu}f(v_{|V|})\end{pmatrix}=\begin{pmatrix}f(v_{1})\\ \vdots\\ f(v_{|V|})\end{pmatrix}. (10.5)

    For each λ(σ(ΔG)σ(ΔD))\lambda\in\mathbb{C}\setminus\bigl{(}\sigma(-\Delta_{G})\cup\sigma(-\Delta_{\rm D})\bigr{)} we have

    (M(λ)1)jk={λevjL(e)<cot(λL(e))iλ|{e:o(e)=vj,L(e)=}|,j=k,evj,evkλsin(λL(e)),jk.\bigl{(}M(\lambda)^{-1}\bigr{)}_{jk}=\begin{cases}\sqrt{\lambda}\!\!\sum\limits_{\begin{subarray}{c}e\sim v_{j}\\[0.60275pt] L(e)<\infty\end{subarray}}\!\!\cot\bigl{(}\sqrt{\lambda}L(e)\bigr{)}\\[17.22217pt] \hskip 43.05542pt-i\sqrt{\lambda}\,\big{|}\{e:o(e)=v_{j},L(e)=\infty\}\big{|},&j=k,\\[12.91663pt] \sum\limits_{\begin{subarray}{c}e\sim v_{j},\\[0.60275pt] e\sim v_{k}\end{subarray}}\dfrac{-\sqrt{\lambda}}{\sin\bigl{(}\sqrt{\lambda}L(e)\bigr{)}}\,,&j\neq k.\end{cases}\hskip-8.61108pt (10.6)
Proof.

Let us verify the conditions of Theorem 2.3. Note first that TkerΓ0T\upharpoonright\ker\Gamma_{0} clearly equals the standard Laplacian (10.3), which is self-adjoint in L2(G)L^{2}(G). Moreover, it can easily be seen by explicit construction that the pair (Γ0,Γ1):domT|V|×|V|(\Gamma_{0},\Gamma_{1})^{\top}:\operatorname{dom}T\to\mathbb{C}^{|V|}\times\mathbb{C}^{|V|} is surjective. Finally, let us verify the abstract Green identity. For f,gdomTf,g\in\operatorname{dom}T integration by parts yields

(Tf,g)L2(G)(f,Tg)L2(G)\displaystyle(Tf,g)_{L^{2}(G)}-(f,Tg)_{L^{2}(G)}
=eE(0L(e)(fe′′(x))ge(x)¯dx0L(e)fe(x)(ge′′(x)¯)dx)\displaystyle=\sum_{e\in E}\Biggl{(}\int_{0}^{L(e)}\bigl{(}-f_{e}^{\prime\prime}(x)\bigr{)}\overline{g_{e}(x)}\,{\mathrm{d}}x-\int_{0}^{L(e)}f_{e}(x)\bigl{(}\overline{-g_{e}^{\prime\prime}(x)}\bigr{)}\,{\mathrm{d}}x\Biggr{)}
=eE(0L(e)fe(x)ge(x)¯dx0L(e)fe(x)ge(x)¯dx\displaystyle=\sum_{e\in E}\Biggl{(}\int_{0}^{L(e)}f_{e}^{\prime}(x)\overline{g_{e}^{\prime}(x)}\,{\mathrm{d}}x-\int_{0}^{L(e)}f_{e}^{\prime}(x)\overline{g_{e}^{\prime}(x)}\,{\mathrm{d}}x
+fe(0)ge(0)¯fe(L(e))ge(L(e))¯fe(0)ge(0)¯+fe(L(e))ge(L(e))¯)\displaystyle\quad+f_{e}^{\prime}(0)\overline{g_{e}(0)}-f_{e}^{\prime}\bigl{(}L(e)\bigr{)}\overline{g_{e}\bigl{(}L(e)\bigr{)}}-f_{e}(0)\overline{g_{e}^{\prime}(0)}+f_{e}\bigl{(}L(e)\bigr{)}\overline{g_{e}^{\prime}\bigl{(}L(e)\bigr{)}}\Biggr{)}
=j=1|V|f(vj)(t(e)=vjge(L(e))o(e)=vjge(0))¯\displaystyle=\sum_{j=1}^{|V|}f(v_{j})\overline{\biggl{(}\sum_{t(e)=v_{j}}g_{e}^{\prime}\bigl{(}L(e)\bigr{)}-\sum_{o(e)=v_{j}}g_{e}^{\prime}(0)\biggr{)}}
j=1|V|(t(e)=vjfe(L(e))o(e)=vjfe(0))g(vj)¯\displaystyle\quad-\sum_{j=1}^{|V|}\biggl{(}\sum_{t(e)=v_{j}}f_{e}^{\prime}\bigl{(}L(e)\bigr{)}-\sum_{o(e)=v_{j}}f_{e}^{\prime}(0)\biggr{)}\overline{g(v_{j})}
=(Γ1f,Γ0g)|V(Γ0f,Γ1g)|V.\displaystyle=(\Gamma_{1}f,\Gamma_{0}g)_{\mathbb{C}^{|V}}-(\Gamma_{0}f,\Gamma_{1}g)_{\mathbb{C}^{|V}}.

From Theorem 2.3 it follows that SS is closed, densely defined and symmetric with S=TS^{*}=T and that {|V|,Γ0,Γ1}\{\mathbb{C}^{|V|},\Gamma_{0},\Gamma_{1}\} is an ordinary boundary triple for T=ST=S^{*}. Assertion (i) and the identities (10.4), (10.5) are obvious from the definition of the mappings Γ0,Γ1\Gamma_{0},\Gamma_{1}.

