This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spin-orbit corrections of order mα6m\alpha^{6} to the fine structure of (37,35)(37,35) state in He+4p¯{}^{4}\mbox{He}^{+}\bar{p} atom.

Vladimir I. Korobov Joint Institute for Nuclear Research
141980, Dubna, Russia
korobov@theor.jinr.ru
   Zhen-Xiang Zhong Wuhan Institute of Physics and Mathematics, CAS
430071, Wuhan, People’s Republic of China
Abstract

Precise numerical calculation of radiofrequency intervals between hyperfine sublevels of the (37,35)(37,35) state of the antiprotonic helium-4 atom is presented. Theoretical consideration includes the QED corrections of order mα6m\alpha^{6} to the electron spin-orbit interaction. The effective Hamiltonian is derived using the formalism of the nonrelativistic quantum electrodynamics (NRQED).

pacs:
36.10.-k, 31.15.A-,31.30.J-

I Introduction

The high precision spectroscopy measurement of the hyperfine structure of the antiprotonic helium has two-fold interest. First, it is expected that it may be a way to obtain improved value of the magnetic moment of an antiproton. The other point is that it can be a good benchmark for testing QED theoretical methods for the Coulomb three-body bound states to a high precision.

Refer to caption
Figure 1: Schematic diagram of hyperfine sublevels of the (37,35)(37,35) state of He+4p¯{}^{4}\mbox{He}^{+}\bar{p} atom.

At present several theoretical calculations for the hyperfine structure of the (37,35)(37,35) state of the He+4p¯{}^{4}\mbox{He}^{+}\bar{p} atom have been performed PRA98 ; Kino01 ; JPB01 ; Kino03 . Since all the results were obtained within the frames of the same Breit-Pauli approximation, the major difference in the obtained data was either due to numerical inaccuracy of the nonrelativistic solution or due to a difference in the choice of the physical constants. Still they were in a good agreement (within the error bars of the theoretical approximation) with the first experimental observation of the 13 GHz intervals Wid02 .

Recently, the ASACUSA experiment has obtained new precise values for the two RF transitions of the (37,35)(37,35) state in the He+4p¯{}^{4}\mbox{He}^{+}\bar{p} atom Wid08 ; PLB09 (the notation is shown on the schematic diagram of the (37,35)(37,35) state on Fig. 1):

τ+=12 896.641(63) MHz,τ=12 924.461(63) MHz.\begin{array}[]{@{}l}\tau_{+}=12\,896.641(63)\mbox{ MHz},\\[5.69054pt] \tau_{-}=12\,924.461(63)\mbox{ MHz}.\end{array} (1)

The difference between τ+\tau_{+} and τ\tau_{-} is nearly proportional to the antiprotonic magnetic moment and has a value

Δτ=27.825(33) MHz.\Delta\tau=27.825(33)\mbox{ MHz}. (2)

That should be compared with the theoretical prediction JPB01 :

τ+=12 896.35(69) MHz,τ=12 924.24(69) MHz.\begin{array}[]{@{}l}\tau_{+}=12\,896.35(69)\mbox{ MHz},\\[5.69054pt] \tau_{-}=12\,924.24(69)\mbox{ MHz}.\end{array} (3)

It is seen that the experimental error is more than an order of magnitude smaller and transitions have some systematic shift toward larger values. The Breit-Pauli approximation used so far is limited by the uncertainty of order 𝒪(α2)\mathcal{O}(\alpha^{2}) and higher order corrections should be included into consideration to achieve the similar accuracy as in the experiment.

The effective Hamiltonian of the hyperfine interaction may be written (see details in JPB01 )

Heff=E1(𝐬e𝐋)¯+E2(𝐬p¯𝐋)+E3(𝐬e𝐬p¯)+E4{2L(L+1)(𝐬e𝐬p¯)3[(𝐬p¯𝐋)(𝐬e𝐋)+(𝐬e𝐋)(𝐬p¯𝐋)]}.\begin{array}[]{l}H^{\rm eff}\!=\underline{E_{1}\,(\mathbf{s}_{e}\!\cdot\!\mathbf{L})}+E_{2}\,(\mathbf{s}_{\bar{p}}\!\cdot\!\mathbf{L})+E_{3}\,(\mathbf{s}_{e}\!\cdot\!\mathbf{s}_{\bar{p}})\\[8.53581pt] \hskip 56.9055pt+E_{4}\,\bigl{\{}2L(L\!+\!1)(\mathbf{s}_{e}\!\cdot\!\mathbf{s}_{\bar{p}})\\[8.53581pt] \hskip 56.9055pt-3\bigl{[}(\mathbf{s}_{\bar{p}}\!\cdot\!\mathbf{L})(\mathbf{s}_{e}\!\cdot\!\mathbf{L})+(\mathbf{s}_{e}\!\cdot\!\mathbf{L})(\mathbf{s}_{\bar{p}}\!\cdot\!\mathbf{L})\bigr{]}\bigr{\}}.\end{array} (4)

