This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spectral Reciprocity for the product of Rankin-Selberg LL-functions

Xinchen Miao School of Mathematics
University of Minnesota
Minneapolis, MN 55455, USA
miao0011@umn.edu
(Date: October, 2021)
Abstract.

We prove a new case of spectral reciprocity formulae for the product of GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) and GL(n)×GL(n1){\mathrm{GL}}(n)\times{\mathrm{GL}}(n-1) Rankin-Selberg LL-functions (n3n\geq 3), which are first developed by Blomer and Khan in [BK17] for degree 8 LL-functions (n=2n=2 case, the product of GL(3)×GL(2){\mathrm{GL}}(3)\times{\mathrm{GL}}(2) and GL(2)×GL(1){\mathrm{GL}}(2)\times{\mathrm{GL}}(1) Rankin-Selberg LL-functions). Our result can be viewed as a generalization of Blomer and Khan’s work to higher rank case. We will mainly follow the method developed in [Nun20]. We will use the integral representations of Rankin-Selberg LL-functions generalized by Ichino and Yamana [IY15], spectral theory of L2L^{2} space and the language of automorphic representations.

1. Introduction

In the recent five years, people have shown a lot of interests in studying so called automorphic spectral reciprocity formulae (For example, [AK18] [BK17] [BK18] [BML19] [Nel19] [Nun20] [Zac19] [Zac20] etc.), which we mean an identity roughly of the shape as follows:

π(π)(π)=π~~(π)~(π),\sum_{\pi\in{\mathcal{F}}}{\mathcal{L}}(\pi){\mathcal{H}}(\pi)=\sum_{\pi\in\tilde{{\mathcal{F}}}}\widetilde{{\mathcal{L}}}(\pi)\widetilde{{\mathcal{H}}}(\pi),

where {\mathcal{F}} and ~\widetilde{{\mathcal{F}}} are different families of automorphic representations, (π){\mathcal{L}}(\pi) and ~(π)\widetilde{{\mathcal{L}}}(\pi) are certain (may different) (products of) LL-functions corresponding to automorphic representations (see [Mot93]). Moreover, {\mathcal{H}} and ~\widetilde{{\mathcal{H}}} are some (global) weight functions related to automorphic representation π\pi. The map from {\mathcal{H}} to ~\widetilde{{\mathcal{H}}} is given by an explicit integral transform.

Besides the beauty of spectral reciprocity formulae, these kind of formulae always have powerful applications to non-vanishing and subconvexity problems for the associated LL-functions, which is very important in analytic number theory. This gives people motivations to understand the intrinsical symmetry behind such kind of identities. In other word, people will ask whether there exists a master formula to cover all these reciprocity formulae related to LL-functions. Moreover, there are several works on automorphic LL-functions on which one can find such spectral reciprocity formulae hidden as the key ingredients inside the proof (For example, see [KY21] and [Kha21]).

This kind of spectral reciprocity formula in higher rank (degree 8 LL-function) first appeared in a paper by Blomer, Miller and Li [BML19]. They established a spectral reciprocity formula for GL(4)×GL(2){\mathrm{GL}}(4)\times{\mathrm{GL}}(2) Rankin-Selberg LL-functions in the GL(2){\mathrm{GL}}(2) archimedean (spectral) aspect. Later, Blomer and Khan’s work in [BK17] shows another kind of interesting and deep spectral reciprocity formula which contain the product of GL(3)×GL(2){\mathrm{GL}}(3)\times{\mathrm{GL}}(2) Rankin-Selberg LL-functions and the standard GL(2){\mathrm{GL}}(2) LL-functions. This is a degree 8 LL-function case again. In [BK17], Blomer and Khan used powerful analytic number theory tools to go further. They showed that if the input of GL(3){\mathrm{GL}}(3) automorphic form is an Eisenstein series other than a cusp form, the spectral reciprocity formula is still true. Therefore, they may successfully to apply this kind of spectral reciprocity formula to study the GL(2){\mathrm{GL}}(2) subconvexity problem in level aspect. However, such kind of spectral reciprocity identities appeared at least since Motohashi’s formula [Mot93] which connects the fourth moment of the Riemann zeta-function (GL(1){\mathrm{GL}}(1) LL-functions) to the cubic moment of standard LL-functions of cusp forms on GL(2){\mathrm{GL}}(2).

Now we briefly describe the main result in Blomer and Khan’s paper. They roughly say the following:

Let FF be an automorphic form (cusp form or Eisenstein series) for the group SL3(){\mathrm{SL}}_{3}({\mathbb{Z}}). In the following summations, we let ff be a cusp form for a congruence subgroup of SL2(){\mathrm{SL}}_{2}({\mathbb{Z}}) (ff is ramifed at some finite places). They proved a spectral reciprocity formula of the following shape

f of level qL(s,F×f)L(w,f)λf()f of level L(s,F×f)L(w,f)λf(q),\sum_{f\text{ of level }q}L(s,F\times f)L(w,f)\lambda_{f}(\ell)\rightsquigarrow\sum_{f\text{ of level }\ell}L(s^{\prime},F\times f)L(w^{\prime},f)\lambda_{f}(q),

where qq and \ell are coprime integers and λf\lambda_{f} is the corresponding Hecke eigenvalue for the cusp form ff and

(1.1) s=12(1+ws),w=12(3s+w1).\textstyle s^{\prime}=\frac{1}{2}(1+w-s),\quad w^{\prime}=\frac{1}{2}(3s+w-1).

Furthermore, if FF is an Eisenstein series, we will also see that

f of level q|L(1/2,f)|4λf()f of level |L(1/2,f)|4λf(q).\sum_{f\text{ of level }q}|L(1/2,f)\rvert^{4}\lambda_{f}(\ell)\rightsquigarrow\sum_{f\text{ of level }\ell}|L(1/2,f)\rvert^{4}\lambda_{f}(q).

In 2020, Nunes [Nun20] gave a new and nice proof of Blomer-Khan’s result [BK17] and generalized their result to general number field instead of {\mathbb{Q}}. Instead of tools in the analytic number theory (such as Kuznetsov trace formula, Voronoi Summation formula etc.), his main method is the spectral decomposition formula and the integral representation of Rankin-Selberg LL-functions. The reciprocity of two coprime ideal 𝔭{\mathfrak{p}} and 𝔩{\mathfrak{l}} are given by the action of a Weyl element. We will follow Nunes’ method. Applying integral representations of Rankin-Selberg LL-functions generalized by Ichino and Yamana [IY15], spectral decomposition theory and the language of automorphic representations, we will generalize Blomer-Khan and Nunes’ result to arbitrary higher rank groups. We will establish a spectral reciprocity formula for the product of GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) and GL(n)×GL(n1){\mathrm{GL}}(n)\times{\mathrm{GL}}(n-1) (n3n\geq 3) Rankin-Selberg LL-functions, which is a degree 2n22n^{2} LL-functions. Note that if n=2n=2, the result has already been established in [Nun20, Theorem 1.1, 1.2]. Roughly speaking, we will prove a spectral reciprocity formula of the shape:

π of level 𝔮L(s,Π×π~)L(w,π×π1)H(π)π of level 𝔩L(s,Π×π~)L(w,π×π1)H~(π)\sum_{\pi\text{ of level }{\mathfrak{q}}}L(s,\Pi\times\widetilde{\pi})L(w,\pi\times\pi_{1})H(\pi)\rightsquigarrow\sum_{\pi\text{ of level }{\mathfrak{l}}}L(s^{\prime},\Pi\times\widetilde{\pi})L(w^{\prime},\pi\times\pi_{1})\widetilde{H}(\pi)

for different unramified prime ideal 𝔮{\mathfrak{q}} and 𝔩{\mathfrak{l}}, where π~\widetilde{\pi} is the contragredient representation of π\pi. Here both Π\Pi and π1\pi_{1} are cuspidal automorphic forms on GL(n+1){\mathrm{GL}}(n+1) and GL(n1){\mathrm{GL}}(n-1) which are unramified everywhere and have trivial central character. Note that the automorphic representation π\pi on GL(n){\mathrm{GL}}(n) also have trivial central character. Moreover, we have

s=1+(n1)wsn,w=(n+1)s+w1n.s^{\prime}=\frac{1+(n-1)w-s}{n},\quad w^{\prime}=\frac{(n+1)s+w-1}{n}.

For the rigorous statement of above spectral reciprocity formula, the readers can see Theorem 3.15.

This kind of spectral reciprocity formula should have some applications on the simultaneous nonvanishing problems of certain Rankin-Selberg LL-functions [Nun20, Corollary 1.3]. However, this need a careful choice of local vectors and estimations. Moreover, we have to bound all the error terms which contain the moment of higher rank LL-functions. We hope to go back to this kind of applications in the future.

2. Some notations and preliminaries

We will mainly follow the notations and preliminaries in [Ja20], [Nun20], and [Zac19].

2.1. Number Fields and Local Fields

Let F/F/\mathbb{Q} be a fixed number field with ring of intergers 𝒪F{\mathcal{O}}_{F} and discriminant ΔF\Delta_{F}.

For a place vv of FF, we let FvF_{v} be a local field which is the completion of FF at the place vv. If vv is non-Archimedean, we write 𝔬v{\mathfrak{o}}_{v} for the ring of integers in FvF_{v} with maximal ideal 𝔪v{\mathfrak{m}}_{v} and uniformizer ϖv\varpi_{v}. The cardinality of the residue field is pv:=|𝔬v/𝔪v|p_{v}:=|{\mathfrak{o}}_{v}/{\mathfrak{m}}_{v}\rvert. For ss\in{\mathbb{C}}, we define the local zeta function ζFv(s)\zeta_{F_{v}}(s) to be (1pvs)1(1-p_{v}^{-s})^{-1} if vv is a finite place; ζFv(s)=πs/2Γ(s/2)\zeta_{F_{v}}(s)=\pi^{-s/2}\Gamma(s/2) if vv is real and ζFv(s)=2(2π)sΓ(s)\zeta_{F_{v}}(s)=2(2\pi)^{-s}\Gamma(s) if vv is complex.

The adele ring of FF is denoted by 𝔸F{\mathbb{A}}_{F} and its unit group is given by 𝔸F×{\mathbb{A}}^{\times}_{F} (idele group). We also let 𝔸F1:={x𝔸F×:|x|=1}{\mathbb{A}}^{1}_{F}:=\{x\in{\mathbb{A}}_{F}^{\times}\ :\ |x|=1\}, where ||:𝔸F×>0|\cdot|:{\mathbb{A}}_{F}^{\times}\rightarrow{\mathbb{R}}_{>0} is the adelic norm map. Note that 𝔸F1{\mathbb{A}}_{F}^{1} is exactly the kernel of the adelic norm map. We also call 𝔸F1{\mathbb{A}}^{1}_{F} norm one ideles.

We fix ψ=vψv\psi=\prod_{v}\psi_{v} be the additive character with the form as ψTrF/,\psi_{\mathbb{Q}}\circ\text{Tr}_{F/{\mathbb{Q}}}, where TrF/\text{Tr}_{F/{\mathbb{Q}}} is the trace map and ψ\psi_{\mathbb{Q}} is the standard additive character on 𝔸{\mathbb{Q}}\setminus{\mathbb{A}}_{\mathbb{Q}}. For v<v<\infty, we let dvd_{v} be the conductor of additive character ψv\psi_{v}, which is the smallest non-negative integer such that ψv\psi_{v} is trivial on 𝔪vdv{\mathfrak{m}}_{v}^{d_{v}}. In this case, we will have ΔF=v<qvdv\Delta_{F}=\prod_{v<\infty}q_{v}^{d_{v}}. We may also set dv=0d_{v}=0 when vv is Archimedean.

2.2. Subgroups of GL(n){\mathrm{GL}}(n) and Measure

Now we consider some subgroups of GL(n){\mathrm{GL}}(n).

Let G=GL(n){\mathrm{G}}={\mathrm{GL}}(n). If RR is a field, by definition, G(R){\mathrm{G}}(R) is the group of n×nn\times n matrices with coefficients in RR and determinant in R{0}R-\{0\}. We also define the following standard and also important subgroups

Zn(R):={(uuu),uR},{\mathrm{Z}}_{n}(R):=\left\{\begin{pmatrix}u&&&\\ &u&&\\ &&\cdots&\\ &&&u\end{pmatrix},\;\;u\in R^{*}\right\},
Nn(R):={(1x1,2x1,3x1,n1x2,3x2,n1xn1,n1),xi,jR, 1i<jn},{\mathrm{N}}_{n}(R):=\left\{\begin{pmatrix}1&x_{1,2}&x_{1,3}&\cdots&x_{1,n}\\ &1&x_{2,3}&\cdots&x_{2,n}\\ &&\cdots&\cdots&\cdots\\ &&&1&x_{n-1,n}\\ &&&&1\end{pmatrix},\;\;x_{i,j}\in R,\;1\leq i<j\leq n\right\},
An(R):={(yn1y1yn2y1y11),yiR, 1in1},{\mathrm{A}}_{n}(R):=\left\{\begin{pmatrix}y_{n-1}\cdots y_{1}&&&&\\ &y_{n-2}\cdots y_{1}&&&\\ &&\cdots&&\\ &&&y_{1}&\\ &&&&1\end{pmatrix},\;\;y_{i}\in R^{*},\;1\leq i\leq n-1\right\},

and the Borel subgroup

Bn(R):=Zn(R)Nn(R)An(R).{\mathrm{B}}_{n}(R):={\mathrm{Z}}_{n}(R){\mathrm{N}}_{n}(R){\mathrm{A}}_{n}(R).

We let WW be the Weyl group of G{\mathrm{G}}. We write

w0:=(1111)w_{0}:=\begin{pmatrix}&&&&1\\ &&&1&\\ &&\cdots&&\\ &1&&&\\ 1&&&&\end{pmatrix}

be the longest Weyl element.

Moreover, for any place vv, we let Kv{\mathrm{K}}_{v} be the maximal compact subgroup of G(Fv){\mathrm{G}}(F_{v}) which is defined by

(2.1) Kv={G(𝔬v)ifvisfiniteOn()ifvisrealUn()ifviscomplex.{\mathrm{K}}_{v}=\left\{\begin{array}[]{lcl}{\mathrm{G}}({\mathfrak{o}}_{v})&\text{if}&v\ \mathrm{is\ finite}\\ &&\\ \mathrm{O}_{n}({\mathbb{R}})&\text{if}&v\ \mathrm{is\ real}\\ &&\\ \mathrm{U}_{n}(\mathbb{C})&\text{if}&v\ \mathrm{is\ complex}.\end{array}\right.

We also let K:=vKv{\mathrm{K}}:=\prod_{v}{\mathrm{K}}_{v}. If v<v<\infty and n0n\geqslant 0, we define the congruence subgroup [JPS81] by (This will be used in the computation of local vectors and is useful in the local new-vector theory)

Kv,0(ϖvn)={(k1,1k1,2k1,nk2,1k2,2k2,nkn,1kn,2kn,n)Kv,kn,i𝔪vn, 1in1}.{\mathrm{K}}_{v,0}(\varpi_{v}^{n})=\left\{\begin{pmatrix}k_{1,1}&k_{1,2}&\cdots&k_{1,n}\\ k_{2,1}&k_{2,2}&\cdots&k_{2,n}\\ \cdots&\cdots&\cdots&\cdots\\ k_{n,1}&k_{n,2}&\cdots&k_{n,n}\end{pmatrix}\in{\mathrm{K}}_{v},\;\;k_{n,i}\in{\mathfrak{m}}_{v}^{n},\;1\leq i\leq n-1\right\}.

