This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spin dependence in the pp-wave resonance of 𝐋𝐚𝟏𝟑𝟗+𝒏\bm{{{{}^{139}\overrightarrow{\rm{La}}}}+\overrightarrow{n}}

T. Okudaira Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    R. Nakabe Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan    S. Endo Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    H. Fujioka Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan    V. Gudkov University of South Carolina, Columbia, South Carolina 29208, USA    I. Ide Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan    T. Ino High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan    M. Ishikado Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan    W. Kambara Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    S. Kawamura Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    R. Kobayashi Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512. Japan    M. Kitaguchi Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan    T. Okamura High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan    T. Oku Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512. Japan    J. G. Otero Munoz Indiana University, Bloomington, Indiana 47401, USA    J. D. Parker Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan    K. Sakai Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    T. Shima Osaka University, Ibaraki, Osaka 567-0047, Japan    H. M. Shimizu Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan    T. Shinohara Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    W. M. Snow Indiana University, Bloomington, Indiana 47401, USA    S. Takada Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8576 Japan Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    Y. Tsuchikawa Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    R. Takahashi Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    S. Takahashi Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512. Japan Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan    H. Yoshikawa Osaka University, Ibaraki, Osaka 567-0047, Japan    T. Yoshioka Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
Abstract

We measured the spin dependence in a neutron-induced pp-wave resonance by using a polarized epithermal neutron beam and a polarized nuclear target. Our study focuses on the 0.75 eV pp-wave resonance state of 139La+nn, where largely enhanced parity violation has been observed. We determined the partial neutron width of the pp-wave resonance by measuring the spin dependence of the neutron absorption cross section between polarized La139{}^{139}\rm{La} and polarized neutrons. Our findings serve as a foundation for the quantitative study of the enhancement effect of the discrete symmetry violations caused by mixing between partial amplitudes in the compound nuclei.

neutron induced compound nuclei, polarized epithermal neutrons, polarized nuclear target

I Introduction

The spin dependence of the strong interaction between a neutron and a nucleus can lead to a spin-dependent cross section proportional to 𝝈𝑰\bm{\sigma}\cdot\bm{I}, where 𝝈\bm{\sigma} and 𝑰\bm{I} are unit vectors parallel to the spins of the neutron and the nucleus, respectively. This spin-dependent cross section can be observed through a spin-dependent transmission through a polarized nuclear target. At a neutron-nucleus resonance, this observable can directly determine the spin of compound resonance states. Consequently, it has been employed in measuring ss-wave resonances for a select few nuclides, utilizing both a polarized neutron beam and a polarized target Keyworth et al. (1973a, b); Alfimenkov et al. (1994). In the case of pp-wave resonances, the spin-dependent cross section imparts valuable information not only regarding the spin of the resonance but also the partial neutron widths.
These widths enable the exploration of symmetry violation enhancement effects in the compound nucleus. Enhancements in parity violation, exceeding magnitudes of nucleon-nucleon interactions by a factor of 106, have been observed in pp-wave resonances of nuclei with a mass number of medium-heavy or heavy nuclei Mitchell et al. (2001). These enhancements can be understood as a result of parity mixing between ss- and pp- compound nuclear resonances. This is referred to as the ss-pp mixing model Mitchell et al. (2001); Sushkov and Flambaum (1982); Bunakov and Gudkov (1983). Theory suggests that this mechanism can lead to an enhancement of fundamental time reversal violation, which could be utilized to search for beyond the Standard Model physics by measuring a T-odd cross section at the pp-wave resonance using a polarized target and a polarized neutron beam Gudkov (1991). We can quantify the enhancement factors associated with both P- and T-violations by determining the partial neutron width Gudkov (1992); Gudkov and Shimizu (2018); Okudaira et al. (2018, 2021); Yamamoto et al. (2020); Koga et al. (2022); Endo et al. (2022); Okudaira et al. (2023).
This paper presents the first measurement of the spin-dependent cross section at the pp-wave compound resonance, employing a polarized epithermal neutron beam and a polarized nuclear target. As our target nucleus, we selected 139La, which displays an exceedingly large enhanced parity violation at the 0.75 eV pp-wave resonance Yuan et al. (1991).

II Experiment

II.1 Experimental setup

The experiment was performed with a pulsed epi-thermal neutron beam at the RADEN beamline of the Material and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC) Shinohara et al. (2020). The experimental setup is depicted in Fig. 1. The La target is placed 23.0 m from the moderator surface. A 2.0 cm cubic lanthanum metal cooled with a dilution refrigerator was used as the target. A 6.8 Tesla transverse magnetic field was applied using a superconducting magnet to polarize the target nuclei. The neutron beam, collimated to a 3 cm by 3 cm size, was stripped of thermal neutrons using a cadmium filter upstream of the beamline to reduce the heat load on the La target induced by the neutron beam. The beam was polarized with a neutron polarizer using polarized 3He gas (3He spin filter), located 4.3 m upstream of the polarized target. The 3He spin filter was polarized using the spin exchange optical pumping method (SEOP) with a 110 W laser system constructed outside of the beamline and then installed on the beamline with a coil and a double magnetic shield to maintain the 3He polarization Okudaira et al. (2020). The 3He cell was 45 mm in diameter by 70 mm in length and the pressure was 0.31 MPa. The neutron beam, longitudinally polarized by the 3He spin filter, was guided using a guide magnet. The spin direction was adiabatically rotated to the transverse direction utilizing the stray magnetic field of the superconducting magnet. The neutron spin was flipped every 30 minutes by flipping the spin of 3He gas using adiabatic fast passage (AFP) NMR. The loss of the 3He polarization was 4×1054\times 10^{-5} per flip, which was negligibly small. Transmitted neutrons were recorded in list mode using a 256-pixel lithium glass scintillator detector located at 24.71 m from the moderator surface Satoh (2015). Downstream of the La target, another collimator was installed to reduce the beam divergence. The neutron energy EnE_{n} was determined using the neutron time-of-flight (TOF) and the flight path length. The proton beam power was 750 kW during the experiment.