To get improved values for the τ+\tau_{+} and τ\tau_{-} transitions one needs to get contributions of the next to the leading order for the electron spin-orbit interaction coefficient E1E_{1}. It may be done within the framework of the NRQED formalism Kin96 . Some details of the derivation of the mα6m\alpha^{6} order contributions may be found in HFS_H2plus .

II Corrections of order mα6m\alpha^{6} to the effective Hamiltonian of the fine structure.

In what follows we use the notation: 𝐑1\mathbf{R}_{1}, 𝐑2\mathbf{R}_{2}, 𝐫e\mathbf{r}_{e}, and 𝐏1\mathbf{P}_{1}, 𝐏2\mathbf{P}_{2}, 𝐩e\mathbf{p}_{e} are coordinates and impulses of three particles in the center of mass frame, where subscript 1 stands for a helium nucleus and 2 for an antiproton. We also make use 𝐫i=𝐫e𝐑i\mathbf{r}_{i}=\mathbf{r}_{e}\!-\!\mathbf{R}_{i}, i=1,2i=1,2 for coordinates of an electron with respect to one of the nuclei.

According to the NRQED the effective Hamiltonian includes the three new interactions, which contribute to the electron spin-orbit term at the mα6m\alpha^{6} order. Two are relativistic corrections of order v2/c2v^{2}/c^{2} to the vertex functions for the spin-orbit and Fermi interactions (see Kin96 )

𝒱1=e2(i3𝝈eP[𝐪×𝐩e](pe2+pe2)32me4)1𝐪2(Zi)𝒱2=e2(i[𝝈eP×𝐪](pe2+pe2)8me3)1𝐪2(Zi𝐏iMi)\begin{array}[]{@{}l}\displaystyle\mathcal{V}_{1}=e^{2}\left(i\frac{3\boldsymbol{\sigma}_{e}^{P}[\mathbf{q}\times\mathbf{p}_{e}](p_{e}^{\prime 2}+p_{e}^{2})}{32m_{e}^{4}}\right)\;\frac{1}{\mathbf{q}^{2}}\;(Z_{i})\\[11.38109pt] \displaystyle\mathcal{V}_{2}=-e^{2}\left(i\frac{[\boldsymbol{\sigma}_{e}^{P}\times\mathbf{q}](p_{e}^{\prime 2}+p_{e}^{2})}{8m_{e}^{3}}\right)\frac{1}{\mathbf{q}^{2}}\left(Z_{i}\frac{\mathbf{P}_{i}}{M_{i}}\right)\end{array} (5)

The third is the seagull vertex interaction with one Coulomb and one transverse photon lines:

𝒱3=e4𝝈eP4me2[{[1𝐪22(δijq2iq2j𝐪22)](Z2𝐏2+𝐏22M2)}[i𝐪1𝐪12](Z1)]+(12)\begin{array}[]{@{}l}\displaystyle\mathcal{V}_{3}=e^{4}\frac{\boldsymbol{\sigma}_{e}^{P}}{4m_{e}^{2}}\Biggl{[}\Biggl{\{}\left[-\frac{1}{\mathbf{q}_{2}^{2}}\left(\delta^{ij}\!-\!\frac{q_{2}^{i}q_{2}^{j}}{\mathbf{q}_{2}^{2}}\right)\right]\\[11.38109pt] \hskip 28.45274pt\displaystyle\left(\!-Z_{2}\frac{\mathbf{P}^{\prime}_{2}\!+\!\mathbf{P}_{2}}{2M_{2}}\right)\Biggr{\}}\left[\frac{i\mathbf{q}_{1}}{\mathbf{q}_{1}^{2}}\right](Z_{1})\Biggr{]}+(1\leftrightarrow 2)\end{array} (6)

the sources may be two different nuclei or may coincide.

