This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spin density matrix for neutral ρ\rho mesons in a pion gas in linear response theory

Yi-Liang Yin Department of Modern Physics and Anhui Center for Fundamental Sciences in Theoretical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China    Wen-Bo Dong Department of Modern Physics and Anhui Center for Fundamental Sciences in Theoretical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China    Cong Yi Department of Modern Physics and Anhui Center for Fundamental Sciences in Theoretical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China    Qun Wang Department of Modern Physics and Anhui Center for Fundamental Sciences in Theoretical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China School of Mechanics and Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China
Abstract

We calculate the spin density matrix for neutral ρ\rho mesons from the spectral function and thermal shear tensor by Kubo formula in the linear response theory, which contributes to the γ\gamma correlator for the CME search. We derive the spectral function of neutral ρ\rho mesons with ρππ\rho\pi\pi and ρρππ\rho\rho\pi\pi interactions using the Dyson-Schwinger equation. The thermal shear tensor contribution is obtained from the Kubo formula in the linear response theory. We numerically calculate ρ001/3\rho_{00}-1/3 and Reρ1,1\mathrm{Re}\rho_{-1,1} using the simulation results for the thermal shear tensor by the hydrodynamical model, which are of the order 10310210^{-3}\sim 10^{-2}.

I Introduction

The spin and orbital angular momentum are intrinsically connected and can be converted to each other as demonstrated in the Barnett effect (Barnett:1935, ) and Einstein-de-Haas effect (dehaas:1915, ) in materials. In non-central heavy-ion collisions, a huge orbital angular momentum is generated and partially transferred to the strongly interacting matter in the form of particle’s spin polarization along the reaction plane through spin-orbit couplings (Liang:2004ph, ). This phenomenon is called the global spin polarization as it is with respect to the reaction plane which is fixed for all particles in one event (Liang:2004ph, ; Voloshin:2004ha, ; Liang:2004xn, ; Betz:2007kg, ; Gao:2007bc, ; Becattini:2007sr, ). The global spin polarization of Λ\Lambda and Λ¯\overline{\Lambda} hyperons was first observed and measured in the STAR experiment (STAR:2017ckg, ; STAR:2018gyt, ), and then measured in experiments of HADES (HADES:2022enx, ) and ALICE (ALICE:2021pzu, ). Since its first observation (STAR:2017ckg, ; STAR:2018gyt, ), there has been tremendous advance in the study of the global spin polarization in theoretical models (Karpenko:2016jyx, ; Li:2017slc, ; Xie:2017upb, ; Sun:2017xhx, ; Baznat:2017jfj, ; Shi:2017wpk, ; Wei:2018zfb, ; Fu:2020oxj, ; Ryu:2021lnx, ; Deng:2021miw, ; Wu:2022mkr, ), see Refs. (Wang:2017jpl, ; Florkowski:2018fap, ; Huang:2020dtn, ; Gao:2020lxh, ; Gao:2020vbh, ; Liu:2020ymh, ; Becattini:2022zvf, ; Hidaka:2022dmn, ; Becattini:2024uha, ) for recent reviews on this topic.

The spin polarization of hyperons can be measured through their parity-breaking weak decays (Bunce:1976yb, ). Vector mesons mostly decay through parity-conserved strong interaction, so there is no way to measure the spin polarization of vector mesons. The spin states of the vector meson can be described by the spin density matrix ρλ1λ2\rho_{\lambda_{1}\lambda_{2}}, where λ1\lambda_{1} and λ2=0,±1\lambda_{2}=0,\pm 1 denote the spin states. The spin density matrix is normalized trρλρλλ=1\mathrm{tr}\rho\equiv\sum_{\lambda}\rho_{\lambda\lambda}=1. The ρ00\rho_{00} element can be measured in experiments through the polar angle distribution of decay products (Schilling:1969um, ; Liang:2004xn, ; Yang:2017sdk, ; Tang:2018qtu, ). If ρ001/3\rho_{00}\neq 1/3, the spin-0 state of the vector meson is not equally populated as λ=±1\lambda=\pm 1 states, which is called the spin alignment. Specifically, ρ00<1/3\rho_{00}<1/3 means the field vector (not the spin vector) is more aligned to the direction perpendicular to the spin quantization direction, while ρ00>1/3\rho_{00}>1/3 means the field vector is more aligned to the spin quantization direction. The spin alignment with respect to the reaction plane is called the global spin alignment and was also predicted in 2004-2005 (Liang:2004xn, ). The global spin alignment of ϕ\phi and K0K^{0*} mesons has recently been measured by the STAR collaboration in Au+Au collisions (STAR:2022fan, ), where a large deviation of ρ00\rho_{00} for ϕ\phi mesons from 1/3 is observed at lower collision energies, but there is no significant deviation of ρ00\rho_{00} for K0K^{0*} mesons within errors.

A number of sources can contribute to the spin alignment of ϕ\phi mesons but not enough to explain such a large effect (Yang:2017sdk, ; Xia:2020tyd, ; Gao:2021rom, ; Muller:2021hpe, ; Kumar:2023ghs, ). It was proposed that a large spin alignment of ϕ\phi mesons may come from the local correlation/fluctuation of strong vector fields that are coupled to s and s¯\bar{\mathrm{s}} quarks (Sheng:2019kmk, ). Initially a nonrelativistic quark coalescence model (Yang:2017sdk, ) was used to calculate the spin density matrix of ϕ\phi mesons with s and s¯\bar{\mathrm{s}} quarks being polarized by strong vector fields (Sheng:2020ghv, ). Then the nonrelativistic quark coalescence model was generalized to a relativistic one (Sheng:2022ffb, ; Sheng:2022wsy, ). The relativistic model is based on Wigner functions and spin kinetic equations for vector mesons. The model incorporated with strong vector fields can successfully describe the experimental data for the global spin alignment of ϕ\phi mesons (Sheng:2022ffb, ; Sheng:2022wsy, ; Sheng:2023urn, ). For recent reviews of the topic, the readers may look at Refs. (Chen:2023hnb, ; Sheng:2023chinphyb, ; Chen:2024bik, ; Chen:2024afy, ).

Recently, the thermal shear contribution to ϕ\phi meson’s spin alignment has been studied in the linear response theory (Li:2022vmb, ; Dong:2024nxj, ). In this paper, we will apply the same method to another vector meson, the neutral rho meson or ρ0\rho^{0}. The spin density matrix of ρ0\rho^{0} may serve as a background for the chiral magnetic effect (CME) (Kharzeev:2004ey, ; Kharzeev:2007jp, ; Fukushima:2008xe, ), because the anisotropic angular distribution of its decay daughters (pions) provides a non-vanishing contribution to the γ\gamma correlator (Voloshin:2004vk, ; STAR:2013ksd, ; STAR:2013zgu, ; Wang:2016iov, ), see Refs. (Tang:2019pbl, ; Shen:2022gtl, ) for quantitative analyses. In Ref. (Yin:2024dnu, ) by some of us, the evolution of ρ0\rho^{0} mesons in a pion gas was studied by the spin kinetic or Boltzmann equation for the on-shell spin dependent distribution. The results show that the spin alignment of ρ0\rho^{0} mesons is damped rapidly in the pion gas due to ρππ\rho\pi\pi interaction and that ρ00\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} have a significant contribution to the γ\gamma correlator for CME. In this paper, we will consider the off-shell contribution as well as the thermal shear contribution to ρ00\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} by assuming thermal spin distributions for ρ0\rho^{0}. We will treat the thermal shear tensor as a perturbation from local equilibrium and apply the Kubo formula (Zubarev_1979, ; Hosoya:1983id, ; Becattini:2019dxo, ) to calculate the linear response of the spin density matrix for ρ0\rho^{0} mesons as done for ϕ\phi mesons in Refs. (Li:2022vmb, ; Dong:2024nxj, ). The spectral function of ρ0\rho^{0} mesons is derived from ρππ\rho\pi\pi and ρρππ\rho\rho\pi\pi interaction in the chiral effective theory (Gale:1990pn, ). Finally, we present numerical results for ρ00\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} of ρ0\rho^{0} mesons using the simulation results for the thermal shear tensor from the hydrodynamical model (Pang:2018zzo, ; Wu:2021fjf, ; Wu:2022mkr, ).

The paper is organized as follows. In Sec. II, we briefly introduce the Green’s functions for vector mesons and pseudoscalar mesons in closed-time-path (CTP) formalism. In Sec. (III), we define the Wigner function and the matrix valued spin dependent distribution (MVSD) for the ρ0\rho^{0} meson which is proportional to its spin density matrix. In Sec. (IV), we use the Dyson-Schwinger equation to derive the spectral function of the ρ0\rho^{0} meson. We also derive the explicit form of the Wigner function without nonlocal terms. In Sec. (V), we obtain the nonlocal correction to the Wigner function proportional to the thermal shear tensor through the Kubo formula in the linear response theory. The numerical results are presented in Sec. (VI) and a summary of results and the conclusion are given in the last section.

By convention, the metric tensor is gμν=diag(1,1,1,1)g^{\mu\nu}=\mathrm{diag}(1,-1,-1,-1), four-momenta are denoted as pμ=(p0,𝐩)p^{\mu}=(p_{0},\mathbf{p}), pμ=(p0,𝐩)p_{\mu}=(p_{0},-\mathbf{p}), where μ,ν=\mu,\nu=0,1,2,3, and Greek letters and Latin letters represent space-time components of four-vectors and space components of three-vectors respectively. For notational clarification, we use GμνG^{\mu\nu} and pp for the two-point Green’s function and momentum for the ρ0\rho^{0} meson, while SS and kk for the two-point Green’s function and momentum for the pseudoscalar meson π±\pi^{\pm}.