Figure 2 illustrates the configuration around the La target. The La target was held in place between upper and lower copper holders, fastened using copper screws. The upper holder was connected to the cold head of the dilution refrigerator, enabling cooling of the La target through thermal conduction. The temperature TT was monitored with a ruthenium oxide thermometer installed in the cold head. We performed the experiment in two conditions: (a) low temperature condition (T=67mKT=67~{}\rm{mK} ) and (b) high temperature condition (T=1KT=1~{}\rm{K}). The measurement times were 22 hours and 6 hours, respectively. In the condition (a), the temperature increase by the beam irradiation to the La target was approximately 1 mK, indicating that the temperature difference between the cold head and the La target can be considered negligible. The temperature fluctuation was also around 1 mK, which was caused by beam interruptions in the accelerator due to malfunctions.

Refer to caption
Figure 1: Experimental setup.
Refer to caption
Figure 2: Configuration around the La target. The thermometer was installed in the cold head.

II.2 Measurement of the asymmetry

The cross sections for parallel and antiparallel polarized neutron and nucleus can be written with the spin-independent cross section σ0\sigma_{0} and spin-dependent cross section σS\sigma_{\rm S} as

σ±=σ0±σS,\displaystyle\sigma_{\pm}=\sigma_{0}\pm\sigma_{\rm{S}}, (1)

where +{+} and {-} denote the parallel and antiparallel spins, respectively. The asymmetry of neutron counts for parallel and anti-parallel spins transmitted through the polarized lanthanum target, defined as

εS=NN+N+N+,\displaystyle\varepsilon_{\rm{S}}=\frac{N_{-}-N_{+}}{N_{-}+N_{+}}, (2)

where NN_{-} and N+N_{+} are the neutron counts for parallel and anti-parallel spins, was measured. The neutron counts N±N_{\pm} are expressed using the neutron polarization PnP_{n} and nuclear vector polarization PIP_{I} as

N±=1±Pn2Nϵexp((σ0±PIσS)ρd),\displaystyle N_{\pm}=\frac{1\pm P_{n}}{2}N\epsilon\exp\left((\sigma_{0}\pm P_{I}\sigma_{\rm{S}})\rho d\right), (3)

where NN, ϵ\epsilon, ρ\rho, and dd are number of incident neutrons, detection efficiency of a neutron detector, number density of the nuclear target, and the thickness of the nuclear target, respectively. The spin-dependent asymmetry εS\varepsilon_{\rm S} can be described using Eq.3 as

εS=Pntanh(PIσSρd).\displaystyle\varepsilon_{\rm{S}}=P_{n}\tanh\left(P_{I}\sigma_{\rm S}\rho d\right). (4)

In this paper, the measurement and analysis were performed using resonance parameters of La+n reactions listed in Table 1, which were recently measured by Endo et al. Endo et al. (2023) using both neutron transmission and (nn, γ\gamma) reaction with an intense pulsed neutron beam at J-PARC.

Isotope E0[eV]E_{0}\,[{\rm eV}] JJ ll Γγ[meV]\Gamma^{\gamma}\,[{\rm meV}] gΓn[meV]g\Gamma^{n}\,[{\rm meV}]
La139\rm{{}^{139}La} 38.8±0.4-38.8\pm 0.4 44 0 60.3±0.560.3\pm 0.5 346±\pm10
La139\rm{{}^{139}La} 0.750±0.0010.750\pm 0.001 4 11 41.6±0.941.6\pm 0.9 (3.67±0.05)×105(3.67\pm 0.05)\times 10^{-5}
La138\rm{{}^{138}La} 2.99±0.012.99\pm 0.01 11/2 0 95±695\pm 6 0.65±0.030.65\pm 0.03
La139\rm{{}^{139}La} 72.30±0.0172.30\pm 0.01 3 0 64.1±3.064.1\pm 3.0 13.1±0.713.1\pm 0.7
Table 1: The resonance parameters of La+nn for low energy neutrons. The resonance parameters EE, JJ, ll, Γγ\Gamma^{\gamma}, gg, and Γn\Gamma^{n} are resonance energy, resonance spin, orbital angular momentum, γ\gamma-width, g-factor, and neutron width, respectively. The parameters of 138La and 139La are taken from Ref. Mughabghab (2006) and Ref. Endo et al. (2023), respectively.

Figure 3 shows the TOF spectra of the transmitted neutrons and asymmetry εS\varepsilon_{\rm S} in conditions (a) and (b). We observed a significant asymmetry in condition (a), corresponding to a high nuclear polarization, while the asymmetry disappeared in condition (b) due to the lower nuclear polarization. The peak and dip structures were observed at the 2.99 eV and 0.75 eV resonances. The global structure observed less than 0.3 ms is attributed to the spin-dependent cross section of the negative ss-wave resonance.

Refer to caption
Figure 3: TOF spectra of the transmitted neutrons (top figure) and the spin-dependent asymmetries (bottom figure). Black and white points denote the asymmetries in the conditions (a) and (b), respectively, in the bottom figure.