If 𝔞{\mathfrak{a}} is an ideal of 𝒪F{\mathcal{O}}_{F} with prime decomposition 𝔞=v<𝔭vfv(𝔞){\mathfrak{a}}=\prod_{v<\infty}{\mathfrak{p}}_{v}^{f_{v}({\mathfrak{a}})} where 𝔭v{\mathfrak{p}}_{v} is the unique prime (also maximal) ideal corresponding to the finite place vv, then we define

K0(𝔞):=v<Kv,0(ϖvfv(𝔞))KGLn(𝔸F).{\mathrm{K}}_{0}({\mathfrak{a}}):=\prod_{v<\infty}{\mathrm{K}}_{v,0}(\varpi_{v}^{f_{v}({\mathfrak{a}})})\subseteq K\subseteq{\mathrm{GL}}_{n}({\mathbb{A}}_{F}).

Now we have to normalize the measures we need.

At each place vv, dxvdx_{v} denotes a self-dual measure on FvF_{v} with respect to the standard additive character ψv\psi_{v}. If v<v<\infty, dxvdx_{v} gives a Haar measure on FvF_{v} which gives the volume qvdv/2q_{v}^{-d_{v}/2} to the integer ring 𝔬v{\mathfrak{o}}_{v}. If vv is real, the measure dxvdx_{v} is the standard Lebesgue measure on {\mathbb{R}}. If vv is complex, the measure dxvdx_{v} is the multiplication of two and the standard Lebesgue measure on {\mathbb{C}}. We define dx:=vdxvdx:=\prod_{v}dx_{v} on 𝔸F{\mathbb{A}}_{F}. Moreover, we will take d×xv:=ζFv(1)dxv|xv|d^{\times}x_{v}:=\zeta_{F_{v}}(1)\frac{dx_{v}}{|x_{v}|} as the Haar measure on the multiplicative group Fv×F_{v}^{\times} and we let d×x:=vd×xvd^{\times}x:=\prod_{v}d^{\times}x_{v} be the Haar measure on the idele group 𝔸F×{\mathbb{A}}^{\times}_{F}.

We equip Kv{\mathrm{K}}_{v} with the probability Haar measure dkvdk_{v}. In other word, the volume of Kv{\mathrm{K}}_{v} equals to one.

Using the Iwasawa decomposition on G(Fv){\mathrm{G}}(F_{v}) which gives G(Fv)=Zn(Fv)Nn(Fv)An(Fv)Kv{\mathrm{G}}(F_{v})={\mathrm{Z}}_{n}(F_{v}){\mathrm{N}}_{n}(F_{v}){\mathrm{A}}_{n}(F_{v}){\mathrm{K}}_{v}, a Haar measure on G(Fv){\mathrm{G}}(F_{v}) can be given by

(2.2) dgv=d×u1i<jndxi,ji=1n1d×yiδ(An)dkv,dg_{v}=d^{\times}u\prod_{1\leq i<j\leq n}dx_{i,j}\frac{\prod_{i=1}^{n-1}d^{\times}y_{i}}{\delta({\mathrm{A}}_{n})}dk_{v},

where δ(An)=δ(y1,y2,,yn1)\delta(A_{n})=\delta(y_{1},y_{2},\cdots,y_{n-1}) is the modular character defined on An(Fv){\mathrm{A}}_{n}(F_{v}). The measure on the adelic points of the subgroups in GL(n){\mathrm{GL}}(n) are just the product of the local measures defined above. We also denote by dgdg the quotient measure on the space

X:=Zn(𝔸F)G(F)\G(𝔸F),{\mathrm{X}}:={\mathrm{Z}}_{n}({\mathbb{A}}_{F}){\mathrm{G}}(F)\backslash{\mathrm{G}}({\mathbb{A}}_{F}),

with total volume vol(X)<\mathrm{vol}({\mathrm{X}})<\infty.

2.3. Whittaker functions

We recall some basic background of Whittaker functions.

We start from the generic representations. Let π\pi be a global genreic automorphic representation of GLn(𝔸F){\mathrm{GL}}_{n}({\mathbb{A}}_{F}) and let ϕπ\phi\in\pi be a generic automorphic form. Let Wϕ:GLn(𝔸F)W_{\phi}:{\mathrm{GL}}_{n}({\mathbb{A}}_{F})\rightarrow{\mathbb{C}} be the Whittaker function of ϕ\phi which is given by

(2.3) Wϕ(g):=Nn(F)\Nn(𝔸F)ϕ(ng)ψ11(n)𝑑n.W_{\phi}(g):=\int_{{\mathrm{N}}_{n}(F)\backslash{\mathrm{N}}_{n}({\mathbb{A}}_{F})}\phi\left(ng\right)\psi_{1}^{-1}(n)dn.

We will give the definition of the additive character ψ1\psi_{1} later.

Since π\pi is generic, the Whittaker function does not vanish. The integral defined above (2.3) is absolute convergent since the integral domain Nn(F)\Nn(𝔸F){\mathrm{N}}_{n}(F)\backslash{\mathrm{N}}_{n}({\mathbb{A}}_{F}) is compact and the integral is moreover uniformly comvergent on any compact subsets in GLn(𝔸F){\mathrm{GL}}_{n}({\mathbb{A}}_{F}).

By changing variables, we note that Wϕ(ng)=ψ1(n)Wϕ(g)W_{\phi}(ng)=\psi_{1}(n)W_{\phi}(g) for all nNn(𝔸F)n\in{\mathrm{N}}_{n}({\mathbb{A}}_{F}), where ψ1\psi_{1} is a nontrivial standard additive character from Nn(F)\Nn(𝔸F){\mathrm{N}}_{n}(F)\backslash{\mathrm{N}}_{n}({\mathbb{A}}_{F}) to {\mathbb{C}}. In our paper, we will choose that ψ1(n):=ψ(i=1n1xi,i+1)\psi_{1}(n):=\psi\left(\sum_{i=1}^{n-1}x_{i,i+1}\right), where n=(xi,j)Nn(𝔸F)n=(x_{i,j})\in{\mathrm{N}}_{n}({\mathbb{A}}_{F}). Here ψ\psi is a standard additive character from 𝔸F/F{\mathbb{A}}_{F}/F to {\mathbb{C}} which is defined in Section 2.1.

We also have the following Fourier series expansion (see [Cog07, Theorem 1.1]) when we further assume that ϕ\phi is a cusp form. Therefore, a cusp form is automatically generic by the following equation.

(2.4) ϕ(g)=γNn1(F)\GLn1(F)Wϕ((γ1)g).\phi(g)=\sum_{\gamma\in{\mathrm{N}}_{n-1}(F)\backslash{\mathrm{GL}}_{n-1}(F)}W_{\phi}\left(\begin{pmatrix}\gamma&\\ &1\end{pmatrix}g\right).

We can also define local Whittaker functions for smooth generic admissible representations of GLn{\mathrm{GL}}_{n} over local fields FvF_{v}. We have the following well known decomposition theorem. If π\pi is a generic smooth irreducible admissible representation of GLn(𝔸F){\mathrm{GL}}_{n}({\mathbb{A}}_{F}), then we know that π\pi factors as a restricted tensor product by πvπv\pi\simeq\otimes^{\prime}_{v}\pi_{v}. For each vv, πv\pi_{v} is a local generic smmoth irreducible admissible representation of GLn(Fv){\mathrm{GL}}_{n}(F_{v}). For each local place vv, we can define local Whittaker functions. For every ϕπ\phi\in\pi, if we write ϕ=vϕv\phi=\otimes^{\prime}_{v}\phi_{v}, then we have the decomposition

(2.5) Wϕ(g)=vWϕv(gv),whereg=(gv)vGLn(𝔸F).W_{\phi}(g)=\prod_{v}W_{\phi_{v}}(g_{v}),\;\text{where}\;g=(g_{v})_{v}\in{\mathrm{GL}}_{n}({\mathbb{A}}_{F}).

In fact, we know that the map ϕWϕ\phi\mapsto W_{\phi} intertwines the space of π\pi and the space

𝒲(π,ψ1):={Wϕ;ϕπ},{\mathcal{W}}(\pi,\psi_{1}):=\{W_{\phi};\;\phi\in\pi\},

which is called the Whittaker model of π\pi. We can similarly define the local Whittaker models 𝒲(πv,ψ1,v){\mathcal{W}}(\pi_{v},\psi_{1,v}).

It is also important to consider Whittaker functions with respect to the character ψ1=ψ11\psi_{1}^{\prime}=\psi_{1}^{-1} since it will appear in the integral representations for GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) Rankin-Selberg LL-functions (see Section 3.2). It also has close relation with the Whittaker model of the contragredient representation π~\widetilde{\pi} when the representation π\pi is unitarizable (see [FLO12, Appendix A]). Locally, we can define WϕvW^{\prime}_{\phi_{v}} by simply replacing ψ1,v\psi_{1,v} by ψ1,v=ψ1,v1\psi^{\prime}_{1,v}=\psi_{1,v}^{-1}. Globally, we can define WϕW^{\prime}_{\phi} by replacing ψ1\psi_{1} by ψ1\psi_{1}^{\prime}. Moreover, we have the following equation

(2.6) Wϕv¯=Wϕv¯ for all places v of F.W^{\prime}_{\overline{\phi_{v}}}=\overline{W_{\phi_{v}}}\text{ for all places $v$ of $F$}.

For W𝒲(πv,ψ1,v)W\in{\mathcal{W}}(\pi_{v},\psi_{1,v}), the corresponding Whittaker model 𝒲(π~v,ψ1,v1){\mathcal{W}}(\widetilde{\pi}_{v},\psi_{1,v}^{-1}) for contragredient representation is given by W~(g):=W(w0(gt)1)\widetilde{W}(g):=W\left(w_{0}(g^{t})^{-1}\right), where w0w_{0} is the longest Weyl element in GL(n){\mathrm{GL}}(n) and (gt)1(g^{t})^{-1} means the transpose inverse, therefore it is an involution in GL(n){\mathrm{GL}}(n). The global Whittaker model 𝒲(π~,ψ11){\mathcal{W}}(\widetilde{\pi},\psi_{1}^{-1}) is defined in the same way. If a local generic smooth irreducible admissible representation πv\pi_{v} is unramified, this is equivalent to say that there exists a vector which is right invariant by the action of the maximal compact subgroup of G(Fv){\mathrm{G}}(F_{v}) in the space of π\pi. We call such a vector spherical vector and spherical vectors are unique up to multiplication by scalars. We say that a vector ϕvπv\phi_{v}\in\pi_{v} is normalized spherical if it is spherical. Moreover, its related Whittaker function WϕvW_{\phi_{v}} satisfies Wϕv(In×n)=1W_{\phi_{v}}(I_{n\times n})=1.

2.4. Spectral Decomposition

Now we consider the L2L^{2} space L2(X)L^{2}({\mathrm{X}}) which is the Hilbert space of complex valued square integrable functions with the domain X{\mathrm{X}}. The L2L^{2}-norm is defined by

(2.7) φL2(X)2:=X|φ(g)|2𝑑g.||\varphi||_{L^{2}({\mathrm{X}})}^{2}:=\int_{\mathrm{X}}|\varphi(g)|^{2}dg.

For any φ1,φ2L2(X)\varphi_{1},\varphi_{2}\in L^{2}({\mathrm{X}}), we have

(φ1,φ2)L2(X):=Xφ1(g)φ2(g)¯𝑑g.(\varphi_{1},\varphi_{2})_{L^{2}({\mathrm{X}})}:=\int_{\mathrm{X}}\varphi_{1}(g)\overline{\varphi_{2}(g)}dg.

An important closed subspace of L2(X)L^{2}({\mathrm{X}}) is the closed subspace of cusp forms. We let Lcusp2(X)L_{\mathrm{cusp}}^{2}({\mathrm{X}}) be the closed subspace of cusp forms. A cusp form is the function φL2(X)\varphi\in L^{2}({\mathrm{X}}) with the following additional equation

Nn(F)Nn(𝔸F)φ(ng)𝑑n=0,\int_{{\mathrm{N}}_{n}(F)\setminus{\mathrm{N}}_{n}({\mathbb{A}}_{F})}\varphi(ng)dn=0,

for almost all gGLn(𝔸F)g\in{\mathrm{GL}}_{n}({\mathbb{A}}_{F}).

The group G(𝔸F){\mathrm{G}}({\mathbb{A}}_{F}) acts by right translations on both spaces L2(X)L^{2}({\mathrm{X}}) and Lcusp2(X)L_{\mathrm{cusp}}^{2}({\mathrm{X}}) and the corresponding representation is unitary with respect to the norm in (2.7). The decomposition theorem of automorphic representations is well known, which states that each irreducible component π\pi factors as a restricted tensor product π=vπv\pi=\otimes^{\prime}_{v}\pi_{v} for all places kk, where πv\pi_{v} are irreducible and unitary representations of the local groups G(Fv){\mathrm{G}}(F_{v}). The spectral decomposition is established in 1970s by Gelbart, Jacquet and Langlands which gives the following orthogonal decomposition (see [MW95] for more details)

(2.8) L2(X)=Lcusp2(X)Lres2(X)Lcont2(X).L^{2}({\mathrm{X}})=L^{2}_{\mathrm{cusp}}({\mathrm{X}})\oplus L^{2}_{\mathrm{res}}({\mathrm{X}})\oplus L^{2}_{\mathrm{cont}}({\mathrm{X}}).

Here the closed subspace Lcusp2(X)L^{2}_{\mathrm{cusp}}({\mathrm{X}}) decomposes as a direct sum of irreducible G(𝔸F){\mathrm{G}}({\mathbb{A}}_{F})-representations which are called the cuspidal automorphic representations. Lres2(X)L^{2}_{\mathrm{res}}({\mathrm{X}}) is called the residue spectrum which is the direct sum of all residue automorphic representations of L2(X)L^{2}({\mathrm{X}}). Finally, the continuous part Lcont2(X)L^{2}_{\mathrm{cont}}({\mathrm{X}}) is a direct integral of irreducible G(𝔸F){\mathrm{G}}({\mathbb{A}}_{F})-representations and it is expressed by the Eisenstein series.

For any ideal 𝔞{\mathfrak{a}} of 𝒪F{\mathcal{O}}_{F}, we let L2(X,𝔞):=L2(X)K0(𝔞)L^{2}({\mathrm{X}},{\mathfrak{a}}):=L^{2}({\mathrm{X}})^{{\mathrm{K}}_{0}({\mathfrak{a}})} be the closed subspace of level 𝔞{\mathfrak{a}} automorphic forms. This is the closed subspace of L2L^{2} functions that are invariant under the subgroup K0(𝔞){\mathrm{K}}_{0}({\mathfrak{a}}).

We now have the following spectral orthogonal decomposition with the level restriction:

(2.9) L2(X,𝔞)=Lcusp2(X,𝔞)Lres2(X,𝔞)Lcont2(X,𝔞).L^{2}({\mathrm{X}},{\mathfrak{a}})=L^{2}_{\mathrm{cusp}}({\mathrm{X}},{\mathfrak{a}})\oplus L^{2}_{\mathrm{res}}({\mathrm{X}},{\mathfrak{a}})\oplus L^{2}_{\mathrm{cont}}({\mathrm{X}},{\mathfrak{a}}).