II Green’s function in closed-time-path formalism

The closed-time-path (CTP) or Schwinger-Keldysh formalism in quantum field theory is an effective method to describe equilibrium and non-equilibrium physics in many-body systems (Martin:1959jp, ; Keldysh:1964ud, ; Chou:1984es, ; Blaizot:2001nr, ; Wang:2001dm, ; Berges:2004yj, ; Cassing:2008nn, ; Crossley:2015evo, ). The two-point Green’s functions on the CTP for the spin-1 vector meson (ρ0\rho^{0}) and spin-0 pseudoscalar meson (π±)(\pi^{\pm}) are defined as

GCTPμν(x1,x2)\displaystyle G_{\mathrm{CTP}}^{\mu\nu}(x_{1},x_{2}) =\displaystyle= TCAμ(x1)Aν(x2),\displaystyle\left\langle T_{C}A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle,
SCTP(x1,x2)\displaystyle S_{\mathrm{CTP}}(x_{1},x_{2}) =\displaystyle= TCϕ(x1)ϕ(x2),\displaystyle\left\langle T_{C}\phi(x_{1})\phi^{\dagger}(x_{2})\right\rangle, (1)

where TCT_{C} denotes the time-ordered operator on the CTP, and AμA^{\mu} and ϕ\phi are the real vector field and complex scalar field respectively, which can be quantized as

Aμ(x)\displaystyle A^{\mu}(x) =\displaystyle= λ=0,±1d3p(2π)312Epρ\displaystyle\sum_{\lambda=0,\pm 1}\int\frac{d^{3}p}{(2\pi)^{3}}\frac{1}{2E_{p}^{\rho}}
×[ϵμ(λ,𝐩)aV(λ,𝐩)eipx+ϵμ(λ,𝐩)aV(λ,𝐩)eipx],\displaystyle\times\left[\epsilon^{\mu}(\lambda,{\bf p})a_{V}(\lambda,{\bf p})e^{-ip\cdot x}+\epsilon^{\mu\ast}(\lambda,{\bf p})a_{V}^{\dagger}(\lambda,{\bf p})e^{ip\cdot x}\right],
ϕ(x)\displaystyle\phi(x) =\displaystyle= d3k(2π)312Ekπ[a(𝐤)eikx+b(𝐤)eikx],\displaystyle\int\frac{d^{3}k}{(2\pi)^{3}}\frac{1}{2E_{k}^{\pi}}\left[a({\bf k})e^{-ik\cdot x}+b^{\dagger}({\bf k})e^{ik\cdot x}\right], (2)

where p=(Epρ,𝐩)p=(E_{p}^{\rho},\mathbf{p}) and k=(Ekπ,𝐤)k=(E_{k}^{\pi},\mathbf{k}) are on-shell momenta for ρ\rho and π\pi with Epρ=𝐩2+mρ2E_{p}^{\rho}=\sqrt{\mathbf{p}^{2}+m_{\rho}^{2}} and Ekπ=𝐤2+mπ2E_{k}^{\pi}=\sqrt{\mathbf{k}^{2}+m_{\pi}^{2}}, λ\lambda denotes the spin state, and ϵμ(λ,𝐩)\epsilon^{\mu}(\lambda,{\bf p}) is the spin polarization vector

ϵμ(λ,𝐩)\displaystyle\epsilon^{\mu}(\lambda,\mathbf{p}) =\displaystyle= (𝐩ϵλmρ,ϵλ+𝐩ϵλmρ(Epρ+mρ)𝐩),\displaystyle\left(\frac{\mathbf{p}\cdot\boldsymbol{\epsilon}_{\lambda}}{m_{\rho}},\boldsymbol{\epsilon}_{\lambda}+\frac{\mathbf{p}\cdot\boldsymbol{\epsilon}_{\lambda}}{m_{\rho}(E_{p}^{\rho}+m_{\rho})}\mathbf{p}\right), (3)

where ϵλ\boldsymbol{\epsilon}_{\lambda} is the spin polarization three-vector in the particle’s rest frame given by

ϵ0=\displaystyle\boldsymbol{\epsilon}_{0}= (0,1,0),\displaystyle(0,1,0),
ϵ+1=\displaystyle\boldsymbol{\epsilon}_{+1}= 12(i,0,1),\displaystyle-\frac{1}{\sqrt{2}}(i,0,1),
ϵ1=\displaystyle\boldsymbol{\epsilon}_{-1}= 12(i,0,1).\displaystyle\frac{1}{\sqrt{2}}(-i,0,1). (4)

We have chosen +y+y to be the spin quantization direction. The polarization vector satisfies

pμϵμ(λ,𝐩)\displaystyle p_{\mu}\epsilon^{\mu}(\lambda,{\bf p}) =\displaystyle= 0,\displaystyle 0,
ϵ(λ,𝐩)ϵ(λ,𝐩)\displaystyle\epsilon(\lambda,{\bf p})\cdot\epsilon^{*}(\lambda^{\prime},{\bf p}) =\displaystyle= δλλ,\displaystyle-\delta_{\lambda\lambda^{\prime}},
λϵμ(λ,𝐩)ϵν(λ,𝐩)\displaystyle-\sum_{\lambda}\epsilon^{\mu}(\lambda,{\bf p})\epsilon^{\nu*}(\lambda,{\bf p}) =\displaystyle= Δμν(pon)gμνpμpνmρ2.\displaystyle\Delta^{\mu\nu}(p_{\mathrm{on}})\equiv g^{\mu\nu}-\frac{p^{\mu}p^{\nu}}{m_{\rho}^{2}}. (5)

Note that in the above equation, pμp^{\mu} is an on-shell momentum, so we put the index “on” to the momentum variable in the projector Δμν(pon)\Delta^{\mu\nu}(p_{\mathrm{on}}) to distinguish it from the off-shell projector Δμν(p)\Delta^{\mu\nu}(p) which will be used later. We see in Eq. (2) that we use GG and pp to denote the Green’s function and momentum for ρ0\rho^{0} respectively, while we use SS and kk to denote the Green’s function and momentum for π±\pi^{\pm} respectively.

In the CTP formalism, GCTPμνG_{\mathrm{CTP}}^{\mu\nu} in Eq. (1) has four components

GFμν(x1,x2)\displaystyle G_{F}^{\mu\nu}(x_{1},x_{2}) \displaystyle\equiv θ(t1t2)Aμ(x1)Aν(x2)+θ(t2t1)Aν(x2)Aμ(x1),\displaystyle\theta(t_{1}-t_{2})\left\langle A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle+\theta(t_{2}-t_{1})\left\langle A^{\nu}(x_{2})A^{\mu}(x_{1})\right\rangle,
G<μν(x1,x2)\displaystyle G_{<}^{\mu\nu}(x_{1},x_{2}) \displaystyle\equiv Aν(x2)Aμ(x1),\displaystyle\left\langle A^{\nu}(x_{2})A^{\mu}(x_{1})\right\rangle,
G>μν(x1,x2)\displaystyle G_{>}^{\mu\nu}(x_{1},x_{2}) \displaystyle\equiv Aμ(x1)Aν(x2),\displaystyle\left\langle A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle,
GF¯μν(x1,x2)\displaystyle G_{\overline{F}}^{\mu\nu}(x_{1},x_{2}) \displaystyle\equiv θ(t2t1)Aμ(x1)Aν(x2)+θ(t1t2)Aν(x2)Aμ(x1),\displaystyle\theta(t_{2}-t_{1})\left\langle A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle+\theta(t_{1}-t_{2})\left\langle A^{\nu}(x_{2})A^{\mu}(x_{1})\right\rangle, (6)

depending on whether x1x_{1} and x2x_{2} are on the positive or negative time branch. One can verify that all four components satisfy the identity GFμν+GF¯μν=G<μν+G>μνG_{F}^{\mu\nu}+G_{\overline{F}}^{\mu\nu}=G_{<}^{\mu\nu}+G_{>}^{\mu\nu}, so only three of them are independent which one can choose the retarded, advanced and correlation Green’s functions GRμνG_{R}^{\mu\nu}, GAμνG_{A}^{\mu\nu} and GCμνG_{C}^{\mu\nu} as

GRμν(x1,x2)\displaystyle G_{R}^{\mu\nu}(x_{1},x_{2}) \displaystyle\equiv θ(t1t2)(Aμ(x1)Aν(x2)Aν(x2)Aμ(x1))\displaystyle\theta(t_{1}-t_{2})\left(\left\langle A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle-\left\langle A^{\nu}(x_{2})A^{\mu}(x_{1})\right\rangle\right)
=\displaystyle= GFμν(x1,x2)G<μν(x1,x2),\displaystyle G_{F}^{\mu\nu}(x_{1},x_{2})-G_{<}^{\mu\nu}(x_{1},x_{2}),
GAμν(x1,x2)\displaystyle G_{A}^{\mu\nu}(x_{1},x_{2}) \displaystyle\equiv θ(t2t1)(Aν(x2)Aμ(x1)Aμ(x1)Aν(x2))\displaystyle\theta(t_{2}-t_{1})\left(\left\langle A^{\nu}(x_{2})A^{\mu}(x_{1})\right\rangle-\left\langle A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle\right)
=\displaystyle= GFμν(x1,x2)G>μν(x1,x2),\displaystyle G_{F}^{\mu\nu}(x_{1},x_{2})-G_{>}^{\mu\nu}(x_{1},x_{2}),
GCμν(x1,x2)\displaystyle G_{C}^{\mu\nu}(x_{1},x_{2}) \displaystyle\equiv Aμ(x1)Aν(x2)+Aν(x2)Aμ(x1)\displaystyle\left\langle A^{\mu}(x_{1})A^{\nu}(x_{2})\right\rangle+\left\langle A^{\nu}(x_{2})A^{\mu}(x_{1})\right\rangle (7)
=\displaystyle= G<μν(x1,x2)+G>μν(x1,x2).\displaystyle G_{<}^{\mu\nu}(x_{1},x_{2})+G_{>}^{\mu\nu}(x_{1},x_{2}).

The four components of the Green’s function for the complex scalar field can be defined similarly. Other operators can also be defined on the CTP, obeying the relations similar to Eq. (7) as

OR(x1,x2)\displaystyle O_{R}(x_{1},x_{2}) =\displaystyle= OF(x1,x2)O<(x1,x2),\displaystyle O_{F}(x_{1},x_{2})-O_{<}(x_{1},x_{2}),
OA(x1,x2)\displaystyle O_{A}(x_{1},x_{2}) =\displaystyle= OF(x1,x2)O>(x1,x2),\displaystyle O_{F}(x_{1},x_{2})-O_{>}(x_{1},x_{2}),
OC(x1,x2)\displaystyle O_{C}(x_{1},x_{2}) =\displaystyle= O<(x1,x2)+O>(x1,x2),\displaystyle O_{<}(x_{1},x_{2})+O_{>}(x_{1},x_{2}), (8)

where OO is any operator defined on the CTP.