II.3 Neutron polarization

The neutron polarization was obtained using the 3He polarization of the 3He spin filter. The 3He polarization was determined with the ratio of the transmitted neutrons for polarized and unpolarized 3He spin filter. The ratio of the transmitted neutrons is described as

NpolNunpol=cosh(PHe(t)ρHedHeσHe),\displaystyle\frac{N_{\rm{pol}}}{N_{\rm{unpol}}}=\cosh(P_{\rm{He}}(t)\rho_{\rm{He}}d_{\rm{He}}\sigma_{\rm{He}}), (5)

where, PHeP_{\rm{He}}, σHe\sigma_{\rm{He}}, and ρHedHe\rho_{\rm{He}}d_{\rm{He}} are the 3He polarization, neutron absorption cross section of 3He, and areal density of 3He gas, respectively. Here, NpolN_{\rm{pol}} is defined as N++NN_{+}+N_{-} for cancelling the spin-dependent asymmetry derived from the polarization of the La target. The areal density ρHedHe\rho_{\rm{He}}d_{\rm{He}} was obtained from the measurement of the ratio of transmitted neutrons for unpolarized 3He spin filter and empty glass cell as 21.4 atm\cdotcm. The 3He polarization was obtained for each flip by fitting the TOF dependence of Npol/NunpolN_{\rm{pol}}/N_{\rm{unpol}} using Eq. 5 with a fit parameter of PHeP_{\rm{He}} as shown in Fig 4. Figure 5 shows the time dependence of the 3He polarization. The relaxation time of the 3He polarization τ\tau, which was obtained by fitting with PHe(t)=PHe(0)exp(t/τ)P_{\rm{He}}(t)=P_{\rm{He}}(0)\exp(-t/\tau), was 161 h. The averaged 3He polarization P¯He\bar{P}_{\rm{He}} during the measurement was (68±1)(68\pm 1)%.
The neutron polarization PnP_{n} transmitted through the 3He spin filter is determined as

Pn(t)=tanh(PHe(t)ρHedHeσHe).\displaystyle P_{n}(t)=-\tanh(P_{\rm{He}}(t)\rho_{\rm{He}}d_{\rm{He}}\sigma_{\rm{He}}). (6)

Figure 6 shows an averaged neutron polarization P¯n\bar{P}_{n} as a function of the neutron energy calculated from the averaged 3He polarization. The averaged neutron polarization at 0.75 eV was (36.1±0.5)(36.1\pm 0.5)%.

Refer to caption
Figure 4: Ratio of the counts of transmitted neutrons for the polarized to the unpolarized 3He spin filter. The curved line shows the best fit.
Refer to caption
Figure 5: 3He polarization versus elapsed time from the beginning of the measurement. The curved line shows the fit result by an exponential function. The measurement was not conducted from 16 h to 22 h due to a liquid He transfer for the superconducting magnet.
Refer to caption
Figure 6: Neutron polarization obtained from the averaged 3He polarization.

II.4 Nuclear polarization determined by spin-dependent asymmetry

The 139La nuclear polarization was determined utilizing the spin-dependent asymmetry at the 2.99 eV ss-wave resonance of 138La. The spin-dependent asymmetry at the 2.99 eV resonance, after subtracting of the negative ss-wave component, was obtained as

εS=(5.1±0.7)×104.\displaystyle\varepsilon_{\rm S}=(5.1\pm 0.7)\times 10^{-4}. (7)

The spin-dependent cross section of the 2.99 eV resonance σS,stheo\sigma^{\rm theo}_{{\rm S},s} can be theoretically described using the resonance parameters listed in Table 1 as

σS,stheo=5π11k2ΓsnΓs(EEs)2+(Γs/2)2,\displaystyle\sigma^{\rm theo}_{{\rm S},s}=\frac{5\pi}{11k^{2}}\frac{\Gamma^{n}_{s}\Gamma_{s}}{(E-E_{s})^{2}+(\Gamma_{s}/2)^{2}}, (8)

where EsE_{s}, Γsn\Gamma^{n}_{s}, and Γs\Gamma_{s} are the resonance energy, neutron width, and total width of the 2.99 eV s-wave resonance, respectively. The nuclear polarization of 138La can be determined using Eqs. 47 and 8, taking into account its natural abundance and the neutron polarization at 2.99 eV, yielding a value of 4.9±\pm0.7%. The target temperature TLaT_{\rm La} was calculated based on a Boltzmann distribution and using the magnetic moment and nuclear spin listed in Table 2, resulting in TLa=75.78.9+10.2mKT_{\rm{La}}=75.7^{+10.2}_{-8.9}~{}\rm{mK}, which is consistent with the temperature measured at the cold head of 67 mK. Under the assumption that the spin temperature of 139La is the same as that of 138La, the corresponding 139La nuclear polarization was determined to be 3.9±0.5%3.9\pm 0.5\%.

Isotope IPI^{P} Abundance μ0\mu_{0}
La139\rm{{}^{139}La} 7/2+7/2^{+} 99.91%99.91\% 2.782.78
La138\rm{{}^{138}La} 5+5^{+} 0.09% 3.713.71
Table 2: Parameters of lanthanum isotopes. Nuclear spin and parity IPI^{P}, natural abundance, and nuclear magnetic moment μ0\mu_{0} are listed. The unit of the nuclear magnetic moment is nuclear magneton.

II.5 Spin-dependent cross sections at the resonances

The experimental value of the spin-dependent cross section σSexp\sigma^{\rm exp}_{\rm S} was obtained from the asymmetry εS\varepsilon_{\rm S} using Eq. 4. The resonance component σS,rexp\sigma^{\rm{exp}}_{{\rm{S}},r} was isolated by fitting the global structure attributed to the negative ss-wave component with a third order polynomial function. The resonance regions listed in the Table 1 are excluded from the fitting. Figure 7 shows the TOF dependence of PIσSexpP_{I}\sigma^{\rm exp}_{\rm S} and PIσS,rexpP_{I}\sigma^{\rm exp}_{{\rm{S}},r}. Note that Fig. 7 was calculated using the areal density of 139La. A pp-value, defined as p=(1C.L.)/2p=(1-\rm{C.L.})/2, where C.L. is the confidence level of the non-zero asymmetry, is also depicted to show the significance of PIσS,rexpP_{I}\sigma^{\rm exp}_{{\rm{S}},r} in Fig. 7. The p-value indicates the probability to observe a non-zero value of PIσS,rexpP_{I}\sigma^{\rm exp}_{{\rm{S}},r} in the hypothesis of no asymmetry. A confidence level of over 99.7% corresponds to a p-value less than 1.35×1031.35\times 10^{-3}. The spin-dependence cross section was first observed at the pp-wave resonance with over 99.7% C.L. as shown in Fig 7.