To get a complete set of corrections one needs to take into account the second order contribution as well

ΔEA=2α4HB|Q(E0H0)1Q|Zi(𝐫i×𝐩e)2me2ri3𝐬e2α4HB|Q(E0H0)1Q|Zi(𝐫i×𝐏i)meMiri3𝐬e\begin{array}[]{@{}l}\displaystyle\Delta E_{A}=2\alpha^{4}\biggl{\langle}H_{B}\bigg{|}Q(E_{0}\!-\!H_{0})^{-1}Q\bigg{|}\frac{Z_{i}(\mathbf{r}_{i}\!\times\!\mathbf{p}_{e})}{2m_{e}^{2}r_{i}^{3}}\mathbf{s}_{e}\biggr{\rangle}\\[8.53581pt] \hskip 14.22636pt\displaystyle-2\alpha^{4}\left\langle H_{B}\bigg{|}Q(E_{0}\!-\!H_{0})^{-1}Q\bigg{|}\frac{Z_{i}(\mathbf{r}_{i}\!\times\!\mathbf{P}_{i})}{m_{e}M_{i}r_{i}^{3}}\mathbf{s}_{e}\right\rangle\end{array} (7)

where

HB=𝐩e48me3+π2me2[Z1δ(𝐫1)+Z2δ(𝐫2)].H_{B}=-\frac{\mathbf{p}_{e}^{4}}{8m_{e}^{3}}+\frac{\pi}{2m_{e}^{2}}\left[Z_{1}\delta(\mathbf{r}_{1})\!+\!Z_{2}\delta(\mathbf{r}_{2})\right]. (8)

Radiative corrections (form factors of the electron) have been already included into consideration as contributions to the anomalous magnetic moment.

Transforming potentials 𝒱i\mathcal{V}_{i} to the coordinate space and atomic units one gets:

𝒱1=α6c23Zi16me4{pe2,1ri3[𝐫i×𝐩e]}𝐬e,𝒱2=α6c2Zi4me3Mi{pe2,1ri3[𝐫i×𝐏i]}𝐬e.\begin{array}[]{@{}l}\displaystyle\mathcal{V}_{1}=-\alpha^{6}c^{2}\frac{3Z_{i}}{16m_{e}^{4}}\left\{p_{e}^{2},\frac{1}{r_{i}^{3}}[\mathbf{r}_{i}\!\times\!\mathbf{p}_{e}]\right\}\mathbf{s}_{e},\\[11.38109pt] \displaystyle\mathcal{V}_{2}=\alpha^{6}c^{2}\frac{Z_{i}}{4m_{e}^{3}M_{i}}\left\{p_{e}^{2},\frac{1}{r_{i}^{3}}[\mathbf{r}_{i}\!\times\!\mathbf{P}_{i}]\right\}\mathbf{s}_{e}.\end{array} (9)

and

𝒱3=α6c2Z1Z24me2{[𝐫1×𝐏2]M2r13r2+[𝐫2×𝐏1]M1r1r23[𝐫1×𝐫2]r13r23[(𝐫1𝐏1)M1(𝐫2𝐏2)M2]}𝐬e.\begin{array}[]{@{}l}\displaystyle\mathcal{V}_{3}=-\alpha^{6}c^{2}\frac{Z_{1}Z_{2}}{4m_{e}^{2}}\biggl{\{}\frac{[\mathbf{r}_{1}\!\times\!\mathbf{P}_{2}]}{M_{2}r_{1}^{3}r_{2}}+\frac{[\mathbf{r}_{2}\!\times\!\mathbf{P}_{1}]}{M_{1}r_{1}r_{2}^{3}}\\[11.38109pt] \hskip 19.91692pt\displaystyle-\frac{[\mathbf{r}_{1}\!\times\!\mathbf{r}_{2}]}{r_{1}^{3}r_{2}^{3}}\left[\frac{(\mathbf{r}_{1}\mathbf{P}_{1})}{M_{1}}-\frac{(\mathbf{r}_{2}\mathbf{P}_{2})}{M_{2}}\right]\biggr{\}}\mathbf{s}_{e}\,.\end{array} (10a)
𝒱4=α6c214me2{Z12[𝐫1×𝐏1]M1r14+Z22[𝐫2×𝐏2]M2r24}𝐬e.\begin{array}[]{@{}l}\displaystyle\mathcal{V}_{4}=-\alpha^{6}c^{2}\frac{1}{4m_{e}^{2}}\biggl{\{}Z_{1}^{2}\frac{[\mathbf{r}_{1}\!\times\!\mathbf{P}_{1}]}{M_{1}r_{1}^{4}}+Z_{2}^{2}\frac{[\mathbf{r}_{2}\!\times\!\mathbf{P}_{2}]}{M_{2}r_{2}^{4}}\biggr{\}}\mathbf{s}_{e}\,.\end{array} (10b)