III Wigner functions and spin density matrix

In order to define the matrix valued spin dependent distribution (MVSD) for the vector meson in phase space, we introduce the Wigner transformation for the two-point Green’s function that defines the Wigner function

G<μν(x,p)\displaystyle G_{<}^{\mu\nu}(x,p) =\displaystyle= d4yeipyG<μν(x+12y,x12y).\displaystyle\int d^{4}ye^{ip\cdot y}G_{<}^{\mu\nu}\left(x+\frac{1}{2}y,x-\frac{1}{2}y\right). (9)

For free particles, the Wigner function has the form

G(0)<μν(x,p)\displaystyle G_{(0)<}^{\mu\nu}(x,p) =\displaystyle= 2πλ1,λ2δ(p2mV2){θ(p0)ϵμ(λ1,𝐩)ϵν(λ2,𝐩)fλ1λ2(0)(x,𝐩)\displaystyle 2\pi\sum_{\lambda_{1},\lambda_{2}}\delta\left(p^{2}-m_{V}^{2}\right)\left\{\theta(p^{0})\epsilon^{\mu}\left(\lambda_{1},{\bf p}\right)\epsilon^{\nu\ast}\left(\lambda_{2},{\bf p}\right)f_{\lambda_{1}\lambda_{2}}^{(0)}(x,{\bf p})\right. (10)
+θ(p0)ϵμ(λ1,𝐩)ϵν(λ2,𝐩)[δλ2λ1+fλ2λ1(0)(x,𝐩)]},\displaystyle\left.+\theta(-p^{0})\epsilon^{\mu\ast}\left(\lambda_{1},-{\bf p}\right)\epsilon^{\nu}\left(\lambda_{2},-{\bf p}\right)\left[\delta_{\lambda_{2}\lambda_{1}}+f_{\lambda_{2}\lambda_{1}}^{(0)}(x,-{\bf p})\right]\right\},

where the index “(0)” denotes the leading order of \hbar, and fλ1λ2(0)(x,𝐩)f_{\lambda_{1}\lambda_{2}}^{(0)}(x,{\bf p}) is the MVSD at leading order defined as

fλ1λ2(0)(x,𝐩)\displaystyle f_{\lambda_{1}\lambda_{2}}^{(0)}(x,{\bf p}) \displaystyle\equiv d4u2(2π)3δ(pu)eiuxaV(λ2,𝐩𝐮2)aV(λ1,𝐩+𝐮2),\displaystyle\int\frac{d^{4}u}{2(2\pi)^{3}}\delta(p\cdot u)e^{-iu\cdot x}\left\langle a_{V}^{\dagger}\left(\lambda_{2},{\bf p}-\frac{{\bf u}}{2}\right)a_{V}\left(\lambda_{1},{\bf p}+\frac{{\bf u}}{2}\right)\right\rangle, (11)

which satisfies fλ1λ2(0)(x,𝐩)=fλ2λ1(0)(x,𝐩)f_{\lambda_{1}\lambda_{2}}^{(0)*}(x,{\bf p})=f_{\lambda_{2}\lambda_{1}}^{(0)}(x,{\bf p}). Note that the MVSD can be decomposed into the scalar (trace), polarization (PiP_{i}) and tensor (TijT_{ij}) parts as (Sheng:2023chinphyb, ; Becattini:2024uha, )

fλ1λ2(0)(x,𝐩)=Tr(f(0))(13+12PiΣi+TijΣij)λ1λ2,f_{\lambda_{1}\lambda_{2}}^{(0)}(x,{\bf p})=\mathrm{Tr}(f^{(0)})\left(\frac{1}{3}+\frac{1}{2}P_{i}\Sigma_{i}+T_{ij}\Sigma_{ij}\right)_{\lambda_{1}\lambda_{2}}, (12)

where i,j=1,2,3i,j=1,2,3, Tr(f(0))=λfλλ(0)\mathrm{Tr}(f^{(0)})=\sum_{\lambda}f_{\lambda\lambda}^{(0)}, and Σi\Sigma_{i} and Σij\Sigma_{ij} are traceless matrices defined in Eq. (11) of Ref. (Dong:2023cng, ). The on-shell part of the Wigner function Wμν(x,𝐩)W^{\mu\nu}(x,\mathbf{p}) can be obtained by integration of (p0/π)G(0)<μν(x,p)(p_{0}/\pi)G_{(0)<}^{\mu\nu}(x,p) over p0=[0,)p_{0}=\left[0,\infty\right). Using the decomposition (12) Wμν(x,𝐩)W^{\mu\nu}(x,\mathbf{p}) can be decomposed into the scalar (𝒮\mathcal{S}), polarization (G[μν]G^{[\mu\nu]}) and tensor (𝒯μν\mathcal{T}^{\mu\nu}) parts as

Wμν(x,𝐩)=13Δμν(pon)𝒮+G[μν]+𝒯μν,W^{\mu\nu}(x,\mathbf{p})=-\frac{1}{3}\Delta^{\mu\nu}(p_{\mathrm{on}})\mathcal{S}+G^{[\mu\nu]}+\mathcal{T}^{\mu\nu}, (13)

where 𝒮\mathcal{S}, G[μν]G^{[\mu\nu]} and 𝒯μν\mathcal{T}^{\mu\nu} are defined in Eqs. (14) and (15) of Ref. (Dong:2023cng, ).

According to Eq. (10), the MVSD can be inversely obtained from the Green’s function as

fλ1λ2(0)(x,𝐩)=\displaystyle f_{\lambda_{1}\lambda_{2}}^{(0)}(x,{\bf p})= 1π0𝑑p0p0ϵμ(λ1,𝐩)ϵν(λ2,𝐩)G(0)<μν(x,𝐩),\displaystyle\frac{1}{\pi}\int_{0}^{\infty}dp_{0}p_{0}\epsilon_{\mu}^{*}(\lambda_{1},\mathbf{p})\epsilon_{\nu}(\lambda_{2},\mathbf{p})G_{(0)<}^{\mu\nu}(x,\mathbf{p}),
Trf(0)(x,𝐩)=\displaystyle\mathrm{Tr}f^{(0)}(x,{\bf p})= 1π0𝑑p0p0Δμν(pon)G(0)<μν(x,𝐩).\displaystyle-\frac{1}{\pi}\int_{0}^{\infty}dp_{0}p_{0}\Delta_{\mu\nu}(p_{\mathrm{on}})G_{(0)<}^{\mu\nu}(x,\mathbf{p}). (14)

We assume that above relations hold at any order

fλ1λ2(x,𝐩)=\displaystyle f_{\lambda_{1}\lambda_{2}}(x,{\bf p})= 1π0𝑑p0p0ϵμ(λ1,p)ϵν(λ2,p)G<μν(x,p),\displaystyle\frac{1}{\pi}\int_{0}^{\infty}dp_{0}p_{0}\epsilon_{\mu}^{*}(\lambda_{1},p)\epsilon_{\nu}(\lambda_{2},p)G_{<}^{\mu\nu}(x,p),
Trf(x,𝐩)=\displaystyle\mathrm{Tr}f(x,{\bf p})= 1π0𝑑p0p0Δμν(p)G<μν(x,p),\displaystyle-\frac{1}{\pi}\int_{0}^{\infty}dp_{0}p_{0}\Delta_{\mu\nu}(p)G_{<}^{\mu\nu}(x,p), (15)

where we have generalized the polarization (field) vector ϵμ(λ,𝐩)\epsilon^{\mu}(\lambda,{\bf p}) to the off-shell four-momentum pp

ϵμ(λ,p)\displaystyle\epsilon^{\mu}(\lambda,p) \displaystyle\equiv (𝐩ϵλp2,ϵλ+𝐩ϵλp2(p0+p2)𝐩).\displaystyle\left(\frac{\mathbf{p}\cdot\boldsymbol{\epsilon}_{\lambda}}{\sqrt{p^{2}}},\boldsymbol{\epsilon}_{\lambda}+\frac{\mathbf{p}\cdot\boldsymbol{\epsilon}_{\lambda}}{\sqrt{p^{2}}(p^{0}+\sqrt{p^{2}})}\mathbf{p}\right). (16)

One can check that ϵμ(λ,p)\epsilon^{\mu}(\lambda,p) satisfies

λϵμ(λ,p)ϵν(λ,p)=Δμν(p)gμνpμpνp2.-\sum_{\lambda}\epsilon^{\mu}(\lambda,p)\epsilon^{\nu*}(\lambda,p)=\Delta^{\mu\nu}(p)\equiv g^{\mu\nu}-\frac{p^{\mu}p^{\nu}}{p^{2}}. (17)

In this paper we use the off-shell field vector, which is different from our previous work in Ref. (Dong:2024nxj, ), because the off-shell effect for the ρ0\rho^{0} meson is much more significant than the ϕ\phi meson and the expansion in powers of (p0Ep)(p^{0}-E_{p}) for ρ0\rho^{0} does not work well.

In order to calculate the spin density matrix ρλ1λ2\rho_{\lambda_{1}\lambda_{2}} which is the normalized fλ1λ2f_{\lambda_{1}\lambda_{2}}, ρλ1λ2fλ1λ2/Trf\rho_{\lambda_{1}\lambda_{2}}\equiv f_{\lambda_{1}\lambda_{2}}/\mathrm{Tr}f, from the Wigner function, we define the projector

Lμν(λ1,λ2,p)ϵμ(λ1,p)ϵν(λ2,p)+13Δμν(p)δλ1λ2.L_{\mu\nu}(\lambda_{1},\lambda_{2},p)\equiv\epsilon_{\mu}^{*}(\lambda_{1},p)\epsilon_{\nu}(\lambda_{2},p)+\frac{1}{3}\Delta_{\mu\nu}(p)\delta_{\lambda_{1}\lambda_{2}}. (18)

Using Eq. (15) and the above expression for LμνL_{\mu\nu}, we obtain

0dp02π2p0Lμν(λ1,λ2,p)G<μν(x,p)\displaystyle\int_{0}^{\infty}\frac{dp_{0}}{2\pi}2p_{0}L_{\mu\nu}(\lambda_{1},\lambda_{2},p)G_{<}^{\mu\nu}(x,p) =\displaystyle= fλ1λ2(x,𝐩)13δλ1λ2Trf(x,𝐩).\displaystyle f_{\lambda_{1}\lambda_{2}}(x,\mathbf{p})-\frac{1}{3}\delta_{\lambda_{1}\lambda_{2}}\mathrm{Tr}f(x,\mathbf{p}). (19)

So the deviation of ρλ1λ2\rho_{\lambda_{1}\lambda_{2}} from its equilibrium value (without polarization) (1/3)δλ1λ2(1/3)\delta_{\lambda_{1}\lambda_{2}} can be written as

δρλ1λ2(x,𝐩)\displaystyle\delta\rho_{\lambda_{1}\lambda_{2}}(x,\mathbf{p})\equiv ρλ1λ2(x,𝐩)13δλ1λ2\displaystyle\rho_{\lambda_{1}\lambda_{2}}(x,\mathbf{p})-\frac{1}{3}\delta_{\lambda_{1}\lambda_{2}}
=\displaystyle= 0𝑑p0p0Lμν(λ1,λ2,p)G<μν(x,p)0𝑑p0p0Δμν(p)G<μν(x,p).\displaystyle\frac{\int_{0}^{\infty}dp_{0}p_{0}L_{\mu\nu}(\lambda_{1},\lambda_{2},p)G_{<}^{\mu\nu}(x,p)}{-\int_{0}^{\infty}dp_{0}p_{0}\Delta_{\mu\nu}(p)G_{<}^{\mu\nu}(x,p)}. (20)

Since ρ001/3\rho_{00}-1/3 and Reρ1,1\mathrm{Re}\rho_{-1,1} are most relevant to the γ\gamma correlator in search for the CME signal (Yin:2024dnu, ), we will focus on δρ00\delta\rho_{00} and Reδρ1,1\mathrm{Re}\delta\rho_{-1,1} in this paper.

In order to calculate ρλ1λ2\rho_{\lambda_{1}\lambda_{2}} in Eq. (20), we will evaluate the Green’s function G<μν(x,p)G_{<}^{\mu\nu}(x,p) by expanding G<μν(x,p)G_{<}^{\mu\nu}(x,p) in powers of external sources: the leading order (LO) contribution G<,LOμν(x,p)G_{<,\mathrm{LO}}^{\mu\nu}(x,p) without space-time derivatives and the next-to-leading order (NLO) contribution G<,NLOμν(x,p)G_{<,\mathrm{NLO}}^{\mu\nu}(x,p) with space-time derivatives as the linear response correction.