The spin-dependent cross section in the pp-wave resonance region of Ep3Γp<En<Ep+3ΓpE_{p}-3\Gamma_{p}<E_{n}<E_{p}+3\Gamma_{p} after the subtraction of the negative ss-wave component, defined as σS,pexp\sigma^{\rm exp}_{{{\rm{S}},p}}, is obtained using the nuclear polarization in Section II.4 as

σS,pexp=0.26±0.08barn,\displaystyle\sigma^{\rm exp}_{{\rm{S}},p}=-0.26\pm 0.08~{}\rm{barn}, (9)

where EpE_{p} and Γp\Gamma_{p} are the resonance energy and total width of the pp-wave resonance, shown in Table 1. Here, the total width is defined as Γp=Γpγ+Γpn\Gamma_{p}=\Gamma_{p}^{\gamma}+\Gamma_{p}^{n}. The asymmetry of the spin-dependent cross section relative to the spin-independent cross section of the pp-wave component was also obtained as

AS\displaystyle A_{\rm S} =\displaystyle= σ+pσpσ+p+σp=σS,pexpσ0,ptheo\displaystyle\frac{\sigma^{p}_{+}-\sigma^{p}_{-}}{\sigma^{p}_{+}+\sigma^{p}_{-}}=\frac{\sigma^{\rm exp}_{{\rm S},p}}{\sigma^{\rm theo}_{{\rm 0},p}} (10)
=\displaystyle= 0.36±0.11.\displaystyle-0.36\pm 0.11.

The spin-independent cross section σ0,ptheo\sigma^{\rm theo}_{{\rm 0},p} was theoretically calculated with a Breit-Wigner formula, defined as,

σ0,ptheo=9π16k2ΓpnΓp(EEp)2+(Γp/2)2.\displaystyle\sigma^{\rm{theo}}_{0,p}=\frac{9\pi}{16k^{2}}\frac{\Gamma^{n}_{p}\Gamma_{p}}{(E-E_{p})^{2}+(\Gamma_{p}/2)^{2}}. (11)

When using the nuclear polarization calculated from the temperature measured at the cold head, the differences of σS,pexp\sigma^{\rm exp}_{{\rm{S}},p} and ASA_{\rm S} from the values in Eq. 9 and Eq. 10 were +0.03barn+0.03~{}\rm{barn} and +0.04+0.04, respectively. These differences were smaller than the statistical error.

Refer to caption
Figure 7: (a) TOF dependence of PIσSexpP_{I}\sigma^{\rm exp}_{\rm S}. The curved line is the best fit of the global structure derived from the negative ss-wave resonance. (b) Resonance component of spin-dependent cross section. (c) pp-value for PIσS,rexpP_{I}\sigma^{\rm exp}_{{\rm{S}},r}. The dotted line shows 99.7% confidence level.

III Analysis

Under the experimental conditions, the spin-dependent assymetry can be approximated as

εSPIPnρd4πkImB,\displaystyle\varepsilon_{\rm S}\simeq P_{I}P_{n}\rho d\frac{4\pi}{k}{\rm Im}B^{\prime}, (12)

as described in the Appendix A, where BB^{\prime} is the coefficient in Eq.(10) in Ref. Gudkov and Shimizu (2020) representing the spin-spin interaction in the forward angle scattering amplitude. The following subsections will discuss the implications of the experimental results to the partial neutron width of the pp-wave resonance and the spins of the ss-wave resonances.

III.1 Determination of partial neutron width using spin-dependent cross section

The partial neutron width can also be extracted from the angular correlations of γ\gamma-rays emitted from pp-wave resonances, which arise from interference between ss- and pp-wave amplitudes Okudaira et al. (2018, 2021); Yamamoto et al. (2020); Koga et al. (2022); Endo et al. (2022). The advantage of using the spin-dependent cross section is that the neutron partial width can be directly determined without assuming the interference between partial amplitudes and the final state spin after the γ\gamma decay.

The spin-dependent cross section at the pp-wave resonance can be calculated using the explicit theoretical expression of BB^{\prime} as Gudkov and Shimizu (2020)

σS,ptheo\displaystyle\sigma^{\rm{theo}}_{{\rm{S}},p} =\displaystyle= 4πkImB=π16k2ΓpnΓp(EEp)2+(Γp/2)2\displaystyle\frac{4\pi}{k}{\rm{Im}}B^{\prime}=\frac{\pi}{16k^{2}}\frac{\Gamma^{n}_{p}\Gamma_{p}}{(E-E_{p})^{2}+(\Gamma_{p}/2)^{2}} (13)
×(394xs2+9275xsys+6320ys2),\displaystyle\times\left(-\frac{39}{4}x_{\rm s}^{2}+\frac{9}{2}\sqrt{\frac{7}{5}}x_{\rm s}y_{\rm s}+\frac{63}{20}y_{\rm s}^{2}\right),

where xsx_{s} and ysy_{s} are ratios of the neutron partial width of the channel spin, defined as

xs\displaystyle x_{\rm s} =\displaystyle= 123(7x5y)\displaystyle\frac{1}{2\sqrt{3}}(-\sqrt{7}x-\sqrt{5}y) (14)
ys\displaystyle y_{\rm s} =\displaystyle= 123(5x7y).\displaystyle\frac{1}{2\sqrt{3}}(\sqrt{5}x-\sqrt{7}y). (15)

The neutron partial widths of the neutron total angular momentum j=1/2j=1/2 and 3/23/2 components, denoted as Γp,j=1/2n\Gamma^{n}_{p,j=1/2} and Γp,j=3/2n\Gamma^{n}_{p,j=3/2}, are expressed by xx and yy defined as

x2=Γp,j=1/2nΓpn,y2=Γp,j=3/2nΓpn,\displaystyle x^{2}=\frac{\Gamma^{n}_{p,j=1/2}}{\Gamma^{n}_{p}},\ \ y^{2}=\frac{\Gamma^{n}_{p,j=3/2}}{\Gamma^{n}_{p}}, (16)

where xx and yy satisfy x2+y2=1x^{2}+y^{2}=1. The corresponding mixing angle ϕ\phi can be defined as

x=cosϕ,y=sinϕ,\displaystyle x=\cos\phi,~{}y=\sin\phi, (17)

as discussed in Ref Gudkov and Shimizu (2020). The broadening effect by the pulse shape of the neutron beam at 0.75 eV was negligibly small compared with the total width of the pp-wave resonance and the statistical error, and therefore, the spin-dependent cross section obtained in Eq. 9 can be directly compared with the theoretical calculation. By calculating the Breit-Wigner function over the region Ep3Γp<En<Ep+3ΓpE_{p}-3\Gamma_{p}<E_{n}<E_{p}+3\Gamma_{p} in Eq. 13, we obtained the following equation.