It remains to verify the representation of M(λ)1M(\lambda)^{-1} in (10.6). To this end fix λ(σ(ΔG)σ(ΔD))\lambda\in\mathbb{C}\setminus(\sigma(-\Delta_{G})\cup\sigma(-\Delta_{\rm D})) and denote by me(λ)m^{e}(\lambda) the Dirichlet-to-Neumann map corresponding to the equation f′′=λf-f^{\prime\prime}=\lambda f on the interval [0,L(e)][0,L(e)]; if ee is finite then me(λ)m^{e}(\lambda) is the matrix satisfying

(f(0)f(L(e)))=(m11e(λ)m12e(λ)m21e(λ)m22e(λ))(f(0)f(L(e)))=(m11e(λ)f(0)+m12e(λ)f(L(e))m21e(λ)f(0)+m22e(λ)f(L(e)))\begin{split}\begin{pmatrix}f^{\prime}(0)\\[4.30554pt] -f^{\prime}\bigl{(}L(e)\bigr{)}\end{pmatrix}&=\begin{pmatrix}m_{11}^{e}(\lambda)&m_{12}^{e}(\lambda)\\[4.30554pt] m_{21}^{e}(\lambda)&m_{22}^{e}(\lambda)\end{pmatrix}\begin{pmatrix}f(0)\\[4.30554pt] f\bigl{(}L(e)\bigr{)}\end{pmatrix}\\[4.30554pt] &=\begin{pmatrix}m_{11}^{e}(\lambda)f(0)+m_{12}^{e}(\lambda)f\bigl{(}L(e)\bigr{)}\\[4.30554pt] m_{21}^{e}(\lambda)f(0)+m_{22}^{e}(\lambda)f\bigl{(}L(e)\bigr{)}\end{pmatrix}\end{split} (10.7)

for each fH2(0,L(e))f\in H^{2}(0,L(e)) with f′′=λf-f^{\prime\prime}=\lambda f; if ee is infinite then mem^{e} is the scalar function satisfying

f(0)=me(λ)f(0)f^{\prime}(0)=m^{e}(\lambda)f(0) (10.8)

for each fH2(0,)f\in H^{2}(0,\infty) with f′′=λf-f^{\prime\prime}=\lambda f. Let us define the matrix Λ(λ)\Lambda(\lambda) by

(Λ(λ))jk={o(e)=vjL(e)<m11e(λ)+t(e)=vjL(e)<m22e(λ)+o(e)=vjL(e)=me(λ),j=k,o(e)=vjt(e)=vkm12e(λ)+o(e)=vkt(e)=vjm21e(λ),jk.(\Lambda(\lambda))_{jk}=\begin{cases}\sum\limits_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] L(e)<\infty\end{subarray}}m_{11}^{e}(\lambda)+\sum\limits_{\begin{subarray}{c}t(e)=v_{j}\\[0.60275pt] L(e)<\infty\end{subarray}}m_{22}^{e}(\lambda)+\sum\limits_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] L(e)=\infty\end{subarray}}m^{e}(\lambda),&j=k,\\[21.52771pt] \sum\limits_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] t(e)=v_{k}\end{subarray}}m_{12}^{e}(\lambda)+\sum\limits_{\begin{subarray}{c}o(e)=v_{k}\\[0.60275pt] t(e)=v_{j}\end{subarray}}m_{21}^{e}(\lambda),&j\neq k.\end{cases} (10.9)

We show that Λ(λ)=M(λ)1\Lambda(\lambda)=-M(\lambda)^{-1}. Indeed, let fker(Tλ)f\in\ker(T-\lambda). Then for j=1,,|V|j=1,\dots,|V| we have

(Λ(λ)Γ1f)j\displaystyle\bigl{(}\Lambda(\lambda)\Gamma_{1}f\bigr{)}_{j} =k=1|V|(Λ(λ))jkf(vk)\displaystyle=\sum_{k=1}^{|V|}(\Lambda(\lambda))_{jk}f(v_{k})
=kj(o(e)=vjt(e)=vkm12e(λ)+o(e)=vkt(e)=vjm21e(λ))f(vk)\displaystyle=\sum_{k\neq j}\bigg{(}\sum_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] t(e)=v_{k}\end{subarray}}m_{12}^{e}(\lambda)+\sum_{\begin{subarray}{c}o(e)=v_{k}\\[0.60275pt] t(e)=v_{j}\end{subarray}}m_{21}^{e}(\lambda)\bigg{)}f(v_{k})
+(o(e)=vjL(e)<m11e(λ)+t(e)=vjL(e)<m22e(λ)+o(e)=vjL(e)=me(λ))f(vj)\displaystyle\quad+\bigg{(}\sum_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] L(e)<\infty\end{subarray}}m_{11}^{e}(\lambda)+\sum_{\begin{subarray}{c}t(e)=v_{j}\\[0.60275pt] L(e)<\infty\end{subarray}}m_{22}^{e}(\lambda)+\sum_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] L(e)=\infty\end{subarray}}m^{e}(\lambda)\bigg{)}f(v_{j})
=kj(o(e)=vjt(e)=vk(m11e(λ)f(vj)+m12e(λ)f(vk))\displaystyle=\sum_{k\neq j}\biggl{(}\sum_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] t(e)=v_{k}\end{subarray}}\Bigl{(}m_{11}^{e}(\lambda)f(v_{j})+m_{12}^{e}(\lambda)f(v_{k})\Bigr{)}
+o(e)=vkt(e)=vj(m21e(λ)f(vk)+m22e(λ)f(vj)))+o(e)=vjL(e)=me(λ)f(vj),\displaystyle\quad+\sum_{\begin{subarray}{c}o(e)=v_{k}\\[0.60275pt] t(e)=v_{j}\end{subarray}}\Bigl{(}m_{21}^{e}(\lambda)f(v_{k})+m_{22}^{e}(\lambda)f(v_{j})\Bigr{)}\biggr{)}+\sum_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] L(e)=\infty\end{subarray}}m^{e}(\lambda)f(v_{j}),

where we have used that GG does not contain loops. Taking (10.7) and (10.8) into account we obtain that

(Λ(λ)Γ1f)j\displaystyle\bigl{(}\Lambda(\lambda)\Gamma_{1}f\bigr{)}_{j} =kj(o(e)=vjt(e)=vkfe(0)o(e)=vkt(e)=vjfe(L(e)))+o(e)=vjL(e)=fe(0)\displaystyle=\sum_{k\neq j}\biggl{(}\sum_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] t(e)=v_{k}\end{subarray}}f_{e}^{\prime}(0)-\sum_{\begin{subarray}{c}o(e)=v_{k}\\[0.60275pt] t(e)=v_{j}\end{subarray}}f_{e}^{\prime}\bigl{(}L(e)\bigr{)}\biggr{)}+\sum_{\begin{subarray}{c}o(e)=v_{j}\\[0.60275pt] L(e)=\infty\end{subarray}}f_{e}^{\prime}(0)
=o(e)=vjfe(0)t(e)=vjfe(L(e))=(Γ0f)j,\displaystyle=\sum_{o(e)=v_{j}}f_{e}^{\prime}(0)-\sum_{t(e)=v_{j}}f_{e}^{\prime}\bigl{(}L(e)\bigr{)}=-(\Gamma_{0}f)_{j},