IV Dyson-Schwinger equation and spectral function

In this section, we will derive the spectral function for the ρ0\rho^{0} meson from the Dyson-Schwinger equation for the two-point Green’s function at the leading order. The ρππ\rho\pi\pi vertex is taken from the chiral effective Lagrangian.

IV.1 Dyson-Schwinger equation on CTP

We start from the Dyson-Schwinger equation on the CTP for vector mesons (Sheng:2022ffb, ; Wagner:2023cct, )

Gμν(x1,x2)\displaystyle G^{\mu\nu}(x_{1},x_{2}) =\displaystyle= G(0)μν(x1,x2)+Cd4x1d4x2G(0),ρμ(x1,x1)Σσρ(x1,x2)Gσν(x2,x2),\displaystyle G_{(0)}^{\mu\nu}(x_{1},x_{2})+\int_{C}d^{4}x_{1}^{\prime}d^{4}x_{2}^{\prime}G_{(0),\rho}^{\mu}(x_{1},x_{1}^{\prime})\Sigma_{\;\;\sigma}^{\rho}(x_{1}^{\prime},x_{2}^{\prime})G^{\sigma\nu}(x_{2}^{\prime},x_{2}), (21)

where C\int_{C} denotes the integral on the CTP contour, and Σμν(x1,x2)\Sigma^{\mu\nu}(x_{1},x_{2}) is the self-energy. Acting G(0)1,μνG_{(0)}^{-1,\mu\nu} on both sides of Eq. (21), we obtain

i[gρμ(x12+mV2)x1μρx1]Gρν(x1,x2)\displaystyle-i\left[g_{\;\rho}^{\mu}(\partial_{x_{1}}^{2}+m_{V}^{2})-\partial_{x_{1}}^{\mu}\partial_{\rho}^{x_{1}}\right]G^{\rho\nu}(x_{1},x_{2}) =\displaystyle= gμνδC(4)(x1x2)+Cd4xΣσμ(x1,x)Gσν(x,x2),\displaystyle g^{\mu\nu}\delta_{\mathrm{C}}^{(4)}\left(x_{1}-x_{2}\right)+\int_{C}d^{4}x^{\prime}\Sigma_{\;\;\sigma}^{\mu}(x_{1},x^{\prime})G^{\sigma\nu}(x^{\prime},x_{2}), (22)

where the delta-function is defined on the CTP

δC(4)(x1x2)=δ(3)(𝐱1𝐱2){δ(x10x20),x10,x20t+δ(x10x20),x10,x20t0,otherwise.\delta_{\text{C}}^{(4)}(x_{1}-x_{2})=\delta^{(3)}({\bf x}_{1}-{\bf x}_{2})\begin{cases}\delta(x_{1}^{0}-x_{2}^{0}),&x_{1}^{0},x_{2}^{0}\in t_{+}\\ -\delta(x_{1}^{0}-x_{2}^{0}),&x_{1}^{0},x_{2}^{0}\in t_{-}\\ 0,&\mathrm{otherwise}\end{cases}. (23)

Here t±t_{\pm} denotes the positive (upper sign) and negative (lower sign) time branch respectively. Using Eqs. (6,7), Eq. (22) can be decomposed into the matrix form

i[gρμ(x12+mV2)x1μρx1](0GAρνGRρνGCρν)(x1,x2)\displaystyle-i\left[g_{\;\rho}^{\mu}(\partial_{x_{1}}^{2}+m_{V}^{2})-\partial_{x_{1}}^{\mu}\partial_{\rho}^{x_{1}}\right]\left(\begin{array}[]{cc}0&G_{A}^{\rho\nu}\\ G_{R}^{\rho\nu}&G_{C}^{\rho\nu}\end{array}\right)(x_{1},x_{2}) (26)
=\displaystyle= (0110)gμνδ(4)(x1x2)\displaystyle\left(\begin{array}[]{cc}0&1\\ 1&0\end{array}\right)g^{\mu\nu}\delta^{(4)}(x_{1}-x_{2}) (34)
+𝑑x(ΣA,ρμ0ΣC,ρμΣR,ρμ)(x1,x)(0GAρνGRρνGCρν)(x,x2).\displaystyle+\int dx^{\prime}\left(\begin{array}[]{cc}\Sigma_{A,\rho}^{\mu}&0\\ \Sigma_{C,\rho}^{\mu}&\Sigma_{R,\rho}^{\mu}\end{array}\right)(x_{1},x^{\prime})\left(\begin{array}[]{cc}0&G_{A}^{\rho\nu}\\ G_{R}^{\rho\nu}&G_{C}^{\rho\nu}\end{array}\right)(x^{\prime},x_{2}).

The Dyson-Schwinger equation for the retarded Green’s function GRG_{R} is

i[gρμ(x12+mV2)x1μρx1]GRρν(x1,x2)\displaystyle-i\left[g_{\;\rho}^{\mu}(\partial_{x_{1}}^{2}+m_{V}^{2})-\partial_{x_{1}}^{\mu}\partial_{\rho}^{x_{1}}\right]G_{R}^{\rho\nu}(x_{1},x_{2}) =\displaystyle= gμνδ(4)(x1x2)+𝑑xΣR,ρμ(x1,x)GRρν(x,x2).\displaystyle g^{\mu\nu}\delta^{(4)}(x_{1}-x_{2})+\int dx^{\prime}\Sigma_{R,\rho}^{\mu}(x_{1},x^{\prime})G_{R}^{\rho\nu}(x^{\prime},x_{2}). (35)

Adopting the Wigner transformation defined in Eq. (9) and assuming translation invariance for two-point functions which is equivalent to neglecting space-time derivative terms (nonlocal terms), we obtain the equation for GRG_{R} in momentum space

i[gρμ(p2mV2)pμpρ]GRρν(p)=gμν+ΣR,ρμ(p)GRρν(p),i\left[g_{\;\rho}^{\mu}(p^{2}-m_{V}^{2})-p^{\mu}p_{\rho}\right]G_{R}^{\rho\nu}(p)=g^{\mu\nu}+\Sigma_{R,\rho}^{\mu}(p)G_{R}^{\rho\nu}(p), (36)

which is the starting point to derive the spectral function for ρ0\rho^{0}.

IV.2 Self-energy

The ρπ\rho\pi interaction can be described by the chiral effective Lagrangian (Gale:1990pn, )

\displaystyle\mathcal{L} =\displaystyle= 14FμνFμν+12mρ2AμAμ+|Dμϕ|2mπ2|ϕ|2,\displaystyle-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+\frac{1}{2}m_{\rho}^{2}A^{\mu}A_{\mu}+\left|D^{\mu}\phi\right|^{2}-m_{\pi}^{2}\left|\phi\right|^{2}, (37)

where AμA^{\mu} and ϕ\phi denote the field of ρ0\rho^{0} and π±\pi^{\pm} respectively, Fμν=μAννAμF_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu} is the field strength tensor for ρ0\rho^{0}, and Dμ=μigVAμD_{\mu}=\partial_{\mu}-ig_{V}A_{\mu} is the covariant derivative. The interaction part of the Lagrangian is

int=igVAμ(ϕμϕϕμϕ)+gV2AμAμϕϕ,\mathcal{L}_{\mathrm{int}}=ig_{V}A^{\mu}\left(\phi^{\dagger}\partial_{\mu}\phi-\phi\partial_{\mu}\phi^{\dagger}\right)+g_{V}^{2}A_{\mu}A^{\mu}\phi^{\dagger}\phi, (38)

where the first and second terms give the ρππ\rho\pi\pi and ρρππ\rho\rho\pi\pi vertices respectively.

Refer to caption
Figure 1: The Feynman diagrams for the self-energy term of ρ0\rho^{0} meson with momentum pp. The solid line and dashed line denote the propagators of ρ0\rho^{0} and π±\pi^{\pm} meson respectively, and the arrow on the π\pi propagator denotes the momentum direction of π+\pi^{+}.

The Feynman diagrams for the self-energy are shown in Fig. (1). The retarded self-energy is

ΣRμν(p)\displaystyle\Sigma_{R}^{\mu\nu}(p) =\displaystyle= ΣFμν(p)Σ<μν(p)\displaystyle\Sigma_{F}^{\mu\nu}(p)-\Sigma_{<}^{\mu\nu}(p) (39)
=\displaystyle= gV2d4k1(2π)4d4k2(2π)4(2π)4δ(4)(pk1+k2)(k1μ+k2μ)(k1ν+k2ν)SF(k1)SF(k2)\displaystyle-g_{V}^{2}\int\frac{d^{4}k_{1}}{(2\pi)^{4}}\int\frac{d^{4}k_{2}}{(2\pi)^{4}}(2\pi)^{4}\delta^{(4)}\left(p-k_{1}+k_{2}\right)\left(k_{1}^{\mu}+k_{2}^{\mu}\right)\left(k_{1}^{\nu}+k_{2}^{\nu}\right)S^{F}(k_{1})S^{F}(k_{2})
+gV2d4k1(2π)4d4k2(2π)4(2π)4δ(4)(pk1+k2)(k1μ+k2μ)(k1ν+k2ν)S<(k1)S>(k2)\displaystyle+g_{V}^{2}\int\frac{d^{4}k_{1}}{(2\pi)^{4}}\int\frac{d^{4}k_{2}}{(2\pi)^{4}}(2\pi)^{4}\delta^{(4)}\left(p-k_{1}+k_{2}\right)\left(k_{1}^{\mu}+k_{2}^{\mu}\right)\left(k_{1}^{\nu}+k_{2}^{\nu}\right)S^{<}(k_{1})S^{>}(k_{2})
+2gV2igμνd4k(2π)4ik2mπ2+iϵ\displaystyle+2g_{V}^{2}ig^{\mu\nu}\int\frac{d^{4}k}{(2\pi)^{4}}\frac{i}{k^{2}-m_{\pi}^{2}+i\epsilon}
=\displaystyle= Ivacμν(p)+Imedμν(p),\displaystyle I_{\mathrm{vac}}^{\mu\nu}(p)+I_{\mathrm{med}}^{\mu\nu}(p),

where Ivacμν(p)I_{\mathrm{vac}}^{\mu\nu}(p) and Imedμν(p)I_{\mathrm{med}}^{\mu\nu}(p) denote the vacuum and medium parts respectively. They can be put into the forms (Gale:1990pn, ),