2.5. Automorphic Representations

Now we consider automorphic representations. Let X^\hat{{\mathrm{X}}} be the isomorphism class of unitary irreducible automorphic representations which will appear in the spectral decomposition of L2(X)L^{2}({\mathrm{X}}). Since we will later use the integral representation of GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) Rankin-Selberg LL-functions, we will only focus on the unitary irreducible generic automorphic representations. We will consider X^gen\hat{{\mathrm{X}}}_{\text{gen}} be the subset of X^\hat{{\mathrm{X}}} which is the isomorphism class of generic representations in X^\hat{{\mathrm{X}}}, which is the unitary irreducible automorphic representation class that have (unique) Whittaker models. We fix an automorphic Plancherel measure dμautd\mu_{\text{aut}} on X^\hat{{\mathrm{X}}} which is compatible with the Haar measure on X{\mathrm{X}}.

Fortunately, we have the Langlands classification for X^gen\hat{{\mathrm{X}}}_{\text{gen}} (see [CPS94] and [MW95]). We take a partition n=r1++rkn=r_{1}+\dots+r_{k}. Let πj\pi_{j} be a unitary cuspidal automorphic representation for GLrj(𝔸F){\mathrm{GL}}_{r_{j}}({\mathbb{A}}_{F}) (If rj=1r_{j}=1, we simply take πj\pi_{j} to be a unitary Hecke character). We now consider the unitary induced representation Π\Pi from the Levi subgroup GL(r1)××GL(rk)GL(n){\mathrm{GL}}(r_{1})\times\dots\times{\mathrm{GL}}(r_{k})\subseteq{\mathrm{GL}}(n) to GL(n){\mathrm{GL}}(n) with the tensor product representation π1πk\pi_{1}\otimes\dots\otimes\pi_{k}. There exists a unique irreducible constituent of Π\Pi which we denote by the isobaric sum π1πk\pi_{1}\boxplus\dots\boxplus\pi_{k}. Then, Langlands classification says that every element in X^gen\hat{{\mathrm{X}}}_{\text{gen}} is isomorphic to such an isobaric sum.

Moreover, we know that all residual automorphic representations in Lres2(X)L^{2}_{\mathrm{res}}({\mathrm{X}}) is not generic (see [JL13] Proposition 2.1).

Now we note that all the unitary generic Eisenstein series will have the form of the isobaric sum π1||it1πk||itk\pi_{1}|\cdot\rvert^{it_{1}}\boxplus\dots\boxplus\pi_{k}|\cdot\rvert^{it_{k}}, where t1,t2,,tkt_{1},t_{2},\cdots,t_{k}\in{\mathbb{R}}. We will write

π=π(π1,,πk,t1,,tk)=π1||it1πk||itk\pi=\pi(\pi_{1},\cdots,\pi_{k},t_{1},\cdots,t_{k})=\pi_{1}|\cdot\rvert^{it_{1}}\boxplus\dots\boxplus\pi_{k}|\cdot\rvert^{it_{k}}

with parameters t1,,tkt_{1},\cdots,t_{k} (k2k\geq 2).

3. The product of GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) and GL(n)×GL(n1){\mathrm{GL}}(n)\times{\mathrm{GL}}(n-1) (n3n\geq 3) Rankin-Selberg LL-functions

3.1. Abstract Spectral Decomposition Formula

We have the following abstract spectral decomposition formula in GL(n){\mathrm{GL}}(n) case (see [MV10, Section 2.2]). The discrete part is generated by cusp forms and residue representations. The continuous spectrum part which is expressed by Eisenstein series is complicated. However, we know that it depends on the partition of the positive integer nn (see Section 2.5).

Proposition 3.1.

Suppose that X:=Zn(𝔸F)GLn(F)\GLn(𝔸F){\mathrm{X}}:={\mathrm{Z}}_{n}({\mathbb{A}}_{F}){\mathrm{GL}}_{n}(F)\backslash{\mathrm{GL}}_{n}({\mathbb{A}}_{F}). Let FC(X/K0(𝔞))F\in C^{\infty}\left({\mathrm{X}}/{\mathrm{K}}_{0}({\mathfrak{a}})\right) and of rapid decay, then we have the following equation:

(3.1) F(g)\displaystyle F(g) =πX^cond(π)|𝔞(ϕ(π,𝔞)F,ϕϕ(g))𝑑μaut(π),\displaystyle=\int_{\begin{subarray}{c}\pi\in\hat{{\mathrm{X}}}\\ \mathrm{cond}(\pi)|{\mathfrak{a}}\end{subarray}}\left(\sum_{\phi\in{\mathcal{B}}(\pi,{\mathfrak{a}})}\langle F,\phi\rangle\phi(g)\right)d\mu_{\mathrm{aut}}(\pi),
=πautomorphiccond(π)|𝔞(ϕ(π,𝔞)F,ϕϕ(g))𝑑μaut(π),\displaystyle=\int_{\begin{subarray}{c}\pi\ \mathrm{automorphic}\\ \mathrm{cond}(\pi)|{\mathfrak{a}}\end{subarray}}\left(\sum_{\phi\in{\mathcal{B}}(\pi,{\mathfrak{a}})}\langle F,\phi\rangle\phi(g)\right)d\mu_{\mathrm{aut}}(\pi),
=πcuspidalcond(π)|𝔞ϕ(π,𝔞)F,ϕϕ(g)+πresiduecond(π)|𝔞ϕ(π,𝔞)F,ϕϕ(g)\displaystyle=\sum_{\begin{subarray}{c}\pi\ \mathrm{cuspidal}\\ \mathrm{cond}(\pi)|{\mathfrak{a}}\end{subarray}}\sum_{\phi\in{\mathcal{B}}(\pi,{\mathfrak{a}})}\langle F,\phi\rangle\phi(g)+\sum_{\begin{subarray}{c}\pi\ \mathrm{residue}\\ \mathrm{cond}(\pi)|{\mathfrak{a}}\end{subarray}}\sum_{\phi\in{\mathcal{B}}(\pi,{\mathfrak{a}})}\langle F,\phi\rangle\phi(g)
+πcontinuouscond(π)|𝔞(ϕ(π,𝔞)F,ϕϕ(g))𝑑μaut(π).\displaystyle+\int_{\begin{subarray}{c}\pi\ \mathrm{continuous}\\ \mathrm{cond}(\pi)|{\mathfrak{a}}\end{subarray}}\left(\sum_{\phi\in{\mathcal{B}}(\pi,{\mathfrak{a}})}\langle F,\phi\rangle\phi(g)\right)d\mu_{\mathrm{aut}}(\pi).
Remark 3.2.

Above Proposition 3.1 is a smooth version of the spectral decomposition 2.9.

3.2. Rankin-Selberg LL-functions

We need to recall integral representations of GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) (n3n\geq 3) LL-functions.

The theory is quite similar to the adelic Hecke-Jacquet-Langlands’ theory [God18] of twisted LL-functions for GL2×GL1{\mathrm{GL}}_{2}\times{\mathrm{GL}}_{1}. We let Π\Pi be irreducible automorphic representations of GLn+1(𝔸){\mathrm{GL}}_{n+1}({\mathbb{A}}). Let ΦΠ\Phi\in\Pi be an automorphic form. Let π\pi be irreducible automorphic representations of GLn(𝔸){\mathrm{GL}}_{n}({\mathbb{A}}) and let ϕπ\phi\in\pi be an automorphic form. We first assume that Φ\Phi is a cusp form and is of rapid decay. Therefore, for every ss\in{\mathbb{C}}, we can consider the following period integral

I(s,Φ,ϕ):=GLn(F)\GLn(𝔸)Φ(h1)ϕ(h)|deth|s12𝑑h,I(s,\Phi,\phi):=\int_{{\mathrm{GL}}_{n}(F)\backslash{\mathrm{GL}}_{n}({\mathbb{A}})}\Phi\begin{pmatrix}h&\\ &1\end{pmatrix}\phi(h)|\det h|^{s-\frac{1}{2}}dh,

which defines an entire function of ss and is bounded on vertical strips.

From the Whittaker-Fourier expansion of cusp forms (2.4) [Cog07, Theorem 1.1], if Φ\Phi is a cusp form, we will have (for Re(s){\mathrm{Re}}(s) large enough)

(3.2) I(s,Φ,ϕ)=Ψ(s,WΦ,Wϕ),(Re(s)1),I(s,\Phi,\phi)=\Psi(s,W_{\Phi},W^{\prime}_{\phi}),\;\;({\mathrm{Re}}(s)\gg 1),

where the global zeta integral is given by

(3.3) Ψ(s,WΦ,Wϕ):=Nn(𝔸)\GLn(𝔸)WΦ(h1)Wϕ(h)|deth|s12𝑑h.\Psi(s,W_{\Phi},W^{\prime}_{\phi}):=\int_{N_{n}({\mathbb{A}})\backslash{\mathrm{GL}}_{n}({\mathbb{A}})}W_{\Phi}\begin{pmatrix}h&\\ &1\end{pmatrix}W^{\prime}_{\phi}(h)|\det h|^{s-\frac{1}{2}}dh.

The following result can be found in [Cog07] [JPS79] [JPS83] [JS90] [Jac09].

Proposition 3.3.

Let Φ=vΦvΠ\Phi=\otimes^{\prime}_{v}\Phi_{v}\in\Pi and ϕ=vϕvπ\phi=\otimes^{\prime}_{v}\phi_{v}\in\pi be factorizable automorphic forms on GLn+1(𝔸F){\mathrm{GL}}_{n+1}({\mathbb{A}}_{F}) and GLn(𝔸F){\mathrm{GL}}_{n}({\mathbb{A}}_{F}). Let WΦvW_{\Phi_{v}} and WϕvW^{\prime}_{\phi_{v}} be the corresponding Whittaker functions defined in Section 2.3. Then, for Re(s){\mathrm{Re}}(s) large enough, the global zeta integral Φ(s,WΦ,Wϕ)\Phi(s,W_{\Phi},W^{\prime}_{\phi}) converges and we have the following factorization (Euler product)

Ψ(s,WΦ,Wϕ)=vΨv(s,WΦv,Wϕv),\Psi(s,W_{\Phi},W^{\prime}_{\phi})=\prod_{v}\Psi_{v}(s,W_{\Phi_{v}},W^{\prime}_{\phi_{v}}),

where the local zeta integral is given by

(3.4) Ψv(s,WΦv,Wϕv):=Nn(Fv)\GLn(Fv)WΦv(hv1)Wϕv(hv)|dethv|s12𝑑hv.\Psi_{v}(s,W_{\Phi_{v}},W^{\prime}_{\phi_{v}}):=\int_{N_{n}(F_{v})\backslash{\mathrm{GL}}_{n}(F_{v})}W_{\Phi_{v}}\begin{pmatrix}h_{v}&\\ &1\end{pmatrix}W^{\prime}_{\phi_{v}}(h_{v})|\det h_{v}|^{s-\frac{1}{2}}dh_{v}.

Moreover, if both Πv\Pi_{v} and πv\pi_{v} are unramified and Φv\Phi_{v} and ϕv\phi_{v} are normalized spherical vectors, we will have

Ψv(s,WΦv,Wϕv)=L(s,Πv×πv).\Psi_{v}(s,W_{\Phi_{v}},W^{\prime}_{\phi_{v}})=L(s,\Pi_{v}\times\pi_{v}).

One of the key ingredients in our paper is the following generalization of integral representation on Rankin-Selberg LL-functions for GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) given by Ichino and Yamana [IY15].

Proposition 3.4.

Let ΦΠ\Phi\in\Pi and ϕπ\phi\in\pi be automorphic forms on GLn+1(𝔸F){\mathrm{GL}}_{n+1}({\mathbb{A}}_{F}) and GLn(𝔸F){\mathrm{GL}}_{n}({\mathbb{A}}_{F}). Assume that the following period integral

I(s,Φ,ϕ):=GLn(F)\GLn(𝔸)Φ(h1)ϕ(h)|deth|s12𝑑hI(s,\Phi,\phi):=\int_{{\mathrm{GL}}_{n}(F)\backslash{\mathrm{GL}}_{n}({\mathbb{A}})}\Phi\begin{pmatrix}h&\\ &1\end{pmatrix}\phi(h)|\det h|^{s-\frac{1}{2}}dh

is absolute convergent, we will still have the following equation for Re(s){\mathrm{Re}}(s) large enough:

(3.5) I(s,Φ,ϕ)=Ψ(s,WΦ,Wϕ),(Re(s)1),I(s,\Phi,\phi)=\Psi(s,W_{\Phi},W^{\prime}_{\phi}),\;\;({\mathrm{Re}}(s)\gg 1),

where

(3.6) Ψ(s,WΦ,Wϕ):=Nn(𝔸)\GLn(𝔸)WΦ(h1)Wϕ(h)|deth|s12𝑑h.\Psi(s,W_{\Phi},W^{\prime}_{\phi}):=\int_{N_{n}({\mathbb{A}})\backslash{\mathrm{GL}}_{n}({\mathbb{A}})}W_{\Phi}\begin{pmatrix}h&\\ &1\end{pmatrix}W^{\prime}_{\phi}(h)|\det h|^{s-\frac{1}{2}}dh.
Proof.

This is a combination of Corollary 3.10 and Main Theorem (Theorem 1.1) of Ichino and Yamana’s paper [IY15]. ∎

3.3. Abstract Reciprocity Formula

We can briefly summarize the proof of Theorem 3.7 now. The proof of Theorem 3.7 is a combination of above decomposition formula 3.1 and an identity between two periods. Later, we will relate the period to moments of certain LL-functions. The proof of an identity between two periods is a rather simple matrix computation and is really important to abstract pre-spectral reciprocity formula.

Suppose that ΦC(Zn+1(𝔸)GLn+1(F)\GLn+1(𝔸))\Phi\in C^{\infty}(Z_{n+1}({\mathbb{A}}){\mathrm{GL}}_{n+1}(F)\backslash{\mathrm{GL}}_{n+1}({\mathbb{A}})) is a cuspidal automorphic form. Therefore, it is of rapid decay.

Then, we can define the projection by

(3.7) 𝒜sΦ(hn):=|deth|s12F×\𝔸×Φ((zn(u)hn1))|u|n(s12)d×u.{\mathcal{A}}_{s}\Phi(h_{n})\,:=|\det h|^{s-\frac{1}{2}}\cdot\int_{F^{\times}\backslash{\mathbb{A}}^{\times}}\Phi\left(\begin{pmatrix}z_{n}(u)h_{n}&\\ &1\end{pmatrix}\right)|u|^{n(s-\frac{1}{2})}d^{\times}u.

Since Φ\Phi is of rapid decay, the above average projection map over the center 𝒜sΦ{\mathcal{A}}_{s}\Phi is well-defined for every complex number ss and is again of rapid decay in terms of hnGL(n)h_{n}\in{\mathrm{GL}}(n). Moreover, we may easily check that 𝒜sΦ{\mathcal{A}}_{s}\Phi is invariant under the action of the center Zn(𝔸){\mathrm{Z}}_{n}({\mathbb{A}}).