III Variational wave function

For numerical calculations we use the exponential variational expansion, which has been discussed in details in var99 . Namely, the wave function for a state with a total orbital angular momentum LL and of a total spatial parity π=(1)L\pi=(-1)^{L} is expanded as follows:

Ψ(𝐑,𝐫1)=l1+l2=L𝒴LMl1l2(𝐑^,𝐫^1)Gl1l2Lπ(R,r1,r2),Gl1l2Lπ(R,r1,r2)=n=1N{CnRe[eαnRβnr1γnr2]+DnIm[eαnRβnr1γnr2]}.\begin{array}[]{@{}l}\displaystyle\Psi(\mathbf{R},\mathbf{r}_{1})=\sum_{l_{1}+l_{2}=L}\mathcal{Y}^{l_{1}l_{2}}_{LM}(\hat{\mathbf{R}},\hat{\mathbf{r}}_{1})G^{L\pi}_{l_{1}l_{2}}(R,r_{1},r_{2}),\\[11.38109pt] \displaystyle\hskip 0.0ptG^{L\pi}_{l_{1}l_{2}}(R,r_{1},r_{2})=\sum_{n=1}^{N}\Big{\{}C_{n}\,\mbox{Re}\bigl{[}e^{-\alpha_{n}R-\beta_{n}r_{1}-\gamma_{n}r_{2}}\bigr{]}\\[5.69054pt] \displaystyle\hskip 71.13188pt+D_{n}\,\mbox{Im}\bigl{[}e^{-\alpha_{n}R-\beta_{n}r_{1}-\gamma_{n}r_{2}}\bigr{]}\Big{\}}.\end{array} (11)

where 𝐑\mathbf{R} is a position vector of an antiproton and 𝐫1\mathbf{r}_{1} is a position vector of an electron with respect to a nucleus; parameters αn\alpha_{n} are complex, and βn\beta_{n}, γn\gamma_{n} are real, they are generated in a pseudorandom way,

Re(αn)=[12n(n+1)pα(A2A1)+A1],Im(αn)=[12n(n+1)pα(A2A1)+A1],βn=[12n(n+1)pβ(B2B1)+B1],γn=[12n(n+1)pγ(C2C1)+C1].\begin{array}[]{@{}l}\displaystyle\mathrm{Re}(\alpha_{n})=\left[\left\lfloor{\textstyle\frac{1}{2}}n(n+1)\sqrt{p_{\alpha}}\right\rfloor(A_{2}-A_{1})+A_{1}\right],\\[8.53581pt] \displaystyle\mathrm{Im}(\alpha_{n})=\left[\left\lfloor{\textstyle\frac{1}{2}}n(n+1)\sqrt{p^{\prime}_{\alpha}}\right\rfloor(A^{\prime}_{2}-A^{\prime}_{1})+A^{\prime}_{1}\right],\\[8.53581pt] \displaystyle\beta_{n}=\left[\left\lfloor{\textstyle\frac{1}{2}}n(n+1)\sqrt{p_{\beta}}\right\rfloor(B_{2}-B_{1})+B_{1}\right],\\[8.53581pt] \displaystyle\gamma_{n}=\left[\left\lfloor{\textstyle\frac{1}{2}}n(n+1)\sqrt{p_{\gamma}}\right\rfloor(C_{2}-C_{1})+C_{1}\right].\end{array} (12)

Here x\lfloor x\rfloor denotes fractional part of xx, and pαp_{\alpha}, pβp_{\beta} or pγp_{\gamma} are some prime numbers and AiA_{i}, BiB_{i}, CiC_{i} are variational parameters.

For the initial wave function of the bound state we use the triple basis set with the total number of terms N=2200N=2200 in expansion (11) and full optimization of variational parameters. That yields the non-relativistic energy for this state

Enr(37,35)=2.899 282 183 295 31(1) auE_{nr}(37,35)=-2.899\,282\,183\,295\,31(1)\mbox{ au}

The CODATA06 recommended values CODATA06 have been adopted for calculations: mp¯=mp=1836.152 672 47(80)mem_{\bar{p}}=m_{p}=1836.152\,672\,47(80)m_{e}, mα=7294.299 5365(31)mem_{\alpha}=7294.299\,5365(31)m_{e} and Rc=3.289 841 960 361(22)×106R_{\infty}c=3.289\,841\,960\,361(22)\times 10^{6} MHz.