0.26±0.08=0.079(7x2235xy+25y2)\displaystyle-0.26\pm 0.08=0.079\left(-7x^{2}-2\sqrt{35}xy+\frac{2}{5}y^{2}\right) (18)

Using Eq. 17 and Eq. 18, we find the solutions for ϕ\phi as

ϕ=\displaystyle\phi= (74±4),(164±4),\displaystyle(74\pm 4)^{\circ},~{}(164\pm 4)^{\circ}, (19)
(254±4),(344±4).\displaystyle~{}(254\pm 4)^{\circ},~{}(344\pm 4)^{\circ}.

The corresponding xx and yy values are also obtained as

(x,y)=\displaystyle(x,y)= (0.28±0.06,0.96±0.02),\displaystyle(0.28\pm 0.06,~{}0.96\pm 0.02), (20)
(0.96±0.02,0.28±0.06),\displaystyle(-0.96\pm 0.02,~{}0.28\pm 0.06),
(0.28±0.06,0.96±0.02),\displaystyle(-0.28\pm 0.06,~{}-0.96\pm 0.02),
(0.96±0.02,0.28±0.06).\displaystyle(0.96\pm 0.02,~{}-0.28\pm 0.06).

The visualization of ϕ\phi is shown in Fig. 8. Equation 18 is described as the curved line in the xyxy plane. The intersections of the curved lines and unit circle show the solutions of ϕ\phi.

Refer to caption
Figure 8: Visualization of the ϕ\phi values on the xyxy plane. The curved lines, shaded areas, and dashed lines show Eq. 18 and its 1σ\sigma region of the statistic error.

The above analysis was also performed using the resonance parameters reported by other groups in Appendix B. The differences in the analysis results that arose from differences in the resonance parameters were within the statistical error. We confirmed that these differences stemming from the resonance parameters do not affect the conclusions of this paper.

III.2 Spin of ss-wave resonances

For the ss-wave resonances, the spin JJ can be directly determined from the asymmetry. The positive (negative) sign of the asymmetry indicates that neutrons with parallel (anti-parallel) spin are likely to be absorbed by nuclei. The sign of the asymmetry in Fig. 7 (a) and (b) implies: J=4J=4 for the negative ss-wave resonance of 139La, whose spin is 7/27/2; J=11/2J=11/2 for the 2.99 eV ss-wave resonance of 138La, whose spin is 5; and J=3J=3 for the 72.3 eV ss-wave resonance of 139La. The spins of the ss-wave resonances determined in this experiment are consistent with the reference values in Table 1.

IV Conclusion

We observed the spin-dependent cross section at the 0.75 eV pp-wave of 139La+nn using a polarized lanthanum target and a polarized pulsed neutron beam. The partial neutron width of the pp-wave resonance was determined. In a separate paper, these results will be compared with other experimental results of (nn,γ\gamma) reactions Okudaira et al. (2018, 2021); Yamamoto et al. (2020); Koga et al. (2022); Endo et al. (2022); Okudaira et al. (2023) in terms of the ss-pp mixing model and will be used for improving a quantitative understanding the symmetry violation enhancement mechanism.

Acknowledgements.
The authors would like to thank the staff of beamline 22 for the maintenance, the low temperature sample environment team for the operation of the superconducting magnet and the dilution refrigerator, and MLF and J-PARC for operating the accelerators and the neutron production target. T. Okudaira would like to especially thank S. Ohira-Kawamura and M. Matsuura for their assistance designing the La holder. The neutron scattering experiment was approved by the Neutron Scattering Program Advisory Committee of IMSS and KEK (Proposals Nos. 2018S12). The neutron experiment at the Materials and Life Science Experimental Facility of the J-PARC was performed under a user program (Proposal No. 2022A0101). This work was supported by JSPS KAKENHI Grant Nos. 20K14495, 23K13122, JST SPRING Grant No. JPMJSP2125, and the US National Science Foundation PHY-1913789 and PHY-2209481. R. Nakabe acknowledges support from the Interdisciplinary Frontier Next-Generation Researcher Program of the Tokai Higher Education and Research System. W. M. Snow acknowledges support from the Indiana University Center for Spacetime Symmetries. J. G. Otero Munoz acknowledges support from the National GEM consortium. V. Gudkov acknowledges support from the U.S. Department of Energy Office of Science, Office of Nuclear Physics program under Award No. DE-SC0020687.