Ivacμν(p)\displaystyle I_{\mathrm{vac}}^{\mu\nu}(p) =\displaystyle= iΔμν(p)Πvac(p),\displaystyle i\Delta^{\mu\nu}(p)\Pi_{\mathrm{vac}}(p),
Imedμν(p)\displaystyle I_{\mathrm{med}}^{\mu\nu}(p) =\displaystyle= iΔLμν(p)ΠL,med(p)+iΔTμν(p)ΠT,med(p),\displaystyle i\Delta_{L}^{\mu\nu}(p)\Pi_{L,\mathrm{med}}(p)+i\Delta_{T}^{\mu\nu}(p)\Pi_{T,\mathrm{med}}(p), (40)

where the transverse and longitudinal projectors are defined as

ΔLμν(p)\displaystyle\Delta_{L}^{\mu\nu}(p) \displaystyle\equiv ΔμρuρΔνσuσΔρσuρuσ,\displaystyle\frac{\Delta^{\mu\rho}u_{\rho}\Delta^{\nu\sigma}u_{\sigma}}{\Delta^{\rho\sigma}u_{\rho}u_{\sigma}},
ΔTμν(p)\displaystyle\Delta_{T}^{\mu\nu}(p) \displaystyle\equiv ΔμνΔLμν.\displaystyle\Delta^{\mu\nu}-\Delta_{L}^{\mu\nu}. (41)

Here uμu^{\mu} is the flow velocity, in the comoving frame, it becomes uμ=uμ=(1,𝟎)u^{\mu}=u_{\mu}=(1,\mathbf{0}). In Eq. (40), Πvac\Pi_{\mathrm{vac}}, ΠL,med\Pi_{L,\mathrm{med}} and ΠT,med\Pi_{T,\mathrm{med}} are given as

Πvac\displaystyle\Pi_{\mathrm{vac}} =\displaystyle= gV2(4π)2p201𝑑x(2x1)2[log|mπ2x(1x)p2mπ2x(1x)mρ2|iπθ(x(1x)p2mπ2)],\displaystyle\frac{g_{V}^{2}}{(4\pi)^{2}}p^{2}\int_{0}^{1}dx(2x-1)^{2}\left[\log\left|\frac{m_{\pi}^{2}-x(1-x)p^{2}}{m_{\pi}^{2}-x(1-x)m_{\rho}^{2}}\right|-i\pi\theta\left(x(1-x)p^{2}-m_{\pi}^{2}\right)\right], (42)
ΠL,med(p)\displaystyle\Pi_{L,\mathrm{med}}(p) =\displaystyle= gV28π2p2|𝐩|2[4J0(1,2)+2|𝐩|(J+(p,1,1)+J(p,1,1))\displaystyle\frac{g_{V}^{2}}{8\pi^{2}}\frac{p^{2}}{|\mathbf{p}|^{2}}\left[-4J_{0}(-1,2)+\frac{2}{|\mathbf{p}|}\left(J_{+}(p,1,1)+J_{-}(p,1,1)\right)\right. (43)
+2p0|𝐩|(J+(p,0,1)J(p,0,1))+p022|𝐩|(J+(p,1,1)+J(p,1,1))],\displaystyle\left.+\frac{2p_{0}}{|\mathbf{p}|}\left(J_{+}(p,0,1)-J_{-}(p,0,1)\right)+\frac{p_{0}^{2}}{2|\mathbf{p}|}\left(J_{+}(p,-1,1)+J_{-}(p,-1,1)\right)\right],
ΠT,med(p)\displaystyle\Pi_{T,\mathrm{med}}(p) =\displaystyle= gV28π2[2(p02+|𝐩|2)|𝐩|2J0(1,2)+1|𝐩|(J+(p,1,3)+J(p,1,3))\displaystyle\frac{g_{V}^{2}}{8\pi^{2}}\left[\frac{2\left(p_{0}^{2}+|\mathbf{p}|^{2}\right)}{|\mathbf{p}|^{2}}J_{0}(-1,2)+\frac{1}{|\mathbf{p}|}\left(J_{+}(p,-1,3)+J_{-}(p,-1,3)\right)\right. (44)
(p2)24|𝐩|3(J+(p,1,1)+J(p,1,1))p2p0|𝐩|3(J+(p,0,1)J(p,0,1))\displaystyle-\frac{\left(p^{2}\right)^{2}}{4|\mathbf{p}|^{3}}\left(J_{+}(p,-1,1)+J_{-}(p,-1,1)\right)-\frac{p^{2}p_{0}}{|\mathbf{p}|^{3}}\left(J_{+}(p,0,1)-J_{-}(p,0,1)\right)
p02|𝐩|3(J+(p,1,1)+J(p,1,1))],\displaystyle\left.-\frac{p_{0}^{2}}{|\mathbf{p}|^{3}}\left(J_{+}(p,1,1)+J_{-}(p,1,1)\right)\right],

where momentum functions J±(p,n1,n2)J_{\pm}(p,n_{1},n_{2}) and J0(n1,n2)J_{0}(n_{1},n_{2}) are defined as

J+(p,n1,n2)\displaystyle J_{+}(p,n_{1},n_{2}) \displaystyle\equiv 0d|𝐤|Ekn1|𝐤|n2[fπ+(Ek)+fπ(Ek)]\displaystyle\int_{0}^{\infty}d|\mathbf{k}|E_{k}^{n_{1}}|\mathbf{k}|^{n_{2}}\left[f_{\pi^{+}}(E_{k})+f_{\pi^{-}}(E_{k})\right] (45)
×lnp2+2p0Ek+2|𝐩||𝐤|+iϵp2+2p0Ek2|𝐩||𝐤|+iϵ,\displaystyle\times\ln\frac{p^{2}+2p_{0}E_{k}+2|\mathbf{p}||\mathbf{k}|+i\epsilon}{p^{2}+2p_{0}E_{k}-2|\mathbf{p}||\mathbf{k}|+i\epsilon},
J(p,n1,n2)\displaystyle J_{-}(p,n_{1},n_{2}) \displaystyle\equiv 0d|𝐤|Ekn1|𝐤|n2[fπ+(Ek)+fπ(Ek)]\displaystyle\int_{0}^{\infty}d|\mathbf{k}|E_{k}^{n_{1}}|\mathbf{k}|^{n_{2}}\left[f_{\pi^{+}}(E_{k})+f_{\pi^{-}}(E_{k})\right] (46)
×lnp22p0Ek+2|𝐩||𝐤|+iϵp22p0Ek2|𝐩||𝐤|+iϵ,\displaystyle\times\ln\frac{p^{2}-2p_{0}E_{k}+2|\mathbf{p}||\mathbf{k}|+i\epsilon}{p^{2}-2p_{0}E_{k}-2|\mathbf{p}||\mathbf{k}|+i\epsilon},
J0(n1,n2)\displaystyle J_{0}(n_{1},n_{2}) \displaystyle\equiv 0d|𝐤|Ekn1|𝐤|n2[fπ+(Ek)+fπ(Ek)].\displaystyle\int_{0}^{\infty}d|\mathbf{k}|E_{k}^{n_{1}}|\mathbf{k}|^{n_{2}}\left[f_{\pi^{+}}(E_{k})+f_{\pi^{-}}(E_{k})\right]. (47)

In Eqs. (45-47), We have assumed that π±\pi^{\pm} are in thermal equilibrium, so fπ+f_{\pi^{+}} and fπf_{\pi^{-}} are Bose-Einstein distribution depending on the temperature TT and chemical potential ±μπ\pm\mu_{\pi}. Here we have written the self-energy in the same forms as in our previous work (Dong:2024nxj, ), and one can prove that it is identical to the results in Ref. (Gale:1990pn, ).

Finally, the total self-energy can be written as

ΣRμν\displaystyle\Sigma_{R}^{\mu\nu} =\displaystyle= iΔLμνΠL+iΔTμνΠT,\displaystyle i\Delta_{L}^{\mu\nu}\Pi_{L}+i\Delta_{T}^{\mu\nu}\Pi_{T}, (48)

where ΠL\Pi_{L} and ΠT\Pi_{T} are defined as

ΠL\displaystyle\Pi_{L} \displaystyle\equiv Πvac+ΠL,med,\displaystyle\Pi_{\mathrm{vac}}+\Pi_{L,\mathrm{med}},
ΠT\displaystyle\Pi_{T} \displaystyle\equiv Πvac+ΠT,med.\displaystyle\Pi_{\mathrm{vac}}+\Pi_{T,\mathrm{med}}. (49)

Note that Eqs. (45-47) are results in the flow’s comoving frame. To obtain their expressions in the lab frame we have to make a Lorentz boost. In this paper, we work in the flow’s comoving frame.

IV.3 Spectral function

Inserting Eq. (48) into Eq. (36), we can solve GRμν(p)G_{R}^{\mu\nu}(p) as a function of ΠL\Pi_{L} and ΠT\Pi_{T},

GRμν(p)=ip2mV2ΠLΔLμν+ip2mV2ΠTΔTμν+imV2pμpνp2,G_{R}^{\mu\nu}(p)=\frac{-i}{p^{2}-m_{V}^{2}-\Pi_{L}}\Delta_{L}^{\mu\nu}+\frac{-i}{p^{2}-m_{V}^{2}-\Pi_{T}}\Delta_{T}^{\mu\nu}+\frac{i}{m_{V}^{2}}\frac{p^{\mu}p^{\nu}}{p^{2}}, (50)

where we have used

ΔL,ρμΔLρν\displaystyle\Delta_{L,\rho}^{\mu}\Delta_{L}^{\rho\nu} =ΔLμν,ΔT,ρμΔTρν=ΔTμν,\displaystyle=\Delta_{L}^{\mu\nu},\;\;\;\Delta_{T,\rho}^{\mu}\Delta_{T}^{\rho\nu}=\Delta_{T}^{\mu\nu},
ΔL,ρμΔTρν\displaystyle\Delta_{L,\rho}^{\mu}\Delta_{T}^{\rho\nu} =pμΔLμν=pμΔTμν=0.\displaystyle=p_{\mu}\Delta_{L}^{\mu\nu}=p_{\mu}\Delta_{T}^{\mu\nu}=0. (51)

We can read out the longitudinal and transverse spectral function from Eq. (50) as

ρL(p)\displaystyle\rho_{L}(p) =\displaystyle= Im1p2mV2ΠL,\displaystyle-\mathrm{Im}\frac{1}{p^{2}-m_{V}^{2}-\Pi_{L}},
ρT(p)\displaystyle\rho_{T}(p) =\displaystyle= Im1p2mV2ΠT.\displaystyle-\mathrm{Im}\frac{1}{p^{2}-m_{V}^{2}-\Pi_{T}}. (52)

From the relation G~<μν(p)=2inB(p0)ImG~Rμν(p)\tilde{G}_{<}^{\mu\nu}(p)=2in_{B}(p_{0})\mathrm{Im}\tilde{G}_{R}^{\mu\nu}(p) (fetter2003quantum, ; zubarev1997statistical, ) (Giμν=iG~iμνG_{i}^{\mu\nu}=i\tilde{G}_{i}^{\mu\nu} for i=<,>,F,F¯,G,Ai=<,>,F,\bar{F},G,A), the leading order Wigner function reads

G<,LOμν(p)=2nB(p0)[ΔLμνρL(p)+ΔTμνρT(p)].G_{<,\mathrm{LO}}^{\mu\nu}(p)=-2n_{B}(p^{0})\left[\Delta_{L}^{\mu\nu}\rho_{L}(p)+\Delta_{T}^{\mu\nu}\rho_{T}(p)\right]. (53)

Here nB(p0)n_{B}(p_{0}) is the Bose-Einstein distribution. Inserting Eq. (53) into Eq. (20), we can obtain the leading order contribution to the spin density matrix.