For the intermediate states of the second order iteration the similar variational expansion (11) with various basis lengths N=520÷960N=520\!\div\!960 has been used.

set [A1,A2][A_{1},A_{2}] [A1,A2][A_{1}^{\prime},A_{2}^{\prime}] [B1,B2][B_{1},B_{2}] [C1,C2][C_{1},C_{2}]
1-st set [66.6, 87.6] [0.4, 5.2] [0.00, 2.05] [0.00, 0.87]
2-nd set [66.0, 75.4] [0.0, 5.4] [0.94, 5.70] [0.00, 1.94]
3-d set [66.0, 75.4] [0.0, 5.4] [5.00, 80.0] [0.00, 0.10]
4-th set [66.0, 75.4] [0.0, 5.4] [0.00, 0.20] [2.00, 70.0]
5-th set [66.0, 75.4] [0.0, 5.4] [90., 1000.] [0.00, 0.10]
6-th set [66.0, 75.4] [0.0, 5.4] [0.00, 0.10] [80.0, 800.]
7-th set [66.0, 75.4] [0.0, 5.4] [10310^{3}, 10410^{4}] [0.00, 0.10]
8-th set [66.0, 75.4] [0.0, 5.4] [0.00, 0.10] [800., 10410^{4}]
Table 1: Variational parameters for eight basis sets used in the second order contribution calculations.

IV Reduce a singularity in the second order contribution

The HBH_{B} operator in the second order term (7) is too singular. It requires careful consideration because intermediate states should include functions with asymptotic behaviour at small distances like 1/r1\sim\!1/r_{1} (or 1/r21/r_{2}). The usual regular trial functions would result in a very slow convergence of ΔEA\Delta E_{A}.

In order to smooth the perturbation and to reduce the singularity of the intermediate wave function we may use transformation

HB=HB(E0H0)UU(E0H0){H^{\prime}_{B\!}}=H_{B}-(E_{0}-H_{0})U-U(E_{0}-H_{0}) (13)

The delta-function singularity in |HBΨ0|H_{B}\Psi_{0}\rangle has the following structure

HBΨ0=1me2[Z1(μ1me12)πδ(𝐫1)+Z2(μ2me12)πδ(𝐫2)]Ψ0+,\begin{array}[]{@{}l}\displaystyle H_{B}\Psi_{0}=-\frac{1}{m_{e}^{2}}\biggl{[}Z_{1}\left(\frac{\mu_{1}}{m_{e}}-\frac{1}{2}\right)\pi\delta(\mathbf{r}_{1})\\[8.53581pt] \hskip 45.5244pt\displaystyle+Z_{2}\left(\frac{\mu_{2}}{m_{e}}-\frac{1}{2}\right)\pi\delta(\mathbf{r}_{2})\biggr{]}\Psi_{0}+\cdots,\end{array} (14)

where 1/μi=1/me+1/Mi1/\mu_{i}=1/m_{e}+1/M_{i}.

It is natural to take UU in the form U=c1/r1+c2/r2U=c_{1}/r_{1}+c_{2}/r_{2}. The coefficients cic_{i} may be obtained by substituting UU into the initial Schrödinger equation

(E0H0)(c1r1+c2r2)=2c1μ1πδ(𝐫1)2c2μ2πδ(𝐫2)+\begin{array}[]{@{}l}\displaystyle(E_{0}-H_{0})\left(\frac{c_{1}}{r_{1}}+\frac{c_{2}}{r_{2}}\right)\\[8.53581pt] \hskip 28.45274pt\displaystyle=-\frac{2c_{1}}{\mu_{1}}\pi\delta(\mathbf{r}_{1})-\frac{2c_{2}}{\mu_{2}}\pi\delta(\mathbf{r}_{2})+\dots\end{array}

then comparing the latter expression with Eq. (14) one gets:

c1=μ1(2μ1me)4me3Z1,c2=μ2(2μ2me)4me3Z2.\begin{array}[]{@{}l}\displaystyle c_{1}=\frac{\mu_{1}(2\mu_{1}\!-\!m_{e})}{4m_{e}^{3}}\>Z_{1},\\[8.53581pt] \displaystyle\mbox{\vrule width=0.0pt,depth=19.0pt}c_{2}=\frac{\mu_{2}(2\mu_{2}\!-\!m_{e})}{4m_{e}^{3}}\>Z_{2}.\end{array} (15)