Appendix A Neutron spin behavior in the polarized target and its approximation

We employ the optical description of the neutron spin behavior in polarized target material as described in Ref. Kabir (1988); Stodolsky (1986) to describe the measured asymmetry εS\varepsilon_{\rm S} as

εS\displaystyle\varepsilon_{\rm S} =PnTr(𝔖σx𝔖)Tr(𝔖𝔖)=Pn2ReAB+2ImCD|A|2+|B|2+|C|2+|D|2.\displaystyle=P_{n}\frac{{\rm Tr}(\mathfrak{S}^{{\dagger}}\sigma_{x}\mathfrak{S})}{{\rm Tr}(\mathfrak{S}^{{\dagger}}\mathfrak{S})}=P_{n}\frac{2{\rm Re}A^{\ast}B+{2\rm Im}C^{\ast}D}{\left|{A}\right|^{2}+\left|{B}\right|^{2}+\left|{C}\right|^{2}+\left|{D}\right|^{2}}. (21)

The coefficients AA, BB, CC, and DD are related to the forward angle scattering amplitude given in Ref. Gudkov and Shimizu (2020) as

A\displaystyle A =eiαcosβ,B=ieiαsinβββx\displaystyle=e^{i\alpha}\cos\beta,\quad B=ie^{i\alpha}\frac{\sin\beta}{\beta}\beta_{x}
C\displaystyle C =ieiαsinβββz,D=ieiαsinβββy\displaystyle=ie^{i\alpha}\frac{\sin\beta}{\beta}\beta_{z},\quad D=ie^{i\alpha}\frac{\sin\beta}{\beta}\beta_{y} (22)

where

αZ\displaystyle\frac{\alpha}{Z} =A+P1H(𝒌𝑰)+P2E((𝒌𝑰)213)\displaystyle=A^{\prime}+P_{1}H^{\prime}(\bm{k}\cdot\bm{I})+P_{2}E^{\prime}((\bm{k}\cdot\bm{I})^{2}-\frac{1}{3})
βxZ\displaystyle\frac{\beta_{x}}{Z} =P1B+μnmn2π2ρBext+P2F(𝒌𝑰)+P3B33((𝒌𝑰)21)\displaystyle=P_{1}B^{\prime}+\frac{\mu_{\rm n}m_{\rm n}}{2\pi\hbar^{2}\rho}B_{\rm ext}+P_{2}F^{\prime}(\bm{k}\cdot\bm{I})+P_{3}\frac{B_{3}^{\prime}}{3}((\bm{k}\cdot\bm{I})^{2}-1)
βyZ\displaystyle\frac{\beta_{y}}{Z} =P1D+P2G(𝒌𝑰)\displaystyle=P_{1}D^{\prime}+P_{2}G^{\prime}(\bm{k}\cdot\bm{I})
βzZ\displaystyle\frac{\beta_{z}}{Z} =C+P1K(𝒌𝑰)P2F3+P32B33(𝒌𝑰)\displaystyle=C^{\prime}+P_{1}K^{\prime}(\bm{k}\cdot\bm{I})-P_{2}\frac{F^{\prime}}{3}+P_{3}\frac{2B_{3}^{\prime}}{3}(\bm{k}\cdot\bm{I})
β2\displaystyle\beta^{2} =βx2+βy2+βz2,Z=2πρdk.\displaystyle=\beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2},\quad Z=\frac{2\pi\rho d}{k}. (23)

Here, BextB_{\rm{ext}}, μn\mu_{n}, and mnm_{n} denote the external magnetic field, neutron magnetic moment, and mass, respectively. 𝒌\bm{k} and 𝑰\bm{I} are unit vectors parallel to the neutron momentum and the nuclear spin. The P1P_{1}, P2P_{2} and P3P_{3} represent the target nuclear polarization of 1st-rank (vector), 2nd-rank, and 3rd-rank spherical tensors, respectively, and amounts P1=PI=3.9±0.5%P_{1}=P_{I}=3.9\pm 0.5\%, P2=0.100.02+0.03%P_{2}=0.10^{+0.03}_{-0.02}\%, P3=(2.1±1.0)×103%P_{3}=(2.1\pm 1.0)\times 10^{-3}\% in the present experimental conditions. Non-zero values of the (𝒌𝑰)(\bm{k}\cdot\bm{I}) originate from the beam divergence up to the maximum value of 2×1032\times 10^{-3}.
The valuables AA^{\prime}-GG^{\prime} are the coefficients of correlation terms in the forward scattering amplitude for polarized 139La nuclei and polarized neutrons defined as  Gudkov and Shimizu (2020):

f=A+P1H(𝒌𝑰)+P2E((𝒌𝑰)213)+(𝝈𝑰)(P1B+P2F(𝒌𝑰)+P3B33((𝒌𝑰)21))+(𝝈𝒌)(C+P1K(𝒌𝑰)P2F3+P32B33(𝒌𝑰))+𝝈(𝒌×𝑰)(P1D+P2G(𝒌𝑰).)\begin{split}f=&A^{\prime}+P_{1}H^{\prime}({\bm{k}}\cdot{\bm{I}})+P_{2}E^{\prime}\left({(\bm{k}}\cdot{\bm{I}})^{2}-\frac{1}{3}\right)\\ &+(\bm{\sigma}\cdot{\bm{I}})\left(P_{1}B^{\prime}+P_{2}F^{\prime}({\bm{k}\cdot{\bm{I}}})+P_{3}\frac{B_{3}^{\prime}}{3}\left(({\bm{k}\cdot{\bm{I}}})^{2}-1\right)\right)\\ &+(\bm{\sigma}\cdot{\bm{k}})\left(C^{\prime}+P_{1}K^{\prime}({\bm{k}}\cdot{\bm{I}})-P_{2}\frac{F^{\prime}}{3}+P_{3}\frac{2B_{3}^{\prime}}{3}({\bm{k}\cdot{\bm{I}}})\right)\\ &+\bm{\sigma}\cdot({\bm{k}\times{\bm{I}}})\left(P_{1}D^{\prime}+P_{2}G^{\prime}({\bm{k}}\cdot{\bm{I}}).\right)\end{split} (24)

The magnitude of coefficients HH^{\prime}, EE^{\prime}, FF^{\prime}, B3B_{3}^{\prime}, KK^{\prime} and GG^{\prime} are of the same order or less than AA^{\prime} and BB^{\prime} on the basis of the explicit expressions in Eq. (28)-(37) of Ref. Gudkov and Shimizu (2020). The magnitudes of P-odd, T-even term CC^{\prime} and P-odd, T-odd term DD^{\prime} are smaller than AA^{\prime} and BB^{\prime} by more than two orders of magnitudes. Consequently, the value of β\beta can be approximated as ββx\beta\simeq\beta_{x} and we obtain