We also give the following definition of the period

I(w,ϕ,φ):=GLn1(F)\GLn1(𝔸F)ϕ(hn11)φ(hn1)|dethn1|w12𝑑hn1,I(w,\phi,\varphi):=\int_{{\mathrm{GL}}_{n-1}(F)\backslash{\mathrm{GL}}_{n-1}({\mathbb{A}}_{F})}\phi\begin{pmatrix}h_{n-1}&\\ &1\end{pmatrix}\varphi(h_{n-1})|\det h_{n-1}|^{w-\frac{1}{2}}dh_{n-1},

whenever it is converges. Here ϕ\phi is an automorphic form defined on GLn(𝔸){\mathrm{GL}}_{n}({\mathbb{A}}) and φ\varphi is a fixed everywhere unramified automorphic form for GLn1(𝔸){\mathrm{GL}}_{n-1}({\mathbb{A}}). Moreover, we assume that φ\varphi is invariant under the center Z(𝔸)Z({\mathbb{A}}), therefore its central character is trivial. If n=2n=2, we see that φ=1\varphi=1 which is the trivial character. We can now state the abstract spectral reciprocity formula.

Proposition 3.5.

[Abstract Reciprocity Formula]

Let ΦC(Zn+1(𝔸)GLn+1(F)\GLn+1(𝔸))\Phi\in C^{\infty}(Z_{n+1}({\mathbb{A}}){\mathrm{GL}}_{n+1}(F)\backslash{\mathrm{GL}}_{n+1}({\mathbb{A}})) be a cusp form. Then, for every s,ws,\,w\in{\mathbb{C}}, we have the following abstract reciprocity equation

I(w,𝒜sΦ,φ)=I(w,𝒜sΦˇ,φ),I(w,{\mathcal{A}}_{s}\Phi,\varphi)=I(w^{\prime},{\mathcal{A}}_{s^{\prime}}\check{\Phi},\varphi),

where s=1+(n1)wsn,w=(n+1)s+w1ns^{\prime}=\frac{1+(n-1)w-s}{n},\,w^{\prime}=\frac{(n+1)s+w-1}{n}, and Φˇ\check{\Phi} is given by

(3.8) Φˇ=Π(w12)Φ,w12:=(In111).\check{\Phi}=\Pi\left(w_{12}\right)\cdot\Phi,\;\;w_{12}:=\begin{pmatrix}I_{n-1}&&\\ &&1\\ &1&\end{pmatrix}.
Proof.

From the definition, we may write

(3.9) I(w,𝒜sΦ,φ)\displaystyle I(w,{\mathcal{A}}_{s}\Phi,\varphi) =F×\𝔸×GLn1(F)\GLn1(𝔸F)Φ((zn1(u)hn1u1))φ(hn1)\displaystyle=\int_{F^{\times}\backslash{\mathbb{A}}^{\times}}\int_{{\mathrm{GL}}_{n-1}(F)\backslash{\mathrm{GL}}_{n-1}({\mathbb{A}}_{F})}\Phi\left(\begin{pmatrix}z_{n-1}(u)h_{n-1}&&\\ &u&\\ &&1\end{pmatrix}\right)\varphi(h_{n-1})
|u|n(s12)|dethn1|s+w1dhn1d×u\displaystyle\cdot|u\rvert^{n(s-\frac{1}{2})}|\det h_{n-1}\rvert^{s+w-1}dh_{n-1}d^{\times}u
=F×\𝔸×GLn1(F)\GLn1(𝔸F)Φ((zn1(u)hn1u1))φ(hn1)\displaystyle=\int_{F^{\times}\backslash{\mathbb{A}}^{\times}}\int_{{\mathrm{GL}}_{n-1}(F)\backslash{\mathrm{GL}}_{n-1}({\mathbb{A}}_{F})}\Phi\left(\begin{pmatrix}z_{n-1}(u)h_{n-1}&&\\ &u&\\ &&1\end{pmatrix}\right)\varphi(h_{n-1})
|u|n(s12)|dethn1|s+w1dhn1d×u.\displaystyle\cdot|u\rvert^{n(s-\frac{1}{2})}|\det h_{n-1}\rvert^{s+w-1}dh_{n-1}d^{\times}u.

Since Φ\Phi is a cusp form, our integral is well-defined for all complex parameters ss and ww. Now, since Φ\Phi is left invariant by Zn+1(𝔸)GLn+1(F)Z_{n+1}({\mathbb{A}}){\mathrm{GL}}_{n+1}(F), we see that for every u,hn1u,\;h_{n-1}, we have (Note that w12w12=In+1w_{12}\cdot w_{12}=I_{n+1})

(3.10) Φ((zn1(u)hn1u1))\displaystyle\Phi\left(\begin{pmatrix}z_{n-1}(u)h_{n-1}&&\\ &u&\\ &&1\end{pmatrix}\right)
=\displaystyle= Φ((zn1(u)uu)(hn11u1))\displaystyle\Phi\left(\begin{pmatrix}z_{n-1}(u)&&\\ &u&\\ &&u\end{pmatrix}\begin{pmatrix}h_{n-1}&&\\ &1&\\ &&u^{-1}\end{pmatrix}\right)
=\displaystyle= Φ((zn1(u)uu)w12(hn1u11)w12)\displaystyle\Phi\left(\begin{pmatrix}z_{n-1}(u)&&\\ &u&\\ &&u\end{pmatrix}w_{12}\begin{pmatrix}h_{n-1}&&\\ &u^{-1}&\\ &&1\end{pmatrix}w_{12}\right)
=\displaystyle= Φ((hn1u11)w12)\displaystyle\Phi\left(\begin{pmatrix}h_{n-1}&&\\ &u^{-1}&\\ &&1\end{pmatrix}w_{12}\right)
=\displaystyle= Φˇ((hn1u11)).\displaystyle\check{\Phi}\left(\begin{pmatrix}h_{n-1}&&\\ &u^{-1}&\\ &&1\end{pmatrix}\right).

This gives that

(3.11) I(w,𝒜sΦ,φ)\displaystyle I(w,{\mathcal{A}}_{s}\Phi,\varphi) =F×\𝔸×GLn1(F)\GLn1(𝔸F)Φ((zn1(u)hn1u1))φ(hn1)\displaystyle=\int_{F^{\times}\backslash{\mathbb{A}}^{\times}}\int_{{\mathrm{GL}}_{n-1}(F)\backslash{\mathrm{GL}}_{n-1}({\mathbb{A}}_{F})}\Phi\left(\begin{pmatrix}z_{n-1}(u)h_{n-1}&&\\ &u&\\ &&1\end{pmatrix}\right)\varphi(h_{n-1})
|u|n(s12)|dethn1|s+w1dhn1d×u\displaystyle\cdot|u\rvert^{n(s-\frac{1}{2})}|\det h_{n-1}\rvert^{s+w-1}dh_{n-1}d^{\times}u
=F×\𝔸×GLn1(F)\GLn1(𝔸F)Φˇ((hn1u11))φ(hn1)\displaystyle=\int_{F^{\times}\backslash{\mathbb{A}}^{\times}}\int_{{\mathrm{GL}}_{n-1}(F)\backslash{\mathrm{GL}}_{n-1}({\mathbb{A}}_{F})}\check{\Phi}\left(\begin{pmatrix}h_{n-1}&&\\ &u^{-1}&\\ &&1\end{pmatrix}\right)\varphi(h_{n-1})
|u|n(s12)|dethn1|s+w1dhn1d×u.\displaystyle\cdot|u\rvert^{n(s-\frac{1}{2})}|\det h_{n-1}\rvert^{s+w-1}dh_{n-1}d^{\times}u.

Applying this to (3.9) and using the change of variables which is given by (u,hn1)=(u1,zn1(u)hn1)(u,h_{n-1})=(u^{\prime-1},z_{n-1}(u^{\prime})h_{n-1}^{\prime}). We will see that the following equations hold:

n(s12)=n(12s)+(n1)(s+w1)n(s^{\prime}-\frac{1}{2})=n(\frac{1}{2}-s)+(n-1)(s+w-1)

and

s+w1=s+w1,s^{\prime}+w^{\prime}-1=s+w-1,

which gives the result by solving two linear equations.

3.4. Spectral Decomposition and LL-functions: Pre-spectral Reciprocity Formula

Now we will give a spectral decomposition of the period I(w,𝒜sΦ,φ)I(w,{\mathcal{A}}_{s}\Phi,\varphi) which we consider in Proposition 3.5.

Let Π\Pi be an automorphic cuspidal representation for GLn+1(𝔸F){\mathrm{GL}}_{n+1}({\mathbb{A}}_{F}) with trivial central character and let Φ=vΦvΠ\Phi=\otimes_{v}^{\prime}\Phi_{v}\in\Pi be a cusp form. Let π1\pi_{1} be an automorphic (everywhere unramified) representation for GLn1(𝔸F){\mathrm{GL}}_{n-1}({\mathbb{A}}_{F}) with trivial central character and let φ=vφvπ1\varphi=\otimes_{v}^{\prime}\varphi_{v}\in\pi_{1} be an automorphic form. We note that since Φ\Phi is a cusp form, therefore 𝒜sΦ{\mathcal{A}}_{s}\Phi is of rapid decay. Hence, we can apply the abstract spectral decomposition formula in Proposition 3.1 as follows:

(3.12) 𝒜sΦ(h)=\displaystyle{\mathcal{A}}_{s}\Phi(h)= πC(S)ϕcusp(π)𝒜sΦ,ϕϕ(h)+πR(S)ϕres(π)𝒜sΦ,ϕϕ(h)\displaystyle\sum_{\pi\in C(S)}\sum_{\phi\in{\mathcal{B}}_{\text{cusp}}\left(\pi\right)}\langle{\mathcal{A}}_{s}\Phi,\phi\rangle\phi(h)+\sum_{\pi\in R(S)}\sum_{\phi\in{\mathcal{B}}_{\text{res}}\left(\pi\right)}\langle{\mathcal{A}}_{s}\Phi,\phi\rangle\phi(h)
+\displaystyle+ πE(S)ϕcont(π)𝒜sΦ,ϕϕ(h)dμaut(π).\displaystyle\int_{\pi\in E(S)}\sum_{\phi\in{\mathcal{B}}_{\text{cont}}\left(\pi\right)}\langle{\mathcal{A}}_{s}\Phi,\phi\rangle\phi(h)d\mu_{\text{aut}}(\pi).

Here SS is any finite set of places that contain all the archimedean places and those finite places for which πv\pi_{v} is ramified. Moreover, we let C(S)C(S) be the collection of cuspidal automorphic representations of GL(n){\mathrm{GL}}(n) which are unramified everywhere outside SS. We let E(S)E(S) be the collection of Eisenstein series of GL(n){\mathrm{GL}}(n) which are unramified everywhere outside SS. And R(S)R(S) is the collection of residual automorphic representations of GL(n){\mathrm{GL}}(n) that are unramified everywhere outside SS.

Now we take the integration on both sides of above equation (3.12) against a standard additive character ψ1\psi_{1} which is defined in Section 2.3 for Whittaker models and over the compact set Nn(F)\Nn(𝔸)N_{n}(F)\backslash N_{n}({\mathbb{A}}), we get the following equation for Whittaker functions:

W𝒜sΦ(h)=πC(S)ϕcusp(π)𝒜sΦ,ϕWϕ(h)+πE(S)ϕeisen(π)𝒜sΦ,ϕWϕ(h)dμaut(π).W_{{\mathcal{A}}_{s}\Phi}(h)=\sum_{\pi\in C(S)}\sum_{\phi\in{\mathcal{B}}_{\text{cusp}}\left(\pi\right)}\langle{\mathcal{A}}_{s}\Phi,\phi\rangle W_{\phi}(h)+\int_{\pi\in E(S)}\sum_{\phi\in{\mathcal{B}}_{\text{eisen}}\left(\pi\right)}\langle{\mathcal{A}}_{s}\Phi,\phi\rangle W_{\phi}(h)d\mu_{\text{aut}}(\pi).

We note that since the residue spectrum for GL(n){\mathrm{GL}}(n) are not generic ([JL13] Proposition 2.1), they do not contribute to the above expression and therefore vanish. We recall that not all Eisenstein series from continuous spectrum are generic (see Section 2.5). They are generic if and only if they are induced from the cuspidal data. For example, in the case of GL(3){\mathrm{GL}}(3), it only contains two parts, which are minimal and maximal cuspidal Eisenstein series with the corresponding partition 3=1+1+13=1+1+1 and 3=2+13=2+1. Now, if we let Re(w){\mathrm{Re}}(w) be large enough, we see that

(3.13) Ψ(w,W𝒜sΦ,Wφ)\displaystyle\Psi(w,W_{{\mathcal{A}}_{s}\Phi},W^{\prime}_{\varphi}) =πC(S)ϕcusp(π)𝒜sΦ,ϕΨ(w,Wϕ,Wφ)\displaystyle=\sum_{\pi\in C(S)}\sum_{\phi\in{\mathcal{B}}_{\text{cusp}}\left(\pi\right)}\langle{\mathcal{A}}_{s}\Phi,\phi\rangle\Psi(w,W_{\phi},W^{\prime}_{\varphi})
+πE(S)ϕeisen(π)𝒜sΦ,ϕΨ(w,Wϕ,Wφ)dμaut(π).\displaystyle+\int_{\pi\in E(S)}\sum_{\phi\in{\mathcal{B}}_{\text{eisen}}\left(\pi\right)}\langle{\mathcal{A}}_{s}\Phi,\phi\rangle\Psi(w,W_{\phi},W^{\prime}_{\varphi})d\mu_{\text{aut}}(\pi).

Since 𝒜sΦ{\mathcal{A}}_{s}\Phi is a rapid-decay function for GL(n){\mathrm{GL}}(n), we see that

(3.14) Ψ(w,W𝒜sΦ,Wφ)\displaystyle\Psi(w,W_{{\mathcal{A}}_{s}\Phi},W_{\varphi}^{\prime}) =Nn1(𝔸F)\GLn1(𝔸F)W𝒜sΦ((hn11))Wφ(hn1)|dethn1|w12𝑑hn1\displaystyle=\int_{N_{n-1}({\mathbb{A}}_{F})\backslash{\mathrm{GL}}_{n-1}({\mathbb{A}}_{F})}W_{{\mathcal{A}}_{s}\Phi}\left(\begin{pmatrix}h_{n-1}&\\ &1\end{pmatrix}\right)W_{\varphi}^{\prime}(h_{n-1})|\det h_{n-1}|^{w-\frac{1}{2}}dh_{n-1}
=I(w,𝒜sΦ,φ)\displaystyle=I\left(w,{\mathcal{A}}_{s}\Phi,\varphi\right)

by Proposition 3.4 (Note that the period integral I(w,𝒜sΦ,φ)I\left(w,{\mathcal{A}}_{s}\Phi,\varphi\right) is absolute convergent since 𝒜sΦ{\mathcal{A}}_{s}\Phi is of rapid decay). We note that in fact the terms related to inner product and zeta integral 𝒜sΦ,ϕ\langle{\mathcal{A}}_{s}\Phi,\phi\rangle and Ψ(w,Wϕ,Wφ)\Psi(w,W_{\phi},W_{\varphi}^{\prime}) are a product of local (zeta) integrals when Re(w){\mathrm{Re}}(w) is large enough since

Ψ(w,Wϕ,Wφ)=vΨv(w,Wϕv,Wφv).\Psi\left(w,W_{\phi},W_{\varphi}^{\prime}\right)=\prod_{v}\Psi_{v}(w,W_{\phi_{v}},W_{\varphi_{v}}^{\prime}).