which implies that Λ(λ)=M(λ)1\Lambda(\lambda)=-M(\lambda)^{-1}. Note that mem^{e} can be calculated explicitly and is given by the expressions

me(λ)={λsin(λL(e))(cos(λL(e))11cos(λL(e)))ifL(e)<,iλifL(e)=.m^{e}(\lambda)=\begin{cases}\dfrac{\sqrt{\lambda}}{\sin\bigl{(}\sqrt{\lambda}L(e)\bigr{)}}\begin{pmatrix}-\cos\bigl{(}\sqrt{\lambda}L(e)\bigr{)}&1\\[4.30554pt] 1&-\cos\bigl{(}\sqrt{\lambda}L(e)\bigr{)}\end{pmatrix}&\text{if}~L(e)<\infty,\\[17.22217pt] i\sqrt{\lambda}&\text{if}~L(e)=\infty.\end{cases}

Plugging these representations into (10.9) we arrive at (10.6). ∎

The next lemma provides a decay property of the Weyl function.

Lemma 10.2.

Let MM be the Weyl function corresponding to the boundary triple in Proposition 10.1. Then for each w0<0w_{0}<0 and ν(0,π)\nu\in(0,\pi) there exists C=C(w0,ν)>0C=C(w_{0},\nu)>0 such that

M(λ)C|λ|for allλ𝕌w0,ν,\|M(\lambda)\|\leq\frac{C}{\sqrt{|\lambda|}\,}\qquad\text{for all}\;\;\lambda\in\mathbb{U}_{w_{0},\nu}, (10.10)

where 𝕌w0,ν\mathbb{U}_{w_{0},\nu} is defined in (6.2).

Proof.

Let w0<0w_{0}<0 and ν(0,π)\nu\in(0,\pi). If |λ||\lambda|\to\infty for λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu}, then λ\sqrt{\lambda}\to\infty within the sector {reiφ:r>0,φ(ν/2,πν/2)}\{re^{i\varphi}:r>0,\varphi\in(\nu/2,\pi-\nu/2)\}. In particular, Imλ\operatorname{Im}\sqrt{\lambda} tends to ++\infty, and thus

cot(λL(e))iand1sin(λL(e))0-\cot\bigl{(}\sqrt{\lambda}L(e)\bigr{)}\to i\qquad\text{and}\qquad\frac{1}{\sin\bigl{(}\sqrt{\lambda}L(e)\bigr{)}}\to 0

for all ee as |λ||\lambda|\to\infty, and the convergence is uniform in 𝕌w0,ν\mathbb{U}_{w_{0},\nu}. Hence it follows from (10.6) that

M(λ)1λdiag(deg(v1)i,,deg(v|V|)i)M(\lambda)^{-1}\to-\sqrt{\lambda}\operatorname{diag}\bigl{(}\deg(v_{1})i,\dots,\deg(v_{|V|})i\bigr{)}

uniformly as |λ||\lambda|\to\infty, λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu}. It follows that

M(λ)1(M(λ)1)|λ|diag(deg(v1)2,,deg(v|V|)2)M(\lambda)^{-1}\big{(}M(\lambda)^{-1}\big{)}^{*}\to|\lambda|\operatorname{diag}\bigl{(}\deg(v_{1})^{2},\dots,\deg(v_{|V|})^{2}\bigr{)} (10.11)

uniformly as |λ||\lambda|\to\infty, λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu}. Let C1>1C_{1}>1 be arbitrary. Since the matrix diag(deg(v1)2,,deg(v|V|)2)\operatorname{diag}(\deg(v_{1})^{2},\dots,\deg(v_{|V|})^{2}) is positive definite with smallest eigenvalue greater than or equal to 1, it follows from (10.11) that there exists r0>0r_{0}>0 such that the smallest eigenvalue of M(λ)1(M(λ)1)M(\lambda)^{-1}\big{(}M(\lambda)^{-1}\big{)}^{*} satisfies

λ1(M(λ)1(M(λ)1))|λ|C12\lambda_{1}\Bigl{(}M(\lambda)^{-1}\bigl{(}M(\lambda)^{-1}\bigr{)}^{*}\Bigr{)}\geq\frac{|\lambda|}{C_{1}^{2}}

for all λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu} with |λ|>r0|\lambda|>r_{0}. Thus we obtain that

M(λ)=1λ1(M(λ)1(M(λ)1))C1|λ|\|M(\lambda)\|=\frac{1}{\sqrt{\lambda_{1}\bigl{(}M(\lambda)^{-1}\bigl{(}M(\lambda)^{-1}\bigr{)}^{*}\bigr{)}}\,}\leq\frac{C_{1}}{\sqrt{|\lambda|}\,} (10.12)

for all λ𝕌w0,ν\lambda\in\mathbb{U}_{w_{0},\nu} with |λ|>r0|\lambda|>r_{0}. On the other hand, since λ|λ|M(λ)\lambda\mapsto\sqrt{|\lambda|}\|M(\lambda)\| is continuous on the compact set

𝕌w0,ν0:={λ𝕌w0,ν:|λ|r0},\mathbb{U}_{w_{0},\nu}^{0}\mathrel{\mathop{:}}=\bigl{\{}\lambda\in\mathbb{U}_{w_{0},\nu}:|\lambda|\leq r_{0}\bigr{\}},

there exists C2>0C_{2}>0 with

M(λ)C2|λ|,λ𝕌w0,ν0.\|M(\lambda)\|\leq\frac{C_{2}}{\sqrt{|\lambda|}\,}\,,\qquad\lambda\in\mathbb{U}_{w_{0},\nu}^{0}. (10.13)

With C:=max{C1,C2}C\mathrel{\mathop{:}}=\max\{C_{1},C_{2}\} the claim of the lemma follows from the inequalities (10.12) and (10.13). ∎

The assertions of the following theorem are direct consequences of Proposition 10.1, Lemma 10.2 and Corollary 5.7. For characterizations of self-adjoint vertex conditions for Laplacians on metric graphs we refer the reader to [45, 103].

Theorem 10.3.