εS\displaystyle\varepsilon_{\rm S} Pntanh(2Imβx).\displaystyle\simeq P_{n}\tanh(2{\rm Im}\beta_{x}). (25)

The numerical value of Imβx{\rm Im}\beta_{x} is about 10310^{-3}, which leads to

εSPIPnρd4πkImB.\displaystyle\varepsilon_{\rm S}\simeq P_{I}P_{n}\rho d\frac{4\pi}{k}{\rm Im}B^{\prime}. (26)

Appendix B Analysis using resonance parameters reported in other references

For the 0.75 eV pp-wave resonance, the measurements using neutron transmission or (nn, γ\gamma) reaction have been reported by several groups listed in Table 3 Terlizzi et al. (2007); Alfimenkov et al. (1983); Shwe et al. (1967); J.A.Harvey et al. (1959). The details of each measurement of the resonance parameters are summarized in Ref. Endo et al. (2023).

Reference E0E_{0} [eV] Γγ\Gamma_{\gamma} [meV] gΓng\Gamma_{n} [meV]
Endo et al. (2023) Endo et al. (2023) 0.750±0.0010.750\pm 0.001 41.6±0.941.6\pm 0.9 (3.67±0.05)×105(3.67\pm 0.05)\times 10^{-5}
Terlizzi et al. (2007) Terlizzi et al. (2007) 0.758±0.0010.758\pm 0.001 40.1±1.940.1\pm 1.9 (5.6±0.5)×105(5.6\pm 0.5)\times 10^{-5}
Alfimenkov et al. (1983) Alfimenkov et al. (1983) 0.75±0.010.75\pm 0.01 45±545\pm 5 (3.6±0.3)×105(3.6\pm 0.3)\times 10^{-5}
Shwe et al. (1967) Shwe et al. (1967) 0.734±0.0050.734\pm 0.005 40±540\pm 5 (3.67±0.22)×105(3.67\pm 0.22)\times 10^{-5}
Harvey et al. (1959) J.A.Harvey et al. (1959) 0.752±0.0110.752\pm 0.011 55±1055\pm 10 (4±1)×105(4\pm 1)\times 10^{-5}
Table 3: Resonance parameters of 139La pp-wave resonance reported in each reference.
Reference for
resonance parameters
σS,pexp\sigma^{\rm{exp}}_{{\rm{S}},p} [barn] ASA_{\rm S} ϕ[degree]\phi~{}[\rm{degree}]
Endo et al. 0.26±0.07-0.26\pm 0.07 0.36±0.10-0.36\pm 0.10 74±4,164±4,254±4,344±4~{}74\pm 4,~{}164\pm 4,~{}254\pm 4,~{}344\pm 4
Terlizzi et al. 0.26±0.07-0.26\pm 0.07 0.24±0.06-0.24\pm 0.06 79±2,159±2,259±2,339±2~{}79\pm 2,~{}159\pm 2,~{}259\pm 2,~{}339\pm 2
Alfimenkov et al. 0.23±0.06-0.23\pm 0.06 0.36±0.10-0.36\pm 0.10 74±4,164±4,254±4,344±4~{}74\pm 4,~{}164\pm 4,~{}254\pm 4,~{}344\pm 4
Shwe et al. 0.26±0.07-0.26\pm 0.07 0.35±0.09-0.35\pm 0.09 75±4,163±4,255±4,343±4~{}75\pm 4,~{}163\pm 4,~{}255\pm 4,~{}343\pm 4
Harvey et al. 0.19±0.06-0.19\pm 0.06 0.33±0.10-0.33\pm 0.10 76±4,163±4,256±4,343±4~{}76\pm 4,~{}163\pm 4,~{}256\pm 4,~{}343\pm 4
Table 4: Analysis results using the resonance parameters in each reference.

Tables 4 shows σS,pexp\sigma^{\rm exp}_{{\rm S},p}, ASA_{\rm S}, and ϕ\phi values obtained using resonance parameters reported by each group. The central values for ASA_{\rm S} show agreement within an accuracy of 10% or less with the exception of that based on resonance parameters reported by Terilzzi et al.. The central value of ASA_{\rm S} using this resonance parameters exhibit a difference of around 30%, which is attributed to Terilzzi et al.’s gΓng\Gamma_{n} being reported as approximately 30% larger than in other references. Consequently, the ϕ\phi values obtained using resonance parameters reported by Terilzzi et al. show difference compared to the analysis using other resonance parameters, as illustrated in Fig. 9. However, these differences remain consistent within the statistical errors obtained in the present experiment.

Refer to caption
Figure 9: Visualization of the ϕ\phi values obtained using Terilzzi et al.’s resonance parameters on the xyxy plane. The curved lines and shaded area shows Eq. 18 and its 1σ\sigma region of the statistic error.