Moreover, by changing variables, we note that

(3.15) 𝒜sΦ,ϕ\displaystyle\langle{\mathcal{A}}_{s}\Phi,\phi\rangle =X|deth|s12(F×\𝔸×Φ(zn(u)hn1)|u|n(s12)𝑑u)ϕ(hn)¯𝑑hn\displaystyle=\int_{{\mathrm{X}}}|\det h|^{s-\frac{1}{2}}\left(\int_{F^{\times}\backslash{\mathbb{A}}^{\times}}\Phi\begin{pmatrix}z_{n}(u)h_{n}&\\ &1\end{pmatrix}|u|^{n(s-\frac{1}{2})}du\right)\overline{\phi(h_{n})}dh_{n}
=GLn(F)\GLn(𝔸F)Φ(hn1)ϕ(hn)¯|dethn|s12𝑑hn=I(s,Φ,ϕ¯),\displaystyle=\int_{{\mathrm{GL}}_{n}(F)\backslash{\mathrm{GL}}_{n}({\mathbb{A}}_{F})}\Phi\begin{pmatrix}h_{n}&\\ &1\end{pmatrix}\overline{\phi(h_{n})}|\det h_{n}|^{s-\frac{1}{2}}dh_{n}=I(s,\Phi,\overline{\phi}),

since ϕ\phi is invariant under the center Zn(𝔸){\mathrm{Z}}_{n}({\mathbb{A}}).

By the Rankin-Selberg theory for GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n), we can also write I(s,Φ,ϕ¯)I(s,\Phi,\overline{\phi}) as a product of local zeta integrals (see Section 3.2). For large enough Re(s){\mathrm{Re}}(s), we have

I(s,Φ,ϕ¯)=Ψ(s,WΦ,Wϕ¯)=Ψ(s,WΦ,Wϕ¯)=vΨv(s,WΨv,Wϕv¯)=vΨv(s,WΨv,Wϕv¯).I(s,\Phi,\overline{\phi})=\Psi(s,W_{\Phi},\overline{W_{\phi}})=\Psi(s,W_{\Phi},W_{\overline{\phi}}^{\prime})=\prod_{v}\Psi_{v}(s,W_{\Psi_{v}},W_{\overline{\phi_{v}}}^{\prime})=\prod_{v}\Psi_{v}(s,W_{\Psi_{v}},\overline{W_{\phi_{v}}}).

Combining above discussions together, we have the following Proposition:

Proposition 3.6.

Let Π\Pi be a cuspidal automorphic representation with trivial central character and let Φ=vΦvΠ\Phi=\otimes_{v}^{\prime}\Phi_{v}\in\Pi be a cusp form for GL(n+1){\mathrm{GL}}(n+1) over FF. Let π1\pi_{1} be an automorphic (everywhere unramified) representation for GL(n1){\mathrm{GL}}(n-1) over FF with trivial central character and let φ=vφvπ1\varphi=\otimes_{v}^{\prime}\varphi_{v}\in\pi_{1} be an automorphic form. Let π~\tilde{\pi} be the contragredient representation of π\pi. Then, we have

(3.16) 2ΔF1/2I(w,𝒜sΦ,φ)\displaystyle 2\Delta_{F}^{1/2}I\left(w,{\mathcal{A}}_{s}\Phi,\varphi\right) =πC(S),πcuspΛ(s,Π×π~)Λ(w,π×π1)Λ(1,Adπ)H(π)\displaystyle=\sum_{\pi\in C(S),\,\pi\,\mathrm{cusp}}\frac{\Lambda(s,\Pi\times\widetilde{\pi})\Lambda(w,\pi\times\pi_{1})}{\Lambda(1,\operatorname{Ad}\pi)}H(\pi)
+πE(S),πeisenΛ(s,Π×π~)Λ(w,π×π1)Λ(1,Adπ)H(π)𝑑μaut(π),\displaystyle+\int_{\pi\in E(S),\,\pi\,\mathrm{eisen}}\frac{\Lambda(s,\Pi\times\widetilde{\pi})\Lambda(w,\pi\times\pi_{1})}{\Lambda^{*}(1,\operatorname{Ad}\pi)}H(\pi)d\mu_{\mathrm{aut}}(\pi),

where H(π)=vHv(πv)H(\pi)=\prod_{v}H_{v}(\pi_{v}) is the global weight function. We note that HvH_{v} depends on the choice of Φv\Phi_{v} and φv\varphi_{v}, ss and ww, which is given by

(3.17) Hv(πv):=WW(πv)Ψv(s,WΦv,W¯)Ψv(w,W,Wφv)Lv(s,Πv×π~v)Lv(w,πv×π1,v).H_{v}(\pi_{v}):=\sum_{W\in{\mathcal{B}}^{W}(\pi_{v})}\frac{\Psi_{v}(s,W_{\Phi_{v}},\overline{W})\Psi_{v}(w,W,W_{\varphi_{v}}^{\prime})}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})L_{v}(w,\pi_{v}\times\pi_{1,v})}.

Here for each (generic) automorphic representation π\pi of GL(n){\mathrm{GL}}(n), we will consider the following completed LL-functions

Λ(s,Ad,π),Λ(s,Π×π) and Λ(s,π×π1).\Lambda(s,\operatorname{Ad},\pi),\,\Lambda(s,\Pi\times\pi)\text{ and }\Lambda(s,\pi\times\pi_{1}).

They are, the Adjoint LL-function of π\pi, the Rankin-Selberg LL-function of Π×π\Pi\times\pi and π×π1\pi\times\pi_{1}, respectively.

Moreover, Λ(1,Adπ)\Lambda^{*}(1,\operatorname{Ad}\pi) in the denominator means the non-zero residue of the completed adjoint LL-functions. If π\pi is cuspdial, we know that Λ(1,Adπ)=Λ(1,Adπ)0\Lambda^{*}(1,\operatorname{Ad}\pi)=\Lambda(1,\operatorname{Ad}\pi)\neq 0.

We actually have the following:

Let FF be a number field, with ring of integers 𝒪F{\mathcal{O}}_{F}. Let Π\Pi be a cuspidal automorphic representation of GL(n+1){\mathrm{GL}}(n+1) over FF with trivial central character. Let π1\pi_{1} be an automorphic representation of GL(n1){\mathrm{GL}}(n-1) over FF with trivial central character.

Let HH be a global weight function which is defined above. We consider the following sums:

𝒞(H):=πC(S)Λ(s,Π×π~)Λ(w,π×π1)Λ(1,Ad,π)H(π),{\mathcal{C}}(H):=\sum_{\pi\in C(S)}\frac{\Lambda(s,\Pi\times\widetilde{\pi})\Lambda(w,\pi\times\pi_{1})}{\Lambda(1,\operatorname{Ad},\pi)}H(\pi),

which is the cuspidal contribution.

We should also consider the following continuous (Eisenstein) contribution

(3.18) (H):=πE(S)Λ(s,Π×π~)Λ(w,π×π1)Λ(1,Ad,π)H(π)𝑑μaut(π),{\mathcal{E}}(H):=\int_{\pi\in E(S)}\frac{\Lambda(s,\Pi\times\widetilde{\pi})\Lambda(w,\pi\times\pi_{1})}{\Lambda^{*}(1,\operatorname{Ad},\pi)}H(\pi)d\mu_{\text{aut}}(\pi),

where SS is any finite set of places that contain all the archimedean places and those finite places for which πv\pi_{v} is ramified. Moreover, we let C(S)C(S) be the collection of cuspidal automorphic representations of GL(n){\mathrm{GL}}(n) which are unramified everywhere outside SS. We let E(S)E(S) be the collection of Eisenstein series of GL(n){\mathrm{GL}}(n) which are unramified everywhere outside SS.

By definition, we may write H(π)=H(s,w,π,Φ)H(\pi)=H(s,w,\pi,\Phi). We define Hˇ(π):=H(s,w,π,Φˇ)\check{H}(\pi):=H(s^{\prime},w^{\prime},\pi,\check{\Phi}), where s,ws,w^{\prime} and Φˇ\check{\Phi} is defined in the proof of abstract reciprocity formula (Proposition 3.5).

We want to understand the following first moment of generic spectrum X^gen\hat{{\mathrm{X}}}_{\text{gen}} which is the summation of the cuspidal contribution and Eisenstein contribution:

(H):=𝒞(H)+(H).{\mathcal{M}}(H):={\mathcal{C}}(H)+{\mathcal{E}}(H).

We end this subsection with the following result which can be seen as a pre-spectral reciprocity formula.

Theorem 3.7.

Let s,ws,w\in{\mathbb{C}} and define

(3.19) (s,w):=(1+(n1)wsn,(n+1)s+w1n).(s^{\prime},w^{\prime}):=\left(\frac{1+(n-1)w-s}{n},\frac{(n+1)s+w-1}{n}\right).

Let SS be a finite set of places which contain all the archimedean places and those finite places for which πv\pi_{v} is ramified. Suppose that the real parts of four parameters s,w,s,ws,w,s^{\prime},w^{\prime} are all sufficiently large. Then we have the following identity

(H)=(Hˇ).{\mathcal{M}}(H)={\mathcal{M}}(\check{H}).
Proof.

This is a direct corollary from Proposition 3.5 and Proposition 3.6. ∎

3.5. Local Vectors and Computations

Now in order to give the explicit spectral reciprocity formula, we have to pick local vectors. We follow the method in [Nun20, Section 7]. We will show how to choose local vectors on some special non-archmediean places and archmediean places. We also give some very basic local estimations on these places for local weight functions HvH_{v}. Our local estmations are incomplete but are enough for us to establish the spectral reciprocity formula.

For simplicity, we further assume that π1\pi_{1} is an automorphic cuspidal (everywhere unramified) representation for GL(n1){\mathrm{GL}}(n-1) with trivial central character from this subsection. Let φ=vφvπ1\varphi=\otimes_{v}^{\prime}\varphi_{v}\in\pi_{1} be a cusp form. Moreover, for every place vv, we simply fix φv:=φv0\varphi_{v}:=\varphi_{v}^{0} be the normalized spherical vector in the Whittaker model.

Let Π\Pi be an unramified (everywhere) cuspidal automorphic representation of GL(n+1){\mathrm{GL}}(n+1) with trivial central character. For all the place vv, we let Φv0\Phi_{v}^{0} be the normalized spherical vector in the Whittaker model. Let 𝔮{\mathfrak{q}} and 𝔩{\mathfrak{l}} be two fixed (may not unramified) coprime integral ideals of FF. We will write Φ𝔮,𝔩=vΦv𝔮,𝔩Π\Phi^{{\mathfrak{q}},{\mathfrak{l}}}=\otimes^{\prime}_{v}\Phi^{{\mathfrak{q}},{\mathfrak{l}}}_{v}\in\Pi be a cusp form. For all v𝔮𝔩v\nmid{\mathfrak{q}}{\mathfrak{l}}, we will simply pick Φv𝔮,𝔩=Φv0\Phi^{{\mathfrak{q}},{\mathfrak{l}}}_{v}=\Phi^{0}_{v}. For v𝔩v\mid{\mathfrak{l}}, we will pick

(3.20) Φv𝔮,𝔩(g):=1pv(n1)kβi𝔪vk/𝔬v,i=1,2,,n1Φv0(g(1β11β21βn111)),\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}(g):=\frac{1}{p_{v}^{(n-1)k}}\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-k}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1}\Phi^{0}_{v}\left(g\begin{pmatrix}1&&&&\beta_{1}&\\ &1&&&\beta_{2}&\\ &&\cdots&&&\\ &&&1&\beta_{n-1}&\\ &&&&1&\\ &&&&&1\end{pmatrix}\right),

where k=v(𝔩)k=v({\mathfrak{l}}). Finally, for v𝔮v\mid{\mathfrak{q}}, we will pick

(3.21) Φv𝔮,𝔩(g):=1pv(n1)mβi𝔪vm/𝔬v,i=1,2,,n1Φv0(g(1β11β21βn1101)),\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}(g):=\frac{1}{p_{v}^{(n-1)m}}\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-m}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1}\Phi^{0}_{v}\left(g\begin{pmatrix}1&&&&&\beta_{1}\\ &1&&&&\beta_{2}\\ &&\cdots&&&\\ &&&1&&\beta_{n-1}\\ &&&&1&0\\ &&&&&1\end{pmatrix}\right),

with m=v(𝔮)m=v({\mathfrak{q}}).

The choice for the local vector here for v|𝔮v|{\mathfrak{q}} is compatible with the local new-vector computation made in [BKL19].

Remark 3.8.

In order to design a spectral reciprocity formula, we do not have much freedom when choosing the local vectors. For the reciprocal relation of two unramified coprime ideals 𝔮{\mathfrak{q}} and 𝔩{\mathfrak{l}}, we only have the freedom for one finite place. For example, after we pick the local vector for the place v|𝔮v|{\mathfrak{q}}, the local vector for the place v|𝔩v|{\mathfrak{l}} is automatically fixed. They are related by the following simple matrix identity:

(1β11β21βn1101)=(In111)(1β11β21βn111)(In111).\begin{pmatrix}1&&&&&\beta_{1}\\ &1&&&&\beta_{2}\\ &&\cdots&&&\\ &&&1&&\beta_{n-1}\\ &&&&1&0\\ &&&&&1\end{pmatrix}=\begin{pmatrix}I_{n-1}&&\\ &&1\\ &1&\end{pmatrix}\begin{pmatrix}1&&&&\beta_{1}&\\ &1&&&\beta_{2}&\\ &&\cdots&&&\\ &&&1&\beta_{n-1}&\\ &&&&1&\\ &&&&&1\end{pmatrix}\begin{pmatrix}I_{n-1}&&\\ &&1\\ &1&\end{pmatrix}.

We let SS be a finite set with the definition S={v𝔮}{v𝔩}{v}S=\{v\mid{\mathfrak{q}}\}\cup\{v\mid{\mathfrak{l}}\}\cup\{v\mid\infty\}. We have the following local properties for several different cases (The computation will be given later).

  • If vSv\notin S, we know that πv\pi_{v} is unramified and Φv𝔮,𝔩=Φv0\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}=\Phi_{v}^{0} is spherical. And we also have Hv(πv)=1H_{v}(\pi_{v})=1 in this case with only one term survives in the summation of HvH_{v}. This is a direct corolloary from the discussion in Section 3.2.

  • If v𝔮v\mid{\mathfrak{q}}, let Φv=Φv𝔮,𝔩\Phi_{v}=\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}} be as in (3.21) and let t=v(𝔮)t=v({\mathfrak{q}}). Then we have

    (1) Hv(πv)H_{v}(\pi_{v}) vanishes if cond(πv)>t\operatorname{cond}(\pi_{v})>t.

    (2) Hv(πv)=p(n1)tH_{v}(\pi_{v})=p^{-(n-1)t} if cond(πv)=t\operatorname{cond}(\pi_{v})=t.

  • If vv\mid\infty which is the Archimedean place, we have the following Proposition

    Proposition 3.9.

    Let vv be an Archimedean place of FF. Let Πv\Pi_{v} be an irreducible admissible generic representation for GLn+1(Fv){\mathrm{GL}}_{n+1}(F_{v}), then there exists a Whittaker function WΠv𝒲(Πv,ψv)W_{\Pi_{v}}\in{\mathcal{W}}(\Pi_{v},\psi_{v}) such that for every irreducible admissible generic representation for GLn(Fv){\mathrm{GL}}_{n}(F_{v}), we have

    Hv(πv)={1, if πv is unramified,0, otherwise.H_{v}(\pi_{v})=\begin{cases}1,\text{ if }\pi_{v}\text{ is unramified},\\ 0,\text{ otherwise}.\end{cases}
    Proof.