Let B|V|×|V|B\in\mathbb{C}^{|V|\times|V|}. Then the operator

A[B]f=Δf,domA[B]={fH1(G)H~2(G):(νf(v1)νf(v|V|))=B(f(v1)f(v|V|))},\begin{split}A_{[B]}f&=-\Delta f,\\ \operatorname{dom}A_{[B]}&=\left\{f\in H^{1}(G)\cap\widetilde{H}^{2}(G):\begin{pmatrix}\partial_{\nu}f(v_{1})\\ \vdots\\ \partial_{\nu}f(v_{|V|})\end{pmatrix}=B\begin{pmatrix}f(v_{1})\\ \vdots\\ f(v_{|V|})\end{pmatrix}\right\},\end{split} (10.14)

in L2(G)L^{2}(G) is m-sectorial, one has σ(A[B])W(A[B])¯\sigma(A_{[B]})\subset\overline{W(A_{[B]})}, the resolvent formula

(A[B]λ)1=(ΔGλ)1+γ(λ)(IBM(λ))1Bγ(λ¯)(A_{[B]}-\lambda)^{-1}=(-\Delta_{G}-\lambda)^{-1}+\gamma(\lambda)\bigl{(}I-BM(\lambda)\bigr{)}^{-1}B\gamma(\overline{\lambda})^{*}

holds for all λρ(A[B])ρ(ΔG)\lambda\in\rho(A_{[B]})\cap\rho(-\Delta_{G}) and the following assertions are true.

  • (i)

    A[B]A_{[B]} is self-adjoint if and only if the matrix BB is Hermitian. Moreover, A[B]A_{[B]} is maximal dissipative (maximal accumulative, respectively) if and only if BB is accumulative (dissipative, respectively).

  • (ii)

    A[B]=A[B]A_{[B^{*}]}=A_{[B]}^{*}.

Assume in addition that bb\in\mathbb{R} is chosen such that

Re(Bξ,ξ)b|ξ|2for allξ|V|.\operatorname{Re}(B\xi,\xi)\leq b|\xi|^{2}\qquad\text{for all}\;\;\xi\in\mathbb{C}^{|V|}.

Then the following spectral enclosures hold.

  • (a)

    If b>0b>0 then there exists C>0C>0 such that for each ξ<(Cb)2\xi<-(Cb)^{2}

    W(A[B]){z:Rezξ,|Imz|2CImB1Cb(ξ)1/2(Rezξ)1/2}.W(A_{[B]})\subset\Biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq\xi,\;|\operatorname{Im}z|\leq\frac{2C\|\operatorname{Im}B\|}{1-\frac{Cb}{(-\xi)^{1/2}}}\bigl{(}\operatorname{Re}z-\xi\bigr{)}^{1/2}\Biggr{\}}.
  • (b)

    If b0b\leq 0 then there exists C>0C>0 such that

    W(A[B]){z:Rez0,|Imz|2CImB(Rez)(Rez)1/2Cb}.W(A_{[B]})\subset\biggl{\{}z\in\mathbb{C}:\operatorname{Re}z\geq 0,\;|\operatorname{Im}z|\leq\frac{2C\|\operatorname{Im}B\|(\operatorname{Re}z)}{(\operatorname{Re}z)^{1/2}-Cb}\biggr{\}}.
  • (c)

    For each w0<minσ(AN)w_{0}<\min\sigma(A_{\rm N}) and ν(0,π)\nu\in(0,\pi) there exists C>0C>0 such that

    σ(A[B])𝕌w0,ν{z𝕌w0,ν:|z|(CB)2},\sigma(A_{[B]})\cap\mathbb{U}_{w_{0},\nu}\subset\bigl{\{}z\in\mathbb{U}_{w_{0},\nu}:|z|\leq(C\|B\|)^{2}\bigr{\}},

    where 𝕌w0,ν\mathbb{U}_{w_{0},\nu} is defined in (6.2).

Remark 10.4.

Note that the operator A[B]A_{[B]} satisfies local matching conditions at all vertices if and only if the matrix BB is diagonal, B=diag(b1,b|V|)B=\operatorname{diag}(b_{1},\dots b_{|V|}). In this case domA[B]\operatorname{dom}A_{[B]} consists of all functions fH1(G)H~2(G)f\in H^{1}(G)\cap\widetilde{H}^{2}(G) such that

νf(vj)=bjf(vj)\partial_{\nu}f(v_{j})=b_{j}f(v_{j})

holds for j=1,,|V|j=1,\dots,|V|. These conditions describe δ\delta-couplings of strengths bjb_{j}. They have been studied extensively in the literature in the self-adjoint case, i.e. for real b1,,b|V|b_{1},\dots,b_{|V|}; see, e.g. [32, 60, 65, 94, 106].

Remark 10.5.

In more specific situations the spectral estimates in Theorem 10.3 can be made more explicit. Let, for instance, GG be combinatorially equal to the complete graph KnK_{n} with n=|V|2n=|V|\geq 2 vertices, that is, each two vertices are connected by precisely one edge; in particular, deg(vj)=n1\deg(v_{j})=n-1 for j=1,,|V|j=1,\dots,|V|. Moreover, let GG be equilateral with L(e)=1L(e)=1 for all eEe\in E. It follows from (10.6) that the Weyl function MM corresponding to the boundary triple in Proposition 10.1 satisfies

(M(λ))1=λsinλ((n1)cosλ111111(n1)cosλ).\bigl{(}M(\lambda)\bigr{)}^{-1}=\frac{\sqrt{\lambda}}{\sin\sqrt{\lambda}\,}\begin{pmatrix}(n-1)\cos\sqrt{\lambda}&-1&\cdots&-1\\[2.15277pt] -1&\ddots&\ddots&\vdots\\[2.15277pt] \vdots&\ddots&&-1\\[2.15277pt] -1&\dots&-1&(n-1)\cos\sqrt{\lambda}\end{pmatrix}.