Thus the second order term may be rewritten as follows

HB|Q(E0H0)1Q|HSO=HB|Q(E0H0)1Q|HSO+UHSOUHSO).\begin{array}[]{@{}l}\left\langle H_{B}|Q(E_{0}-H_{0})^{-1}Q|H_{SO}\right\rangle\\[5.69054pt] \hskip 17.07164pt=\left\langle H_{B}^{{}^{\prime}}|Q(E_{0}-H_{0})^{-1}Q|H_{SO}\right\rangle\\[7.11317pt] \hskip 42.67912pt+\left\langle UH_{SO}\right\rangle-\left\langle U\right\rangle\left\langle H_{SO}\right\rangle).\end{array} (16)

Matrix elements of HBH_{B}^{\prime} may be obtained directly from Eq. (13). Additional term to the effective Hamiltonian is expressed

Hm(6)=UHSOUHSO=(c1r1+c2r2)HSOc1r1+c2r2HSO.\begin{array}[]{@{}l}\displaystyle\left\langle H_{m}^{(6)}\right\rangle=\left\langle UH_{SO}\right\rangle-\left\langle U\right\rangle\left\langle H_{SO}\right\rangle\\[8.53581pt] \hskip 11.38109pt\displaystyle=\left\langle\left(\frac{c_{1}}{r_{1}}+\frac{c_{2}}{r_{2}}\right)H_{SO}\right\rangle-\left\langle\frac{c_{1}}{r_{1}}+\frac{c_{2}}{r_{2}}\right\rangle\left\langle H_{SO}\right\rangle.\end{array} (17)

For the numerical evaluation of the second order term from Eq. (16) we use the eight basis sets, where the first two approximate the regular part of the intermediate solution, and the remaining six sets with growing exponents are introduced to reproduce behaviour of the type ln(r1)\ln(r_{1}) (or ln(r2)\ln(r_{2})) at small values of r1r_{1} or r2r_{2}. The particular variational parameters used are presented in Table 1.

V Numerical calculations

n1n_{1} n2n_{2} n3n_{3} [𝐫1×𝐩e]r13\displaystyle\frac{[\mathbf{r}_{1}\times\mathbf{p}_{e}]}{r_{1}^{3}} [𝐫1×𝐏1]r13\displaystyle\frac{[\mathbf{r}_{1}\times\mathbf{P}_{1}]}{r_{1}^{3}} [𝐫2×𝐩e]r23\displaystyle\frac{[\mathbf{r}_{2}\times\mathbf{p}_{e}]}{r_{2}^{3}} [𝐫2×𝐏2]r23\displaystyle\frac{[\mathbf{r}_{2}\times\mathbf{P}_{2}]}{r_{2}^{3}}
20 20 0 0.2883781 680.0299 0.5135404 -1204.595
20 20 20 0.2411901 624.7925 0.4875501 -1177.070
40 20 20 0.2242844 573.8206 0.4899458 -1192.019
60 20 20 0.2536075 633.2949 0.5022857 -1194.613
60 40 20 0.2232982 526.5736 0.4881029 -1187.319
60 40 40 0.2847268 714.1212 0.4849738 -1160.058
80 40 40 0.2812069 716.9230 0.4696484 -1159.465
Table 2: Convergence of the second order contribution matrix elements for the spin-orbit interaction.

Matrix elements in Eqs. (9)-(10a) and (16)-(17) for the basis functions (11) of the exponential variational expansion were evaluated analytically using the recurrences derived in KorJPB02 with some modifications, which allowed to improve stability. The generating functions Γ4,0,0(α,β,γ)\Gamma_{-4,0,0}(\alpha,\beta,\gamma), Γ3,1,0(α,β,γ)\Gamma_{-3,-1,0}(\alpha,\beta,\gamma) were taken from Harris . What corresponds to the cut-off regularization of the integrals at r1,2=ρr_{1,2}=\rho, where ρ1\rho\ll 1.

For all vector operators the reduced matrix element is assumed. Here we present numerical values of some the most complicate operators.