    This Proposition is proved in [Nun20] Section 7.4 by applying Stade’s formula (Theorem 3.4 in [Sta01]) for Archimedean GL(n+1)×GL(n){\mathrm{GL}}(n+1)\times{\mathrm{GL}}(n) Rankin-Selberg LL-functions.

Some local computations for two fixed finite places

For v𝔩v\mid{\mathfrak{l}}, we pick

(3.22) Φv𝔮,𝔩(g):=1pv(n1)kβi𝔪vk/𝔬v,i=1,2,,n1Φv0(g(1β11β21βn111)),\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}(g):=\frac{1}{p_{v}^{(n-1)k}}\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-k}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1}\Phi^{0}_{v}\left(g\begin{pmatrix}1&&&&\beta_{1}&\\ &1&&&\beta_{2}&\\ &&\cdots&&&\\ &&&1&\beta_{n-1}&\\ &&&&1&\\ &&&&&1\end{pmatrix}\right),

where k=v(𝔩)k=v({\mathfrak{l}}).

For v𝔮v\mid{\mathfrak{q}}, we will pick

(3.23) Φv𝔮,𝔩(g):=1pv(n1)mβi𝔪vm/𝔬v,i=1,2,,n1Φv0(g(1β11β21βn1101)),\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}(g):=\frac{1}{p_{v}^{(n-1)m}}\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-m}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1}\Phi^{0}_{v}\left(g\begin{pmatrix}1&&&&&\beta_{1}\\ &1&&&&\beta_{2}\\ &&\cdots&&&\\ &&&1&&\beta_{n-1}\\ &&&&1&0\\ &&&&&1\end{pmatrix}\right),

with m=v(𝔮)m=v({\mathfrak{q}}).

For v𝔩v\mid{\mathfrak{l}}, we recall that

Hv(πv)=WW(πv)Ψv(s,WΦv𝔮,𝔩,W¯)Ψv(w,W,Wφv)Lv(s,Πv×π~v)Lv(w,πv×π1,v),H_{v}(\pi_{v})=\sum_{W\in{\mathcal{B}}^{W}(\pi_{v})}\frac{\Psi_{v}(s,W_{\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}},\overline{W})\Psi_{v}(w,W,W_{\varphi_{v}}^{\prime})}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})L_{v}(w,\pi_{v}\times\pi_{1,v})},

where

Φv𝔮,𝔩(g):=1pv(n1)kβi𝔪vk/𝔬v,i=1,2,,n1Φv0(g(1β11β21βn111)),\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}(g):=\frac{1}{p_{v}^{(n-1)k}}\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-k}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1}\Phi^{0}_{v}\left(g\begin{pmatrix}1&&&&\beta_{1}&\\ &1&&&\beta_{2}&\\ &&\cdots&&&\\ &&&1&\beta_{n-1}&\\ &&&&1&\\ &&&&&1\end{pmatrix}\right),

with k=v(𝔩)k=v({\mathfrak{l}}).

Following the same method line by line in [Nun20, Section 7], we will see that HvH_{v} vanishes unless πv\pi_{v} is unramified. By right GLn(Fv){\mathrm{GL}}_{n}(F_{v})-invariance of the Haar measure, for any fixed element hGLn(Fv)h\in{\mathrm{GL}}_{n}(F_{v}), we see that

Ψ(s,Πv(h1)WΦv,W¯)=Ψ(s,WΦv,πv(h)W¯).\Psi\left(s,\Pi_{v}\begin{pmatrix}h&\\ &1\end{pmatrix}W_{\Phi_{v}},\overline{W}\right)=\Psi\left(s,W_{\Phi_{v}},\overline{\pi_{v}(h)W}\right).

Now we note that given a basis W(πv){\mathcal{B}}^{W}(\pi_{v}) of 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}), we may create a different one by considering the set

{πv(h)W,WW(πv)},\left\{\pi_{v}(h)\cdot W,\,W\in{\mathcal{B}}^{W}(\pi_{v})\right\},

for some fixed element hGLn(Fv)h\in{\mathrm{GL}}_{n}(F_{v}). Applying this idea to the element h=(1β11β21βn11)h=\begin{pmatrix}1&&&&\beta_{1}\\ &1&&&\beta_{2}\\ &&\cdots&&\\ &&&1&\beta_{n-1}\\ &&&&1\end{pmatrix} for βi𝔪vk/𝔬v,i=1,2,,n1\beta_{i}\in{\mathfrak{m}}_{v}^{-k}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1, we deduce that

Hv(πv)=WW(πv)Ψv(s,WΦv0,W¯)Ψv(w,W(m),Wφv)Lv(s,Πv×π~v)Lv(w,πv×π1,v),H_{v}(\pi_{v})=\sum_{W\in{\mathcal{B}}^{W}(\pi_{v})}\frac{\Psi_{v}(s,W_{\Phi_{v}^{0}},\overline{W})\Psi_{v}(w,W^{(m)},W_{\varphi_{v}}^{\prime})}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})L_{v}(w,\pi_{v}\times\pi_{1,v})},

where

(3.24) W(m)(h):\displaystyle W^{(m)}(h^{\prime}): =β𝔪vk/𝔬vW(h(1β11β21βn11)1)\displaystyle=\sum_{\beta\in{\mathfrak{m}}_{v}^{-k}/{\mathfrak{o}}_{v}}W\left(h^{\prime}\begin{pmatrix}1&&&&\beta_{1}\\ &1&&&\beta_{2}\\ &&\cdots&&\\ &&&1&\beta_{n-1}\\ &&&&1\end{pmatrix}^{-1}\right)
=β𝔪vk/𝔬vW(h(1β11β21βn11)).\displaystyle=\sum_{\beta\in{\mathfrak{m}}_{v}^{-k}/{\mathfrak{o}}_{v}}W\left(h^{\prime}\begin{pmatrix}1&&&&-\beta_{1}\\ &1&&&-\beta_{2}\\ &&\cdots&&\\ &&&1&-\beta_{n-1}\\ &&&&1\end{pmatrix}\right).

Since WΨv(s,WΦv0,W¯)¯W\mapsto\overline{\Psi_{v}(s,W_{\Phi_{v}^{0}},\overline{W})} is a right KvK_{v} invariant linear functional, it vanishes if πv\pi_{v} is not unramified. This kind of idea will also be used in the calculation of another local vector when v|𝔮v|{\mathfrak{q}}. Moreover, this linear functional is invariant by orthogonal projection into the space 𝒲(πv,ψv)Kv{\mathcal{W}}(\pi_{v},\psi_{v})^{K_{v}} of right KvK_{v}-invariant vectors of 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}). Since KvK_{v} is the maximal open compact subgroup, we know that the space 𝒲(πv,ψv)Kv{\mathcal{W}}(\pi_{v},\psi_{v})^{K_{v}} is a one-dimensional space that is spanned by the normalized spherical vector. Therefore, we may restrict the sum defining HvH_{v} to a sum over a basis of 𝒲(πv,ψv)Kv{\mathcal{W}}(\pi_{v},\psi_{v})^{K_{v}}. Hence, only one term survives in the sum defining HvH_{v} over the basis. Now, by the unramified calculation, we have Ψ(s,WΦv0,Wπv¯)=Lv(s,Πv×π~v)\Psi(s,W_{\Phi_{v}^{0}},\overline{W_{\pi_{v}}})=L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})

By above discussion, we see that

Hv(πv)=Ψv(w,W(m),Wφv)Lv(w,πv×π1,v)H_{v}(\pi_{v})=\frac{\Psi_{v}(w,W^{(m)},W_{\varphi_{v}}^{\prime})}{L_{v}(w,\pi_{v}\times\pi_{1,v})}

if πv\pi_{v} is unramified.

We will write Hv(πv)H_{v}(\pi_{v}) explicitly. From the definition of W(m)(h)W^{(m)}(h), we see that

(3.25) W(m)(hn11)\displaystyle W^{(m)}\begin{pmatrix}h_{n-1}&\\ &1\end{pmatrix} =βi𝔪vm/𝔬v,i=1,2,,n1ψ(i=1n1βihn1,i)Wπv(hn11)\displaystyle=\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-m}/{\mathfrak{o}}_{v},i=1,2,\cdots,n-1}\psi\left(-\sum_{i=1}^{n-1}\beta_{i}h_{n-1,i}\right)\cdot W_{\pi_{v}}\begin{pmatrix}h_{n-1}&\\ &1\end{pmatrix}
=pv(n2)m×δv(hn,i)m,m=1,2,,n1Wπv(hn11).\displaystyle=p_{v}^{(n-2)m}\times\delta_{v(h_{n,i})\geq m,\,m=1,2,\cdots,n-1}\cdot W_{\pi_{v}}\begin{pmatrix}h_{n-1}&\\ &1\end{pmatrix}.

We need to continuous our local computation by applying Iwasawa decomposition to hn1h_{n-1}. We write hn1=z(h)n(h)a(h)k(h)h_{n-1}=z(h)n(h)a(h)k(h). Since the valuation v(hn1,i)mv(h_{n-1,i})\geq m for all i=1,2,,n1i=1,2,\cdots,n-1, we see that v(zkn1,i)mv(zk_{n-1,i})\geq m for all i=1,2,,n1i=1,2,\cdots,n-1.

From above discussion, we may have the decomposition:

(3.26) Ψv(w,W(m),Wφv)=ν=mpv(n1)ν(s12)pv(n2)mΨν(Wπv),\Psi_{v}(w,W^{(m)},W_{\varphi_{v}}^{\prime})=\sum_{\nu=m}^{\infty}p_{v}^{-(n-1)\nu(s-\frac{1}{2})}\cdot p_{v}^{(n-2)m}\cdot\Psi_{\nu}(W_{\pi_{v}}),

where

(3.27) Ψν(Wπv)\displaystyle\Psi_{\nu}(W_{\pi_{v}}) =An1(Fv×)KvWπv(z(ϖvν)a)Wφv(ak)|a|sn2𝑑An1(Fv×)𝑑k\displaystyle=\int_{A_{n-1}(F_{v}^{\times})}\int_{K_{v}}W_{\pi_{v}}\left(z(\varpi_{v}^{\nu})a\right)W^{\prime}_{\varphi_{v}}(ak)\cdot|a|^{s-\frac{n}{2}}dA_{n-1}(F_{v}^{\times})\,dk
=An1(Fv×)Wπv(z(ϖvν)a)Wφv(a)|a|sn2𝑑An1(Fv×).\displaystyle=\int_{A_{n-1}(F_{v}^{\times})}W_{\pi_{v}}\left(z(\varpi_{v}^{\nu})a\right)W_{\varphi_{v}}(a)\cdot|a|^{s-\frac{n}{2}}dA_{n-1}(F_{v}^{\times}).

Here we use the fact that both the Whittaker function WπvW_{\pi_{v}} and WφvW_{\varphi_{v}}^{\prime} are unramified. Hence they are invariant under the maximal compact subgroup KvK_{v} and we also note that the total mass for KvK_{v} is one. Here the local weight function HvH_{v} should be related to the local Hecke eigenvalue λπv\lambda_{\pi_{v}}.

For v𝔮v\mid{\mathfrak{q}}, we recall that

Hv(πv)=WW(πv)Ψv(s,WΦv𝔮,𝔩,W¯)Ψv(w,W,Wφv)Lv(s,Πv×π~v)Lv(w,πv×π1,v),H_{v}(\pi_{v})=\sum_{W\in{\mathcal{B}}^{W}(\pi_{v})}\frac{\Psi_{v}(s,W_{\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}},\overline{W})\Psi_{v}(w,W,W_{\varphi_{v}}^{\prime})}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})L_{v}(w,\pi_{v}\times\pi_{1,v})},

where

Φv𝔮,𝔩(g):=1pv(n1)mβi𝔪vm/𝔬v,i=1,2,,n1Φv0(g(1β11β21βn1101)),\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}(g):=\frac{1}{p_{v}^{(n-1)m}}\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-m}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1}\Phi^{0}_{v}\left(g\begin{pmatrix}1&&&&&\beta_{1}\\ &1&&&&\beta_{2}\\ &&\cdots&&&\\ &&&1&&\beta_{n-1}\\ &&&&1&0\\ &&&&&1\end{pmatrix}\right),

with m=v(𝔮)m=v({\mathfrak{q}}). This means that

WΦv𝔮,𝔩(g):=1pv(n1)mβi𝔪vm/𝔬v,i=1,2,,n1WΦv0(g(1β11β21βn1101)),W_{\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}}(g):=\frac{1}{p_{v}^{(n-1)m}}\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-m}/{\mathfrak{o}}_{v},\,i=1,2,\cdots,n-1}W_{\Phi_{v}^{0}}\left(g\begin{pmatrix}1&&&&&\beta_{1}\\ &1&&&&\beta_{2}\\ &&\cdots&&&\\ &&&1&&\beta_{n-1}\\ &&&&1&0\\ &&&&&1\end{pmatrix}\right),

with m=v(𝔮)m=v({\mathfrak{q}}). Here WΦv0W_{\Phi_{v}^{0}} is the normalized spherical vector in the Whittaker space. By the theory of newvectors [JPS81], we will see that Hv(πv)H_{v}(\pi_{v}) vanishes unless cond(πv)m\text{cond}(\pi_{v})\leq m. If cond(πv)=m\text{cond}(\pi_{v})=m, Hv(πv)=pv(n1)mH_{v}(\pi_{v})=p_{v}^{-(n-1)m}. We expect that in general, Hv(πv)ϵpv(n1)m(θ1+ϵ)H_{v}(\pi_{v})\ll_{\epsilon}p_{v}^{(n-1)m(\theta-1+\epsilon)}, where θ\theta is a positive constant satisfying 0θ<120\leq\theta<\frac{1}{2} towards the Ramanujan-Petersson’s Conjecture.

The computation in this part follows the method developed in [BKL19] and [Nun20, Section 7].

By definition and some matrix computations, we note that

(3.28) WΦv𝔮,𝔩(hn1)\displaystyle W_{\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}}\begin{pmatrix}h_{n}&\\ &1\end{pmatrix} =1pv(n1)m×βi𝔪vm/𝔬v,i=1,2,,n1ψ(i=1n1βihn,i)WΦv0(hn1)\displaystyle=\frac{1}{p_{v}^{(n-1)m}}\times\sum_{\beta_{i}\,\in\,{\mathfrak{m}}_{v}^{-m}/{\mathfrak{o}}_{v},i=1,2,\cdots,n-1}\psi\left(\sum_{i=1}^{n-1}\beta_{i}h_{n,i}\right)\cdot W_{\Phi_{v}^{0}}\begin{pmatrix}h_{n}&\\ &1\end{pmatrix}
=δv(hn,i)m,m=1,2,,n1WΦv0(hn1).\displaystyle=\delta_{v(h_{n,i})\geq m,\,m=1,2,\cdots,n-1}\cdot W_{\Phi_{v}^{0}}\begin{pmatrix}h_{n}&\\ &1\end{pmatrix}.