A straightforward calculation yields that MM is given by

M(λ)=1α(n,λ)(d(n,λ)111111d(n,λ)),M(\lambda)=\frac{1}{\alpha(n,\lambda)}\begin{pmatrix}d(n,\lambda)&1&\cdots&1\\ 1&\ddots&\ddots&\vdots\\ \vdots&\ddots&&1\\ 1&\dots&1&d(n,\lambda)\end{pmatrix},

where

α(n,λ)\displaystyle\alpha(n,\lambda) =λsinλ[((n1)cosλn22)2n24],\displaystyle=\frac{\sqrt{\lambda}}{\sin\sqrt{\lambda}\,}\biggl{[}\biggl{(}(n-1)\cos\sqrt{\lambda}-\frac{n-2}{2}\biggr{)}^{2}-\frac{n^{2}}{4}\biggr{]},
d(n,λ)\displaystyle d(n,\lambda) =(n1)cosλ(n2).\displaystyle=(n-1)\cos\sqrt{\lambda}-(n-2).

Since in this case M(λ)M(\lambda) is a special case of a circulant matrix, its norm can be calculated and estimated explicitly for λ𝕌w0,ν\lambda\in{\mathbb{U}}_{w_{0},\nu}.

The following example shows that the abstract spectral estimate in Corollary 5.10 cannot be improved in general.

Example 10.6.

Let GG be a star graph consisting of |E||E| infinite edges, i.e. each edge of GG can be parameterized by the interval [0,)[0,\infty) and there exists only one vertex vv, which satisfies o(e)=vo(e)=v for all eEe\in E. Then for BB\in\mathbb{C} the functions in the domain of the operator A[B]A_{[B]} in (10.14) are continuous at vv and satisfy the condition

eEfe(0)=Bf(v).-\sum_{e\in E}f_{e}^{\prime}(0)=Bf(v).

If BB\notin{\mathbb{R}} with ReB>0\operatorname{Re}B>0 then A[B]A_{[B]} has B2/|E|2-B^{2}/|E|^{2} as its only non-real eigenvalue, as an explicit calculation shows. On the other hand, by Proposition 10.1 (ii) we obtain that M(λ)=i|E|/λM(\lambda)=i|E|/\sqrt{\lambda} for all λ\lambda\in\mathbb{C}\setminus\mathbb{R}, and Corollary 5.10 yields that

σ(A[B])([0,)){z[0,):|z||B|2|E|2}.\sigma(A_{[B]})\cap\big{(}\mathbb{C}\setminus[0,\infty)\big{)}\subset\biggl{\{}z\in\mathbb{C}\setminus[0,\infty):|z|\leq\frac{|B|^{2}}{|E|^{2}}\biggr{\}}.

This shows that Corollary 5.10 is sharp.

Acknowledgements

JB, VL and JR gratefully acknowledge financial support by the Austrian Science Fund (FWF), grant no. P 25162-N26. VL acknowledges the support of the Czech Science Foundation (GAČR), grant no. 17-01706S and also of the support of the Austria–Czech Republic Mobility Programme, grant no. 7AMB17AT022.