V Linear Response Theory

In this section, we will derive the NLO correction to the Wigner function by linear response theory. We will use the Kubo formula derived in Zubarev’s approach (Zubarev_1979, ; Hosoya:1983id, ; Becattini:2019dxo, ).

The linear response of an observable O^(x)\left\langle\hat{O}(x)\right\rangle for the operator O^(x)\hat{O}(x) to the perturbation μβν\partial_{\mu}\beta_{\nu} reads (Becattini:2019dxo, )

O^(x)O^(x)LE\displaystyle\left\langle\hat{O}(x)\right\rangle-\left\langle\hat{O}(x)\right\rangle_{\mathrm{LE}} =\displaystyle= μβν(x)limKμ0K0\displaystyle\partial_{\mu}\beta_{\nu}(x)\lim_{K^{\mu}\rightarrow 0}\frac{\partial}{\partial K_{0}} (54)
×Im[iT(x)td4x[O^(x),Tμν(x)]LEeiK(xx)],\displaystyle\times\mathrm{Im}\left[iT(x)\int_{-\infty}^{t}d^{4}x^{\prime}\left\langle\left[\hat{O}(x),T^{\mu\nu}(x^{\prime})\right]\right\rangle_{\mathrm{LE}}e^{-iK\cdot(x^{\prime}-x)}\right],

where O^(x)Tr[ρ^O^(x)]\left\langle\hat{O}(x)\right\rangle\equiv\mathrm{Tr}\left[\hat{\rho}\hat{O}(x)\right] is the expectation value in non-equilibrium while O^(x)LETr[ρ^LEO^(x)]\left\langle\hat{O}(x)\right\rangle_{\mathrm{LE}}\equiv\mathrm{Tr}\left[\hat{\rho}_{\mathrm{LE}}\hat{O}(x)\right] is the expectation value in local equilibrium, ρ^\hat{\rho} and ρ^LE\hat{\rho}_{\mathrm{LE}} are non-equilibrium and local equilibrium density operators respectively, βμ(x)uμ(x)/T(x)\beta^{\mu}(x)\equiv u^{\mu}(x)/T(x) with uμ(x)u^{\mu}(x) and T(x)T(x) being the flow velocity and temperature respectively, and TμνT^{\mu\nu} is the energy-momentum tensor for the vector field give by

Tμν\displaystyle T^{\mu\nu} =\displaystyle= FρμFρν+mV2AμAνgμν(14FρσFρσ+12mV2AρAρ).\displaystyle F_{\;\rho}^{\mu}F^{\rho\nu}+m_{V}^{2}A^{\mu}A^{\nu}-g^{\mu\nu}\left(-\frac{1}{4}F_{\rho\sigma}F^{\rho\sigma}+\frac{1}{2}m_{V}^{2}A_{\rho}A^{\rho}\right). (55)

We choose the operator O^(x)\hat{O}(x) in Eq. (54) to be the Wigner function operator

G^<μν(x,p)\displaystyle\hat{G}_{<}^{\mu\nu}(x,p) \displaystyle\equiv d4yeipyAν(x12y)Aμ(x+12y).\displaystyle\int d^{4}ye^{ip\cdot y}A^{\nu}\left(x-\frac{1}{2}y\right)A^{\mu}\left(x+\frac{1}{2}y\right). (56)

The correction to G<μν(x,p)G_{<}^{\mu\nu}(x,p) from the perturbation μβν\partial_{\mu}\beta_{\nu} can be written as

G<,NLOμν(x,p)\displaystyle G_{<,\mathrm{NLO}}^{\mu\nu}(x,p) =\displaystyle= 2TξγλnB(p0)p0Iμνγλ(p),\displaystyle 2T\xi_{\gamma\lambda}\frac{\partial n_{B}(p_{0})}{\partial p_{0}}I^{\mu\nu\gamma\lambda}(p), (57)

where ξγλ=(γβλ)\xi_{\gamma\lambda}=\partial_{(\gamma}\beta_{\lambda)} denotes the thermal shear stress tensor, and the tensor Iμνγλ(p)I^{\mu\nu\gamma\lambda}(p) is defined as

Iμνγλ(p)\displaystyle I^{\mu\nu\gamma\lambda}(p) \displaystyle\equiv [gλγ(p2m2)2pλpγ](ΔLμνρL2+ΔTμνρT2)\displaystyle-\left[g^{\lambda\gamma}\left(p^{2}-m^{2}\right)-2p^{\lambda}p^{\gamma}\right]\left(\Delta_{L}^{\mu\nu}\rho_{L}^{2}+\Delta_{T}^{\mu\nu}\rho_{T}^{2}\right) (58)
+2(p2m2)(ΔLμλρL+ΔTμλρT)(ΔLνγρL+ΔTνγρT).\displaystyle+2\left(p^{2}-m^{2}\right)\left(\Delta_{L}^{\mu\lambda}\rho_{L}+\Delta_{T}^{\mu\lambda}\rho_{T}\right)\left(\Delta_{L}^{\nu\gamma}\rho_{L}+\Delta_{T}^{\nu\gamma}\rho_{T}\right).

The detailed derivation of Iμνγλ(p)I^{\mu\nu\gamma\lambda}(p) can be found in (Li:2022vmb, ; Dong:2024nxj, ).

Now the total Wigner function is

G<μν(x,p)\displaystyle G_{<}^{\mu\nu}(x,p) =\displaystyle= G<,LOμν(x,p)+G<,NLOμν(x,p),\displaystyle G_{<,\mathrm{LO}}^{\mu\nu}(x,p)+G_{<,\mathrm{NLO}}^{\mu\nu}(x,p), (59)

where the LO and NLO contributions are given by Eqs. (53) and (57) respectively. Inserting Eq. (59) into Eq. (20), the deviation of the spin density matrix from 1/3 can be expressed as

δρλ1λ2(x,𝐩)\displaystyle\delta\rho_{\lambda_{1}\lambda_{2}}(x,\mathbf{p}) =\displaystyle= 0𝑑p0p0Lμν(λ1,λ2,p)[G<,LOμν(x,p)+G<,NLOμν(x,p)]0𝑑p0p0Δμν(p)[G<,LOμν(x,p)+G<,NLOμν(x,p)].\displaystyle\frac{\int_{0}^{\infty}dp_{0}p_{0}L_{\mu\nu}(\lambda_{1},\lambda_{2},p)\left[G_{<,\mathrm{LO}}^{\mu\nu}(x,p)+G_{<,\mathrm{NLO}}^{\mu\nu}(x,p)\right]}{-\int_{0}^{\infty}dp_{0}p_{0}\Delta_{\mu\nu}(p)\left[G_{<,\mathrm{LO}}^{\mu\nu}(x,p)+G_{<,\mathrm{NLO}}^{\mu\nu}(x,p)\right]}. (60)

In order to numerically calculate the spin density matrix that can be compared with experimental data in momentum space, we have to integrate over xx on the freeze-out hypersurface for both numerator and denominator in Eq. (60) as

δρλ1λ2(𝐩)\displaystyle\delta\rho_{\lambda_{1}\lambda_{2}}(\mathbf{p}) =\displaystyle= 0𝑑p0𝑑ΣμpμLμν(λ1,λ2,p)[G<,LOμν(x,p)+G<,NLOμν(x,p)]0𝑑p0𝑑ΣμpμΔμν(p)[G<,LOμν(x,p)+G<,NLOμν(x,p)],\displaystyle\frac{\int_{0}^{\infty}dp_{0}\int d\Sigma^{\mu}p_{\mu}L_{\mu\nu}(\lambda_{1},\lambda_{2},p)\left[G_{<,\mathrm{LO}}^{\mu\nu}(x,p)+G_{<,\mathrm{NLO}}^{\mu\nu}(x,p)\right]}{-\int_{0}^{\infty}dp_{0}\int d\Sigma^{\mu}p_{\mu}\Delta_{\mu\nu}(p)\left[G_{<,\mathrm{LO}}^{\mu\nu}(x,p)+G_{<,\mathrm{NLO}}^{\mu\nu}(x,p)\right]}, (61)

where Σμ\Sigma^{\mu} is the freeze-out hypersurface. If the system evolves homogeneously in time, Σ0\Sigma^{0} is actually the space volume, so dΣ0=d3xd\Sigma^{0}=d^{3}x. The above formula is the starting point for the numerical calculation in the next section.

VI Numerical Results

In this section, we will numerically calculate ρ00\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} by Eq. (61). The parameters are chosen as mρ=m_{\rho}=770 MeV, mπ=m_{\pi}=139 MeV, gV=g_{V}=6.07 for the ρππ\rho\pi\pi coupling constant (Gale:1990pn, ), T=T=150 MeV for the freeze-out temperature. The rapidity range is set to |Y|<1|Y|<1. The freeze-out hypersurface and thermal shear stress tensor are calculated by hydrodynamical model CLVisc at sNN=\sqrt{s_{NN}}=11.5, 19.6, 27, 39, 62.4 and 200 GeV and 20-50% centrality (Pang:2018zzo, ; Wu:2021fjf, ; Wu:2022mkr, ). Here we assume that the thermal shear stress tensor does not change a lot before and after hadronization, so we can apply it to the ρπ\rho\pi system.