We need to continuous our local computation by applying Iwasawa decomposition to hnh_{n}. We write hn=z(h)n(h)a(h)k(h)h_{n}=z(h)n(h)a(h)k(h). Since the valuation v(hn,i)mv(h_{n,i})\geq m for all i=1,2,,n1i=1,2,\cdots,n-1, we see that v(zkn,i)mv(zk_{n,i})\geq m for all i=1,2,,n1i=1,2,\cdots,n-1. We set a1:=min(m,v(z))a_{1}:=\min(m,v(z)) and a2:=ma1a_{2}:=m-a_{1}, we can see that this is equivalent to say that kk belonging to the congruence subgroup Kv,0(ϖva2)K_{v,0}(\varpi_{v}^{a_{2}}) (See the definition in Section 2.2). We will simply write this congruence subgroup as Kv[a2]K_{v}[a_{2}]. Here we must have v(z)0v(z)\geq 0. Otherwise, the spherical Whittaker function will vanish. Therefore we have 0a1,a2m0\leq a_{1},a_{2}\leq m.

Now we may choose an orthonormal basis for 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}). From the local new-vector theory for GL(n){\mathrm{GL}}(n) [JPS81], if we let W0=WπvW_{0}=W_{\pi_{v}} be the new vector and for each j0j\geq 0, we define

Wj:=πv(11ϖvj)W0.W_{j}:=\pi_{v}\begin{pmatrix}1&&&\\ &1&&\\ &&\cdots&\\ &&&\varpi_{v}^{j}\end{pmatrix}W_{0}.

Therefore, we see that {W0,W1,W2,}\left\{W_{0},\,W_{1},W_{2},\ldots\right\} is a basis for 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}). Moreover, we know that for each j0j\geq 0, {W0,W1,,Wj}\left\{W_{0},\,W_{1},\ldots,W_{j}\right\} is a basis for the Kv[n0+j]K_{v}[n_{0}+j]-invariant vectors in 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}), where n0=cond(πv)n_{0}=\operatorname{cond}(\pi_{v}). Applying Gram-Schmidt method to the basis {W0,W1,W2,}\left\{W_{0},\,W_{1},W_{2},\ldots\right\}, we obtain an orthonormal basis of 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}) with {W0~,W1~,W2~,}\{\widetilde{W_{0}},\widetilde{W_{1}},\widetilde{W_{2}},\ldots\}. We choose the basis as W(πv)={W0~,W1~,W2~,}{\mathcal{B}}^{W}(\pi_{v})=\{\widetilde{W_{0}},\widetilde{W_{1}},\widetilde{W_{2}},\ldots\} and continue to do some computation on Hv(πv)H_{v}(\pi_{v}).

From above discussion, we have the following decomposition:

(3.29) Ψv(s,WΦv𝔮,𝔩,W¯)=a1+a2=mmin(ν,m)=a1pvnν(s12)Ψν,a2(W),\Psi_{v}(s,W_{\Phi_{v}^{{\mathfrak{q}},{\mathfrak{l}}}},\overline{W})=\sum_{a_{1}+a_{2}=m}\sum_{\min(\nu,m)=a_{1}}p_{v}^{-n\nu(s-\frac{1}{2})}\Psi_{\nu,a_{2}}(W),

where

(3.30) Ψν,a2(W)\displaystyle\Psi_{\nu,a_{2}}(W) =An(Fv×)Kv[a2]WΦv0(z(ϖvν)a)W¯(ak)|a|sn+12𝑑An(Fv×)𝑑k\displaystyle=\int_{A_{n}(F_{v}^{\times})}\int_{K_{v}[a_{2}]}W_{\Phi_{v}^{0}}\left(z(\varpi_{v}^{\nu})a\right)\overline{W}(ak)\cdot|a|^{s-\frac{n+1}{2}}dA_{n}(F_{v}^{\times})\,dk
=An(Fv×)WΦv0(z(ϖvν)a)Kv[a2]W¯(ak)|a|sn+12𝑑An(Fv×)𝑑k.\displaystyle=\int_{A_{n}(F_{v}^{\times})}W_{\Phi_{v}^{0}}\left(z(\varpi_{v}^{\nu})a\right)\int_{K_{v}[a_{2}]}\overline{W}(ak)\cdot|a|^{s-\frac{n+1}{2}}dA_{n}(F_{v}^{\times})\,dk.

Here we use the fact that Whiitaker function WΦv0W_{\Phi_{v}^{0}} is normalized spherical and WW is also invariant by the center. Now, if W=Wj~W=\widetilde{W_{j}} is an element of in our orthonormal basis {W0~,W1~,W2~,}\{\widetilde{W_{0}},\widetilde{W_{1}},\widetilde{W_{2}},\ldots\}, then it follows that

(3.31) Kv[f]Wj~(hk)𝑑k={vol(Kv[f])Wj~(h), if j+n0f,0, otherwise.\int_{K_{v}[f]}\widetilde{W_{j}}(hk)dk=\begin{cases}\operatorname{vol}(K_{v}[f])\widetilde{W_{j}}(h),\text{ if }j+n_{0}\leq f,\\ 0,\text{ otherwise}.\end{cases}

from the orthogonality of the elements in the given orthonormal basis (See the discussion in [Nun20] for more details).

Now applying (3.29) and (3.31) to the definition of the local weight function Hv(πv)H_{v}(\pi_{v}). We will have the following equation:

(3.32) Hv(πv)\displaystyle H_{v}(\pi_{v}) =1Lv(s,Πv×π~v)Lv(w,πv×π1,v)a1+a2=mja2n0vol(Kv[j])min(ν,m)=a1pnν(s1/2)\displaystyle=\frac{1}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})L_{v}(w,\pi_{v}\times\pi_{1,v})}\sum_{a_{1}+a_{2}=m}\sum_{j\leq a_{2}-n_{0}}\operatorname{vol}(K_{v}[j])\sum_{\min(\nu,m)=a_{1}}p^{-n\nu(s-1/2)}
×An(Fv×)WΦv0(z(ϖvν)a1)W~j¯(a))|a|s(n+1)/2dAn(Fv×)Ψv(w,Wj~,Wφv).\displaystyle\times\int_{A_{n}(F_{v}^{\times})}W_{\Phi_{v}^{0}}\begin{pmatrix}z(\varpi_{v}^{\nu})a&\\ &1\end{pmatrix}\overline{\widetilde{W}_{j}}(a))|a|^{s-(n+1)/2}dA_{n}(F_{v}^{\times})\Psi_{v}(w,\widetilde{W_{j}},W_{\varphi_{v}}^{\prime}).

Note that the above equation is actually a finite sum. If cond(πv)>m\text{cond}(\pi_{v})>m, this gives that n0>mn_{0}>m. We see that 0ja2n0mn0<00\leq j\leq a_{2}-n_{0}\leq m-n_{0}<0. Contradiction! Therefore, Hv(πv)H_{v}(\pi_{v}) vanishes in this case.

If cond(πv)=m\text{cond}(\pi_{v})=m, we see that only one term survive. Moreover, we have a2=ma_{2}=m, and j=a1=0j=a_{1}=0. We see that Hv(πv)=vol(Kv[a2])1=vol(Kv[m])1=pv(n1)mH_{v}(\pi_{v})=\text{vol}(K_{v}[a_{2}])^{-1}=\text{vol}(K_{v}[m])^{-1}=p_{v}^{-(n-1)m} in this case.

Note that since 0ja2n0a2m0\leq j\leq a_{2}-n_{0}\leq a_{2}\leq m, the local weight function HvH_{v} is a finite sum in terms of the element W~j\widetilde{W}_{j} in the orthonormal basis.

For two places 𝔩{\mathfrak{l}} and 𝔮{\mathfrak{q}}, we see that the local weight function HvH_{v} is a finite sum with the elements in the orthonormal basis 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}) for both two cases.

Remark 3.10.

In order to find applications for the spectral reciprocity formula, we have to find a good estimation for the local weight function Hv(πv)H_{v}(\pi_{v}).

3.6. Meromorphic Continuation with respect to the complex parameters

Let vv be a non-archimedean place of FF. We consider the local weight function Hv(πv)H_{v}(\pi_{v}). It is known that for all the finite place v𝔮,𝔩v\neq{\mathfrak{q}},{\mathfrak{l}}, we have Hv(πv)=1H_{v}(\pi_{v})=1.

Assume that πv\pi_{v} is a local component of the unitary generic Eisenstein series π=π(π1,π2,,πk,t1,,tk)=π1||it1πk||itk\pi=\pi(\pi_{1},\pi_{2},\cdots,\pi_{k},t_{1},\cdots,t_{k})=\pi_{1}|\cdot\rvert^{it_{1}}\boxplus\dots\boxplus\pi_{k}|\cdot\rvert^{it_{k}}. We fix the cuspidal data π1,,πk\pi_{1},\cdots,\pi_{k} and vary the remaining parameters (t1,t2,,tk)k(t_{1},t_{2},\cdots,t_{k})\in{\mathbb{C}}^{k} (k2k\geq 2).

The following Proposition is a direct Corollary of Proposition 4.1, Proposition 4.2 and Theorem 4.1 in [CPS17].

Proposition 3.11.

The following two ratios

Ψv(s,WΦv,W¯)Lv(s,Πv×π~v)\frac{\Psi_{v}(s,W_{\Phi_{v}},\overline{W})}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})}

and

Ψv(w,W,Wφv)Lv(w,πv×π1,v)\frac{\Psi_{v}(w,W,W_{\varphi_{v}}^{\prime})}{L_{v}(w,\pi_{v}\times\pi_{1,v})}

for any W𝒲(πv,ψv)W\in{\mathcal{W}}(\pi_{v},\psi_{v}) have no poles and hence define entire rational functions in terms of their complex parameters. In other word, we have

Ψv(s,WΦv,W¯)Lv(s,Πv×π~v)[pvs,pvs,pvt1,pvt1,,pvtk,pvtk],\frac{\Psi_{v}(s,W_{\Phi_{v}},\overline{W})}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})}\in{\mathbb{C}}[p_{v}^{s},p_{v}^{-s},p_{v}^{t_{1}},p_{v}^{-t_{1}},\cdots,p_{v}^{t_{k}},p_{v}^{-t_{k}}],

and

Ψv(w,W,Wφv)Lv(w,πv×π1,v)[pvw,pvw,pvt1,pvt1,,pvtk,pvtk].\frac{\Psi_{v}(w,W,W_{\varphi_{v}}^{\prime})}{L_{v}(w,\pi_{v}\times\pi_{1,v})}\in{\mathbb{C}}[p_{v}^{w},p_{v}^{-w},p_{v}^{t_{1}},p_{v}^{-t_{1}},\cdots,p_{v}^{t_{k}},p_{v}^{-t_{k}}].

Since the local weight function HvH_{v} is a finite sum with the elements in the orthonormal basis 𝒲(πv,ψv){\mathcal{W}}(\pi_{v},\psi_{v}), we have the following Proposition.

Proposition 3.12.

The local weight function Hv(πv)H_{v}(\pi_{v}) has no poles and hence define entire rational functions in terms of their complex parameters. In other word, we have

Hv(πv)[pvs,pvs,pvw,pvw,pvt1,pvt1,,pvtk,pvtk].H_{v}(\pi_{v})\in{\mathbb{C}}[p_{v}^{s},p_{v}^{-s},p_{v}^{w},p_{v}^{-w},p_{v}^{t_{1}},p_{v}^{-t_{1}},\cdots,p_{v}^{t_{k}},p_{v}^{-t_{k}}].

From our choice of local vectors in the previous subsection and the definition of global and local weight function, we know that

H(π)=vHv(πv)=H𝔮(π𝔮)×H𝔩(π𝔩),H(\pi)=\prod_{v}H_{v}(\pi_{v})=H_{{\mathfrak{q}}}(\pi_{{\mathfrak{q}}})\times H_{{\mathfrak{l}}}(\pi_{{\mathfrak{l}}}),

since Hv(πv)=1H_{v}(\pi_{v})=1 if v𝔮𝔩v\nmid{\mathfrak{q}}{\mathfrak{l}}.

Therefore, we have the following proposition:

Proposition 3.13.

The global weight function H(π)H(\pi) has no poles and hence define entire rational functions in terms of their complex parameters.

We are going to deduce the meromorphic continuation of the term (H){\mathcal{E}}(H) which is the continuous contribution of Eisenstein series in the spectral decomposition.

Proposition 3.14.

Let Π\Pi and π1\pi_{1} be everywhere unramified cuspidal automorphic representation of GL(n+1){\mathrm{GL}}(n+1) and GL(n1){\mathrm{GL}}(n-1) which have trivial central character. Let (H){\mathcal{E}}(H) (3.18) be given previously, defined initially for the absolute convergence domain Re(s),Re(w)>1{\mathrm{Re}}(s),{\mathrm{Re}}(w)>1. It admits a meromorphic continuation to Re(s),Re(w)12{\mathrm{Re}}(s),{\mathrm{Re}}(w)\geq\frac{1}{2} . If 12Re(s),Re(w)<1\frac{1}{2}\leq{\mathrm{Re}}(s),{\mathrm{Re}}(w)<1, its analytic continuation is given by (H)+(H){\mathcal{E}}(H)+{\mathcal{R}}(H), where

(3.33) (H):\displaystyle{\mathcal{R}}(H): =ωF×U\𝔸F1^Rest1=(1w)/i(2πi)×\displaystyle=\sum_{\omega\in\widehat{F^{\times}U_{\infty}\backslash{\mathbb{A}}_{F}^{1}}}\underset{\begin{subarray}{c}t_{1}=(1-w)/i\end{subarray}}{\operatorname{Res}}(2\pi i)\times
Λ(sit1,Π×π1)Λ(sit2,Π×ω1)Λ(w+it1,π~1×π1)Λ(w+it2,π1×ω)Λ(1,Ad,π)H(π).\displaystyle\frac{\Lambda(s-it_{1},\Pi\times\pi_{1})\Lambda(s-it_{2},\Pi\times\omega^{-1})\Lambda(w+it_{1},\widetilde{\pi}_{1}\times\pi_{1})\Lambda(w+it_{2},\pi_{1}\times\omega)}{\Lambda^{*}(1,\operatorname{Ad},\pi)}H(\pi).

Note that the summation over the unitary Hecke character ω\omega which is only ramified at two finite places 𝔮{\mathfrak{q}} and 𝔩{\mathfrak{l}} is a finite sum. We write U:=v{yFv;|yv|=1}U_{\infty}:=\prod_{v\mid\infty}\{y\in F_{v}^{\ast};|y_{v}|=1\} and recall that 𝔸F1{\mathbb{A}}_{F}^{1} is the norm one ideles. Here we pick π\pi to be the maximal cuspidal Eisenstein series given by π=π(π~1,ω,t1,t2)=π~1||it1ω||it2\pi=\pi(\widetilde{\pi}_{1},\omega,t_{1},t_{2})=\widetilde{\pi}_{1}|\cdot\rvert^{it_{1}}\boxplus\omega|\cdot\rvert^{it_{2}}, where π1~\widetilde{\pi_{1}} is the contrigredient representation of π1\pi_{1}. Hence it is a cuspdial representation of GL(n1){\mathrm{GL}}(n-1) with trivial central character. We have the following decomposition of completed LL-functions:

Λ(s,Π×π~)=Λ(sit1,Π×π1)Λ(sit2,Π×ω1),\Lambda(s,\Pi\times\widetilde{\pi})=\Lambda(s-it_{1},\Pi\times\pi_{1})\Lambda(s-it_{2},\Pi\times\omega^{-1}),

and

Λ(w,π×π1)=Λ(w+it1,π~1×π1)Λ(w+it2,π1×ω).\Lambda(w,\pi\times\pi_{1})=\Lambda(w+it_{1},\widetilde{\pi}_{1}\times\pi_{1})\Lambda(w+it_{2},\pi_{1}\times\omega).