References

  • [1] H. Abels, G. Grubb and I. Wood, Extension theory and Kreĭn-type resolvent formulas for nonsmooth boundary value problems, J. Funct. Anal. 266 (2014), 4037–4100.
  • [2] A. A. Abramov, A. Aslanyan and E. B. Davies, Bounds on complex eigenvalues and resonances, J. Phys. A 34 (2001), 57–72.
  • [3] M. Adler, M. Bombieri and K.-J. Nagel, Perturbation of analytic semigroups and applications to partial differential equations, J. Evol. Equ. 17 (2017), 1183–1208.
  • [4] S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Commun. Pure Appl. Math. 15 (1962), 119–147.
  • [5] S. Albeverio, J. F. Brasche, M. M. Malamud and H. Neidhardt, Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions, J. Funct. Anal. 228 (2005), 144–188.
  • [6] S. Albeverio, S.-M. Fei and P. Kurasov, Point interactions: 𝒫𝒯{\mathcal{P}}{\mathcal{T}}-Hermiticity and reality of the spectrum, Lett. Math. Phys. 59 (2002), 227–242.
  • [7] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics. With an appendix by Pavel Exner. AMS Chelsea Publishing, 2005.
  • [8] S. Albeverio, A. Kostenko and M. M. Malamud, Spectral theory of semibounded Sturm–Liouville operators with local interactions on a discrete set, J. Math. Phys. 51 (2010), 102102, 24 pp.
  • [9] S. Albeverio and L. Nizhnik, Schrödinger operators with nonlocal point interactions, J. Math. Anal. Appl. 332 (2007), 884–895.
  • [10] T. Ando, Topics on operator inequalities. Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo, 1978.
  • [11] W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on rough domains, J. Differential Equations 251 (2011), 2100–2124.
  • [12] W. Arendt and A. F. M. ter Elst, The Dirichlet-to-Neumann operator on exterior domains, Potential Anal. 43 (2015), 313–340.
  • [13] W. Arendt, A. F. M. ter Elst, J. B. Kennedy and M. Sauter, The Dirichlet-to-Neumann operator via hidden compactness, J. Funct. Anal. 266 (2014), 1757–1786.
  • [14] Yu. Arlinskii, Abstract boundary conditions for maximal sectorial extensions of sectorial operators, Math. Nachr. 209 (2000), 5–36.
  • [15] Yu. Arlinskiĭ, Boundary triplets and maximal accretive extensions of sectorial operators, in: Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Series, vol. 404, 2012, pp. 35–72.
  • [16] Yu. Arlinskiĭ, Y. Kovalev and E. Tsekanovskii, Accretive and sectorial extensions of nonnegative symmetric operators, Complex Anal. Oper. Theory 6 (2012), 677–718.
  • [17] Yu. Arlinskiĭ and A. B. Popov, On m-accretive extensions of a sectorial operator. [Russian] Mat. Sb. 204 (2013), 3–40; English translation: Sb. Math. 204 (2013), 1085–1121.
  • [18] Yu. Arlinskiĭ and A. Popov, On m-sectorial extensions of sectorial operators, Zh. Mat. Fiz. Anal. Geom. 13 (2017), 205–241.
  • [19] W. Bade and R. Freeman, Closed extensions of the Laplace operator determined by a general class of boundary conditions, Pacific J. Math. 12 (1962), 395–410.
  • [20] R. Beals, Non-local boundary value problems for elliptic operators, Amer. J. Math. 87 (1965), 315–362.
  • [21] J. Behrndt, G. Grubb, M. Langer and V. Lotoreichik, Spectral asymptotics for resolvent differences of elliptic operators with δ\delta and δ\delta^{\prime}-interactions on hypersurfaces, J. Spectr. Theory 5 (2015), 697–729.
  • [22] J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal. 243 (2007), 536–565.
  • [23] J. Behrndt and M. Langer, On the adjoint of a symmetric operator, J. London Math. Soc. (2) 82 (2010), 563–580.
  • [24] J. Behrndt and M. Langer, Elliptic operators, Dirichlet-to-Neumann maps and quasi boundary triples, in: Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Series, vol. 404, 2012, pp. 121–160.
  • [25] J. Behrndt, M. Langer, I. Lobanov, V. Lotoreichik and I. Yu. Popov, A remark on Schatten–von Neumann properties of resolvent differences of generalized Robin Laplacians on bounded domains, J. Math. Anal. Appl. 371 (2010), 750–758.
  • [26] J. Behrndt, M. Langer and V. Lotoreichik, Schrödinger operators with δ\delta and δ\delta^{\prime}-potentials supported on hypersurfaces, Ann. Henri Poincaré 14 (2013), 385–423.
  • [27] J. Behrndt, M. Langer and V. Lotoreichik, Spectral estimates for resolvent differences of self-adjoint elliptic operators, Integral Equations Operator Theory 77 (2013), 1–37.
  • [28] J. Behrndt, M. Langer and V. Lotoreichik, Trace formulae and singular values of resolvent power differences of self-adjoint elliptic operators, J. London Math. Soc. (2) 88 (2013), 319–337.
  • [29] J. Behrndt, M. Langer, V. Lotoreichik and J. Rohleder, Quasi boundary triples and semibounded self-adjoint extensions, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), 895–916.
  • [30] J. Behrndt and J. Rohleder, Spectral analysis of selfadjoint elliptic differential operators, Dirichlet-to-Neumann maps, and abstract Weyl functions, Adv. Math. 285 (2015), 1301–1338.
  • [31] G. Berkolaiko, An elementary introduction to quantum graphs, in: Geometric and Computational Spectral Theory, Contemp. Math., vol. 700, Amer. Math. Soc., Providence, RI, 2017, pp. 41–72.
  • [32] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013.
  • [33] M. Sh. Birman and M. Z. Solomjak, Asymptotic behavior of the spectrum of variational problems on solutions of elliptic equations in unbounded domains, Funktsional. Anal. i Prilozhen. 14 (1980), 27–35 [Russian]; English translation: Funct. Anal. Appl. 14 (1981), 267–274.
  • [34] D. Borisov and D. Krejčiřík, 𝒫𝒯\mathcal{P}\mathcal{T}-symmetric waveguides, Integral Equations Operator Theory 62 (2008), 489–515.
  • [35] D. Borisov and D. Krejčiřík, The effective Hamiltonian for thin layers with non-Hermitian Robin-type boundary conditions, Asymptot. Anal. 76 (2012), 49–59.
  • [36] D. Borisov and M. Znojil, On eigenvalues of a 𝒫𝒯\mathcal{P}\mathcal{T}-symmetric operator in a thin layer [Russian], Mat. Sb. 208 (2017), 3–30; English translation: Sb. Math. 208 (2017), 173–199.
  • [37] J. F. Brasche, P. Exner, Yu. A. Kuperin and P. Šeba, Schrödinger operators with singular interactions, J. Math. Anal. Appl. 184 (1994), 112–139.
  • [38] F. E. Browder, Estimates and existence theorems for elliptic boundary value problems, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 365–372.
  • [39] F. E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1961), 22–130.
  • [40] B. M. Brown, G. Grubb and I. G. Wood, MM-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems, Math. Nachr. 282 (2009), 314–347.
  • [41] B. M. Brown, M. Marletta, S. Naboko and I. G. Wood, Boundary triplets and MM-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc. (2) 77 (2008), 700–718.
  • [42] B. M. Brown, M. Marletta, S. Naboko and I. Wood, Inverse problems for boundary triples with applications, Studia Math. 237 (2017), 241–275.