pe2[𝐫1×𝐩e]r13=1.5575929pe2[𝐫2×𝐩e]r23=2.2459243pe2[𝐫1×𝐏1]r13=3272.7020pe2[𝐫2×𝐏2]r23=3080.3879\begin{array}[]{@{}l@{\hspace{25mm}}l}\displaystyle\left\langle p_{e}^{2}\;\frac{[\mathbf{r}_{1}\times\mathbf{p}_{e}]}{r_{1}^{3}}\right\rangle=1.5575929\hfil\hskip 71.13188pt&\displaystyle\left\langle p_{e}^{2}\;\frac{[\mathbf{r}_{2}\times\mathbf{p}_{e}]}{r_{2}^{3}}\right\rangle=2.2459243\\[11.38109pt] \displaystyle\left\langle p_{e}^{2}\;\frac{[\mathbf{r}_{1}\times\mathbf{P}_{1}]}{r_{1}^{3}}\right\rangle=3272.7020\hfil\hskip 71.13188pt&\displaystyle\left\langle p_{e}^{2}\;\frac{[\mathbf{r}_{2}\times\mathbf{P}_{2}]}{r_{2}^{3}}\right\rangle=-3080.3879\end{array} (18)
1r2[𝐫1×𝐏2]r13=205.832721r1[𝐫2×𝐏1]r23=1391.5321[𝐫1×𝐫2]r13r23(𝐫1𝐏1)=551.65420[𝐫1×𝐫2]r13r23(𝐫2𝐏2)=551.43328\begin{array}[]{@{}l@{\hspace{25mm}}l}\displaystyle\left\langle\frac{1}{r_{2}}\;\frac{[\mathbf{r}_{1}\times\mathbf{P}_{2}]}{r_{1}^{3}}\right\rangle=205.83272\hfil\hskip 71.13188pt&\displaystyle\left\langle\frac{1}{r_{1}}\;\frac{[\mathbf{r}_{2}\times\mathbf{P}_{1}]}{r_{2}^{3}}\right\rangle=1391.5321\\[11.38109pt] \displaystyle\left\langle\frac{[\mathbf{r}_{1}\times\mathbf{r}_{2}]}{r_{1}^{3}r_{2}^{3}}(\mathbf{r}_{1}\mathbf{P}_{1})\right\rangle=551.65420\hfil\hskip 71.13188pt&\displaystyle\left\langle\frac{[\mathbf{r}_{1}\times\mathbf{r}_{2}]}{r_{1}^{3}r_{2}^{3}}(\mathbf{r}_{2}\mathbf{P}_{2})\right\rangle=551.43328\end{array} (19)
HB|Q(E0H0)1Q|[𝐫1×𝐩e]r13=0.2812HB|Q(E0H0)1Q|[𝐫2×𝐩e]r23=0.4696HB|Q(E0H0)1Q|[𝐫1×𝐏1]r13=717.HB|Q(E0H0)1Q|[𝐫2×𝐏2]r23=1160.\begin{array}[]{@{}l@{\hspace{10mm}}l}\displaystyle\left\langle H_{B}^{\prime}\Bigl{|}Q(E_{0}\!-\!H_{0})^{-1}Q\Bigr{|}\frac{[\mathbf{r}_{1}\times\mathbf{p}_{e}]}{r_{1}^{3}}\right\rangle=0.2812\hfil\hskip 28.45274pt&\displaystyle\left\langle H_{B}^{\prime}\Bigl{|}Q(E_{0}\!-\!H_{0})^{-1}Q\Bigr{|}\frac{[\mathbf{r}_{2}\times\mathbf{p}_{e}]}{r_{2}^{3}}\right\rangle=0.4696\\[11.38109pt] \displaystyle\left\langle H_{B}^{\prime}\Bigl{|}Q(E_{0}\!-\!H_{0})^{-1}Q\Bigr{|}\frac{[\mathbf{r}_{1}\times\mathbf{P}_{1}]}{r_{1}^{3}}\right\rangle=717.\hfil\hskip 28.45274pt&\displaystyle\left\langle H_{B}^{\prime}\Bigl{|}Q(E_{0}\!-\!H_{0})^{-1}Q\Bigr{|}\frac{[\mathbf{r}_{2}\times\mathbf{P}_{2}]}{r_{2}^{3}}\right\rangle=-1160.\end{array} (20)

It is worthy to say that the second order iteration, even after reduction of the singularity, still reveals slow convergence. In Table 2 we present results of numerical calculations for various sets of basis functions. The results depend very little on increase of the 1st and 2nd basis sets (see Table 1), which represent regular behaviour. The following notation has been used in Table 2: n1n_{1} is a number of basis functions for 3d and 4th sets, n2n_{2} is for 5th and 6th sets, etc. As is seen from the Table, no more than two digits may be accepted with confidence as convergent. However, the increase of the basis sets leads to numerical instability, which we attribute to very large angular momentum of the state (L=35L=35) what makes the recursion used for analytic evaluation of the matrix elements to be too long and unstable for large exponents. The octuple precision has been used in these calculations and still it was not enough to provide necessary stability.