Moreover, for general π=π(σ1,σ2,t1,t2)\pi=\pi(\sigma_{1},\sigma_{2},t_{1},t_{2}), we see that t1+t2=At_{1}+t_{2}=A, where AA is a complex constant only depends on the central characters of the cuspidal data σ1\sigma_{1} and σ2\sigma_{2} since π\pi has trivial central character.

Proof.

The meromorphic continuation part of (H){\mathcal{E}}(H) is given by the meromorphic continuation of Rankin-Selberg LL-functions and the entireness of the global weight function H(π)H(\pi) (see Proposition 3.13). Since H(π)H(\pi) has no poles and define entire rational functions in terms of their parameters (Proposition 3.13), by the contour and residue theorem in complex analysis, we see that the term (H){\mathcal{R}}(H) will vanish unless the ratio of completed LL-functions

Λ(s,Π×π~)Λ(w,π×π1)Λ(1,Ad,π)\frac{\Lambda(s,\Pi\times\widetilde{\pi})\Lambda(w,\pi\times\pi_{1})}{\Lambda^{*}(1,\text{Ad},\pi)}

have poles. Note that the denominator Λ(1,Ad,π)\Lambda^{*}(1,\text{Ad},\pi) is always finite and non-zero, by the locations of possible poles of Rankin-Selberg LL-functions, we must have

π=π(π~1,ω,t1,t2)=π~1||it1ω||it2,\pi=\pi(\widetilde{\pi}_{1},\omega,t_{1},t_{2})=\widetilde{\pi}_{1}|\cdot\rvert^{it_{1}}\boxplus\omega|\cdot\rvert^{it_{2}},

where π1~\widetilde{\pi_{1}} is the contrigredient representation of π1\pi_{1} and ω\omega is a unitary Hecke character.

Hence we have the decomposition of completed LL-functions:

Λ(s,Π×π~)=Λ(sit1,Π×π1)Λ(sit2,Π×ω1),\Lambda(s,\Pi\times\widetilde{\pi})=\Lambda(s-it_{1},\Pi\times\pi_{1})\Lambda(s-it_{2},\Pi\times\omega^{-1}),

and

Λ(w,π×π1)=Λ(w+it1,π~1×π1)Λ(w+it2,π1×ω).\Lambda(w,\pi\times\pi_{1})=\Lambda(w+it_{1},\widetilde{\pi}_{1}\times\pi_{1})\Lambda(w+it_{2},\pi_{1}\times\omega).

We note that Λ(s,Π×π~)\Lambda(s,\Pi\times\widetilde{\pi}) is entire for all s,t1,t2s,t_{1},t_{2}\in{\mathbb{C}} since Π\Pi is a cuspidal automorphic representation for GL(n+1){\mathrm{GL}}(n+1). The completed LL-function Λ(w,π×π1)\Lambda(w,\pi\times\pi_{1}) will have a simple pole if and only if w+it1=1w+it_{1}=1. The correponding residue is

Λ(w,π×π1)=Λ(1,Ad,π1)Λ(w+it2,π1×ω).\Lambda^{*}(w,\pi\times\pi_{1})=\Lambda(1,\text{Ad},\pi_{1})\Lambda(w+it_{2},\pi_{1}\times\omega).

Now applying the coutour and residue theorem in complex analysis, the remaining part of the proof is the same as the proof in [Nun20, Proposition 8.1], [BK17, Lemma 16] and [BK18, Lemma 3]. ∎

3.7. Main Result: Spectral Reciprocity Formula

Now we can give the statement of spectral reciprocity formula.

Let Π\Pi and π1\pi_{1} be everywhere unramified cuspidal automorphic representation for GL(n+1){\mathrm{GL}}(n+1) and GL(n1){\mathrm{GL}}(n-1) over FF with trivial central character. Let s,ws,w\in{\mathbb{C}}, 𝔮{\mathfrak{q}} and 𝔩{\mathfrak{l}} be unramified coprime ideals.

Let HH be the global weight function with kernel function Φ=Φ𝔮,𝔩\Phi=\Phi^{{\mathfrak{q}},{\mathfrak{l}}} which we pick in the previous subsection by local new-vectors.

Note that we have

H(π)=vHv(πv),H(\pi)=\prod_{v}H_{v}(\pi_{v}),

where HvH_{v} is given by local Rankin-Selberg integral as follows:

(3.34) Hv(πv):=WW(πv)Ψv(s,WΦv,W¯)Ψv(w,W,Wφv)Lv(s,Πv×π~v)Lv(w,πv×π1,v),H_{v}(\pi_{v}):=\sum_{W\in{\mathcal{B}}^{W}(\pi_{v})}\frac{\Psi_{v}(s,W_{\Phi_{v}},\overline{W})\Psi_{v}(w,W,W_{\varphi_{v}}^{\prime})}{L_{v}(s,\Pi_{v}\times\widetilde{\pi}_{v})L_{v}(w,\pi_{v}\times\pi_{1,v})},

where Φ=ΦvΠ\Phi=\otimes\Phi_{v}\in\Pi is a cusp form and s,ws,w\in{\mathbb{C}}.

We may write

H(π)=H(Π,π,π1,s,w;𝔮,𝔩).H(\pi)=H(\Pi,\pi,\pi_{1},s,w;{\mathfrak{q}},{\mathfrak{l}}).

Using the notations in Section 3.4, we have

(H)=(Π,π1,s,w,𝔮,𝔩),{\mathcal{M}}(H)={\mathcal{M}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}}),

where

(Π,π1,s,w,𝔮,𝔩):=𝒞(Π,π1,s,w,𝔮,𝔩)+(Π,π1,s,w,𝔮,𝔩),{\mathcal{M}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}}):={\mathcal{C}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}})+{\mathcal{E}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}}),

with

𝒞(Π,π1,s,w,𝔮,𝔩)=𝒞(H)=π cusp0cond(π)𝔮Λ(s,Π×π~)Λ(w,π×π1)Λ(1,Ad,π)H(Π,π,π1,s,w;𝔮,𝔩),{\mathcal{C}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}})={\mathcal{C}}(H)=\sum_{\begin{subarray}{c}\pi\text{ cusp}^{0}\\ \operatorname{cond}(\pi)\mid{\mathfrak{q}}\end{subarray}}\frac{\Lambda(s,\Pi\times\widetilde{\pi})\Lambda(w,\pi\times\pi_{1})}{\Lambda(1,\operatorname{Ad},\pi)}H(\Pi,\pi,\pi_{1},s,w;{\mathfrak{q}},{\mathfrak{l}}),

which is the cuspidal contribution.

And

(Π,π1,s,w,𝔮,𝔩)=(H)=π eisen0cond(π)𝔮Λ(s,Π×π~)Λ(w,π×π1)Λ(1,Ad,π)H(Π,π,π1,s,w;𝔮,𝔩)𝑑μaut(π){\mathcal{E}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}})={\mathcal{E}}(H)=\int_{\begin{subarray}{c}\pi\text{ eisen}^{0}\\ \operatorname{cond}(\pi)\mid{\mathfrak{q}}\end{subarray}}\frac{\Lambda(s,\Pi\times\widetilde{\pi})\Lambda(w,\pi\times\pi_{1})}{\Lambda^{*}(1,\operatorname{Ad},\pi)}H(\Pi,\pi,\pi_{1},s,w;{\mathfrak{q}},{\mathfrak{l}})d\mu_{\text{aut}}(\pi)

which is the continuous (Eisenstein) contribution.

The notation cusp0\text{cusp}^{0} and eisen0\text{eisen}^{0} means that we are restricting to irreducible generic automorphic forms which are unramified at every archimedean place. We can define

𝒩(Π,π1,s,w,𝔮,𝔩):=(Hˇ)(H).{\mathcal{N}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}}):={\mathcal{R}}(\check{H})-{\mathcal{R}}(H).

From the above discussion in Section 3, we can give the statement of our main theorem finally.

Theorem 3.15.

Let Π\Pi and π1\pi_{1} be everywhere unramified cuspidal automorphic representation for GL(n+1){\mathrm{GL}}(n+1) and GL(n1){\mathrm{GL}}(n-1) over FF with trivial central character. Let π~\widetilde{\pi} be the contragredient representation of π\pi. Suppose that 𝔮{\mathfrak{q}} and 𝔩{\mathfrak{l}} are unramified, coprime ideals. Futhermore, we assume that 12Re(s),Re(w)<n+1n+2\frac{1}{2}\leq{\mathrm{Re}}(s),{\mathrm{Re}}(w)<\frac{n+1}{n+2}. Then we will have the following identity

(Π,π1,s,w,𝔮,𝔩)=𝒩(Π,π1,s,w,𝔮,𝔩)+(Π,π1,s,w,𝔩,𝔮),{\mathcal{M}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}})={\mathcal{N}}(\Pi,\pi_{1},s,w,{\mathfrak{q}},{\mathfrak{l}})+{\mathcal{M}}(\Pi,\pi_{1},s^{\prime},w^{\prime},{\mathfrak{l}},{\mathfrak{q}}),

where the complex parameters s,ws^{\prime},w^{\prime} satisfy the relation

s=1+(n1)wsn,w=(n+1)s+w1n.s^{\prime}=\frac{1+(n-1)w-s}{n},\quad w^{\prime}=\frac{(n+1)s+w-1}{n}.

References

  • [AK18] N. Anderson and E. M. Kiral, Level reciprocity in the twisted second moment of Rankin-Selberg LL-functions, arxiv: 1801.06089. Mathematika, (64) 2018, no.3, 770-784.
  • [BK17] V. Blomer and R. Khan, Twisted moments of LL-functions and spectral reciprocity, arxiv: 1706.01245. Duke Math Journal, (168) 2019, no.6, 1109-1177.
  • [BK18] V. Blomer and R. Khan, Uniform subconvexity and symmetry breaking reciprocity, arxiv: 1804.01602. Journal of Functional Analysis (276) 2019, no.7, 2315-2358.
  • [BKL19] A. Booker, M. Krishnamurthy and M. Lee, Test vectors for Rankin-Selberg LL-functions, arxiv: 1903.03458. Journal of Number Theory, (209) 2020, 37-48.
  • [BML19] V. Blomer, S. Miller and X. Li, A spectral reciprocity formula and non-vanishing for LL-functions on GL(4)×GL(2){\mathrm{GL}}(4)\times{\mathrm{GL}}(2), arxiv: 1705.04344. Journal of Number Theory Prime (205) 2019, 1-43.
  • [Cog07] J. W. Cogdell, LL-functions and converse theorems for GLn{\mathrm{GL}}_{n}, Automorphic forms and applications, volume 12 of IAS/Park City Math. Ser., page 97-177. Amer. Math. Soc., Providence, RI.
  • [CPS94] J. W. Cogdell and I. I. Piatetski-Shapiro, Converse Theorem for GLn{\mathrm{GL}}_{n}, Publ. Math. Inst. Hautes Etudes Sci., (79) 1994, 157-214.
  • [CPS17] J. W. Cogdell and I. I. Piatetski-Shapiro, Derivatives and LL-functions for GLn{\mathrm{GL}}_{n}, Representation Theory, Number Theory, and Invariant Theory pp 115-173.
  • [FLO12] B. Feigon, E. Lapid and O. Offen, On Representations distinguished by unitary groups, Publ. Math. Inst. Hautes Etudes Sci., (115) 2012, 185-323.
  • [God18] R. Godement, Notes on Jacquet-Langlands’ Theory, CTM 8 Classical Topics in Mathematics, Higher Education Press, 2018.
  • [IY15] A. Ichino and S. Yamana, Periods of automorphic forms: the case of (GLn+1×GLn,GLn)({\mathrm{GL}}_{n+1}\times{\mathrm{GL}}_{n},{\mathrm{GL}}_{n}), Compositio Math. 151 (2015) 665-712.
  • [Jac09] H. Jacquet, Archimedean Rankin-Selberg integrals, Automorphic forms and LL-functions II: local aspects, Contemporary Mathematics, vol. 489 (American Mathematical Society, Providence, RI. 2009), 57-172.
  • [Ja20] S. Jana, Second Moment of GL(n)×GL(n){\mathrm{GL}}(n)\times{\mathrm{GL}}(n) Rankin-Selberg LL-functions, arxiv: 2012.07817.
  • [JL13] D. Jiang and B. Liu, On Fourier Coefficients of Automorphic Forms of GL(n){\mathrm{GL}}(n), International Mathematics Research Notices Vol. 2013, No. 17, 4029-4071.
  • [JPS79] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Automorphic forms on GL(3){\mathrm{GL}}(3), I, II, Ann. of Math. (2) 109 (1979), 169-258.
  • [JPS81] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Conducteur des representations du groupe lineaire, Math. Ann. 256 (2), 199-214, 1981.
  • [JPS83] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.
  • [JS90] H. Jacquet and J. Shalika, Rankin-Selberg convolutions: Archimedean theory, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, part I, Israel Mathematical Conference Proceedings, vol. 2 (Weizmann, Jerusalem, 1990), 125-207.
  • [Kha12] R. Khan, Simultaneous non-vanishing of GL(3)×GL(2){\mathrm{GL}}(3)\times{\mathrm{GL}}(2) and GL(2){\mathrm{GL}}(2) LL-functions, Math. Proc. Cambridge Philos. Soc., (152) 2012, no.3, 535-553.
  • [Kha21] R. Khan, Subconvexity bounds for twisted LL-functions II, arxiv: 2103.12330.
  • [KY21] E. M. Kiral and M. Young, The fifth moment of modular LL-functions, arxiv: 1701.07507. J. Eur. Math. Soc. 23 (2021), no.1, 237-314.
  • [MV10] P. Michel and A. Venketesh, The subconvexity problem for GL(2){\mathrm{GL}}(2), arxiv: 0903.3591. Publ. Math. Inst. Hautes Etudes Sci., (111) 2010, 171-271.
  • [MW95] C. Moeglin and J. L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, 113, Cambridge University Press, Cambridge, 1995.
  • [Mot93] Y. Motohashi, An explicit formula for the fourth power mean of the Riemann zeta-function, Acta Math., (170) 1993, no.2, 181-220.
  • [Nel19] P. Nelson, Eisenstein series and the cubic moment for PGL(2){\mathrm{PGL}}(2), arxiv: 1911.06310v3.
  • [Nun20] R. Nunes, Spectral reciprocity via integral representations, arxiv: 2002.01993.
  • [Sta01] E. Stade, Mellin transform of GL(n,){\mathrm{GL}}(n,{\mathbb{R}}) Whittaker functions, Amer. J. Math. 123(1), 2001, 121-161.
  • [Wong19] T. Wong, On the balanced Voronoi Formula for GLN{\mathrm{GL}}_{N}, arxiv: 1910.12426.
  • [Wu14] H. Wu, Burgess-like subconvex bounds for GL(2)×GL(1){\mathrm{GL}}(2)\times{\mathrm{GL}}(1), arxiv: 1209.5950. Geometric and Functional Analysis (24) 2014, no.3, 968-1036.
  • [Zac19] R. Zacharias, Periods and Reciprocity I, arxiv: 1809.10593. International Mathematics Research Notices Vol. 2021, No. 3, 2191-2209.
  • [Zac20] R. Zacharias, Periods and Reciprocity II, arxiv: 1912.01512v2.