  • [43] V. M. Bruk, A certain class of boundary value problems with a spectral parameter in the boundary condition, Mat. Sb. (N.S.) 100 (142) (1976), 210–216.
  • [44] J. Brüning, V. Geyler and K. Pankrashkin, Spectra of self-adjoint extensions and applications to solvable Schrödinger operators, Rev. Math. Phys. 20 (2008), 1–70.
  • [45] R. Carlson, Adjoint and self-adjoint differential operators on graphs, Electron. J. Differential Equations 1998, no. 6, 10 pp.
  • [46] K. D. Cherednichenko, A. V. Kiselev and L. O. Silva, Functional model for extensions of symmetric operators and applications to scattering theory, to appear in Netw. Heterog. Media, arXiv:1703.06220.
  • [47] J. B. Conway, Functions of One Complex Variable I, Second edition. Graduate Texts in Mathematics, vol. 11, Springer, 1978.
  • [48] J.-C. Cuenin, Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials, J. Funct. Anal. 272 (2017), 2987–3018.
  • [49] J.-C. Cuenin and C. Tretter, Non-symmetric perturbations of self-adjoint operators, J. Math. Anal. Appl. 441 (2016), 235–258.
  • [50] E. B. Davies, Non-self-adjoint differential operators, Bull. London Math. Soc. 34 (2002), 513–532.
  • [51] M. Demuth, M. Hansmann and G. Katriel, On the discrete spectrum of non-selfadjoint operators, J. Funct. Anal. 257 (2009), 2742–2759.
  • [52] V. A. Derkach, S. Hassi, M. M. Malamud and H. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc. 358 (2006), 5351–5400.
  • [53] V. A. Derkach, S. Hassi, M. M. Malamud and H. de Snoo, Boundary relations and generalized resolvents of symmetric operators, Russ. J. Math. Phys. 16 (2009), 17–60.
  • [54] V. A. Derkach, S. Hassi, M. M. Malamud and H. de Snoo, Boundary triplets and Weyl functions. Recent developments, in: Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Series, vol. 404, 2012, pp. 161–220.
  • [55] V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1–95.
  • [56] V. A. Derkach and M. M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. 73 (1995), 141–242.
  • [57] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1987.
  • [58] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators. Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996.
  • [59] Y. Ershova, I. Karpenko and A. Kiselev, Isospectrality for graph Laplacians under the change of coupling at graph vertices, J. Spectr. Theory 6 (2016), 43–66.
  • [60] Y. Ershova and A. Kiselev, Trace formulae for graph Laplacians with applications to recovering matching conditions, Methods Funct. Anal. Topology 18 (2012), 343–359.
  • [61] Y. Ershova and A. Kiselev, Trace formulae for Schrödinger operators on metric graphs with applications to recovering matching conditions, Methods Funct. Anal. Topology 20 (2014), 134–148.
  • [62] P. Exner, Leaky quantum graphs: a review, in: Analysis on Graphs and its Applications. Selected papers based on the Isaac Newton Institute for Mathematical Sciences programme, Cambridge, UK, 2007, Proc. Symp. Pure Math. 77 (2008), 523–564.
  • [63] P. Exner and M. Fraas, On geometric perturbations of critical Schrödinger operators with a surface interaction, J. Math. Phys. 50 (2009), 112101, 12 pp.
  • [64] P. Exner and T. Ichinose, Geometrically induced spectrum in curved leaky wires, J. Phys. A 34 (2001), 1439–1450.
  • [65] P. Exner and M. Jex, On the ground state of quantum graphs with attractive δ\delta-coupling, Phys. Lett. A 376 (2012), 713–717.
  • [66] P. Exner and S. Kondej, Bound states due to a strong δ\delta-interaction supported by a curved surface, J. Phys. A 36 (2003), 443–457.
  • [67] P. Exner and H. Kovařík, Quantum Waveguides, Springer, Heidelberg, 2015.
  • [68] P. Exner and J. Rohleder, Generalized interactions supported on hypersurfaces, J. Math. Phys. 57 (2016), 041507, 23 pp.
  • [69] P. Exner and K. Yoshitomi, Asymptotics of eigenvalues of the Schrödinger operator with a strong δ\delta-interaction on a loop, J. Geom. Phys. 41 (2002), 344–358.
  • [70] L. Fanelli, D. Krejčiřík and L. Vega, Spectral stability of Schrödinger operators with subordinated complex potentials, J. Spectr. Theory, to appear, arXiv:1506.01617.
  • [71] R. L. Frank, Eigenvalue bounds for Schrödinger operators with complex potentials, Bull. Lond. Math. Soc. 43 (2011), 745–750.
  • [72] R. L. Frank, Eigenvalues of Schrödinger operators with complex surface potentials, in: Functional Analysis and Operator Theory for Quantum Physics, Europ. Math. Soc., Zürich, 2017, pp. 245–259.
  • [73] R. Freeman, Closed extensions of the Laplace operator determined by a general class of boundary conditions, for unbounded regions, Pacific J. Math. 12 (1962), 121–135.
  • [74] R. Freeman, Closed operators and their adjoints associated with elliptic differential operators, Pacific J. Math. 22 (1967), 71–97.
  • [75] J. Galkowski and H. F. Smith, Restriction bounds for the free resolvent and resonances in lossy scattering, Int. Math. Res. Notices 16 (2015), 7473–7509.
  • [76] F. Gesztesy, Y. Latushkin, M. Mitrea and M. Zinchenko, Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys. 12 (2005), 443–471.
  • [77] F. Gesztesy and M. Mitrea, Generalized Robin boundary conditions, Robin-to-Dirichlet maps, Kreĭn-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in: Perspectives in Partial Differential Equations, Harmonic Analysis and Applications, Proc. Sympos. Pure Math., vol. 79, Amer. Math. Soc., Providence, RI, 2008, pp. 105–173.
  • [78] F. Gesztesy and M. Mitrea, A description of all self-adjoint extensions of the Laplacian and Kreĭn-type resolvent formulas on non-smooth domains, J. Anal. Math. 113 (2011), 53–172.
  • [79] F. Gesztesy, M. Mitrea and M. Zinchenko, Variations on a theme of Jost and Pais, J. Funct. Anal. 253 (2007), 399–448.
  • [80] F. Gesztesy, M. Mitrea and M. Zinchenko, On Dirichlet-to-Neumann maps and some applications to modified Fredholm determinants, in: Methods of Spectral Analysis in Mathematical Physics, Oper. Theory Adv. Appl., vol. 186, Birkhäuser Verlag, Basel, 2009, pp. 191–215.
  • [81] I. C. Gohberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators. Transl. Math. Monogr., vol. 18., Amer. Math. Soc., Providence, RI, 1969.
  • [82] V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations. Kluwer Academic Publ., Dordrecht, 1991.
  • [83] A. Grod and S. Kuzhel, Schrödinger operators with non-symmetric zero-range potentials, Methods Funct. Anal. Topology 20 (2014), 34–49.
  • [84] G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa (3) 22 (1968), 425–513.
  • [85] G. Grubb, Remarks on trace estimates for exterior boundary problems, Comm. Partial Differential Equations 9 (1984), 231–270.
  • [86] G. Grubb, Krein resolvent formulas for elliptic boundary problems in nonsmooth domains, Rend. Semin. Mat. Univ. Politec. Torino 66 (2008), 271–297.