References

  • Keyworth et al. (1973a) G. A. Keyworth, C. E. Olsen, F. T. Seibel, J. W. T. Dabbs,  and N. W. Hill, Phys. Rev. Lett. 31, 1077 (1973a).
  • Keyworth et al. (1973b) G. A. Keyworth, J. R. Lemley, C. E. Olsen, F. T. Seibel, J. W. T. Dabbs,  and N. W. Hill, Phys. Rev. C 8, 2352 (1973b).
  • Alfimenkov et al. (1994) V. P. Alfimenkov, Y. D. Mareev, V. V. Novitskii, L. B. Pikel‘ner,  and V. R. Skoi, Physics of Atomic Nuclei 57 (1994).
  • Mitchell et al. (2001) G. Mitchell, J. Bowman, S. Penttila,  and E. Sharapov, Physics Reports 354, 157 (2001).
  • Sushkov and Flambaum (1982) O. P. Sushkov and V. V. Flambaum, Sov. Phys. Uspekhi 25, 1 (1982).
  • Bunakov and Gudkov (1983) V. E. Bunakov and V. P. Gudkov, Nuclear Physics A 401, 93 (1983).
  • Gudkov (1991) V. Gudkov, Nuclear Physics A 524, 668 (1991).
  • Gudkov (1992) V. P. Gudkov, Phys. Rep. 212, 77 (1992).
  • Gudkov and Shimizu (2018) V. Gudkov and H. M. Shimizu, Phys. Rev. C 97, 065502 (2018).
  • Okudaira et al. (2018) T. Okudaira, S. Takada, K. Hirota, A. Kimura, M. Kitaguchi, J. Koga, K. Nagamoto, T. Nakao, A. Okada, K. Sakai, H. M. Shimizu, T. Yamamoto,  and T. Yoshioka, Phys. Rev. C 97, 034622 (2018).
  • Okudaira et al. (2021) T. Okudaira, S. Endo, H. Fujioka, K. Hirota, K. Ishizaki, A. Kimura, M. Kitaguchi, J. Koga, Y. Niinomi, K. Sakai, T. Shima, H. M. Shimizu, S. Takada, Y. Tani, T. Yamamoto, H. Yoshikawa,  and T. Yoshioka, Phys. Rev. C 104, 014601 (2021).
  • Yamamoto et al. (2020) T. Yamamoto, T. Okudaira, S. Endo, H. Fujioka, K. Hirota, T. Ino, K. Ishizaki, A. Kimura, M. Kitaguchi, J. Koga, S. Makise, Y. Niinomi, T. Oku, K. Sakai, T. Shima, H. M. Shimizu, S. Takada, Y. Tani, H. Yoshikawa,  and T. Yoshioka, Phys. Rev. C 101, 064624 (2020).
  • Koga et al. (2022) J. Koga, S. Takada, S. Endo, H. Fujioka, K. Hirota, K. Ishizaki, A. Kimura, M. Kitaguchi, Y. Niinomi, T. Okudaira, K. Sakai, T. Shima, H. M. Shimizu, Y. Tani, T. Yamamoto, H. Yoshikawa,  and T. Yoshioka, Phys. Rev. C 105, 054615 (2022).
  • Endo et al. (2022) S. Endo, T. Okudaira, R. Abe, H. Fujioka, K. Hirota, A. Kimura, M. Kitaguchi, T. Oku, K. Sakai, T. Shima, H. M. Shimizu, S. Takada, S. Takahashi, T. Yamamoto, H. Yoshikawa,  and T. Yoshioka, Phys. Rev. C 106, 064601 (2022).
  • Okudaira et al. (2023) T. Okudaira, Y. Tani, S. Endo, J. Doskow, H. Fujioka, K. Hirota, K. Kameda, A. Kimura, M. Kitaguchi, M. Luxnat, K. Sakai, D. C. Schaper, T. Shima, H. M. Shimizu, W. M. Snow, S. Takada, T. Yamamoto, H. Yoshikawa,  and T. Yoshioka, Phys. Rev. C 107, 054602 (2023).
  • Yuan et al. (1991) V. W. Yuan, C. D. Bowman, J. D. Bowman, J. E. Bush, P. P. J. Delheij, C. M. Frankle, C. R. Gould, D. G. Haase, J. N. Knudson, G. E. Mitchell, S. Penttilä, H. Postma, N. R. Roberson, S. J. Seestrom, J. J. Szymanski,  and X. Zhu, Phys. Rev. C 44, 2187 (1991).
  • Shinohara et al. (2020) T. Shinohara, T. Kai, K. Oikawa, T. Nakatani, M. Segawa, K. Hiroi, Y. Su, M. Ooi, M. Harada, H. Iikura, H. Hayashida, J. D. Parker, Y. Matsumoto, T. Kamiyama, H. Sato,  and Y. Kiyanagi, Review of Scientific Instruments 91, 043302 (2020).
  • Okudaira et al. (2020) T. Okudaira, T. Oku, T. Ino, H. Hayashida, H. Kira, K. Sakai, K. Hiroi, S. Takahashi, K. Aizawa, H. Endo, S. Endo, M. Hino, K. Hirota, T. Honda, K. Ikeda, K. Kakurai, W. Kambara, M. Kitaguchi, T. Oda, H. Ohshita, T. Otomo, H. Shimizu, T. Shinohara, J. Suzuki,  and T. Yamamoto, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 977, 164301 (2020).
  • Satoh (2015) S. Satoh, JPS Conf. Proc. 8, 051001 (2015).
  • Endo et al. (2023) S. Endo, S. Kawamura, T. Okudaira, H. Yoshikawa, G. Rovira, A. Kimura, S. Nakamura, O. Iwamoto,  and N. Iwamoto,   (2023), arXiv:2308.08802 [nucl-ex] .
  • Mughabghab (2006) S. F. Mughabghab, Atlas of Neutron Resonances 5th ed. (Elsevier, Amsterdam, 2006).
  • Gudkov and Shimizu (2020) V. Gudkov and H. M. Shimizu, Phys. Rev. C 102, 015503 (2020).
  • Kabir (1988) P. K. Kabir, Phys. Rev. D 37, 1856 (1988).
  • Stodolsky (1986) L. Stodolsky, Physics Letters B 172, 5 (1986).
  • Terlizzi et al. (2007) R. Terlizzi et al., Phys. Rev. C 75, 035807 (2007).
  • Alfimenkov et al. (1983) V. P. Alfimenkov, S. B. Borzakov, V. V. Thuan, Y. D. Mareev, L. B. Pickelner, A. S. Khrykin,  and E. I. Sharapov, Nucl. Phys. A 398, 93 (1983).
  • Shwe et al. (1967) H. Shwe, R. E. Coté,  and W. V. Prestwich, Phys. Rev. 159, 1050 (1967).
  • J.A.Harvey et al. (1959) J.A.Harvey, R.C.Block,  and G.G.Slaughter, Bull. Am. Phys. Soc. 4, 385 (1959).