VI Results and discussion

Summing up the contributions from Eq. (7), (9), and (10a)-(10b) we obtain the mα6m\alpha^{6} order contribution to the electron spin-orbit interaction:

ΔE1=0.000030(4)107 au\Delta E_{1}=-0.000030(4)\cdot 10^{-7}\mbox{ au} (21)

Thus a new value for the E1E_{1} coefficient would be

E1=0.552 563(4)107 auE_{1}=-0.552\,563(4)\cdot 10^{-7}\mbox{ au} (22)

where the uncertainty is primarily due to slow convergence of the second order iteration.

Using this new value for the E1E_{1} coefficient and keeping E2E_{2}E4E_{4} as in JPB01 one may solve the effective Hamiltonian (4) and get updated theoretical values for transition frequencies:

τ+=12897.0(1)(3) MHzτ=12924.9(1)(3) MHzΔτ=27.897(0)(3) MHz\begin{array}[]{@{}l}\tau_{+}=12897.0(1)(3)\mbox{ MHz}\\ \tau_{-}=12924.9(1)(3)\mbox{ MHz}\\ \Delta\tau=27.897(0)(3)\mbox{ MHz}\end{array} (23)

The first error indicates the numerical uncertainty of present calculations, while the second one is an estimate of the theoretical uncertainty due to yet uncalculated higher order terms. As it should be Δτ\Delta\tau does not change its value comparing with previous calculations JPB01 . The values of τ+\tau_{+} and τ\tau_{-} leap over the experimental result and become to overestimate ones if we take the numerical error as a measure of uncertainty. Still in theory we need to include into consideration effects of the next order in α\alpha, which contain terms of order (α3lnα)E1(\alpha^{3}\ln{\alpha})E_{1} and are of the magnitude of the discrepancy.

It is worthy to note here that the obtained value of ΔE1\Delta E_{1} is unexpectedly small. That explains rather good agreement of the experiment with the results of the Breit-Pauli approximation.

In order to get the improved value for Δτ\Delta\tau one needs to perform a complete calculation of all the contributions of order mα6(m/M)m\alpha^{6}(m/M), which provides corrections to the remaining coefficients, E2E4E_{2}-E_{4}, in the effective HFS Hamiltonian (4). This work is in progress now.

VII Acknowledgments

The support of the Russian Foundation for Basic Research under Grants No. 08-02-00341 and 09-02-91000-ASF is gratefully acknowledged.

References

  • (1) D. Bakalov and V.I. Korobov, Phys. Rev. A 57, 1662 (1998).
  • (2) N. Yamanaka, Y. Kino, H. Kudo, and M. Kamimura, Phys. Rev. A 63, 012518 (2001).
  • (3) V.I. Korobov and D. Bakalov, J. Phys. B: At. Mol. Opt. Phys. 34, L519 (2001)
  • (4) Y. Kino, N. Yamanaka, M. Kamimura, and H. Kudo, Hyperfine Interactions 146/147, 331 (2003).
  • (5) E. Widmann, J. Eades, T. Ishikawa, J. Sakaguchi, T. Tasaki, H. Yamaguchi, R.S. Hayano, M. Hori, H.A. Torii, B. Juhász, D. Horváth, and T. Yamazaki, Phys. Rev. Lett. 89, 243402 (2002).
  • (6) T. Pask, D. Barna, A. Dax, R.S. Hayano, M. Hori, D. Horváth, B. Juhász, C. Malbrunot, J. Marton, N. Ono, K. Suzuki, J. Zmeskal, and E. Widmann, J. Phys. B 41, 081008 (2008).
  • (7) T. Pask, D. Barna, A. Dax, R.S. Hayano, M. Hori, D. Horváth, S. Friedreich, B. Juhász, O. Massiczek, N. Ono, A. Sótér, and E. Widmann, Phys. Lett. B 678, 55 (2009).
  • (8) T. Kinoshita and M. Nio, Phys. Rev. D 53, 4909 (1996).
  • (9) V.I. Korobov, L. Hilico, and J.-Ph. Karr, Phys. Rev. A 79, 012501 (2009).
  • (10) V.I. Korobov, D. Bakalov, and H.J. Monkhorst, Phys. Rev. A, 59, R919 (1999).
  • (11) P.J. Mohr, B.N. Taylor, and D.B. Newell, Rev. Mod. Phys. 80, 633 (2008).
  • (12) V.I. Korobov, J. Phys. B: At. Mol. Opt. Phys. 35, 1959 (2002).
  • (13) F.E. Harris, A.M. Frolov, and V.H. Smith, Jr., J. Chem. Phys. 121, 6323 (2004).