  • [87] G. Grubb, Distributions and Operators. Graduate Texts in Mathematics, vol. 252. Springer, New York, 2009.
  • [88] G. Grubb, Spectral asymptotics for Robin problems with a discontinuous coefficient, J. Spectr. Theory 1 (2011), 155–177.
  • [89] A. Hussein, Maximal quasi-accretive Laplacians on finite metric graphs, J. Evol. Equ. 14 (2014), 477–497.
  • [90] A. Hussein, D. Krejčiřík and P. Siegl, Non-self-adjoint graphs, Trans. Amer. Math. Soc. 367 (2015), 2921–2957.
  • [91] A. Ibort, F. Lledó and J. M. Pérez-Pardo, Self-adjoint extensions of the Laplace–Beltrami operator and unitaries at the boundary, J. Funct. Anal. 268 (2015), 634–670.
  • [92] I. S. Kac and M. G. Krein, On the spectral function of a string, in: F. V. Atkinson, Discrete and Continuous Boundary Problems (Russian translation), Addition II, Mir, Moscow, pp. 648–737 (1968); English translation: Amer. Math. Soc. Transl. 2 (103) (1974), 19–102.
  • [93] I. S. Kac and M. G. Krein, R-functions—analytic functions mapping the upper halfplane into itself, Amer. Math. Soc. Transl. (2) 103 (1974), 1–18.
  • [94] G. Karreskog, P. Kurasov and I. Trygg Kupersmidt, Schrödinger operators on graphs: symmetrization and Eulerian cycles, Proc. Amer. Math. Soc. 144 (2016), 1197–1207.
  • [95] T. Kato, Perturbation Theory for Linear Operators. Reprint of the 1980 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
  • [96] A. N. Kochubei, Extensions of symmetric operators and symmetric binary relations [Russian], Mat. Zametki 17 (1975), 41–48; English translation: Math. Notes 17 (1975), 25–28.
  • [97] A. N. Kochubei, One-dimensional point interactions [Russian], Ukr. Mat. Zh. 41 (1989), 1391–1395; English translation: Ukr. Math. J. 41 (1989), 1198–1201.
  • [98] S. Kondej and D. Krejčiřík, Asymptotic spectral analysis in colliding leaky quantum layers, J. Math. Anal. Appl. 446 (2017), 1328–1355.
  • [99] S. Kondej and V. Lotoreichik, Weakly coupled bound state of 2-D Schrödinger operator with potential-measure, J. Math. Anal. Appl. 420 (2014), 1416–1438.
  • [100] Yu. G. Kovalev, 1D nonnegative Schrödinger operators with point interactions, Mat. Stud. 39 (2013), 150–163.
  • [101] A. Kostenko and M. Malamud, 1-D Schrödinger operators with local point interactions on a discrete set, J. Differential Equations 249 (2010), 253–-304.
  • [102] A. Kostenko and M. Malamud, 1-D Schrödinger operators with local point interactions: a review, in: Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy’s 60th Birthday, Proc. Symp. Pure Math., vol. 87, Amer. Math. Soc., Providence, RI, 2013, pp. 235–262.
  • [103] V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires, J. Phys. A 32 (1999), 595–630.
  • [104] V. Kostrykin and R. Schrader, Laplacians on metric graphs: eigenvalues, resolvents and semigroups, in: Quantum Graphs and their Applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 201–225.
  • [105] R. de L. Kronig and W. G. Penney, Quantum mechanics of electrons in crystal lattices, Proc. Roy. Soc. Lond. A 130 (1931), 499–513.
  • [106] P. Kuchment, Quantum graphs. I. Some basic structures. Waves Random Media 14 (2004), S107–S128.
  • [107] S. Kuzhel and M. Znojil, Non-self-adjoint Schrödinger operators with nonlocal one-point interactions, Banach J. Math. Anal. 11 (2017), 923–944.
  • [108] A. Laptev and O. Safronov, Eigenvalue estimates for Schrödinger operators with complex potentials, Commun. Math. Phys. 292 (2009), 29–54.
  • [109] D. Lenz, C. Schubert and I. Veselić, Unbounded quantum graphs with unbounded boundary conditions, Math. Nachr. 287 (2014), 962–979.
  • [110] J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin–Heidelberg–New York, 1972.
  • [111] V. Lotoreichik and T. Ourmières-Bonafos, On the bound states of Schrödinger operators with δ\delta-interactions on conical surfaces, Comm. Partial Differential Equations 41 (2016), 999–1028.
  • [112] V. Lotoreichik and J. Rohleder, Schatten–von Neumann estimates for resolvent differences of Robin Laplacians on a half-space, in: Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations, Oper. Theory Adv. Appl., vol. 221, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 453–468.
  • [113] V. Lotoreichik and P. Siegl, Spectra of definite type in waveguide models, Proc. Amer. Math. Soc. 145 (2017), 1231–1246.
  • [114] M. M. Malamud, Operator holes and extensions of sectorial operators and dual pairs of contractions, Math. Nachr. 279 (2006), 625–655.
  • [115] M. M. Malamud, Spectral theory of elliptic operators in exterior domains, Russ. J. Math. Phys. 17 (2010), 96–125.
  • [116] M. M. Malamud and S. M. Malamud, Spectral theory of operator measures in a Hilbert space [Russian], Algebra i Analiz 15 (2003), 1–77; English translation: St. Petersburg Math. J. 15 (2004), 323–373.
  • [117] M. M. Malamud and H. Neidhardt, On the unitary equivalence of absolutely continuous parts of self-adjoint extensions, J. Funct. Anal. 260 (2011), 613–638.
  • [118] A. Mantile, A. Posilicano and M. Sini, Self-adjoint elliptic operators with boundary conditions on not closed hypersurfaces, J. Differential Equations 261 (2016), 1–55.
  • [119] V. G. Maz’ya and T. O. Shaposhnikova, Theory of Sobolev Multipliers. Springer-Verlag, Berlin Heidelberg, 2009.
  • [120] K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math. Phys. 77 (2006), 139–154.
  • [121] A. Pietsch, Eigenvalues and ss-Numbers. Cambridge Studies in Advanced Mathematics, vol. 13. Cambridge University Press, Cambridge, 1987.
  • [122] A. Posilicano, Self-adjoint extensions of restrictions, Oper. Matrices 2 (2008), 1–24.
  • [123] O. Post, Equilateral quantum graphs and boundary triples, in: Analysis on Graphs and its Applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 469–490.
  • [124] O. Post, Boundary pairs associated with quadratic forms, Math. Nachr. 289 (2016), 1052–1099.
  • [125] K. Schmüdgen, Unbounded Self-Adjoint Operators on Hilbert Space. Springer, Dordrecht, 2012.
  • [126] C. Schubert, C. Seifert, J. Voigt and M. Waurick, Boundary systems and (skew-)self-adjoint operators on infinite metric graphs, Math. Nachr. 288 (2015), 1776–1785.
  • [127] G. Teschl, Mathematical Methods in Quantum Mechanics. With Applications to Schrödinger Operators. American Mathematical Society, Providence, 2009.
  • [128] M. I. Vishik, On general boundary problems for elliptic differential equations [Russian], Trudy Moskov. Mat. Obšč. 1 (1952), 187–246.
  • [129] J. Weidmann, Lineare Operatoren in Hilberträumen. Teil 1. Grundlagen [German], Mathematische Leitfäden, B. G. Teubner, Stuttgart, 2000.
  • [130] H. Winkler, Spectral estimations for canonical systems, Math. Nachr. 220 (2000), 115–141.
  • [131] C. Wyss, Riesz bases for pp-subordinate perturbations of normal operators, J. Funct. Anal. 258 (2010), 208–240.