VI.1 Results for ρ00\rho_{00}

From Eq. (61), the LO contribution to ρ00\rho_{00} involves

Lμν(0,0,p)G<,LOμν(x,p)\displaystyle L_{\mu\nu}(0,0,p)G_{<,\mathrm{LO}}^{\mu\nu}(x,p) =\displaystyle= 2(py2|𝐩|213)nB(p0)[ρT(p)ρL(p)],\displaystyle-2\left(\frac{p_{y}^{2}}{|\mathbf{p}|^{2}}-\frac{1}{3}\right)n_{B}(p_{0})\left[\rho_{T}(p)-\rho_{L}(p)\right],
Δμν(p)G<,LOμν(x,p)\displaystyle-\Delta_{\mu\nu}(p)G_{<,\mathrm{LO}}^{\mu\nu}(x,p) =\displaystyle= 2nB(p0)[2ρT(p)+ρL(p)].\displaystyle 2n_{B}(p_{0})\left[2\rho_{T}(p)+\rho_{L}(p)\right]. (62)

We see that the spin alignment as a function of the momentum may be non-vanishing at the LO although the momentum integrated spin alignment at the same order should be zero. The NLO contribution involves

Lμν(0,0,p)G<,NLOμν(x,p)\displaystyle L_{\mu\nu}(0,0,p)G_{<,\mathrm{NLO}}^{\mu\nu}(x,p) =\displaystyle= 2TξλγnB(p0)p0\displaystyle-2T\xi_{\lambda\gamma}\frac{\partial n_{B}(p_{0})}{\partial p_{0}} (63)
×{[gλγ(p2m2)2pλpγ]Lμν(0,0,p)(ΔLμνρL2+ΔTμνρT2)\displaystyle\times\left\{\left[g^{\lambda\gamma}\left(p^{2}-m^{2}\right)-2p^{\lambda}p^{\gamma}\right]L_{\mu\nu}(0,0,p)\left(\Delta_{L}^{\mu\nu}\rho_{L}^{2}+\Delta_{T}^{\mu\nu}\rho_{T}^{2}\right)\right.
2(p2m2)Lμν(0,0,p)(ΔLμλρL+ΔTμλρT)(ΔLνγρL+ΔTνγρT)},\displaystyle\left.-2\left(p^{2}-m^{2}\right)L_{\mu\nu}(0,0,p)\left(\Delta_{L}^{\mu\lambda}\rho_{L}+\Delta_{T}^{\mu\lambda}\rho_{T}\right)\left(\Delta_{L}^{\nu\gamma}\rho_{L}+\Delta_{T}^{\nu\gamma}\rho_{T}\right)\right\},
Δμν(p)G<,NLOμν(x,p)\displaystyle-\Delta_{\mu\nu}(p)G_{<,\mathrm{NLO}}^{\mu\nu}(x,p) =\displaystyle= 2TξλγnB(p0)p0{[gλγ(p2m2)2pλpγ](2ρT2+ρL2)\displaystyle 2T\xi_{\lambda\gamma}\frac{\partial n_{B}(p_{0})}{\partial p_{0}}\left\{\left[g^{\lambda\gamma}\left(p^{2}-m^{2}\right)-2p^{\lambda}p^{\gamma}\right]\left(2\rho_{T}^{2}+\rho_{L}^{2}\right)\right. (64)
2(p2m2)(ΔLλγρL2+ΔTλγρT2)}.\displaystyle\left.-2\left(p^{2}-m^{2}\right)\left(\Delta_{L}^{\lambda\gamma}\rho_{L}^{2}+\Delta_{T}^{\lambda\gamma}\rho_{T}^{2}\right)\right\}.

The NLO contribution is proportional to the thermal shear stress tensor ξλγ\xi_{\lambda\gamma}, so it may contribute to the momentum integrated spin alignment. It is important to note that the coefficient of ξλγ\xi_{\lambda\gamma} increases with increasing pp, so the expansion will break down for large pp. In other words, the linear response theory only works for low momenta.

The spin alignment as functions of the transverse momentum pTp_{T} and azimuthal angle ϕ\phi in the central rapidity |Y|<1|Y|<1 is shown in Fig. (2), and ρ00\rho_{00} as functions of the collision energy is shown in Fig. (3). We can see in Fig. (2a) that δρ00\delta\rho_{00} (the spin alignment) at the LO is negative for pTp_{T}\lesssim0.5 GeV and positive for pTp_{T}\apprge0.5 GeV but with very small magnitude of the order 10310^{-3}, while its NLO contribution is negative and its magnitude increases with pTp_{T} due to the term proportional to ξλγpλpγ\xi_{\lambda\gamma}p^{\lambda}p^{\gamma} in Eqs. (63-64). It turns out that the total values of δρ00\delta\rho_{00} from the LO and NLO are negative in the region up to pT=p_{T}=2 GeV. Note that the non-vanishing values of the LO contribution to δρ00\delta\rho_{00} are due to the space-time integration on the freezeout hypersurface and the rapidity range. The azimuthal angle ϕ\phi dependence of δρ00\delta\rho_{00} is shown in Fig. (2b) in an oscillation pattern with the magnitude at the LO being about 10210^{-2}. We see that δρ00\delta\rho_{00} is positive for ϕ=π/2,3π/2\phi=\pi/2,3\pi/2 and negative for ϕ=0,π\phi=0,\pi. The NLO contribution to δρ00\delta\rho_{00} is slightly smaller than zero since it is suppressed by nB(p0)n_{B}(p_{0}) for high pTp_{T} in pTp_{T} integration. Fig. (3) shows that the LO contribution to δρ00\delta\rho_{00} is independent of the collision energy, while the NLO contribution is negative and decreases with the collision energy when it is lower than about 50 GeV.

Refer to caption
(a)
Refer to caption
(b)
Figure 2: The spin alignment of ρ0\rho^{0} mesons at different collision energies as functions of (a) transverse momentum pTp_{T} and (b) azimuthal angle ϕ\phi in the central rapidity region |Y|<1|Y|<1. The red dash-dotted lines are the LO contribution, while the black solid lines are the sum over the LO and NLO contribution.
Refer to caption
Figure 3: The spin alignment of ρ0\rho^{0} mesons in the central rapidity region |Y|<1|Y|<1 as functions of the collision energy.

VI.2 Results for Reρ1,1\mathrm{Re}\rho_{-1,1}

From Eq. (61), the LO and NLO contributions to Reρ1,1\mathrm{Re}\rho_{-1,1} involve

ReLμν(1,1,p)G<,LOμν(x,p)\displaystyle\mathrm{Re}L_{\mu\nu}(-1,1,p)G_{<,\mathrm{LO}}^{\mu\nu}(x,p) =\displaystyle= nB(p0)px2pz2|𝐩|2[ρT(p)ρL(p)],\displaystyle-n_{B}(p_{0})\frac{p_{x}^{2}-p_{z}^{2}}{|\mathbf{p}|^{2}}\left[\rho_{T}(p)-\rho_{L}(p)\right], (65)
ReLμν(1,1,p)G<,NLOμν(x,p)\displaystyle\mathrm{Re}L_{\mu\nu}(-1,1,p)G_{<,\mathrm{NLO}}^{\mu\nu}(x,p) =\displaystyle= 2TξλγnB(p0)p0{[gλγ(p2m2)2pλpγ]\displaystyle-2T\xi_{\lambda\gamma}\frac{\partial n_{B}(p_{0})}{\partial p_{0}}\left\{\left[g^{\lambda\gamma}\left(p^{2}-m^{2}\right)-2p^{\lambda}p^{\gamma}\right]\right. (66)
×ReLμν(1,1,p)(ΔLμνρL2+ΔTμνρT2)\displaystyle\times\mathrm{Re}L_{\mu\nu}(-1,1,p)\left(\Delta_{L}^{\mu\nu}\rho_{L}^{2}+\Delta_{T}^{\mu\nu}\rho_{T}^{2}\right)
2(p2m2)ReLμν(1,1,p)\displaystyle-2\left(p^{2}-m^{2}\right)\mathrm{Re}L_{\mu\nu}(-1,1,p)
×(ΔLμλρL+ΔTμλρT)(ΔLνγρL+ΔTνγρT)},\displaystyle\left.\times\left(\Delta_{L}^{\mu\lambda}\rho_{L}+\Delta_{T}^{\mu\lambda}\rho_{T}\right)\left(\Delta_{L}^{\nu\gamma}\rho_{L}+\Delta_{T}^{\nu\gamma}\rho_{T}\right)\right\},

Here the denominator is the same as in ρ00\rho_{00}. Similarly, the LO contribution to Reρ1,1\mathrm{Re}\rho_{-1,1} as a momentum function may be non-vanishing although the momentum integrated one should be vanishing. The NLO contribution may give rise to both integrated and un-integrated non-zero Reρ1,1\mathrm{Re}\rho_{-1,1}.

The off-diagonal element Reρ1,1\mathrm{Re}\rho_{-1,1} as functions of pTp_{T} and ϕ\phi in the central rapidity range |Y|<1|Y|<1 is presented in Fig. (4), and its dependence on the collision energy is presented in Fig. (5). In Fig. (4a), we can see that the LO contribution is negative for low pTp_{T} and positive for high pTp_{T} with the magnitude of the order 10310^{-3}. The NLO contribution is negative and its magnitude increases with pTp_{T}, which is also a result of the ξλγpλpγ\xi_{\lambda\gamma}p^{\lambda}p^{\gamma} term. As shown in Fig. (4b), Reρ1,1\mathrm{Re}\rho_{-1,1} as functions of ϕ\phi has an oscillation pattern similar to δρ00\delta\rho_{00} but with an opposite sign, due to the different signs of px2p_{x}^{2} terms in Eqs. (62) and (65) (we can express py2p_{y}^{2} as |𝐩|2px2pz2|\mathbf{p}|^{2}-p_{x}^{2}-p_{z}^{2}). The collision energy dependence of Reρ1,1\mathrm{Re}\rho_{-1,1} also has the similar behavior to δρ00\delta\rho_{00}, as shown in Fig. (5).

Refer to caption
(a)
Refer to caption
(b)
Figure 4: The off-diagonal element Reρ1,1\mathrm{Re}\rho_{-1,1} of ρ0\rho^{0} mesons at different collision energies as functions of (a) transverse momentum pTp_{T} and (b) azimuthal angle ϕ\phi in the central rapidity region |Y|<1|Y|<1. The red dash-dotted lines are the LO contribution, while the black solid lines are the sum over the LO and NLO contribution.
Refer to caption
Figure 5: The off-diagonal element Reρ1,1\mathrm{Re}\rho_{-1,1} of ρ0\rho^{0} mesons in the central rapidity region |Y|<1|Y|<1 as functions of the collision energy.

In conclusion, the contributions from the spectral function and from the thermal shear stress tensor to the spin density matrix of ρ0\rho^{0} mesons are of the order of 10310210^{-3}\sim 10^{-2}. For un-integrated quantities, δρ00(pT)\delta\rho_{00}(p_{T}) and Reρ1,1(pT)\mathrm{Re}\rho_{-1,1}(p_{T}) are all negative and decrease with pTp_{T}, and δρ00(ϕ)\delta\rho_{00}(\phi) and Reρ1,1(ϕ)\mathrm{Re}\rho_{-1,1}(\phi) show oscillation patterns but with opposite signs. The momentum integrated δρ00\delta\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} are all negative and decrease with the collision energy when the collision energy is less than about 50 GeV, while they are almost constant when the collision energy is higher.

VII Summary and conclusions

We study the spin density matrix of neutral ρ\rho mesons contributed from the spectral function and thermal shear tensor with the Kubo formula in the linear response theory. We introduce the two-point Green’s function in the CTP formalism which defines the Wigner function and the MVSD in phase space for neutral ρ\rho mesons. As the leading order contribution, the spectral function of the neutral ρ\rho meson can be obtained from the Dyson-Schwinger equation for the retarded Green’s function with ρππ\rho\pi\pi and ρρππ\rho\rho\pi\pi interactions in a thermal pion gas. Then the next-to-leading order contribution from the thermal shear tensor can be calculated through the Kubo formula in the linear response theory. Finally we present numerical results for ρ00\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} which have a dominant effect on the γ\gamma correlator in search for the CME. The numerical results for the thermal shear tensor are needed for evaluating the spin density matrix, which can be calculated by hydrodynamical models. The numerical results give negative values for δρ00\delta\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} as functions of the transverse momentum at the order 10210^{-2}, while their values as functions of the azimuthal angle show oscillation patterns. The momentum integrated δρ00\delta\rho_{00} and Reρ1,1\mathrm{Re}\rho_{-1,1} are all negative and decrease with the collision energy when the collision energy is less than about 50 GeV, while they are almost constant for higher collision energies.

Acknowledgements.
The work is supported in part by the National Natural Science Foundation of China (NSFC) under Grant No. 12135011.

References

  • (1) S. Barnett, Rev. Mod. Phys. 7, 129 (1935).
  • (2) A. Einstein and W. de Haas, Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152 (1915).
  • (3) Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005), nucl-th/0410079, [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
  • (4) S. A. Voloshin, (2004), nucl-th/0410089.
  • (5) Z.-T. Liang and X.-N. Wang, Phys. Lett. B 629, 20 (2005), nucl-th/0411101.
  • (6) B. Betz, M. Gyulassy, and G. Torrieri, Phys. Rev. C76, 044901 (2007), 0708.0035.
  • (7) J.-H. Gao et al., Phys. Rev. C77, 044902 (2008), 0710.2943.
  • (8) F. Becattini, F. Piccinini, and J. Rizzo, Phys. Rev. C77, 024906 (2008), 0711.1253.
  • (9) STAR, L. Adamczyk et al., Nature 548, 62 (2017), 1701.06657.
  • (10) STAR, J. Adam et al., Phys. Rev. C 98, 014910 (2018), 1805.04400.
  • (11) HADES, R. Abou Yassine et al., Phys. Lett. B 835, 137506 (2022), 2207.05160.
  • (12) ALICE, S. Acharya et al., Phys. Rev. Lett. 128, 172005 (2022), 2107.11183.
  • (13) I. Karpenko and F. Becattini, Eur. Phys. J. C 77, 213 (2017), 1610.04717.
  • (14) H. Li, L.-G. Pang, Q. Wang, and X.-L. Xia, Phys. Rev. C 96, 054908 (2017), 1704.01507.
  • (15) Y. Xie, D. Wang, and L. P. Csernai, Phys. Rev. C 95, 031901 (2017), 1703.03770.
  • (16) Y. Sun and C. M. Ko, Phys. Rev. C 96, 024906 (2017), 1706.09467.
  • (17) M. Baznat, K. Gudima, A. Sorin, and O. Teryaev, Phys. Rev. C 97, 041902 (2018), 1701.00923.
  • (18) S. Shi, K. Li, and J. Liao, Phys. Lett. B 788, 409 (2019), 1712.00878.
  • (19) D.-X. Wei, W.-T. Deng, and X.-G. Huang, Phys. Rev. C 99, 014905 (2019), 1810.00151.
  • (20) B. Fu, K. Xu, X.-G. Huang, and H. Song, Phys. Rev. C 103, 024903 (2021), 2011.03740.
  • (21) S. Ryu, V. Jupic, and C. Shen, Phys. Rev. C 104, 054908 (2021), 2106.08125.
  • (22) X.-G. Deng, X.-G. Huang, and Y.-G. Ma, (2021), 2109.09956.
  • (23) X.-Y. Wu, C. Yi, G.-Y. Qin, and S. Pu, Phys. Rev. C 105, 064909 (2022), 2204.02218.
  • (24) Q. Wang, Nucl. Phys. A967, 225 (2017), 1704.04022.
  • (25) W. Florkowski, A. Kumar, and R. Ryblewski, Prog. Part. Nucl. Phys. 108, 103709 (2019), 1811.04409.
  • (26) X.-G. Huang, J. Liao, Q. Wang, and X.-L. Xia, (2020), 2010.08937.
  • (27) J.-H. Gao, Z.-T. Liang, Q. Wang, and X.-N. Wang, Lect. Notes Phys. 987, 195 (2021), 2009.04803.
  • (28) J.-H. Gao, G.-L. Ma, S. Pu, and Q. Wang, Nucl. Sci. Tech. 31, 90 (2020), 2005.10432.
  • (29) Y.-C. Liu and X.-G. Huang, Nucl. Sci. Tech. 31, 56 (2020), 2003.12482.
  • (30) F. Becattini, Rept. Prog. Phys. 85, 122301 (2022), 2204.01144.
  • (31) Y. Hidaka, S. Pu, Q. Wang, and D.-L. Yang, Prog. Part. Nucl. Phys. 127, 103989 (2022), 2201.07644.
  • (32) F. Becattini et al., Int. J. Mod. Phys. E 33, 2430006 (2024), 2402.04540.
  • (33) G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976).
  • (34) K. Schilling, P. Seyboth, and G. E. Wolf, Nucl. Phys. B 15, 397 (1970), [Erratum: Nucl.Phys.B 18, 332 (1970)].
  • (35) Y.-G. Yang, R.-H. Fang, Q. Wang, and X.-N. Wang, Phys. Rev. C 97, 034917 (2018), 1711.06008.
  • (36) A. H. Tang et al., Phys. Rev. C 98, 044907 (2018), 1803.05777, [Erratum: Phys.Rev.C 107, 039901 (2023)].
  • (37) STAR, M. S. Abdallah et al., Nature 614, 244 (2023), 2204.02302.
  • (38) X.-L. Xia, H. Li, X.-G. Huang, and H. Zhong Huang, Phys. Lett. B 817, 136325 (2021), 2010.01474.
  • (39) J.-H. Gao, Phys. Rev. D 104, 076016 (2021), 2105.08293.
  • (40) B. Müller and D.-L. Yang, Phys. Rev. D 105, L011901 (2022), 2110.15630.
  • (41) A. Kumar, B. Müller, and D.-L. Yang, Phys. Rev. D 108, 016020 (2023), 2304.04181.
  • (42) X.-L. Sheng, L. Oliva, and Q. Wang, Phys. Rev. D 101, 096005 (2020), 1910.13684, [Erratum: Phys.Rev.D 105, 099903 (2022)].
  • (43) X.-L. Sheng, Q. Wang, and X.-N. Wang, Phys. Rev. D 102, 056013 (2020), 2007.05106.
  • (44) X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang, and X.-N. Wang, (2022), 2206.05868.
  • (45) X.-L. Sheng, L. Oliva, Z.-T. Liang, Q. Wang, and X.-N. Wang, Phys. Rev. Lett. 131, 042304 (2023), 2205.15689.
  • (46) X.-L. Sheng, S. Pu, and Q. Wang, Phys. Rev. C 108, 054902 (2023), 2308.14038.
  • (47) J. Chen, Z.-T. Liang, Y.-G. Ma, and Q. Wang, Sci. Bull. 68, 874 (2023), 2305.09114.
  • (48) X.-L. Sheng, Z.-T. Liang, and Q. Wang, Acta Phys. Sin. (in Chinese) 72, 072502 (2023).
  • (49) J. Chen et al., Nucl. Phys. News 34, 17 (2024).
  • (50) J.-H. Chen, Z.-T. Liang, Y.-G. Ma, X.-L. Sheng, and Q. Wang, Sci. China Phys. Mech. Astron. 68, 211001 (2025), 2407.06480.
  • (51) F. Li and S. Y. F. Liu, (2022), 2206.11890.
  • (52) W.-B. Dong, X.-L. Sheng, Y.-L. Yin, and Q. Wang, Global polarization and spin alignment in heavy-ion collisions: past, present and future, in 25th International Spin Symposium, 2024, 2401.15576.
  • (53) D. Kharzeev, Phys. Lett. B 633, 260 (2006), hep-ph/0406125.
  • (54) D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A 803, 227 (2008), 0711.0950.
  • (55) K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008), 0808.3382.
  • (56) S. A. Voloshin, Phys. Rev. C 70, 057901 (2004), hep-ph/0406311.
  • (57) STAR, L. Adamczyk et al., Phys. Rev. C 88, 064911 (2013), 1302.3802.
  • (58) STAR, L. Adamczyk et al., Phys. Rev. C 89, 044908 (2014), 1303.0901.
  • (59) F. Wang and J. Zhao, Phys. Rev. C 95, 051901 (2017), 1608.06610.
  • (60) A. H. Tang, Chin. Phys. C 44, 054101 (2020), 1903.04622.
  • (61) D. Shen, J. Chen, A. Tang, and G. Wang, Phys. Lett. B 839, 137777 (2023), 2212.03056.
  • (62) Y.-L. Yin, W.-B. Dong, J.-Y. Pang, S. Pu, and Q. Wang, (2024), 2402.03672.
  • (63) D. N. Zubarev, A. V. Prozorkevich, and S. A. Smolyanskii, Theoretical and Mathematical Physics 40, 821 (1979).
  • (64) A. Hosoya, M.-a. Sakagami, and M. Takao, Annals Phys. 154, 229 (1984).
  • (65) F. Becattini, M. Buzzegoli, and E. Grossi, Particles 2, 197 (2019), 1902.01089.
  • (66) C. Gale and J. I. Kapusta, Nucl. Phys. B 357, 65 (1991).
  • (67) L.-G. Pang, H. Petersen, and X.-N. Wang, Phys. Rev. C 97, 064918 (2018), 1802.04449.
  • (68) X.-Y. Wu, G.-Y. Qin, L.-G. Pang, and X.-N. Wang, Phys. Rev. C 105, 034909 (2022), 2107.04949.
  • (69) P. C. Martin and J. S. Schwinger, Phys. Rev. 115, 1342 (1959).
  • (70) L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964).
  • (71) K.-c. Chou, Z.-b. Su, B.-l. Hao, and L. Yu, Phys. Rept. 118, 1 (1985).
  • (72) J.-P. Blaizot and E. Iancu, Phys. Rept. 359, 355 (2002), hep-ph/0101103.
  • (73) Q. Wang, K. Redlich, H. Stoecker, and W. Greiner, Phys. Rev. Lett. 88, 132303 (2002), nucl-th/0111040.
  • (74) J. Berges, AIP Conf. Proc. 739, 3 (2004), hep-ph/0409233.
  • (75) W. Cassing, Eur. Phys. J. ST 168, 3 (2009), 0808.0715.
  • (76) M. Crossley, P. Glorioso, and H. Liu, JHEP 09, 095 (2017), 1511.03646.
  • (77) W.-B. Dong, Y.-L. Yin, X.-L. Sheng, S.-Z. Yang, and Q. Wang, Phys. Rev. D 109, 056025 (2024), 2311.18400.
  • (78) D. Wagner, N. Weickgenannt, and E. Speranza, (2023), 2306.05936.
  • (79) A. Fetter and J. Walecka, Quantum Theory of Many-particle SystemsDover Books on Physics (Dover Publications, 2003).
  • (80) D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Statistical Mechanics of Nonequilibrium Processes. Volume 2: Relaxation and Hydrodynamic ProcessesStatistical Mechanics of Nonequilibrium Processes (Wiley, 1997).